
MLNX-15-060476 _v2.2.1 | October 2023

RXP Compiler

User Guide

RXP Compiler MLNX-15-060476 _v2.2.1 | ii

Table of Contents

Chapter 1. Introduction..1
1.1. Scope...1

1.2. Related Documentation...1

1.3. Typography..1

1.4. Acronyms... 2

Chapter 2. RXP Compiler Installation.. 4

Chapter 3. RXP Compiler Utility...5
3.1. Usage...5

3.2. Options..5

3.3. Example Usage... 12

3.4. Input.. 13

3.5. Output.. 13

3.6. Error Reporting...13

3.6.1. Rules File Format Error... 14

3.6.2. Not Enough Resources..14

3.6.3. Syntax Error... 15

3.6.4. Unsupported Feature...17

3.7. Incremental Compile.. 17

3.7.1. Quick Incremental Compile... 17

3.7.2. Normal Incremental Compile..18

3.8. Automatic Splitting of Rulesets... 20

3.9. Automatic Rules Normalization...20

3.10. Automatic Prefix Denylist Generation... 21

3.10.1. Static.. 21

3.10.2. Dynamic...21

3.11. Primary Threads Per Byte (PTPB)..21

Chapter 4. Data Flow and File Formats..26
4.1. CSV File Format..27

4.2. Input Rules Files...27

4.3. Prefix Selection Control List Files.. 29

4.4. Rule ID Lookup Table File...30

4.5. Rule Direction Analysis File... 30

4.6. Uncompiled Rules File... 31

4.7. Critical Rules Rank File..32

4.8. Remove Rules File..32

RXP Compiler MLNX-15-060476 _v2.2.1 | iii

4.9. ROF File..32

4.10. ROFI File.. 33

4.11. ROFF File...33

Chapter 5. Regular Expression Support...34
5.1. Assumptions.. 34

5.2. Backslash...35

5.3. Supported Constructs...35

5.4. Alternation..37

5.5. Anchored to Offset.. 37

5.6. Anchoring..38

5.7. Back References.. 39

5.8. Capturing Parentheses..40

5.9. Conditional Statement..40

5.10. Dot Metacharacter...41

5.11. Inline Comments... 41

5.12. Internal Option Setting.. 41

5.13. Hexadecimal Formats..42

5.14. Literal Strings...43

5.15. Modifiers...43

5.16. Non-capturing Parentheses... 44

5.17. Non-printing Characters..44

5.18. Octal Formats...45

5.19. POSIX Character Classes.. 45

5.20. Predefined Classes...46

5.21. Quoting..47

5.22. Repetition...47

5.23. Reset Subpattern Numbers... 48

5.24. Subpattern Matching..49

5.25. User-defined Character Classes.. 49

5.26. Word Boundary.. 51

5.27. Unsupported Constructs...51

Chapter 6. Prefix Selection..54
6.1. Enhanced Prefix Extraction Mode..54

6.2. Length.. 54

6.3. Context...55

6.3.1. Prefix Selection Control List...55

6.4. Multiple Prefixes per Rule..55

6.5. Jumpback..56

RXP Compiler MLNX-15-060476 _v2.2.1 | iv

6.6. Anchoring..56

6.7. Unique Characters.. 56

6.8. Postfix...56

Chapter 7. Subset IDs..58

Chapter 8. Differences Between RXP and PCRE..60
8.1. Anchored to Offset.. 60

8.2. Enhanced Prefix Extraction Mode..61

8.3. Relaxed Repetition Quantifiers..62

8.4. Similar Alternation Paths... 63

8.5. Shortest Alternation Paths... 63

8.6. Greediness.. 63

8.7. Start Pointer for Multi-line Mode.. 63

8.8. Repetitions at Beginning of Rule... 63

Chapter 9. Performance Considerations..65
9.1. Complexity..65

9.1.1. Rule Complexity... 65

9.1.2. Ruleset Complexity...65

9.2. Optimization for .* Processing... 66

9.3. Partial Matches.. 66

RXP Compiler MLNX-15-060476 _v2.2.1 | v

List of Tables

Table 1. Terms and Definitions.. 2

Table 2. Acronyms..2

Table 3. RXP Compiler Options.. 5

Table 4. Rules File Format Errors Reported by RXP Compiler..14

Table 5. "Not Enough Resource" Errors Reported by RXP Compiler... 14

Table 6. Syntax Errors Reported by the RXP Compiler...15

Table 7. File Formats Used by RXP Tools..26

Table 8. Supported Rules File Keywords... 28

Table 9. Supported Prefix Denylist File Keywords...29

Table 10. Rule ID Lookup Table File Fields..30

Table 11. Rule Direction Analysis File Fields..31

Table 12. ROF Entry Types.. 32

Table 13. Additional Functionality Supported by the RXP Compiler...34

Table 14. Regex Constructs Supported by the RXP Compiler...35

Table 15. Supported Anchored to Offset Operators...38

Table 16. Supported Anchors and Simple Assertions...38

Table 17. Supported Back Referencing Styles... 39

Table 18. Supported Capturing Styles... 40

Table 19. Condition Styles...41

Table 20. Supported Internal Options..42

Table 21. Supported Hexadecimal Formats...42

Table 22. Supported Mode Modifiers...43

Table 23. Supported RXP Custom Mode Modifiers... 44

Table 24. Supported Non-Printing Characters... 44

RXP Compiler MLNX-15-060476 _v2.2.1 | vi

Table 25. Supported Octal Formats.. 45

Table 26. Supported POSIX and Shorthand Equivalent Classes...46

Table 27. Supported General Classes...46

Table 28. Supported XML Schema Classes... 47

Table 29. Supported Repetition Operators..48

Table 30. Supported Character Class Metacharacters...49

Table 31. Supported Character Class Notation... 50

Table 32. Regex Constructs Not Supported by the RXP Compiler..51

RXP Compiler MLNX-15-060476 _v2.2.1 | 1

Chapter 1. Introduction

Important: No updates were made to the RXP Compiler tool in DOCA 2.2. Please refer to
DOCA 2.5 for a note regarding future updates.

NVIDIA® RXP™ is a custom-purpose processor developed to efficiently process data to
detect matches for a set of user-defined string and regular expression (RegEx) based
rules. The RXP Compiler is used to compile RegExes into a format that can be executed
by the RXP.

1.1. Scope
This document provides information on the following:

‣ Pattern syntax supported by the RXP Compiler

‣ Differences from PCRE behaviour

‣ Limitations for any constructs

‣ Pattern optimizations/consolidations

‣ Best practices for writing good rules

1.2. Related Documentation
The following is a list of related documentation for the content of this document.

‣ PCRE pattern specification

‣ PCRE API information

‣ Mastering Regular Expressions (O'Reilly)

1.3. Typography
The following table describes typographical conventions in NVIDIA documentation.

http://regexkit.sourceforge.net/Documentation/pcre/pcrepattern.html
http://regexkit.sourceforge.net/Documentation/pcre/pcreapi.html

Introduction

RXP Compiler MLNX-15-060476 _v2.2.1 | 2

Table 1. Terms and Definitions

Term Definition

Job A unit of data for the RXP to scan. A job can be a packet, packet header,
packet payload, packet header and payload, or a block of user-defined data.

Jobset A set of jobs or packets to be scanned.

RegEx A common abbreviation for regular expression.

Regular
expression

A regular expression is a concise and flexible means for matching strings
of text, such as particular characters, words, or patterns of characters. A
common abbreviation for this is “RegEx”.

ROF file Contains object code used to program the rules memories on the RXP.

ROF file names have extension .rof or .rof2, depending on whether it is version
1 or version 2. Unless otherwise stated, the term ROF refers to the latest
version, i.e. version 2.

ROFI file Created by RXP Compiler. Contains the minimum changes required to update
the RXP rules memories from one ruleset to another.

ROFI file names have extension .rofi or .rof2i, depending on whether it is
version 1 or version 2. Unless otherwise stated, the term ROFI refers to the
latest version, i.e. version 2.

ROFF file Contains information required by the RXP Job Generator to create embedded
matches for a compiled ruleset.

Ruleset A list of regular expressions and strings that can be compiled into object code
by the RXP Compiler and executed on the RXP.

RXP High-speed, hardware-accelerated regular expression engine.

Score table Mechanism used to validate matches detected by RXP.

Thread A thread refers to a single path through a set of instructions. When a thread
reaches a fork type instruction and branches to two instructions, each is
referred to as a separate thread. Note that the term thread also still refers to a
traditional CPU thread. The context should make it clear as to which thread is
being referred to.

1.4. Acronyms
The following table lists the acronyms used in this document.

Table 2. Acronyms

Acronym Meaning

ASCII American Standard Code for Information Interchange

Introduction

RXP Compiler MLNX-15-060476 _v2.2.1 | 3

Acronym Meaning

API Application Programming Interface

CSV Comma Separated Value

ID IDentifier

PCRE Perl Compatible Regular Expressions

POSIX Portable Operating System Interface for uniX

PTPB Primary Threads Per Byte

RE Regular Expression

ROF RXP Object Format (currently at version 2)

ROFI RXP Object Format Increment (currently at version 2)

ROFF RXP Object Format Full

RTRU Run Time Rules Update

RXP Regular eXpression Processor

SDK Software Development Kit

SOS Start Of Subject

UCP UniCode Properties

XML eXtensible Markup Language

RXP Compiler MLNX-15-060476 _v2.2.1 | 4

Chapter 2. RXP Compiler Installation

To install the RXP Compiler, use the package manager applicable to the version of Linux
you are using.

For Ubuntu, run:
sudo dpkg -i <RXP_COMPILER_DEB_FILE>

For CentOS, run:
sudo rpm -ivh <RXP_COMPILER_RPM_FILE>

RXP Compiler MLNX-15-060476 _v2.2.1 | 5

Chapter 3. RXP Compiler Utility

The RXP Compiler (rxpc) is used to compile RegExes into RXP Object Format (ROF) to
be executed on the NVIDIA® RXP®. The generated ROF file can be used by a customer
application to program the RXP rules memories.

3.1. Usage
rxpc [OPTIONS] [ARGS]

3.2. Options
The options for the RXP compiler are summarized in the following table.

Table 3. RXP Compiler Options

Short Option Long Option Argument Type/Min/Max Description

-A --add-rules FILE string/-/- Quick
incremental
compile add
rule. Specify a
file containing
a list of rules to
add to a ROF2
file. See Quick
Incremental
Compile for
more details.
Must be used in
conjunction with
the -I option.

-a --auto-rule-id int/1/- Assign an
automatic
incrementing ID
to each rule.

-B --pscl FILE -/-/- Specify a prefix
selection control

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 6

Short Option Long Option Argument Type/Min/Max Description
list file containing
a list of prefixes
to be denylisted/
graylisted/
allowlisted.

-b --static-
denylist

PERCENT int/1/100 Specify the
percentage
of rules that
can share a
prefix before is
denylisted.

-c --checksum ROFI_FILENAME string/-/- Use the end
checksum in
ROFI_FILENAME
as the start
checksum in the
output ROFI file.
Can only be used
in conjunction
with the --
incremental
option.

-d --direction-
analysis

-/-/- Create a ruleset
direction analysis
file, even when
the ruleset
contains more
than 200,000
entries.

-D --divide-
ruleset

N int/1/- Split the
compiled ruleset
into N ROF files.
Each ROF file will
have a subgroup
of the rules and
all the ROF files
together will
make up the
complete ruleset.

-E --force-early-
ssid-check

-/-/- Force the subset
ID check to be
performed as
early as possible.
This works best
for complex
RegEx rules split
across many
subsets.

-F --force -/-/- Force the
compilation to

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 7

Short Option Long Option Argument Type/Min/Max Description
complete even if
errors are found
in the rules.

-f --file FILENAME string/-/- Specify the rules
file to compile.

-h --help -/-/- Display help
message and
then exit.

-I --incremental ROF_FILENAME string/-/- Perform an
incremental
compile using
ROF_FILENAME
as the base.

-i --caseless -/-/- Switch on global
case insensitivity.
This option is
equivalent to
adding the /i
modifier to every
rule. Caseless
mode may still
be set and unset
within a rule
by using the
internal (?i) and
(?-i) options
respectively.

-j --use-binary-
rof

-/-/- Indicate that the
input ROF file is a
binary ROF file.

-M --max NUMBER int_32/1/- Compile a
maximum of
NUMBER rules.

-m --multi -/-/- Switch on global
multi-line mode.
This option is
equivalent to
adding the /
m modifier to
every rule. Multi-
line mode may
still be set and
unset within a
rule by using the
internal (?m) and
(?-m) options
respectively.

-n --no-cross-
subset-prefix

-/-/- Avoid cross
subset prefix

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 8

Short Option Long Option Argument Type/Min/Max Description
sharing where
possible.

-O --objective VALUE int/1/10 Set compiler with
a combination
of options
to prioritize
throughput or
rules complexity.
Can be set to 1, 2,
3, 4, 5, 6, 7, 8, 9,
10.

The default value
is 5.

‣ Lower value
= prioritize
rules
complexity

‣ Higher value
= prioritize
rules
throughput

-o --output BASEFILENAME string/-/- Write ROF2 file to
BASEFILENAME.rof2

Write log file to
BASEFILENAME.log

-P --pcre-pre-8-36 -/-/- Set the space
class to not
include vertical
tab (VT) as was
used in PCRE
before v8.36.

-p --ptpb NUMBER double/-/- Set a Primary
Threads Per Byte
(PTPB) threshold.
The default value
for this is 0.0001.
See Automatic
Splitting of
Rulesets for more
information. The
PTPB threshold
can be switched
off by setting it
to zero.

-q --strict-
quantifiers

-/-/- To help with
performance,
by default the

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 9

Short Option Long Option Argument Type/Min/Max Description
RXP Compiler
treats non-
fixed bounded
quantifiers as
unbounded.
For example, .
{0,2048} will
be the same
as .*. This has
the caveat of
false positives
being possible.
This switch will
ensure that the
original construct
is used in all
cases meaning
performance will
be worse but no
false positives will
occur.

-r --remove-rules FILE string/-/- Quick
incremental
compile remove
rule feature.
Specify a file
containing
a list of rule
IDs to remove
from a ROF
file. See Quick
Incremental
Compile for
more details.
Must be used in
conjunction with
the -I option.

-S --nosingle -/-/- By default,
the dot
metacharacter
matches every
character
including newline
(\x0A). This
option switches
this off so that
dot matches
every character
except newline.
Single line mode
may still be set

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 10

Short Option Long Option Argument Type/Min/Max Description
and unset within
a rule by using
the internal (?s)
and (?-s) options
respectively.

-s --enable-split -/-/- Enable the
automatic
alternation
splitting.

-t --threads NUMBER int/1/8 Specify the
number of
threads (1-8) to
be used during
compilation
(default is 1).

-V --regex-version VERSION string/-/- the version of the
RXP core that the
compiled ruleset
will be executed
on. The default
is 'bf2':'5.7'
or 'bf2' - for
BlueField-2'6.0'
or 'bf3' - for
BlueField-3'BlueField'
- for BlueField-2
and 3

-v --verbose LEVEL int/0/3 Set the verbosity
level of terminal
output:

‣ 0 – no
terminal
output

‣ 1 – only
warnings and
errors

‣ 2 – all output
except
progress bars

‣ 3 – all output
(default)

-W --disable-
bidirectional

-/-/- Disable enhanced
prefix extraction
mode.

-w --tpe-max-data-
width

WIDTH int/1/8 Set the maximum
TPE data
WIDTH in bytes.
Values: 1, 2, 3, 4

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 11

Short Option Long Option Argument Type/Min/Max Description
(default), 5, 6, 7,
8. Experiments
have shown that
a lower value can
be better for
rules/data with
a shared narrow
ASCII range and
large numbers
of prefixes being
triggered.

-X --XML -/-/- Switch on XML
schema mode.
This offers four
extra XML related
character classes
and character
class subtraction
support.

-x --free -/-/- Switch on
free-spacing
mode (ignore
whitespace in
rules).

-Y --dynamic-
denylist-file

FILE string/-/- Specify a file
to analyze
to build up a
frequency table
of content. This
frequency table
will be used in
conjunction with
the % threshold
specified in
--dynamic-
denylist to
denylist strings
based on their
frequency if
this exceeds
the specified
threshold value.
This denylist
will be written
out to a file
with the suffix
_generated_pcsl.log.
The prefixes for
the ruleset will
then be analyzed
against this

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 12

Short Option Long Option Argument Type/Min/Max Description
and denylisted
if they match
the frequently
occurring strings
in the sample
data that have
been used
to create the
denylist.

-y --dynamic-
denylist

PERCENT int/1/100 Specify a %
threshold used to
denylist strings in
the FILE specified
using --dynamic-
denylist-file.
This % value
represents the
% of bytes in the
sample data that
represent the
start of a 1-4-
byte string. If the
string occurs at >
the % threshold
number of bytes,
it will then be
denylisted.

3.3. Example Usage
A simple example of using the rxpc is shown below.
Create a simple rules file, with a single rule "hello\s+world"
echo "1,/hello\s+world/" > ruleset/synthetic.rules

Compile the rules file. All output files will be prefixed by "rof/synthetic"
rxpc -f ruleset/synthetic.rules -o rof/synthetic

The example above creates a ruleset with a single rule containing the alphabet. This is
compiled into a ROF file using the rxpc. This is created along with the other output files
mentioned in section RXP Compiler Output.

When the example above is run the rxpc produces output including statistics such as:
Info: PPE total 1-byte prefix usage: 0/256 (0%)
Info: PPE total 2-byte prefix usage: 0/2048 (0%)
Info: PPE total 3-byte prefix usage: 0/2048 (0%)
Info: PPE total 4-byte prefix usage: 1/32768 (0.00305176%)
Info: TPE instruction RAM TCM partition usage: 4096/4096 (100%)
Info: TPE instruction RAM external memory partition usage: 4111/13M (0.0301581%)
Info: TPE class RAM usage: 1/256 (0.390625%)
Info: Estimated threads/byte: 2.592e-10
...
Info: Number of rules compiled = 1/1
...
Info: Processing ended: Wed Oct 9 10:10:57 2022

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 13

Info: Elapsed time: 0 seconds
Info: Compilation rate: 3 rules per second

The first eight lines show the memory usage for prefixes, instructions, and classes.
Next the PTPB value (see section Incremental Compile) attributed to the entire
ruleset followed by the number of rules that have successfully compiled. Finally, some
compilation statistics are displayed. For the compilation rate to be accurate a larger
ruleset needs to be compiled.

3.4. Input
Input Link

Rules file (.rules) See section Input Rules Files for file format.

3.5. Output
Output Link

Rule ID lookup table (.csv) See section Rule ID Lookup Table File for file
format.

RXP object format (.rof2) See section Remove Rules File for file format.

RXP object format increment (.rof2i) See section ROF File for file format.

RXP object format full (.roff) See section ROFI File for file format.

Uncompiled rules log (.log) See section Uncompiled Rules File for file
format.

Uncompiled rules summary (.csv) See section Uncompiled Rules File for file
format.

Critical rules rank (.csv) See section Critical Rules Rank File for file
format.

Generated_pscl (.log) See section Prefix Selection Control List Files for
file format.

Rule_direction_analysis (.csv) See section Rule Direction Analysis File for file
format

3.6. Error Reporting
Any errors that are encountered during compilation will be displayed to the terminal and
processing will halt. If the force (-F) option is specified, processing will continue until all
rules have been processed. The error details for any rules that could not be compiled
when force (-F) is used will be written to a log file (see section Critical Rules Rank File).

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 14

However, should the subset ID be found to be out of range, then processing will halt
regardless of whether -F is specified or not.

The RXP compiler logs four distinct type of errors during the compilation process. These
are described in the following sections.

3.6.1. Rules File Format Error
This type of error points to an error in the rules file format. This can be corrected to
allow compilation. A file name, line number and pointer to problem will be provided to aid
in debugging. See the following table for a full list of error strings and descriptions.

Table 4. Rules File Format Errors Reported by RXP Compiler

Error String Description

no rule found There was no rule found where it was expected to be in the input
rules file.

no subset_rule_id found There was no subset rule_id found where it was expected to be.

unrecognized or duplicated
modifier

There is an issue with the modifiers in a rule. They may be
unrecognized or duplicated.

file could not be opened There was an issue opening the specified file.

unrecognized line format This specific line was not recognized.

subset_id out of range This indicates that a subset ID specified falls outside the range
1-65535. If this is detected processing will halt, even when using
the -F switch.

subset_rule_id out of range This indicates that a subset rule ID specified falls outside the
range 0-4,294,967,295.

3.6.2. Not Enough Resources
This type of error means that the current version of the RXP does not have enough
resources to execute the rule. See the following table for a full list of error strings and
descriptions.

Table 5. "Not Enough Resource" Errors Reported by RXP Compiler

Error String Description

class resources exceeded There is no more room for any new RegEx classes

exceeded maximum PTPB
threshold

See section Incremental Compile for more details

insufficient prefix resources There is not enough prefix memory to store all the rules

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 15

Error String Description

maximum number of back
references possible is 16

There are more than 16 back references used in a rule

maximum primary thread
count exceeded

The rule causes too many primary threads to be spawned

maximum secondary thread
count exceeded

The rule causes too many secondary threads to be spawned

nested repetition prefixes not
yet supported

It is not possible to extract a prefix from a rule with nested
repetition at the start (e.g. /(A*A*A*A+)+/)

no valid prefixes found No valid prefixes can be found in the rule (e.g. /.*/)

not enough resources
available

There are not enough resources available on the RXP to execute
the rule

prefix overflow A prefix could not be extracted from the rule due to excessive
alternation paths

3.6.3. Syntax Error
This type of error points to an error in the rule itself. This can be corrected to allow
compilation. A file name, line number and pointer to problem will be provided to aid in
debugging. See the following table for a full list of error strings and descriptions.

Table 6. Syntax Errors Reported by the RXP Compiler

Error String Description

'/' character must be
escaped

The '/' character must be escaped with ‘\’ unless it is the
beginning and last character in a rule

ASCII control character
must be an alphabetic
character

See RXP Pattern Syntax and RegEx Writers Guide for more
details

cannot peek as at end of
data stream

Logic of RegEx elements is not correct. That is, only part of a
RegEx construct specified at end of rule.

cannot peek back as at
beginning of data stream

Logic of RegEx elements is not correct. That is, only part of a
RegEx construct specified at beginning of rule.

cannot unget as at
beginning of data stream

Logic of RegEx elements is not correct. That is, only part of a
RegEx construct specified at beginning of rule.

class subtraction must
always be the last element
in its containing character
class

See RXP Pattern Syntax and RegEx Writers Guide for more
details

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 16

Error String Description

found '^' character in middle
of rule

The ‘^’ character should only occur at the beginning of the rule
(unless escaped with ‘\’)

found '$' character in middle
of rule

The ‘$’ character should only occur at the end of the rule (unless
escaped with ‘\’)

invalid capturing group See RXP Pattern Syntax and RegEx Writers Guide for more
details

invalid posix character class
definition

See RXP Pattern Syntax and RegEx Writers Guide for more
details

no functional constructs
found in rule

The rule does not contain any constructs and is essentially null

numbered reference
exceeds 255

The maximum value allowed for any numbered references is 255

out of order range in
character class

In a class range the max value occurs before the min value (e.g. /
[d-a]/)

out of order repetition
quantifiers

In a repetition, the max value is less than the min value (e.g. /
A{4,0}/)

reference in conditional
statement to non-existent
capture number

Capture that is referenced in conditional statement does not
exist

reference in conditional
statement to non-existent
named capture

Capture that is referenced in conditional statement does not
exist

reference to non-existent
capture number

Capture that is referenced does not exist

reference to non-existent
named capture

Capture that is referenced does not exist.

relative reference exceeds
the number of captures at
its point

See RXP Pattern Syntax and RegEx Writers Guide for more
details

repetition quantifier
exceeds the maximum
repetition value

The maximum repetition value is 4096

unclosed group, character
pointer has exceeded the
rule length

The end of the rule has been reached and an open group has not
been closed

unclosed parenthesis The end of the rule has been reached and an opening
parenthesis has not been closed

unexpected character The character encountered was not expected to occur in/after
the current RegEx construct

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 17

Error String Description

unmatched parenthesis A closing parenthesis has been encountered without a
corresponding opening parenthesis

unterminated posix
character class definition

The end of the rule has been reached and a POSIX character
class has not been closed

3.6.4. Unsupported Feature
This type of error means that the current version of the RXP does not support a specific
RegEx feature. See RXP Pattern Syntax and RegEx Writers Guide for more details.

3.7. Incremental Compile
The RXP compiler allows a rules file to be compiled incrementally using an existing ROF
file as a baseline. This process will create a ROF Increment (ROFI) file which contains
only the differences between the baseline ROF file and the new ROF file. This is used
to perform a Run-Time Rules Update (RTRU) which means the RXP rules memories can
be updated whilst in operation. There are two incremental compile modes available;
quick and normal which are described below in sections Quick Incremental Compile and
Normal Incremental Compile respectively.

3.7.1. Quick Incremental Compile
This feature allows rules to be quickly added to and quickly removed from a ROF file.
As quick adds/removes occur the ruleset performance will gradually get worse and the
rules memory usage will lose optimal compression. This is because the rules are added to
the pre-existing data-structures and do not benefit from much of the rule optimization
algorithms. The number of rules that can be added to a ROF file is also limited by the
buffers present in the pre-existing data-structures. Due to the caveats associated with
the quick incremental compile, it is required to run a full recompile of the ruleset to clean
up if any performance issues are observed.

The main benefit of quick incremental compile is that the rules can be added and
removed extremely fast.

The main disadvantage is that as more rules are added and removed the ruleset
performance will suffer.

For the quick remove rules feature the file format can be found in section Remove Rules
File. The following command can be used to quick remove rules:
rxpc --incremental ROF_FILENAME --remove-rules LIST_OF_RULE_IDS_FILENAME

Or:
rxpc -I ROF_FILENAME -r LIST_OF_RULE_IDS_FILENAME

For the quick add rules feature the file format can be found in section Input Rules Files.
The following command can be used to quick add rules:
rxpc --incremental ROF_FILENAME --add-rules LIST_OF_RULES_FILENAME

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 18

Or:
rxpc -I ROF_FILENAME -e LIST_OF_RULES_FILENAME

3.7.2. Normal Incremental Compile
The normal incremental compile will take longer than a standard rules compilation. It
will however avail of all the rule optimization algorithms. After performing a RTRU with
the resulting ROFI the rules memories will be as optimal as they would be from a full
compilation.

‣ The main benefit of normal incremental compile is that the rules memories will be
optimal.

‣ The main disadvantage from normal incremental compile is that it takes a long time
to compile the rules.

The usage flow for a two-revision normal incremental compile is illustrated in the
following figure.

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 19

In this figure, r0.rules is the original ruleset or revision zero. This is compiled in the
normal way resulting in r0.rof. The "[0-4]" class in rule ID two is then changed to "[0-9]"
resulting in r1.rules (revision one). To incrementally update the RXPs rules memories
for each new revision the incremental compile feature can be used. It can be seen that
r1.rof2i is the result of incrementally compiling r1.rules using r0.rof2 as a baseline.

Checksums are used to validate the integrity of the ROF data when programmed
into the rules memory. The checksum at the beginning of r1.rof2i is the same as
the checksum at the end of r0.rof2. This is checked at the beginning of the rules
programming sequence to ensure the RXP rules memories are configured with r0.rof2
before they can be updated with r1.rof2i. If the checksum does not match, then the
rules programming sequence will not complete. In this case the RXP must be reinitialized
and then r1.rof can be used to configure the rules memories from scratch.

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 20

Finally, r2.rules (revision two) has been created by removing rule ID two from r1.rules.
It can be seen that r2.rof2i is the result of incrementally compiling r2.rules using
r1.rof2 as a baseline. If the rules memories have been successfully updated using
r1.rof2i previously, then r1.rof2i must also be provided using the -c option so the
end checksum from r1.rofi can be used as the check at the beginning of the rules
programming sequence for r2.rof2i. If the rules had been programmed from scratch
with r1.rof2 then the -c option would not be required. In this case, the end checksums
from r1.rof2 would be used as the check at the beginning of the rules programming
sequence for r2.rof2i. There is currently no limit to the number of revisions in this
sequence.

3.8. Automatic Splitting of Rulesets
The -D or --divide-ruleset option allows the ruleset to be split across N ROF files. Each
of the resultant ROF files will contain a subgroup of the rules and all the ROFs together
will make up the complete ruleset. When this option is used, the ruleset is analyzed to
provide the most even spread of rules between the ROF files, the rules are then compiled
according to the results of this analysis. The resultant ROF files will take the following
format, considering in this case that the BASEFILENAME in -o was set to rof/synthetic:
./rof/synthetic-0.rof2
./rof/synthetic-0.roff
./rof/synthetic-1.rof2
./rof/synthetic-1.roff
.
.
.
./rof/synthetic-N.rof2
./rof/synthetic-N.rof2

3.9. Automatic Rules Normalization
The -s or --enable-split option triggers the split alternation functionality. This
can offer benefits such as better resource sharing between rules and in some cases
better performance. If a rule contains one or more alternations, a rule will be generated
internally for each branch of the alternation/s, these rules use the same rule_id as the
parent so this is transparent to the application. The split alternation functionality can be
enabled in the following ways:

‣ Globally with -s or --enable-split option. In this case, the RXP Compiler will
determine the optimal way to split a rule.

‣ It can be enabled per rule with the o modifier, or explicitly disabled with O modifier.

In any case, a rule alternation will not be split if it generates more than 10240 rules. In
some cases, the split alternation functionality can cause extra matches over PCRE to
occur. It can also have a negative impact on performance in some extreme cases.

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 21

3.10. Automatic Prefix Denylist
Generation

There are two modes for automatic prefix denylist generation: static, and dynamic. These
modes can be run simultaneously if required and both output a Prefix Selection Control
List (PSCL) file. They are explained in the sections below.

3.10.1. Static
This uses the -b or --static-denylist option along with a percentage value. The
percentage value is used to indicate the percentage of rules that can share a prefix
before it is denylisted. The percentage value can be tuned according to requirements. If
set too low, then the resultant PSCL may not be very effective. If set too high, then the
resultant PSCL may not allow any scope at all for prefixes in the ruleset.

3.10.2. Dynamic
This allows a data file to be specified using -Y or --dynamic-denylist-file. This file
is then analyzed to build up a frequency table of content. This frequency table is then
used in conjunction with the percentage threshold specified using -y or --dynamic-
denylist. The percentage value is used to indicate the percentage of byte positions
in the file at which a string occurs before it is denylisted. The percentage value can be
tuned according to requirements. If set too low, then the resultant PSCL may not be
very effective. If set too high, then the resultant PSCL may not allow any scope at all for
prefixes in the ruleset. The resulting PSCL from the data file is then applied to the list of
prefix candidates for the ruleset.

3.11. Primary Threads Per Byte (PTPB)
The default value for this is 0.0001. When a prefix is detected, one or more primary
threads can be triggered. Each primary thread is dispatched to a Thread Engine (TE).
The TE executes instructions associated with the search for a full match for one
or more rules. A primary thread can trigger zero or more secondary threads during
execution. These secondary threads are also managed by the TE. The RXP has a finite
number of primary threads that can be executed at any one time. Due to this, any rules
performance can be characterized for a set of data by the number of primary threads
it generates for every byte. To use for an indicator as to how well a rule will perform
the RXP Compiler calculates its PTPB value based on random data. As the PTPB value
increases, performance decreases. One rule with a high PTPB value can have a severe
effect on the entire ruleset. The PTPB value is calculated for a given rule using the
following equations:

Equation 1:

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 22

Equation 2:

Equation 3:

Equation 4:

Equation 5:

Equation 6:

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 23

Equation 7:

Equation 8:

Equation 9:

Equation 10:

Equation 11:

Equation 12:

Equation 13:

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 24

Equation 14:

Where:

ParameterDescription

A Anchored adjuster (considers a 64 byte job)

A1a Adjusted probability per one-byte anchored prefix

A2a Adjusted probability per two-byte anchored prefix

A4a Adjusted probability per four-byte anchored prefix

A1u Adjusted probability per one-byte unanchored prefix

A2u Adjusted probability per two-byte unanchored prefix

A4u Adjusted probability per four-byte unanchored prefix

F1a Average primary threads per one-byte anchored prefix

F2a Average primary threads per two-byte anchored prefix

F4a Average primary threads per four-byte anchored prefix

F1u Average primary threads per one-byte unanchored prefix

F2u Average primary threads per two-byte unanchored prefix

F4u Average primary threads per four-byte unanchored prefix

D1 Discrete uniform distribution function per one-byte prefix

D2 Discrete uniform distribution function per two-byte prefix

D4 Discrete uniform distribution function per four-byte prefix

N1a Number of one-byte anchored prefixes

N2a Number of two-byte anchored prefixes

N4a Number of four-byte anchored prefixes

N1u Number of one-byte unanchored prefixes

N2u Number of two-byte unanchored prefixes

N4u Number of four-byte unanchored prefixes

P Primary threads per byte

Pa Primary threads per byte for all anchored prefixes

Pu Primary threads per byte for all unanchored prefixes

U Uppercase adjuster

The value P calculated from the equations above represents the PTPB value for the rule.
So if a rule for example had one unanchored one-byte prefix like the rule /AB*CDEF/ this
would give a PTPB value of 0.004 or 1/230. This means that in random data this rule
will trigger one primary thread for every 230 bytes of data. If a rule has one anchored
one-byte prefix like the rule /^AB*CDEF/ this would give a PTPB value of 0.000068 or
1/14,720. This means that in random data this rule will trigger one primary thread for

RXP Compiler Utility

RXP Compiler MLNX-15-060476 _v2.2.1 | 25

every 14,720 bytes of data. If a rule has one unanchored two-byte prefix like the rule /
ABC*DEF/ this would give a PTPB value of 0.000017 or 1/58,880. This means that in
random data this rule will trigger one primary thread for every 58,880 bytes of data.

It is important to note that the PTPB value is a theoretical indicator calculated on
uniformly distributed random data to give an idea of rule performance. Internet traffic
for example has more of a normal distribution so will not have an identical PTPB value
for a given rule. The equations could be modified to suit the characteristics of the target
data if required.

RXP Compiler MLNX-15-060476 _v2.2.1 | 26

Chapter 4. Data Flow and File
Formats

The following table provides a brief description of all the file formats used/produced by
the RXP Compiler and RXP evaluation utilities.

Table 7. File Formats Used by RXP Tools

Filename Description

*.rules The list of rules to be compiled.

See section Input Rules Files.

*.denylist A file containing a list of newline
separated strings that are not desirable
to use as prefixes.

See section Prefix Selection Control List
Files.

*_generated_pscl.log A file containing a list of newline
separated strings that are not desirable
to use as prefixes. Generated when static
or dynamic denylist options are used.

See section Prefix Selection Control List
Files.

*_rule_id_lookup_table.csv A file to match the automatically
generated rxp_rule_id with user-defined
subset_rule_id.

See section Rule ID Lookup Table File.

*_uncompiled_rules.log

*_uncompiled_rules_summary.csv

Log file containing details of errors found
during the compilation process.

See section Uncompiled Rules File.

*_critical_rules_rule_rank.csv Lists the rules ranked based on their
PTPB value from worst to best.

See section Critical Rules Rank File.

Data Flow and File Formats

RXP Compiler MLNX-15-060476 _v2.2.1 | 27

Filename Description

*.rule_id List the rule IDs of the rules that should
be removed from a ROF file.

See section Remove Rules File.

*.rof2 The RXP object format file that contains
the object code used to configure the
RXP.

See section ROF File.

*.rof2i The RXP object format increment file
that contains the minimal number of
entries required to configure the RXP.

See section ROFI File.

*.roff The RXP object format full file that is
used to embed matches within a jobset.

See section ROFF File.

4.1. CSV File Format
Many of the files generated and used by the RXP Compiler and RXP evaluation utilities
use Comma-Separated Values (CSV) format files (although may use a different
file extension). CSV files can be viewed and edited in widely available spreadsheet
applications.

A CSV file stores tabular data (numbers and text) in a plain-text format. It consists of
any number of records, separated by line breaks of some kind; each record consists of
fields, separated by a literal comma. Usually, all records have an identical sequence of
fields.

Zero or more whitespace characters can be placed between the field values and the
commas e.g:
72, 2, 0, 512
1,2 ,3, 4

Comments must be placed on a separate line and start with a '#'.

4.2. Input Rules Files
Rules files include certain keywords used to define how the rules will be interpreted by
the rxpc utility, as described in the following table.

Data Flow and File Formats

RXP Compiler MLNX-15-060476 _v2.2.1 | 28

Table 8. Supported Rules File Keywords

Keyword Range Description

prefix Optional column.

Specify the chosen prefixes for a rule. Bytes can be represented
in \x notation, and strings are case-insensitive. Specified prefixes
can be between one and four bytes. Multiple prefixes should be
comma separated and contained in braces. The keyword VIRTUAL
can be used if a virtual prefix is required for the rule.

rule_id 1-2,097,152 The rule identifier that can be used as a cross reference for the
rule. This must be specified just before the rule.

subset_id 1-65,535 Defines rules subset identifier. If no subset identifier is specified,
the default value of one will be used.

@ Indicates a label to be attached to the next rule.

Indicates a comment line.

Each rule subset is delineated using a rules subset identifier number, subset_id. For
example:
rules subset to detect some simple patterns
subset_id = 1
 # format for each rule is: [subset_rule_id], rule
 # subset_rule_id values are local to each subset
 1, /ABCDEFGH/
 2, /HELLO\s+WORLD/

 prefix=ABCD, 3, /ABCD1234/
 prefix={ABCD,1234}, rule_id=4, /ABCD|1234/

another subset
subset_id = 7
 1, /XYZ/
 @ attach this text label to following rule for use in application
 2, /AAAA.*BBBB/

For details on the RXP RegEx support please see section Regular Expression Support.

Once the rules are compiled, if the --incremental option is specified, each is assigned a
unique incremental rxp_rule_id (see section RXP Compiler Options). This is the value that
will be returned with each match that can then be mapped to the original rule using the
rule_id_lookup_table.csv file (see section Rule ID Lookup Table File).

If no subset identifier is specified in a rules file, then the default value of one will be used.
The subset identifier of zero is reserved and should not be used.

This file format is also used for the quick incremental compile add rules function. Please
see Quick Incremental Compile for more details.

Data Flow and File Formats

RXP Compiler MLNX-15-060476 _v2.2.1 | 29

4.3. Prefix Selection Control List Files
Prefix selection control list files are used to specify strings that contain values that
should be denylisted/graylisted/allowlisted when the RXP Compiler is selecting a prefix.
They also support comments as described in the following table.

Table 9. Supported Prefix Denylist File Keywords

Keyword Description

Keyword Description

#Denylist The RXP Compiler will not use any prefixes that are contained in strings on
lines following this header. If there are no options but to use a denylisted
prefix, the rule will not be compiled.

#Graylist The RXP Compiler will try not to use any prefixes that are contained in
strings on lines following this header. It will settle for these if there are no
other options.

#Allowlist The RXP Compiler will try to use any prefixes that are contained in strings
on lines following this header. If it cannot, it will use other prefixes.

Indicates a comment line.

Each prefix selection control list string is delineated by a newline, bytes can be
represented in \x notation, and strings are case-insensitive. For example:
#Denylist
for searching Internet traffic something like this
http
www
.com

Or the same three strings in \x hexadecimal notation
\x68\x74\x74\x70
\x77\x77\x77
\x2e\x63\x6f\x6d

or they can all be specified using one line
httpwww.com

#Graylist
maybe common IP addresses
192.168.1.1
192.168.0.1

#Allowlist
UNCOMMON_STRING

#Denylist
.co.uk
.org
.gov

The content of each string following the #Denylist and #Graylist header will be
avoided when choosing a prefix meaning that other prefixes will have preference. These

Data Flow and File Formats

RXP Compiler MLNX-15-060476 _v2.2.1 | 30

should be strings whose content is known to have a high incidence in the target data. For
example, for rules that will be used to scan Internet packets http, www and .com may be
used (as above). If there is no other option other than the denylisted prefix, then the rule
will not be compiled. If there is no other option other than the graylisted prefix, then it
will be used as a last resort.

The content of each string following the #Allowlist header will have preference over
any other prefix.

4.4. Rule ID Lookup Table File
The <variant>_rule_id_lookup_table.csv file provides a means for the user/
application to map the rxp_rule_id from the returned match to the subset_rule_id in
the input rules file. This file is comma-separated and can be viewed in a spreadsheet
application. Each entry consists of four comma-separated fields: rule_id, rxp_rule_id,
and subset_id.

Table 10. Rule ID Lookup Table File Fields

Match Field Range Description

subset_id BlueField-2 – 1-4,095

BlueField-3 – 1-65,535

Subset identifier

rule_id 1-2,097,152 User-specified rule identifier

rxp_rule_id 1-2,097,152 Incremental rule identifier when --auto-
rule-id is used. Otherwise this will
always be the same as rule_id.

rule_direction RXP_RULE_DIRECTION_TYPE Rule direction, only applicable from RXP
v5.8 onward

rule The actual rule

Indicates a comment line

Each entry is placed on a separate line. For example, the resulting file for the input rules
given in section Input Rules Files would be:
use comma separated fields in the following order:
subset_id, rule_id, rxp_rule_id, rule_direction, rule
1, 1, 1, 0, /ABCDEFGH/
2, 2, 1, 0, /HELLO\s+WORLD/
3, 1, 7, 0, /XYZ/
4, 2, 7, 0, /AAAA.*BBBB/

4.5. Rule Direction Analysis File
The <variant>_rule_direction_analysis.csv lists each prefix chosen for each rule
along with its direction.

Data Flow and File Formats

RXP Compiler MLNX-15-060476 _v2.2.1 | 31

Table 11. Rule Direction Analysis File Fields

Match
Field Range Description

rule_id 1-4,294,967,295 Rule identifier

prefix User-specified rule identifier within subset

dir U|D|UD|DU This indicates the direction the job is processed on matching the
prefix:

‣ U = Walk up

‣ D = Walk down

‣ UD = Walk up then walk down

‣ DU = Walk down then walk up

rule The actual rule

Indicates a comment line

At the end of the file a summary is given to indicate the number of each walk direction
chosen for the ruleset. For example, the resulting file for the input rules given in section
Input Rules Files would be:
rule_id, prefix, dir, rule
1, ABCD, U, ABCDEFGH
2, HELL, U, HELLO\s+WORLD
3, XYZ, U, XYZ
4, AAAA, U, AAAA.*BBBB

#Walk direction summary
:4
D :0
UD:0
DU:0

4.6. Uncompiled Rules File
If the –F or --force option is used in the RXP Compiler, it will carry on and compile as
many rules as it can. Any errors encountered in rules will be written to a log file. Each
line in the log file will give information on the error encountered and other information
that may assist in getting the problem rule to compile. There is also an uncompiled rules
summary file that lists a count of each individual error encountered. It is important to
note that these files will only be created if errors are found in the target ruleset. For
more information on the types of errors and error reporting in the RXP Compiler see
section Example Usage.

Data Flow and File Formats

RXP Compiler MLNX-15-060476 _v2.2.1 | 32

4.7. Critical Rules Rank File
This file ranks the rules based on their PTPB value (see section Incremental Compile)
from worst to best. This file can be used to identify the worst performing rules and
remedial action can be taken if necessary.

4.8. Remove Rules File
This file is used for the quick incremental compile remove rule feature. For more details
see sections RXP Compiler Options and Quick Incremental Compile.
This is an example of a valid remove ruleset file
This will remove rules 1 and 3
1, 3

And 10 as well
10

4.9. ROF File
A ROF file consists of one or more lines of comma-separated entries to:

 1. Define the memory contents of the RXP’s rules memories.
 2. Expected register values for sanity checking the RXP’s CSRs and the RXP’s

RTRU_CSR CHECKSUM registers once memory contents have been programmed into
the RXP’s rules memories.

Each line of the ROF file consists of three comma-separated fields:

 1. Type: Indicates the type of the ROF entry, see Table 56 for more information.
 2. Address: 32-bit address value prepended with 0x|0X
 3. Data: 64-bit data value prepended with 0x|0X

The lower 24-bits of the address field shall be used, while the upper 8-bit shall be set to
0x00.

Table 12. ROF Entry Types

ID Name Description

0 legacy_instruction The legacy ROF instruction type, kept to maintain a
degree of backwards compatibility

1 check_csr_eq Read the specified CSR and check that it is equal to the
data

2 check_csr_gte Read the specified CSR and check that it is greater than
or equal to the data

Data Flow and File Formats

RXP Compiler MLNX-15-060476 _v2.2.1 | 33

ID Name Description
3 check_csr_lte Read the specified CSR check that it is less than or

equal to the data

4 check_csr_checksum Read the specified checksum CSR and check that it is
equal to the data

5 check_csr_checksum_excluding_emRead the specified checksum CSR and check that it is
equal to the data. This is used in a system that shares
the external memory with the RXP.

6 im Represents a write to the RXP internal memory

7 em Represents a write to the RXP external memory

8 em_block Represents a block write to the RXP external memory

Comments must be placed on a separate line and start with a #.

The following is an example ROF file:
Type, address, data
initial checksums, the RTRU_CSR address should be provided in addr field
4, 0x00010010, 0x0000000000000000
4, 0x00010011, 0x0000000000000000
4, 0x00010012, 0x0000000000000000

Rules memory entries
7, 0x00123456, 0x0706050403020100
7, 0x00123457, 0x0706050403020100
…
Final checksums, the RTRU_CSR address should be provided in addr field
4, 0x00010010, 0x0000000012345678
4, 0x00010011, 0x0000000023456789
4, 0x00010012, 0x000000003456789A

4.10. ROFI File
A ROFI file has the same structure as a ROF file. It only contains the differences between
an old and new ROF file. It can be used to update the RXP rules memories to a new ROF
file requiring minimal changes.

4.11. ROFF File
A ROFF file is a binary file used by the rxpj to embed matches within a jobset.

RXP Compiler MLNX-15-060476 _v2.2.1 | 34

Chapter 5. Regular Expression
Support

The RegEx standard supported by the RXP Compiler is based on the PCRE pattern
specification (see section Related Documentation). The RXP Compiler supports a
subset of this standard with the supported and unsupported constructs summarized
in sections Backslash and Word Boundary respectively. The RXP Compiler also supports
some functionality in addition to the PCRE specification. The extra functionality bolts on
to the top of the PCRE support and is summarized in the following table.

Table 13. Additional Functionality Supported by the RXP Compiler

Feature Description

Anchored to
offset

This allows the traditional Start of Subject (SOS) anchor to be extended in order
to allow the start point to be redefined as a user-specified value (see section
Anchored to Offset).

XML schema The XML schema features are not enabled by default. In order to use them they
must be switched on. The XML schema offers four extra character classes (see
table "Supported XML Schema Classes" in section Predefined Classes) and
the character class subtraction feature (see table "Supported Character Class
Notation" in section User-defined Character Classes). It is important to note
that when the XML schema is enabled, the \c escape sequence no longer applies
to a control character (see section Non-printing Characters) but now the XML
class as shown in table "Supported XML Schema Classes" in section Predefined
Classes.

5.1. Assumptions
The RXP compiler makes the following assumptions:

 1. All rules are ungreedy. This means the RXP will always report back the shortest
possible match. For example, for the RegEx /AB*/ and the data ABBBBB the RXP would
match A as this is the shortest match. If this was scanned by PCRE in greedy mode it
would match ABBBBB as this is the longest match.

 2. To save hardware resources, all parentheses are non-capturing by default (they will
only capture if back referencing is required).

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 35

5.2. Backslash
The "\" (backslash) metacharacter is used in many of the constructs listed below. In all
of its usage scenarios, the backslash metacharacter will enforce a different meaning
on the character directly following it. There is a set of metacharacters that can follow a
backslash metacharacter and these metacharacters also determine what function that
will be performed by the resulting "backslash+character" metasequence. The following is
a list of all the backslash metacharacters that the RXP compiler supports:

‣ Quoting. For example, /*\?/ will match literally *?.

‣ Non-printing characters. For example, /\n/ will match the newline character.

‣ Hexadecimal formats. For example, /\x0A/ will match the newline character.

‣ Octal formats. For example, /\012/ will match the newline character.

‣ Predefined general classes. For example, /\s/ will match any whitespace character.

‣ Back references. For example, /(ABC)\1/ will match ABCABC.

‣ Simple assertions. For example, /\AABC\Z/ will match ABC with the A occurring at the
beginning of the subject and C occurring at the end of the subject.

5.3. Supported Constructs
The following table provides a brief description of each RegEx construct the RXP
Compiler supports. These are described in more detail in the sections that follow.

Table 14. Regex Constructs Supported by the RXP Compiler

Construct Example Description

Alternation /ABC|DEF/ Functions in the same manner as the logical OR. The
example will match ABC or DEF.

Anchored to
Offset

/^.{12}ABCD$/ Match must occur at the specified offset to the
beginning of the subject. In the example, ABCD
must begin at byte pointer 12.

Anchoring /^ABCD$/ Anchors mean the match must occur at the
beginning or end of the data stream. Anchors can
also apply to \n characters if the m modifier is
selected (see section Modifiers). The example will
only match ABCD if this is the case.

Back References /<(A)>BCDE<\1>/ Back references are variables that refer to text
matched earlier in the RegEx within capturing
parentheses. In the example \1 will match A as it has
been captured within the parentheses.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 36

Construct Example Description

Capturing
Parentheses

/(ABCD)|(DEFG)\1/ For back referencing it is required to capture a
match to be referenced. This is achieved through
capturing parentheses. In the example, ABCD will be
captured and stored in \1 whereas DEFG will not be
captured unless a \2 back reference is specified.

Conditional
Statement

/1234(A)?(?(1)B|C)/ A special type of back reference that allows an if/
then/else statement to be expressed in an RegEx in
the form: (?if then | else). In the example B will only
be matched if an A had matched before. Otherwise
C will be matched.

Dot
Metacharacter

/ABCD.F/ Can match any ASCII value except newline. The
example will match ABCD followed by any character
except newline then followed by F.

Hexadecimal
Formats

/\xFF\xFF/ Use the \x delimiter to signify hexadecimal values.
The example will match 2 bytes in a row each set to
255.

Inline Comments /ABC(?#DEF)GHI/ Inline comments allow notes to be placed within the
RegEx. All comments will be ignored by the compiler.
The example would match the string ABCGHI as
the comment would not be compiled as part of the
RegEx.

Internal Option
Setting

/ABCD(?i)DEFG(?-i)/ The case sensitivity (i), multiline (m), dotall (s), and
free-spacing (x) options can be toggled off and on
within the rule. In the example ABCD will be case-
sensitive whereas DEGF will be case insensitive.

Literal Strings /ABCD/ A string of ASCII characters. The example will match
the string ABCD.

Modifiers /ABCD/six Occur directly after the RegEx and affects the
whole RegEx. This section provides more details on
the modifiers supported by the RXP Compiler.

Non-capturing
Parentheses

/(?:ABCD)*/ Specify grouping and precedence. In the example,
the star symbol will apply to all characters contained
within the parentheses. ?: will allow for parentheses
to be explicitly defined as non-capturing.

Non-printing
characters

/\t\n/ Control characters such as tab, newline etc. The
example will match a tab followed by a newline.

Octal formats /\377\377/ Use the \ delimiter to specify octal values. The
example will match 2 bytes in a row each set to 255.

POSIX Character
Classes

/AB[\n[:^digit:]
[:alpha:]]/

The POSIX notation for character classes is
supported. The exact list of POSIX classes is
locale dependent. The RXP Compiler supports the
most widely used ones. The example will match
first of all the text AB. This is then followed by a

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 37

Construct Example Description
character class or what POSIX refers to as a bracket
expression. This will match; newline, any non-digit or
any alphabetic character.

Predefined
Classes

/\d\s/ Groups of characters such as digits, whitespace etc.
The example will match a digit character followed by
a whitespace character.

Quoting *\+ABC\Q?*+\E Quoting will remove the special meaning from
special characters. This can be achieved on single
characters by preceding them with a backslash.
If you wish to remove the special meaning from
a sequence of characters they can be placed in
between \Q and \E. The example will match the
literal string *+ABC?*+.

Repetition /A*B+C?/ Specifies multiple occurrences of any construct. The
example will match zero to many occurrences of the
letter A followed by one to many occurrences of the
letter B followed by zero or one occurrences of the
letter C.

Reset
Subpattern
Numbers

/(?|(AB)DE|(FG))\1/ This allows for the subpattern reference number to
be reset for each captured alternation within the
group. In the example, because the two alternatives
are inside a (?| group they will both be numbered
one. The example will therefore match both ABDEAB
and FGFG.

User-defined
Character
Classes

/[ABCD0-9]/ Classes that represent a user-defined range. The
example will match; A, B, C, D or any digit within the
range zero to nine.

Word Boundary /\bABCD\b/ Matches if the current position sits between a word
and non-word character or start/end of job.

5.4. Alternation
Alternation is applied using the “|” (vertical bar) metacharacter, e.g. /(ABC|DE|FGHI)/ will
match ABC, DE or FGHI. There is no restriction to the number of alternatives that appear,
and an alternative may be empty e.g. /A(B|)/ is equivalent to /AB?/ and will match A or AB.

5.5. Anchored to Offset
This allows the match to be anchored to a specified offset from the beginning of the
packet. This is represented by a dot metacharacter with a repetition value that must
be placed directly after the symbol for the start anchor, e.g. /^.{4}AB/. If the anchored
to offset construct is invalidly specified, it will follow the same rules as the repetition
construct (see section Repetition). It is also supported to specify multiple offsets for

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 38

clarity. These will all be merged into one anchor to offset structure. For example, /^.
{4}.{8}AB/ is equivalent to /^.{12}AB/. The following table lists the anchor to offset
metasequences supported by the RXP Compiler.

Table 15. Supported Anchored to Offset Operators

MetasequenceDescription

^.{m, n} Reference by number n (can be ambiguous with Octal notation (see Octal
Formats))

^.{m} Reference by number n

^.{m,} Reference by number n

^.. Relative reference by number n

5.6. Anchoring
Anchoring can be achieved using the ^ and $ anchor metacharacters, and by the use
of simple assertions. The multiline modifier (/m) is also supported, which affects the
way the anchors are interpreted (see section Modifiers). The following table lists the
anchoring formats supported by the RXP Compiler.

Table 16. Supported Anchors and Simple Assertions

MetasequenceDescription

^ Anchor to start of subject and if in multiline mode, after newline also.

\A Anchor to start of subject.

$ Anchor to end of subject and before newline at end of subject. If in multiline
mode, anchor before any newline.

\Z Always anchor to end of subject and before newline at end of subject.

\z Always anchor to end of subject.

It is important to note that anchoring must be applied at a point in the expression where
it can match the beginning or the end of the datastream (or match the beginning or end
of a line if multi-line mode is enabled and the ^ or $ metacharacters are used). If this is
not adhered to, the anchoring metacharacter will be invalid. An example of a RegEx that
will not match anything would be /ABC^DEF/. It is also possible to apply anchoring to
each alternation individually e.g. /(^ABC|DEF|^GHI$|JKL)/ or also to elements that occur
after optional elements e.g. /(ABC)?(^DEF|GHI)/. In the previous example the DEF part of
the alternation will only match if ABC does not occur before it. Valid matches would be
ABCGHI, DEF and GHI but not ABCDEF.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 39

5.7. Back References
Back references offer the ability to reuse a captured part of the RegEx match. The
pattern that is back referenced is obtained by using capturing parentheses. The default
method of back referencing is to use a backslash followed by a number greater than
zero to invoke the back reference. This numeric value will increment for each set of
capturing parentheses encountered in the RegEx. It is also possible to reference by name
or relative reference. The table below lists the back-referencing formats supported by
the RXP Compiler. When a back reference (named or numbered) is used in a RegEx it
must be possible to pair it up with its referenced capture, otherwise an error will occur.
All named back references must be less than 32 characters in size and can only contain
alphanumeric characters and underscores and cannot begin with a number.

Table 17. Supported Back Referencing Styles

Back
Reference Description

\n Reference by number n (can be ambiguous with Octal notation (see Octal
Formats)).

\gn Reference by number n.

\g{n} Reference by number n.

\g{-n} Relative reference by number n.

\k<name> Reference by name (Perl notation).

\k’name’ Reference by name (Perl notation).

\g{name} Reference by name (Perl notation).

\k{name} Reference by name (.NET notation).

(?P=name) Reference by name (Python notation).

The use of the \g sequence with a negative number signifies a relative reference. For
example, /(ABC)(DEF)\g{-1}/ would match ABCDEFDEF and /(ABC)(DEF)\g{-2}/ matches
ABCDEFABC.

An ambiguity exists with the “reference by number” type of back reference and the octal
number format (see section Octal Formats). An example of this is \4: in theory this could
be a back reference to the value captured in the fourth set of capturing parentheses or
it could be the octal number four. To overcome this ambiguity the following rules apply in
order of precedence:

 1. Single digit escapes between \1 and \9 will always be interpreted as back references.
 2. An escaped number beginning with zero is always an octal escape. E.g. \010 matches

the “backspace” character.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 40

 3. If there is at least that number of previous capturing subpatterns, it will be taken
as a back reference. E.g. \10 will be taken as a back reference if there are at least 10
sets of capturing parentheses before it. If there are not at least 10 sets of capturing
parentheses, it will then be taken as the octal escape sequence for the “backspace”
character.

 4. Otherwise if the value is a qualifying octal number (\000 to \377) then the value will
be taken as such.

These are discussed in the PCRE standard documentation and also referred to in the
O'Reilly book "Mastering Regular Expressions". As back references are not supported
in character classes, it is sufficient to simply infer that in this case any digit following a
backslash will always represent an octal digit.

5.8. Capturing Parentheses
Besides grouping part of a RegEx together, round brackets also capture the part of the
match that occurs within them which can then be used later as a back reference. The
table below lists each of the capturing formats along with descriptions supported by
the RXP Compiler. Groups will only capture data if the group has an associated back
reference or conditional statement to use the captured data. If this is not the case,
the group will be treated as non-capturing. All named captures must be less than 32
characters in size and can only contain alphanumeric characters and underscores and
cannot begin with a number.

Table 18. Supported Capturing Styles

Capture Description

(…) Capturing group.

(?<name>…) Named capturing group (Perl).

(?’name’…) Named capturing group (Perl).

(?P<name>…) Named capturing group (Python).

If a repetition (see section Repetition) value has been applied to a captured group, the
captured value will be reset on all iterations of the loop and not appended to. An example
of this is /(A|B)*C\1/, which will match AACA and ABCB but not ABCAB.

5.9. Conditional Statement
The conditional statement allows an if/then/else statement to be expressed and
evaluated within a RegEx. The conditional statement is the form (?(condition)yes-
pattern|no-pattern). The condition is always a back reference which is evaluated as to
whether or not it has matched previously, yielding a boolean result. A simple example of
the conditional statement is /1234(A)?(?(1)B|C)/, which will match 1234AB and 1234C

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 41

but not 1234AC. The conditions can be expressed in various formats as shown in the
table below. All named references must be less than 32 characters in size and can only
contain alphanumeric characters and underscores and cannot begin with a number.

Table 19. Condition Styles

Condition
Format Description

(?(n)…) Absolute reference condition.

(?(+n)…) Positive relative reference condition. (not supported as requires forward
reference).

(?(-n)…) Negative relative reference condition.

(?(<name>)…) Named reference condition (Perl).

(?(’name’)…) Named reference condition (Perl).

(?(name)…) Named reference condition (PCRE).

5.10. Dot Metacharacter
The dot metacharacter is supported. By default, it matches any ASCII character including
newline to help maximize sustainable throughput. This can be overridden globally by
using the RXP Compiler utility's –s option, then using the /s modifier on individual rules.

5.11. Inline Comments
This functionality permits comments to be interspersed with the RegEx, where they are
used by the RegEx writer to help make the RegExes more understandable. Comments
can be specified within the following construct (?#...). The compiler will ignore all
comments when processing the input file e.g. /ABC(?#DEF)GHI/ will match ABCGHI.

5.12. Internal Option Setting
Internal option setting allows for features usually specified as mode modifiers (see
section Modifiers) to be toggled on and off within the rule. These will usually modify the
way the pattern matching operation should be performed. A list of supported internal
options is given in the following table.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 42

Table 20. Supported Internal Options

Modifier Description

(?i)…(?-i) This toggles on and off case insensitivity. This is functionally equivalent to the /i
modifier.

(?m)…(?-m) This toggles on and off multi-line mode. This is functionally equivalent to the /m
modifier.

(?s)…(?-s) This toggles on and off single-line mode. This is functionally equivalent to the /s
modifier.

(?x)…(?-x) This toggles on and off free-spacing mode. This is functionally equivalent to the /x
modifier.

It is possible to specify multiple options in one statement, e.g. (?ix) to set case insensitive
and free-spacing mode. It is also possible to combine the setting and unsetting of
internal options such as (?ix-s) to set case insensitive and free-spacing mode and unset
single-line mode. All internal options set within a set of parentheses will be turned off
at the closing parentheses and the options that were set outside the parentheses will
be reinstated. An example of this is /((?i)a)a/, which matches Aa or aa but not AA. It
is also possible to specify a span for a sub-pattern where the options are set e.g. (?i-
sx:sub-pattern) will match the sub-pattern inside the span with the options "i" and "x"
turned on, and "s" turned off. The option settings will carry onto subsequent alternation
branches even if the branch on which it occurs is not encountered during the matching
process. The reason for this is that the option settings are all dealt with and applied
at compile time and their span is applied to the two-dimensional “text” version of the
RegEx without knowledge of the RegEx execution engine.

5.13. Hexadecimal Formats
The “\x” delimiter is used to signify hexadecimal values within rules. If the “\x” delimiter is
encountered on its own, it will be interpreted as a hexadecimal escape with no following
digits, giving a value of zero. Hexadecimal digits may be defined using upper and/or lower
case letters. The following table describes the hexadecimal formats that are supported.

Table 21. Supported Hexadecimal Formats

Hexadecimal
Format Description

\xh. h is a one-digit hexadecimal value representing a single character. Will be
interpreted as \x0h.

\xhh hh is a two-digit hexadecimal value representing a single character.

\x{hh} hh is a two-digit hexadecimal value representing a single character.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 43

5.14. Literal Strings
Strings of characters such as letters, digits, and special characters (including escaped
with backslash) are supported. The characters will be bunched together where possible
into long strings of an arbitrary length. The longest possible string will be extracted. The
RXP Compiler will strive to form the largest possible strings to avail of the RXPs ability to
process multiple characters per clock cycle.

5.15. Modifiers
Mode modifiers are operators appended to the end of a RegEx to modify the way the
pattern matching operation should be performed. A list of supported RegEx modifiers
along with descriptions is given in the following table.

Table 22. Supported Mode Modifiers

Modifier Description

/i If this modifier is set, letters in the pattern match both upper and lower-case
letters in the subject string i.e. caseless or case insensitive. Caseless matching is
only supported for characters with an ASCII value of less than 128. For caseless
matching of characters with a value of greater than 128, Unicode must be
supported.

/m By default, PCRE treats the subject string as consisting of a single “line” of
characters (even if it contains several newlines). The “start of line” metacharacter
^ matches only the start of the string, while the “end of line” metacharacter $
matches only at the end of the string, or before a terminating newline. When this
modifier is set, the start of line and end of line constructs match immediately
following or immediately before any newline in the subject string, respectively, as
well as at the very start and end. If there are no “\n” characters in a subject string, or
no occurrences of ^ or $ in a pattern, setting this modifier has no effect.

/s Enables single-line mode. If this modifier is set, a dot metacharacter in the pattern
matches all characters, including newlines. Without it, newlines are excluded. A
negated class such as [^a] always matches a newline character, independent of the
setting of this modifier.

/x Enables free-spacing mode where all space characters (\x20) between RegEx tokens
is ignored. It is important to note that only the space between tokens is ignored. In
free-spacing mode the space character can be inserted to the RegEx by escaping it
with a backslash or as part of a character class i.e. “\ ” or “[]”.

The RXP also has a set of custom modifiers that can affect the way each individual rule
is compiled. A list of RXP custom RegEx modifiers along with descriptions is given in the
following table.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 44

Table 23. Supported RXP Custom Mode Modifiers

Modifier Description

/c If this is set then subpattern matching will be enabled for this rule.

/o If this modifier is set, the rule will be split at its alternations.

/O If this modifier is set, the rule will not be split at its alternations, even if the global
switch is set.

/q If this modifier is set, strict-quantifier mode will be used for this rule. To help with
performance, by default the RXP Compiler treats non-fixed bounded quantifiers as
unbounded e.g. .{0,2048} will be the same as .*. This has the caveat of false positives
being possible. This modifier will ensure that the original construct is used for this
meaning performance will be worse but no false positives will occur.

/Q If this modifier is set, strict-quantifier mode will not be used for this rule, even if the
global switch is set.

/p If this modifier is set, the PTPB filter will be ignored for this rule.

5.16. Non-capturing Parentheses
Non-capturing parentheses are only used to group together parts of a RegEx and not
used for capturing. By default, all parentheses will be interpreted by the RXP Compiler
as non-capturing unless a back reference is paired with its captured data. Non-capturing
parentheses can be explicitly expressed in the form (?:…).

5.17. Non-printing Characters
The “\” (backslash) character can be used to encode non-printing characters in a fashion
that can be seen. Hexadecimal and octal notation can also be used to encode the
characters however when used excessively they may obfuscate the RegEx. Inside a
character class the “\b” metasequence represents the backspace character. The non-
printing characters given in the following table are supported.

Table 24. Supported Non-Printing Characters

Non-printing
Character

Hexadecimal
Value Description

\0 \x00 NULL.

\a \x07 Alarm (BEL).

\cx (x = any
alphabetic char)

Dependent on x If x is a lower case letter it will be converted to
uppercase. Then bit 6 of the character will be
inverted. This feature is not available in XML mode.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 45

Non-printing
Character

Hexadecimal
Value Description

\e \x1B Escape.

\f \x0C Formfeed.

\n \x0A Newline.

\r \x0D Carriage return.

\t \x09 Horizontal tab.

\b \x08 Backspace (only in character class).

5.18. Octal Formats
The following table lists all the octal formats along with a description that are supported
by the RXP Compiler.

Table 25. Supported Octal Formats

Octal Format Description

\d d is a one digit octal value ranging from \0 to \7.

\dd dd is a two digit octal value ranging from \00 to \77.

\ddd ddd is a three digit octal value ranging from \000 to \377.

The RXP Compiler will attempt to extract the maximum number of octal digits
immediately following an octal escape sequence to create a legal octal value (\000 to
\377) indicating a single character.

There are issues arising with the \d, \dd and \ddd notation as it has an ambiguity with the
“reference by number” back reference notation. See section Back References for more
details on this and possible avoidance measures.

Note that if the \0 is immediately followed by non-legal octal digits, the \0 shall be
interpreted as a NULL character (see section Non-printing Characters).

5.19. POSIX Character Classes
The POSIX classes given in the table below are supported. These can be inserted in
character classes to denote a range of characters e.g. /ABC[0-9[:alpha:]]/ will match ABC
followed by an alphanumeric character. The POSIX character classes that are available
depend on the POSIX locale. The RXP Compiler supports all of the most widely used
POSIX character classes. Note that POSIX classes include letters and digits defined in
the locale, not just those in ASCII.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 46

Table 26. Supported POSIX and Shorthand Equivalent Classes

Class Equivalent Description

[:alnum:] [a-zA-Z0-9] Alphanumeric characters.

[:alpha:] [a-zA-Z] Alphabetic characters.

[:ascii:] [\x00-\x7F] ASCII characters.

[:blank:] [\x20\t] Space or tab.

[:cntrl:] [\x00-\x1F\x7F] Control characters.

[:digit:] [0-9] Any decimal digit.

[:graph:] [\x21-\x7E] Any visible or printing character.

[:lower:] [a-z] Any lowercase alphabetic character.

[:print:] [\x20-\x7E] Visible characters including space also.

[:punct:] [!"#$%&'()*+,\-./:;<=>?
@[\\\]^_`{|}~]

Any punctuation character.

[:space:] [\x20\t\r\n\v\f] Any whitespace character.

[:upper:] [A-Z] Any uppercase alphabetic character.

[:word:] [a-zA-Z0-9_] Any word character.

[:xdigit:] [0-9A-Fa-f] Any hexadecimal digit.

5.20. Predefined Classes
The “\” (backslash) character is used to introduce predefined classes. The general type of
predefined classes is used to specify a range of commonly used character classes. A list
of these is given in the following table.

Table 27. Supported General Classes

Class Equivalent Description

\d [0-9] Any decimal digit.

\D [^0-9] Not a decimal digit.

\h [\t\x20] Any horizontal whitespace character.

\H [^\t\x20] Not a horizontal whitespace character.

\s [\t\n\f\r\x20] Any whitespace character.

\S [^\t\n\f\r\x20] Not a whitespace.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 47

Class Equivalent Description

\v [\n\x0B\f\r\x85] Any vertical whitespace character.

\V [^\n\x0B\f\r\x85] Not a vertical whitespace character.

\w [a-zA-Z0-9_] Any word character.

\W [^a-zA-Z0-9_] Not a word character.

The RXP Compiler also has the option to use the XML schema RegExes predefined
classes. There are four extra predefined classes supported that are not normally
supported by any other flavor. The XML schema classes are shown in the following table.

Table 28. Supported XML Schema Classes

Class Equivalent Description

\i [_:A-Za-z] Any character that can be the first character of an XML tag name.

\I [^_:A-Za-z] Not a character that can be the first character of an XML tag name.

\c [-._:A-Za-z0-9] Any character that may occur after the first character of an XML tag
name.

\C [^-._:A-Za-
z0-9]

Not a character that may occur after the first character of an XML tag
name.

As can be seen from this table, the \c escape sequence is used to represent one of the
XML predefined classes. This means when the XML schema mode is enabled the \c
sequence no longer represents a control character escape sequence (see section Non-
printing Characters) as it conflicts with the XML class notation.

5.21. Quoting
Quoting is used to remove the special meaning from characters and allows them to be
treated as literals. Single metacharacters can be quoted by using the “\” (backslash)
character e.g. /A*/ will literally match A*. If a literal backslash character is desired then
the \\ sequence can be used i.e. a backslash quoting a backslash. Quoting using a
backslash can only be used on single characters. Multiple characters can be quoted by
surrounding them with \Q…\E e.g. /\QA*?+\E/ will literally match A*?+. It is important to
note that the \E can be omitted at the end so /\QA*?+/ is equivalent to /\QA*?+\E/.

5.22. Repetition
Repetition can be applied to the following supported constructs:

‣ A literal character.

‣ The dot metacharacter.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 48

‣ Any escape that matches a single character.

‣ A character class.

‣ A back reference.

‣ A parenthesized subpattern that is not an assertion.

Repetition is specified by quantifiers which specify a minimum and maximum number
of permitted matches. The three most common quantifiers have been given single
character abbreviations. All the repetition metacharacters (or metasequences, if they
consist of more than one character) given in the following table are supported.

Table 29. Supported Repetition Operators

Repetition
Metacharacters Description

? 0 or 1 occurrences of previous construct.

+ 1 or more occurrences of previous construct.

* 0 or more occurrences of previous construct.

{m, n} Between m and n occurrences of previous construct.

{m} Exactly m occurrences of previous construct.

{m,} m or more occurrences of previous construct.

It is important to note that the RXP will treat all repetition as ungreedy. The quantifier
{0} is permitted causing the expression to behave as if the previous construct and
quantifier were not present. Infinite loops can be constructed by following a subpattern
that can match no characters with a quantifier that has no upper limit e.g. /(a?)*/. If
a repetition construct cannot be interpreted as valid, it will be interpreted as a literal
string e.g. /A{,4}/ will match the string A{,4} or /A{1,4aa}/ will match the string A{1,4aa}.
If the quantifiers are out of order i.e. the minimum repetition value is greater than the
maximum repetition value, this will cause an error. Also if the repetition value exceeds
the maximum repetition value of 32K, an error will be generated.

5.23. Reset Subpattern Numbers
This allows the subpattern reference number to be reset for each alternation e.g. /(?|(A)B|
(C))\1/ will match ABA and also CC. This means that when the pattern matches, captured
substring one can be used, regardless of which alternative matched. This can be used
when it is desirable to capture part of one of a number of alternatives. The captures are
numbered as normal inside a “reset subpattern numbers” group except the number is
reset at the start of each alternation. E.g. in /(A)(?|(B)|(C(D))/ the captures noted in bold
parentheses from left to right would be numbered 1,2,2,3.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 49

5.24. Subpattern Matching
Subpattern matching can be switched on for a rule by using the “c” modifier. If
subpattern matching is switched on then subpattern matches are reported alongside a
full match, e.g. /A(B|C)DEFG/c will match ABCDEFG and also return a subpattern match
of C.

5.25. User-defined Character Classes
The RXP Compiler is capable of supporting user-defined character classes. There are
only certain metacharacters that are recognized within a user defined character class.
The following table lists each of these along with their usage restrictions.

Table 30. Supported Character Class Metacharacters

MetacharacterDescription

[The opening square bracket will begin the user-defined character class. It is
recognized within the class as a metacharacter only when it is the beginning of
a POSIX class (see section POSIX Character Classes).

] The closing square bracket will terminate the user-defined character class. To
use a closing square bracket as a literal member of a class it must either be
escaped by a backslash ‘\’, or occur directly after the opening square bracket.
The closing bracket symbol cannot be used as the end character of a range.

^ The caret symbol can be used to negate the character class. This means that
the subject must not match one of the class’s members to be successful.
To use the caret symbol as a literal member of the class it must either; be
escaped by a backslash, or occur anywhere except directly after the opening
square bracket.

\ The backslash symbol is used to remove the special meaning from characters
and allows them to be treated as literals. The backslash can also be used within
a character class to represent the RegEx literal items such as hexadecimal
notation, octal notation and non-printing characters.

\Q…\E Multiple characters can have their special meaning removed by surrounding
them with \Q…\E (see section Quoting).

- The minus symbol is used to specify ranges of characters. To use the minus
symbol as a literal member of the class it must be escaped by a backslash or
positioned in a place where it cannot be interpreted as indicating a range. The
range of characters must be in ascending order e.g. [a-z] is valid whereas [z-a]
is not.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 50

There are standard methods of defining character classes using the metacharacters as
discussed in the previous table. The combination of these metacharacters into the class
notation is shown and discussed in the following table.

Table 31. Supported Character Class Notation

Class
Notation Description

[…] Character class matching one of the characters contained within the square
brackets.

[^…] Negated character class matching any one character that is not contained
within the square brackets.

[x-y] Character class matching one of the characters in the range x to y.

[^x-y] Negated character class matching any one character that is not in the range x
to y.

[[:xxx:]] Match any one character contained in the POSIX set xxx (see section POSIX
Character Classes).

[[:^xxx:]] Match any one character not contained in the POSIX set xxx (see section POSIX
Character Classes).

[a-z-[aeiou]] Character class subtraction is only available in XML schema mode and allows
the matching of a character which is present in one list but not present in
the subtracted list. The subtracted list must always be the last element in its
containing character class e.g. [a-z1-4-[aeiou]] is valid but [a-z-[aeiou]1-4] is
not. The subtraction will be applied to the entire class. The example shown in the
class notation column will match any lowercase consonant i.e. by removing the
vowels.

Nested character class subtraction is also supported. E.g. [0-9-[0-6-[0-3]]] first
subtracts 0-3 from 0-6, yielding [0-9-[4-6]], or [0-37-9], which matches any
character in the string 0123789.

The character class supports ranges of numerically specified characters. An example
would be the use of hexadecimal notation to represent the character class [\x61-\x7A]
or its equivalent in octal format [\141-\172] is also equivalent to the character class [A-
Z]. It is also valid to use predefined classes within user-defined character classes. An
example of this would be the use of the character class [\dA-Za-z] which will match any
alphanumeric character and is equivalent to the \w predefined class.

The character class supports all of the non-printing characters. It also supports a special
meaning for the \b escape sequence which usually means word boundary. This is used to
represent the backspace character (\x08) in a character class.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 51

5.26. Word Boundary
A word boundary metacharacter \b is used to determine that at that position in the
RegEx if one character is a word character and the other is not, i.e. it sits across a word
boundary, this is like the following RegEx:
(\w\W|\W\w)

Note that the word boundary also applies to start and end of a data stream i.e. anchors.

The negated version of the word boundary can be specified as \B.

5.27. Unsupported Constructs
The following table provides a brief description of each RegEx construct the RXP
Compiler does not support.

Table 32. Regex Constructs Not Supported by the RXP Compiler

Construct Example Description

Anchor to start of
match

/\G\d/ The anchor \G will match at the position where the
previous match ended. This position will change each
time the RegEx is applied to the subject string. If the
example was applied to the string 1234A6 it could
be applied successfully four times matching 1, 2, 3
and 4. It will fail on the fifth attempt because the only
place where \G matches is on the 4 character which is
followed by A. A is not in the \d class so the match will
therefore be unsuccessful.

Atomic grouping (?>\d+)ABC An atomic group is a group that as soon as the RegEx
engine exits from it, it automatically throws away all
backtracking positions remembered by any tokens
inside the group. If the RegEx in the example was
\d+ABC, it would fail at 123456DEF and then the
\d+ would then give up one match leaving it with
12345DEF. This would still fail and keep attempting
the backtracking steps until all positions have been
exhausted. If the subject 123456DEF was applied to the
example it would fail immediately and not attempt to
backtrack.

Backtracking
control

/A(*ACCEPT)B/ These are verbs that act immediately when
encountered. The example will match A and the verb
(*ACCEPT) will cause the match to end successfully,
skipping the remainder of the pattern.

Callouts /ABCD(?C)E/ This allows external functions to be called within the
RegEx. The example would match ABCD then a function

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 52

Construct Example Description
would be called to perform some extra processing.
Finally an E would result in a successful match.

Forward references /(\2ABC|(DEF))+/ Forward references allow you to use a back reference
to a group that appears later in the RegEx. The example
will match DEFDEFABC. This is because DEF has to
be captured before the \2 back reference will report a
successful match.

Lazy quantifiers /ABC*?/ As the RXP is ungreedy by default, the lazy quantifier
will have no effect. In essence the RXP Compiler will
convert all quantifiers to their lazy equivalent. The
example will match AB as it will settle for the shortest
match.

Lookaround
assertions

/ABC(?=DEF)/ Lookahead and lookbehind do not consume any bytes.
They will check to see if the specified pattern exists in
front or behind the assertion. The example will match
the string ABC if DEF occurs after it in the subject
string.

Match point reset /ABC\KDEF/ The escape sequence \K will cause any previously
matched characters not to be included in the final
matched sequence. In the example ABCDEF will be
matched but only DEF will be reported.

Newline
conventions

/(*CR)A.C/ These will override the default newline convention on
the system and change it to the one specified. The RXP
Compiler targets a Linux platform and uses “\n” as the
default newline sequence. In the example a possible
match would be A\nC. This is because the newline
convention has been changed to carriage return.

Newline sequences /ABC\R/ The escape sequence \R will match any newline
sequence. It is equivalent to: (?>\r\n|\n|\x0b|\f|\r|\x85).
The example will match ABC followed by any newline
sequence.

Possessive
quantifiers

/[^\n]*+D/ There is no backtracking available in possessive mode.
If the RegEx in the example was greedy and had no
possessive quantifier, it would fail at ABCE and then
the [^\n]* would then give up one match leaving it
with ABC. This would still fail and keep attempting
the backtracking steps until all positions have been
exhausted. If the subject ABCE was applied to the
example it would fail immediately.

Subroutine
references

/ABC(?R)/ Subroutine references allow for subpatterns to be
assessed as part of the RegEx. It is possible for these
to be recursive. The example will match the string ABC
infinite number of times as the (?R) means to recurse
the whole pattern.

Regular Expression Support

RXP Compiler MLNX-15-060476 _v2.2.1 | 53

Construct Example Description

UTF-8, UTF-16 and
UTF-32

The RXP Compiler does not support UTF-8, UTF-16 and
UTF-32 in this release.

Unicode Properties /ABC\X\p{Zl}/ The RXP Compiler does not support any of the UCP
constructs:

‣ \p{xx} - a character with the xx property.

‣ \P{xx} - a character without the xx property.

‣ Caseless matching for characters > 128.

‣ \X extended Unicode sequence.

RXP Compiler MLNX-15-060476 _v2.2.1 | 54

Chapter 6. Prefix Selection

The RXP uses a 1, 2, 3, or 4-byte "prefix" as the trigger for a match. It is extremely
important WRT performance that a rule has a good prefix as this determines how many
search threads are triggered. When a prefix is detected, one or more primary threads can
be triggered. The RXP has a finite number of primary threads that can be executed at
any one time. Due to this, any rules performance can be characterized for a set of data
by the number of primary threads it generates for every byte.

The RXP Compiler has many tools, heuristics and algorithms it uses when determining
what prefix to use for a rule, some of these are discussed in the sections below. When
writing rules for the RXP it is critical to use a good prefix, the sections below can be used
to help do this.

6.1. Enhanced Prefix Extraction Mode
Note: This feature is only available from NVIDIA® BlueField®-3 onward.

The enhanced prefix extraction mode allows the RXP Compiler more freedom when
selecting a prefix from a rule, allowing for higher performance and increased compilation
rate. Traditionally, a prefix could only be chosen within the first eight bytes of a rule, but
with enhanced prefix extraction mode it can be chosen from anywhere in the rule.

See section Enhanced Prefix Extraction Mode for more.

6.2. Length
The length of a prefix is extremely important as it determines the probability this prefix
will be hit in benign traffic. If a prefix is 1-byte then it will trigger one or more primary
threads in:
1/256 bytes of uniformly random data

2-byte prefixes will trigger one or more primary threads in:
((1/256 * 1/256) = 1/65,536) bytes of uniformly random data

3-byte prefixes will trigger one or more primary threads in:
((1/256 * 1/256 * 1/256) = 1/16,777,216) bytes of uniformly random data

4-byte prefixes will trigger one or more primary threads in:

Prefix Selection

RXP Compiler MLNX-15-060476 _v2.2.1 | 55

((1/256 * 1/256 * 1/256 * 1/256 *) = 1/4,294,967,296) bytes of uniformly random data

The benefits of a longer prefix can clearly be seen in the probability shown above. When
the RXP Compiler is selecting a prefix, it will choose longer prefixes over shorter ones. By
default, it will discard any one-byte prefixes, this filter can be overridden but if it is can
be detrimental for a rulesets performance.

6.3. Context
The calculation in section Length does not take into consideration the context and
assumes uniformly distributed random data. Data like Internet traffic will have more of
a normal distribution, in this case the context of the target data is also important when
selecting a good prefix. e.g. in Internet traffic strings like "http", "www", "get", "post"
etc. will have a high incidence. From this contextual knowledge it can be postulated
that these strings will be undesirable prefixes. The RXP Compiler uses a prefix selection
control list to apply context to the prefix selection algorithms.

6.3.1. Prefix Selection Control List
The PSCL has three entry types:

 1. Denylist:

The RXP Compiler will not use any denylisted prefixes.

If there are no other options, then the rule will not be compiled.
 2. Graylist:

The RXP Compiler will try to avoid using any graylisted prefixes.

If there are no other options, the graylisted prefix will be used.
 3. Allowlist:

The RXP Compiler will try to use allowlisted prefixes first.

If it can use any allowlisted prefixes it will select other prefixes.

A PSCL can be manually provided when compiling the ruleset, the RXP Compiler can also
automatically generate one based on a sample of data or the rule content.

6.4. Multiple Prefixes per Rule
A rule can have many prefixes depending on how it is constructed, e.g if there are
alternations and classes in a rule. The RXP Compiler will factor in the number of prefixes
when it is choosing the position of the rule from where to extract the prefix. e.g. for the
following rule:
1, /ABCD|1234/

Two prefixes will always be required, one for each alternation path i.e. ABCD and 1234. In
the following rule:
1, /ABC[12]/

Prefix Selection

RXP Compiler MLNX-15-060476 _v2.2.1 | 56

ABC could be used or else two prefixes including each class entry i.e. ABC1 and ABC2.

6.5. Jumpback
Jumpback can be used to permit alternative prefixes to be selected for a rule from
within the first eight bytes. An example of where jumpback could be used is in the
following rule:
1, /A[a-z][0-9]BCDEFG/

It is not preferable to use A as it is a one-byte prefix as discussed in section Length. It is
also not preferable to extract all possible prefixes from the classes (see section Multiple
Prefixes per Rule). The best choice for the RXP Compiler is therefore BCDE. In the rule
above the RXP Compiler can choose BCDE as the prefix with a jumpback of three. This
means that BCDE will trigger the search, jumpback three bytes, and then the RXP will
process the RegEx.

6.6. Anchoring
The RXP has the capability to apply anchoring to specific byte pointers within the prefix
engine. This serves to minimize the number of prefixes detected in a job. One important
point to note when it comes to anchoring is that prefixes are shared between rules. This
means that if multiple rules with different anchor values share a prefix, the anchoring in
the prefix needs to be relaxed, for example in the following rules:
1, /^.{10}ABCD/
2, /^.{15}ABCD/

In rule_id=1, ABCD will be matched if it occurs at exactly byte pointer 10. In rule_id=2,
ABCD will be matched if it occurs at exactly byte pointer 15. The two rules above will
share the prefix ABCD, as there is only one anchor per prefix then this anchor will be
relaxed to less than or equal to 15 in the prefix engine. As more rules get compiled the
prefix can end up being completely unanchored in the prefix engine.

The strict anchor check will always be carried out after the prefix check when the RXP is
processing the rest of the rule.

6.7. Unique Characters
For a good prefix it is important to ensure it has a diverse selection of characters. If a
four-byte prefix contains all the same character, then it can turn into an extremely bad
prefix. e.g. if the only available prefix is AAAA and there is a sequence of As in the data-
stream the prefix AAAA will trigger on every byte.

6.8. Postfix
What comes after a prefix is also extremely important, e.g. for the following rule:
1, /ABCD.*12/

Prefix Selection

RXP Compiler MLNX-15-060476 _v2.2.1 | 57

If ABCD is chosen as the prefix and is found, the postfix .* will then match anything until
12 is found. If 12 is never found, then the thread triggered by ABCD will stay alive right
up until the end of the data stream. This can cause performance issues for larger jobs
as it will take longer for the threads to die. This phenomenon is called "partial matches",
more information on this can be found in section Optimization for .* Processing.

RXP Compiler MLNX-15-060476 _v2.2.1 | 58

Chapter 7. Subset IDs

Rulesets can be split into one or more subsets of rules. Each subset of rules is given an
identifier or subset_id. Jobs can then be scanned against up to four subsets from the
rule set, rather than against all the rules in the rule set. For example, the following rule
set is split into two subsets indicated by subset_ids = 1 and 2:
subset_id=1
1, ABCD
2, DEFG
subset_id=2
3, 1234
4, 5678

If the following job data is scanned against both subsets:
XXXXABCDXXXX1234

Matches will be detected for rule_ids 1 and 3. If the job data is scanned against only
subset_id = 2, only the match rule_id = 3 will be detected. Each rule set can be split into
up to 4,095 before subsets with a valid subset ID range of 1 to 4,095. Up to four subset
IDs can then be presented per job so that the RXP scans job data against just those four
subsets.

The prefix engine can do a partial subset ID check for each unique prefix to act as an
additional filter. This partial subset ID check corresponds to the lower eight bits of the
subset ID. The full 12-bit subset ID check is carried out in the thread engine. If a prefix is
shared across more than one subset then the subset ID check can no longer be carried
out in the prefix engine unless the target subset IDs share the lower eight bits.

For example, subset_id=1 is equivalent to subset_id=257, and subset_id=513 with
regards to the prefix engine’s partial subset ID filter.

For example, the following rule set is split into three subsets indicated by subset_ids = 1,
2, and 3:
subset_id=1
1, ABCD.*1234
subset_id=2
2, WXYZ
subset_id=3
3, ABCD.*5678

The prefix ABCD will be used for rules 1 and 3. As the prefix ABCD is shared across more
than one subset, the subset ID check cannot be carried out in the prefix engine. The
subset ID check will be carried out in the thread engine but the prefix engine subset
filtering will be lost.

Subset IDs

RXP Compiler MLNX-15-060476 _v2.2.1 | 59

For example, the following rule set is split into three subsets indicated by subset_ids =1,
2, and 257:
subset_id=1
1, ABCD.*1234
subset_id=2
2, WXYZ
subset_id=257
3, ABCD.*5678

The prefix ABCD will be used for rules 1 and 3. This time the lower eight bits of the
subset ID is also shared between the rules so the subset ID check can be carried out in
the prefix engine.

RXP Compiler MLNX-15-060476 _v2.2.1 | 60

Chapter 8. Differences Between RXP
and PCRE

PCRE and the RXP have vastly different underlying architectures with one being
software-based and the other hardware-based. Due to these differences, there are some
situations when the outcome from the matching process also differs. These are not
bugs however they are just down to differences in how the systems work. The following
sections briefly describe a few examples of where this is the case.

8.1. Anchored to Offset
The RXP has a specialized construct for supporting anchors to offset. Due to the way
this optimization is implemented the trigger point for the rule is after the anchor to
offset construct. This can result in extra matches over what PCRE finds. For example, for
the following rule and data:
1, /^.{0,5}ABCD/
ABCDABCD

PCRE will report the following match:

rule_id start_ptr Length

1 0 8

The RXP will report the following two matches:

rule_id start_ptr Length

1 0 4

1 0 8

In the case discussed above the RXP will trigger a search every time ABCD is
encountered within the window specified by the anchor to offset construct. PCRE will
only trigger one search at the beginning of the job.

Another example can be observed in is the following rule and data:
1, /^.?.?AB.*AB/
ABABXXXXXXAB

PCRE will report the following match:

Differences Between RXP and PCRE

RXP Compiler MLNX-15-060476 _v2.2.1 | 61

rule_id start_ptr Length

1 0 4

The RXP will report the following two matches:

rule_id start_ptr Length

1 0 4

1 0 12

Another example of this can be observed in the following rule:
/^.{10,}A/

This rule is also implemented using our special anchored to offset construct, in PCRE
this is just implemented as an anchored dot construct with a repetition.

This means that for the following job data:
AAAAAAAAAAAAAAAAAAAA

For the RXP, every byte from byte pointer 11 onwards triggers the prefix "A", whereas for
PCRE there will only be one match spanning the entire job.

8.2. Enhanced Prefix Extraction Mode
Note: This feature is only available from NVIDIA® BlueField®-3 onward.

Enhanced prefix extraction mode allows the RXP Compiler more freedom when selecting
a prefix from a rule, allowing for higher performance and increased compilation rate.
Traditionally, a prefix could only be chosen within the first eight bytes of a rule, but with
enhanced prefix extraction mode it can be chosen from anywhere in the rule.

However, enhanced prefix extraction mode has some side-effects with regards to the
way the rule is matched. For example, for the following rule:
1, 12.*ABCD.*34

And the following data:
XX12X12XABCDX34X34XX

There will be differences in the superset matches found depending on the prefix chosen.
This is because the RXP is ungreedy. Note, however, that the smallest match is always
found. For the data and rule above, using different prefixes, the following matches are
found:

Prefix Matches

12 12X12XABCDX34

12XABCDX34

ABCD 12XABCDX34

ABCD 12XABCDX34

34 12XABCDX34

Differences Between RXP and PCRE

RXP Compiler MLNX-15-060476 _v2.2.1 | 62

Prefix Matches
12XABCDX34X34

If these effects are undesirable, then enhanced prefix extraction mode can be switched
off using the -W switch although this can impact performance and the number of rules
compiled.

See section Enhanced Prefix Extraction Mode for more.

8.3. Relaxed Repetition Quantifiers
Constrained repetition can use up many resources when it occurs after a non-fixed
repetition e.g. in the following rule:
1, /ABCD.*1234.{0,10}WXYZ/

The .{0,10} part of the above rule will require many resources and impact on performance
to implement. As a performance vs. accuracy tradeoff the RXP Compiler will implement
the above rule as the following:
1, /ABCD.*1234.*WXYZ/

This will perform much better but has a slightly increased chance of false positives or
length mismatches.

There is a “strict-quantifiers” mode in the RXP Compiler that will disable this
performance optimization in favour of accuracy, although this will also use many more
resources and perform much slower.

The following table shows a list of rules with different permutations of repetition
constructs. It shows what types of rules will have reduced performance if the strict
quantifiers mode is used. If the strict quantifiers mode is not used then the constrained
repetitions will be relaxed for those rules.

1
Max Bytes Consumed at
a Time

Reduced
Performance

/ABCD.*EFGHIJKL/ 8 N

/ABCD.*EFGH.*IJKL/ 8 N

/ABCD.*EFGH.{10}IJKL/ 8 N

/ABCD.{10}EFGH.*IJKL/ 8 N

/ABCD.{10}EFGH.{10}IJKL/ 8 N

/ABCD.{0,10}EFGH.{10}IJKL/ 8 N

/ABCD.{10}EFGH.{0,10}IJKL/ 8 N

/ABCD.{0,10}EFGH.*IJKL/ 8 N

/ABCD.* EFGH.{0,10}IJKL/ 1 Y

/ABCD.{0,10} EFGH.{0,10}IJKL/ 1 Y

Differences Between RXP and PCRE

RXP Compiler MLNX-15-060476 _v2.2.1 | 63

8.4. Similar Alternation Paths
There are cases where the RXP will return identical matches e.g.:
/ABCD(EFGHIJKL|EFGHIJKL)/

The RXP will match both EFGHIJKL paths at the same time.

Due to this, the rule will always report two matches. If the rule has similar alternation
paths, then multiple matches can be returned for an alternating rule at the same byte
pointer.

8.5. Shortest Alternation Paths
There are cases when alternation branches are ambiguous when it comes to matching.
The RXP will process all branches in parallel, so the shortest one will win. PCRE processes
the branches sequentially from left to right, stopping as soon as one matches. e.g. for
the following rule:
1, /ABCD(12|1|2)/

For the data ABCD12, the RXP will match ABCD1, whereas PCRE will match ABCD12.

8.6. Greediness
The RXP will always stop processing a primary thread as soon as a match is found. For
example, in the following rule:
1, /ABCD.*/

The only possible match for this rule is ABCD, as soon as the RXP detects this then it will
report a match. The shortest route through the .* is zero iterations so the RXP will take
this path.

8.7. Start Pointer for Multi-line Mode
The RXP reports just before the newline as the start pointer whereas PCRE reports just
after.

8.8. Repetitions at Beginning of Rule
If there is a repetition at the beginning of a rule concessions can be made in favour of
being able to support the rule. For example, in the following rules:
1, /A*BCDE/
2, /A+BCDE/

If BCDE is chosen as a prefix, the unconstrained nature of the repetition means that
jumpback cannot be used. In cases like these, the rule will be compiled using the

Differences Between RXP and PCRE

RXP Compiler MLNX-15-060476 _v2.2.1 | 64

minimum repetition value, this means that the shortest match will always be found. The
rules above would be compiled like so:
1, /BCDE/
2, /ABCDE/

It is also important to note that when a rule starts with a + the '+' is removed it if is only
one byte and kept if is related to more than 1 byte. It is also kept if it is one byte but
anchored.

RXP Compiler MLNX-15-060476 _v2.2.1 | 65

Chapter 9. Performance
Considerations

Certain considerations must be accounted for when writing rules for NVIDIA® RXP®

which are discussed in the following subsections.

9.1. Complexity
The complexity of a rule refers to the number of alternation branches, repetitions, and
complex structures like back references in the rule. If a rule is complex, then it will either
not compile or have performance issues.

9.1.1. Rule Complexity
As a rule of thumb, the lower the complexity of a rule, the better it will perform. In terms
of the RXP, rule complexity can impact resource usage and performance.

Resource usage is allocated on a per rule basis. Due to this it is prudent to split complex
rules into multiple smaller rules where possible. The constructs that use most resources
are backreferences and repetitions. If a rule has long sequences of these or nested
repetition it may run out of resources at compile time or run time. NVIDIA RXP has a
highly parallelized architecture, due to this, many small rules will perform better than
fewer large rules.

Note that rules employing subpattern matching typically use a lot of resources. Due to
this subpattern matching is limited to rules with a lower complexity.

9.1.2. Ruleset Complexity
As rules are compiled, they may not remain completely independent. The key component
that is shared between rules and causes interactions are prefixes. As prefixes can be
shared between rules the prefixes filtering effectiveness can decrease. A prefix can filter
by subset ID but if multiple rules with different subset IDs share that prefix then the
prefix can no longer check for the subset ID. A prefix can also check anchoring, but again
as more rules share that prefix the anchor check needs to be relaxed in the prefix engine.
See section Anchoring for more details on this. Note that even though the subset and
anchoring checks are relaxed in the prefix engine, they are carried out in full in the thread
engine.

Performance Considerations

RXP Compiler MLNX-15-060476 _v2.2.1 | 66

9.2. Optimization for .* Processing
NVIDIA RXP has an optimization to allow .* constructs to be processed at up to eight
bytes at a time. It is possible for this optimization to be active in a rule if it is followed by
up to four different characters e.g. in the following rules:
1, /ABCD.*1234/
2, /ABCD.*(12|34)/
3, /ABCD.*[0-2]/
4, /ABCD.*[0-9]/
5, /ABCD.*(12|34|56|78|90)/

The optimization is possible for rule_id=1, rule_id=2, and rule_id=3. The .* construct in
rule_id=1 is followed by only one character ‘1’. The .* construct in rule_id=2 is followed by
two characters ‘1’ and ‘3’. The .* construct in rule_id=3 is followed by three characters ‘0’,
‘1’, and ‘2.

The optimization is not possible for rule_id=4 and rule_id=5. The .* construct in rule_id=4
is followed by 10 characters, this exceeds the four character limit. The .* construct in
rule_id=2 is followed by five characters which also exceeds the four character limit.

If the optimization cannot be used then the .* construct will fall back to consuming bytes
one at a time.

9.3. Partial Matches
For example, in the following simple ruleset:
1, /AB/
2, /AB.*CD/

If there were a match for rule_id=1 embedded in a job, rule_id=2 would trigger a search
thread. This thread would keep consuming bytes until either it matched with a CD or
reached the end of the job. Rulesets constructed in such a way can keep NVIDIA RXPs
processing engines busy. This phenomenon can be most apparent in larger jobs. If the .*
avails of the optimization discussed in section Optimization for .* Processing, then the
performance impact will not be as pronounced.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Tables
	Introduction
	1.1. Scope
	1.2. Related Documentation
	1.3. Typography
	1.4. Acronyms

	RXP Compiler Installation
	RXP Compiler Utility
	3.1. Usage
	3.2. Options
	3.3. Example Usage
	3.4. Input
	3.5. Output
	3.6. Error Reporting
	3.6.1. Rules File Format Error
	3.6.2. Not Enough Resources
	3.6.3. Syntax Error
	3.6.4. Unsupported Feature

	3.7. Incremental Compile
	3.7.1. Quick Incremental Compile
	3.7.2. Normal Incremental Compile

	3.8. Automatic Splitting of Rulesets
	3.9. Automatic Rules Normalization
	3.10. Automatic Prefix Denylist Generation
	3.10.1. Static
	3.10.2. Dynamic

	3.11. Primary Threads Per Byte (PTPB)

	Data Flow and File Formats
	4.1. CSV File Format
	4.2. Input Rules Files
	4.3. Prefix Selection Control List Files
	4.4. Rule ID Lookup Table File
	4.5. Rule Direction Analysis File
	4.6. Uncompiled Rules File
	4.7. Critical Rules Rank File
	4.8. Remove Rules File
	4.9. ROF File
	4.10. ROFI File
	4.11. ROFF File

	Regular Expression Support
	5.1. Assumptions
	5.2. Backslash
	5.3. Supported Constructs
	5.4. Alternation
	5.5. Anchored to Offset
	5.6. Anchoring
	5.7. Back References
	5.8. Capturing Parentheses
	5.9. Conditional Statement
	5.10. Dot Metacharacter
	5.11. Inline Comments
	5.12. Internal Option Setting
	5.13. Hexadecimal Formats
	5.14. Literal Strings
	5.15. Modifiers
	5.16. Non-capturing Parentheses
	5.17. Non-printing Characters
	5.18. Octal Formats
	5.19. POSIX Character Classes
	5.20. Predefined Classes
	5.21. Quoting
	5.22. Repetition
	5.23. Reset Subpattern Numbers
	5.24. Subpattern Matching
	5.25. User-defined Character Classes
	5.26. Word Boundary
	5.27. Unsupported Constructs

	Prefix Selection
	6.1. Enhanced Prefix Extraction Mode
	6.2. Length
	6.3. Context
	6.3.1. Prefix Selection Control List

	6.4. Multiple Prefixes per Rule
	6.5. Jumpback
	6.6. Anchoring
	6.7. Unique Characters
	6.8. Postfix

	Subset IDs
	Differences Between RXP and PCRE
	8.1. Anchored to Offset
	8.2. Enhanced Prefix Extraction Mode
	8.3. Relaxed Repetition Quantifiers
	8.4. Similar Alternation Paths
	8.5. Shortest Alternation Paths
	8.6. Greediness
	8.7. Start Pointer for Multi-line Mode
	8.8. Repetitions at Beginning of Rule

	Performance Considerations
	9.1. Complexity
	9.1.1. Rule Complexity
	9.1.2. Ruleset Complexity

	9.2. Optimization for .* Processing
	9.3. Partial Matches

