
DOCA Documentation v2.7.0

Table of contents

DOCA SDK v2.7.0 42

NVIDIA DOCA Overview 42

NVIDIA DOCA Release Notes 48

BlueField and DOCA User Types 76

NVIDIA DOCA EULA 80

Quick Start for BlueField Developers 88

NVIDIA DOCA Developer Quick Start Guide 88

Installation and Setup 91

NVIDIA DOCA Profiles 91

NVIDIA DOCA Installation Guide for Linux 101

NVIDIA DOCA Developer Guide 155

DOCA Programming Guide 170

DOCA Programming Overview 170

DOCA Backward Compatibility Policy 171

DOCA Development Best Practices 173

DOCA Libraries 174

DOCA Utils 175

DOCA Drivers 175

DOCA Applications 176

NVIDIA DOCA Allreduce Application Guide 184

NVIDIA DOCA App Shield Agent Application Guide 205

DOCA Documentation v2.7.0 1

Table of contents

DOCA SDK v2.7.0

NVIDIA DOCA Overview

NVIDIA DOCA Release Notes

BlueField and DOCA User Types

NVIDIA DOCA EULA

Quick Start for BlueField Developers

NVIDIA DOCA Developer Quick Start Guide

Installation and Setup

NVIDIA DOCA Profiles

NVIDIA DOCA Installation Guide for Linux

NVIDIA DOCA Developer Guide

DOCA Programming Guide

DOCA Programming Overview

DOCA Backward Compatibility Policy

DOCA Development Best Practices

DOCA Libraries

DOCA Utils

DOCA Drivers

DOCA Applications

NVIDIA DOCA Allreduce Application Guide

NVIDIA DOCA App Shield Agent Application Guide

NVIDIA DOCA DMA Copy Application Guide 221

NVIDIA DOCA DPA All-to-all Application Guide 234

NVIDIA DOCA DPA L2 Reflector Application Guide 250

NVIDIA DOCA East-West Overlay Encryption Application 261

NVIDIA DOCA Eth L2 Forwarding Application Guide 284

NVIDIA DOCA File Compression Application Guide 295

NVIDIA DOCA File Integrity Application Guide 307

NVIDIA DOCA GPU Packet Processing Application Guide 318

NVIDIA DOCA IPsec Security Gateway Application Guide 340

NVIDIA DOCA NAT Application Guide 378

NVIDIA DOCA PCC Application Guide 393

NVIDIA DOCA PSP Gateway Application Guide 414

NVIDIA DOCA Secure Channel Application Guide 442

NVIDIA DOCA Simple Forward VNF Application Guide 455

NVIDIA DOCA Switch Application Guide 470

NVIDIA DOCA UROM RDMO Application Guide 487

NVIDIA DOCA YARA Inspection Application Guide 510

DOCA Tools 527

NVIDIA DOCA Bench 528

NVIDIA DOCA Capabilities Print Tool 569

NVIDIA DOCA Comm Channel Admin Tool 589

NVIDIA DPA Tools 593

NVIDIA DOCA PCC Counter Tool 594

DOCA Documentation v2.7.0 2

NVIDIA DOCA DMA Copy Application Guide

NVIDIA DOCA DPA All-to-all Application Guide

NVIDIA DOCA DPA L2 Reflector Application Guide

NVIDIA DOCA East-West Overlay Encryption Application

NVIDIA DOCA Eth L2 Forwarding Application Guide

NVIDIA DOCA File Compression Application Guide

NVIDIA DOCA File Integrity Application Guide

NVIDIA DOCA GPU Packet Processing Application Guide

NVIDIA DOCA IPsec Security Gateway Application Guide

NVIDIA DOCA NAT Application Guide

NVIDIA DOCA PCC Application Guide

NVIDIA DOCA PSP Gateway Application Guide

NVIDIA DOCA Secure Channel Application Guide

NVIDIA DOCA Simple Forward VNF Application Guide

NVIDIA DOCA Switch Application Guide

NVIDIA DOCA UROM RDMO Application Guide

NVIDIA DOCA YARA Inspection Application Guide

DOCA Tools

NVIDIA DOCA Bench

NVIDIA DOCA Capabilities Print Tool

NVIDIA DOCA Comm Channel Admin Tool

NVIDIA DPA Tools

NVIDIA DOCA PCC Counter Tool

NVIDIA DOCA Socket Relay 598

DOCA Services 604

NVIDIA BlueField Container Deployment Guide 609

NVIDIA DOCA BlueMan Service Guide 624

NVIDIA DOCA Firefly Service Guide 631

NVIDIA DOCA Flow Inspector Service Guide 684

NVIDIA DOCA HBN Service Guide 699

NVIDIA DOCA Management Service Guide 844

NVIDIA DOCA Telemetry Service Guide 856

NVIDIA DOCA UROM Service Guide 894

DOCA Switching 901

OpenvSwitch Offload (OVS in DOCA) 903

VirtIO Acceleration through Hardware vDPA 905

Bridge Offload 911

Link Aggregation 912

Controlling Host PF and VF Parameters 923

API References 926

NVIDIA DOCA Driver APIs 926

NVIDIA DOCA Library APIs 926

Miscellaneous (Runtime) 927

NVIDIA DOCA Glossary 927

NVIDIA DOCA Crypto Acceleration 933

NVIDIA DOCA Services Fluent Logger 935

DOCA Documentation v2.7.0 3

NVIDIA DOCA Socket Relay

DOCA Services

NVIDIA BlueField Container Deployment Guide

NVIDIA DOCA BlueMan Service Guide

NVIDIA DOCA Firefly Service Guide

NVIDIA DOCA Flow Inspector Service Guide

NVIDIA DOCA HBN Service Guide

NVIDIA DOCA Management Service Guide

NVIDIA DOCA Telemetry Service Guide

NVIDIA DOCA UROM Service Guide

DOCA Switching

OpenvSwitch Offload (OVS in DOCA)

VirtIO Acceleration through Hardware vDPA

Bridge Offload

Link Aggregation

Controlling Host PF and VF Parameters

API References

NVIDIA DOCA Driver APIs

NVIDIA DOCA Library APIs

Miscellaneous (Runtime)

NVIDIA DOCA Glossary

NVIDIA DOCA Crypto Acceleration

NVIDIA DOCA Services Fluent Logger

NVIDIA DOCA DPU CLI 938

NVIDIA DOCA Emulated Devices 943

NVIDIA BlueField Modes of Operation 972

NVIDIA DOCA with OpenSSL 985

NVIDIA BlueField DPU Scalable Function User Guide 989

NVIDIA TLS Offload Guide 1002

NVIDIA DOCA Troubleshooting Guide 1025

NVIDIA DOCA Virtual Functions User Guide 1058

Archives 1067

NVIDIA DOCA LTS Versions 1067

NVIDIA DOCA Documentation Archives 1068

DOCA Documentation v2.7.0 4

NVIDIA DOCA DPU CLI

NVIDIA DOCA Emulated Devices

NVIDIA BlueField Modes of Operation

NVIDIA DOCA with OpenSSL

NVIDIA BlueField DPU Scalable Function User Guide

NVIDIA TLS Offload Guide

NVIDIA DOCA Troubleshooting Guide

NVIDIA DOCA Virtual Functions User Guide

Archives

NVIDIA DOCA LTS Versions

NVIDIA DOCA Documentation Archives

DOCA Documentation v2.7.0 5

List of Figures
Figure 0. Image 2024 3 18 11 7 56 1 Version 1 Modificationdate
1710752876623 Api V2

Figure 1. Image 2024 3 18 11 20 56 1 Version 2 Modificationdate
1711015642223 Api V2

Figure 2. Image 2024 5 5 13 30 16 Version 1 Modificationdate
1714905015383 Api V2

Figure 3. Doca As Software Framework Version 1 Modificationdate
1707498875940 Api V2

Figure 4. Doca Arch 2 Version 1 Modificationdate 1709736679783 Api
V2

Figure 5. Doca Arch Version 1 Modificationdate 1709736679077 Api V2

Figure 6. Functional Isolation Version 1 Modificationdate
1709736679560 Api V2

Figure 7. Profiles

Figure 8. Developing Using Bluefield Setup Version 1 Modificationdate
1707815263100 Api V2

Figure 9. Developing Without Bluefield Setup Version 1
Modificationdate 1707815262023 Api V2

Figure 10. Cross Compilation From Host Diagram Version 1
Modificationdate 1707815262627 Api V2

Figure 11. Device Subsystem Version 1 Modificationdate
1702684190280 Api V2

DOCA Documentation v2.7.0 6

Figure 12. Memory Subsystem Version 1 Modificationdate
1702684191093 Api V2

Figure 13. Execution Model Version 1 Modificationdate 1702684190873
Api V2

Figure 14. Doca Device Diagram Version 1 Modificationdate
1712136254887 Api V2

Figure 15. Device Discovery Version 1 Modificationdate 1712136252373
Api V2

Figure 16. Rep Device Discovery Version 1 Modificationdate
1713947539030 Api V2

Figure 17. Mmap Memrange Doca Version 1 Modificationdate
1712136260263 Api V2

Figure 18. Mmap Export Diagram Version 1 Modificationdate
1712136259710 Api V2

Figure 19. Doca Buf Version 1 Modificationdate 1712136253503 Api V2

Figure 20. Mmap Init Version 1 Modificationdate 1712136264907 Api V2

Figure 21. From Export Buf Flow Version 1 Modificationdate
1712136264603 Api V2

Figure 22. Execution Env Classes Version 1 Modificationdate
1712136264280 Api V2

Figure 23. Ctx Init Version 1 Modificationdate 1712136265113 Api V2

Figure 24. Doca Ctx 4 States Version 1 Modificationdate 1712136263617
Api V2

Figure 25. Doca Task Lifecycle Legend Version 1 Modificationdate
1712136267787 Api V2

DOCA Documentation v2.7.0 7

Figure 26. Doca Task Lifecycle Alloc Init Submit Version 1
Modificationdate 1712136266273 Api V2

Figure 27. Doca Task Lifecycle Complet Free Version 1 Modificationdate
1712136267263 Api V2

Figure 28. Doca Task Lifecycle Complet Reuse Version 1
Modificationdate 1712136267473 Api V2

Figure 29. Doca Task Lifecycle Args Version 1 Modificationdate
1712136266560 Api V2

Figure 30. Workq Init Version 1 Modificationdate 1712136265387 Api V2

Figure 31. Doca Core Pe Poll Version 1 Modificationdate
1712136263323 Api V2

Figure 32. Doca Core Pe Wait Notify Version 1 Modificationdate
1712136263113 Api V2

Figure 33. Doca Core Event Simple Version 1 Modificationdate
1712136262360 Api V2

Figure 34. Workq Error Version 1 Modificationdate 1712136265993 Api
V2

Figure 35. Doca Sync Event Components Diagram Version 1
Modificationdate 1711961903363 Api V2

Figure 36. Doca Sync Event Interaction Diagram Version 1
Modificationdate 1711961902633 Api V2

Figure 37. Sync Event Version 1 Modificationdate 1711961904130 Api
V2

Figure 38. Remote Net Export Flow Version 1 Modificationdate
1711961903650 Api V2

DOCA Documentation v2.7.0 8

Figure 39. Architecture Diagram Version 1 Modificationdate
1707724249240 Api V2

Figure 40. Domains D1 Version 1 Modificationdate 1707724249723 Api
V2

Figure 41. Domains D2 Version 1 Modificationdate 1707724249940 Api
V2

Figure 42. Rfc2697 Version 1 Modificationdate 1707724244973 Api V2

Figure 43. Rfc2698 Version 1 Modificationdate 1707724245433 Api V2

Figure 44. Rfc4115 Version 1 Modificationdate 1707724245187 Api V2

Figure 45. Vnf Mode Diagram Version 1 Modificationdate
1707724249023 Api V2

Figure 46. Switch Mode Diagram Version 1 Modificationdate
1707724248740 Api V2

Figure 47. Image 2024 4 22 11 40 1 Version 2 Modificationdate
1714510012400 Api V2

Figure 48. Remote Vnf Mode Diagram Version 1 Modificationdate
1707724248433 Api V2

Figure 49. Pipe Illustration Version 1 Modificationdate 1707724248183
Api V2

Figure 50. Matching Diagram Version 1 Modificationdate
1707724245743 Api V2

Figure 51. Pipe Entry Queue Diagram Version 1 Modificationdate
1707724247967 Api V2

Figure 52. Miss Pipe Hw Table Structure Version 1 Modificationdate
1707724246460 Api V2

DOCA Documentation v2.7.0 9

Figure 53. Packet Processing No Flow Version 1 Modificationdate
1707724247700 Api V2

Figure 54. Packet Processing W Flow Version 1 Modificationdate
1707724247437 Api V2

Figure 55. Arch Diagram Version 1 Modificationdate 1707982858940
Api V2

Figure 56. Autonomous Mode Diagram Version 1 Modificationdate
1707982858717 Api V2

Figure 57. Managed Mode Diagram Version 1 Modificationdate
1707982858340 Api V2

Figure 58. Image 2024 4 25 13 35 46 Version 2 Modificationdate
1714534639683 Api V2

Figure 59. Dpa Memory Hierarchy Diagram Version 1 Modificationdate
1704292970253 Api V2

Figure 60. Different Processes In System Version 1 Modificationdate
1710697862863 Api V2

Figure 61. Signed User Dpa Code Version 1 Modificationdate
1710697862613 Api V2

Figure 62.
Be2ad944364a59626dfbec77704b8a73946f1d8feac5bf2bc4d0530169a0

Figure 63. Rot Certificate Chain Including Nvidia Root And Customer
Certificate Chain Version 1 Modificationdate 1710697861247 Api V2

Figure 64. Elf File Structure Schematic Version 1 Modificationdate
1710697860663 Api V2

DOCA Documentation v2.7.0 10

Figure 65. Signing Flow Version 1 Modificationdate 1710697860390 Api
V2

Figure 66. Elf Cryptographic Data Section Layout Version 1
Modificationdate 1710697860080 Api V2

Figure 67. Hash Fields Big Endian Bytes Alignment Version 1
Modificationdate 1710697858933 Api V2

Figure 68. Image 2023 10 5 13 11 31 Version 1 Modificationdate
1711338004780 Api V2

Figure 69. Basic Initiator Target Version 1 Modificationdate
1712771078677 Api V2

Figure 70. Advanced Initiator Target Version 1 Modificationdate
1712777074427 Api V2

Figure 71. Host Dpu Library And Header Files Version 1
Modificationdate 1709127880633 Api V2

Figure 72. Image 2024 2 28 16 46 43 Version 1 Modificationdate
1709131603210 Api V2

Figure 73. Image 2024 2 28 16 42 13 Version 1 Modificationdate
1709131333427 Api V2

Figure 74. Image 2024 2 28 16 45 6 Version 1 Modificationdate
1709131506547 Api V2

Figure 75. Development Flow Version 2 Modificationdate
1709680085257 Api V2

Figure 76. Sys Design Version 2 Modificationdate 1709679022597 Api
V2

DOCA Documentation v2.7.0 11

Figure 77. DMA Local Copy Version 1 Modificationdate 1703662233270
Api V2

Figure 78. DMA Remote On DPU Version 1 Modificationdate
1703662233687 Api V2

Figure 79. DMA Remote On Host Version 1 Modificationdate
1703662233883 Api V2

Figure 80. Consumers Producers Version 3 Modificationdate
1713085812843 Api V2

Figure 81. Client Server Connection Version 1 Modificationdate
1713090420807 Api V2

Figure 82. Consumer Creation Flow Version 4 Modificationdate
1714485658890 Api V2

Figure 83. Msgq Overview Version 2 Modificationdate 1714619794027
Api V2

Figure 84. Establishing Connection Version 1 Modificationdate
1705079355063 Api V2

Figure 85. Urom Deployment Version 1 Modificationdate
1712872977443 Api V2

Figure 86. Image 2024 3 5 14 28 16 1 Version 1 Modificationdate
1709641694263 Api V2

Figure 87. Image 2024 3 5 14 58 49 Version 1 Modificationdate
1709643527180 Api V2

Figure 88. Doca Urom Library Components Version 1 Modificationdate
1712874399770 Api V2

DOCA Documentation v2.7.0 12

Figure 89. Doca Urom Headers Version 1 Modificationdate
1712874552090 Api V2

Figure 90. Image 2024 4 15 18 53 9 1 Version 2 Modificationdate
1714617643890 Api V2

Figure 91.

Figure 92. Regular Receive Version 1 Modificationdate 1711355755860
Api V2

Figure 93. Cyclic Receive Version 1 Modificationdate 1711355756397
Api V2

Figure 94. Managed Memory Pool Receive Version 1 Modificationdate
1711355756950 Api V2

Figure 95. Working With Doca Flow Version 1 Modificationdate
1711355757257 Api V2

Figure 96. Regular Send Version 1 Modificationdate 1711355757910 Api
V2

Figure 97. Doca Eth Context Version 1 Modificationdate 1711355758403
Api V2

Figure 98. Image 2023 10 12 8 40 19 Version 1 Modificationdate
1711355750297 Api V2

Figure 99. Image2023 3 17 17 16 6 Version 1 Modificationdate
1708331893283 Api V2

Figure 100. Image2023 4 19 11 47 9 Version 1 Modificationdate
1708331896880 Api V2

Figure 101. Application On Host Cpu Diagram Version 1
Modificationdate 1708331891763 Api V2

DOCA Documentation v2.7.0 13

Figure 102. Application On Dpu Converged Arm Cpu Diagram Version 1
Modificationdate 1708331891473 Api V2

Figure 103. Image 2024 1 12 12 24 42 Version 1 Modificationdate
1708331892010 Api V2

Figure 104. Image2023 4 18 12 6 25 Version 1 Modificationdate
1708331896663 Api V2

Figure 105. Image2023 4 18 11 49 40 Version 1 Modificationdate
1708331896383 Api V2

Figure 106. Image2023 4 3 18 18 20 Version 1 Modificationdate
1708331894060 Api V2

Figure 107. Image2023 4 4 12 13 32 Version 1 Modificationdate
1708331894257 Api V2

Figure 108. Image 2024 4 17 12 29 48 Version 1 Modificationdate
1713349788677 Api V2

Figure 109. Image 2024 3 26 15 19 21 Version 1 Modificationdate
1711462762163 Api V2

Figure 110. Dst Buf Src Buf Version 1 Modificationdate 1712750270287
Api V2

Figure 111. Sha Arch Diagram Version 1 Modificationdate
1702684755897 Api V2

Figure 112. Erasure Coding Transmission Version 1 Modificationdate
1707749454753 Api V2

Figure 113. Screenshot 2022 11 30 120911 Version 1 Modificationdate
1707749454193 Api V2

DOCA Documentation v2.7.0 14

Figure 114. Screenshot 2022 11 24 101000 Version 1 Modificationdate
1707749453907 Api V2

Figure 115. Screenshot 2022 11 24 101058 Version 1 Modificationdate
1707749454473 Api V2

Figure 116.
87de05bf19da2337dcc4bee8c38d3d8cdd0b8c9bcf0d11026d110e1e347b

Figure 117.
848782870816eb781cba2690b24466dcbf20424df7c8be35ce154a46d3ad

Figure 118.
0963e85956a2487917c1c97b7e89644e0eb74703a28b3c776e7632ccf5d8

Figure 119.
Ff337263f67750682802455daa071f397667f901705ff3b3d668f82428f0b3

Figure 120.
436491c2113325308d67ec5aa37b6d07c6555a1ae88093dca5cc5f0411c8

Figure 121.
711108e36acb254c43c35ef7a01651e0d93a002c4808d5e2c7d876dc0b58

Figure 122.
848782870816eb781cba2690b24466dcbf20424df7c8be35ce154a46d3ad

Figure 123.
0963e85956a2487917c1c97b7e89644e0eb74703a28b3c776e7632ccf5d8

Figure 124. Image 2023 10 19 13 47 37 1 Version 1 Modificationdate
1704287901360 Api V2

Figure 125. Image 2023 10 19 13 47 47 1 Version 1 Modificationdate
1704287901137 Api V2

DOCA Documentation v2.7.0 15

Figure 126. Image 2023 10 19 13 47 54 1 Version 1 Modificationdate
1704287900770 Api V2

Figure 127. TelemetryAgent Programmer Guide Version 1
Modificationdate 1710836657377 Api V2

Figure 128. Doca Schema Version 1 Modificationdate 1710836655790
Api V2

Figure 129. App Development Steps Version 1 Modificationdate
1710836656197 Api V2

Figure 130. Doca Device Emulation Version 1 Modificationdate
1713283959787 Api V2

Figure 131. Hotplug State Machine Version 2 Modificationdate
1714853926697 Api V2

Figure 132. PCI Header Version 2 Modificationdate 1713881072843 Api
V2

Figure 133. Bar Overview Version 2 Modificationdate 1713885085617
Api V2

Figure 134. Io Mapped Version 2 Modificationdate 1713885189550 Api
V2

Figure 135. Memory Mapped Version 2 Modificationdate
1713885236747 Api V2

Figure 136. Bar Region Overview Version 3 Modificationdate
1713888421243 Api V2

Figure 137. Stateful Region Read Version 3 Modificationdate
1713888488460 Api V2

DOCA Documentation v2.7.0 16

Figure 138. Stateful Region Write Version 2 Modificationdate
1713888554040 Api V2

Figure 139. Stateful Default Values Version 3 Modificationdate
1713891703973 Api V2

Figure 140. DB Region Overview Version 3 Modificationdate
1713892226143 Api V2

Figure 141. DB Region By Offset Version 2 Modificationdate
1713893153033 Api V2

Figure 142. DB Region By Data Version 2 Modificationdate
1713893266403 Api V2

Figure 143. DOCA VFS Progress Devzone Version 2 Modificationdate
1715027248360 Api V2

Figure 144. DOCA Virtio FS IO Path Devzone Version 2 Modificationdate
1715027913957 Api V2

Figure 145. Architecture Diagram Version 1 Modificationdate
1705079608807 Api V2

Figure 146. Image2022 7 26 10 29 13 Version 1 Modificationdate
1715011248327 Api V2

Figure 147. Image2022 7 28 14 58 53 Version 1 Modificationdate
1715011248013 Api V2

Figure 148. Image2022 7 28 15 0 34 Version 1 Modificationdate
1715011246873 Api V2

Figure 149. Image2022 7 28 14 59 57 Version 1 Modificationdate
1715011247197 Api V2

DOCA Documentation v2.7.0 17

Figure 150. Image2022 7 28 15 1 11 Version 1 Modificationdate
1715011246450 Api V2

Figure 151. Image2022 7 28 15 1 42 Version 1 Modificationdate
1715011246140 Api V2

Figure 152. Image2022 7 28 15 2 14 Version 1 Modificationdate
1715011245607 Api V2

Figure 153. Image2022 7 28 15 4 11 Version 1 Modificationdate
1715011245140 Api V2

Figure 154. Image2022 7 28 15 6 40 Version 1 Modificationdate
1715011244377 Api V2

Figure 155. Procedure Heading Icon Version 1 Modificationdate
1715011276433 Api V2

Figure 156. Procedure Heading Icon Version 1 Modificationdate
1715011276433 Api V2

Figure 157. Procedure Heading Icon Version 1 Modificationdate
1715011276433 Api V2

Figure 158. Procedure Heading Icon Version 1 Modificationdate
1715011276433 Api V2

Figure 159. Procedure Heading Icon Version 1 Modificationdate
1715011276433 Api V2

Figure 160. Procedure Heading Icon Version 1 Modificationdate
1715011287687 Api V2

Figure 161. Procedure Heading Icon Version 1 Modificationdate
1715011287687 Api V2

DOCA Documentation v2.7.0 18

Figure 162. Procedure Heading Icon Version 1 Modificationdate
1715011287687 Api V2

Figure 163. Procedure Heading Icon Version 1 Modificationdate
1715011287687 Api V2

Figure 164. Worddavb2ee67a7eb9aae5c536610e39a37dcc5 Version 1
Modificationdate 1715011292287 Api V2

Figure 165. Worddav6931c32564b3b0c166f4a26788219144 Version 1
Modificationdate 1715011293317 Api V2

Figure 166. Procedure Heading Icon Version 1 Modificationdate
1715011293790 Api V2

Figure 167. Image2019 3 8 12 50 6 Version 1 Modificationdate
1715011294230 Api V2

Figure 168. Procedure Heading Icon Version 1 Modificationdate
1715011293790 Api V2

Figure 169. Procedure Heading Icon Version 1 Modificationdate
1715011293790 Api V2

Figure 170. Procedure Heading Icon Version 1 Modificationdate
1715011293790 Api V2

Figure 171. Procedure Heading Icon Version 1 Modificationdate
1715011293790 Api V2

Figure 172. Procedure Heading Icon Version 1 Modificationdate
1715011293790 Api V2

Figure 173. Procedure Heading Icon Version 1 Modificationdate
1715011293790 Api V2

DOCA Documentation v2.7.0 19

Figure 174. Procedure Heading Icon Version 1 Modificationdate
1715011293790 Api V2

Figure 175. Procedure Heading Icon Version 1 Modificationdate
1715011293790 Api V2

Figure 176. Procedure Heading Icon Version 1 Modificationdate
1715011293790 Api V2

Figure 177. Procedure Heading Icon Version 1 Modificationdate
1715011306180 Api V2

Figure 178. Worddav336f9b6791fd85e08c8e6897697cd75b Version 1
Modificationdate 1715011307170 Api V2

Figure 179. Procedure Heading Icon Version 1 Modificationdate
1715011308847 Api V2

Figure 180. Procedure Heading Icon Version 1 Modificationdate
1715011308847 Api V2

Figure 181. Procedure Heading Icon Version 1 Modificationdate
1715011308847 Api V2

Figure 182. System Design Diagram Version 1 Modificationdate
1707753408817 Api V2

Figure 183. Offloaded Diagram Version 1 Modificationdate
1707753409247 Api V2

Figure 184. Non Offloaded Diagram Version 1 Modificationdate
1707753409467 Api V2

Figure 185. Offloaded Arch Version 1 Modificationdate 1707753409747
Api V2

DOCA Documentation v2.7.0 20

Figure 186. Non Offloaded Arch Version 1 Modificationdate
1707753410017 Api V2

Figure 187. High Level Diagram Version 1 Modificationdate
1707756008163 Api V2

Figure 188. App Shield Arch Version 1 Modificationdate 1707756008450
Api V2

Figure 189. System Design Diagram Version 1 Modificationdate
1707755881397 Api V2

Figure 190. Application Architecture Diagram Version 1
Modificationdate 1707755881060 Api V2

Figure 191. System Design Diagram Version 1 Modificationdate
1707755743853 Api V2

Figure 192. All To All Non Blocking Version 1 Modificationdate
1707755742537 Api V2

Figure 193. System Design Diagram Version 1 Modificationdate
1707755629077 Api V2

Figure 194. Architecture Diagram Version 1 Modificationdate
1707755629413 Api V2

Figure 195. System Design Diagram Version 1 Modificationdate
1707755570657 Api V2

Figure 196. Application Architecture Diagram Version 1
Modificationdate 1707755571000 Api V2

Figure 197. Application Architecture Diagram Version 1
Modificationdate 1707755571000 Api V2

DOCA Documentation v2.7.0 21

Figure 198. Image 2024 4 24 19 22 9 1 Version 1 Modificationdate
1715184477330 Api V2

Figure 199. Image 2024 4 25 18 4 10 1 Version 1 Modificationdate
1715184477773 Api V2

Figure 200. Image 2024 4 28 12 3 37 1 Version 1 Modificationdate
1715184478247 Api V2

Figure 201. Sys Design Version 1 Modificationdate 1707755427027 Api
V2

Figure 202. App Arch Version 1 Modificationdate 1707755427900 Api V2

Figure 203. Sys Design Version 1 Modificationdate 1707755294790 Api
V2

Figure 204. App Arch Version 1 Modificationdate 1707755295213 Api V2

Figure 205. Image 2024 1 12 12 37 6 Version 1 Modificationdate
1707755033600 Api V2

Figure 206. Image2023 4 11 10 33 44 Version 1 Modificationdate
1707755034360 Api V2

Figure 207. Image 2024 1 12 12 48 41 Version 1 Modificationdate
1707755033397 Api V2

Figure 208. Image 2024 1 12 13 0 40 Version 1 Modificationdate
1707755032807 Api V2

Figure 209. Image2023 4 11 12 30 28 Version 1 Modificationdate
1707755035100 Api V2

Figure 210. Ipsec Mode Diagrams With Encryption Version 1
Modificationdate 1707754703443 Api V2

DOCA Documentation v2.7.0 22

Figure 211. Image2023 4 2 12 21 37 Version 1 Modificationdate
1707754704347 Api V2

Figure 212. Image2023 4 2 12 22 22 Version 1 Modificationdate
1707754704607 Api V2

Figure 213. Image2023 4 2 12 24 42 Version 2 Modificationdate
1714616563293 Api V2

Figure 214. App Arch Dyn 2.7 Version 2 Modificationdate
1714616477517 Api V2

Figure 215. Vnf Pipes Enc 2.7 Version 1 Modificationdate
1714553673913 Api V2

Figure 216. Vnf Pipes Dec 2.7 Version 2 Modificationdate
1714616795657 Api V2

Figure 217. Switch Pipes 2.7 Version 1 Modificationdate 1714553981323
Api V2

Figure 218. END2END Version 1 Modificationdate 1707754705857 Api
V2

Figure 219. System Design Diagram Version 1 Modificationdate
1707754532033 Api V2

Figure 220. Static Mode Diagram Version 1 Modificationdate
1707754531803 Api V2

Figure 221. Dynamic Mode Diagram Version 1 Modificationdate
1707754531530 Api V2

Figure 222. Nat Offload Diagram Version 1 Modificationdate
1707754531173 Api V2

DOCA Documentation v2.7.0 23

Figure 223. Sys Design Version 2 Modificationdate 1709680527063 Api
V2

Figure 224. Image 2024 4 29 10 3 46

Figure 225. Image 2024 5 6 15 33 24 Version 2 Modificationdate
1715030824903 Api V2

Figure 226. Image 2024 4 23 14 21 16 Version 1 Modificationdate
1713900077087 Api V2

Figure 227. Image 2024 4 23 14 24 13 Version 1 Modificationdate
1713900253237 Api V2

Figure 228. Image 2024 4 23 14 50 36 Version 2 Modificationdate
1713993780690 Api V2

Figure 229. Image 2024 4 23 15 12 1 Version 2 Modificationdate
1713993897973 Api V2

Figure 230. Image 2024 4 23 15 30 41 Version 2 Modificationdate
1713993941697 Api V2

Figure 231. Image 2024 4 23 15 41 2 Version 2 Modificationdate
1713994016437 Api V2

Figure 232. Sys Design Version 1 Modificationdate 1707754226147 Api
V2

Figure 233. Application Architecture Diagram Version 1
Modificationdate 1707754226610 Api V2

Figure 234. System Design Diagram Version 1 Modificationdate
1707754043223 Api V2

Figure 235. Initialization Process Illustration Version 1 Modificationdate
1707754042977 Api V2

DOCA Documentation v2.7.0 24

Figure 236. Packet Processing Illustration Version 1 Modificationdate
1707754042603 Api V2

Figure 237. System Design Diagram 2 Version 1 Modificationdate
1707753872607 Api V2

Figure 238. System Design Diagram 1 Version 1 Modificationdate
1707753872300 Api V2

Figure 239. Application Architecture Diagram Version 1
Modificationdate 1707753872820 Api V2

Figure 240. Image 2024 3 10 10 56 44 1 Version 2 Modificationdate
1714279920303 Api V2

Figure 241. Image 2024 3 11 9 16 2 1 Version 2 Modificationdate
1713994699097 Api V2

Figure 242. Image 2024 3 10 11 42 4 1 Version 2 Modificationdate
1714280000753 Api V2

Figure 243. Image 2024 3 10 15 19 42 1 Version 2 Modificationdate
1713994773310 Api V2

Figure 244. Image 2024 3 11 8 46 48 1 Version 3 Modificationdate
1714280058960 Api V2

Figure 245. Image 2024 3 11 8 55 18 1 Version 2 Modificationdate
1714280253600 Api V2

Figure 246. System Design Diagram Version 1 Modificationdate
1707753636250 Api V2

Figure 247. Application Architecture Diagram Version 1
Modificationdate 1707753636607 Api V2

DOCA Documentation v2.7.0 25

Figure 248. Image 2024 4 24 14 24 10 Version 2 Modificationdate
1714779249390 Api V2

Figure 249. Image 2024 4 16 12 47 57 Version 1 Modificationdate
1713268077330 Api V2

Figure 250. Image 2024 4 16 12 47 9 Version 1 Modificationdate
1713268029407 Api V2

Figure 251. Dpacc Offloading Version 1 Modificationdate
1702686392883 Api V2

Figure 252. DPACC Output Version 1 Modificationdate 1702686388197
Api V2

Figure 253. Dpa Lib Version 1 Modificationdate 1702686389523 Api V2

Figure 254. Dpacc Trajectory Version 1 Modificationdate
1702686393177 Api V2

Figure 255. Partition Control Diagram Version 1 Modificationdate
1704380748793 Api V2

Figure 256. Image 2024 1 25 12 27 13 Version 1 Modificationdate
1709237164957 Api V2

Figure 257. Image2023 4 9 16 37 54 Version 1 Modificationdate
1702686672617 Api V2

Figure 258. Containers Overview Version 1 Modificationdate
1707750414520 Api V2

Figure 259. Deployment Architecture Version 1 Modificationdate
1707750414103 Api V2

Figure 260. Blueman Health Version 1 Modificationdate 1702686893613
Api V2

DOCA Documentation v2.7.0 26

Figure 261. Blueman Login Version 1 Modificationdate 1705445968150
Api V2

Figure 262. Arch Diagram Version 1 Modificationdate 1707750050417
Api V2

Figure 263. Monitor Arch Version 1 Modificationdate 1707750050000
Api V2

Figure 264. Flow Inspector Service Arch Version 1 Modificationdate
1702686961310 Api V2

Figure 265. Flow Of Service Graph Version 1 Modificationdate
1702686960717 Api V2

Figure 266. Hbn Architecture Version 1 Modificationdate
1710231732767 Api V2

Figure 267. System Overview Version 1 Modificationdate
1710231730197 Api V2

Figure 268. Image 2023 12 7 14 8 20 Version 1 Modificationdate
1710231732413 Api V2

Figure 269. Hbn Sfc Cni Hbn Interfaces Version 2 Modificationdate
1714756315320 Api V2

Figure 270. DVNI Fnn Version 5 Modificationdate 1715199920240 Api
V2

Figure 271. Gateway4 Version 2 Modificationdate 1715201359927 Api
V2

Figure 272. Screenshot 2024 04 07 095621 Version 3 Modificationdate
1714578008037 Api V2

DOCA Documentation v2.7.0 27

Figure 273. Screenshot 2024 04 07 095501 Version 3 Modificationdate
1714578149817 Api V2

Figure 274. Doca Telemetry Service Overview Version 1
Modificationdate 1709738068343 Api V2

Figure 275. Configuration Diagram Version 1 Modificationdate
1709738068767 Api V2

Figure 276. Data Sources Version 1 Modificationdate 1709738071027
Api V2

Figure 277. Url Address Version 1 Modificationdate 1709738069077 Api
V2

Figure 278. Explore Version 1 Modificationdate 1709738070393 Api V2

Figure 279. Grapgh Version 1 Modificationdate 1709738070137 Api V2

Figure 280. Image 2024 3 7 12 16 1 Version 1 Modificationdate
1709806560297 Api V2

Figure 281. Kernel Representors Model Version 1 Modificationdate
1715004628570 Api V2

Figure 282. Virtio Pfs Version 1 Modificationdate 1707421048803 Api V2

Figure 283. Virtio Vfs Version 1 Modificationdate 1707421049047 Api V2

Figure 284. Virtio Vf Pcie Devices For Vhost Acceleration Version 1
Modificationdate 1702447159680 Api V2

Figure 285. Vdpa Over Virtio Full Emulation Design Version 1
Modificationdate 1702390976047 Api V2

Figure 286. Embedded Mode Version 1 Modificationdate
1707758625503 Api V2

DOCA Documentation v2.7.0 28

Figure 287. Bluefield Internal Cpu Configuration Version 1
Modificationdate 1714278946250 Api V2

Figure 288. Internal Cpu Offload Engine Version 1 Modificationdate
1714278947750 Api V2

Figure 289. Nic Mode Version 1 Modificationdate 1714278948610 Api
V2

Figure 290. Openssl Architecture Version 1 Modificationdate
1702687347637 Api V2

Figure 291. Scalable Functions Illustration Version 1 Modificationdate
1713970886143 Api V2

Figure 292. Sf Steps Version 1 Modificationdate 1713970887350 Api V2

Figure 293. Running Application Over Sf Version 1 Modificationdate
1713970887703 Api V2

Figure 294. Tls Setup Diagram Version 1 Modificationdate
1702687400643 Api V2

Figure 295. Tls Testing Setup Diagram Version 1 Modificationdate
1702687400027 Api V2

Figure 296. Eswitch Topology Version 1 Modificationdate
1714765863767 Api V2

DOCA Documentation v2.7.0 29

DOCA Documentation v2.7.0

DOCA Overview

This page provides an overview of the structure of NVIDIA DOCA documentation.

Release Notes

This page contains information on new features, bug fixes, and known issues.

User Types

This page provides a quick introduction to the NVIDIA® BlueField® family of networking
platforms (i.e., DPUs and SuperNICs), its DOCA software components, and BlueField user
types.

NVIDIA DOCA EULA

This page provides the NVIDIA DOCA SDK end-user license agreement.

Quick Start

Developer Quick Start Guide

This page details the basic steps to bring up the NVIDIA DOCA development environment
and to build and run the DOCA reference applications provided along with the DOCA

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Overview
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Release+Notes
https://docs.nvidia.com//doca/sdk/BlueField+and+DOCA+User+Types
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+EULA
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Developer+Quick+Start+Guide

DOCA Documentation v2.7.0 30

software framework package.

Installation and Setup

Profiles

This page provides an introduction to the various supported DOCA profiles.

Installation Guide for Linux

This page details the necessary steps to set up NVIDIA DOCA in your Linux environment.

Developer Guide

This page details the recommended steps to set up an NVIDIA DOCA development
environment.

DOCA Programming Guides

These pages are intended for developers wishing to utilize DOCA SDK to develop
application on top of NVIDIA® BlueField® networking platforms.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Profiles
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Developer+Guide
https://docs.nvidia.com//doca/sdk/DOCA+Programming+Guide

DOCA Documentation v2.7.0 31

Applications

This page provides an overview of the example DOCA applications implemented on top
of NVIDIA® BlueField®.

Allreduce

This page provides a DOCA Allreduce collective operation implementation on top of
NVIDIA® BlueField® using UCX.

App Shield Agent

This page provides process introspection system implementation on top of NVIDIA®
BlueField®.

DMA Copy

This page provides an example of a DMA Copy implementation on top of NVIDIA®
BlueField®.

DPA All-to-all

This page explains the all-to-all collective operation example when accelerated using the
DPA in NVIDIA® BlueField®-3.

DPA L2 Reflector

https://docs.nvidia.com//doca/sdk/DOCA+Applications
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Allreduce+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+App+Shield+Agent+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DMA+Copy+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+All-to-all+Application+Guide

DOCA Documentation v2.7.0 32

This page provides an L2 reflector implementation on top of the NVIDIA® BlueField®-3.

East-west Overlay Encryption

This page describes IPsec based strongSwan solution on top of NVIDIA® BlueField®.

File Compression

This page provides a file compression implementation on top of the NVIDIA® BlueField®.

File Integrity

This page provides a file integrity implementation on top of NVIDIA® BlueField®.

GPU Packet Processing

This page provides a description of the GPU packet processing application to
demonstrate using the DOCA GPUNetIO, DOCA Ethernet, and DOCA Flow libraries to
implement a GPU traffic analyzer.

IPsec Security Gateway

This page provides an IPsec security gateway implementation on top of NVIDIA®
BlueField®.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+L2+Reflector+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+East-West+Overlay+Encryption+Application
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+File+Compression+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+File+Integrity+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+GPU+Packet+Processing+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+IPsec+Security+Gateway+Application+Guide

DOCA Documentation v2.7.0 33

NAT

This page provides a NAT implementation on top of NVIDIA® BlueField®.

PCC

This page provides a DOCA PCC implementation on top of NVIDIA® BlueField®.

PSP Gateway

This page describes the usage of the NVIDIA DOCA PSP Gateway sample application on
top of an NVIDIA® BlueField® networking platform or NVIDIA® ConnectX® SmartNIC.

Secure Channel

This page provides a secure channel implementation on top of NVIDIA® BlueField®.

Simple Forward VNF

This page provides a Simple Forward implementation on top of NVIDIA® BlueField®.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+NAT+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+PCC+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+PSP+Gateway+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Secure+Channel+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Simple+Forward+VNF+Application+Guide

DOCA Documentation v2.7.0 34

Switch

This page provides an example of switch implementation on top of NVIDIA® BlueField® .

UROM RDMO

This page provides a DOCA Remote Direct Memory Operation implementation on top of
NVIDIA® BlueField® using Unified Communication X (UCX) . .

YARA Inspection

This page provides YARA inspection implementation on top of NVIDIA® BlueField®.

Tools

This page provides an overview of the set of tools provided by DOCA and their purpose.

DOCA Bench

This page describes a tool which allows users to evaluate the performance of DOCA
applications, with reasonable accuracy for real-world applications.

Capabilities Print Tool

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Switch+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+UROM+RDMO+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+YARA+Inspection+Application+Guide
https://docs.nvidia.com//doca/sdk/DOCA+Tools
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Bench

DOCA Documentation v2.7.0 35

This page provides instruction on the usage of the DOCA Capabilities Print Tool.

Comm Channel Admin Tool

This page provides instructions on the usage of the DOCA Comm Channel Admin Tool.

DPA Tools

This page lists a set of executables that enable the DPA application developer and the
system administrator to manage and monitor DPA resources and to debug DPA
applications.

PCC Counter Tool

This page provides instruction on the usage of the PCC Counter tool.

Socket Relay

This page describes DOCA Socket Relay architecture, usage, etc.

DOCA Services

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Capabilities+Print+Tool
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Comm+Channel+Admin+Tool
https://docs.nvidia.com//doca/sdk/NVIDIA+DPA+Tools
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+PCC+Counter+Tool
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Socket+Relay

DOCA Documentation v2.7.0 36

This page provides an overview of the set of services provided by DOCA and their
purpose.

Container Deployment

This page provides an overview and deployment configuration of DOCA containers for
NVIDIA® BlueField®.

DOCA BlueMan Service

This page provides instructions on how to use the DOCA BlueMan service on top of
NVIDIA® BlueField®.

DOCA Firefly Service

This page provides instructions on how to use the DOCA Firefly service container on top
of NVIDIA® BlueField®.

DOCA Flow Inspector Service

This page provides instructions on how to use the DOCA Flow Inspector service container
on top of NVIDIA® BlueField®.

DOCA HBN Service

https://docs.nvidia.com//doca/sdk/DOCA+Services
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+BlueMan+Service+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Firefly+Service+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Flow+Inspector+Service+Guide

DOCA Documentation v2.7.0 37

This page provides instructions on how to use the DOCA HBN Service container on top of
NVIDIA® BlueField®.

DOCA Management Service

This page provides instructions on how to use the DOCA Management Service on top of
NVIDIA® BlueField® Networking Platform or ConnectX® Network Adapters.

DOCA Telemetry Service

This page provides instructions on how to use the DOCA Telemetry Service (DTS)
container on top of NVIDIA® BlueField®.

DOCA UROM Service

This page provides instructions on how to use the DOCA Telemetry Service (DTS)
container on top of NVIDIA® BlueField®.

DOCA Switching

These pages describe the extensive switching capabilities enabled by DOCA libraries and
services on these platforms.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+HBN+Service+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Management+Service+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Telemetry+Service+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+UROM+Service+Guide
https://docs.nvidia.com//doca/sdk/DOCA+Switching

DOCA Documentation v2.7.0 38

API References

DOCA Driver APIs

This page contains DOCA driver APIs.

DOCA Libraries APIs

This page contains DOCA libraries APIs.

Miscellaneous

Glossary

This page provides a list of terms and acronyms and in the DOCA documentation.

Crypto Acceleration

This page shows the ability of NVIDIA® BlueField® to accelerate crypto operations.

DOCA Services Fluent Logger

This page provides instructions on how to use the logging infrastructure for DOCA
services on top of NVIDIA® BlueField®.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Library+APIs
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Driver+APIs
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Glossary
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Crypto+Acceleration
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Services+Fluent+Logger

DOCA Documentation v2.7.0 39

DPU CLI

This page provides quick access to a useful set of CLI commands and utilities on the
NVIDIA® BlueField® environment.

Emulated Devices

This page describes the ability of NVIDIA® BlueField® to emulate and accelerate physical
and virtual host functions.

Modes of Operation

This page describes the modes of operation available for NVIDIA® BlueField®.

OpenSSL

This page provides instructions on using DOCA SHA for OpenSSL implementations.

Scalable Functions (SFs)

This page provides an overview and configuration of scalable functions (sub-functions, or
SFs) for NVIDIA® BlueField®.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPU+CLI
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Emulated+Devices
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Modes+of+Operation
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+with+OpenSSL
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

DOCA Documentation v2.7.0 40

TLS Offload

This page provides an overview and configuration steps of TLS hardware offloading via
kernel-TLS, using hardware capabilities of NVIDIA® BlueField®.

Troubleshooting

This page provides troubleshooting information for common issues and
misconfigurations encountered when using DOCA for NVIDIA® BlueField®.

Virtual Functions (VFs)

This page provides an overview and configuration of virtual functions for NVIDIA®
BlueField® and demonstrates a use case for running the DOCA applications over x86
host.

Archive

LTS Versions

This page provides pointers to the DOCA long term support (LTS) releases.

Documentation Archives

https://docs.nvidia.com//doca/sdk/NVIDIA+TLS+Offload+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Virtual+Functions+User+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+LTS+Versions

DOCA Documentation v2.7.0 41

This page provides pointers to archived documentation of previous DOCA software
releases.

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Documentation+Archives
mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 42

DOCA SDK v2.7.0
This section contains the following pages:

NVIDIA DOCA Overview

NVIDIA DOCA Release Notes

BlueField and DOCA User Types

NVIDIA DOCA EULA

NVIDIA DOCA Overview
This is an overview of the structure of NVIDIA DOCA documentation. It walks you through
DOCA's developer zone portal which contains all the information about the DOCA toolkit
from NVIDIA, providing all you need to develop NVIDIA® BlueField®-accelerated
applications and the drivers for the host.

Introduction

The NVIDIA DOCA™ Framework enables rapidly creating and managing applications and
services on top of the BlueField networking platform, leveraging industry-standard APIs.
With DOCA, developers can deliver breakthrough networking, security, and storage
performance by harnessing the power of NVIDIA's BlueField data-processing units (DPUs)
and SuperNICs. Installing DOCA on your host provides all the necessary drivers and tools
to manage NVIDIA® BlueField® and NVIDIA® ConnectX® devices.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Overview
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Release+Notes
https://docs.nvidia.com//doca/sdk/BlueField+and+DOCA+User+Types
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+EULA

DOCA Documentation v2.7.0 43

DOCA Framework includes the DOCA-Host package and the BlueField Software Bundle
for BlueField Arm:

BlueField Software Bundle (BF-Bundle) is the software package installed on the
BlueField Arm cores

DOCA-Host is the software package installed on the host server which includes
different DOCA installation profiles

The BlueField Software Bundle includes:

The DOCA runtime drivers and libs installed on top of the BlueField Platform

The OS installed on the BlueField Platform

The BlueField Platform Software (i.e., firmware and UEFI bootloader)

DOCA provides all the required libraries and drivers for hosts that include NVIDIA
Networking platforms (i.e., BlueField and ConnectX) with a dedicated DOCA-Host package
installation.

DOCA Documentation v2.7.0 44

DOCA contains a runtime and development environment, including libraries and drivers
for device management and programmability, for the host and as part of a BlueField
Platform Software.

DOCA Documentation v2.7.0 45

DOCA is the software infrastructure for BlueField's main hardware entities:

DOCA Documentation v2.7.0 46

Installation

Installation instructions for both host and BlueField image can be found in the NVIDIA
DOCA Installation Guide for Linux.

Whether DOCA has been installed on the host or on the BlueField networking platform,
one can find the different DOCA components under the /opt/mellanox/doca directory. These
include the traditional SDK-related components (libraries, header files, etc.) as well as the
DOCA samples, applications, tools and more, as described in this document.

API

The DOCA SDK is built around the different DOCA libraries designed to leverage the
capabilities of BlueField. Under the Programming Guide section, one can find a detailed
description of each DOCA library, its goals, and API. These guides document DOCA's API,
aiming to help develop DOCA-based programs.

The API References section holds the Doxygen-generated documentation of DOCA's
official API.

Programming Guides

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com//doca/sdk/DOCA+Programming+Guide
https://docs.nvidia.com//doca/sdk/API+References

DOCA Documentation v2.7.0 47

DOCA programming guides provide the full picture of DOCA libraries and their APIs. Each
guide includes an introduction, architecture, API overview, and other library-specific
information.

Each library's programming guide includes code snippets for achieving basic DOCA-based
tasks. It is recommended to review these samples while going over the programming
guide of the relevant DOCA library to learn about its API. The samples provide an
implementation example of a single feature of a given DOCA library.

For a more detailed reference of full DOCA-based programs that make use of multiple
DOCA libraries, please refer to the Reference Applications.

Applications

Applications are a higher-level reference code than the samples and demonstrate how a
full DOCA-based program can be built. In addition to the supplied source code and
compilation definitions, the applications are also shipped in their compiled binary form.
This is to allow users an out-of-the-box interaction with DOCA-based programs without
the hassle of a developer-oriented compilation process.

Many DOCA applications combine the functionality of more than one DOCA library and
offer an example implementation for common scenarios of interest to users such as
application recognition according to incoming/outgoing traffic, scanning files using the
hardware RegEx acceleration, and much more.

For more information about DOCA applications, refer to DOCA Applications.

Tools

Some of the DOCA libraries are shipped alongside helper tools for both runtime and
development. These tools are often an extension to the library's own API and bridge the
gap between the library's expected input format and the input available to the users.

For more information about DOCA tools, refer to DOCA Tools.

Services

DOCA services are containerized DOCA-based programs that provide an end-to-end
solution for a given use case. DOCA services are accessible as part of NVIDIA's container

https://docs.nvidia.com//doca/sdk/DOCA+Applications
https://docs.nvidia.com//doca/sdk/DOCA+Applications
https://docs.nvidia.com//doca/sdk/DOCA+Tools

DOCA Documentation v2.7.0 48

catalog (NGC) from which they can be easily deployed directly to BlueField, and
sometimes also to the host.

For more information about container-based deployment to the BlueField Platform, refer
to the NVIDIA BlueField Container Deployment Guide.

For more information about DOCA services, refer to the DOCA Services.

NVIDIA DOCA Release Notes
NVIDIA DOCA SDK release notes containing information on new features, software
interoperability, and known issues.

Introduction

DOCA 2.7.0 introduces NVIDIA® BlueField® networking platform enhancement for high-
performance and secure AI bare-metal cloud and DOCA-Host updates for supported
BlueField and NVIDIA® ConnectX® devices. With programmable congestion control (PCC)
and data-path acceleration (DPA). DOCA SDK provides an extensive framework for
developers.

New Features, Updates, and Enhancements

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

Note

BlueField-3 devices are not supported with MLNX_OFED as the host
driver and are required to use DOCA-Host.

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://docs.nvidia.com//doca/sdk/DOCA+Services
mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 49

Spectrum-X 1.0.1 with BlueField-3 SuperNIC

DOCA PCC (GA) – Added new telemetry information to the PCC application

DOCA Flow Enhancements, including DOCA Flow Tune Server and Pipeline
Visualization for debugging (alpha support)

DOCA Flow switch unified model supported

OVS-DOCA – Unified representor for multiple ports for better resource utilization
with higher scale; OVS package rename for smoother installation

Increased support for virtio-net VF devices on BlueField-3 networking platforms to
2K

DOCA HBN Service 2.2.0 enhancements, including GA-level support for Local VRF
Route Leaking, EVPN Downstream VNI (DVNI) for symmetric EVPN Route Leaking,
Network-to-Network Hairpin routing support on BlueField uplinks

SNAP Encryption at Rest with Zero-Copy: Available with BlueField-3 with SNAP 4.4.0

DOCA Firefly Service enhancements, including new Telco profile, ptp4l update, new
Firefly servo module

Traffic Crypto - DOCA IPsec GA and merge into DOCA Flow, New Security protocol -
PSP

Note

DOCA Flow switch has now unified all the representor ports to
the switch manager port for traffic management. User should
only manage the pipes on the switch manager port.

Applications must not call DPDK
rte_eth_dev_start/configure/stop for VF/SF representors
anymore. User should acquire packets (e.g., with DPDK but
calling rte_eth_rx/tx_burst()) only with switch manager port.

DOCA Documentation v2.7.0 50

Alpha support for new DOCA Unified Resource and Offload Management (UROM)
library

Alpha support for DOCA Device Emulation (DevEmu) library – Emulate your own
standard/non-standard devices on BlueField

DOCA GPUNetIO new API to support RDMA

DOCA Comm Channel (Comch) API update, Extend Comch to Arm DPA, host DPA.

DOCA Remote Direct Memory Operation (RDMO) reference application

Alpha support for DOCA Management Service (DMS) – simplifying BlueField post-
boot provisioning and configuration using standard configuration interfaces
(API/CLI)

DOCA NVQual – H20-BFx support, power stressors improvements

DOCA NVCert – BlueField-3 SuperNIC support, SPC-X support using multi-DPU (and
ConnectX) and GPU direct, RDMA/TCP-OVS/IPSec and VXLAN workloads

Updated the default operation mode of SuperNICs to NIC mode (from DPU mode).
This is relevant to the following SKUs:

900-9D3B4-00CC-EA0

900-9D3B4-00SC-EA0

900-9D3B4-00CV-EA0

900-9D3B4-00SV-EA0

900-9D3B4-00EN-EA0

Note

Comch API is being updated, the old version is in deprecation
process, DOCA 2.8 will be the last version to support it.

DOCA Documentation v2.7.0 51

900-9D3B4-00PN-EA0

900-9D3D4-00EN-HA0

900-9D3D4-00NN-HA0

DOCA packaging – new BlueField firmware bundle package (bf-fwbundle-

<version>.prod.bfb), a smaller image for Day 2 upgrades, without the OS and DOCA
runtime. Includes ATF, UEFI, nic-fw, bmc-fw, and eROT only.

BlueField-3 Firmware Components Upgrade – Upgrade all BlueField-3 firmware
components in one upgrade flow through either bfb-install from the host (via RShim),
or DPU BMC Redfish transfer BFB image

Update BlueField NIC-Firmware automatically as part of .bfb image upgrade

Improved BlueField BMC robustness –

Report LLDP for L2 discovery via Redfish

Improved BlueField DPU debuggability

Compilation on top of DOCA's SDK

DOCA 2.7 – installation now includes additional pkg-config (.pc) definitions per
DOCA SDK library on top of the general doca.pc file. This is part of a deprecation
process for doca.pc and a focus on modularity of DOCA's SDK.

Please refer to DOCA SDK reference samples and applications for an example
of using the per library .pc files.

Note

When upgrading one of these SuperNICs to 2.7.0, if its
mode of operation was changed at any point in the past,
then the last configured mode of operation will remain
unchanged. Otherwise, the SuperNIC will rise in NIC
operation mode.

DOCA Documentation v2.7.0 52

Added support for new BlueField reset and reboot procedures for loading new
firmware and firmware configuration changes which replace previous need for
server power cycle

Installation Notes

Note

Starting with DOCA 2.8, the general doca.pc file will be
removed from the release and only files per DOCA SDK
library will remain.

Note

The format of image filenames for the BF-Bundle and DOCA-Host
have been updated to the following template:

BF-Bundle image file format – bf-bundle-<doca_ver.LTS#>-<build#>
[BUILD-LABEL]-<yy.mm>-<OS_distro>-<#os_ver>[OS-LABEL]-
<unsigned/dev/prod>.<bfb/iso>

DOCA-Host image file format – doca-host-<doca_ver.LTS#>-<build#>
[BUILD-LABEL]-<yy.mm>-<OS_distro>-<#os_ver>[OS-LABEL]-<arch>.
<rpm/deb/iso>

Where:

<doca_ver.LTS#>-<build#> – the DOCA version with the NVIDIA build
number in a x.y.z-abcd format (e.g., 2.7.0-1456). If it is an LTS
release, it indicates which update number it is.

<yy.mm> – the year and month the image was created/released
(e.g., 24.04)

<OS_distro>-<#os_ver> – the name and version of the operating
system (e.g., ubuntu-22.04)

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Reset+and+Reboot+Procedures

DOCA Documentation v2.7.0 53

Refer to the NVIDIA DOCA Installation Guide for Linux for information on:

Setting up DOCA SDK on your BlueField networking platform or SmartNIC
Supported BlueField platforms

Embedded DOCA Libraries

Component Version

doca-apps 2.7.0

doca-grpc 2.7.0

<arch>.<rpm/deb/iso> – which processor architecture is supported
and how the image is packaged (e.g., x86.rpm or x86.deb)

<unsigned/dev/prod>.<bfb/iso> – security signature of the image (no
signature, development, production) and how the image is
packaged (e.g., prod.rpm or dev.rpm)

Note

By default, installing DOCA profiles with standard Linux tools (yum,
apt) installs both doca-runtime and doca-devel (previously doca-sdk).

doca-runtime includes all the components, libs, drivers, and tools
used in the production environment by the DOCA admin

doca-devel includes all the components, libs, drivers, and tools
used for development, including reference applications,
compilers, etc.

Starting with DOCA 2.8, the default installation of BlueField-Bundle
and DOCA-Host profiles will only include DOCA runtime. doca-devel can
be installed manually as needed.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 54

Component Version

doca-libs 2.7.0

ucx 1.17.0-1.2404066

gpunetio 2.7.0

Embedded DOCA Firmware Components

Compone
nt

Version Description

ATF
v2.2(release):
4.7.0-25-
g5569834

Arm-trusted firmware is a reference implementation of
secure world software for Arm architectures

UEFI
4.7.0-42-
g13081ae

UEFI is a specification that defines the architecture of the
platform firmware used for booting and its interface for
interaction with the operating system

BlueField-3
NIC
firmware

32.41.1000
Firmware is used to run user programs on the BlueField-3
which allow hardware to run

BlueField-2
NIC
firmware

24.41.1000
Firmware is used to run user programs on the BlueField-2
which allow hardware to run

BMC
firmware

24.04 BlueField BMC firmware

BlueField-3
eROT
(Glacier)

cec_ota_BMG
P-04.0f

BlueField-3 eROT firmware

BlueField-2
eROT (CEC)

00.02.0182.0
000.n02

BlueField-2 eROT firmware

https://docs.nvidia.com/networking/display/bluefielddpuosv470
https://docs.nvidia.com/networking/display/bluefielddpuosv470
https://docs.nvidia.com/networking/display/bluefielddpuosv470
https://docs.nvidia.com/networking/display/bluefielddpuosv470
https://docs.nvidia.com/networking/display/bluefielddpuosv470
https://docs.nvidia.com/networking/display/BlueField3Firmwarev32411000
https://docs.nvidia.com/networking/display/BlueField2Firmwarev24411000
https://docs.nvidia.com/networking/display/bluefieldbmcv2404

DOCA Documentation v2.7.0 55

Embedded DOCA Drivers

Compo
nent

Versi
on

Description

collectx
-clxapi

1.17.
0-1

A library which exposes the CollectX API, which allows any 3rd party to
easily use CollectX functionality in their own programs

doca-
base
(MLNX_
OFED)

24.04
-
0.6.6.
0

NVIDIA® MLNX_OFED is a single software stack that operates across all
NVIDIA network adapter solutions

dpacc
1.7.0-
1

DPACC is a high-level compiler for the DPA processor which compiles
code targeted for the data-path accelerator (DPA) processor into a
device executable and generates a DPA program

dpcp

1.1.4
8-
1.240
4066

DPCP provides a unified flexible interface for programming IB devices
using DevX

flexio
24.04
.2148
-0

FlexIO SDK exposes an API for managing the device and executing
native code over the DPA processor

ibutils 2.1.1
ibdiagnet scans the fabric using directed route packets and extracts all
the available information regarding its connectivity and devices.

libvma
9.8.6
0-1

The NVIDIA® VMA library accelerates latency-sensitive and
throughput-demanding TCP and UDP socket-based applications by
offloading traffic from the user-space directly to the NIC, without going
through the kernel and the standard IP stack (kernel-bypass)

libxlio

3.30.
5-
1.240
4066

The NVIDIA® XLIO software library boosts the performance of TCP/IP
applications based on NGINX (CDN, DoH, etc.) and storage solutions as
part of the SPDK

https://docs.nvidia.com/networking/display/MLNXOFEDv24010331/Release+Notes
https://docs.nvidia.com/networking/display/MLNXOFEDv24010331/Release+Notes
https://docs.nvidia.com/networking/display/MLNXOFEDv24010331/Release+Notes
https://docs.nvidia.com/networking/display/MLNXOFEDv24010331/Release+Notes

DOCA Documentation v2.7.0 56

Compo
nent

Versi
on

Description

MFT
4.28.
0-92

NVIDIA® MFT is a set of firmware management and debug tools for
NVIDIA devices

mlnx-
dpdk

22.11
.0-
2404

Equivalent to DPDK upstream. The versioning of MLNX_DPDK indicates
which upstream DPDK it is compatible with it (e.g., 22.11 is compatible
with upstream DPDK 2022.11).

mlnx-
libsnap

1.6.0-
1

Libsnap is a common library designed to assist common tasks for
applications wishing to interact with emulated hardware over BlueField
and take the most advantage from hardware capabilities

mlnx-
snap

3.8.0-
3

BlueField SNAP for NVMe and virtio-blk enables hardware-accelerated
virtualization of local storage

mlx-
regex

1.2-
ubun
tu1

RegEx is a library that provides RegEx pattern matching to DOCA
applications using the regular expression processor (RXP) or software-
based engines when required

OpenS
M

5.19.
0

InfiniBand Subnet Manager and Subnet Administrator based on
OpenSM

Riverm
ax

1.50.
7

NVIDIA® Rivermax® is an optimized networking SDK for media and
data streaming applications

RShim
2.0.2
7

The user-space driver to access the BlueField SoC via the RShim
interface, providing ways to push boot stream, debug the target, or
login via the virtual console or network interface

SHARP 3.7.0
Improves the performance of MPI and Machine Learning collective
operation by offloading from CPUs and GPUs to the network and
eliminating the need to send data multiple times between endpoints

SPDK
23.01
.5-20

SPDK provides a set of tools and libraries for writing high performance,
scalable, user-mode storage applications

Virtio-
net-
controll
er

1.9.1
7-1

Virtio-net-controller is a systemd service running on BlueField, with a
user interface front-end to communicate with the background service

VMA 9.8.6
0-1

Accelerates latency-sensitive and throughput-demanding TCP and UDP
socket-based applications by offloading traffic from the user-space

https://docs.nvidia.com/networking/display/MFTv4280/Release+Notes
https://docs.nvidia.com/networking/display/MFTv4280/Release+Notes
https://docs.nvidia.com/networking/display/mlnxsmrnv5190
https://docs.nvidia.com/networking/display/mlnxsmrnv5190
https://docs.nvidia.com/networking/display/SHARPv370
https://docs.nvidia.com/networking/display/VMAv9860
https://docs.nvidia.com/networking/display/VMAv9860

DOCA Documentation v2.7.0 57

Compo
nent

Versi
on

Description

directly to the network interface card (NIC) or Host Channel Adapter
(HCA)

XLIO
3.30.
5

Boosts the performance of TCP/IP applications based on NGINX (CDN,
DoH, etc.) and storage solutions as part of the SPDK

DOCA Packages

Device Component
Ver
sion

Description

Host

DOCA Devel
2.7.
0

Software development kit package and
tools for developing host software

DOCA Runtime
2.7.
0

Runtime libraries and tools required to
run DOCA-based software applications on
host

DOCA Extra
2.7.
0

Contains helper scripts (doca-info, doca-
kernel-support)

DOCA OFED
2.7.
0

Software stack which operates across all
NVIDIA network adapter solutions

Arm emulated (QEMU)
development
container

4.7.
0

Linux-based BlueField Arm emulated
container for developers

Target
BlueField
DPU (Arm)

BlueField BSP
4.7.
0

BlueField image and firmware

DOCA SDK
2.7.
0

Software development kit packages and
tools for developing Arm software

DOCA Runtime
2.7.
0

Runtime libraries and tools required to
run DOCA-based software applications on
Arm

https://docs.nvidia.com/networking/display/XLIOv3305
https://docs.nvidia.com/networking/display/XLIOv3305

DOCA Documentation v2.7.0 58

Supported Host OS per DOCA-Host Installation Profile

The default operating system included with the BlueField Bundle (for DPU and SuperNIC)
is Ubuntu 22.04.

The supported operating systems on the host machine per DOCA-Host installation profile
are the following:

OS
OS
Version

Default Kernel
Version

Arch
doca-
all

doca-
networking

doca-
ofed

Alinux 3.2 5.10.134-13.al8.x86_64 x86

Anolis 8.6 5.10.134+ aarch

Note

Starting with DOCA version 2.6.0 OSs with kernel versions lower than
4.18 will no longer be supported. DOCA 2.5.0 is the last version to
support OS with kernel lower than 4.18.

Note

Only the following generic kernel versions are supported for DOCA
local repo package for host installation.

DOCA Documentation v2.7.0 59

64

x86

BCLinux
21.10SP
2

4.19.90-
2107.6.0.0098.oe1.bclin
ux.aarch64

aarch
64

4.19.90-
2107.6.0.0100.oe1.bclin
ux.x86_64

x86

CTYunOS

2.0

4.19.90-
2102.2.0.0062.ctl2.aarc
h64

aarch
64

4.19.90-
2102.2.0.0062.ctl2.x86_
64

x86

3.0
(23.01)

5.10.0-
136.12.0.86.ctl3.aarch6
4

aarch
64

5.10.0-
136.12.0.86.ctl3.x86_64

x86

Debian

10.13
4.19.0-21-arm64

aarch
64

4.19.0-21-amd64 x86

10.8
4.19.0-14-arm64

aarch
64

4.19.0-14-amd64 x86

10.9 4.19.0-16-amd64 x86

11.3
5.10.0-13-arm64

aarch
64

5.10.0-13-amd64 x86

12.1
6.1.0-10-arm64

aarch
64

6.1.0-10-amd64 x86

DOCA Documentation v2.7.0 60

EulerOS

2.0sp11

5.10.0-
60.18.0.50.h323.eulero
sv2r11.aarch64

aarch
64

5.10.0-
60.18.0.50.h323.eulero
sv2r11.x86_64

x86

2.0sp12

5.10.0-
136.12.0.86.h1032.eule
rosv2r12.aarch64

aarch
64

5.10.0-
136.12.0.86.h1032.eule
rosv2r12.x86_64

x86

Kylin

10sp2

4.19.90-
24.4.v2101.ky10.aarch6
4

aarch
64

4.19.90-
24.4.v2101.ky10.x86_64

x86

10sp3

4.19.90-
52.22.v2207.ky10.aarch
64

aarch
64

4.19.90-
52.22.v2207.ky10.x86_6
4

x86

Mariner 2.0
5.15.118.1-
1.cm2.x86_64

x86

Oracle
Linux

7.9
5.4.17-
2011.6.2.el7uek.x86_64

x86

8.4
5.4.17-
2102.201.3.el8uek.x86_
64

x86

8.6
5.4.17-
2136.307.3.1.el8uek.x8
6_64

x86

DOCA Documentation v2.7.0 61

8.7
5.15.0-
3.60.5.1.el8uek.x86_64

x86

8.8
5.15.0-
101.103.2.1.el8uek.x86
_64

x86

9.1
5.15.0-
3.60.5.1.el9uek.x86_64

x86

9.2
5.15.0-
101.103.2.1.el9uek.x86
_64

x86

openEuler

20.03sp3

4.19.90-
2112.8.0.0131.oe1.aarc
h64

aarch
64

4.19.90-
2112.8.0.0131.oe1.x86_
64

x86

22.03

5.10.0-
60.18.0.50.oe2203.aarc
h64

aarch
64

5.10.0-
60.18.0.50.oe2203.x86_
64

x86

RHEL/Cent
OS 8.0

4.18.0-80.el8.aarch64
aarch
64

4.18.0-80.el8.x86_64 x86

8.1
4.18.0-147.el8.aarch64

aarch
64

4.18.0-147.el8.x86_64 x86

8.2
4.18.0-193.el8.aarch64

aarch
64

4.18.0-193.el8.x86_64 x86

8.3
4.18.0-240.el8.aarch64

aarch
64

DOCA Documentation v2.7.0 62

4.18.0-240.el8.x86_64 x86

8.4
4.18.0-305.el8.aarch64

aarch
64

4.18.0-305.el8.x86_64 x86

RHEL/Roc
ky 8.5

4.18.0-348.el8.aarch64
aarch
64

4.18.0-348.el8.x86_64 x86

8.6

4.18.0-
372.41.1.el8_6.aarch64

aarch
64

4.18.0-
372.41.1.el8_6.x86_64

x86

8.7

4.18.0-
425.14.1.el8_7.aarch64

aarch
64

4.18.0-
425.14.1.el8_7.x86_64

x86

8.8

4.18.0-
477.10.1.el8_8.aarch64

aarch
64

4.18.0-
477.10.1.el8_8.x86_64

x86

8.9

4.18.0-
513.5.1.el8_9.aarch64

aarch
64

4.18.0-
513.5.1.el8_9.x86_64

x86

9.0

5.14.0-
70.46.1.el9_0.aarch64

aarch
64

5.14.0-
70.46.1.el9_0.x86_64

x86

9.1

5.14.0-
162.19.1.el9_1.aarch64

aarch
64

5.14.0-
162.19.1.el9_1.x86_64

x86

DOCA Documentation v2.7.0 63

9.2

5.14.0-
284.11.1.el9_2.aarch64

aarch
64

5.14.0-
284.11.1.el9_2.x86_64

x86

9.3

5.14.0-
362.8.1.el9_3.aarch64

aarch
64

5.14.0-
362.8.1.el9_3.x86_64

x86

RHEL/Roc
ky

9.4

5.14.0-
427.13.1.el9_4.aarch64

aarch
64

5.14.0-
427.13.1.el9_4.x86_64

x86

SLES

15sp2 5.3.18-22-default

aarch
64

x86

15sp3 5.3.18-57-default

aarch
64

x86

15sp4
5.14.21-150400.22-
default

aarch
64

x86

15sp5
5.14.21-150500.53-
default

aarch
64

x86

TKLinux 3.3
5.4.119-19.0009.39

aarch
64

5.4.119-19.0009.39 x86

Ubuntu

20.04 5.4.0-26-generic

aarch
64

x86

22.04 5.15.0-25-generic aarch
64

DOCA Documentation v2.7.0 64

x86

24.04 6.8.0-31-generic

aarch
64

x86

UOS

20.1060a

5.10.0-
46.uelc20.aarch64

aarch
64

5.10.0-
46.uelc20.x86_64

x86

20.1060e

5.10.0-
46.uel20.aarch64

aarch
64

5.10.0-46.uel20.x86_64 x86

BFB Version Upgrade/Downgrade

The following table provides a matrix for the supported upgrade/downgrade of BFBs
across different versions.

Versio
n

Upgrade to Downgrade to

1.0.0 1.1.0; 1.1.1 N/A

1.1.0 1.1.1; 1.2.0 1.0.0

1.1.1 1.2.0; 1.3.0 1.1.0; 1.0.0

1.2.0 1.3.0; 1.4.0 1.1.1; 1.1.0

1.3.0 1.4.0; 1.5.0 1.2.0; 1.1.1

1.4.0 1.5.0; 2.0.2 1.3.0; 1.2.0

1.5.0
2.0.2; 2.2.0; 1.5.1; 1.5.2;
1.5.3

1.4.0; 1.3.0

DOCA Documentation v2.7.0 65

Versio
n

Upgrade to Downgrade to

1.5.1 1.5.2 1.5.0

1.5.2 1.5.3 1.5.1; 1.5.0

1.5.3 N/A 1.5.2; 1.5.0

2.0.2 2.2.0; 2.5.0 1.5.0; 1.4.0

2.2.0 2.5.0; 2.6.0 N/A

2.2.1 2.5.0; 2.6.0 N/A

2.5.0 2.5.1; 2.6.0 2.2.1 for BlueField-3; 2.2.0 for BlueField-2

2.5.1 N/A 2.5.0

2.6.0 2.7.0 2.5.0; 2.2.1 for BlueField-3; 2.2.0 for BlueField-2

2.7.0 N/A
2.6.0; 2.5.0; 2.2.1 for BlueField-3; 2.2.0 for
BlueField-2

Supported DOCA Version Upgrade Using Standard Linux
Tools on BlueField

Version Upgrade to

2.5.0 2.5.1; 2.6.0

2.5.1 N/A

2.6.0 2.7.0

Technical Support

Customers who purchased NVIDIA products directly from NVIDIA are invited to contact us
through the following methods:

E-mail: enterprisesupport@nvidia.com

https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=Enterprisesupport@nvidia.com

DOCA Documentation v2.7.0 66

Enterprise Support page: https://www.nvidia.com/en-us/support/enterprise

Customers who purchased NVIDIA M-1 Global Support Services, please see your contract
for details regarding Technical Support.

Customers who purchased NVIDIA products through an NVIDIA-approved reseller should
first seek assistance through their reseller.

Known Issues

The following table lists the known issues and limitations for this release of DOCA SDK.

Ref
ere
nce

Description

38
82
79
4

Description: When working with doca_pcc_np context, the return value from the API
doca_pcc_get_max_num_threads() is incorrect. The function has an output parameter
that indicates the maximum number of threads allowed for a doca_pcc_np context.
The correct value that the library expects is 16 instead of the returned 64.

Workaround: N/A

Keyword: PCC; threads

Reported in version: 2.7.0

38
86
67
4

Description: Installing doca-all and other DOCA metapackages does not install the
mlnx-nvme driver.

Workaround: mlnx-nvme is only needed for NVMe-over-RDMA remote storage
support. If you wish to install it, add the mlnx-nvme package to the install command.

On RHEL:

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://www.nvidia.com/en-us/support/enterprise/
mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 67

Ref
ere
nce

Description

On Ubuntu:

Keyword: NVMe; DOCA profile

Reported in version: 2.7.0

38
85
93
0

Description: When installing DOCA-Host on a system using NVMe storage (typically
local NVMe disk), and the script doca-kernel-support is used to rebuild and install
kernel modules, unloading the mlx5 drivers is only possible after also unmounting
the NVMe storage, which would typically necessitate a reboot.

Workaround: N/A

Keyword: NVMe; doca-kernel-support; DOCA for host

Reported in version: 2.7.0

38
86
31
5

Description: To reset or shut down the BlueField Arm, it is mandatory to specify
the --sync 0 argument with reset level 1 and reset type 3 or 4. For example:

Workaround: N/A

Keyword: Arm; shutdown

Reported in version: 2.7.0

38
37
25
5

Description: When running Arm shutdown from the host OS it is expected to get
the message -E- Failed to send Register MRSI. This message should be ignored.

Workaround: Wait 2 more minutes before rebooting the host. Before proceeding
with host OS reboot, it is recommended to query the operational state of the
BlueField Arm cores from the BlueField BMC to verify that shutdown state has
been reached. Run the following command:

Expected output is "06".

apt install doca-all mlnx-nvme-modules

dnf install doca-all-kmod-mlnx-nvme

mlxfwreset -d <device> -l 1 -t 4 --sync 0 r

ipmitool -C 17 -I lanplus -H <bmc_ip> -U root -P <password> raw 0x32 0xA3

DOCA Documentation v2.7.0 68

Ref
ere
nce

Description

Keyword: Host OS; reboot; error

Reported in version: 2.7.0

38
81
94
1

Description: When working with RShim 2.0.28, PCIe host crash may rarely occur at
the beginning of BFB push after the Arm reset.

Workaround: Downgrade to RShim 2.0.27 or upgrade to RShim 2.0.29.

Keyword: RShim; driver

Reported in version: 2.7.0

38
44
70
5

Description: In OpenEuler 20.03, the Linux Kernel version 4.19.90 is affected by an
issue that impacts the discard/trim functionality for the BlueField eMMC device
which may cause degraded performance of the BlueField eMMC over time.

Workaround: Upgrade to Linux Kernel version 5.10 or later.

Keyword: eMMC discard; trim functionality

Reported in version: 2.7.0

38
77
72
5

Description: During BFB installation in NIC mode on BlueField-3, too much
information is added into RShim log which fills it, causing the Linux installation
progress log to not appear in the RShim log.

Workaround: Monitor the BlueField-3 Arm's UART console to check whether BFB
installation has completed or not for NIC mode.

Keyword: NIC mode; BFB install

Reported in version: 2.7.0

38
55

Description: Trying to jump from a steering level in the hardware to a lower level
using software steering is not supported on rdma-core lower than 48.x.

echo "DISPLAY_LEVEL 2" > /dev/rshim0/misc
cat /dev/rshim0/misc

[13:58:39] INFO: Installation finished
...
[14:01:53] INFO: Rebooting...

DOCA Documentation v2.7.0 69

Ref
ere
nce

Description

70
2

Workaround: N/A

Keyword: RDMA; SWS

Reported in version: 2.7.0

38
55
48
5

Description: When enabling the PCI_SWITCH_EMULATION_ENABLE NVconfig, the mlx
devices, and potentially the RShim devices disappear. Also, looking at the kernel
logs using dmesg shows the following messages:

Workaround: N/A

Keyword: NVconfig; RShim; dmsg

Reported in version: 2.7.0

38
31
23
0

Description: In OpenEuler 20.03, the Linux Kernel version 4.19.90 is affected by an
issue that impacts the discard/trim functionality for BlueField eMMC device which
may cause degraded performance of BlueField eMMC over time.

Workaround: Upgrade to Linux Kernel version 5.10 or later.

Keyword: eMMC discard; trim functionality

Reported in version: 2.7.0

37
43
87
9

Description: mlxfwreset could timeout on servers where the RShim driver is running
and INTx is not supported. The following error message is printed: BF reset flow

encountered a failure due to a reset state error of negotiation timeout.

Workaround: Set PCIE_HAS_VFIO=0 and PCIE_HAS_UIO=0 in /etc/rshim.conf and restart the
RShim driver. Then re-run the mlxfwreset command.
If host Linux kernel lockdown is enabled, then manually unbind the RShim driver
before mlxfwreset and bind it back after mlxfwreset:

pci 0000:29:00.0: BAR 0: no space for [mem size 0x0200 0000 64bit pref]
pci 0000:29:00.0: BAR 2: no space for [mem size 0x0080 0000 64bit pref]
...

echo "DROP_MODE 1" > /dev/rshim0/misc
mlxfwreset <arguments>
echo "DROP_MODE 0" > /dev/rshim0/misc

DOCA Documentation v2.7.0 70

Ref
ere
nce

Description

Keyword: Timeout; mlxfwreset; INTx

Reported in version: 2.7.0

38
69
63
9

Description: Users c annot use --job-output-buffer-size 0 when using remote output
memory (--use-remote-output-buffers).

Workaround:

Keyword: DOCA Bench

Reported in version: 2.7.0

38
72
65
4

Description: And i ssue occurs when submitting tasks with DOCA SHA with the
following error.

Workaround: Reattempt the submit u sing a different --data-provider-job-count value.
This workaround may also fail.

Keyword: DOCA Bench

Reported in version: 2.7.0

38
59
82
3

Description: Multi-threaded tests using DOCA Comch may hang or emit an infinite
amount of log messages. Single-threaded tests are less likely to cause this issue.

Workaround: N/A

Keyword: DOCA Bench; DOCA Comch

Reported in version: 2.7.0

38
57
09
5

Description: Send tasks on DOCA RDMA may fail.

Workaround: N/A

Keyword: DOCA Bench; DOCA RDMA; send

Reported in version: 2.7.0

38
57

Description: DOCA RDMA tests cannot be launched from BlueField side.

Workaround: N/A

[DOCA][ERR][doca_pe.cpp:177][task_submit] Task 0xaaaaf4865bf0: Failed to
submit task: task is already submitted

DOCA Documentation v2.7.0 71

Ref
ere
nce

Description

09
7

Keyword: DOCA Bench; DOCA RDMA

Reported in version: 2.7.0

38
49
70
1

Description: DOCA Comch tests can not be launched from BlueField side .

Workaround: N/A

Keyword: DOCA Bench; DOCA Comch

Reported in version: 2.7.0

38
40
23
0

Description: Order of cores specified in --core-list is not respected. Cores are picked
in ascending order instead.

Workaround: N/A

Keyword: DOCA Bench

Reported in version: 2.7.0

36
65
07
0

Description: Virtio-net controller fails to load if DPA_AUTHENTICATION is enabled.

Workaround: N/A

Keyword: Virtio-net; DPA

Reported in version: 2.5.0

36
78
06
9

Description: If using BlueField with NVMe and mmcbld and configured to boot
from mmcblk, users must create bf.cfg file with device=/dev/mmcblk0, then install the
*.bfb as normal.

Workaround: N/A

Keyword: NVMe

Reported in version: 2.5.0

36
80
53
8

Description: When using strongSwan or OVS-IPsec as explained in the NVIDIA
BlueField DPU BSP, the IPSec Rx data path is not offloaded to hardware and occurs
in software running on the Arm cores. As a result, bandwidth performance is
substantially low.

Workaround: N/A

Keyword: IPsec

https://docs.nvidia.com/networking/display/bluefielddpuos/ipsec+functionality
https://docs.nvidia.com/networking/display/bluefielddpuos/ipsec+functionality

DOCA Documentation v2.7.0 72

Ref
ere
nce

Description

Reported in version: 2.5.0

N/
A

Description: Execution unit partitions are still not implemented and would be
added in a future release.

Workaround: N/A

Keyword: EU tool

Reported in version: 2.5.0

36
66
16
0

Description: Installing BFB using bfb-install when mlxconfig PF_TOTAL_SF>1700, triggers
server reboot immediately.

Workaround: Change PF_TOTAL_SF to 0, perform a graceful shutdown, power cycle,
then installing BFB.

Keyword: SF; PF_TOTAL_SF; BFB installation

Reported in version: 2.2.1

35
94
83
6

Description: When enabling Flex IO SDK tracer at high rates, a slow-down in
processing may occur and/or some traces may be lost.

Workaround: Keep tracing limited to ~1M traces per second to avoid a significant
processing slow-down. Use tracer for debug purposes and consider disabling it by
default.

Keyword: Tracer FlexIO

Reported in version: 2.2.1

35
92
08
0

Description: When using UEK8 on the host in DPU mode, creating a VF on the host
consumes about 100MB memory on BlueField

Workaround: N/A

Keyword: UEK; VF

Reported in version: 2.2.1

35
66
04
2

Description: Virtio hotplug is not supported in GPU-HOST mode on the NVIDIA
Converged Accelerator.

Workaround: N/A

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-HowtoPerformGracefulShutdown

DOCA Documentation v2.7.0 73

Ref
ere
nce

Description

Keyword: Virtio; Converged Accelerator

Reported in version: 2.2.0

35
46
47
4

Description: PXE boot over ConnectX interface might not work due to an invalid
MAC address in the UEFI boot entry.

Workaround: On BlueField, create /etc/bf.cfg file with the relevant PXE boot entries,
then run the command bfcfg.

Keyword: PXE; boot; MAC

Reported in version: 2.2.0

35
61
72
3

Description: Running mlxfwreset sync 1 on NVIDIA Converged Accelerators may be
reported as supported although it is not. Executing the reset will fail.

Workaround: N/A

Keywords: mlxfwreset

Reported in version: 2.2.0

35
46
20
2

Description: After rebooting a BlueField-3 DPU running Rocky Linux 8.6 BFB, the
kernel log shows the following error:

This message indicates that the Ethernet driver will function normally in all
aspects, except that PHY polling is enabled.

Workaround: N/A

Keywords: Linux; PHY; kernel

Reported in version: 2.2.0

33
06
48
9

Description: When performing longevity tests (e.g., mlxfwreset, DPU reboot,
burning of new BFBs), a host running an Intel CPU may observer errors related to
"CPU 0: Machine Check Exception".

Workaround: Add intel_idle.max_cstate=1 entry to the kernel command line.

Keywords: Longevity; mlxfwreset; DPU reboot

[3.787135] mlxbf_gige MLNXBF17:00: Error getting PHY irq. Use polling
instead

DOCA Documentation v2.7.0 74

Ref
ere
nce

Description

Reported in version: 2.2.0

35
29
29
7

Description: Enhanced NIC mode is not supported on BlueField-2.

Workaround: N/A

Keywords: Operation; mode

Reported in version: 2.2.0

35
38
48
6

Description: When removing LAG configuration from BlueField, a kernel warning
for uverbs_destroy_ufile_hw is observed if virtio-net-controller is still running.

Workaround: Stop virtio-net-controller service before cleaning up bond
configuration.

Keywords: Virtio-net; LAG

Reported in version: 2.2.0

35
34
21
9

Description: On BlueField-3 devices, from DOCA 2.2.0 to 32.37.1306 (or lower), the
host crashes when executing partial Arm reset (e.g., Arm reboot; BFB push;
mlxfwreset).

Workaround: Before downgrading the firmware:

1. Run:

2. Reboot Arm.

Keyword: BlueField-3; downgrade

Reported in version: 2.2.0

34
62
63
0

When trying to perform a PXE installation when UEFI Secure Boot is enabled, the
following error messages may be observed:

Workaround: Download a Grub EFI binary from the Ubuntu website. For further
information on Ubuntu UEFI Secure Boot PXE Boot, please visit Ubuntu's official

echo 0 > /sys/bus/platform/drivers/mlxbf-bootctl/large_icm

error: shim_lock protocol not found.
error: you need to load the kernel first.

https://docs.nvidia.com/http://ports.ubuntu.com/ubuntu-ports/dists/focal/main/uefi/grub2-arm64/current/grubnetaa64.efi.signed

DOCA Documentation v2.7.0 75

Ref
ere
nce

Description

website.

Keyword: PXE; UEFI Secure Boot

Reported in version: 2.0.2

34
48
84
1

Description: While running CentOS 8.2, switchdev Ethernet BlueField runs in
"shared" RDMA net namespace mode instead of "exclusive".

Workaround: Use ib_core module parameter netns_mode=0. For example:

Keyword: RDMA; isolation; Net NS

Reported in version: 2.0.2

27
06
80
3

Description: When an NVMe controller, SoC management controller, and DMA
controller are configured, the maximum number of VFs is limited to 124.

Workaround: N/A

Keyword: VF; limitation

Reported in version: 2.0.2

32
73
43
5

Description: Changing the mode of operation between NIC and DPU modes results
in different capabilities for the host driver which might cause unexpected
behavior.

Workaround: Reload the host driver or reboot the host.

Keyword: Modes of operation; driver

Reported in version: 2.0.2

32
64
74
9

Description: In Rocky and CentOS 8.2 inbox-kernel BFBs, RegEx requires the
following extra huge page configuration for it to function properly:

If these commands have executed successfully you should see active (running) in the
last line of the output.

echo "options ib_core netns_mode=0" >> /etc/modprobe.d/mlnx-bf.conf

sudo hugeadm --pool-pages-min DEFAULT:2048M
sudo systemctl start mlx-regex.service
systemctl status mlx-regex.service

https://docs.nvidia.com/http://ports.ubuntu.com/ubuntu-ports/dists/focal/main/uefi/grub2-arm64/current/grubnetaa64.efi.signed

DOCA Documentation v2.7.0 76

Ref
ere
nce

Description

Workaround: N/A

Keyword: RegEx; hugepages

Reported in version: 1.5.1

32
40
15
3

Description: DOCA kernel support only works on a non-default kernel.

Workaround: N/A

Keyword: Kernel

Reported in version: 1.5.0

32
17
62
7

Description: The doca_devinfo_rep_list_create API returns success on the host instead of
Operation not supported.

Workaround: N/A

Keyword: DOCA core; InfiniBand

Reported in version: 1.5.0

BlueField and DOCA User Types
This guide provides a quick introduction to the NVIDIA® BlueField® networking platform,
its DOCA software components, and BlueField user types.

Introduction

The BlueField family of networking platforms includes data processing units (DPUs) and
SuperNICs, and is optimized for traditional enterprise, high-performance computing
(HPC), and modern cloud workloads, delivering a broad set of accelerated software-
defined networking, storage, security, and management services. BlueField enables
organizations to transform their IT infrastructures into state-of-the-art data centers that
are accelerated, fully programmable, and armed with zero-trust security to prevent data
breaches and cyber-attacks.

NVIDIA DOCA™ brings together a wide range of powerful APIs, libraries, and frameworks
for programming and acceleration of the modern data center infrastructure. Like

DOCA Documentation v2.7.0 77

NVIDIA® CUDA® for GPUs, DOCA is a consistent and essential resource across all existing
and future generations of BlueField products.

DOCA Components

DOCA software consists of a development and a runtime environment.

DOCA-Devel provides industry-standard open APIs and frameworks, including Data
Plane Development Kit (DPDK) and P4 for networking and security, and the Storage
Performance Development Kit (SPDK) for storage. The frameworks simplify
application offload with integrated NVIDIA acceleration packages. The Devel
environment supports a range of operating systems and distributions and includes
drivers, libraries, tools, documentation, and reference applications.

DOCA Documentation v2.7.0 78

DOCA runtime includes tools for provisioning, deploying, and orchestrating
containerized services on BlueField Platforms in bulk across the data center.

DOCA Documentation v2.7.0 79

BlueField Networking Platform User Types

BlueField Administrator

A BlueField administrator can be a system admin, an IT specialist, a security operations
specialist, or anyone managing data center servers and their functionality. The admin
would usually be interfacing with BlueField configuration and DOCA services and
applications running on the BlueField Platform.

Common operations performed by the BlueField admin:

Updating the BlueField image

Running reference applications on the BlueField Platform

Running DOCA services on the BlueField Platform

DOCA Documentation v2.7.0 80

For more information, please visit BlueField Administrator Quick Start Guide.

DOCA Developer

A DOCA developer creates the services and applications that run on top of the BlueField
Platform and usually interfaces with DOCA libraries and drivers to create the necessary
workflow and functionality.

Common operations performed by the DOCA developer:

Developing DOCA applications using DOCA libraries and drivers

Compiling DOCA reference applications

Using DOCA sample code to create a new workflow

For more information, please refer to the NVIDIA DOCA Developer Quick Start Guide.

NVIDIA DOCA EULA
NVIDIA DOCA SDK end-user license agreement.

End-User License Agreement

This license is a legal agreement between you and Mellanox Technologies, Ltd. ("NVIDIA
Mellanox") and governs the use of the NVIDIA DOCA software and materials provided
hereunder ("SOFTWARE").

This license can be accepted only by an adult of legal age of majority in the country in
which the SOFTWARE is used. If you are under the legal age of majority, you must ask
your parent or legal guardian to consent to this license. If you are entering this license on
behalf of a company or other legal entity, you represent that you have legal authority and
"you" will mean the entity you represent.

https://docs.nvidia.com/networking/display/bf3dpu/bluefield+dpu+administrator+quick+start+guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Developer+Quick+Start+Guide

DOCA Documentation v2.7.0 81

By using the SOFTWARE, you affirm that you have reached the legal age of majority, you
accept the terms of this license, and you take legal and financial responsibility for the
actions of your permitted users.

You agree to use the SOFTWARE only for purposes that are permitted by (a) this license,
and (b) any applicable law, regulation or generally accepted practices or guidelines in the
relevant jurisdictions.

1. LICENSE. Subject to the terms of this license, NVIDIA Mellanox hereby grants you a
non-exclusive, non-transferable license, without the right to sublicense (except as
expressly provided in this license) to:

1. Install and use the SOFTWARE,

2. Modify and create derivative works of sample or reference source code
delivered in the SOFTWARE, and

3. Distribute the following portions of the SOFTWARE as incorporated in object
code format into a software application, subject to the distribution
requirements indicated in this license: API headers, drivers, libraries and
sample applications.

BlueField SNAP software and materials, if delivered to you under this license, are
licensed only for use in BlueField DPUs and subject to license fees Per DPU. "Per
DPU" license means a license that allows concurrent authorized users to use the
SOFTWARE in a single DPU under the license, and in some cases the SKU or
documentation will indicate the maximum number of concurrent authorized users
or virtual machines per DPU. Notwithstanding contrary terms in Section 1 above,
you may not use or copy BlueField SNAP software without the necessary licenses.

2. DISTRIBUTION REQUIREMENTS. These are the distribution requirements for you to
exercise the grants above:

1. An application must have material additional functionality, beyond the
included portions of the SOFTWARE.

2. The following notice shall be included in modifications and derivative works of
source code distributed: "This software contains source code provided by
Mellanox Technologies Ltd."

3. You agree to distribute the SOFTWARE subject to the terms at least as
protective as the terms of this license, including (without limitation) terms

DOCA Documentation v2.7.0 82

relating to the license grant, license restrictions and protection of NVIDIA
Mellanox's intellectual property rights. Additionally, you agree that you will
protect the privacy, security and legal rights of your application users.

4. You agree to notify NVIDIA Mellanox in writing of any known or suspected
distribution or use of the SOFTWARE not in compliance with the requirements
of this license, and to enforce the terms of your agreements with respect to
the distributed portions of the SOFTWARE.

3. AUTHORIZED USERS. You may allow employees and contractors of your entity or of
your subsidiary(ies) to access and use the SOFTWARE from your secure network to
perform work on your behalf. If you are an academic institution you may allow
users enrolled or employed by the academic institution to access and use the
SOFTWARE from your secure network. You are responsible for the compliance with
the terms of this license by your authorized users.

4. LIMITATIONS. Your license to use the SOFTWARE is restricted as follows:

1. The SOFTWARE is licensed for you to develop applications only for their use in
systems with NVIDIA DPUs or adapter products or related adapter products.

2. Except as provided in this Agreement, you may not modify, reverse engineer,
decompile or disassemble, or remove copyright or other proprietary notices
from any portion of the SOFTWARE or copies of the SOFTWARE.

3. You may not disclose the results of benchmarking, competitive analysis,
regression or performance data relating to the SOFTWARE without the prior
written permission from NVIDIA Mellanox.

4. Except as expressly provided in this license, you may not copy, sell, rent,
sublicense, transfer, distribute, modify, or create derivative works of any
portion of the SOFTWARE. For clarity, unless you have an agreement with
NVIDIA Mellanox for this purpose you may not distribute or sublicense the
SOFTWARE as a stand-alone product.

5. Unless you have an agreement with NVIDIA Mellanox for this purpose, you
may not indicate that an application created with the SOFTWARE is sponsored
or endorsed by NVIDIA Mellanox.

6. You may not bypass, disable, or circumvent any technical limitation,
encryption, security, digital rights management or authentication mechanism
in the SOFTWARE.

DOCA Documentation v2.7.0 83

7. You may not replace any NVIDIA Mellanox software components in the
SOFTWARE that are governed by this license with other software that
implements NVIDIA Mellanox APIs.

8. You may not use the SOFTWARE in any manner that would cause it to become
subject to an open-source software license. As examples, licenses that require
as a condition of use, modification, and/or distribution that the SOFTWARE be:
(i) disclosed or distributed in source code form; (ii) licensed for the purpose of
making derivative works; or (iii) redistributable at no charge.

9. Unless you have an agreement with NVIDIA Mellanox for this purpose, you
may not use the SOFTWARE with any system or application where the use or
failure of the system or application can reasonably be expected to threaten or
result in personal injury, death, or catastrophic loss. Examples include use in
avionics, navigation, military, medical, life support or other life critical
applications. NVIDIA Mellanox does not design, test or manufacture the
SOFTWARE for these critical uses and NVIDIA Mellanox shall not be liable to
you or any third party, in whole or in part, for any claims or damages arising
from such uses.

10. You agree to defend, indemnify and hold harmless NVIDIA Mellanox and its
affiliates, and their respective employees, contractors, agents, officers and
directors, from and against any and all claims, damages, obligations, losses,
liabilities, costs or debt, fines, restitutions and expenses (including but not
limited to attorney's fees and costs incident to establishing the right of
indemnification) arising out of or related to your use of the SOFTWARE outside
of the scope of this license, or not in compliance with its terms.

5. UPDATES. NVIDIA Mellanox may, at its option, make available patches, workarounds
or other updates to this SOFTWARE. Unless the updates are provided with their
separate governing terms, they are deemed part of the SOFTWARE licensed to you
as provided in this license. You agree that the form and content of the SOFTWARE
that NVIDIA Mellanox provides may change without prior notice to you. While
NVIDIA Mellanox generally maintains compatibility between versions, NVIDIA
Mellanox may in some cases make changes that introduce incompatibilities in
future versions of the SOFTWARE.

6. PRE-RELEASE VERSIONS. SOFTWARE versions identified as alpha, beta, preview,
early access or otherwise as pre-release may not be fully functional, may contain
errors or design flaws, and may have reduced or different security, privacy,
availability, and reliability standards relative to commercial versions of NVIDIA

DOCA Documentation v2.7.0 84

Mellanox software and materials. You may use a pre-release SOFTWARE version at
your own risk, understanding that these versions are not intended for use in
production or business-critical systems. NVIDIA Mellanox may choose not to make
available a commercial version of any pre-release SOFTWARE. NVIDIA Mellanox may
also choose to abandon development and terminate the availability of a pre-release
SOFTWARE at any time without liability.

7. COMPONENTS UNDER OTHER LICENSES. The SOFTWARE may include NVIDIA
Mellanox or third party components with separate legal notices or terms as may be
described in proprietary notices accompanying the SOFTWARE, such as components
governed by open source software licenses. If and to the extent there is a conflict
between the terms in this license and the license terms associated with a
component, the license terms associated with the components control only to the
extent necessary to resolve the conflict.

8. OWNERSHIP

1. NVIDIA Mellanox reserves all rights, title and interest in and to the SOFTWARE
not expressly granted to you under this license. NVIDIA Mellanox and its
suppliers hold all rights, title and interest in and to the SOFTWARE, including
their respective intellectual property rights. The SOFTWARE is copyrighted and
protected by the laws of the United States and other countries, and
international treaty provisions.

2. Subject to the rights of NVIDIA Mellanox and its suppliers in the SOFTWARE,
you hold all rights, title and interest in and to your applications and your
derivative works of the sample source code delivered in the SOFTWARE
including their respective intellectual property rights.

9. FEEDBACK. You may, but are not obligated to, provide to NVIDIA Mellanox
Feedback. "Feedback" means suggestions, fixes, modifications, feature requests or
other feedback regarding the SOFTWARE. Feedback, even if designated as
confidential by you, shall not create any confidentiality obligation for NVIDIA
Mellanox. NVIDIA Mellanox and its designees have a perpetual, non-exclusive,
worldwide, irrevocable license to use, reproduce, publicly display, modify, create
derivative works of, license, sublicense, and otherwise distribute and exploit
Feedback as NVIDIA Mellanox sees fit without payment and without obligation or
restriction of any kind on account of intellectual property rights or otherwise.

10. NO WARRANTIES. THE SOFTWARE IS PROVIDED AS-IS. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW NVIDIA MELLANOX AND ITS AFFILIATES EXPRESSLY

DOCA Documentation v2.7.0 85

DISCLAIM ALL WARRANTIES OF ANY KIND OR NATURE, WHETHER EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR
PURPOSE. NVIDIA MELLANOX DOES NOT WARRANT THAT THE SOFTWARE WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION THEREOF WILL BE
UNINTERRUPTED OR ERROR-FREE, OR THAT ALL ERRORS WILL BE CORRECTED.

11. LIMITATIONS OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW NVIDIA MELLANOX AND ITS AFFILIATES SHALL NOT BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, OR FOR ANY LOST
PROFITS, PROJECT DELAYS, LOSS OF USE, LOSS OF DATA ORLOSS OF GOODWILL, OR
THE COSTS OF PROCURING SUBSTITUTE PRODUCTS, ARISING OUT OF OR IN
CONNECTION WITH THIS LICENSE OR THE USE OR PERFORMANCE OF THE
SOFTWARE, WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON
BREACH OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE),
PRODUCT LIABILITY OR ANY OTHER CAUSE OF ACTION OR THEORY OF LIABILITY,
EVEN IF NVIDIA MELLANOX HAS PREVIOUSLY BEEN ADVISED OF, OR COULD
REASONABLY HAVE FORESEEN, THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT
WILL NVIDIA MELLANOX'S AND ITS AFFILIATES TOTAL CUMULATIVE LIABILITY UNDER
OR ARISING OUT OF THIS LICENSE EXCEED US$10.00. THE NATURE OF THE LIABILITY
OR THE NUMBER OF CLAIMS OR SUITS SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

12. TERMINATION. Your rights under this license will terminate automatically without
notice from NVIDIA Mellanox if you fail to comply with any term and condition of
this license or if you commence or participate in any legal proceeding against
NVIDIA Mellanox with respect to the SOFTWARE. NVIDIA Mellanox may terminate
this license with advance written notice to you, if NVIDIA Mellanox decides to no
longer provide the SOFTWARE in a country or, in NVIDIA Mellanox's sole discretion,
the continued use of it is no longer commercially viable. Upon any termination of
this license, you agree to promptly discontinue use of the SOFTWARE and destroy all
copies in your possession or control. Your prior distributions in accordance with this
license are not affected by the termination of this license. All provisions of this
license will survive termination, except for the license granted to you.

13. APPLICABLE LAW. This license will be governed in all respects by the laws of the
United States and of the State of Delaware, without regard to the conflicts of laws
principles. The United Nations Convention on Contracts for the International Sale of
Goods is specifically disclaimed. You agree to all terms of this license in the English
language. The state or federal courts residing in Santa Clara County, California shall
have exclusive jurisdiction over any dispute or claim arising out of this license.

DOCA Documentation v2.7.0 86

Notwithstanding this, you agree that NVIDIA Mellanox shall still be allowed to apply
for injunctive remedies or urgent legal relief in any jurisdiction.

14. NO ASSIGNMENT. This license and your rights and obligations thereunder may not
be assigned by you by any means or operation of law without NVIDIA Mellanox's
permission. Any attempted assignment not approved by NVIDIA Mellanox in writing
shall be void and of no effect. NVIDIA Mellanox may assign, delegate or transfer this
license and its rights and obligations, and if to a non-affiliate you will be notified.

15. EXPORT. The SOFTWARE is subject to United States export laws and regulations. You
agree to comply with all applicable U.S. and international export laws, including the
Export Administration Regulations (EAR) administered by the U.S. Department of
Commerce and economic sanctions administered by the U.S. Department of
Treasury's Office of Foreign Assets Control (OFAC). These laws include restrictions
on destinations, end-users and end-use. By accepting this license, you confirm that
you are not currently residing in a country or region currently embargoed by the
U.S. and that you are not otherwise prohibited from receiving the SOFTWARE.

16. GOVERNMENT USE. The SOFTWARE is, and shall be treated as being, "Commercial
Items" as that term is defined at 48 CFR § 2.101, consisting of "commercial
computer software" and "commercial computer software documentation",
respectively, as such terms are used in, respectively, 48 CFR § 12.212 and 48 CFR §§
227.7202 & 252.227-7014(a)(1). Use, duplication or disclosure by the U.S.
Government or a U.S. Government subcontractor is subject to the restrictions in this
license pursuant to 48 CFR § 12.212 or 48 CFR § 227.7202. In no event shall the US
Government user acquire rights in the SOFTWARE beyond those specified in 48
C.F.R. 52.227 19(b)(1) (2).

17. NOTICES. Please direct your legal notices or other correspondence to NVIDIA
Corporation, 2788 San Tomas Expressway, Santa Clara, California 95051, United
States of America, Attention: Legal Department and NBU
legal_notices@exchange.nvidia.com.

18. ENTIRE AGREEMENT. This license is the final, complete and exclusive agreement
between the parties relating to the subject matter of this license and supersedes all
prior or contemporaneous understandings and agreements relating to this subject
matter, whether oral or written. If any court of competent jurisdiction determines
that any provision of this license is illegal, invalid or unenforceable, the remaining
provisions will remain in full force and effect. Any amendment or waiver under this
license shall be in writing and signed by representatives of both parties.

https://docs.nvidia.com/mailto:legal+notices@exchange.nvidia.com

DOCA Documentation v2.7.0 87

19. LICENSING. If the distribution terms in this license are not suitable for your
organization, or for any questions regarding this license, please contact NVIDIA
Mellanox at doca_license@nvidia.com.

Last updated: May 10, 2022

https://docs.nvidia.com/mailto:doca+license@nvidia.com

DOCA Documentation v2.7.0 88

Quick Start for BlueField
Developers
This section contains the following pages:

NVIDIA DOCA Developer Quick Start Guide

NVIDIA DOCA Developer Quick Start
Guide
This guide details the basic steps to bring up the NVIDIA DOCA development environment
and to build and run the DOCA reference applications provided along with the DOCA
software framework package.

Introduction

NVIDIA DOCA brings together a wide range of powerful APIs, libraries, and frameworks
for programming and accelerating modern data center infrastructures. Like NVIDIA®
CUDA® for GPUs, DOCA is a consistent and essential resource across all existing and
future generations of BlueField DPU and SuperNIC products.

This document is intended for those wishing to develop applications using the DOCA
framework.

Note

Not sure which installation type to use? To expand on different DOCA
user types and the relevant installation for each, see BlueField and
DOCA User Types.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Developer+Quick+Start+Guide
file:///doca/sdk/BlueField+and+DOCA+User+Types
file:///doca/sdk/BlueField+and+DOCA+User+Types

DOCA Documentation v2.7.0 89

Install BlueField Networking Platform

Install the BlueField networking platform into your host according to the installation
instructions in the BlueField's hardware user guide. The steps include installing BlueField
into the PCIe slot and properly securing it in the chassis. Make sure your host OS is listed
under the supported operating systems section.

Install DOCA Software Package

A detailed step-by-step process for downloading and installing the required development
software on both the host and BlueField can be found in the NVIDIA DOCA Installation
Guide for Linux.

During installation, you must change the default password, ubuntu, to access the NVIDIA®
BlueField® networking platform.

Access BlueField

After a successful installation, on the host, the RShim driver exposes a virtual Ethernet
device called tmfifo_net0.

1. Configure the host side of the tmfifo_net0 with a static IP to enable IPv4-based
communication to the BlueField OS according to the instructions on "Host-side
Interface Configuration" in the NVIDIA BlueField DPU BSP document.

2. Log into BlueField's Ubuntu-based OS by running the following command from the
host:

Use the BlueField networking platform password you defined during the installation
process.

At this stage DOCA is installed on BlueField and the host server.

Run Reference DOCA Application

DOCA package assets (e.g., references, tools) are located on Bluefield and on the host
under /opt/mellanox/doca/.

host# ssh ubuntu@192.168.100.2

https://docs.mellanox.com/display/BlueField2DPUENUG/Hardware+Installation
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Release+Notes#src-2571333310_id-.NVIDIADOCAReleaseNotesv2.7.0-SupportedOperatingSystemforHostMachine
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com/networking/display/bluefielddpuos/host-side+interface+configuration#src-141856512_HostsideInterfaceConfiguration-VirtualEthernetInterface
https://docs.nvidia.com/networking/display/bluefielddpuos/host-side+interface+configuration#src-141856512_HostsideInterfaceConfiguration-VirtualEthernetInterface

DOCA Documentation v2.7.0 90

The DOCA package includes a set of reference applications to facilitate developer on-
boarding. Please refer to the DOCA Reference Applications and DOCA Programming
Guide for more information.

To run the DOCA Secure Channel reference application which demonstrates accelerated
and secure message transmission between the host and BlueField over the Comm
Channel interface:

1. Run the application as server on the BlueField networking platform using the
following command (all parameters are available in the secure channel application
guide):

2. Run the application as client on the host using the following command (all
parameters are available in the secure channel application guide):

More Information

To learn more about NVIDIA BlueField networking platforms, refer to the NVIDIA BlueField
Hardware Manuals.

/opt/mellanox/doca/applications/secure_channel/bin/doca_secure_channel -
s 256 -n 10 -p 03:00.0 -r 3b:00.0

/opt/mellanox/doca/applications/secure_channel/bin/doca_secure_channel -
s 256 -n 10 -p 3b:00.0

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://docs.nvidia.com//doca/sdk/DOCA+Applications
https://docs.nvidia.com//doca/sdk/DOCA+Programming+Guide
https://docs.nvidia.com//doca/sdk/DOCA+Programming+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Secure+Channel+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Secure+Channel+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Secure+Channel+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Secure+Channel+Application+Guide
https://docs.nvidia.com/networking/dpu-doca/index.html#dpu-hw
https://docs.nvidia.com/networking/dpu-doca/index.html#dpu-hw
mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 91

Installation and Setup
This section contains the following page:

NVIDIA DOCA Profiles

NVIDIA DOCA Installation Guide for Linux

NVIDIA DOCA Developer Guide

NVIDIA DOCA Profiles
The following document provides an introduction to the various supported DOCA-Host
profiles.

Introduction

NVIDIA DOCA™ can be installed on the host and used by a variety of customers who have
different workloads and requirements. The DOCA-Host package includes drivers,
libraries, and tools to support NVIDIA® BlueField® Networking Platform and NVIDIA®
ConnectX® SmartNIC, Ethernet and InfiniBand, with both kernel and user-space
components. Depending on their specific needs, customers may choose not to install the
full DOCA-Host package on their host server but only the subset of components and tools
relevant for their use case (whether to have a smaller installation size, lower
integration/validation effort, etc).

To support the different use cases, DOCA includes DOCA-Host Installation Profiles, which
are a subset of the full DOCA installation. DOCA-Host profiles are validated and tested
installation packages. The following are the available DOCA profiles:

doca-all
doca-networking
doca-ofed

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Profiles
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Developer+Guide

DOCA Documentation v2.7.0 92

DOCA-Host supports the following NVIDIA devices:

BlueField-3
BlueField-2
ConnectX-7
ConnectX-6 DX
ConnectX-6 LX
ConnectX-6
ConnectX-5
ConnectX-4 LX
ConnectX-4

For hardware details on these devices, refer to the following pages:

BlueField devices
ConnectX devices

DOCA functionality is limited by the specific device capabilities.

https://docs.nvidia.com/networking/dpu-doca/index.html#dpu-hw
https://docs.nvidia.com/networking/adapters/index.html

DOCA Documentation v2.7.0 93

doca-all

The full DOCA-Host installation is intended for users who wish to utilize the full extent of
DOCA libs and drivers.

This profile is the super-set of components, which also includes the content of doca-ofed
and doca-networking.

DOCA Documentation v2.7.0 94

All DOCA libraries, drivers and tools are included in doca-all.

doca-networking

The doca-networking profile is intended for users who wish to benefit only from the
networking functionality of DOCA.

The content of the doca-networking package is the following:

MLNX_OFED
DOCA Core
MLNX-DPDK
OVS-DOCA
DOCA Flow

doca-ofed

This profile is intended for users who wish to have the same user experience and content
as MLNX_OFED but with DOCA package. doca-ofed installs the MLNX_OFED drivers and

Info

When installing doca-all on host, BlueField Platforms can utilize all
DOCA libs and drivers whereas ConnectX devices can utilize only
doca-ofed and doca-networking subset of functions from within the
super-set of doca-all, depending on the device's capabilities.

Info

BlueField DPUs, BlueField SuperNICs, and ConnectX devices can
utilize all included libs and drivers in the doca-networking profile,
based on the device's capabilities.

DOCA Documentation v2.7.0 95

tools and does not include any other DOCA components.

The content of the doca-ofed package is:

MLNX_OFED drivers and tools

Which Profile to Install?

Selecting the right DOCA-Host installation profile is important to fully utilize the
capabilities of your BlueField Platforms or ConnectX.

The functionality of DOCA-Host is limited by the device capabilities (e.g., ConnectX devices
cannot utilize DOCA libs such as DPA, even if doca-all is installed on the host).

For BlueField devices:

It is recommended to use doca-all

If you require the smallest installation package for networking-only purposes, use
doca-networking

For MLNX_OFED-like installation, use doca-ofed (no additional DOCA functionality)

For ConnectX devices:

It is recommended to use doca-networking

For future-proof and mixed BlueField/ConnectX deployments, use doca-all

For MLNX_OFED-like installation use doca-ofed (no additional DOCA functionality)

Info

BlueField Platforms and ConnectX devices can utilize only the drivers
in doca-ofed, based on the device's capabilities. No added DOCA libs
are supported with any of the devices with doca-ofed profile
installation.

DOCA Documentation v2.7.0 96

DOCA-Host Profile Installation

DOCA-Host can be installed on specific host OSs. Each of the Host Installation Profiles has
specific OSs on which is can be installed as specified in section "Supported Host OS per
DOCA-Host Installation Profile".

Follow the instructions under section " Installing Software on Host" in th e NVIDIA DOCA
Installation Guide for Linux.

Supported Host OS per DOCA-Host Installation Profile

The default operating system included with the BlueField Bundle (for DPU and SuperNIC)
is Ubuntu 22.04.

The supported operating systems on the host machine per DOCA-Host installation profile
are the following:

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

Alinux 3.2 5.10.134-13.al8.x86_64 x86

Anolis 8.6 5.10.134+

aarch
64

x86

BCLinux 21.10S
P2

4.19.90-
2107.6.0.0098.oe1.bclinux.aarc
h64

aarch
64

4.19.90-
2107.6.0.0100.oe1.bclinux.x86_

x86

Note

Only the following generic kernel versions are supported for DOCA
local repo package for host installation.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux#src-2654401500_id-.NVIDIADOCAInstallationGuideforLinuxv2.7.0-BlueFieldNetworkingPlatformImageInstallation

DOCA Documentation v2.7.0 97

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

64

CTYunOS

2.0

4.19.90-
2102.2.0.0062.ctl2.aarch64

aarch
64

4.19.90-
2102.2.0.0062.ctl2.x86_64

x86

3.0
(23.01)

5.10.0-136.12.0.86.ctl3.aarch64
aarch
64

5.10.0-136.12.0.86.ctl3.x86_64 x86

Debian

10.13
4.19.0-21-arm64

aarch
64

4.19.0-21-amd64 x86

10.8
4.19.0-14-arm64

aarch
64

4.19.0-14-amd64 x86

10.9 4.19.0-16-amd64 x86

11.3
5.10.0-13-arm64

aarch
64

5.10.0-13-amd64 x86

12.1
6.1.0-10-arm64

aarch
64

6.1.0-10-amd64 x86

EulerOS

2.0sp1
1

5.10.0-
60.18.0.50.h323.eulerosv2r11.a
arch64

aarch
64

5.10.0-
60.18.0.50.h323.eulerosv2r11.x
86_64

x86

2.0sp1
2

5.10.0-
136.12.0.86.h1032.eulerosv2r1
2.aarch64

aarch
64

DOCA Documentation v2.7.0 98

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

5.10.0-
136.12.0.86.h1032.eulerosv2r1
2.x86_64

x86

Kylin

10sp2

4.19.90-
24.4.v2101.ky10.aarch64

aarch
64

4.19.90-24.4.v2101.ky10.x86_64 x86

10sp3

4.19.90-
52.22.v2207.ky10.aarch64

aarch
64

4.19.90-
52.22.v2207.ky10.x86_64

x86

Mariner 2.0 5.15.118.1-1.cm2.x86_64 x86

Oracle
Linux

7.9 5.4.17-2011.6.2.el7uek.x86_64 x86

8.4
5.4.17-
2102.201.3.el8uek.x86_64

x86

8.6
5.4.17-
2136.307.3.1.el8uek.x86_64

x86

8.7 5.15.0-3.60.5.1.el8uek.x86_64 x86

8.8
5.15.0-
101.103.2.1.el8uek.x86_64

x86

9.1 5.15.0-3.60.5.1.el9uek.x86_64 x86

9.2
5.15.0-
101.103.2.1.el9uek.x86_64

x86

openEule
r

20.03s
p3

4.19.90-
2112.8.0.0131.oe1.aarch64

aarch
64

4.19.90-
2112.8.0.0131.oe1.x86_64

x86

22.03

5.10.0-
60.18.0.50.oe2203.aarch64

aarch
64

5.10.0-
60.18.0.50.oe2203.x86_64

x86

DOCA Documentation v2.7.0 99

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

RHEL/Ce
ntOS

8.0
4.18.0-80.el8.aarch64

aarch
64

4.18.0-80.el8.x86_64 x86

8.1
4.18.0-147.el8.aarch64

aarch
64

4.18.0-147.el8.x86_64 x86

8.2
4.18.0-193.el8.aarch64

aarch
64

4.18.0-193.el8.x86_64 x86

8.3
4.18.0-240.el8.aarch64

aarch
64

4.18.0-240.el8.x86_64 x86

8.4
4.18.0-305.el8.aarch64

aarch
64

4.18.0-305.el8.x86_64 x86

RHEL/Ro
cky 8.5

4.18.0-348.el8.aarch64
aarch
64

4.18.0-348.el8.x86_64 x86

8.6
4.18.0-372.41.1.el8_6.aarch64

aarch
64

4.18.0-372.41.1.el8_6.x86_64 x86

8.7
4.18.0-425.14.1.el8_7.aarch64

aarch
64

4.18.0-425.14.1.el8_7.x86_64 x86

8.8
4.18.0-477.10.1.el8_8.aarch64

aarch
64

4.18.0-477.10.1.el8_8.x86_64 x86

8.9
4.18.0-513.5.1.el8_9.aarch64

aarch
64

DOCA Documentation v2.7.0 100

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

4.18.0-513.5.1.el8_9.x86_64 x86

9.0
5.14.0-70.46.1.el9_0.aarch64

aarch
64

5.14.0-70.46.1.el9_0.x86_64 x86

9.1
5.14.0-162.19.1.el9_1.aarch64

aarch
64

5.14.0-162.19.1.el9_1.x86_64 x86

9.2
5.14.0-284.11.1.el9_2.aarch64

aarch
64

5.14.0-284.11.1.el9_2.x86_64 x86

9.3
5.14.0-362.8.1.el9_3.aarch64

aarch
64

5.14.0-362.8.1.el9_3.x86_64 x86

SLES

15sp2 5.3.18-22-default

aarch
64

x86

15sp3 5.3.18-57-default

aarch
64

x86

15sp4 5.14.21-150400.22-default

aarch
64

x86

15sp5 5.14.21-150500.53-default

aarch
64

x86

TKLinux 3.3
5.4.119-19.0009.39

aarch
64

5.4.119-19.0009.39 x86

DOCA Documentation v2.7.0 101

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

Ubuntu

20.04 5.4.0-26-generic

aarch
64

x86

22.04 5.15.0-25-generic

aarch
64

x86

24.04 6.8.0-31-generic

aarch
64

x86

UOS

20.106
0a

5.10.0-46.uelc20.aarch64
aarch
64

5.10.0-46.uelc20.x86_64 x86

20.106
0e

5.10.0-46.uel20.aarch64
aarch
64

5.10.0-46.uel20.x86_64 x86

NVIDIA DOCA Installation Guide for
Linux
This guide details the necessary steps to set up NVIDIA DOCA in your Linux environment.

Introduction

Installation of the NVIDIA® BlueField® networking platform (DPU or SuperNIC) software
requires following the following step-by-step procedure.

Supported Platforms

Supported BlueField Platforms

DOCA Documentation v2.7.0 102

The following NVIDIA® BlueField® Platforms are supported with DOCA:

NVIDIA
SKU

Legac
y OPN

PSID Description

900-
9D3B6-
00CV-
AA0

N/A
MT_0
00000
0884

BlueField-3 B3220 P-Series FHHL DPU; 200GbE (default mode)
/ NDR200 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16
PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Enabled

900-
9D3B6-
00SV-
AA0

N/A
MT_0
00000
0965

BlueField-3 B3220 P-Series FHHL DPU; 200GbE (default mode)
/ NDR200 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16
PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Disabled

900-
9D3B6-
00CC-
AA0

N/A
MT_0
00000
1024

BlueField-3 B3210 P-Series FHHL DPU; 100GbE (default mode)
/ HDR100 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16
PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Enabled

900-
9D3B6-
00SC-
AA0

N/A
MT_0
00000
1025

BlueField-3 B3210 P-Series FHHL DPU; 100GbE (default mode)
/ HDR100 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16
PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Disabled

900-
9D219-
0086-
ST1

MBF2
M516A
-
CECOT

MT_0
00000
0375

BlueField-2 E-Series DPU 100GbE Dual-Port QSFP56; PCIe
Gen4 x16; Crypto and Secure Boot Enabled; 16GB on-board
DDR; 1GbE OOB management; FHHL

900-
9D219-
0086-
ST0

MBF2
M516A
-
EECOT

MT_0
00000
0376

BlueField-2 E-Series DPU 100GbE/EDR/HDR100 VPI Dual-Port
QSFP56; PCIe Gen4 x16; Crypto and Secure Boot Enabled;
16GB on-board DDR; 1GbE OOB management; FHHL

900-
9D219-
0056-
ST1

MBF2
M516A
-
EENOT

MT_0
00000
0377

BlueField-2 E-Series DPU 100GbE/EDR/HDR100 VPI Dual-Port
QSFP56; PCIe Gen4 x16; Crypto Disabled; 16GB on-board DDR;
1GbE OOB management; FHHL

900-
9D206-

MBF2
H332A

MT_0
00000
0539

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; HHHL

DOCA Documentation v2.7.0 103

NVIDIA
SKU

Legac
y OPN

PSID Description

0053-
SQ0

-
AENOT

900-
9D206-
0063-
ST2

MBF2
H332A
-
AEEOT

MT_0
00000
0540

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto Enabled; 16GB on-board DDR; 1GbE OOB
management; HHHL

900-
9D206-
0083-
ST3

MBF2
H332A
-
AECOT

MT_0
00000
0541

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto and Secure Boot Enabled; 16GB on-board DDR;
1GbE OOB management; HHHL

900-
9D206-
0083-
ST1

MBF2
H322A
-
AECOT

MT_0
00000
0542

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto and Secure Boot Enabled; 8GB on-board DDR; 1GbE
OOB management; HHHL

900-
9D206-
0063-
ST1

MBF2
H322A
-
AEEOT

MT_0
00000
0543

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto Enabled; 8GB on-board DDR; 1GbE OOB
management; HHHL

900-
9D219-
0066-
ST0

MBF2
M516A
-EEEOT

MT_0
00000
0559

BlueField-2 E-Series DPU 100GbE/EDR/HDR100 VPI Dual-Port
QSFP56; PCIe Gen4 x16; Crypto Enabled; 16GB on-board DDR;
1GbE OOB management; FHHL

900-
9D219-
0056-
SN1

MBF2
M516A
-
CENOT

MT_0
00000
0560

BlueField-2 E-Series DPU 100GbE Dual-Port QSFP56; PCIe
Gen4 x16; Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

900-
9D219-
0066-
ST2

MBF2
M516A
-
CEEOT

MT_0
00000
0561

BlueField-2 E-Series DPU 100GbE Dual-Port QSFP56; PCIe
Gen4 x16; Crypto Enabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

900-
9D219-
0006-
ST0

MBF2
H516A
-
CEEOT

MT_0
00000
0702

BlueField-2 DPU 100GbE Dual-Port QSFP56; PCIe Gen4 x16;
Crypto; 16GB on-board DDR; 1GbE OOB management; FHHL

DOCA Documentation v2.7.0 104

NVIDIA
SKU

Legac
y OPN

PSID Description

900-
9D219-
0056-
ST2

MBF2
H516A
-
CENOT

MT_0
00000
0703

BlueField-2 DPU 100GbE Dual-Port QSFP56; PCIe Gen4 x16;
Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

900-
9D219-
0066-
ST3

MBF2
H516A
-EEEOT

MT_0
00000
0704

BlueField-2 DPU 100GbE/EDR/HDR100 VPI Dual-Port QSFP56;
PCIe Gen4 x16; Crypto Enabled; 16GB on-board DDR; 1GbE
OOB management; FHHL

900-
9D219-
0056-
SQ0

MBF2
H516A
-
EENOT

MT_0
00000
0705

BlueField-2 DPU 100GbE/EDR/HDR100 VPI Dual-Port QSFP56;
PCIe Gen4 x16; Crypto Disabled; 16GB on-board DDR; 1GbE
OOB management; FHHL

900-
9D250-
0038-
ST1

MBF2
M345A
-
HESOT

MT_0
00000
0715

BlueField-2 E-Series DPU; 200GbE/HDR single-port QSFP56;
PCIe Gen4 x16; Secure Boot Enabled; Crypto Disabled; 16GB
on-board DDR; 1GbE OOB management; HHHL

900-
9D250-
0048-
ST1

MBF2
M345A
-
HECOT

MT_0
00000
0716

BlueField-2 E-Series DPU; 200GbE/HDR single-port QSFP56;
PCIe Gen4 x16; Secure Boot Enabled; Crypto Enabled; 16GB
on-board DDR; 1GbE OOB management; HHHL

900-
9D218-
0073-
ST1

MBF2
H512C
-
AESOT

MT_0
00000
0723

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated
BMC; PCIe Gen4 x8; Secure Boot Enabled; Crypto Disabled;
16GB on-board DDR; 1GbE OOB management; FHHL

900-
9D218-
0083-
ST2

MBF2
H512C
-
AECOT

MT_0
00000
0724

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated
BMC; PCIe Gen4 x8; Secure Boot Enabled; Crypto Enabled;
16GB on-board DDR; 1GbE OOB management; FHHL

900-
9D208-
0086-
ST4

MBF2
M516C
-
EECOT

MT_0
00000
0728

BlueField-2 E-Series DPU 100GbE/EDR/HDR100 VPI Dual-Port
QSFP56; integrated BMC; PCIe Gen4 x16; Secure Boot Enabled;
Crypto Enabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-
9D208-

MBF2
H516C

MT_0
00000

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled; Crypto

DOCA Documentation v2.7.0 105

NVIDIA
SKU

Legac
y OPN

PSID Description

0086-
SQ0

-
CECOT

0729 Enabled; 16GB on-board DDR; 1GbE OOB management; Tall
Bracket; FHHL

900-
9D208-
0076-
ST5

MBF2
M516C
-
CESOT

MT_0
00000
0731

BlueField-2 E-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled; Crypto
Disabled; 16GB on-board DDR; 1GbE OOB management; Tall
Bracket; FHHL

900-
9D208-
0076-
ST6

MBF2
M516C
-EESOT

MT_0
00000
0732

BlueField-2 E-Series DPU 100GbE/EDR/HDR100 VPI Dual-Port
QSFP56; integrated BMC; PCIe Gen4 x16; Secure Boot Enabled;
Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-
9D208-
0086-
ST3

MBF2
M516C
-
CECOT

MT_0
00000
0733

BlueField-2 E-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled; Crypto
Enabled; 16GB on-board DDR; 1GbE OOB management; Tall
Bracket; FHHL

900-
9D208-
0076-
ST2

MBF2
H516C
-EESOT

MT_0
00000
0737

BlueField-2 P-Series DPU 100GbE/EDR/HDR100 VPI Dual-Port
QSFP56; integrated BMC; PCIe Gen4 x16; Secure Boot Enabled;
Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-
9D208-
0076-
ST1

MBF2
H516C
-
CESOT

MT_0
00000
0738

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled; Crypto
Disabled; 16GB on-board DDR; 1GbE OOB management; Tall
Bracket; FHHL

900-
9D218-
0083-
ST4

MBF2
H532C
-
AECOT

MT_0
00000
0765

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated
BMC; PCIe Gen4 x8; Secure Boot Enabled; Crypto Enabled;
32GB on-board DDR; 1GbE OOB management; FHHL

900-
9D218-
0073-
ST0

MBF2
H532C
-
AESOT

MT_0
00000
0766

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated
BMC; PCIe Gen4 x8; Secure Boot Enabled; Crypto Disabled;
32GB on-board DDR; 1GbE OOB management; FHHL

900-
9D208-
0076-
ST3

MBF2
H536C
-
CESOT

MT_0
00000
0767

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled; Crypto
Disabled; 32GB on-board DDR; 1GbE OOB management; FHHL

DOCA Documentation v2.7.0 106

NVIDIA
SKU

Legac
y OPN

PSID Description

900-
9D208-
0086-
ST2

MBF2
H536C
-
CECOT

MT_0
00000
0768

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled; Crypto
Enabled; 32GB on-board DDR; 1GbE OOB management; FHHL

900-
9D218-
0073-
ST4

MBF2
H512C
-
AEUOT

MT_0
00000
0972

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated
BMC; PCIe Gen4 x8; Secure Boot Enabled with UEFI disabled;
Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management

900-
9D208-
0076-
STA

MBF2
H516C
-
CEUOT

MT_0
00000
0973

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled with
UEFI disabled; Crypto Disabled; 16GB on-board DDR; 1GbE
OOB management

900-
9D208-
0076-
STB

MBF2
H536C
-
CEUOT

MT_0
00000
1008

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56,
integrated BMC, PCIe Gen4 x16, Secure Boot Enabled with
UEFI Disabled, Crypto Disabled, 32GB on-board DDR, 1GbE
OOB management, Tall Bracket, FHHL

P1004/
699210
040230

N/A
NVD0
00000
0015

BlueField-2 A30X, P1004 SKU 205, Generic, GA100, 24GB
HBM2e, PCIe passive Dual Slot 230W GEN4, DPU Crypto ON
W/ Bkt, 1 Dongle, Black, HF, VCPD

P4028/
699140
280000

N/A
NVD0
00000
0020

ZAM / NAS

Supported ConnectX NICs

The NVIDIA® ConnectX® NICs supported with DOCA-Host can be found in: NVIDIA DOCA
Profiles

Hardware Prerequisites

https://docs.nvidia.com/doca/sdk/NVIDIA+DOCA+Profiles/index.html
https://docs.nvidia.com/doca/sdk/NVIDIA+DOCA+Profiles/index.html

DOCA Documentation v2.7.0 107

For BlueField Platform users, this guide assumes that a BlueField device has been
installed in a server according to the instructions detailed in your DPU's hardware user
guide .

DOCA Packages

Device Component
Ver
sion

Description

Host

DOCA Devel
2.7.
0

Software development kit package and
tools for developing host software

DOCA Runtime
2.7.
0

Runtime libraries and tools required to
run DOCA-based software applications on
host

DOCA Extra
2.7.
0

Contains helper scripts (doca-info, doca-
kernel-support)

DOCA OFED
2.7.
0

Software stack which operates across all
NVIDIA network adapter solutions

Arm emulated (QEMU)
development
container

4.7.
0

Linux-based BlueField Arm emulated
container for developers

Target
BlueField
DPU (Arm)

BlueField BSP
4.7.
0

BlueField image and firmware

DOCA SDK
2.7.
0

Software development kit packages and
tools for developing Arm software

DOCA Runtime
2.7.
0

Runtime libraries and tools required to
run DOCA-based software applications on
Arm

https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic

DOCA Documentation v2.7.0 108

Supported Host OS per DOCA-Host Installation Profile

The default operating system included with the BlueField Bundle (for DPU and SuperNIC)
is Ubuntu 22.04.

The supported operating systems on the host machine per DOCA-Host installation profile
are the following:

OS
OS
Version

Default Kernel
Version

Arch
doca-
all

doca-
networking

doca-
ofed

Alinux 3.2 5.10.134-13.al8.x86_64 x86

Anolis 8.6 5.10.134+

aarch
64

x86

BCLinux
21.10SP
2

4.19.90-
2107.6.0.0098.oe1.bclin
ux.aarch64

aarch
64

4.19.90-
2107.6.0.0100.oe1.bclin
ux.x86_64

x86

Note

Only the following generic kernel versions are supported for DOCA
local repo package for host installation.

DOCA Documentation v2.7.0 109

CTYunOS

2.0

4.19.90-
2102.2.0.0062.ctl2.aarc
h64

aarch
64

4.19.90-
2102.2.0.0062.ctl2.x86_
64

x86

3.0
(23.01)

5.10.0-
136.12.0.86.ctl3.aarch6
4

aarch
64

5.10.0-
136.12.0.86.ctl3.x86_64

x86

Debian

10.13
4.19.0-21-arm64

aarch
64

4.19.0-21-amd64 x86

10.8
4.19.0-14-arm64

aarch
64

4.19.0-14-amd64 x86

10.9 4.19.0-16-amd64 x86

11.3
5.10.0-13-arm64

aarch
64

5.10.0-13-amd64 x86

12.1
6.1.0-10-arm64

aarch
64

6.1.0-10-amd64 x86

EulerOS

2.0sp11

5.10.0-
60.18.0.50.h323.eulero
sv2r11.aarch64

aarch
64

5.10.0-
60.18.0.50.h323.eulero
sv2r11.x86_64

x86

2.0sp12 5.10.0-
136.12.0.86.h1032.eule
rosv2r12.aarch64

aarch
64

DOCA Documentation v2.7.0 110

5.10.0-
136.12.0.86.h1032.eule
rosv2r12.x86_64

x86

Kylin

10sp2

4.19.90-
24.4.v2101.ky10.aarch6
4

aarch
64

4.19.90-
24.4.v2101.ky10.x86_64

x86

10sp3

4.19.90-
52.22.v2207.ky10.aarch
64

aarch
64

4.19.90-
52.22.v2207.ky10.x86_6
4

x86

Mariner 2.0
5.15.118.1-
1.cm2.x86_64

x86

Oracle
Linux

7.9
5.4.17-
2011.6.2.el7uek.x86_64

x86

8.4
5.4.17-
2102.201.3.el8uek.x86_
64

x86

8.6
5.4.17-
2136.307.3.1.el8uek.x8
6_64

x86

8.7
5.15.0-
3.60.5.1.el8uek.x86_64

x86

8.8
5.15.0-
101.103.2.1.el8uek.x86
_64

x86

9.1
5.15.0-
3.60.5.1.el9uek.x86_64

x86

9.2
5.15.0-
101.103.2.1.el9uek.x86
_64

x86

DOCA Documentation v2.7.0 111

openEuler

20.03sp3

4.19.90-
2112.8.0.0131.oe1.aarc
h64

aarch
64

4.19.90-
2112.8.0.0131.oe1.x86_
64

x86

22.03

5.10.0-
60.18.0.50.oe2203.aarc
h64

aarch
64

5.10.0-
60.18.0.50.oe2203.x86_
64

x86

RHEL/Cent
OS

8.0
4.18.0-80.el8.aarch64

aarch
64

4.18.0-80.el8.x86_64 x86

8.1
4.18.0-147.el8.aarch64

aarch
64

4.18.0-147.el8.x86_64 x86

8.2
4.18.0-193.el8.aarch64

aarch
64

4.18.0-193.el8.x86_64 x86

8.3
4.18.0-240.el8.aarch64

aarch
64

4.18.0-240.el8.x86_64 x86

8.4
4.18.0-305.el8.aarch64

aarch
64

4.18.0-305.el8.x86_64 x86

RHEL/Roc
ky 8.5

4.18.0-348.el8.aarch64
aarch
64

4.18.0-348.el8.x86_64 x86

8.6 4.18.0-
372.41.1.el8_6.aarch64

aarch
64

DOCA Documentation v2.7.0 112

4.18.0-
372.41.1.el8_6.x86_64

x86

8.7

4.18.0-
425.14.1.el8_7.aarch64

aarch
64

4.18.0-
425.14.1.el8_7.x86_64

x86

8.8

4.18.0-
477.10.1.el8_8.aarch64

aarch
64

4.18.0-
477.10.1.el8_8.x86_64

x86

8.9

4.18.0-
513.5.1.el8_9.aarch64

aarch
64

4.18.0-
513.5.1.el8_9.x86_64

x86

9.0

5.14.0-
70.46.1.el9_0.aarch64

aarch
64

5.14.0-
70.46.1.el9_0.x86_64

x86

9.1

5.14.0-
162.19.1.el9_1.aarch64

aarch
64

5.14.0-
162.19.1.el9_1.x86_64

x86

9.2

5.14.0-
284.11.1.el9_2.aarch64

aarch
64

5.14.0-
284.11.1.el9_2.x86_64

x86

9.3

5.14.0-
362.8.1.el9_3.aarch64

aarch
64

5.14.0-
362.8.1.el9_3.x86_64

x86

RHEL/Roc
ky

9.4 5.14.0-
427.13.1.el9_4.aarch64

aarch
64

DOCA Documentation v2.7.0 113

5.14.0-
427.13.1.el9_4.x86_64

x86

SLES

15sp2 5.3.18-22-default

aarch
64

x86

15sp3 5.3.18-57-default

aarch
64

x86

15sp4
5.14.21-150400.22-
default

aarch
64

x86

15sp5
5.14.21-150500.53-
default

aarch
64

x86

TKLinux 3.3
5.4.119-19.0009.39

aarch
64

5.4.119-19.0009.39 x86

Ubuntu

20.04 5.4.0-26-generic

aarch
64

x86

22.04 5.15.0-25-generic

aarch
64

x86

24.04 6.8.0-31-generic

aarch
64

x86

UOS

20.1060a

5.10.0-
46.uelc20.aarch64

aarch
64

5.10.0-
46.uelc20.x86_64

x86

DOCA Documentation v2.7.0 114

20.1060e

5.10.0-
46.uel20.aarch64

aarch
64

5.10.0-46.uel20.x86_64 x86

BlueField Networking Platform Image Installation

This guide provides the minimal instructions for setting up DOCA on a standard system.

Installation Files

Device Component OS
Arc
h

Link

Host These files contain the
following components suitable
for their respective OS version.

DOCA Devel v2.7.0
DOCA Runtime v2.7.0
DOCA Extra v2.7.0
DOCA OFED v2.7.0

Alinux
3.2

x8
6

doca-host-2.7.0-
204000_24.04_alinux32.x86
_64.rpm

Anolis

aar
ch
64

doca-host-2.7.0-
204000_24.04_anolis86.aar
ch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_anolis86.x86
_64.rpm

BCLinu
x 21.10
SP2

aar
ch
64

doca-host-2.7.0-
204000_24.04_bclinux2110
sp2.aarch64.rpm

Note

Make sure to follow the instructions in this section sequentially. Make
sure to update DOCA on the host side first before installing the BFB
Bundle on the BlueField.

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_alinux32.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_alinux32.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_alinux32.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_anolis86.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_anolis86.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_anolis86.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_anolis86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_anolis86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_anolis86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_bclinux2110sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_bclinux2110sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_bclinux2110sp2.aarch64.rpm

DOCA Documentation v2.7.0 115

Device Component OS
Arc
h

Link

x8
6

doca-host-2.7.0-
204000_24.04_bclinux2110
sp2.x86_64.rpm

CTyun
OS 2.0

aar
ch
64

doca-host-2.7.0-
204000_24.04_ctyunos20.a
arch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_ctyunos20.x
86_64.rpm

CTyun
OS
23.01

aar
ch
64

doca-host-2.7.0-
204000_24.04_ctyunos2301
.aarch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_ctyunos2301
.x86_64.rpm

Debian
10.13

aar
ch
64

doca-host_2.7.0-204000-
24.04-
debian1013_arm64.deb

x8
6

doca-host_2.7.0-204000-
24.04-
debian1013_amd64.deb

Debian
10.8

aar
ch
64

doca-host_2.7.0-204000-
24.04-
debian108_arm64.deb

x8
6

doca-host_2.7.0-204000-
24.04-
debian108_amd64.deb

Debian
10.9

x8
6

doca-host_2.7.0-204000-
24.04-
debian109_amd64.deb

Debian
11.3

aar
ch
64

doca-host_2.7.0-204000-
24.04-
debian113_arm64.deb

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_bclinux2110sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_bclinux2110sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_bclinux2110sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos20.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos20.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos20.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos20.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos20.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos20.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos2301.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos2301.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos2301.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos2301.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos2301.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos2301.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian1013_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian1013_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian1013_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian1013_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian1013_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian1013_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian108_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian108_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian108_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian108_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian108_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian108_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian109_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian109_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian109_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian113_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian113_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian113_arm64.deb

DOCA Documentation v2.7.0 116

Device Component OS
Arc
h

Link

x8
6

doca-host_2.7.0-204000-
24.04-
debian113_amd64.deb

Debian
12.1

aar
ch
64

doca-host_2.7.0-204000-
24.04-
debian121_arm64.deb

x8
6

doca-host_2.7.0-204000-
24.04-
debian121_amd64.deb

EulerO
S 20
SP11

aar
ch
64

doca-host-2.7.0-
204000_24.04_euleros20sp
11.aarch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_euleros20sp
11.x86_64.rpm

EulerO
S 20
SP12

aar
ch
64

doca-host-2.7.0-
204000_24.04_euleros20sp
12.aarch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_euleros20sp
12.x86_64.rpm

Fedora
32

x8
6

doca-host-2.7.0-
204000_24.04_fc32.x86_64.
rpm

Kylin
1.0 SP2

aar
ch
64

doca-host-2.7.0-
204000_24.04_kylin10sp2.a
arch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_kylin10sp2.x
86_64.rpm

Kylin
1.0 SP3

aar
ch
64

doca-host-2.7.0-
204000_24.04_kylin10sp3.a
arch64.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian113_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian113_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian113_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian121_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian121_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian121_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian121_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian121_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian121_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp11.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp11.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp11.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp11.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp11.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp11.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp12.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp12.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp12.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp12.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp12.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp12.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_fc32.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_fc32.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_fc32.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp3.aarch64.rpm

DOCA Documentation v2.7.0 117

Device Component OS
Arc
h

Link

x8
6

doca-host-2.7.0-
204000_24.04_kylin10sp3.x
86_64.rpm

Marine
r 2.0

x8
6

doca-host-2.7.0-
204000_24.04_mariner20.x
86_64.rpm

Oracle
Linux
7.9

x8
6

doca-host-2.7.0-
204000_24.04_ol79.x86_64.
rpm

Oracle
Linux
8.4

x8
6

doca-host-2.7.0-
204000_24.04_ol84.x86_64.
rpm

Oracle
Linux
8.6

x8
6

doca-host-2.7.0-
204000_24.04_ol86.x86_64.
rpm

Oracle
Linux
8.7

x8
6

doca-host-2.7.0-
204000_24.04_ol87.x86_64.
rpm

Oracle
Linux
8.8

x8
6

doca-host-2.7.0-
204000_24.04_ol88.x86_64.
rpm

Oracle
Linux
9.0

x8
6

doca-host-2.7.0-
204000_24.04_ol90.x86_64.
rpm

Oracle
Linux
9.1

x8
6

doca-host-2.7.0-
204000_24.04_ol91.x86_64.
rpm

Oracle
Linux
9.2

x8
6

doca-host-2.7.0-
204000_24.04_ol92.x86_64.
rpm

openEu
ler

aar
ch
64

doca-host-2.7.0-
204000_24.04_openeuler20
03sp3.aarch64.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_mariner20.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_mariner20.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_mariner20.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol79.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol79.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol79.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol84.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol84.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol84.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol87.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol87.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol87.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol88.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol88.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol88.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol90.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol90.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol90.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol91.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol91.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol91.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol92.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol92.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol92.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2003sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2003sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2003sp3.aarch64.rpm

DOCA Documentation v2.7.0 118

Device Component OS
Arc
h

Link

20.03
SP3 x8

6

doca-host-2.7.0-
204000_24.04_openeuler20
03sp3.x86_64.rpm

openEu
ler
22.03

aar
ch
64

doca-host-2.7.0-
204000_24.04_openeuler22
03.aarch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_openeuler22
03.x86_64.rpm

RHEL/C
entOS
8.0

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel80.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel80.x86_6
4.rpm

RHEL/C
entOS
8.1

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel81.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel81.x86_6
4.rpm

RHEL/C
entOS
8.2

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel82.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel82.x86_6
4.rpm

RHEL/C
entOS
8.3

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel83.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel83.x86_6
4.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2003sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2003sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2003sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2203.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2203.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2203.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2203.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2203.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2203.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel80.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel80.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel80.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel80.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel80.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel80.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel81.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel81.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel81.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel81.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel81.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel81.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel82.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel82.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel82.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel82.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel82.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel82.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel83.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel83.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel83.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel83.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel83.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel83.x86_64.rpm

DOCA Documentation v2.7.0 119

Device Component OS
Arc
h

Link

RHEL/C
entOS
8.4

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel84.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel84.x86_6
4.rpm

RHEL/C
entOS
8.5

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel85.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel85.x86_6
4.rpm

RHEL/R
ocky
8.6

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel86.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel86.x86_6
4.rpm

RHEL/R
ocky
8.7

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel87.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel87.x86_6
4.rpm

RHEL/R
ocky
8.8

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel88.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel88.x86_6
4.rpm

RHEL/R
ocky
8.9

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel89.aarch
64.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel84.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel84.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel84.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel84.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel84.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel84.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel85.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel85.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel85.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel85.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel85.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel85.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel86.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel86.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel86.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel87.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel87.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel87.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel87.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel87.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel87.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel88.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel88.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel88.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel88.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel88.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel88.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel89.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel89.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel89.aarch64.rpm

DOCA Documentation v2.7.0 120

Device Component OS
Arc
h

Link

x8
6

doca-host-2.7.0-
204000_24.04_rhel89.x86_6
4.rpm

RHEL/R
ocky
8.10

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel810.aarc
h64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel810.x86_
64.rpm

RHEL/R
ocky
9.0

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel90.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel90.x86_6
4.rpm

RHEL/R
ocky
9.1

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel91.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel91.x86_6
4.rpm

RHEL/R
ocky
9.2

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel92.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel92.x86_6
4.rpm

RHEL/R
ocky
9.3

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel93.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel93.x86_6
4.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel89.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel89.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel89.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel810.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel810.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel810.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel810.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel810.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel810.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel90.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel90.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel90.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel90.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel90.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel90.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel91.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel91.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel91.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel91.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel91.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel91.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel92.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel92.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel92.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel92.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel92.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel92.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel93.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel93.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel93.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel93.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel93.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel93.x86_64.rpm

DOCA Documentation v2.7.0 121

Device Component OS
Arc
h

Link

RHEL/R
ocky
9.4

aar
ch
64

doca-host-2.7.0-
204000_24.04_rhel94.aarch
64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_rhel94.x86_6
4.rpm

SLES 15
SP2

aar
ch
64

doca-host-2.7.0-
204000_24.04_sles15sp2.aa
rch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_sles15sp2.x8
6_64.rpm

SLES 15
SP3

aar
ch
64

doca-host-2.7.0-
204000_24.04_sles15sp3.aa
rch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_sles15sp3.x8
6_64.rpm

SLES 15
SP4

aar
ch
64

doca-host-2.7.0-
204000_24.04_sles15sp4.aa
rch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_sles15sp4.x8
6_64.rpm

SLES 15
SP5

aar
ch
64

doca-host-2.7.0-
204000_24.04_sles15sp5.aa
rch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_sles15sp5.x8
6_64.rpm

SLES 15
SP6

x8
6

doca-host-2.7.0-
204000_24.04_sles15sp6.x8
6_64.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel94.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel94.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel94.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel94.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel94.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel94.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp4.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp4.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp4.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp4.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp4.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp4.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp5.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp5.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp5.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp5.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp5.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp5.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp6.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp6.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp6.x86_64.rpm

DOCA Documentation v2.7.0 122

Device Component OS
Arc
h

Link

Tencen
tOS 3.3

aar
ch
64

doca-host-2.7.0-
204000_24.04_tencentos33.
aarch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_tencentos33.
x86_64.rpm

Ubuntu
20.04

aar
ch
64

doca-host_2.7.0-204000-
24.04-
ubuntu2004_arm64.deb

x8
6

doca-host_2.7.0-204000-
24.04-
ubuntu2004_amd64.deb

Ubuntu
22.04

aar
ch
64

doca-host_2.7.0-204000-
24.04-
ubuntu2204_arm64.deb

x8
6

doca-host_2.7.0-204000-
24.04-
ubuntu2204_amd64.deb

Ubuntu
24.04

aar
ch
64

doca-host_2.7.0-204000-
24.04-
ubuntu2404_arm64.deb

x8
6

doca-host_2.7.0-204000-
24.04-
ubuntu2404_amd64.deb

UOS20.
1060

aar
ch
64

doca-host-2.7.0-
204000_24.04_uos201060.a
arch64.rpm

x8
6

doca-host-2.7.0-
204000_24.04_uos201060.x
86_64.rpm

UOS20.
1060A

aar
ch
64

doca-host-2.7.0-
204000_24.04_uos201060a.
aarch64.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_tencentos33.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_tencentos33.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_tencentos33.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_tencentos33.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_tencentos33.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_tencentos33.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2004_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2004_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2004_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2004_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2004_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2004_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2204_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2204_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2204_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2204_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2204_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2204_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2404_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2404_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2404_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2404_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2404_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2404_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060a.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060a.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060a.aarch64.rpm

DOCA Documentation v2.7.0 123

Device Component OS
Arc
h

Link

x8
6

doca-host-2.7.0-
204000_24.04_uos201060a.
x86_64.rpm

XenSer
ver 8.2

x8
6

doca-host-2.7.0-
204000_24.04_xenserver82.
x86_64.rpm

Target
BlueField
Platform
(Arm)

BlueField Software v 4.7.0
Ubuntu
22.04

aar
ch
64

bf-bundle-2.7.0-
33_24.04_ubuntu-
22.04_prod.bfb

DOCA SDK v2.7.0
Ubuntu
22.04

aar
ch
64

doca-dpu-repo-
ubuntu2204-local_2.7.0085-
1.24.04.0.6.6.0.bf.4.7.0.131
27_arm64.debDOCA Runtime v2.7.0

Uninstalling Software from Host

If an older DOCA (or MLNX_OFED) software version is installed on your host, make sure to
uninstall it before proceeding with the installation of the new version:

Deb-
based

RPM-
based

Then perform the following steps:

1. Download NVIDIA's RPM-GPG-KEY-Mellanox-SHA256 key:

$ for f in $(dpkg --list | grep doca | awk '{print $2}'); do echo $f ; apt
remove --purge $f -y ; done
$ /usr/sbin/ofed_uninstall.sh --force
$ sudo apt-get autoremove

host# for f in $(rpm -qa | grep -i doca) ; do yum -y remove $f; done
host# /usr/sbin/ofed_uninstall.sh --force
host# yum autoremove
host# yum makecache

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060a.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060a.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060a.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_xenserver82.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_xenserver82.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_xenserver82.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/doca_2.7/bf-bundle-2.7.0-33_24.04_ubuntu-22.04_prod.bfb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/doca_2.7/bf-bundle-2.7.0-33_24.04_ubuntu-22.04_prod.bfb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/doca_2.7/bf-bundle-2.7.0-33_24.04_ubuntu-22.04_prod.bfb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-dpu-repo-ubuntu2204-local_2.7.0085-1.24.04.0.6.6.0.bf.4.7.0.13127_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-dpu-repo-ubuntu2204-local_2.7.0085-1.24.04.0.6.6.0.bf.4.7.0.13127_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-dpu-repo-ubuntu2204-local_2.7.0085-1.24.04.0.6.6.0.bf.4.7.0.13127_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-dpu-repo-ubuntu2204-local_2.7.0085-1.24.04.0.6.6.0.bf.4.7.0.13127_arm64.deb

DOCA Documentation v2.7.0 124

2. Install the key:

3. Verify that the key was successfully imported:

wget http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox-
SHA256
--2018-01-25 13:52:30-- http://www.mellanox.com/downloads/ofed/RPM-GPG-
KEY-Mellanox-SHA256
Resolving www.mellanox.com... 72.3.194.0
Connecting to www.mellanox.com|72.3.194.0|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1354 (1.3K) [text/plain]
Saving to: ?RPM-GPG-KEY-Mellanox-SHA256?

100%[===>] 1,354 --.-
K/s in 0s

2018-01-25 13:52:30 (247 MB/s) - ?RPM-GPG-KEY-Mellanox-SHA256? saved
[1354/1354]

sudo rpm --import RPM-GPG-KEY-Mellanox-SHA256
warning: rpmts_HdrFromFdno: Header V3 DSA/SHA1 Signature, key ID
6224c050: NOKEY
Retrieving key from file:///repos/MLNX_OFED//RPM-GPG-KEY-Mellanox
Importing GPG key 0x6224C050:
Userid: "Mellanox Technologies (Mellanox Technologies - Signing Key v2) "
From : /repos/MLNX_OFED//RPM-GPG-KEY-Mellanox-SHA256
Is this ok [y/N]:

rpm -q gpg-pubkey --qf '%{NAME}-%{VERSION}-%{RELEASE}\t%
{SUMMARY}\n' | grep Mellanox
gpg-pubkey-a9e4b643-520791ba gpg(Mellanox Technologies)

DOCA Documentation v2.7.0 125

Installing Prerequisites on Host for Target BlueField

Install RShim to manage and flash the BlueField Platform.

OS Procedure

Deb-
based

1. Download the DOCA host repo package from the "Installation Files"
section.

2. Unpack the deb repo. Run:

3. Perform apt update. Run:

4. Run apt install for RShim:

RPM-
based

1. Download the DOCA host repo package from the "Installation Files"
section.

2. Unpack the RPM repo. Run:

3. Enable new dnf repos. Run:

4. Run dnf install to install RShim:

host# sudo dpkg -i <repo_file>

host# sudo apt-get update

host# sudo apt install rshim

host# sudo rpm -Uvh <repo_file>

host# sudo dnf makecache

host# sudo dnf install rshim

Note

Skip section "Installing Software on Host" to proceed without the
DOCA local repo package for host.

DOCA Documentation v2.7.0 126

Determining BlueField Device ID

It is important to learn your BlueField's device-id to perform some of the software
installations or upgrades in this guide.

To determine the device ID of the BlueField Platform on your setup, run:

Example output:

host# mst start
host# mst status -v

MST modules:

MST PCI module is not loaded
MST PCI configuration module loaded
PCI devices:

DEVICE_TYPE MST PCI RDMA NET NUMA
BlueField2(rev:1) /dev/mst/mt41686_pciconf0.1 3b:00.1 mlx5_1 net-ens1f1 0

BlueField2(rev:1) /dev/mst/mt41686_pciconf0 3b:00.0 mlx5_0 net-ens1f0 0

BlueField3(rev:1) /dev/mst/mt41692_pciconf0.1 e2:00.1 mlx5_1 net-
ens7f1np1 4

BlueField3(rev:1) /dev/mst/mt41692_pciconf0 e2:00.0 mlx5_0 net-
ens7f0np0 4

Info

The device IDs for the BlueField-2 and BlueField-3 networking
platforms in this example are /dev/mst/mt41686_pciconf0 and

DOCA Documentation v2.7.0 127

Installing Software on Host

1. Install DOCA local repo package for host:

OS Profile Instructions

Deb-
base

doca-
all

1. Download the DOCA host repo from section "Installation Files"
for the host.

/dev/mst/mt41692_pciconf0 respectively.

Note

Skip this section if you intend to update only the BlueField software
(*.bfb).

Note

Make sure to have followed the instructions under "Installing
Prerequisites on Host for Target DPU".

Info

The following table provides instructions for installing the DOCA
host repo on your device depending on your OS and desired
profile.

DOCA Documentation v2.7.0 128

OS Profile Instructions

d 2. Unpack the deb repo. Run:

3. Perform apt update. Run:

4. If the kernel version on your host is not supported (not shown
under "Supported Operating System Distributions"), refer to
section "DOCA Extra Package".

5. Ensure that the kernel headers installed match the version of
the currently running kernel.

6. Run apt install for DOCA SDK and DOCA runtime:

doca-
netwo
rking

1. Download the DOCA host repo from section "Installation Files"
for the host.

2. Unpack the deb repo. Run:

3. Perform apt update. Run:

4. If the kernel version on your host is not supported (not shown
under "Supported Operating System Distributions"), refer to
section "DOCA Extra Package".

5. Ensure that the kernel headers installed match the version of
the currently running kernel.

host# dpkg -i <repo_file>

host# apt-get update

Info
If the build directory exists in under
/lib/modules/$(uname -r)/build, then the kernel
headers are installed.

host# sudo apt install -y doca-all mlnx-fw-updater

host# dpkg -i <repo_file>

host# apt-get update

DOCA Documentation v2.7.0 129

OS Profile Instructions

6. Run apt install for DOCA SDK and DOCA runtime:

doca-
ofed

1. Download the DOCA host repo from section "Installation Files"
for the host.

2. Unpack the deb repo. Run:

3. Perform apt update. Run:

4. If the kernel version on your host is not supported (not shown
under "Supported Operating System Distributions"), refer to
section "DOCA Extra Package".

5. Ensure that the kernel headers installed match the version of
the currently running kernel.

6. Install doca-ofed. Run:

RPM
-

doca-
all

1. Download the DOCA host repo from section "Installation Files"
for the host .

Info
If the build directory exists in under
/lib/modules/$(uname -r)/build, then the kernel
headers are installed.

host# sudo apt install -y doca-networking mlnx-fw-
updater

host# sudo dpkg -i <repo_file>

host# sudo apt-get update

Info
If the build directory exists in under
/lib/modules/$(uname -r)/build, then the kernel
headers are installed.

host# sudo apt install -y doca-ofed mlnx-fw-updater

DOCA Documentation v2.7.0 130

OS Profile Instructions

base
d

2. Unpack the rpm repo. Run:

3. Perform yum update. Run:

4. If the kernel version on your host is not supported (not shown
under "Supported Operating System Distributions"), refer to
section "DOCA Extra Package".

5. Run yum install for DOCA SDK and DOCA runtime:

doca-
netwo
rking

1. Download the DOCA host repo from section "Installation Files"
for the host .

2. Unpack the rpm repo. Run:

3. Perform yum update. Run:

4. If the kernel version on your host is not supported (not shown
under "Supported Operating System Distributions"), refer to
section "DOCA Extra Package".

5. Run yum install for DOCA SDK and DOCA runtime:

doca-
ofed

1. Download the DOCA host repo from section "Installation Files"
for the host.

2. Unpack the RPM repo. Run:

3. Perform yum update. Run:

4. If the kernel version on your host is not supported (not shown
under "Supported Operating System Distributions"), refer to

host# rpm -Uvh <repo_file>.rpm

host# sudo yum makecache

host# sudo yum install -y doca-all mlnx-fw-updater

host# rpm -Uvh <repo_file>.rpm

host# sudo yum makecache

host# sudo yum install -y doca-networking mlnx-fw-
updater

host# sudo rpm -Uvh <repo_file>.rpm

host# sudo yum makecache

DOCA Documentation v2.7.0 131

OS Profile Instructions

section "DOCA Extra Package".
5. Install doca-ofed. Run:

2. Load the drivers:

3. Initialize MST. Run:

4. Skip this step if your BlueField Platform is Ethernet only. Please refer to Supported
Platforms to learn your Bluefield type.

If you have a VPI-capable BlueField, the default link type of the ports will be
configured to IB. To verify your link type, run:

If the current link type is set to IB, run the following command to change it to
Ethernet:

host# sudo yum install -y doca-ofed mlnx-fw-updater

host# sudo /etc/init.d/openibd restart

host# sudo mst restart

host# sudo mst start
host# sudo mlxconfig -d <device-id> -e q | grep -i link_type
Configurations: Default Current Next Boot
* LINK_TYPE_P1 IB(1) ETH(2) IB(1)
* LINK_TYPE_P2 IB(1) ETH(2) IB(1)

Note

If your BlueField is Ethernet capable only, then the sudo mlxconfig -

d <device> command will not provide an output.

DOCA Documentation v2.7.0 132

5. Verify that RShim is active.

This command is expected to display active (running). If RShim service does not launch
automatically, run:

6. Assign a dynamic IP to tmfifo_net0 interface (RShim host interface).

DOCA Extra Package

If the kernel version on on your host is not supported (not shown under "Supported
Operating System Distributions"), two options are available:

Switch to a compatible kernel.

Install doca-extra package:

1. Run:

host# sudo mlxconfig -d <device-id> s LINK_TYPE_P1=2 LINK_TYPE_P2=2

host# sudo systemctl status rshim

host# sudo systemctl enable rshim
host# sudo systemctl start rshim

Note

Skip this step if you are installing the DOCA image on multiple
DPUs.

host# ifconfig tmfifo_net0 192.168.100.1 netmask 255.255.255.252 up

DOCA Documentation v2.7.0 133

2. Execute the doca-kernel-support script which rebuilds and installs the DOCA-Host
kernel modules with the running kernel:

3. Install user-space packages:

Installing Software on DPU

Users have two options for installing DOCA on BlueField DPU or SuperNIC:

Upgrading the full DOCA image on BlueField (recommended) – this option
overwrites the entire boot partition with an Ubuntu 22.04 installation and updates
BlueField and NIC firmware.

Upgrading DOCA local repo package on BlueField – this option upgrades DOCA
components without overwriting the boot partition. Use this option to preserve
configurations or files on BlueField itself.

Installing Full DOCA Image on DPU via Host

host# sudo apt/yum install -y doca-extra

host# sudo /opt/mellanox/doca/tools/doca-kernel-support

host# sudo apt/yum install -y doca-ofed-userspace

Note

doca-kernel-support does not support customized or unofficial
kernels.

DOCA Documentation v2.7.0 134

Option 1 – No Pre-defined Password

BFB installation is executed as follows:

Where rshim<N> is rshim0 if you only have one Bluefield. You may run the following
command to verify:

Warning

This step overwrites the entire boot partition.

Note

This installation sets up the OVS bridge.

Note

If you are installing DOCA on multiple BlueField platforms, skip to
section Installing Full DOCA Image on Multiple BlueField Platforms.

Note

To change the default Ubuntu password during the BFB bundle
installation, proceed to Option 2.

host# sudo bfb-install --rshim rshim<N> --bfb <image_path.bfb>

DOCA Documentation v2.7.0 135

Option 2 – Set Pre-defined Password

Ubuntu users can provide a unique password that will be applied at the end of the
BlueField BFB bundle installation. This password needs to be defined in a bf.cfg

configuration file.

To set the password for the "ubuntu" user:

1. Create password hash. Run:

2. Add the password hash in quotes to the bf.cfg file:

When running the installation command, use the --config flag to provide the file
containing the password:

host# ls -la /dev/ | grep rshim

host# openssl passwd -1
Password:
Verifying - Password:
$1$3B0RIrfX$TlHry93NFUJzg3Nya00rE1

host# sudo vim bf.cfg
ubuntu_PASSWORD='$1$3B0RIrfX$TlHry93NFUJzg3Nya00rE1'

host# sudo bfb-install --rshim rshim<N> --bfb <image_path.bfb> --config bf.cfg

Note

Optionally, to upgrade the BlueField integrated BMC firmware
using BFB bundle, please provide the current BMC root
credentials in a bf.cfg file, as shown in the following:

DOCA Documentation v2.7.0 136

The following is an example of Ubuntu-22.04 BFB bundle installation (Release
version may vary in the future).

Unless previously changed, the default BMC root password is
0penBmc.

BMC_PASSWORD="<root password>"

BMC_USER="root"

BMC_REBOOT="yes"

Note

If --config is not used, then upon first login to the BlueField
device, users will be prompted to update the default 'ubuntu'
password.

host# sudo bfb-install --rshim rshim0 --bfb bf-bundle-2.7.0_24.04_ubuntu-
22.04_prod.bfb --config bf.cfg
Pushing bfb 1.41GiB 0:02:02 [11.7MiB/s] [<=>]
Collecting BlueField booting status. Press Ctrl+C to stop
INFO[PSC]: PSC BL1 START
INFO[BL2]: start
INFO[BL2]: boot mode (rshim)
INFO[BL2]: VDDQ: 1120 mV
INFO[BL2]: DDR POST passed
INFO[BL2]: UEFI loaded
INFO[BL31]: start
INFO[BL31]: lifecycle GA Secured
INFO[BL31]: VDD: 850 mV
INFO[BL31]: runtime
INFO[BL31]: MB ping success
INFO[UEFI]: eMMC init

DOCA Documentation v2.7.0 137

To verify the BlueField has completed booting up, allow additional 90 seconds then
perform the following:

Installing Full DOCA Image on Multiple BlueField Platforms

On a host with multiple BlueField devices, the BFB image can be installed on all of them
using the multi-bfb-install script.

INFO[UEFI]: eMMC probed
INFO[UEFI]: UPVS valid
INFO[UEFI]: PMI: updates started
INFO[UEFI]: PMI: total updates: 1
INFO[UEFI]: PMI: updates completed, status 0
INFO[UEFI]: PCIe enum start
INFO[UEFI]: PCIe enum end
INFO[UEFI]: UEFI Secure Boot
INFO[UEFI]: PK configured
INFO[UEFI]: Redfish enabled
INFO[UEFI]: exit Boot Service
INFO[MISC]: Found bf.cfg
INFO[MISC]: Ubuntu installation started
INFO[MISC]: Installing OS image
INFO[MISC]: Changing the default password for user ubuntu
INFO[MISC]: Ubuntu installation completed
INFO[MISC]: Updating NIC firmware...
INFO[MISC]: NIC firmware update done
INFO[MISC]: Installation finished

host# sudo cat /dev/rshim<N>/misc
...
 INFO[MISC]: Linux up
 INFO[MISC]: DPU is ready

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/doca_2.0.2/doca_202_b37/multi-bfb-install/

DOCA Documentation v2.7.0 138

This script detects the number of RShim devices and configures them statically.

For Ubuntu – the script creates a configuration file /etc/netplan/20-tmfifo.yaml

For CentOS/RH 8.0 and 8.2 – the script installs the bridge-utils package to use the brctl

command, creates the tm-br bridge, and connects all RShim interfaces to it

After the installation is complete, the configuration of the bridge and each RShim
interface can be observed using ifconfig. The expected result is to see the IP on the tm-br

bridge configured to 192.168.100.1 with subnet 255.255.255.0.

The script burns a new MAC address to each BlueField and configures a new IP,
192.168.100.x, as described earlier.

Installing DOCA Local Repo Package on BlueField

host# ./multi-bfb-install --bfb <image_path.bfb> --password <password>

Note

To log into BlueField with rshim0, run:

For each RShim after that, add 1 to the fourth octet of the IP address
(e.g., ubuntu@192.168.100.3 for rshim1, ubuntu@192.168.100.4 for rshim2,
etc).

ssh ubuntu@192.168.100.2

Note

If you have already installed BlueField image, be aware that the DOCA
SDK, Runtime, and Tools are already contained in the BFB, and this

DOCA Documentation v2.7.0 139

1. Download the DOCA SDK and DOCA Runtime package from section Installation
Files.

2. Copy deb repo package into BlueField. Run:

3. Unpack the deb repo. Run:

4. Run apt update.

5. Run apt install for DOCA Runtime and DOCA SDK:

installation is not mandatory. If you have not installed the BlueField
image and wish to update DOCA Local Repo package, proceed with
the following procedure.

Note

Before installing DOCA on the target BlueField, make sure the out-of-
band interface (mgmt) is connected to the internet.

host# sudo scp -r doca-repo-aarch64-ubuntu2204-local_<version>_arm64.deb
ubuntu@192.168.100.2:/tmp/

dpu# sudo dpkg -i doca-dpu-repo-ubuntu2204-local_<version>_arm64.deb

dpu# sudo apt-get update

dpu# sudo apt install doca-runtime doca-sdk

DOCA Documentation v2.7.0 140

Upgrading Firmware

This section explains how to update the NIC firmware on a DOCA installed BlueField OS.

An up-to-date NIC firmware image is provided in BlueField BFB bundle and copied to the
BlueField filesystem during BFB installation.

To upgrade firmware in the BlueField Arm OS:

1. SSH to your BlueField Arm OS by any means available.

The following instructions enable to login to the BlueField Arm OS from the host OS
over the RShim virtual interface, tmfifo_net<N> and do not require LAN connectivity
with the BlueField OOB network port.

Note

This operation is only required if the user skipped NIC firmware
update during BFB bundle installation using the parameter
WITH_NIC_FW_UPDATE=no in the bf.cfg file.

Note

If multiple BlueFields are installed, the following steps must be
performed on all of them after BFB installation.

Note

This operation can be performed over the host's tmfifo_net0 IPv4,
192.168.100.1 (preconfigured) with BlueField Arm OS at
192.168.100.2 (default).

DOCA Documentation v2.7.0 141

The default credentials for Ubuntu are as follows:

Username Password

ubuntu ubuntu

For example, to log into BlueField Arm OS over IPv6:

2. Upgrade firmware in BlueField. Run:

Example output:

If multiple BlueField DPUs were updated using the multi-bfb-install

script, as explained above, then each target BlueField OS IPv4
address changes in its last octate according to the underlaying
RShim interface number: 192.168.100.3 for rshim1,
192.168.100.4 for rshim2, etc.

host]# systemctl restart rshim
// Wait 10 seconds

host]# ssh -6 fe80::21a:caff:feff:ff01%tmfifo_net<N>
Password: <configured-password>

dpu# sudo /opt/mellanox/mlnx-fw-updater/mlnx_fw_updater.pl --force-fw-
update

Device #1:

Device Type: BlueField-2
[...]
Versions: Current Available
FW <Old_FW> <New_FW>

DOCA Documentation v2.7.0 142

3. For the firmware upgrade to take effect perform a BlueField system reboot.

Post-installation Procedure

1. Restart the driver. Run:

2. Configure the physical function (PF) interfaces.

For example:

Pings between the source and destination should now be operational.

Upgrading BlueField Using Standard Linux Tools

This dpu-upgrade procedure enables upgrading DOCA components using standard Linux
tools (e.g., apt update and yum update). This process utilizes native package manager
repositories to upgrade DPUs without the need for a full installation, and has the
following benefits :

Only updates components that include modifications

Configurable – user can select specific components (e.g., UEFI-ATF, NIC-FW)

host# sudo /etc/init.d/openibd restart
Unloading HCA driver: [OK]
Loading HCA driver and Access Layer: [OK]

host# sudo ifconfig <interface-1> <network-1/mask> up
host# sudo ifconfig <interface-2> <network-2/mask> up

host# sudo ifconfig p2p1 192.168.200.32/24 up
host# sudo ifconfig p2p2 192.168.201.32/24 up

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-2799458725_id-.NVIDIABlueFieldResetandRebootProceduresv2.7.0-BlueFieldSystemReboot

DOCA Documentation v2.7.0 143

Includes upgrade of:

DOCA drivers and libraries

DOCA reference applications

BSP (UEFI/ATF) upgrade while maintaining the configuration

NIC firmware upgrade while maintaining the configuration

Does not:

Impact user binaries

Upgrade non-Ubuntu OS kernels

Upgrade DPU BMC firmware

After completion of DPU upgrade:

If NIC firmware was not updated, perform DPU Arm reset (software reset /
reboot DPU)

If NIC firmware was updated, perform firmware reset (mlxfwreset) or perform a
graceful shutdown and power cycle

OS Action Instructions

Ubun
tu/
Debi
an

Remove
mlxbf-
bootimages
package

Install the
the GPG key

Export the
desired
distribution

Export DOCA_REPO with the relevant URL. The following is an
example for Ubuntu 22.04:

<dpu> $ apt remove --purge mlxbf-bootimages* -y

<dpu> $ apt update
<dpu> $ apt install gnupg2

<dpu> $ export
DOCA_REPO="https://linux.mellanox.com/public/repo/doca/
2.7.0/ubuntu22.04/dpu-arm64"

DOCA Documentation v2.7.0 144

OS Action Instructions

Ubuntu 22.04 –
https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu22
.04/dpu-arm64
Ubuntu 20.04 –
https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu20
.04/dpu-arm64
Debian 12 –
https://linux.mellanox.com/public/repo/doca/2.7.0/debian12
/dpu-arm64

Add GPG
key to APT
trusted
keyring

Add DOCA
online
repository

Update
index

Upgrade
UEFI/ATF
firmware

Run:

Then i nitiate upgrade for UEFI/ATF firmware:

Upgrade
BlueField
DPU NIC
firmware

Run:

<dpu> $ curl $DOCA_REPO/GPG-KEY-Mellanox.pub | gpg --
dearmor > /etc/apt/trusted.gpg.d/GPG-KEY-Mellanox.pub

<dpu> $ echo "deb [signed-by=/etc/apt/trusted.gpg.d/GPG-
KEY-Mellanox.pub] $DOCA_REPO ./" >
/etc/apt/sources.list.d/doca.list

<dpu> $ apt update

<dpu> $ apt install mlxbf-bootimages-signed

<dpu> $ apt install mlxbf-scripts
<dpu> $ bfrec

<dpu> $ apt install mlnx-fw-updater-signed.aarch64

Note
This immediately starts NIC firmware upgrade.

https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu22.04/dpu-arm64
https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu22.04/dpu-arm64
https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu20.04/dpu-arm64
https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu20.04/dpu-arm64
https://linux.mellanox.com/public/repo/doca/2.7.0/debian12/dpu-arm64
https://linux.mellanox.com/public/repo/doca/2.7.0/debian12/dpu-arm64

DOCA Documentation v2.7.0 145

OS Action Instructions

To prevent automatic upgrade, run:

Remove old
metapackag
es

Install new
metapackag
es

Upgrade
system

Apply the
new
changes,
NIC
firmware,
and
UEFI/ATF

For the upgrade to take effect, perform BlueField system reboot as
explained in the "NVIDIA BlueField Reset and Reboot Procedures"
troubleshooting page.

Cent
OS/R
HEL/
Anoli
s/Roc
ky

Remove
mlxbf-
bootimages
package

Export the
desired
distribution

Export DOCA_REPO with the relevant URL. The following is an
example for Rocky Linux 8.6:

AnolisOS 8.6 –
https://linux.mellanox.com/public/repo/doca/2.7.0/anolis8.6/

<dpu> $ export RUN_FW_UPDATER=no

<dpu> $ apt-get remove doca-tools doca-sdk doca-runtime -y

<dpu> $ apt-get install doca-runtime doca-devel -y

<dpu> $ apt upgrade

Note
This step triggers immediate reboot of the
BlueField Arm cores.

<dpu> $ yum -y remove mlxbf-bootimages*
<dpu> $ yum makecache

<dpu> $ export
DOCA_REPO="https://linux.mellanox.com/public/repo/doca/
2.7.0/rhel8.6/dpu-arm64/"

https://linux.mellanox.com/public/repo/doca/2.7.0/anolis8.6/dpu-arm64/

DOCA Documentation v2.7.0 146

OS Action Instructions

dpu-arm64/
OpenEuler 20.03 sp1 –
https://linux.mellanox.com/public/repo/doca/2.7.0/openeule
r20.03sp1/dpu-arm64/
CentOS 7.6 with 4.19 kernel –
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-
4.19/dpu-arm64/
CentOS 7.6 with 5.10 kernel –
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-
5.10/dpu-arm64/
CentOS 7.6 with 5.4 kernel –
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6/d
pu-arm64/
Rocky Linux 8.6 –
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel8.6/d
pu-arm64/

Add DOCA
online
repository

A file is created under /etc/yum.repos.d/doca.repo .

Update
index

Upgrade
UEFI/ATF
firmware

Run:

Then i nitiate the upgrade for UEFI/ATF firmware:

echo "[doca]
name=DOCA Online Repo
baseurl=$DOCA_REPO
enabled=1
gpgcheck=0
priority=10
cost=10" > /etc/yum.repos.d/doca.repo

<dpu> $ yum makecache

<dpu> $ yum install mlxbf-bootimages-signed.aarch64
mlxbf-bfscripts

<dpu> $ bfrec

https://linux.mellanox.com/public/repo/doca/2.7.0/anolis8.6/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/anolis8.6/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/openeuler20.03sp1/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/openeuler20.03sp1/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-4.19/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-4.19/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-5.10/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-5.10/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel8.6/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel8.6/dpu-arm64/

DOCA Documentation v2.7.0 147

OS Action Instructions

Upgrade
BlueField
DPU NIC
firmware

The following command updates the firmware package and
automatically attempts to flash the firmware to the NIC:

Remove old
metapackag
es

Install new
metapackag
es

Upgrade
system

Apply the
new
changes,
NIC
firmware,

For the upgrade to take effect, perform BlueField system reboot as
explained in the "NVIDIA BlueField Reset and Reboot Procedures"
troubleshooting page.

<dpu> $ yum install mlnx-fw-updater-signed.aarch64

Info
This step can be used as a standalone
firmware update. In any case, it is performed
as part of the upgrade flow.

Note
To prevent automatic flashing of the firmware
to the NIC, run the following first:

0000018f-9ce9-dc04-a5ff-9ffdda38000a

<dpu> $ export RUN_FW_UPDATER=no

<dpu> $ yum -y remove doca-tools doca-sdk doca-runtime

<dpu> $ yum -y install doca-runtime doca-devel

<dpu> $ yum upgrade --nobest

Note

DOCA Documentation v2.7.0 148

OS Action Instructions

and
UEFI/ATF

Building Your Own BFB Installation Image

Users wishing to build their own customized BlueField OS image can use the BFB build
environment. Please refer to the bfb-build project in this GitHub webpage for more
information.

Setting Up Build Environment for Developers

For full instructions about setting up a development environment, refer to the NVIDIA
DOCA Developer Guide.

Additional SDKs for DOCA

Installing CUDA on NVIDIA Converged Accelerator

NVIDIA® CUDA® is a parallel computing platform and programming model developed by
NVIDIA for general computing GPUs.

This step triggers immediate reboot of the
BlueField Arm cores.

Note

For a customized BlueField OS image to boot on the UEFI secure-
boot-enabled BlueField (default BlueField secure boot setting), the OS
must be either signed with an existing key in the UEFI DB (e.g., the
Microsoft key), or UEFI secure boot must be disabled. Please refer to
the "Secure Boot" page under NVIDIA BlueField DPU Platform Operating
System Documentation for more details.

https://github.com/Mellanox/bfb-build/
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Developer+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Developer+Guide
https://docs.nvidia.com/networking/dpu-doca/index.html#dpu-os
https://docs.nvidia.com/networking/dpu-doca/index.html#dpu-os

DOCA Documentation v2.7.0 149

This section details the necessary steps to set up CUDA on your environment. This
section assumes that a BFB image has already been installed on your environment.
To install CUDA on your converged accelerator:

1. Download and install the latest NVIDIA Data Center GPU driver.

2. Download and install CUDA

Configuring Operation Mode

There are two modes that the NVIDIA Converged Accelerator may operate in:

Standard mode (default) – the BlueField and the GPU operate separately

BlueField-X mode – the GPU is exposed to BlueField and is no longer visible on the
host

To verify which mode the system is operating in, run:

Note

The CUDA version tested to work with DOCA SDK is 11.8.0.

Note

Downloading CUDA includes the latest NVIDIA Data Center GPU
driver and CUDA toolkit. For more information about CUDA and
driver compatibility, refer to the NVIDIA CUDA Toolkit Release Notes.

host# sudo mst start
host# sudo mlxconfig -d <device-id> q PCI_DOWNSTREAM_PORT_OWNER[4]

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

DOCA Documentation v2.7.0 150

Standard mode output:

BlueField-X mode output:

To configure BlueField-X mode, run:

To configure standard mode, run:

Note

To learn your BlueField Platform's device ID, refer to section
"Determining BlueField Device ID".

Device #1:
[…]
Configurations: Next Boot
PCI_DOWNSTREAM_PORT_OWNER[4] DEVICE_DEFAULT(0)

Device #1:
[…]
Configurations: Next Boot
PCI_DOWNSTREAM_PORT_OWNER[4] EMBEDDED_CPU(15)

host# mlxconfig -d <device-id> s PCI_DOWNSTREAM_PORT_OWNER[4]=0xF

host# mlxconfig -d <device-id> s PCI_DOWNSTREAM_PORT_OWNER[4]=0x0

Note

DOCA Documentation v2.7.0 151

Power cycle is required for configuration to take effect. For power cycle the host run:

Downloading and Installing CUDA Toolkit and Driver

This section details the necessary steps to set up CUDA on your environment. It assumes
that a BFB image has already been installed on your environment.

1. Install CUDA by visiting the CUDA Toolkit Downloads webpage.

2. Test that the driver installation completed successfully. Run:

To learn your BlueField Platform's device ID, refer to section
"Determining BlueField Device ID".

host# ipmitool power cycle

Note

Select the Linux distribution and version relevant for your
environment.

Note

This section shows the native compilation option either on x86
or aarch64 hosts.

dpu# nvidia-smi

https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=arm64-sbsa&Compilation=Native&Distribution=Ubuntu&target_version=20.04&target_type=deb_local

DOCA Documentation v2.7.0 152

3. Verify that the installation completed successfully.

1. Download CUDA samples repo. Run:

2. Build and run vectorAdd CUDA sample. Run:

Tue Apr 5 13:37:59 2022

+---+
| NVIDIA-SMI 510.47.03 Driver Version: 510.47.03 CUDA Version: 11.8 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+==========		
0 NVIDIA BF A10 Off	00000000:06:00.0 Off	0
0% 43C P0 N/A / 225W	0MiB / 23028MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
+---+		
Processes:		
GPU GI CI PID Type Process name GPU Memory		
ID ID Usage		
===		
No running processes found		
+---+

dpu# git clone https://github.com/NVIDIA/cuda-samples.git

dpu# cd cuda-samples/Samples/0_Introduction/vectorAdd
dpu# make
dpu# ./vectorAdd

Note

DOCA Documentation v2.7.0 153

GPUDirect RDMA

For information on GPUDirect RMDA and more, refer to DOCA GPUNetIO documentation.

Installing Rivermax on BlueField

NVIDIA Rivermax offers a unique IP-based solution for any media and data streaming use
case.

This section provides the steps to install Rivermax assuming that a BFB image has already
been installed on your environment.

Downloading Rivermax Driver

1. Navigate to the NVIDIA Rivermax SDK product page.

2. Register to be able to download the driver package using the JOIN button at the top
of the page.

3. D ownload the appropriate driver package according to your BFB under the "Linux"
subsection. For example, for Ubuntu 22.04 BFB, download
rivermax_ubuntu2204_<version>.tar.gz.

If the vectorAdd sample works as expected, it should output "Test

Passed".

Note

If it seems that the GPU is slow or stuck, stop execution and run:

dpu# sudo setpci -v -d ::0302 800.L=201 # CPL_VC0 = 32

https://docs.nvidia.com//doca/sdk/DOCA+GPUNetIO
https://developer.nvidia.com/networking/rivermax

DOCA Documentation v2.7.0 154

Installing Rivermax Driver

1. Copy the .tgz file to BlueField:

2. Extract the Rivermax file:

3. Install the Rivermax driver package:

Installing Rivermax Libraries from DOCA

Rivermax libraries are compatibles with DOCA components and can be found inside the
doca-dpu-repo.

1. Unpack the doca-dpu-repo:

2. Run apt update:

3. Install the Rivermax libraries:

host# sudo scp -r rivermax_ubuntu2204_<version>.tar.gz
ubuntu@192.168.100.2:/tmp/

dpu# sudo tar xzf rivermax_ubuntu2204_<version>.tar.gz

dpu# cd <rivermax-version>/Ubuntu.22.04/deb-dist/aarch64/
dpu# sudo dpkg -i rivermax_<version>.deb

dpu# sudo dpkg -i doca-dpu-repo-ubuntu2204-local_<version>_arm64.deb

dpu# sudo apt-get update

dpu# sudo apt install doca-rmax-libs

DOCA Documentation v2.7.0 155

For additional details and guidelines, please visit the NVIDIA Rivermax SDK product page.

NVIDIA DOCA Developer Guide
This guide details the recommended steps to set up an NVIDIA DOCA development
environment.

Introduction

This guide is intended for software developers aiming to modify existing NVIDIA DOCA
applications or develop their own DOCA-based software.

Instructions for installing DOCA on the NVIDIA® BlueField® Networking Platform (i.e.,
DPU or SuperNIC) can be found in the NVIDIA DOCA Installation Guide for Linux.

This guide focuses on the recommended flow for developing DOCA-based software, and
will address the following scenarios:

BlueField is accessible and can be used during the development and testing process

Working within a development container

BlueField is inaccessible, and the development happens on the host or on a
different server

dpu# sudo apt install libdoca-rmax-libs-dev

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://developer.nvidia.com/networking/rivermax
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 156

Cross-compilation from the host

Working within a development container on top of QEMU running on the host

It is recommended to follow the instructions for the first scenario, leveraging BlueField
during the development and testing process.

This guide recommends using DOCA's development container during the development
process on BlueField Platforms or on the host. Deploying development containers allows
multiple developers to work simultaneously on the same device (host or BlueField
Platform) in an isolated manner and even across multiple different DOCA SDK versions.
This can allow multiple developers to work on the BlueField Platform itself, for example,
without needing to have a dedicated BlueField per developer.

Another benefit of this container-based approach is that the development container
allows developers to create and test their DOCA-based software in a user-friendly
environment that comes pre-shipped with a set of handy development tools. The
development container is focused on improving the development experience and is
designed for that purpose, whereas the BlueField software is meant to be an efficient
runtime environment for DOCA products.

Developing Using BlueField Networking Platform

Setup

DOCA's base image containers include a DOCA development container for the BlueField
(doca:devel) which can be found on NGC. It is recommended to deploy this container on
top of BlueField when preparing a development setup.

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca
mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 157

The recommended approach for working using DOCA's development container on top of
the BlueField, is by using docker, which is already included in the supplied BFB image.

1. Make sure the docker service is started. Run:

2. Pull the container image:

1. Visit the NGC page of the DOCA base image.

2. Under the "Tags" menu, select the desired development tag for BlueField.

3. The container tag for the docker pull command is copied to your clipboard
once selected. Example docker pull command using the selected tag:

3. Once loaded locally, you may find the image's ID using the following command:

sudo systemctl daemon-reload
sudo systemctl start docker

sudo docker pull nvcr.io/nvidia/doca/doca:1.5.1-devel

sudo docker images

https://www.docker.com/
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca

DOCA Documentation v2.7.0 158

Example output:

4. Run the docker image:

For example, to map a source folder named my_sources into the same container tag
from the example above, the command should look like this:

After running the command, you get a shell inside the container where you can
build your project using the regular build commands:

From the container's perspective, the mounted folder will be named /doca_devel

--net=host ensures the container has network access, including visibility to SFs
and VFs as allocated on BlueField

-v /dev/hugepages:/dev/hugepages ensures that allocated huge pages are accessible
to the container

REPOSITORY TAG IMAGE ID CREATED SIZE
nvcr.io/nvidia/doca/doca 1.5.1-devel 931bd576eb49 10 months ago 1.49GB

sudo docker run -v <source-code-folder>:/doca_devel -v
/dev/hugepages:/dev/hugepages --privileged --net=host -it <image-name/ID>

sudo docker run -v my_sources:/doca_devel -v
/dev/hugepages:/dev/hugepages --privileged --net=host -it
nvcr.io/nvidia/doca/doca:1.5.1-devel

Note

Make sure to map a folder with write privileges to everyone.
Otherwise, the docker would not be able to write the
output files to it.

DOCA Documentation v2.7.0 159

Development

It is recommended to do the development within the doca:devel container. That said, some
developers prefer different integrated development environments (IDEs) or development
tools, and sometimes prefer working using a graphical IDE until it is time to compile the
code. As such, the recommendation is to mount a network share to BlueField (refer to
NVIDIA DOCA DPU CLI for more information) and to the container.

Testing

The container is marked as "privileged", hence it can directly access the hardware
capabilities of the BlueField Platform. This means that once the tested program compiles
successfully, it can be directly tested from within the container without the need to copy
it to BlueField and running it there.

Publishing

Once the program passes the testing phase, it should be prepared for deployment. While
some proof-of-concept (POC) programs are just copied "as-is" in their binary form, most
deployments will probably be in the form of a package (.deb/.rpm) or a container.

Construction of the binary package can be done as-is inside the current doca:devel

container, or as part of a CI pipeline that will leverage the same development container

Note

Having the same code folder accessible from the IDE and the
container helps prevent edge cases where the compilation fails due
to a typo in the code, but the typo is only fixed locally within the
container and not propagated to the main source folder.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPU+CLI

DOCA Documentation v2.7.0 160

as part of it.

For the construction of a container to ship the developed software, it is recommended to
use a multi-staged build that ships the software on top of the runtime-oriented DOCA
base images:

doca:base-rt – slim DOCA runtime environment

doca:full-rt – full DOCA runtime environment similar to the BlueField image

The runtime DOCA base images, alongside more details about their structure, can be
found under the same NGC page that hosts the doca:devel image.

For a multi-staged build, it is recommended to compile the software inside the doca:devel

container, and later copy it to one of the runtime container images. All relevant images
must be pulled directly from NGC (using docker pull) to the container registry of BlueField.

Developing Without BlueField Networking Platform

If the development process needs to be done without access to a BlueField Platform, the
recommendation is to use a QEMU-based deployment of a container on top of a regular
x86 server. The development container for the host will be the same doca:devel image we
mentioned previously.

https://docs.docker.com/develop/develop-images/multistage-build/
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca

DOCA Documentation v2.7.0 161

Setup

1. Make sure Docker is installed on your host. Run:

If it is not installed, visit the official Install Docker Engine webpage for installation
instructions.

2. Install QEMU on the host.

docker version

Note

This step is for x86 hosts only. If you are working on an aarch64
host, move to the next step.

https://docs.docker.com/engine/install/

DOCA Documentation v2.7.0 162

Host OS Command

Ubuntu

CentOS/RHEL
7.x

CentOS
8.0/8.2

Fedora

3. If you are using CentOS or Fedora on the host, verify if qemu-aarch64.conf Run:

If it is missing, run:

4. If you are using CentOS or Fedora on the host, restart system binfmt. Run:

5. To load and execute the development container, refer to the "Setup" section
discussing the same docker-based deployment on the BlueField side.

sudo apt-get install qemu binfmt-support qemu-user-static

sudo docker run --rm --privileged multiarch/qemu-user-static -
-reset -p yes

sudo yum install epel-release
sudo yum install qemu-system-arm

sudo yum install epel-release
sudo yum install qemu-kvm

sudo yum install qemu-system-aarch64

cat /etc/binfmt.d/qemu-aarch64.conf

echo ":qemu-
aarch64:M::\x7fELF\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00
aarch64-static:" > /etc/binfmt.d/qemu-aarch64.conf

$ sudo systemctl restart systemd-binfmt

Note

DOCA Documentation v2.7.0 163

Development

Much like the development phase using a BlueField DPU, it is recommended to develop
within the container running on top of QEMU.

Testing

While the compilation can be performed on top of the container, testing the compiled
software must be done on top of a BlueField Platform. This is because the QEMU
environment emulates an aarch64 architecture, but it does not emulate the hardware
devices present on the BlueField Platform. Therefore, the tested program will not be able
to access the devices needed for its successful execution, thus mandating that the testing
is done on top of a physical BlueField.

The doca:devel container supports multiple architectures. Therefore,
Docker by default attempts to pull the one matching that of the
current machine (i.e., amd64 for the host and arm64 for BlueField).
Pulling the arm64 container from the x86 host can be done by adding
the flag --platform=linux/arm64:

sudo docker pull --platform=linux/arm64
nvcr.io/nvidia/doca/doca:1.5.1-devel

Note

Make sure that the DOCA version used for compilation is the same as
the version installed on BlueField used for testing.

DOCA Documentation v2.7.0 164

Publishing

The publishing process is identical to the publishing process when using a BlueField DPU.

Cross-compilation from Host

In a typical setup, developers prefer to work on a familiar host since compilation is often
significantly faster there. Therefore, developers may work on their host while cross-
compiling their project to BlueField's Arm architecture.

Setup

1. Install Docker and QEMU your host. See steps 1-4 under section Setup.

2. Download the doca-cross component as described in the NVIDIA DOCA Installation
Guide for Linux and unpack it under the /root directory.
Inside this directory one can find:

arm64_armv8_linux_gcc – cross file containing specific information about the cross
compiler and the host machine

DOCA_cross.sh – script which handles all the required dependencies and pre-
installations steps

https://developer.nvidia.com/networking/secure/doca-sdk/doca_1.3.0/doca_130_b165/doca-cross.tar.gz
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 165

A .txt file used by the script

3. To load the development container, refer to section "Docker Deployment" of the
NVIDIA BlueField Container Deployment Guide.

4. Start running the container using the container's tag while mapping the doca-cross

directory to the container's /doca_devel directory:

Now the shell will be redirected to be within the container.

5. Run the preparation script to copy all the Arm dependencies required for DOCA's
cross compilation. The script will be in the mapped directory named doca_devel.

6. Exit the container and run the same script from the host side:

The /root/doca-cross directory is now fully configured and prepared for cross-
compilation against DOCA.

7. Update the environment variables to point at the Linaro cross-compiler:

Note

It is important to ensure that the same DOCA version is used in
the development container and the DOCA metapackages
installed on the host.

sudo docker run -v /root/doca-cross/:/doca_devel --privileged -it
<imagename/ID>

(container) /# cd doca_devel/
(container) /doca_devel# ./DOCA_cross.sh

(host) /root/doca-cross# ./DOCA_cross.sh

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide

DOCA Documentation v2.7.0 166

Everything is set up and the cross-compilation can now be used.

DOCA and CUDA Setup

1. To cross-compile DOCA and CUDA applications, you must install CUDA Toolkit 12.1:

1. The first toolkit installation is for x86 architecture. Select x86_64.

2. The second toolkit installation is for Arm. Select arm64-sbsa and then cross.

3. Select your host operating system, architecture, OS distribution, and version
and select the installation type. It is recommended to use the deb (local) type.

2. Execute the following exports:

export PATH=${PATH}:/opt/gcc-linaro/<linaro_version_dir>/aarch64-linux-
gnu/bin:/opt/gcc-linaro/<linaro_version_dir>/bin

Note

Make sure to update the command according to the Linaro
version installed by the script in the previous step.
<linaro_version_dir> can be found under /opt/gcc-linaro/.

Note

Cross-compilation requires Meson version ≥0.61.2 to be
installed on the host. This is already provided as part of DOCA's
installation.

https://developer.nvidia.com/cuda-downloads?target_os=Linux

DOCA Documentation v2.7.0 167

3. Verify the meson version is at least 0.61.2 as provided with DOCA's installation.

Everything is set up and the cross-compilation can now be used.

Development

It is recommended to develop normally while remembering to compile using the cross-
compilation configuration file arm64_armv8_linux_gcc which can be found under the doca-cross

directory.

The following is an example procedure for cross-compiling DOCA applications from the
host and to the Arm architecture:

1. Enable the meson cross-compilation option in
/opt/mellanox/doca/applications/meson_options.txt by setting enable_cross_compilation_to_dpu to
true.

2. Cross-compile the DOCA applications:

export CPATH=/usr/local/cuda/targets/sbsa-linux/include:$CPATH
export LD_LIBRARY_PATH=/usr/local/cuda/targets/sbsa-
linux/lib:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda/bin:/usr/local/cuda-11.6/bin:$PATH

/opt/mellanox/doca/applications # meson cross-build --cross-file /root/doca-
cross/arm64_armv8_linux_gcc
/opt/mellanox/doca/applications # ninja -C cross-build

Info

The cross-compiled binaries are created under the cross-build

directory.

DOCA Documentation v2.7.0 168

3. Cross-compile the DOCA and CUDA application:

1. Set flag for GPU-enabled cross-compilation, enable_gpu_support, in
/opt/mellanox/doca/applications/meson_options.txt to true.

2. Run the compilation command as follows:

This definition, already provided as part of the supplied cross file, guarantees that meson
does not accidently use the build system's environment variable during the cross build.

Testing

/opt/mellanox/doca/applications # meson cross-build --cross-file
/root/doca-cross/arm64_armv8_linux_gcc -Dcuda_ccbindir=aarch64-linux-
gnu-g++
/opt/mellanox/doca/applications # ninja -C cross-build

Info

The cross-compiled binaries are created under the cross-

build directory.

Note

Due to the system's use of the PKG_CONFIG_PATH environment
variable, it is crucial that the cross file include the following:

[built-in options]
pkg_config_path = ''

DOCA Documentation v2.7.0 169

While the compilation can be performed on top of the host, testing the compiled
software must be done on top of a BlueField Platform. This is because the tested
program is not able to access the devices needed for its successful execution, which
mandates that the testing is performed on top of a physical BlueField.

Publishing

The publishing process is identical to the publishing process when using a BlueField DPU.

Note

Make sure that the DOCA version used for compilation is the same as
the version installed on the BlueField Platform used for testing.

DOCA Documentation v2.7.0 170

DOCA Programming Guide
The DOCA Programming Guide is intended for developers wishing to utilize DOCA SDK to
develop application on top of the NVIDIA® BlueField® DPUs and SuperNICs.

DOCA Programming Overview is important to read for new DOCA developers to
understand the architecture and main building blocks most applications will rely on.

DOCA Development Best Practices outlines common development pitfalls and
capabilities to speed up application development, qualification, and productization.

DOCA Libraries describes in details how to use each DOCA library, its APIs, and
different aspects related to that library. Users may choose to only read the pages
concerning DOCA libraries required for their application.

DOCA Utils includes modules that may be used by application developers to speed
up their development process (e.g., DOCA Arg Parser which simplifies the creation
of a command-line interface for your application).

DOCA Drivers describes additional frameworks used within DOCA.

DOCA Programming Overview
This section contains the following pages:

Hardware Overview

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://confluence.nvidia.com/display/doca250/DOCA+Programming+Overview
https://docs.nvidia.com//doca/sdk/DOCA+Development+Best+Practices
https://docs.nvidia.com//doca/sdk/DOCA+Libraries
https://docs.nvidia.com//doca/sdk/DOCA+Utils
https://docs.nvidia.com//doca/sdk/DOCA+Arg+Parser
https://docs.nvidia.com//doca/sdk/DOCA+Drivers
https://docs.nvidia.com//doca/sdk/Hardware+Overview
mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 171

DOCA SDK Architecture

DOCA Backward Compatibility Policy
The NVIDIA DOCA™ SDK enables developers to rapidly create applications and services
on top of NVIDIA® BlueField® networking platforms.

The DOCA software package is released on a quarterly release cadence to deliver new
features, performance improvements, and critical bug fixes. DOCA compatibility allows
users to update the latest DOCA software package (including all libraries, drivers, and
tools) without requiring updating the application.

DOCA SDK Versioning

DOCA versions follow the Semantic Versioning scheme. That is, the DOCA version is of
the form X.Y.Z, and each part is incremented when the following applies:

Major version – when incompatible API changes may be introduced

Minor version – when functionality is added in a backwards compatible manner

Patch version – when backwards compatible bug fixes are submitted

DOCA SDK API Backwards Compatibility

One of the key attributes of enterprise grade SDK is backward compatibility. Backward
compatible APIs allows application developers using the SDK to monetize on their
investment, by guaranteeing that their application will continue to operate successfully as
they update to a newer SDK version.

DOCA SDK APIs may go through the following lifecycle stages:

1. Experimental – an API marked as DOCA_EXPERIMENTAL is an experimental API and is
not guaranteed to be present across upcoming releases

2. Stable – an API marked as DOCA_STABLE is guaranteed to be supported throughout
the lifecycle of the current major version

https://docs.nvidia.com//doca/sdk/DOCA+SDK+Architecture
https://semver.org/

DOCA Documentation v2.7.0 172

3. Deprecated – an API marked as DOCA_DEPRECATED will be removed from DOCA SDKs
header files in an upcoming release. If the API was previously marked as
DOCA_STABLE, it will only be removed in an upcoming major release.

4. Removed – an API that was present on an older major version and is now no longer
supported. If this API was previously marked as DOCA_STABLE, the binary
representation is preserved to maintain binary backwards compatibility.

The following subsections explain the different backwards compatibility types including
how semantic versions are mapped to these different types.

Source Compatibility

Source compatibility guarantees that a program written and compiled using a given
DOCA SDK version compiles successfully against a newer DOCA SDK version.

As described in section "DOCA SDK Versioning", DOCA SDK is source compatible across
minor and patch versions. However, across major version, APIs can be changed,
deprecated, or removed (see the lifecycle stages under section "DOCA SDK API
Backwards Compatibility"). Therefore, an application that compiles successfully on an
older major DOCA SDK version of the toolkit may require changes to compile against a
newer major version.

Binary Compatibility

Binary compatibility guarantees that a program dynamically linked against a given DOCA
SDK library (*.so) successfully links against a newer DOCA SDK library.

DOCA SDK API has a versioned C-style application binary interface (ABI) which guarantees
binary compatibility across both minor and major versions. This means that upgrading
the DOCA SDK package installed on a system to a newer version always supports existing
applications and their functions.

Behavioral Compatibility

DOCA Documentation v2.7.0 173

Behavioral compatibility (i.e., semantic compatibility) guarantees that given the same
inputs, a function or component will produce the same outputs. Thus, an application
developed, compiled, linked, and tested with a given DOCA SDK and relying on the SDK’s
behavior, can successfully run with newer version of DOCA SDK, as the behavior will be
compatible (apart from fixing bugs).

DOCA SDK Protocol Compatibility

Some DOCA SDK components include interaction across remote entities (host-to-
BlueField, BlueField-to-BlueField, or host-to-host). That is, communication channel
between a process running on the host server and a process running on the BlueField
networking platform Arm processors. Since applications using DOCA may be deployed in
large clusters and upgraded on a different schedule, DOCA SDK guarantees maintaining
different DOCA SDK versions protocol-compatible with each other. This allows the
flexibility to perform a rolling upgrade to DOCA SDK applications while maintaining
operations throughout the process (nodes with different SDK versions maintain
communication).

DOCA SDK Dependencies Compatibility

DOCA is distributed in a meta-package format, either as a *.bfb file for installation on the
BlueField networking platform Arm processor, or as a DOCA-for-host package (*.rpm or
*.deb) for installation on the server hosting the BlueField networking platform. This
package includes different libraries, tools, executables, firmware, and sample
applications.

DOCA SDK is developed and tested to work with all components included in the meta-
package. There is no guarantee that DOCA SDK would work correctly if any of these
components is upgraded independently. Thus, updating DOCA to a newer version
requires updating the meta-package with all its components.

DOCA Development Best Practices
The following sub-sections describe some best practices DOCA SDK users/developers
should consider when using DOCA SDK.

Capability Checking

https://docs.nvidia.com//doca/sdk/Capability+Checking

DOCA Documentation v2.7.0 174

Debuggability

DOCA Libraries
This section describes in details how to use each DOCA library, its APIs, and different
aspects related to that library.

Users may choose to only read the pages concerning DOCA libraries required for their
application.

This section contains the following pages:

DOCA Common

DOCA Flow

DPA Subsystem

DOCA DMA

DOCA Comch

DOCA UROM

DOCA RDMA

DOCA Ethernet

DOCA GPUNetIO

DOCA App Shield

DOCA Compress

DOCA SHA

DOCA Erasure Coding

DOCA AES-GCM

DOCA Rivermax

https://docs.nvidia.com//doca/sdk/Debuggability
https://docs.nvidia.com//doca/sdk/DOCA+Common
https://docs.nvidia.com//doca/sdk/DOCA+Flow
https://docs.nvidia.com//doca/sdk/DPA+Subsystem
https://docs.nvidia.com//doca/sdk/DOCA+DMA
https://docs.nvidia.com//doca/sdk/DOCA+Comch
https://docs.nvidia.com//doca/sdk/DOCA+UROM
https://docs.nvidia.com//doca/sdk/DOCA+RDMA
https://docs.nvidia.com//doca/sdk/DOCA+Ethernet
https://docs.nvidia.com//doca/sdk/DOCA+GPUNetIO
https://docs.nvidia.com//doca/sdk/DOCA+App+Shield
https://docs.nvidia.com//doca/sdk/DOCA+Compress
https://docs.nvidia.com//doca/sdk/DOCA+SHA
https://docs.nvidia.com//doca/sdk/DOCA+Erasure+Coding
https://docs.nvidia.com//doca/sdk/DOCA+AES-GCM
https://docs.nvidia.com//doca/sdk/DOCA+Rivermax

DOCA Documentation v2.7.0 175

DOCA Telemetry

DOCA Device Emulation

DOCA Utils
This section includes modules that may be used by application developers to speed up
their development process.

This section contains the following pages:

DOCA Arg Parser

DOCA Drivers
This section describes underlying drivers included in DOCA and includes the following
pages:

DOCA UCX
MLX Drivers (MLNX_OFED)

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://docs.nvidia.com//doca/sdk/DOCA+Telemetry
https://docs.nvidia.com//doca/sdk/DOCA+Device+Emulation
https://docs.nvidia.com//doca/sdk/DOCA+Arg+Parser
https://docs.nvidia.com//doca/sdk/DOCA+UCX
https://docs.nvidia.com//doca/sdk/mlx+drivers+(mlnx_ofed)/index.html
mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 176

DOCA Applications
This page provides an overview of the example DOCA applications implemented on top
of NVIDIA® BlueField® DPU.

Introduction

DOCA applications are an educational resource provided as a guide on how to program
on the NVIDIA BlueField networking platform using DOCA API.

For instructions regarding the development environment and installation, refer to the
NVIDIA DOCA Developer Guide and the NVIDIA DOCA Installation Guide for Linux
respectively.

Installation

DOCA applications are installed under /opt/mellanox/doca/applications with each application
having its own dedicated folder. Each directory contains the source code and compilation
files for the matching application.

Compilation

As applications are shipped alongside their sources, developers may want to modify
some of the code during their development process and then recompile the applications.
The files required for the compilation are the following:

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Developer+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 177

/opt/mellanox/doca/applications/meson.build – main compilation file for a project that
contains all the applications

/opt/mellanox/doca/applications/meson_options.txt – configuration file for the compilation
process

/opt/mellanox/doca/applications/<application_name>/meson.build – application-specific
compilation definitions

To recompile all the reference applications:

1. Move to the applications directory:

2. Prepare the compilation definitions:

3. Compile all the applications:

cd /opt/mellanox/doca/applications

meson /tmp/build

ninja -C /tmp/build

Info

The generated applications are located under the /tmp/build/

directory, using the following path
/tmp/build/<application_name>/doca_<application_name>.

Note

Compilation against DOCA's SDK relies on environment variables
which are automatically defined per user session upon login. For

DOCA Documentation v2.7.0 178

Developer Configurations

When recompiling the applications, meson compiles them by default in "debug" mode.
Therefore, the binaries would not be optimized for performance as they would include
the debug symbol. For comparison, the application binaries shipped as part of DOCA's
installation are compiled in "release" mode. To compile the applications in something
other than debug, please consult Meson's configuration guide.

The applications also offer developers the ability to use the DOCA log's TRACE level
(DOCA_LOG_TRC) on top of the existing DOCA log levels. Enabling the TRACE log level during
compilation activates various developer log messages left out of the release compilation.
Activating the TRACE log level may be done through enable_trace_log in the meson_options.txt

file, or directly from the command line:

1. Prepare the compilation definitions to use the trace log level:

2. Compile the applications:

Application Use of DOCA Libs

The following table maps DOCA reference applications to the libraries they make use of.

more information, please refer to section "Meson Complains About
Missing Dependencies" in the NVIDIA DOCA Troubleshooting Guide.

meson /tmp/build -Denable_trace_log=true

ninja -C /tmp/build

https://mesonbuild.com/Running-Meson.html#configuring-the-build-directory
file:///doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-FailuretoSetHugePages

DOCA Documentation v2.7.0 179

Applicati
on
Category

Application Library Category

BareMetal/Virtualize
d Cloud

Secure
Cloud
Gateway

Cloud
Stora
ge

Moni
torin
g

Stre
ami
ng

HPC

Fl
o
w

D
P
A

D
M
A

FlexI
O
SDK

P
C
C

App
Shield

SH
A

Comp
ress

Tele
metr
y

GPU
NetI
O

Co
mc
h

U
C
X

Network

Ethernet L2
Forwarding

GPU Packet
Processing

NAT

Simple
Forward
VNF

Switch

Security

App Shield
Agent

East-west
Overlay
Encryption

IPsec
Security
Gateway

PSP
Gateway

Secure
Channel

YARA
Inspection

https://docs.nvidia.com//doca/sdk/DOCA+Flow
https://docs.nvidia.com//doca/sdk/DOCA+Flow
https://docs.nvidia.com//doca/sdk/DOCA+Flow
https://docs.nvidia.com//doca/sdk/DPA+Subsystem
https://docs.nvidia.com//doca/sdk/DPA+Subsystem
https://docs.nvidia.com//doca/sdk/DPA+Subsystem
https://docs.nvidia.com//doca/sdk/DOCA+DMA
https://docs.nvidia.com//doca/sdk/DOCA+DMA
https://docs.nvidia.com//doca/sdk/DOCA+DMA
https://docs.nvidia.com//doca/sdk/DPA+Subsystem
https://docs.nvidia.com//doca/sdk/DPA+Subsystem
https://docs.nvidia.com//doca/sdk/DPA+Subsystem
https://docs.nvidia.com//doca/sdk/DOCA+PCC
https://docs.nvidia.com//doca/sdk/DOCA+PCC
https://docs.nvidia.com//doca/sdk/DOCA+PCC
https://docs.nvidia.com//doca/sdk/DOCA+App+Shield
https://docs.nvidia.com//doca/sdk/DOCA+App+Shield
https://docs.nvidia.com//doca/sdk/DOCA+SHA
https://docs.nvidia.com//doca/sdk/DOCA+SHA
https://docs.nvidia.com//doca/sdk/DOCA+Compress
https://docs.nvidia.com//doca/sdk/DOCA+Compress
https://docs.nvidia.com//doca/sdk/DOCA+Telemetry
https://docs.nvidia.com//doca/sdk/DOCA+Telemetry
https://docs.nvidia.com//doca/sdk/DOCA+Telemetry
https://docs.nvidia.com//doca/sdk/DOCA+GPUNetIO
https://docs.nvidia.com//doca/sdk/DOCA+GPUNetIO
https://docs.nvidia.com//doca/sdk/DOCA+GPUNetIO
https://docs.nvidia.com//doca/sdk/DOCA+Comch
https://docs.nvidia.com//doca/sdk/DOCA+Comch
https://docs.nvidia.com//doca/sdk/DOCA+Comch
https://docs.nvidia.com//doca/sdk/DOCA+UCX
https://docs.nvidia.com//doca/sdk/DOCA+UCX
https://docs.nvidia.com//doca/sdk/DOCA+UCX
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+GPU+Packet+Processing+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+GPU+Packet+Processing+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+NAT+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Simple+Forward+VNF+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Simple+Forward+VNF+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Simple+Forward+VNF+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Switch+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+App+Shield+Agent+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+App+Shield+Agent+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+East-West+Overlay+Encryption+Application
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+East-West+Overlay+Encryption+Application
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+East-West+Overlay+Encryption+Application
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+IPsec+Security+Gateway+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+IPsec+Security+Gateway+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+IPsec+Security+Gateway+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+PSP+Gateway+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+PSP+Gateway+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Secure+Channel+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Secure+Channel+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+YARA+Inspection+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+YARA+Inspection+Application+Guide

DOCA Documentation v2.7.0 180

Applicati
on
Category

Application Library Category

Data
Path
Accelerat
ion

DPA All-to-
all

DPA L2
Reflector

PCC

Storage

DMA Copy

File
Compressi
on

File
Integrity

HPC

Allreduce

UROM
RDMO

Applications

Allreduce

This application is a collective operation that allows data from many processing units to
be collected and merged into a global result before being delivered to all processing units
using an operator. The application is implemented using the UCX communication
framework, which leverages the DPU's low-latency and high-bandwidth utilization of its
network engine.

App Shield Agent

This application describes how to build secure process monitoring and is based on the
DOCA APSH library, which leverages DPU capabilities such as regular expression (RXP)
acceleration engine, hardware-based DMA, and more.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+All-to-all+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+All-to-all+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+L2+Reflector+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+L2+Reflector+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+PCC+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DMA+Copy+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+File+Compression+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+File+Compression+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+File+Compression+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+File+Integrity+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+File+Integrity+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Allreduce+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+UROM+RDMO+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+UROM+RDMO+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Allreduce+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+App+Shield+Agent+Application+Guide

DOCA Documentation v2.7.0 181

DMA Copy

This application describes how to transfer files between the DPU and the host. The
application is based on the direct memory access (DMA) library, which leverages
hardware acceleration for data copy for both local and remote memory.

DPA All-to-all

This application is a collective operation that allows data to be copied between multiple
processes. This application is implemented using DOCA DPA, which leverages the d ata
path accelerator (DPA) inside of the BlueField-3 which offloads the copying of the data to
the DPA and leaves the CPU free for other computations.

DPA L2 Reflector

This application uses the data path accelerator (DPA) engine to intercept network traffic
and swap the source and destination MAC addresses of each packet. It is based on the
FlexIO API which leverages DPU capabilities such as high-speed DPA.

East-West Overlay Encryption

This application (IPsec) sets up encrypted connections between different devices and
works by encrypting IP packets and authenticating the packets' originator. It is based on a
strongSwan solution which is an open-source IPsec-based VPN solution.

File Compression

This application shows how to compress and decompress data using hardware
acceleration and to send and receive it. The application is based on the DOCA Compress
and DOCA Comm-Channel libraries.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DMA+Copy+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+All-to-all+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+L2+Reflector+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+East-West+Overlay+Encryption+Application
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+File+Compression+Application+Guide

DOCA Documentation v2.7.0 182

File Integrity

This application shows how to send and receive files in a secure way using the hardware
Crypto engine. It is based on the DOCA SHA and DOCA Comm-Channel libraries.

GPU Packet Processing

This application shows how to combine DOCA GPUNetIO, DOCA Ethernet, and DOCA Flow
to manage ICMP, UDP, TCP and HTTP connections with a GPU-centric approach using
CUDA kernels without involving the CPU in the main data path.

IPsec Gateway

This application demonstrates how to insert rules related to IPsec encryption and
decryption based on the DOCA Flow and IPsec libraries, which leverage the DPU's
hardware capability for secure network communication.

NAT

This application, network address translation, switches packets with local IP addresses to
global ones and vise versa. It is based on the DOCA Flow library which leverages DPU
hardware capabilities such as building generic execution pipes in the hardware, executing
specific actions on the traffic, and more.

Programmable Congestion Control

This application, programmable congestion control, is based on the DOCA PCC library
and allows users to design and implement their own congestion control algorithm, giving
them good flexibility to work out an optimal solution to handle congestion in their
clusters.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+File+Integrity+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+GPU+Packet+Processing+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+IPsec+Security+Gateway+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+NAT+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+PCC+Application+Guide

DOCA Documentation v2.7.0 183

PSP Gateway

This application demonstrates how to exchange keys between application instances and
insert rules controlling PSP encryption and decryption using the DOCA Flow library.

Secure Channel

This application is used to establish a secure, network-independent communication
channel between the host and the DPU based on the DOCA Comm Channel library.

Simple Forward VNF

This application is a forwarding application that takes VXLAN traffic from a single RX port
and transmits it on a single TX port. It is based on the DOCA Flow library which leverages
DPU capabilities such as building generic execution pipes in the hardware, and more.

Switch

This application is used to establish internal switching between representor ports on the
DPU. It is based on the DOCA Flow library which leverages DPU capabilities such as
building generic execution pipes in the hardware, and more.

UROM RDMO

This application demonstrates how to execute an Active Message outside the context of
the target process. It is based on the DOCA UROM (Unified Resources and Offload
Manager) library as a framework to launch UROM workers on the DPU and using the UCX
communication framework, which leverages the DPU's low-latency and high-bandwidth
utilization of its network engine.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+PSP+Gateway+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Secure+Channel+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Simple+Forward+VNF+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Switch+Application+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+UROM+RDMO+Application+Guide

DOCA Documentation v2.7.0 184

UROM UCC

This application demonstrates how the UCC all-to-all collective can be offloaded to the
BlueField using the DOCA UROM library and UCC UROM plugin.

YARA Inspection

This application describes how to build YARA rule inspection for processes and is based
on the DOCA APSH library, which leverages DPU capabilities such as the regular
expression (RXP) acceleration engine, hardware-based DMA, and more.

NVIDIA DOCA Allreduce Application
Guide
This guide provides a DOCA Allreduce collective operation implementation on top of
NVIDIA® BlueField® DPU using UCX.

Introduction

Allreduce is a collective operation which allows collecting data from different processing
units to combine them into a global result by a chosen operator. In turn, the result is
distributed back to all processing units.

Allreduce operates in stages. Firstly, each participant scatters its vector. Secondly, each
participant gathers the vectors of the other participants. Lastly, each participant performs
their chosen operation between all the gathered vectors. Using a sequence of different
allreduce operations with different participants, very complex computations can be
spread among many computation units.

Allreduce is widely used by parallel applications in high-performance computing (HPC)
related to scientific simulations and data analysis, including machine learning calculation

https://confluence.nvidia.com/display/docadev/.NVIDIA+DOCA+UROM+UCC+Application+Guide+v2.5.0
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+YARA+Inspection+Application+Guide

DOCA Documentation v2.7.0 185

and the training phase of neural networks in deep learning.

Due to the massive growth of deep learning models and the complexity of scientific
simulation tasks that utilize a network, effective implementation of allreduce is essential
for minimizing communication time.

This document describes how to implement allreduce using the UCX communication
framework, which leverages NVIDIA® BlueField® DPU by providing low-latency and high-
bandwidth utilization of its network engine.
This document describes the following types of allreduce:

Offloaded client – processes running on the host which only submit allreduce
operation requests to a daemon running on the DPU. The daemon runs on the DPU
and performs the allreduce algorithm on behalf of its on-host-clients (offloaded-
client).

Non-offloaded client – processes running on the host which execute the allreduce
algorithm by themselves

System Design

The application is designed to measure three metrics:

Communication time taken by offloaded and non-offloaded allreduce operations

Computation time taken by matrix multiplications which are done by clients until
the allreduce operation is completed

The overlap of the two previous metrics. The percentage of the total runtime during
which both the allreduce and the matrix multiplications were done in parallel.

DOCA Documentation v2.7.0 186

The allreduce implementation is divided into two different types of processes: clients and
daemons. Clients are responsible for allocating vectors filled with data and initiating
allreduce operations by sending a request with a vector to their daemon. Daemons are
responsible for gathering vectors from all connected clients and daemons, applying a
chosen operator on all received buffers, and then scattering the reduced result vector
back to the clients.

Offloaded mode

DOCA Documentation v2.7.0 187

Non-offloaded mode

Application Architecture

DOCA's allreduce implementation uses Unified Communication X (UCX) to support data
exchange between endpoints. It utilizes UCX's sockaddr-based connection establishment
and the UCX Active Messages (AM) API for communications.

Offloaded mode

DOCA Documentation v2.7.0 188

Non-offloaded mode

DOCA Documentation v2.7.0 189

1. Connections between processes are established by UCX using IP addresses and
ports of peers.

2. Allreduce vectors are sent from clients to daemons in offloaded mode, or from
clients to clients in non-offloaded mode.

3. Reduce operations on vectors are done using received vectors from other daemons
in offloaded mode, or other clients in non-offloaded mode.

4. Vectors with allreduce results are received by clients from daemons in offloaded
mode, or are already stored in clients after completing all exchanges in non-
offloaded mode.

5. After completing all allreduce operations, connections between clients are
destroyed.

DOCA Libraries

This application leverages the UCX framework DOCA driver.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 190

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/allreduce/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Compiling Only the Current Application

To build the allreduce application only:

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_allreduce is created under /tmp/build/allreduce/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_allreduce=true

ninja -C /tmp/build

file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 191

Alternatively, the user can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_allreduce to true

2. Run the following compilation commands:

Troubleshooting

Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with
the compilation of the application .

Info

doca_allreduce is created under /tmp/build/allreduce/.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_allreduce is created under /tmp/build/allreduce/.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 192

Running the Application

Application Execution

The allreduce application is provided in source form, hence a compilation is required
before the application can be executed.

1. Application usage instructions:

Usage: doca_allreduce [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
-r, --role Run DOCA UCX allreduce process as: "client" or "daemon"

-m, --mode <allreduce_mode> Set allreduce mode: "offloaded", "non-offloaded"

(valid for client only)
-p, --port <port> Set default destination port of daemons/clients, used for IPs
without a port (see '-a' flag)
-t, --listen-port <listen_port> Set listening port of daemon or client
-c, --num-clients <num_clients> Set the number of clients which participate in
allreduce operations (valid for daemon only)
-s, --size <size> Set size of vector to do allreduce for

-d, --datatype <datatype> Set datatype ("byte", "int", "float", "double") of vector
elements to do allreduce for

-o, --operation <operation> Set operation ("sum", "prod") to do between allreduce
vectors
-b, --batch-size <batch_size> Set the number of allreduce operations submitted
simultaneously (used for handshakes by daemons)

DOCA Documentation v2.7.0 193

2. Configuration steps.

1. All daemons should be deployed before clients. Only after connecting to their
peers are daemons able to handle clients.

2. UCX probes the system for any available net/IB devices and, by default, tries to
create a multi-device connection. This means that if some network devices are
available but provide an unreachable path from the daemon to the peer/client,
UCX may still use that path. A common case is that a daemon tries to connect
to a different BlueField using tmfifo_net0 which is connected to the host only. To
fix this issue, follow these steps:

1. Use the UCX env variable UCX_NET_DEVICES to set usable devices. For
example:

-i, --num-batches <num_batches> Set the number of batches of allreduce
operations (used for handshakes by daemons)
-a, --address <ip_address> Set comma-separated list of destination IPv4/IPv6
addresses and ports optionally (<ip_addr>:[<port>]) of daemons or clients

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_allreduce -h

Info

For additional information, refer to section "Command Line
Flags".

export UCX_NET_DEVICES=enp3s0f0s0,enp3s0f1s0

DOCA Documentation v2.7.0 194

Or:

2. Get the mlx device name and port of a SF to limit the UCX network
interfaces and allow IB. For example:

3. CLI example for running the deamon on BlueField:

Notes:

The flag -a is necessary for communicating with other daemons. In case of an
offloaded client, the address must be that of the daemon which performs the
allreduce operations for them. In case of a daemon or non-offloaded clients,
the flag could be a single or multiple addresses of other daemons/non-
offloaded clients which exchange their local allreduce results.

./doca_allreduce -r daemon -t 34001 -c 1 -s 100 -o sum -d float -b 16 -i
16

env UCX_NET_DEVICES=enp3s0f0s0,enp3s0f1s0 ./doca_allreduce -r
daemon -t 34001 -c 1 -s 100 -o sum -d float -b 16 -i 16

BlueField> show_gids
DEV PORT INDEX GID IPv4 VER DEV
--- ---- ----- --- ------------ --- ---
mlx5_2 1 0 fe80:0000:0000:0000:0052:72ff:fe63:1651 v2 enp3s0f0s0
mlx5_3 1 0 fe80:0000:0000:0000:0032:6bff:fe13:f13a v2 enp3s0f1s0

BlueField>
UCX_NET_DEVICES=enp3s0f0s0,enp3s0f1s0,mlx5_2:1,mlx5_3:1
./doca_allreduce -r daemon -t 34001 -c 1 -s 100 -o sum -d float -b 16 -i
16

./doca_allreduce -r daemon -t 34001 -c 2 -a 10.21.211.3:35001,10.21.211.4:36001 -s
65535 -o sum -d float -i 16 -b 128

DOCA Documentation v2.7.0 195

The flag -c must be specified for daemon processes only. It indicates how many
clients submit their allreduce operations to the daemon.

The flags -s, -i, -b, and -d must be the same for all clients and daemons
participating in the allreduce operation.

4. CLI example for running the client on the host:

5. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

Note

The daemon listens to incoming connection requests on all
available IPs, but the actual communication after the initial "UCX
handshake" does not necessarily use the same device used for
the connection establishment.

./doca_allreduce -r client -m non-offloaded -t 34001 -a
10.21.211.3:35001,10.21.211.4:36001 -s 65535 -i 16 -b 128 -o sum -d float

./doca_allreduce -r client -m offloaded -p 34001 -a 192.168.100.2 -s 65535 -i 16 -b
128 -o sum -d float

./doca_allreduce --json [json_file]

./doca_allreduce --json ./allreduce_client_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the desired

DOCA Documentation v2.7.0 196

Command Line Flags

Flag
Type

Shor
t Flag

Long
Flag/JSO
N Key

Description

Genera
l flags

h help Print a help synopsis

v version Print program version information

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with TRACE log level
support)

N/A sdk-log-
level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json Parse all command flags from an input JSON file

Progra
m flags

r role Run DOCA UCX allreduce process as either client or daemon

m mode Set allreduce mode. Available types options:

offloaded

PCIe and network addresses required for the deployment.

DOCA Documentation v2.7.0 197

Flag
Type

Shor
t Flag

Long
Flag/JSO
N Key

Description

non-offloaded (valid for client only)

p port
Set default destination port of daemons/clients. Used for IPs
without a port (see -a flag).

c num-clients
Set the number of clients which participate in allreduce
operations
Note: Valid for daemon only.

s size Set size of vector to perform allreduce for

d datatype

Set datatype of vector elements to do allreduce for

byte
int
float
double

o operation Set operation to perform between allreduce vectors

b batch-size
Set the number of allreduce operations submitted
simultaneously. Used for handshakes by daemons.

i
num-
batches

Set the number of batches of allreduce operations. Used for
handshakes by daemons.

t listen-port Set listening port of daemon or client

a address
Set comma-separated list of destination IPv4/IPv6 address
and ports optionally of daemons or clients. Format: <ip_addr>:

[<port>].

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 198

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications.

Running Application on NVIDIA Converged Accelerator

This section details the steps necessary to run DOCA Allreduce on NVIDIA converged
accelerator.

Allreduce running on the converged accelerator has the same logic as described in
previous sections except for the reducing of vectors. The reduce of incoming vectors is
performed on the GPU side in batches that include the vectors from all peers or all
clients. When the GPUDirect module is active, incoming vectors and outgoing vectors are
received/sent directly to/from the GPU.

To make use of the GPU's capabilities, make sure to perform the following:

1. Refer to the NVIDIA DOCA Installation Guide for Linux for instructions on installing
NVIDIA driver for CUDA and a CUDA-repo on your setup.

2. Create the sub-functions and configure the OVS according to NVIDIA BlueField DPU
Scalable Function User Guide.

Compiling and Running Application

To build and run the application:

1. Setup CUDA paths:

export CPATH=/usr/local/cuda/targets/sbsa-linux/include:$CPATH
export
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:$PATH

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

DOCA Documentation v2.7.0 199

2. Reinstall UCX with CUDA support. Follow the UCX installation procedure with an
additional flag, --with-cuda=/usr/local/cuda/, passed to configure-release:

3. To build the application with GPU support:

1. Set the enable_gpu_support flag to true in
/opt/mellanox/doca/applications/meson_option.txt.

2. Compile the application sources. Run:

doca_allreduce_gpu is created under /tmp/build/allreduce/ alongside the regular
doca_allreduce binary that is compiled without the GPU support.

4. To run the application with GPU support, follow the same steps as described in
section "Running the Application".

Application Code Flow

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register UCX allreduce application parameters.

3. Parse all registered parameters.

dpu# ./contrib/configure-release --with-cuda=/usr/local/cuda/

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

doca_argp_init();

register_allreduce_params();

https://openucx.org/documentation/

DOCA Documentation v2.7.0 200

2. UCX initialization.

1. Initialize hash table of connections.

2. Create UCP context.

3. Create UCP worker.

4. Set AM handler for receiving connection check packets.

3. Initialization of the allreduce connectivity.

1. Initialize hash table of allreduce super requests.

2. Set "receive callback" for handshake messages.

3. If daemon or non-offloaded client:

1. Set AM handler for receiving allreduce requests from clients.

doca_argp_start();

allreduce_ucx_init();

ucp_init();

ucp_worker_create();

ucp_worker_set_am_recv_handler();

communication_init();

allreduce_ucx_am_set_recv_handler();

DOCA Documentation v2.7.0 201

2. Initialize UCX listening function. This creates a UCP listener.

4. Initialize all connections.

1. Go over all destination addresses and connect to each peer.

2. Repeat until a successful send occurs (to check connectivity).

3. Insert the connection to the hash table of connections.

5. Scatter handshake message to peers/daemon to make sure they all have the
same -s, -i, -b, and -d flags.

4. Daemon: Start UCX progress.

1. Set AM handler to receive allreduce requests from clients.

2. Perform UCP worker progress.

allreduce_ucx_listen();

connections_init();

ucp_am_send_nbx();
allreduce_ucx_request_wait();

allreduce_outgoing_handshake();

daemon_run();

allreduce_ucx_am_set_recv_handler();

while (running)
allreduce_ucx_progress();

DOCA Documentation v2.7.0 202

3. Callbacks are invoked by incoming/outgoing messages by calling
allreduce_ucx_progress.

5. Client:

1. Allocate buffers to store allreduce initial data and results.

2. Set an AM handler for receiving allreduce results.

3. Perform allreduce barrier. Check that all daemons and clients are active.

1. Submit a batch of allreduce operations with 0 byte.

2. Wait for completions.

4. Reset metrics and vectors.

1. Submit some batches and calculate estimated network time.

2. Allocate matrices to multiply.

3. Estimate how many matrix multiplications could have been performed
instead of networking (same time window).

4. Calculate the actual computation time of these matrix multiplications.

5. Reset vectors.

client_run();

allreduce_vectors_init();

allreduce_ucx_am_set_recv_handler();

allreduce_barrier();

allreduce_metrics_init();

DOCA Documentation v2.7.0 203

6. Submit a batch of allreduce operations to daemon/peer (depends on mode).

7. Perform matrix multiplications during a time period which is approximately
equal to doing a single batch of allreduce operations and calculate the actual
time cost.

8. Wait for the allreduce operation to complete and calculate time cost.

9. Update metrics.

10. Print summary of allreduce benchmarking.

6. Arg parser destroy.

7. Communication destroy.

1. Clean up connections.

1. Remove the connection from the hash table of the connections.

2. Close inner UCP endpoint.

Do num-batches (flag) times:
allreduce_vectors_reset();
allreduce_batch_submit();
cpu_exploit();
allreduce_batch_wait();
allreduce_metrics_calculate();

allreduce_metrics_print();

doca_argp_destroy();

allreduce_ucx_disconnect();

ucp_ep_close_nbx();

DOCA Documentation v2.7.0 204

3. Wait for the completion of the UCP endpoint closure.

4. Destroy connection.

5. Free connections array.

2. Destroy the hash table of the allreduce super requests.

8. Destroy UCX context.

1. Destroy the hash table of the connections.

2. If the UCP listener was created, destroy it.

3. Destroy UCP worker.

4. Destroy UCP context.

References

/opt/mellanox/doca/applications/allreduce/

/opt/mellanox/doca/applications/allreduce/allreduce_client_params.json

/opt/mellanox/doca/applications/allreduce/allreduce_daemon_params.json

g_hash_table_destroy();

ucp_listener_destroy();

ucp_worker_destroy();

ucp_cleanup();

DOCA Documentation v2.7.0 205

NVIDIA DOCA App Shield Agent
Application Guide
This guide provides process introspection system implementation on top of NVIDIA®
BlueField® DPU.

Introduction

App Shield Agent monitors a process in the host system using the DOCA App Shield
library.

This security capability helps identify corruption of core processes in the system from an
independent and trusted DPU. This is a major and innovate intrusion detection system
(IDS) ability since it cannot be provided from inside the host.

The DOCA App Shield Library gives the capability to read, analyze, and authenticate the
host (bare metal/VM) memory directly from the DPU.

Using the library, this application hashes the un-writeable memory pages (also unloaded
pages) of a specific process and its libraries. Then, at regular intervals, the app
authenticates the loaded pages.

The app reports pass/fail after every iteration until the first attestation failure. The
reports are both printed to the console and exported to the DOCA Telemetry Service
(DTS) using inter-process communication (IPC).

This guide describes how to build secure process monitoring using the DOCA App Shield
library, which leverages the DPU's advantages such as hardware-based DMA, integrity,
and more.

System Design

The App Shield agent is designed to run independently on the DPU's Arm without
hindering the host.

The host's involvement is limited to configuring monitoring of a new process when there
is a need to generate the needed ZIP and JSON files to pass to the DPU. This is done at
inception ("time 0") which is when the host is still in a "safe" state.

https://docs.nvidia.com//doca/sdk/DOCA+App+Shield
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Telemetry+Service+Guide

DOCA Documentation v2.7.0 206

Generating the needed files can be done by running DOCA App Shield's doca_apsh_config.py

tool on the host. See DOCA App Shield for more info.

Application Architecture

The user creates three mandatory files using the DOCA tool doca_apsh_config.py and copies
them to the DPU. The application can report attestation results to the:

File

Terminal

DTS

https://docs.nvidia.com//doca/sdk/DOCA+App+Shield

DOCA Documentation v2.7.0 207

1. The files are generated by running doca_apsh_config.py on the host against the process
at time zero.

2. The App Shield agent requests new attestation from DOCA App Shield library.

3. The DOCA App Shield library creates a new attestation:

1. Scans and hashes process memory pages (that are currently in use).

2. Compares the hash to the original hash.

3. Creates attestation for each lib/exe involved in the process. Each of attestation
includes the number of valid pages and the number of pages.

4. The App Shield agent searches each attestation for inconsistency between number
of used pages and number of valid pages.

5. The App Shield agent reports results with a timestamp and scan count to:

1. Local telemetry files – a folder and files representing the data a real DTS would
have received. These files are used for the purposes of this example only as
normally this data is not exported into user-readable files.

2. DOCA log (without scan count).

3. DTS IPC interface (even if no DTS is active).

6. The App Shield agent exits on first attestation failure.

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA App Shield

Note

The actions 2-5 recur at regular time intervals.

https://docs.nvidia.com//doca/sdk/DOCA+App+Shield

DOCA Documentation v2.7.0 208

DOCA Telemetry

Refer to their respective programming guide for more information.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/app_shield_agent/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/

https://docs.nvidia.com//doca/sdk/DOCA+Telemetry
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 209

Compiling Only the Current Application

To build only the App Shield Agent application:

Alternatively, the user can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_app_shield_agent to true

2. Run the following compilation commands :

meson /tmp/build
ninja -C /tmp/build

Info

doca_app_shield_agent is created under /tmp/build/app_shield_agent/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_app_shield_agent=true

ninja -C /tmp/build

Info

doca_app_shield_agent is created under /tmp/build/app_shield_agent/.

DOCA Documentation v2.7.0 210

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

Running the Application

Prerequisites

1. Configure the BlueField's firmware.

1. On the BlueField system, configure the PF base address register and NVMe
emulation. Run:

2. Perform a BlueField system reboot for the mlxconfig settings to take effect.

3. You may verify these configurations using the following command:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_app_shield_agent is created under /tmp/build/app_shield_agent/.

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_SIZE=2

PF_BAR2_ENABLE=1 NVME_EMULATION_ENABLE=1

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Reset+and+Reboot+Procedures

DOCA Documentation v2.7.0 211

2. Download target system (host/VM) symbols.

For Ubuntu:

For CentOS:

No action is needed for Windows

3. Perform IOMMU passthrough. This stage is only necessary if IOMMU is not enabled
by default (e.g., when the host is using an AMD CPU).

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -E "NVME|BAR"

host> sudo tee /etc/apt/sources.list.d/ddebs.list << EOF
deb http://ddebs.ubuntu.com/ $(lsb_release -cs) main restricted universe multiverse

deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-updates main restricted universe

multiverse

deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-proposed main restricted universe

multiverse

EOF
host> sudo apt install ubuntu-dbgsym-keyring
host> sudo apt-get update
host> sudo apt-get install linux-image-$(uname -r)-dbgsym

host> yum install --enablerepo=base-debuginfo kernel-devel-$(uname -r)
kernel-debuginfo-$(uname -r) kernel-debuginfo-common-$(uname -
m)-$(uname -r)

Note

Skip this step if you are not sure whether it is needed. Return to
it only if DMA fails with a message similar to the following in
dmesg:

host> dmesg

DOCA Documentation v2.7.0 212

1. Locate your OS's grub file (most likely /boot/grub/grub.conf, /boot/grub2/grub.cfg, or
/etc/default/grub) and open it for editing. Run:

2. Search for the line defining GRUB_CMDLINE_LINUX_DEFAULT and add the argument
iommu=pt. For example:

3. Run:

For Ubuntu:

For CentOS:

[3839.822897] mlx5_core 0000:81:00.0: AMD-Vi: Event
logged [IO_PAGE_FAULT domain=0x0047
address=0x2a0aff8 flags=0x0000]

host> vim /etc/default/grub

GRUB_CMDLINE_LINUX_DEFAULT="iommu=pt <intel/amd>_iommu=on"

Note

Prior to performing a power cycle, make sure to do a
graceful shutdown.

host> sudo update-grub
host> ipmitool power cycle

host> grub2-mkconfig -o /boot/grub2/grub.cfg
host> ipmitool power cycle

file:///doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-HowtoPerformGracefulShutdown

DOCA Documentation v2.7.0 213

For Windows targets, turn off Hyper-V capability.

4. Prepare target:

1. Install DOCA on the target system.

2. Create the ZIP and JSON files. Run:

If the target system does not have DOCA installed, the script can be copied
from the BlueField.

The required dwaf2json and pdbparse-to-json.py are not provided with DOCA.

Application Execution

1. The App Shield Agent application is provided in source form, hence a compilation is
required before the application can be executed.

1. Application usage instructions:

target-system> cd /opt/mellanox/doca/tools/
target-system> python3 doca_apsh_config.py --pid <pid-of-process-to-
monitor> --os <windows/linux> --path <path to dwarf2json executable or
pdbparse-to-json.py>
target-system> cp /opt/mellanox/doca/tools/*.* <shared-folder-with-
baremetal>
dpu> scp <shared-folder-with-baremetal>/* <path-to-app-shield-binary>

Note

If the kernel and process .exe have not changed, there no
need to redo this step.

DOCA Documentation v2.7.0 214

Usage: doca_app_shield_agent [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program
<10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG,
70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-p, --pid Process ID of process to be attested
-e, --ehm <path> Exec hash map path
-m, --memr <path> System memory regions map
-f, --vuid VUID of the System device
-d, --dma DMA device name
-o, --osym <path> System OS symbol map path
-s, --osty <windows|linux> System OS type - windows/linux
-t, --time <seconds> Scan time interval in seconds

Info

This usage printout can be printed to the command line
using the -h (or --help) options:

./doca_app_shield_agent -h

Info

DOCA Documentation v2.7.0 215

2. CLI example for running the application on the BlueField:

Command Line Flags

Flag
Type

Sho
rt
Flag

Lon
g
Flag

Description

Gene
ral
flags

h help Print a help synopsis

v
versi
on Print program version information

l
log-
level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with TRACE log level support)

For additional information, please refer to section
"Command Line Flags".

./doca_app_shield_agent -p 13577 -e hash.zip -m mem_regions.json -o
symbols.json -f MT2125X03335MLNXS0D0F0VF1 -d mlx5_0 -t 3 -s linux

Note

All used identifiers (-f , -p and -d flags) should match the
identifier of the desired devices and processes.

DOCA Documentation v2.7.0 216

Flag
Type

Sho
rt
Flag

Lon
g
Flag

Description

N/A
sdk-
log-
level

Set the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json Parse all command flags from an input JSON file

Progr
am
flags

p pid PID of the process to be attested

e ehm Path to the pre-generated hash.zip file transferred from the host

m
mem
r

Path to the pre-generated mem_regions.json file transferred from the
host

f pcif System PCIe function vendor unique identifier (VUID) of the VF/PF
exposed to the target system. Used for DMA operations.
To obtain this argument, run:

Example output:

Two VUIDs are printed for each DPU connected to the target system.
The first is of the DPU on pf0 and the second is of the DPU on port
pf1.

target-system> lspci -vv | grep "\[VU\] Vendor specific:"

[VU] Vendor specific: MT2125X03335MLNXS0D0F0
[VU] Vendor specific: MT2125X03335MLNXS0D0F1

Note
Running this command on the DPU outputs
VUIDs with an additional "EC" string in the

DOCA Documentation v2.7.0 217

Flag
Type

Sho
rt
Flag

Lon
g
Flag

Description

The VUID of a VF allocated on PF0/1 is the VUID of the PF with an
additional suffix, VF<vf-number>, where vf-number is the VF index +1.
For example, for the output in the example above:

PF0 VUID = MT2125X03335MLNXS0D0F0
PF1 VUID = MT2125X03335MLNXS0D0F1
VUID of VF0 on PF0 = MT2125X03335MLNXS0D0F0VF1

VUIDs are persistent even on reset.

d dma DMA device name to use

o
osy
m Path to the pre-generated symbols.json file transferred from the host

s osty OS type (windows or linux) of the system where the process is running

t time Number of seconds to sleep between scans

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications.

middle. You must remove the "EC" to arrive at
the correct VUID.

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 218

Application Code Flow

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register application parameters.

3. Parse the arguments.

2. Initialize DOCA App Shield lib context.

1. Create lib context.

2. Set DMA device for lib.

3. Start the context

doca_argp_init();

register_apsh_params();

doca_argp_start();

doca_apsh_create();

doca_devinfo_list_create();
doca_dev_open();
doca_devinfo_list_destroy();
doca_apsh_dma_dev_set();

doca_apsh_start();

DOCA Documentation v2.7.0 219

3. Initialize DOCA App Shield lib system context handler.

1. Get the representor of the remote PCIe function exposed to the system.

2. Create and start the system context handler.

4. Find target process by pid.

5. Telemetry initialization.

1. Initialize a new telemetry schema.

2. Register attestation type event.

3. Set up output to file (in addition to default IPC).

4. Start the telemetry schema.

5. Initialize and start a new DTS source with the gethostname() name as source ID.

apsh_system_init();

doca_devinfo_remote_list_create();
doca_dev_remote_open();
doca_devinfo_remote_list_destroy();

doca_apsh_system_create();
doca_apsh_sys_os_symbol_map_set();
doca_apsh_sys_mem_region_set();
doca_apsh_sys_dev_set();
doca_apsh_sys_os_type_set();
doca_apsh_system_start();

doca_apsh_processes_get();

telemetry_start();

DOCA Documentation v2.7.0 220

6. Get initial attestation of the process.

7. Loop until attestation validation fail.

8. DOCA App Shield Agent destroy.

9. Telemetry destroy.

10. Arg parser destroy.

References

/opt/mellanox/doca/applications/app_shield_agent/

doca_apsh_attestation_get();

doca_apsh_attst_refresh();
/* validation logic */

doca_telemetry_source_report();
DOCA_LOG_INFO();
sleep();

doca_apsh_attestation_free();
doca_apsh_processes_free();
doca_apsh_system_destroy();
doca_apsh_destroy();
doca_dev_close();
doca_dev_remote_close();

telemetry_destroy();

doca_argp_destroy();

DOCA Documentation v2.7.0 221

NVIDIA DOCA DMA Copy Application
Guide
This guide provides an example of a DMA Copy implementation on top of NVIDIA®
BlueField® DPU.

Introduction

DOCA DMA (direct memory access) Copy application transfers files (data path), up to the
maximum supported size by the hardware, between the DPU and the x86 host using the
DOCA DMA Library which provides an API to copy data between DOCA buffers using
hardware acceleration, supporting both local and remote memory.

DOCA DMA allows complex memory copy operations to be easily executed in an
optimized, hardware-accelerated manner.

System Design

DOCA DMA Copy is designed to run on the instances of the BlueField DPU and x86 host.
The DPU application must be the first to spawn as it opens the DOCA Comch server
between the two sides on which all the necessary DOCA DMA library configuration files
(control path) are transferred.

https://docs.nvidia.com//doca/sdk/DOCA+DMA
https://docs.nvidia.com//doca/sdk/DOCA+Comch

DOCA Documentation v2.7.0 222

Application Architecture

DOCA DMA Copy runs on top of DOCA DMA to read/write directly from the host's
memory without any user/kernel space context switches, allowing for a fast memory
copy.

DOCA Documentation v2.7.0 223

Flow:

1. The two sides initiate a short negotiation in which the file size and location are
determined.

2. The host side creates the export descriptor with doca_mmap_export_pci() and sends it
with the local buffer address and length on the Comch to the DPU side application.

3. The DPU side application uses the received export descriptor to create a remote
memory map locally with doca_mmap_create_from_export() and the host buffer
information to create a remote DOCA buffer.

DOCA Documentation v2.7.0 224

4. From this point on, the DPU side application has all the necessary memory
information and the DMA copy can take place.

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA DMA

DOCA Comch

Refer to their respective programming guide for more information.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/dma_copy/.

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

https://docs.nvidia.com//doca/sdk/DOCA+DMA
https://docs.nvidia.com//doca/sdk/DOCA+Comch
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 225

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Compiling Only the Current Application

To directly build only the DMA Copy application:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_dma_copy is created under /tmp/build/dma_copy/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_dma_copy=true

ninja -C /tmp/build

Info

doca_dma_copy is created under /tmp/build/dma_copy/.

DOCA Documentation v2.7.0 226

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_dma_copy to true

2. Run the following compilation commands :

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

Running the Application

Application Execution

The DMA Copy application is provided in source form. Therefore, a compilation is
required before the application can be executed.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_dma_copy is created under /tmp/build/dma_copy/.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 227

1. Application usage instructions:

Usage: doca_dma_copy [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-f, --file Full path to file to be copied/created after a successful DMA copy
-p, --pci-addr DOCA Comm Channel device PCI address
-r, --rep-pci DOCA Comm Channel device representor PCI address (needed
only on DPU)

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_dma_copy -h

Info

For additional information, refer to section "Command Line
Flags".

DOCA Documentation v2.7.0 228

2. CLI example for running the application on the BlueField:

3. CLI example for running the application on the host:

4. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

./doca_dma_copy -p 03:00.0 -r 3b:00.0 -f received.txt

Note

Both the DOCA Comch device PCIe address (03:00.0) and the
DOCA Comch device representor PCIe address (3b:00.0) should
match the addresses of the desired PCIe devices.

./doca_dma_copy -p 3b:00.0 -f send.txt

Note

The DOCA Comch device PCIe address, 3b:00.0, should match the
address of the desired PCIe device.

./doca_dma_copy --json [json_file]

./doca_dma_copy --json ./dma_copy_params.json

DOCA Documentation v2.7.0 229

Command Line Flags

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Genera
l flags

h help Print a help synopsis N/A

v version Print program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with
TRACE log level support)

N/A sdk-log-level

Set the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment.

"log-level":
60

"sdk-log-

level": 40

DOCA Documentation v2.7.0 230

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

j json
Parse all command flags from an input
JSON file

N/A

Progra
m flags

f file

Full path to file to be copied/created after
a successful copy

p pci-addr

DOCA Comch device PCIe address.

r rep-pci

DOCA Comch device representor PCIe
address.

Note
This is a mandatory
flag.

"file":
"/tmp/samp
le.txt"

Note
This is a mandatory
flag.

"pci-addr":
"b1:00.0"

Note
This is a mandatory
flag only on the DPU.

"rep-pci":
"b1:02.0"

Info

DOCA Documentation v2.7.0 231

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications.

Application Code Flow

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register DMA Copy application parameters.

3. Parse the arguments.

1. Initialize Comch endpoint.

1. Create Comch endpoint.

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

doca_argp_init();

register_dma_copy_params();

doca_argp_start();

init_cc();

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 232

2. Parse user PCIe address for Comch device.

3. Open Comch DOCA device.

4. Parse user PCIe address for Comch device representor (on DPU side).

5. Open Comch DOCA device representor (on DPU side).

6. Set Comch endpoint properties.

2. Open the DOCA hardware device from which the copy would be made.

1. Parse the PCIe address provided by the user.

2. Create a list of all available DOCA devices.

3. Find the appropriate DOCA device according to specific properties.

4. Open the device.

3. Create all required DOCA core objects.

4. Initiate DOCA core objects.

5. Start host/DPU DMA Copy.

1. Host side application:

1. Start negotiation with the DPU side application for the location and size
of the file.

open_dma_device();

create_core_objects();

init_core_objects();

host_start_dma_copy();

DOCA Documentation v2.7.0 233

2. Allocate memory for the DMA buffer.

3. Export the memory map and send the output (export descriptor) to the
DPU side application.

4. Send the host local buffer memory address and length on the Comch to
the DPU side application.

5. Wait for the DPU to notify that DMA Copy ended.

6. Close all memory objects.

7. Clean resources.

2. DPU side application:

1. Start negotiation with the host side application for file location and size.

2. Allocate memory for the DMA buffer.

3. Receive the export descriptor on the Comch.

4. Create the DOCA memory map for the remote buffer on the host.

5. Receive the host buffer information on the Comch.

6. Create two DOCA buffers, one for the remote (host) buffer and one for
the local buffer.

7. Submit the DMA copy task.

8. Send a host message to notify that DMA copy ended.

9. Clean resources.

6. Destroy Comch.

dpu_start_dma_copy();

DOCA Documentation v2.7.0 234

7. Destroy DOCA core objects.

8. Arg parser destroy.

References

/opt/mellanox/doca/applications/dma_copy/

/opt/mellanox/doca/applications/dma_copy/dma_copy_params.json

NVIDIA DOCA DPA All-to-all
Application Guide
This guide explains all-to-all collective operation example when accelerated using the
DPA in NVIDIA® BlueField®-3 DPU.

Introduction

This reference application shows how the message passing interface (MPI) all-to-all
collective can be accelerated on the Data Path Accelerator (DPA). In an MPI collective, all
processes in the same job call the collective routine.

Given a communicator of n ranks, the application performs a collective operation in
which all processes send and receive the same amount of data from all processes (hence
all-to-all).

This document describes how to run the all-to-all example using the DOCA DPA API .

destroy_cc();

destroy_core_objects();

doca_argp_destroy();

https://docs.nvidia.com//doca/sdk/DPA+Subsystem

DOCA Documentation v2.7.0 235

System Design

All-to-all is an MPI method. MPI is a standardized and portable message passing standard
designed to function on parallel computing architectures. An MPI program is one where
several processes run in parallel.

Each process in the diagram divides its local sendbuf into n blocks (4 in this example),
each containing sendcount elements (4 in this example). Process i sends the k-th block of
its local sendbuf to process k which places the data in the i-th block of its local recvbuf.

Implementing all-to-all method using DOCA DPA offloads the copying of the elements
from the srcbuf to the recvbufs to the DPA, and leaves the CPU free to perform other
computations.

Application Architecture

The following diagram describes the differences between host-based all-to-all and DPA
all-to-all.

DOCA Documentation v2.7.0 236

In DPA all-to-all, DPA threads perform all-to-all and the CPU is free to do other
computations

In host-based all-to-all, CPU must still perform all-to-all at some point and is not
completely free for other computations

DOCA Libraries

This application leverages the following DOCA library:

DOCA DPA

Refer to its programming guide for more information.

Dependencies

NVIDIA BlueField-3 platform is required

The application can be run on target BlueField or on host.

Open MPI version 4.1.5rc2 or greater (included in DOCA's installation).

Compiling the Application

Info

https://docs.nvidia.com//doca/sdk/DPA+Subsystem

DOCA Documentation v2.7.0 237

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/dpa_all_to_all/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all applications together, run:

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_dpa_all_to_all is created under /tmp/build/dpa_all_to_all/.

file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 238

Compiling DPA All-to-all Application Only

To directly build only all-to-all application:

Alternatively, one can set the desired flags in meson_options.txt file instead of providing
them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_dpa_all_to_all to true

2. Run the following compilation commands :

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_dpa_all_to_all=true

ninja -C /tmp/build

Info

doca_dpa_all_to_all is created under /tmp/build/dpa_all_to_all/.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

DOCA Documentation v2.7.0 239

Troubleshooting

Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with
the compilation of the application .

Running the Application

Prerequisites

MPI is used for compilation and running of this application. Make sure that MPI is
installed on your setup (openmpi is provided as part of the installation of doca-tools).

Application Execution

doca_dpa_all_to_all is created under /tmp/build/dpa_all_to_all/.

Note

The installation also requires updating the LD_LIBRARY_PATH and PATH

environment variable to include MPI. For example, if openmpi is
installed under /usr/mpi/gcc/openmpi-4.1.7a1 then updating the
environment variables should be like this:

export PATH=/usr/mpi/gcc/openmpi-4.1.7a1/bin:${PATH}
export LD_LIBRARY_PATH=/usr/mpi/gcc/openmpi-
4.1.7a1/lib:${LD_LIBRARY_PATH}

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 240

DPA all-to-all application is provided in source form. Therefore, a compilation is required
before application can be executed.

1. Application usage instructions:

Usage: doca_dpa_all_to_all [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-m, --msgsize <Message size> The message size - the size of the sendbuf and
recvbuf (in bytes). Must be in multiplies of integer size. Default is size of one
integer times the number of processes.
-d, --devices <IB device names> IB devices names that supports DPA,
separated by comma without spaces (max of two devices). If not provided then
a random IB device will be chosen.

Info

This usage printout can be printed to the command line using
the -h (or --help) option:

./doca_dpa_all_to_all -h

Info

DOCA Documentation v2.7.0 241

2. CLI example for running the application on host:

The following runs the DPA all-to-all application with 8 processes using the
default message size (the number of processes, which is 8, times the size of 1
integer) with a random InfiniBand device:

The following runs DPA all-to-all application with 8 processes, with 128 bytes
as message size, and with mlx5_0 and mlx5_1 as the InfiniBand devices:

3. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For additional information, please refer to section "Command
Line Flags".

Note

This is an MPI program, so use mpirun to run the application
(with the -np flag to specify the number of processes to run).

mpirun -np 8 ./doca_dpa_all_to_all

mpirun-np 8 ./doca_dpa_all_to_all -m 128 -d "mlx5_0,mlx5_1"

Note

The application supports running with a maximum of 16
processes. If you try to run with more processes, an error
is printed and the application exits.

DOCA Documentation v2.7.0 242

For example:

Command Line Flags

Fla
g
Typ
e

Sh
or
t
Fla
g

Lon
g
Flag
/JSO
N
Key

Description JSON Content

Ge
ner
al
flag
s

h help Prints a help synopsis N/A

v
versi
on

Prints program version
information

N/A

l log-
level

Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60

./doca_dpa_all_to_all --json [json_file]

./doca_dpa_all_to_all --json ./dpa_all_to_all_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, especially the InfiniBand
device identifiers.

"log-level": 60

DOCA Documentation v2.7.0 243

Fla
g
Typ
e

Sh
or
t
Fla
g

Lon
g
Flag
/JSO
N
Key

Description JSON Content

TRACE=70 (requires
compilation with TRACE

log level support)

N/
A

sdk-
log-
level

Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json
Parse all command flags from
an input json file

N/A

Pro
gra
m
flag
s

m
msgs
ize

The message size. The size of
the sendbuf and recvbuf (in
bytes). Must be in multiples
of an integer. The default is
size of 1 integer times the
number of processes.

"sdk-log-level": 40

"msgsize": -1

Note
The value -1 is a
placeholder to use
the default size,
which is only known
at run time (because
it depends on the
number of
processes).

DOCA Documentation v2.7.0 244

Fla
g
Typ
e

Sh
or
t
Fla
g

Lon
g
Flag
/JSO
N
Key

Description JSON Content

d
devic
es

InfiniBand devices names
that support DPA, separated
by comma without spaces
(max of two devices). If
NOT_SET then a random
InfiniBand device is chosen.

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications .

Application Code Flow

1. Initialize MPI.

2. Parse application arguments.

"devices": "NOT_SET"

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

MPI_Init(&argc, &argv);

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 245

1. Initialize arg parser resources and register DOCA general parameters.

2. Register the application's parameters.

3. Parse the arguments.

1. The msgsize parameter is the size of the sendbuf and recvbuf (in bytes). It
must be in multiples of an integer and at least the number of processes
times an integer size.

2. The devices_param parameter is the names of the InfiniBand devices to use
(must support DPA). It can include up to two devices names.

4. Only let the first process (of rank 0) parse the parameters to then broadcast
them to the rest of the processes.

3. Check and prepare the needed resources for the all_to_all call:

1. Check the number of processes (maximum is 16).

2. Check the msgsize. It must be in multiples of integer size and at least the
number of processes times integer size.

3. Allocate the sendbuf and recvbuf according to msgsize.

4. Prepare the resources required to perform all-to-all method using DOCA DPA:

1. Initialize DOCA DPA context:

1. Open DOCA DPA device (DOCA device that supports DPA).

doca_argp_init();

register_all_to_all_params();

doca_argp_start();

open_dpa_device(&doca_device);

DOCA Documentation v2.7.0 246

2. Initialize DOCA DPA context using the opened device.

2. Initialize the required DOCA Sync Events for the all-to-all:

1. One completion event for the kernel launch where the subscriber is CPU
and the publisher is DPA.

2. Kernel events, published by remote peer and subscribed to by DPA, as
the number of processes.

extern struct doca_dpa_app *dpa_all2all_app;

doca_dpa_create(doca_device, &doca_dpa);

doca_dpa_set_app(doca_dpa, dpa_all2all_app);

doca_dpa_start(doca_dpa);

create_dpa_a2a_events() {
// initialize completion event

doca_sync_event_create(&comp_event);

doca_sync_event_add_publisher_location_dpa(comp_event);

doca_sync_event_add_subscriber_location_cpu(comp_event);

doca_sync_event_start(comp_event);
// initialize kernels events

for (i = 0; i < resources->num_ranks; i++) {
doca_sync_event_create(&(kernel_events[i]));

doca_sync_event_add_publisher_location_remote_net(kernel_events[i]

doca_sync_event_add_subscriber_location_dpa(kernel_events[i]);

doca_sync_event_start(kernel_events[i]);

https://docs.nvidia.com//doca/sdk/Sync+Event

DOCA Documentation v2.7.0 247

3. Prepare DOCA RDMAs and set them to work on DPA:

1. Create DOCA RDMAs as the number of processes/ranks.

2. Connect local DOCA RDMAs to the remote DOCA RDMAs.

3. Get DPA handles for local DOCA RDMAs (so they can be used by DPA
kernel) and copy them to DPA heap memory.

}
}

for (i = 0; i < resources->num_ranks; i++) {
doca_rdma_create(&rdma);

rdma_as_doca_ctx = doca_rdma_as_ctx(rdma);

doca_rdma_set_permissions(rdma);

doca_rdma_set_grh_enabled(rdma);

doca_ctx_set_datapath_on_dpa(rdma_as_doca_ctx, doca_dpa);

doca_ctx_start(rdma_as_doca_ctx);
}

connect_dpa_a2a_rdmas();

for (int i = 0; i < resources->num_ranks; i++) {
doca_rdma_get_dpa_handle(rdmas[i], &(rdma_handles[i]));
}

doca_dpa_mem_alloc(&dev_ptr_rdma_handles);

doca_dpa_h2d_memcpy(dev_ptr_rdma_handles, rdma_handles);

DOCA Documentation v2.7.0 248

4. Prepare the memory required to perform all-to-all method using DOCA Mmap.
This includes creating DPA memory handles for sendbuf and recvbuf, getting
other processes recvbufs handles, and copying these memory handles and
their remote keys and events handlers to DPA heap memory.

5. Launch alltoall_kernel using DOCA DPA kernel launch with all required parameters:

1. Every MPI rank launches a kernel of up to MAX_NUM_THREADS. This example
defines MAX_NUM_THREADS as 16.

2. Launch alltoall_kernel using kernel_launch.

3. Each process should perform num_ranks RDMA write operations, with local and
remote buffers calculated based on the rank of the process that is performing
the RDMA write operation and the rank of the remote process that is being
written to. The application iterates over the rank of the remote process.i

Each process runs num_threads threads on this kernel, therefore the number of
RDMA write operations (which is the number of processes) is divided by the
number of threads.
Each thread should wait on its local events to make sure that the remote
processes have finished RDMA write operations.
Each thread should also synchronize its RDMA DPA handles to make sure that
the local RDMA operation calls has finished.

prepare_dpa_a2a_memory();

doca_dpa_kernel_launch_update_set();

for (i = thread_rank; i < num_ranks; i += num_threads) {
doca_dpa_dev_rdma_post_write();
doca_dpa_dev_rdma_signal_set();
}

for (i = thread_rank; i < num_ranks; i += num_threads) {
doca_dpa_dev_sync_event_wait_gt();
doca_dpa_dev_rdma_synchronize();

DOCA Documentation v2.7.0 249

4. Wait until alltoall_kernel has finished.

After alltoall_kernel is finished, the recvbuf of all processes contains the expected
output of all-to-all method.

6. Destroy a2a_resources:

1. Free all DOCA DPA memories.

2. Destroy all DOCA Mmaps

3. Destroy all DOCA RDMAs.

}

doca_sync_event_wait_gt();

Note

Add an MPI barrier after waiting for the event to make
sure that all of the processes have finished executing
alltoall_kernel.

MPI_Barrier();

doca_dpa_mem_free();

doca_mmap_destroy();

doca_ctx_stop();
doca_rdma_destroy();

DOCA Documentation v2.7.0 250

4. Destroy all DOCA Sync Events.

5. Destroy DOCA DPA context.

6. Close DOCA device.

References

/opt/mellanox/doca/applications/dpa_all_to_all/

/opt/mellanox/doca/applications/dpa_all_to_all/dpa_all_to_all_params.json

NVIDIA DOCA DPA L2 Reflector
Application Guide
This document provides a DPA L2 reflector implementation on top of the NVIDIA®
BlueField®-3 DPU.

Introduction

The BlueField-3 DPU supports high-speed Data Path Accelerator (DPA) . Data path
accelerator allows for accelerated packet processing and manipulation.

DOCA l ayer-2 reflector uses the DPA engine to intercept network traffic and swap the
source and destination MAC addresses of each packet.

System Design

doca_sync_event_destroy();

doca_dpa_destroy();

doca_dev_close();

DOCA Documentation v2.7.0 251

The application accepts traffic from a specific port given as an argument and leverages
DPA capabilities for accelerated processing.

The following figure provides a high-level view of the components of the application:

Application Architecture

DOCA L2 reflector runs on top of FlexIO SDK to configure the DPA engine.

DOCA Documentation v2.7.0 252

The FlexIO application consist of two parts:

Host side – responsible for allocating resources and loading them to the DPA

Device side – core processing logic of the application which swaps the MACs on the
DPA

For more information, refer to "Programming FlexIO SDK".

DOCA Libraries and Drivers

This application leverages the following DOCA driver:

https://docs.nvidia.com//doca/sdk/DPA+Subsystem#src-2477574991_id-.DPASubsystemv2.6.0-ProgrammingFlexIOSDK

DOCA Documentation v2.7.0 253

FlexIO SDK

Refer to its programming guide for more information.

Dependencies

NVIDIA® BlueField®-3 DPU and above is required.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/l2_reflector/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

https://docs.nvidia.com//doca/sdk/DPA+Development#src-2681265977_id-.DPADevelopmentv2.7.0-FlexIO
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 254

To build all the applications together, run:

Compiling DPA L2 Reflector Application Only

To directly build only the L2 reflector application:

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

l2_reflector is created under /tmp/build/l2_reflector/host.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_l2_reflector=true

ninja -C /tmp/build

Info

l2_reflector is created under /tmp/build/l2_reflector/host.

DOCA Documentation v2.7.0 255

Set enable_l2_reflector to true

2. Run the following compilation commands :

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with
the compilation of the DOCA applications.

Running the Application

Application Execution

The L2 reflector application is provided in source form. Therefore, a compilation is
required before the application can be executed.

1. Application usage instructions:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

l2_reflector is created under /tmp/build/l2_reflector/host.

Usage: l2_reflector [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 256

2. CLI example for running the application on BlueField or host:

-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-d, --device <device name> Device name

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./l2_reflector -h

Info

For additional information, refer to section "Command Line
Flags".

./l2_reflector -d mlx5_0

Note

DOCA Documentation v2.7.0 257

3. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

The used device name (-d flag) must match the identifier of the
desired IB device.

Info

To run the application on the second port, verify that it has a
partition. Run:

If DPA EU partition creation is required, refer to NVIDIA DOCA
DPA Execution Unit Management Tool.

dpaeumgmt partition info -d mlx5_1

./l2_reflector --json [json_file]

./l2_reflector --json ./l2_reflector_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the desired
PCIe addresses required for the deployment.

file:///doca/sdk/NVIDIA+DOCA+DPA+Execution+Unit+Management+Tool
file:///doca/sdk/NVIDIA+DOCA+DPA+Execution+Unit+Management+Tool

DOCA Documentation v2.7.0 258

Command Line Flags

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

General
flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation
with TRACE log level support)

N/A sdk-log-level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json
Parse all command flags from an input
JSON file

N/A

Progra
m flags

d device Device name

"log-level":
60

"sdk-log-

level": 40

"device":
mlx5_0

Info

DOCA Documentation v2.7.0 259

Troubleshooting

Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with
the installation or execution of the DOCA applications.

Application Code Flow

This section lists the application's configuration flow which includes different FlexIO
functions and wrappers.

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register the application's parameters.

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

Note

DPA L2 reflector works with packets with a specific source MAC
address. To check the supported MAC address, refer to
/opt/mellanox/doca/applications/l2_reflector/src/host/l2_reflector_core.h.

doca_argp_init();

register_l2_reflector_params();

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 260

3. Parse the arguments.

2. Setup the InfiniBand device.

3. Setup the DPA device.

4. Allocate the device's resources.

5. R un initialization function on the device.

6. Create the steering rule.

7. Start the event handler on the device.

8. Main loop.

doca_argp_start();

l2_reflector_setup_ibv_device();

l2_reflector_setup_device();

l2_reflector_allocate_device_resources();

flexio_process_call();

l2_reflector_create_steering_rule();

flexio_event_handler_run();

while (!force_quit)
sleep(10);

DOCA Documentation v2.7.0 261

9. Cleanup the resources.

References

/opt/mellanox/doca/applications/l2_reflector/

/opt/mellanox/doca/applications/l2_reflector/l2_reflector_params.json

NVIDIA DOCA East-West Overlay
Encryption Application
This guide describes IPsec-based strongSwan solution on top of NVIDIA® BlueField®
DPU.

Introduction

IPsec is used to set up encrypted connections between different devices. It helps keep
data sent over public networks secure. IPsec is often used to set up VPNs, and it works by
encrypting IP packets as well as authenticating the packets' originator.

IPsec contains the following main modules:

l2_reflector_destroy();

Note

If your target application utilizes 100Gb/s or higher bandwidth, where
a substantial part of the bandwidth is allocated for IPsec traffic,
please refer to the NVIDIA BlueField-2 DPUs Product Release Notes to
learn about a potential bandwidth limitation. To access the relevant
product release notes, please contact your NVIDIA sales
representative.

DOCA Documentation v2.7.0 262

Key exchange – a key is a string of random bytes that can be used for encryption
and decryption of messages. IPsec sets up keys with a key exchange between the
connected devices, so that each device can decrypt the other device's messages.

Authentication – IPsec provides authentication for each packet which ensures that
they come from a trusted source.

Encryption – IPsec encrypts the payloads within each packet and possibly, based on
the transport mode, the packet's IP header.

Decryption – at the other end of the communication, packets are decrypted by the
IPsec supported node.

IPsec supports two types of headers:

Authentication header (AH) – AH protocol ensures that packets are from a trusted
source. AH does not provide any encryption.

Encapsulating security protocol (ESP) – ESP encrypts the payload for each packet as
well as the IP header depending on the transport mode. ESP adds its own header
and a trailer to each data packet.

IPsec support two types of transport mode:

IPsec tunnel mode – used between two network nodes, each acting as tunnel
initiator/terminator on a public network. In this mode, the original IP header and
payload are both encrypted. Since the IP header is encrypted, an IP tunnel is added
for network forwarding. At each end of the tunnel, the routers decrypt the IP
headers to route the packets to their destinations.

Transport mode – the payload of each packet is encrypted, but the original IP
header is not. Intermediary network nodes are therefore able to view the
destination of each packet and route the packet, unless a separate tunneling
protocol is used.

strongSwan is an open-source IPsec-based VPN solution. For more information, refer to
strongSwan documentation.

System Design

https://wiki.strongswan.org/projects/strongswan/wiki/IntroductiontostrongSwan

DOCA Documentation v2.7.0 263

IPsec packet offload offloads both IPsec crypto (encrypt/decrypt) and IPsec encapsulation
to the hardware.

The deployment model allows the IPsec offload to be transparent to the host with the
benefits of securing legacy workloads (no dependency on host SW stack) and to zero CPU
utilization on host.

IPsec packet offload configuration works with and is transparent to OVS offload. This
means all packets from OVS offload are encrypted by IPsec rules.

The following figure illustrates the interaction between IPsec packet offload and OVS
VXLAN offload.

Note

IPsec packet offload is only supported on Ubuntu Bluefield kernel
5.15

Note

DOCA Documentation v2.7.0 264

Application Architecture

1. Configure strongSwan IPsec offload using swanctl.conf configuration file.

2. Traffic is sent from the host through BlueField.

3. Using OVS, the packets are encapsulated on ingress using tunnel protocols (VXLAN
for example) to match IPsec configuration by strongSwan.

4. Set by strongSwan configuration file, traffic will be encrypted using the hardware
offload.

5. Egress flow is decryption first, decapsulation of the tunnel header and forward to
the relevant physical function.

DOCA Libraries

N/A

Configuration Flow

OVS offload and IPsec IPv6 do not work together.

DOCA Documentation v2.7.0 265

The following section provides information on manually configuring IPsec packet offload
in general and on using OVS IPsec with strongSwan specifically.

If you are working directly with the ip xfrm tool, use /opt/mellanox/iproute2/sbin/ip to benefit
from IPsec packet offload support.

There are two parts in the configuration flow

1. Enabling IPsec packet offload mode.

2. Configuring the IPsec OVS bridge using one of three modes of authentication.

Enabling IPsec Packet Offload

This section explicitly enables IPsec packet offload on the Arm cores before setting up
offload-aware IPsec tunnels.

Note

There is a script, east_west_overlay_encryption.sh which performs the steps
in this section automatically.

Note

An alternative for step two is configuring swanctl.conf files
(configuration files for strongSwan) manually and using strongSwan
directly instead of using IPsec OVS (which automatically generates
swanctl.conf files) as explained in section "Configuring OVS IPsec Using
strongSwan Manually".

Note

DOCA Documentation v2.7.0 266

Explicitly enable IPsec full offload on the Arm cores.

1. Set IPSEC_FULL_OFFLOAD="yes" in /etc/mellanox/mlnx-bf.conf .

2. Restart IB driver (rebooting also works). Run:

If an OVS VXLAN tunnel configuration already exists, stop openvswitch

service prior to performing the steps below and restart the service
afterwards.

Note

If IPSEC_FULL_OFFLOAD does not appear in /etc/mellanox/mlnx-bf.conf

then you are probably using an old version of the BlueField
image. Check the way of enabling IPsec full offload in a previous
DOCA versions in the NVIDIA DOCA Documentation Archives.

/etc/init.d/openibd restart

Note

If mlx-regex is running:

1. Disable mlx-regex prior to running restarting the IB driver:

2. Restart IB driver according to the command above.

3. Re-enable mlx-regex after the restart has finished:

systemctl stop mlx-regex

file:///doca/sdk/NVIDIA+DOCA+Documentation+Archives

DOCA Documentation v2.7.0 267

Configuring OVS IPsec

This section configures OVS IPsec VXLAN tunnel which automatically generates the
swanctl.conf files and runs strongSwan (the IPsec daemon). The following figure illustrates
an example with two BlueField DPUs, Left and Right, operating with a secured VXLAN
channel.

systemctl restart mlx-regex

Note

To revert IPsec full offload mode, redo the procedure from step 1,
only difference is to set IPSEC_FULL_OFFLOAD="no" in /etc/mellanox/mlnx-

bf.conf.

Note

Before proceeding with this section, make sure to follow the
procedure in section "Enabling IPsec Packet Offload" for both DPUs.

DOCA Documentation v2.7.0 268

Two BlueField DPUs are required to build an OVS IPsec tunnel between the two hosts,
Right and Left.

The OVS IPsec tunnel configures an unaware IPsec connection between the two hosts'
InfiniBand devices. For the sake of this example, the host's InfiniBand network device is
HOST_PF, and the DPU's host representor is PF_REP and the DPU's physical function PF.

This example sets up the following variables on both Arms:

host_ip1=1.1.1.1
host_ip2=1.1.1.2
HOST_PF=ens7np0
ip1=192.168.50.1
ip2=192.168.50.2
PF=p0
PF_REP=pf0hpf

Note

The name of the HOST_PF could be different in your machine. You may
verify this by running:

DOCA Documentation v2.7.0 269

1. Configure IP addresses for the HOST_PFs of both hosts (x86):

1. On host_1:

2. On host_2:

2. Configure IP addresses for the PFs of both Arms:

1. On Arm_1:

2. On Arm_2:

This example uses the first InfiniBand's (mlx5_0) network device which
is ens7np0.

host# ibdev2netdev
mlx5_0 port 1 ==> ens7np0 (Down)
mlx5_1 port 1 ==> ens8np1 (Down)

ifconfig $HOST_PF $host_ip1/24 up

ifconfig $HOST_PF $host_ip2/24 up

Note

Step 1 is the only command that is performed on the host,
the rest of the commands are performed on the Arm
(DPU) side.

ifconfig $PF $ip1/24 up

DOCA Documentation v2.7.0 270

3. Start Open vSwitch. If your operating system is Ubuntu, run the following on both
Arm_1 and Arm_2:

If your operating system is CentOS, run the following on both Arm_1 and Arm_2:

4. Start OVS IPsec service. Run on both Arm_1 and Arm_2:

5. Set up OVS bridges in both DPUs. Run on both Arm_1 and Arm_2:

ifconfig $PF $ip2/24 up

service openvswitch-switch start

service openvswitch restart

systemctl start openvswitch-ipsec.service

ovs-vsctl add-br vxlan-br
ovs-vsctl add-port ovs-br $PF_REP
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

Note

Configuring other_config:hw-offload=true sets IPsec Packet offload.
Setting it to false sets software IPsec.

Note

The MTU of the MTU of the tunnel interface (PF) should be at
least 50 bytes larger than the MTU of the endpoints of the
tunnels above (PF_REP) to account for the size of the VXLAN

DOCA Documentation v2.7.0 271

6. Set up IPsec tunnel on the OVS bridge. Three authentication methods are possible,
choose your preferred authentication method and follow the steps relevant to it.
Note that the last two authentication methods requires you to create certificates
(self-signed certificates or certificate authority certificates).

Authentication Methods

The following subsections detail the possible authentication methods for setting up the
IPsec tunnel on the OVS bridge.

Pre-shared Key

This method configures OVS IPsec using a pre-shared key. You must select a pre-shared
key, for example:

1. Set up the VXLAN tunnel:

1. On Arm_1, run:

tunnel header. For example, if the MTU of PF_REP is 1500 then
the MTU of PF should be at least 1550.

To configure the MTU of the PF:

ifconfig $PF mtu $PF_MTU up

Note

After the IPsec tunnel is set up using one of the three methods of
authentication, strongSwan configuration is done automatically and
the swanctl.conf files will be generated and strongSwan will run
automatically.

psk=swordfish

DOCA Documentation v2.7.0 272

2. On Arm_2, run:

Self-signed Certificate

This method configures OVS IPsec using self-signed certificates. You must generate self-
signed certificates and keys. This example demonstrates how to generate self-signed
certificates using ovs-pki but you may generate them in any other way while skipping step
1.

1. Generate self-signed certificates using ovs-pki:

1. On Arm_1, run:

After running this code you should have host_1-cert.pem and host_1-privkey.pem.

ovs-vsctl add-port vxlan-br tun -- \
set interface tun type=vxlan \
options:local_ip=$ip1 \
options:remote_ip=$ip2 \
options:key=100 \
options:dst_port=4789 \
options:psk=$psk

ovs-vsctl add-port vxlan-br tun -- \
set interface tun type=vxlan \
options:local_ip=$ip2 \
options:remote_ip=$ip1 \
options:key=100 \
options:dst_port=4789\
options:psk=$psk

ovs-pki req -u host_1
ovs-pki self-sign host_1

DOCA Documentation v2.7.0 273

2. On Arm_2, run:

After running this code you should have host_2-cert.pem and host_2-privkey.pem.

2. Configure the certificates and private keys:

1. Copy the certificate of Arm_1 to Arm_2, and the certificate of Arm_2 to Arm_1.

2. On each machine, move both host_1-privkey.pem and host_2-cert.pem to
/etc/swanctl/x509/ if on Ubuntu, or /etc/strongswan/swanctl/x509/ if on CentOS.

3. On each machine, move the local private key (host_1-privkey.pem on Arm_1 and
host_2-privkey.pem on Arm_2) to /etc/swanctl/private if on Ubuntu, or
/etc/strongswan/swanctl/private if on CentOS.

3. Set up OVS other_config on both sides.

1. On Arm_1:

2. On Arm_2:

4. Set up the VXLAN tunnel:

1. On Arm_1:

ovs-pki req -u host_2
ovs-pki self-sign host_2

ovs-vsctl set Open_vSwitch .
other_config:certificate=/etc/swanctl/x509/host_1-cert.pem \
other_config:private_key=/etc/swanctl/private/host_1-privkey.pem

ovs-vsctl set Open_vSwitch .
other_config:certificate=/etc/swanctl/x509/host_2-cert.pem \
other_config:private_key=/etc/swanctl/private/host_2-privkey.pem

DOCA Documentation v2.7.0 274

2. On Arm_2:

CA-signed Certificate

This method configures OVS IPsec using certificate authority (CA)-signed certificates. You
must generate CA-signed certificates and keys. The example demonstrates how to
generate CA-signed certificates using ovs-pki but you may generate them in any other way
while skipping step 1.

1. Generate CA-signed certificates using ovs-pki. For this method, all the certificates and
the requests must be in the same directory during the certificate generating and
signing. This example refers to this directory as certsworkspace.

1. On Arm_1, run:

ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip1 \
options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
options:remote_cert=/etc/swanctl/x509/host_2-cert.pem
service openvswitch-switch restart

ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip2 \
options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
options:remote_cert=/etc/swanctl/x509/host_1-cert.pem
service openvswitch-switch restart

Note

In steps 3 and 4, if you are in CentOS you must change the path of
the certificates to /etc/strongswan/swanctl/x509/ and the path of the
private keys to /etc/strongswan/swanctl/private.

DOCA Documentation v2.7.0 275

After running this code, you should have host_1-cert.pem, host_1-privkey.pem, and
cacert.pm in the certsworkspace folder.

2. On Arm_2, run:

After running this code, you should have host_2-cert.pem, host_2-privkey.pem, and
cacert.pm in the certsworkspace folder.

2. Configure the certificates and private keys:

1. Copy the certificate of Arm_1 to Arm_2 and the certificate of Arm_2 to Arm_1.

2. On each machine, move both host_1-privkey.pem and host_2-cert.pem to
/etc/swanctl/x509/ if on Ubuntu, or /etc/strongswan/swanctl/x509/ if on CentOS.

3. On each machine, move the local private key (host_1-privkey.pem if on Arm_1 and
host_2-privkey.pem if on Arm_2) to /etc/swanctl/private if on Ubuntu, or
/etc/strongswan/swanctl/private if on CentOS.

4. On each machine, copy cacert.pem to the x509ca directory under
/etc/swanctl/x509ca/ if on Ubuntu, or /etc/strongswan/swanctl/x509ca/ if on CentOS.

3. Set up OVS other_config on both sides.

ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem
<path_to>/certsworkspace
cd <path_to>/certsworkspace
ovs-pki req -u host_1
ovs-pki sign host1 switch

ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem
<path_to>/certsworkspace
cd <path_to>/certsworkspace
ovs-pki req -u host_2
ovs-pki sign host_2 switch

DOCA Documentation v2.7.0 276

1. On Arm_1:

2. On Arm_2:

4. Set up the tunnel:

1. On Arm_1:

2. On Arm_2:

ovs-vsctl set Open_vSwitch . \
other_config:certificate=/etc/strongswan/swanctl/x509/host_1.pem \
other_config:private_key=/etc/strongswan/swanctl/private/host_1-
privkey.pem \
other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

ovs-vsctl set Open_vSwitch . \
other_config:certificate=/etc/strongswan/swanctl/x509/host_2.pem \
other_config:private_key=/etc/strongswan/swanctl/private/host_2-
privkey.pem \
other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip1 \
options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
options:remote_name=host_2
service openvswitch-switch restart

ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip2 \
options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
options:remote_name=host_1
service openvswitch-switch restart

DOCA Documentation v2.7.0 277

Ensuring IPsec is Configured

Using /opt/mellanox/iproute2/sbin/ip xfrm state show, you should be able to see 4 IPsec states for
the IPsec connection you configured with the keyword in mode packet meaning which
means that you are in IPsec packet HW offload mode.

For example, after configuring IPsec using pre-shared key method, you would get
something similar to the following on Arm_1:

Note

In steps 3 and 4, if you are in CenOS you must change the path of the
certificates to /etc/strongswan/swanctl/x509/, the path of the CA certificate
to /etc/strongswan/swanctl/x509ca/, and the path of the private keys to
/etc/strongswan/swanctl/private/.

/opt/mellanox/iproute2/sbin/ip xfrm state show

src 192.168.50.1 dst 192.168.50.2

proto esp spi 0xcc8bf8ad reqid 1 mode transport
replay-window 0 flag esn
aead rfc4106(gcm(aes))
0x9f45cc4577e70c4e077bcc0c1473a782143e7ad199f58566519639d03b593b8996383f11 128

anti-replay esn context:
seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0

replay_window 1, bitmap-length 1
00000000
crypto offload parameters: dev p0 dir out mode packet
sel src 192.168.50.1/32 dst 192.168.50.2/32 proto udp sport 4789
src 192.168.50.2 dst 192.168.50.1

proto esp spi 0xce8bf4b6 reqid 1 mode transport

DOCA Documentation v2.7.0 278

After insuring that the IPsec connection is configured, you can send encrypted traffic
between host_1 and host_2 using the HOST_PFs IP addresses.

replay-window 0 flag esn
aead rfc4106(gcm(aes))
0xf2d0e335d9a64ef6e385a630a32b0e43bb52f581290cd34bbb8f7592d54f11657ed0258e 128

anti-replay esn context:
seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0

replay_window 32, bitmap-length 1
00000000
crypto offload parameters: dev p0 dir in mode packet
sel src 192.168.50.2/32 dst 192.168.50.1/32 proto udp dport 4789
src 192.168.50.1 dst 192.168.50.2

proto esp spi 0xcb600a84 reqid 2 mode transport
replay-window 0 flag esn
aead rfc4106(gcm(aes))
0x7fb26035299bcc9b973abea5d581acfbcf87cbf0bd053b745c4d95c62311f934010973f6 128

anti-replay esn context:
seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0

replay_window 1, bitmap-length 1
00000000
crypto offload parameters: dev p0 dir out mode packet
sel src 192.168.50.1/32 dst 192.168.50.2/32 proto udp dport 4789
src 192.168.50.2 dst 192.168.50.1

proto esp spi 0xc137d5a0 reqid 2 mode transport
replay-window 0 flag esn
aead rfc4106(gcm(aes))
0x28e3d12ad4e24aa9d9de9459de8ef8bb4379e8e12faac0054c5b629b6aa50fdeda8e4574 128

anti-replay esn context:
seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0

replay_window 32, bitmap-length 1
00000000
crypto offload parameters: dev p0 dir in mode packet
sel src 192.168.50.2/32 dst 192.168.50.1/32 proto udp sport 4789

DOCA Documentation v2.7.0 279

Configuring OVS IPsec Using strongSwan Manually

This section configures an OVS VXLAN tunnel which then uses swanctl.conf files and runs
strongSwan (the IPsec daemon) manually.

1. Build a VXLAN tunnel over OVS and connect the PF representor to the same OVS
bridge.

1. On Arm_1:

2. On Arm_2:

2. If your operating system is Ubuntu, run on both Arm_1 and Arm_2:

Note

Before proceeding with this section, make sure to follow the
procedure in section "Enabling IPsec Packet Offload" for both DPUs.

ovs-vsctl add-br vxlan-br
ovs-vsctl add-port vxlan-br PF_REP
ovs-vsctl add-port vxlan-br vxlan11 -- set interface vxlan11 type=vxlan
options:local_ip=$ip1 \
options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

ovs-vsctl add-br vxlan-br
ovs-vsctl add-port vxlan-br PF_REP
ovs-vsctl add-port vxlan-br vxlan11 -- set interface vxlan11 type=vxlan
options:local_ip=$ip2 \
options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

DOCA Documentation v2.7.0 280

If your operating system is CentOS, run:

3. Enable TC offloading for the PF. Run on both Arm_1 and Arm_2:

4. Disable host PF as the port owner from Arm. Run on both Arm_1 and Arm_2:

5. Configure the swanctl.conf files for each machine. See section swanctl.conf Files.

service openvswitch-switch start

service openvswitch restart

ethtool -K $PF hw-tc-offload on

mlxprivhost -d /dev/mst/mt${pciconf} --disable_port_owner r

Note

To get ${pciconf}, run the following on the DPU:

For example:

ls --color=never /dev/mst/ | grep --color=never '^m.*f0$' |
cut -c 3-

mlxprivhost -d /dev/mst/mt41686_pciconf0 --
disable_port_owner r

Note

DOCA Documentation v2.7.0 281

6. Load the swanctl.conf files and initialize strongSwan. Run:

1. On the Arm_2, run:

2. On the Arm_1, run:

Now the IPsec connection should be established.

swanctl.conf Files

strongSwan configures IPSec packet HW offload using a new value added to its
configuration file swanctl.conf. The file should be placed under sysconfdir which by default
can be found at /etc/swanctl/swanctl.conf.

The terms Left (BFL) and Right (BFR), in reference to the illustration under "Application
Architecture", are used to identify the two nodes (or machines) that communicate.

Each machine should have exactly one .swanctl.conf file in
/etc/swanctl/conf.d/.

systemctl restart strongswan.service
swanctl --load-all

systemctl restart strongswan.service
swanctl --load-all
swanctl -i --child bf

Note

Either side (BFL or BFR) can fulfill either role (initiator or receiver).

DOCA Documentation v2.7.0 282

In this example, 192.168.50.1 is used for the left PF uplink and 192.168.50.2 for the right
PF uplink.

connections {
BFL-BFR {
local_addrs = 192.168.50.1

remote_addrs = 192.168.50.2

local {
auth = psk
id = host1
}
remote {
auth = psk
id = host2
}
children {
bf-out {
local_ts = 192.168.50.1/24 [udp]
remote_ts = 192.168.50.2/24 [udp/4789]
esp_proposals = aes128gcm128-x25519-esn
mode = transport
policies_fwd_out = yes
hw_offload = packet
}
bf-in {
local_ts = 192.168.50.1/24 [udp/4789]
remote_ts = 192.168.50.2/24 [udp]
esp_proposals = aes128gcm128-x25519-esn
mode = transport
policies_fwd_out = yes
hw_offload = packet
}
}
version = 2
mobike = no

DOCA Documentation v2.7.0 283

The BFB installation will place two example swanctl.conf files for BFL and BFR (BFL.swanctl.conf

and BFR.swanctl.conf respectively) in the strongSwan conf.d directory. Each node should have
only one swanctl.conf file in its strongSwan conf.d directory.

Note that:

"hw_offload = packet" is responsible for configuring IPsec packet offload

Packet offload support has been added to the existing hw_offload field and preserves
backward compatibility.

For your reference:

Valu
e

Description

no Do not configure HW offload.

cryp
to

Configure crypto HW offload if supported by the kernel and hardware, fail if
not supported.

yes Same as crypto (considered legacy).

pac
ket

Configure packet HW offload if supported by the kernel and hardware, fail if
not supported.

aut
o

Configure packet HW offload if supported by the kernel and hardware, do
not fail (perform fallback to crypto or no as necessary).

reauth_time = 0
proposals = aes128-sha256-x25519
}
}

secrets {
ike-BF {
id-host1 = host1
id-host2 = host2
secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
}
}

DOCA Documentation v2.7.0 284

Whenever the value of hw_offload is changed, strongSwan configuration must be
reloaded.

Switching to crypto HW offload requires setting up devlink/ipsec_mode to none

beforehand.

Switching to packet HW offload requires setting up

[udp/4789] is crucial for instructing strongSwan to IPSec only VXLAN communication.

Packet HW offload can only be done on what is streamed over VXLAN.

Mind the following limitations:

Fields Limitation

reauth_time Ignored if set

rekey_time Do not use. Ignored if set.

rekey_bytes Do not use. Not supported and will fail if it is set.

rekey_packets Use for rekeying

References

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption_pa

NVIDIA DOCA Eth L2 Forwarding
Application Guide
This document provides an Ethernet L2 Forwarding implementation on top of the
NVIDIA® BlueField® DPU.

DOCA Documentation v2.7.0 285

Introduction

Th e Ethernet L2 Forwarding applicatio n is a DOCA Ethernet based application that
forwards traffic from a single RX port to a single TX port and vice versa, leveraging DOCA's
task/event batching feature for enhanced performance.

The application can run both on the Host and the BlueField, and has two main modes:

Two-sided forwarding – device 1 device 2 and device 2 device 1

One-sided forwarding – device 1 device 2 or device 2 device 1

The one-sided mode offers better performance, enlarging the packets forwarding rate.

System Design

The Ethernet L2 Forwarding application runs on the host or the BlueField.

--

https://docs.nvidia.com//doca/sdk/DOCA+Ethernet

DOCA Documentation v2.7.0 286

Application Architecture

The Ethernet L2 Forwarding application runs on top of the DOCA Ethernet API to form an
(two/one-sided) L2 forwarding between two ports.

1. Two DOCA devices are opened.

2. Two DOCA mmaps are created.

DOCA Documentation v2.7.0 287

3. Two DOCA Flow ports are configured and started, each with a different opened
DOCA device.

4. Two DOCA Ethernet TXQ and RXQ contexts are initialized, each TXQ-RXQ pair with a
different opened DOCA device such that traffic is steered from the device to the
corresponding RXQ, and from the corresponding TXQ to the device.

5. Forwarding - Packets received by device x are steered to RXQ x, then allocated to
TXQ y and sent by device y (and vice versa).

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA Ethernet - Programming Guide

DOCA Flow - Programming Guide

For additional information about the used DOCA libraries, please refer to the respective
programming guides.

Compiling the Application

Installation

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

Overview

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for both compilation of the
applications "as-is", as well as provides the ability to modify the sources and then compile
the new version of the application. For more information about the applications, as well
as development and compilation tips, please refer to the DOCA Applications main guide.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/eth_l2_fwd/.

https://docs.nvidia.com//doca/sdk/DOCA+Ethernet
https://docs.nvidia.com//doca/sdk/DOCA+Flow
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com//doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 288

Compiling All Applications

The applications are all defined under a single meson project, meaning that the default
compilation will compile all the DOCA applications.

To build all the applications together, run:

Compiling Only the Current Application

1. To directly build only the Ethernet L2 Forwarding application:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Note

doca_eth_l2_fwd will be created under /tmp/build/eth_l2_fwd/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_eth_l2_fwd=true

ninja -C /tmp/build

Note

doca_eth_l2_fwd will be created under /tmp/build/eth_l2_fwd/.

DOCA Documentation v2.7.0 289

2. Alternatively, one can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_eth_l2_fwd to true

2. The same compilation commands should be used, as were shown in the
previous section:

Troubleshooting

Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue you may encounter
with the compilation of the DOCA applications.

Running the Application

Application Execution

The Ethernet L2 Forwarding application is provided in source form, hence a compilation
is required before the application can be executed.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Note

doca_eth_l2_fwd will be created under /tmp/build/eth_l2_fwd/.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 290

1. Application usage instructions:

For additional information, please refer to the Command Line Flags section below.

Usage: doca_eth_l2_fwd [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-d, --devs-names <name1,name2> Set two IB devices names separated by a
comma, without spaces.
-r, --rate <rate> Set packets receive rate (in [MB/s]), default is 12500.
-ps, --pkt-size <size> Set max packet size (in [B]), default is 1600.
-t, --time <time> Set packet max process time (in [μs]), default is 1.
-nt, --num-tasks <num> Set number of tasks per batch, default is 128.
-nb, --num-batches <num> Set number of task batches, default is 32.
-o, --one-sided-forwarding <num> Set one-sided forwarding: 0 - two-sided
forwarding, 1 - device 1 -> device 2, 2 - device 2 -> device 1. default is 0.
-f, --max-forwardings <num> Set max forwardings after which the application
run will end, default is 0, meaning no limit.

Note

The above usage printout can be printed to the command line
using the -h (or --help) options:

DOCA Documentation v2.7.0 291

2. CLI example for running the application either on the BlueField or on the host:

3. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

./doca_eth_l2_fwd -h

./doca_eth_l2_fwd -d mlx5_0,mlx5_1

Note

Both IB devices identifiers (mlx5_0, mlx5_1) should match the
identifiers of the desired IB devices.

./doca_eth_l2_fwd --json [json_file]

./doca_eth_l2_fwd --json ./eth_l2_fwd_params.json

Note

Before execution, please ensure that the used JSON file contains
the correct configuration parameters, and especially the desired
IB devices names needed for the deployment.

DOCA Documentation v2.7.0 292

Command Line Flags

Flag
Type

Shor
t
Flag

Long
Flag/JSO
N Key

Description JSON Content

Gener
al flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (Requires compilation
with Trace level support)

N/A sdk-log-
level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

N/A

j json
Parse all command flags from an input
json file

N/A

"log-level": 60

DOCA Documentation v2.7.0 293

Flag
Type

Shor
t
Flag

Long
Flag/JSO
N Key

Description JSON Content

Progra
m flags

d
devs-
names

Two IB devices names, separated by a
comma, without spaces.

r rate
The rate (in [MB/s]) in which the RX port is
expected to receive traffic.

ps pkt-size
The maximum size (in [B]) of a received
packet.

t time
The maximum time taking to process a
single packet.

nt num-tasks
The number of tasks to set per a single
task batch.

nb
num-
batches

The number of task batches to set for the
TX side.

o
one-sided-
forwarding

Flag to set one of 3 options:
0 - Two-sided forwarding.
1 - One-sided forwarding from device 1 to
device 2.
2 - One-sided forwarding from device 2 to
device 1.

f
max-
forwarding
s

The maximum number of forwarding

Note
This is a mandatory
flag.

"devs-names":
"mlx5_0,mlx5_
1"

"rate": 12500

"pkt-size":
1600

"time": 1

"num-tasks":
128

"num-

batches": 32

"one-sided-

forwarding": 0

"max-

forwardings":
32

DOCA Documentation v2.7.0 294

Refer to DOCA Arg Parser for more information regarding the supported flags and
execution modes.

Troubleshooting

Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue you may encounter
with the installation or execution of the DOCA applications.

Application Code Flow

1. Parse application argument.

1. Initialize Arg parser resources and register DOCA general parameters.

2. Register Ethernet L2 Forwarding application parameters.

3. Parse the arguments.

1. Parse DOCA flags.

2. Parse application parameters.

2. Execute Ethernet L2 Forwarding application main logic.

1. Open the two chosen DOCA devices.

doca_argp_init();

register_eth_l2_forwarding_params();

doca_argp_start();

eth_l2_fwd_execute();

https://docs.nvidia.com//doca/sdk/DOCA+Arg+Parser
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 295

2. Initialize necessary DOCA Core objects.

3. Initialize ETH RXQ/TXQ contexts for the devices.

4. Forward packets.

3. Clean up application resources.

1. Stop all contexts and drain tasks.

2. Free all application resources.

4. Arg parser destroy.

References

/opt/mellanox/doca/applications/eth_l2_fwd/

/opt/mellanox/doca/applications/eth_l2_fwd/eth_l2_fwd_params.json

NVIDIA DOCA File Compression
Application Guide
This document provides a file compression implementation on top of the NVIDIA®
BlueField® DPU.

Introduction

The file compression application exhibits how to use the DOCA Compress API to
compress and decompress data using hardware acceleration as well as sending and
receiving it using the DOCA Comch API.

eth_l2_fwd_cleanup();

doca_argp_destroy()

https://docs.nvidia.com//doca/sdk/DOCA+Compress
https://docs.nvidia.com//doca/sdk/DOCA+Comch

DOCA Documentation v2.7.0 296

The application's logic includes both a client and a server:

Client side – the application opens a file, compresses it, and sends the checksum of
the source file with the compressed data to the server

Server side – the application saves the received file in a buffer, decompresses it, and
compares the received checksum with the calculated one

System Design

The file compression application client runs on the host and the server runs on the DPU.

Application Architecture

The file compression application runs on top of the DOCA Comm Channel API to send
and receive the file from the host and to the DPU.

DOCA Documentation v2.7.0 297

1. Connection is established on both sides by DOCA Comm Channel API.

2. Client compresses the data:

When compress engine is available – submits compress job with DOCA
Compress API and sends the result to the server

When compress engine is unavailable – compresses the data in software

3. Client sends the number of messages needed to send the compressed content of
the file.

DOCA Documentation v2.7.0 298

4. Client sends data segments in size of up to 4080 bytes.

5. Server saves the received data in a buffer and submits a decompress job.

6. Server sends an ACK message to the client when all parts of the file are received
successfully.

7. Server compares the received checksum to the calculated checksum.

8. Server writes the decompressed data to an output file.

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA Compress

DOCA Comch

Refer to their respective programming guide for more information.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

https://docs.nvidia.com//doca/sdk/DOCA+Compress
https://docs.nvidia.com//doca/sdk/DOCA+Comch
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 299

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/file_compression/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Compiling File Compression Application Only

To directly build only the f ile compression application:

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_file_compression is created under /tmp/build/file_compression/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_file_compression=true

ninja -C /tmp/build

file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 300

Alternatively, the user may set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_file_compression to true

2. Run the following compilation commands :

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application.

Info

doca_file_compression is created under /tmp/build/file_compression/.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_file_compression is created under /tmp/build/file_compression/.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 301

Running the Application

Application Execution

The file compression application is provided in source form. Therefore, a compilation is
required before the application can be executed.

1. Application usage instructions:

Usage: doca_file_compression [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-p, --pci-addr DOCA Comm Channel device PCI address
-r, --rep-pci DOCA Comm Channel device representor PCI address
-f, --file File to send by the client / File to write by the server
-t, --timeout Application timeout for receiving file content messages, default is 5
sec

Info

This usage printout can be printed to the command line using th
e -h (or --help) options:

./doca_file_compression -h

DOCA Documentation v2.7.0 302

2. CLI example for running the application on BlueField:

3. CLI example for running the application on the host:

4. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

Info

For additional information, refer to section "Command Line
Flags".

./doca_file_compression -p 03:00.0 -r 3b:00.0 -f received.txt

Note

Both the DOCA Comm Channel device PCIe address (03:00.0) and
the DOCA Comm Channel device representor PCIe address
(3b:00.0) should match the addresses of the desired PCIe devices.

./doca_file_compression -p 3b:00.0 -f send.txt

Note

The DOCA Comm Channel device PCIe address (3b:00.0) should
match the address of the desired PCIe device.

DOCA Documentation v2.7.0 303

For example:

Command Line Flags

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Genera
l flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with
TRACE log level support)

./doca_file_compression --json [json_file]

./doca_file_compression --json ./file_compression_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment.

"log-level":
60

DOCA Documentation v2.7.0 304

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

N/A sdk-log-level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json
Parse all command flags from an input
JSON file

N/A

Progra
m flags

f file

For client – path to the file to be sent
For server – path to write the file into

p pci-addr

Comm Channel DOCA device PCIe address

r rep-pci Comm Channel DOCA device representor
PCIe address

"sdk-log-

level": 40

Note
This is a mandatory
flag.

"file":
"/tmp/data
.txt"

Note
This is a mandatory
flag.

"pci-addr":
03:00.1

"rep-pci":
b1:00.1

DOCA Documentation v2.7.0 305

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications.

Application Code Flow

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register file compression application parameters.

Note
This flag is mandatory
only on the DPU.

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

doca_argp_init();

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 306

3. Parse the arguments.

1. Parse app parameters.

2. Set endpoint attributes.

1. Set maximum message size of 4080 bytes.

2. Set maximum number of messages allowed.

3. Create comm channel endpoint.

1. Create endpoint for client/server.

4. Run client/server main logic.

5. Clean up the file compression application.

1. Free all application resources.

6. Arg parser destroy.

register_file_compression_params();

doca_argp_start();

set_endpoint_properties();

doca_comm_channel_ep_create();

file_compression_client/server();

file_compression_cleanup();

DOCA Documentation v2.7.0 307

References

/opt/mellanox/doca/applications/file_compression/

/opt/mellanox/doca/applications/file_compression/file_compression_params.json

NVIDIA DOCA File Integrity
Application Guide
This guide provides a file integrity implementation on top of NVIDIA® BlueField® DPU.

Introduction

The file integrity application exhibits how to use the DOCA Comch and DOCA SHA
libraries to send and receive a file securely.

The application's logic includes both a client and a server:

Client side – the application opens a file, calculates the SHA (secure hash algorithm)
digest on it, and sends the digest of the source file alongside the file itself to the
server

Server side – the application calculates the SHA on the received file and compares
the received digest to the calculated one to check if the file has been compromised

doca_argp_destroy()

Note

SHA hardware acceleration is only available on the BlueField-2 DPU.
This application is not supported on BlueField-3.

https://docs.nvidia.com//doca/sdk/DOCA+Comch
https://docs.nvidia.com//doca/sdk/DOCA+SHA

DOCA Documentation v2.7.0 308

System Design

The file integrity application runs in client mode (host) and server mode (DPU).

Application Architecture

The file integrity application runs on top of the DOCA Comm Channel API to send and
receive files from the host and DPU.

DOCA Documentation v2.7.0 309

1. Connection is established on both sides by the Comm Channel API.

2. Client submits SHA job with the DOCA SHA library and sends the result to the
server.

3. Client sends the number of messages required to send the content of the file.

4. Client sends data segments in size of up to 4032 bytes.

5. Server submits a partial SHA job on each received segment.

6. Server sends an ACK message to the client when all parts of the file are received
successfully.

7. Server compares the received SHA to the calculated SHA.

DOCA Documentation v2.7.0 310

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA SHA

DOCA Comch

Refer to their respective programming guide for more information.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/file_integrity/ directory.

Compiling All Applications

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

https://docs.nvidia.com//doca/sdk/DOCA+SHA
https://docs.nvidia.com//doca/sdk/DOCA+Comch%C2%A0%E2%80%93+New
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 311

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Compiling Only the Current Application

To directly build only the file integrity application:

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_file_integrity is created under /tmp/build/file_integrity/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_file_integrity=true

ninja -C /tmp/build

Info

doca_file_integrity is created under /tmp/build/file_integrity/.

DOCA Documentation v2.7.0 312

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_file_integrity to true

2. Run the following compilation commands :

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application.

Running the Application

Application Execution

The file integrity application is provided in source form. Therefore, a compilation is
required before the application can be executed.

1. Application usage instructions:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_file_integrity is created under /tmp/build/file_integrity/.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 313

Usage: doca_file_integrity [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-p, --pci-addr DOCA Comm Channel device PCI address
-r, --rep-pci DOCA Comm Channel device representor PCI address
-f, --file File to send by the client / File to write by the server
-t, --timeout Application timeout for receiving file content messages, default is 5
sec

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_file_integrity -h

Info

For additional information, refer to section "Command Line
Flags".

DOCA Documentation v2.7.0 314

2. CLI example for running the application on BlueField:

3. CLI example for running the application on the host:

4. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

./doca_file_integrity -p 03:00.0 -r 3b:00.0 -f received.txt

Note

Both the DOCA Comm Channel device PCIe address (03:00.0) and
the DOCA Comm Channel device representor PCIe address
(3b:00.0) should match the addresses of the desired PCIe devices.

./doca_file_integrity -p 3b:00.0 -f send.txt

Note

The DOCA Comm Channel device PCIe address (3b:00.0) should
match the address of the desired PCIe device.

./doca_file_integrity --json [json_file]

./doca_file_integrity --json ./file_integrity_params.json

DOCA Documentation v2.7.0 315

Command Line Flags

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Genera
l flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with
TRACE log level support)

N/A sdk-log-level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment .

"log-level":
60

"sdk-log-

level": 40

DOCA Documentation v2.7.0 316

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

j json
Parse all command flags from an input
JSON file

N/A

Progra
m flags

f file

For client – path to the file to be sent
For server – path to write the file into

p pci-addr

Comm Channel DOCA device PCIe address

r rep-pci

Comm Channel DOCA device representor
PCIe address

Note
This is a mandatory
flag.

"file":
"/tmp/data
.txt"

Note
This is a mandatory
flag.

"pci-addr":
03:00.1

Note
This flag is mandatory
only on the DPU.

"rep-pci":
b1:00.1

Info

DOCA Documentation v2.7.0 317

Troubleshooting

Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with
the installation or execution of the DOCA applications .

Application Code Flow

1. Parse application argument.

1. Initialize the arg parser resources and register DOCA general parameters.

2. Register file integrity application parameters.

3. Parse application parameters.

2. Set endpoint attributes.

1. Set maximum message size of 4032 bytes.

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

doca_arg_init();

register_file_integrity_params();

doca_argp_start();

set_endpoint_properties();

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 318

2. Set number of maximum messages allowed per connection.

3. Create Comm Channel endpoint.

1. Create endpoint for client/server.

4. Create SHA context.

1. Create SHA context for submitting SHA jobs for client/server.

5. Run client/server main logic.

6. Clean up the File Integrity app.

1. Free all application resources.

References

/opt/mellanox/doca/applications/file_integrity/

/opt/mellanox/doca/applications/file_integrity/file_integrity_params.json

NVIDIA DOCA GPU Packet Processing
Application Guide

doca_comm_channel_ep_create();

doca_sha_create();

file_integrity_client/server();

file_integrity_cleanup();

DOCA Documentation v2.7.0 319

This guide provides a description of the GPU packet processing application to
demonstrate the use of DOCA GPUNetIO, DOCA Ethernet, and DOCA Flow libraries to
implement a GPU traffic analyzer.

Introduction

Real-time GPU processing of network packets is a useful technique to several different
application domains, including signal processing, network security, information
gathering, and input reconstruction. The goal of these applications is to realize an inline
packet processing pipeline to receive packets in GPU memory (without staging copies
through CPU memory), process them in parallel with one or more CUDA kernels, and
then run inference, evaluate, or send the result of the calculation over the network.

The type of data processing heavily depends on the use case. The goal of this application
is to provide a basic layout to reuse in the most common use cases of being able to
receive, differentiate and manage the following types of network traffic in multiple
queues: UDP, TCP and ICMP.

This application is an enhancement of the use cases presented in this NVIDIA blog post
about DOCA GPUNetIO.

System Design

This is a receive-and-process DOCA application, so a packet generator sending packets is
required to test the application.

https://docs.nvidia.com//doca/sdk/DOCA+GPUNetIO
https://docs.nvidia.com//doca/sdk/DOCA+Ethernet
https://docs.nvidia.com//doca/sdk/DOCA+Flow
https://developer.nvidia.com/blog/inline-gpu-packet-processing-with-nvidia-doca-gpunetio/

DOCA Documentation v2.7.0 320

To launch the application, the PCIe address of the GPU and NIC are required.

Application Architecture

The application manages different types of traffic differently, dedicating up to 4 receive
queues to each one using DOCA Flow with RSS mode to assign each packet to the right
queue. The more queues the application uses, the higher is the degree of parallelism in
how receive data is processed and how long it takes.

ICMP Network Traffic

If the network interface used for the application has an IP address, it is possible to ping
that interface. ICMP packets are received by a dedicated CUDA kernel (file
gpu_kernels/receive_icmp.cu) which:

1. Receives packets using the DOCA GPUNetIO CUDA warp-level function
doca_gpu_dev_eth_rxq_receive_warp .

2. Checks if the packet is an ICMP echo request.

Tip

It is highly recommended to use more than one receive queue for
100Gb/s or higher network traffic throughput.

DOCA Documentation v2.7.0 321

3. Forwards the same packet, modifying some header info (e.g., swapping MAC and IP
addresses, changing ICMP packet type).

4. Pushes the modified packet into the send queue using the DOCA GPUNetIO thread-
level function doca_gpu_dev_eth_txq_send_enqueue_strong .

5. Sends the packet using the DOCA GPUNetIO thread-level functions
doca_gpu_dev_eth_txq_commit_strong and doca_gpu_dev_eth_txq_push.

By default, the OS CPU ping TTL is set to 64. Therefore, to be sure the GPU is actually
replying to ICMP ping requests, TTL is set to 128 in this application.

The following are motivations for this use case:

Info

This is not a compute intensive use case, so a single CUDA warp with
only one receive queue and one send queue is enough to keep up
with a decent latency.

DOCA Documentation v2.7.0 322

Providing an easy tool to check connectivity between packet the generator machine
and the DOCA application machine

Having a sense of network latency between the two machines using a well-known
tool like ping

Showing an easy way to receive and forward modified packets

Providing a warp-level implementation of a CUDA kernel receiving and forwarding
traffic

Assuming the IP address of the network interface to ping is 192.168.1.1, this is the expected
output:

$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.324 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.332 ms
64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=0.299 ms
64 bytes from 192.168.1.1: icmp_seq=4 ttl=64 time=0.309 ms
64 bytes from 192.168.1.1: icmp_seq=5 ttl=64 time=0.323 ms
64 bytes from 192.168.1.1: icmp_seq=6 ttl=64 time=0.300 ms
64 bytes from 192.168.1.1: icmp_seq=7 ttl=64 time=0.274 ms
64 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=0.314 ms
64 bytes from 192.168.1.1: icmp_seq=9 ttl=64 time=0.327 ms
64 bytes from 192.168.1.1: icmp_seq=10 ttl=64 time=0.384 ms
At this point, the DOCA application has been started on the 192.168.1.1 interface
TTL becomes 128 as it's the GPU replying to ICMP requests now instead of the OS

64 bytes from 192.168.1.1: icmp_seq=11 ttl=128 time=0.346 ms
64 bytes from 192.168.1.1: icmp_seq=12 ttl=128 time=0.274 ms
64 bytes from 192.168.1.1: icmp_seq=13 ttl=128 time=0.294 ms
64 bytes from 192.168.1.1: icmp_seq=14 ttl=128 time=0.240 ms
64 bytes from 192.168.1.1: icmp_seq=15 ttl=128 time=0.273 ms
64 bytes from 192.168.1.1: icmp_seq=16 ttl=128 time=0.238 ms
64 bytes from 192.168.1.1: icmp_seq=17 ttl=128 time=0.252 ms
64 bytes from 192.168.1.1: icmp_seq=18 ttl=128 time=0.232 ms
64 bytes from 192.168.1.1: icmp_seq=19 ttl=128 time=0.278 ms

DOCA Documentation v2.7.0 323

A DOCA Progress Engine is attached to the DOCA Ethernet Txq context used to forward
ICMP packets. Those packets are sent from the GPU with the DOCA_GPU_SEND_FLAG_NOTIFY

flag, which result in creating a notification after every packet is sent by the NIC.

All the notifications are then analyzed by the CPU through the doca_pe_progress function.
The final effect is the output of the application which returns the distance, in seconds,
between two pings. The following is an example with a ping every 0.5 seconds:

On the DOCA side, the application should print a log for all the ICMP packets received and
retransmitted:

......

$ ping -i 0.5 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=128 time=0.202 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=128 time=0.179 ms
64 bytes from 192.168.1.1: icmp_seq=3 ttl=128 time=0.199 ms
64 bytes from 192.168.1.1: icmp_seq=4 ttl=128 time=0.180 ms
64 bytes from 192.168.1.1: icmp_seq=5 ttl=128 time=0.200 ms
64 bytes from 192.168.1.1: icmp_seq=6 ttl=128 time=0.189 ms
......

Seconds 5
[UDP] QUEUE: 0 DNS: 0 OTHER: 0 TOTAL: 0
[TCP] QUEUE: 0 HTTP: 0 HTTP HEAD: 0 HTTP GET: 0 HTTP POST: 0 TCP [SYN: 0 FIN: 0
ACK: 0] OTHER: 0 TOTAL: 0
[13:54:19:202061][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 3 sent at
1702302859201997120 time from last ICMP is 0.512025 sec
[13:54:19:713960][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 4 sent at
1702302859713896620 time from last ICMP is 0.511899 sec
[13:54:20:225891][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 5 sent at
1702302860225868072 time from last ICMP is 0.511971 sec

DOCA Documentation v2.7.0 324

[13:54:20:737823][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 6 sent at
1702302860737781760 time from last ICMP is 0.511914 sec
[13:54:21:249763][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 7 sent at
1702302861249723044 time from last ICMP is 0.511941 sec
[13:54:21:761614][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 8 sent at
1702302861761588848 time from last ICMP is 0.511866 sec
[13:54:22:273689][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 9 sent at
1702302862273643536 time from last ICMP is 0.512055 sec
[13:54:22:785543][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 10 sent at
1702302862785527576 time from last ICMP is 0.511884 sec
[13:54:23:297545][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 11 sent at
1702302863297501448 time from last ICMP is 0.511974 sec
[13:54:23:809406][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 12 sent at
1702302863809350664 time from last ICMP is 0.511849 sec

Seconds 10
[UDP] QUEUE: 0 DNS: 0 OTHER: 0 TOTAL: 0
[TCP] QUEUE: 0 HTTP: 0 HTTP HEAD: 0 HTTP GET: 0 HTTP POST: 0 TCP [SYN: 0 FIN: 0
ACK: 0] OTHER: 0 TOTAL: 0
[13:54:24:321405][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 13 sent at
1702302864321391148 time from last ICMP is 0.512040 sec
[13:54:24:833338][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 14 sent at
1702302864833270356 time from last ICMP is 0.511879 sec
[13:54:25:345302][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 15 sent at
1702302865345282728 time from last ICMP is 0.512012 sec

DOCA Documentation v2.7.0 325

UDP Network Traffic

This is the most generic use case of receive-and-analyze packet headers. Designed to
keep up with 100Gb/s of incoming network traffic, the CUDA kernel responsible for the
UDP traffic dedicates one CUDA block of 512 CUDA threads (file gpu_kernels/receive_udp.cu)
to a different Ethernet UDP receive queue.

The data path loop is:

1. Receive packets using the DOCA GPUNetIO CUDA block-level function
doca_gpu_dev_eth_rxq_receive_block .

2. Each CUDA thread works on a subset of received packets.

3. DOCA buffer containing the packet is retrieved.

4. Packet payload is analyzed to differentiate between DNS packets from other UDP
generic packets.

5. Packet payload is wiped-out to ensure that old stale packets are not analyzed again.

6. Each CUDA block reports to the CPU thread statistics about types of received
packets through a DOCA GPUNetIO semaphore.

7. CPU thread polls on semaphores to retrieve and print the statistics to the console.

[13:54:25:857199][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 16 sent at
1702302865857133664 time from last ICMP is 0.511851 sec
[13:54:26:369131][2688665][DOCA][INF][gpu_packet_processing.c:77]
[debug_send_packet_icmp_cb] ICMP debug event: Queue 0 packet 17 sent at
1702302866369128728 time from last ICMP is 0.511995 sec......

DOCA Documentation v2.7.0 326

The motivation for this use case is mostly to provide an application template to:

Receive and analyze packet headers to differentiate across different UDP protocols

Report statistics to the CPU through the DOCA GPUNetIO semaphore

Several well-known packet generators can be used to test this mode like T-Rex or DPDK
testpmd.

TCP Network Traffic and HTTP Echo Server

By default, the TCP flow management is the same as UDP: Receive TCP packets and
analyze their headers to report to the CPU statistics about the types of received packets.
This is good for passive traffic analyzers or sniffers but sometimes a packet processing
application requires receiving packets directly from TCP peers which implies the
establishment of a TCP-reliable connection through the 3-way handshake method.
Therefore, it is possible to enable TCP "server" mode through the -s command-line flag

DOCA Documentation v2.7.0 327

which enables an "HTTP echo server" mode where the CPU and GPU cooperate to
establish a TCP connection and process TCP data packets.

Specifically, in this case there are two different sets of receive queues:

CPU DPDK receive queues which receive TCP "control" packets (e.g. SYN, FIN or RST)

DOCA GPUNetIO receive queues to receive TCP "data" packets

This distinction is possible thanks to DOCA Flow capabilities.

The application's flow requires CPU and GPU collaboration as described in the following
subsections.

Step 1: TCP Connection Establishment

A CPU thread through DPDK queues receives a TCP SYN packet from a remote TCP peer.
The CPU thread establishes a TCP reliable connection (replies with a TCP SYN-ACK packet)
with the peer and uses DOCA Flow to create a new steering rule to redirect TCP data
packets to one of the DOCA GPUNetIO receive queues. The new steering rule excludes
control packets (e.g., SYN, FIN or RST).

Step 2: TCP Data Processing

The CUDA kernel responsible for TCP processing receives TCP data packets and performs
TCP packet header analysis. If it receives an HTTP GET request, it stores the relevant
packet's info in the next item of a DOCA GPUNetIO semaphore, setting it to READY.

Step 3: HTTP Echo Server

A second CUDA kernel responsible for HTTP processing polls the DOCA GPUNetIO
semaphore. Once it detects the update of the next item to READY, it reads the HTTP GET
packet info and crafts an HTTP response packet with an HTML page.

If the request is about index.html or contacts.html, the CUDA kernel replies with the
appropriate HTML page using a 200 OK code. For all other requests, the it returns a "Page
not found" and 404 Error code.

DOCA Documentation v2.7.0 328

HTTP response packets are sent by this second HTTP CUDA kernel using DOCA
GPUNetIO.

Step 4: TCP Connection Closure

If the CPU receives a TCP FIN packet through the DPDK queues, it closes the connection
with the remote TCP peer and removes the DOCA Flow rule from the DOCA GPUNetIO
queues so the CUDA kernel cannot receive anymore packets from that TCP peer.

Note

Care must be taken to maintain TCP sequence/ack numbers in the
packet headers.

DOCA Documentation v2.7.0 329

Motivations for this use case:

Receiving and analyzing packet headers to differentiate across different TCP
protocols

Processing TCP packets on GPU in passive mode (sniffing) and active mode (reliable
connection)

Having a DOCA-DPDK application able to establish a TCP reliable connection without
using any OS socket and bypassing kernel routines

Having CUDA-kernel-to-CUDA-kernel communication through a DOCA GPUNetIO
semaphore

DOCA Documentation v2.7.0 330

Showing how to create and send a packet from scratch with DOCA GPUNetIO

Assuming the network interface used to run the application has the IP address 192.168.1.1 ,
it is possible to test this HTTP echo server mode using simple tools like curl or wget.

Example with curl:

$ curl http://192.168.1.1/index.html -ivvv

* Trying 192.168.1.1:80...
* Connected to 192.168.1.1 (192.168.1.1) port 80 (#0)

> GET /index.html HTTP/1.1
> Host: 192.168.1.1
> User-Agent: curl/7.81.0
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
HTTP/1.1 200 OK
< Date: Sun, 30 Apr 2023 20:30:40 GMT
Date: Sun, 30 Apr 2023 20:30:40 GMT
< Content-Type: text/html; charset=UTF-8
Content-Type: text/html; charset=UTF-8
< Content-Length: 158
Content-Length: 158
< Last-Modified: Sun, 30 Apr 2023 22:38:34 GMT
Last-Modified: Sun, 30 Apr 2023 22:38:34 GMT
< Server: GPUNetIO
Server: GPUNetIO
< Accept-Ranges: bytes
Accept-Ranges: bytes
< Connection: keep-alive
Connection: keep-alive
< Keep-Alive: timeout=5
Keep-Alive: timeout=5

DOCA Documentation v2.7.0 331

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA GPUNetIO

DOCA Ethernet

DOCA Flow

Refer to their respective programming guide for more information on system
configuration and requirements.

Refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install DOCA
package software.

Dependencies

Before running the application you need to be sure you have the following:

gdrdrv kernel module – active and running on the system

nvidia-peermem kernel module – active and running on the system

Network card interface you want to use is up

<
<html>
<head>
<title>GPUNetIO index page</title>
</head>
<body>
<p>Hello World, the GPUNetIO server Index page!</p>
</body>
</html>

* Connection #0 to host 192.168.1.1 left intact

https://docs.nvidia.com//doca/sdk/DOCA+GPUNetIO
https://docs.nvidia.com//doca/sdk/DOCA+Ethernet
https://docs.nvidia.com//doca/sdk/DOCA+Flow
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 332

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/gpu_packet_processing/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 333

Compiling Only the Current Application

To directly build only the GPU packet processing application:

Alternatively, users can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_gpu_packet_processing to true

2. Run the following compilation commands :

Info

doca_gpu_packet_processing is created under
/tmp/build/gpu_packet_processing/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -
Denable_gpu_packet_processing=true

ninja -C /tmp/build

Info

doca_gpu_packet_processing is created under
/tmp/build/gpu_packet_processing/.

DOCA Documentation v2.7.0 334

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

Running the Application

The GPU packet processing application is provided in source form. Therefore, a
compilation is required before the application can be executed.

1. Application usage instructions:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_gpu_packet_processing is created under
/tmp/build/gpu_packet_processing/.

Usage: doca_gpu_packet_processing [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 335

2. CLI example for running the application on the host:

1. Assuming a GPU PCIe address ca:00.0 and NIC PCIe address 17:00.0 with 2
GPUNetIO receive queues:

-j, --json <path> Parse all command flags from an input json file

Program Flags:
-g, --gpu <GPU PCIe address> GPU PCIe address to be used by the app
-n, --nic <NIC PCIe address> DOCA device PCIe address used by the app
-q, --queue <GPU receive queues> DOCA GPUNetIO receive queue per flow
-s, --httpserver <Enable GPU HTTP server> Enable GPU HTTP server mode

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_gpu_packet_processing -h

Info

For additional information, refer to section "Command Line
Flags".

./doca_gpu_packet_processing -n 17:00.0 -g ca:00.0 -q 2

Note

DOCA Documentation v2.7.0 336

Command Line Flags

Flag
Type

Sho
rt
Flag

Lon
g
Flag

Description

Gene
ral
flags

h help Prints a help synopsis

v
versi
on Prints program version information

l
log-
level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with TRACE log level support)

N/A
sdk-
log-
level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json Parse all command flags from an input JSON file

Progr
am
flags

g gpu
GPU PCIe address in <bus>:<device>.<function> format. This can be
obtained using the nvidia-smi or lspci commands.

n nic
Network card port PCIe address in <bus>:<device>.<function> format.
This can be obtained using the lspci command.

Refer to section "Running DOCA Application on Host" in
the NVIDIA DOCA Virtual Functions User Guide.

file:///doca/sdk/NVIDIA+DOCA+Virtual+Functions+User+Guide

DOCA Documentation v2.7.0 337

Flag
Type

Sho
rt
Flag

Lon
g
Flag

Description

q
queu
e

Number of receive queues to use in the example. Default is 1,
maximum allowed is 4.

s
https
erver

Enable the TCP HTTP server mode. With this flag, TCP packets are
not received by GPUNetIO as regular sniffer as it requires a TCP 3-
way handshake to establish a reliable connection first.

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications .

Application Code Flow

The following explains the application's flow, highlighting main code blocks and functions:

1. Parse application argument.

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

doca_argp_init();
register_application_params();
doca_argp_start();

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 338

2. Initialize network device as DOCA device, initialize DPDK, and get device DPDK port
ID.

Calls rte_eal_init() with empty flags to initialize EAL resources.

3. Initialize a GPU device, creating a DOCA GPUNetIO handle for it.

4. Initialize DOCA Flow, starting the DPDK port.

Flags to initialize DOCA Flow are VNF, HW steering, and isolated mode (to prevent
the default RSS flows from interfering with the GPUNetIO queues).

5. Create RX and TX queue related objects (i.e., Ethernet handlers, GPUNetIO handlers,
flow rules, semaphores) to manage UDP, TCP and ICMP flows.

6. Allocate generic exit flag. All CUDA kernels periodically poll on this flag. If the CPU
set it to 1, CUDA kernels exit from their main loop and return.

7. Launch CUDA kernels, each on a different stream.

init_doca_device();

doca_gpu_create();

init_doca_flow();

create_udp_queues();
create_tcp_queues();
create_icmp_queues();
/* Depending on TCP mode (HTTP server or not) properly connect different DOCA Flow pipes */

create_root_pipe();

doca_gpu_mem_alloc(gpu_dev, sizeof(uint32_t), alignment,
DOCA_GPU_MEM_GPU_CPU, (void **)&gpu_exit_condition, (void

**)&cpu_exit_condition);

DOCA Documentation v2.7.0 339

8. Launch the CPU thread responsible to poll on DOCA GPUNetIO semaphores and
print UDP and TCP stats on the console.

9. Launch CPU thread responsible for managing TCP 3-way handshake connections.

10. Wait for the user to send a signal to quit the application. When this happens, the
signal handler function sets the force_quit flag to true which causes the main thread
to move forward and set the exit condition to 1.

11. Wait for CUDA kernels to exit and finalize all DOCA Flow and GPUNetIO resources.

kernel_receive_udp(rx_udp_stream, gpu_exit_condition, &udp_queues);
kernel_receive_tcp(rx_tcp_stream, gpu_exit_condition, &tcp_queues,
app_cfg.http_server);
kernel_receive_icmp(rx_icmp_stream, gpu_exit_condition, &icmp_queues);
if (app_cfg.http_server)
kernel_http_server(tx_http_server, gpu_exit_condition, &tcp_queues,
&http_queues);

rte_eal_remote_launch((void *)stats_core, NULL, current_lcore);

if (app_cfg.http_server) {
...
rte_eal_remote_launch(tcp_cpu_rss_func, &tcp_queues, current_lcore);
}

while (DOCA_GPUNETIO_VOLATILE(force_quit) == false);
DOCA_GPUNETIO_VOLATILE(*cpu_exit_condition) = 1;

cudaStreamSynchronize(rx_udp_stream);
cudaStreamSynchronize(rx_tcp_stream);
cudaStreamSynchronize(rx_icmp_stream);
if (app_cfg.http_server)
cudaStreamSynchronize(tx_http_server);

DOCA Documentation v2.7.0 340

References

/opt/mellanox/doca/applications/gpu_packet_processing/

NVIDIA DOCA IPsec Security Gateway
Application Guide
This document provides an IPsec security gateway implementation on top of NVIDIA®
BlueField® DPU.

Introduction

destroy_flow_queue();
doca_gpu_destroy();

Note

If your target application utilizes 100Gb/s or higher bandwidth, where
a substantial part of the bandwidth is allocated for IPsec traffic,
please refer to the NVIDIA BlueField-2 DPUs Product Release Notes to
learn about a potential bandwidth limitation. To access the relevant
product release notes, please contact your NVIDIA sales
representative.

Note

DOCA IPsec Security Gateway is supported at alpha level.

DOCA Documentation v2.7.0 341

DOCA IPsec Security Gateway leverages the DPU's hardware capability for secure network
communication. The application demonstrates how to insert rules related to IPsec
encryption and decryption based on the DOCA Flow library.

The application demonstrates how to insert rules to create an IPsec tunnel.

The application can be configured to receive IPsec rules in one of the following ways:

Static configuration – (default) receives a fixed list of rules for IPsec encryption and
decryption

Dynamic configuration – receives IPsec encryption and decryption rules during
runtime through a Unix domain socket (UDS) which is enabled when providing a
socket path to the application

Note

An example for configuring the Internet Key Exchange (IKE) can be
found under section "Keying Daemon Integration (StrongSwan)" but
is not considered part of the application.

Note

When creating the security association (SA) object, the
application gets the key, salt, and other SA attributes from the
JSON input file.

Note

https://docs.nvidia.com//doca/sdk/DOCA+Flow

DOCA Documentation v2.7.0 342

The application supports the following IPsec modes: Tunnel, transport, UDP transport.

System Design

DOCA IPsec Security Gateway is designed to run with 2 ports, secured and unsecured:

Secured port – BlueField receives IPsec encrypted packets and, after decryption,
they are sent through the unsecured port

Unsecured port – BlueField receives regular (plain text) packets and, after
encryption, they are sent through the secured port

Example packet path for hardware (HW) offloading:

You may find an example of integrating a rules generator with
the application under strongSwan project (DOCA plugin).

https://github.com/Mellanox/strongswan/blob/BF-5.9.6/src/libcharon/plugins/doca/doca_plugin_ipsec.c

DOCA Documentation v2.7.0 343

Example packet path for partial software processing (handling encap/decap in software):

DOCA Documentation v2.7.0 344

Using the application with SF:

Application Architecture

Static Configuration

DOCA Documentation v2.7.0 345

1. Open two DOCA devices, one for the secured port and another for the unsecured
port.

2. With the open DOCA devices, the application probes DPDK ports and initializes
DOCA Flow and DOCA Flow ports accordingly.

3. On the created ports, build DOCA Flow pipes.

4. In a loop according to the JSON rules:

1. Create IPSec SA shared resource for the new rule.

2. Insert encrypt or decrypt rule to DOCA Flow pipes.

Dynamic Configuration

1. Open two DOCA devices, one for the secured port and another for the unsecured
port.

2. With the open DOCA devices, the application probes DPDK ports and initializes
DOCA Flow and DOCA Flow ports accordingly.

3. On the created ports, build DOCA Flow pipes.

4. Create UDS socket and listen for incoming data.

DOCA Documentation v2.7.0 346

5. While waiting for new IPsec policies to be received in a loop, if a new IPsec policy is
received:

1. Parse the policy whether it is an encryption or decryption rule.

2. Create IPSec SA shared resource for the new rule.

3. Insert encrypt or decrypt rule to DOCA Flow pipes.

DOCA Flow Modes

The application can run in two modes, vnf and switch. For more information about the
modes, please refer to "Pipe Mode" in the DOCA Flow.

VNF Mode

Encryption

https://docs.nvidia.com//doca/sdk/DOCA+Flow

DOCA Documentation v2.7.0 347

1. The application builds pipes for encryption. Control pipe as root with four entries
that match L3 and L4 types and forward the traffic to the relevant pipes.

1. IPv6 pipes – match the source IP address and forward the traffic to a pipe that
matches 5-tuple excluding the source IP.

2. In the 5-tuple match pipes set action of "set meta data", the metadata would
be the rule's index in the JSON file.

3. The matched packet is forwarded to the second port.

2. In the secured egress domain, the IP classifier pipe sends the packets to the correct
encryption pipe (IPv4 or IPv6) which has a shared IPsec encrypt action. According to
the metadata match, the packet is encrypted with the encap destination IP and SPI
as defined in the user's rules.

Decryption

DOCA Documentation v2.7.0 348

1. The application builds pipes for decryption. Control pipe as root with two entries
that match L3 type and forward the traffic to the relevant decrypt pipe.

2. The decrypt pipe matches the destination IP and SPI according to the rule files and
has a shared IPsec action for decryption.

3. After decryption, the matched packets are forwarded to the decap pipe and, if the
syndrome is non-zero, the packets are dropped. Otherwise, the packets decap the
ESP header and forward to the second port.

1. In debug mode, if syndrome is non-zero, then it sends to bad syndrome pipe
to match on the syndrome, count and drop/send to application.

Switch Mode

In switch mode, an ingress root pipe matches the source port to decide what the next
pipe is:

Based on the port, the packet passes through almost the same path as VNF mode
and the metadata is set. Afterwards, the packet moves to egress root pipe.

In egress root pipe, the match is on encrypt and decrypt bits that were set in the packet
meta:

DOCA Documentation v2.7.0 349

Decrypt bit is 1 – packet finishes the decrypt path and must be sent to the unsecure
port

Encrypt bit is 1 – packet almost finishes the encrypt path and must be sent to the
encrypt pipe on the secure egress domain and to the secure port from there

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA Flow

Refer to their respective programming guide for more information.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

https://docs.nvidia.com//doca/sdk/DOCA+Flow
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 350

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/ipsec_security_gw/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Compiling Only the Current Application

To directly build only the IPsec Security Gateway application:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_ipsec_security_gw is created under /tmp/build/ipsec_security_gw/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_ipsec_security_gw=true

ninja -C /tmp/build

Info

DOCA Documentation v2.7.0 351

Alternatively, users can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_ipsec_security_gw to true

2. Run the following compilation commands :

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

Running the Application

doca_ipsec_security_gw is created under /tmp/build/ipsec_security_gw/.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_ipsec_security_gw is created under /tmp/build/ipsec_security_gw/.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 352

Prerequisites

1. The IPsec security gateway application is based on DOCA Flow. Therefore, the user
is required to allocate huge pages.

echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

Note

On some operating systems (RockyLinux, OpenEuler, CentOS
8.2) the default huge page size on the DPU (and Arm hosts) is
larger than 2MB, and is often 512MB instead. Once can find out
the sige of the huge pages using the following command:

Given that the guiding principal is to allocate 4GB of RAM, in
such cases instead of allocating 2048 pages, one should allocate
the matching amount (8 pages):

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

DOCA Documentation v2.7.0 353

2. VNF mode – the IPsec security gateway application requires disabling some of the
hardware tables:

To restore the old configuration:

echo '8' | sudo tee -a
/sys/kernel/mm/hugepages/hugepages-
524288kB/nr_hugepages

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
legacy

echo none > /sys/class/net/p0/compat/devlink/encap
echo none > /sys/class/net/p1/compat/devlink/encap

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
switchdev

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
legacy

echo basic > /sys/class/net/p0/compat/devlink/encap
echo basic > /sys/class/net/p1/compat/devlink/encap

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
switchdev

DOCA Documentation v2.7.0 354

3. Switch mode – the IPsec security gateway application requires configuring the ports
to run in switch mode:

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
switchdev

sudo mlxconfig -d /dev/mst/mt41686(mt41692)_pciconf0 s
LAG_RESOURCE_ALLOCATION=1

power cycle the host to apply this setting

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
legacy

sudo devlink dev param set pci/0000:03:00.0 name esw_pet_insert value false

cmode runtime
sudo devlink dev param set pci/0000:03:00.1 name esw_pet_insert value false

cmode runtime

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
switchdev

sudo devlink dev param set pci/0000:03:00.0 name esw_multiport value true

cmode runtime
sudo devlink dev param set pci/0000:03:00.1 name esw_multiport value true

cmode runtime

Note

DOCA Documentation v2.7.0 355

To restore the old configuration:

Application Execution

The IPsec Security Gateway application is provided in source form. Therefore, a
compilation is required before the application can be executed.

1. Application usage instructions:

Make sure to perform graceful shutdown prior to power cycling
the host.

sudo devlink dev param set pci/0000:03:00.0 name esw_multiport value false

cmode runtime
sudo devlink dev param set pci/0000:03:00.1 name esw_multiport value false

cmode runtime

Usage: doca_ipsec_security_gw [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-s, --secured secured port pci-address
-u, --unsecured unsecured port pci-address
-c, --config Path to the JSON file with application configuration

file:///doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-HowtoPerformGracefulShutdown

DOCA Documentation v2.7.0 356

2. CLI example for running the application on the BlueField or host:

Static Configuration:

-m, --mode ipsec mode - {tunnel/transport/udp_transport}
-i, --ipc IPC socket file path
-sn, --secured-name secured port interface name
-un, --unsecured-name unsecured port interface name
-n, --nb-cores number of cores
--debug Enable debug counters

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_ipsec_security_gw -h

Info

For additional information, refer to section "Command Line
Flags".

./doca_ipsec_security_gw -s 03:00.0 -u 03:00.1 -c

./ipsec_security_gw_config.json -m transport

Note

DOCA Documentation v2.7.0 357

Dynamic Configuration:

3. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example

Both the PCIe address identifiers (-s and -u flags) should
match the addresses of the desired PCIe devices.

./doca_ipsec_security_gw -s 03:00.0 -u 03:00.1 -c

./ipsec_security_gw_config.json -m transport -i /tmp/rules_socket

Note

Both the PCIe address identifiers (-s and -u flags) should
match the addresses of the desired PCIe devices.

./doca_ipsec_security_gw --json [json_file]

./doca_ipsec_security_gw --json ipsec_security_gw_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment.

DOCA Documentation v2.7.0 358

Command Line Flags

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Genera
l flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with TRACE log
level support)

N/A sdk-log-level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json
Parse all command flags from an
input json file

N/A

Progra
m flags

c config Path to JSON file with configurations

u unsecured PCIe address for the unsecured port

"log-level": 60

"sdk-log-level": 40

"config":
"security_gateway_c
onfig.json"

"unsecured":

DOCA Documentation v2.7.0 359

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

s secured PCIe address for the secured port

m mode
IPsec mode.
Possible values: tunnel, transport,
udp_transport

un
unsecured-
name

Interface name of the unsecured
port

sn
secured-
name Interface name of the secured port

i ipc
IPC socket file path for receiving
IPsec rules during runtime

n nb-cores Number of cores

N/A debug Add counters to all the entries

Static Configuration IPsec Rules

"03:00.1"

"secured": "03:00.0"

"mode": "tunnel"

"unsecured-name":
"p1"

"secured-name":
"p0"

"ipc":
"/tmp/rules_socket"

"nb-cores": 8

"debug": true

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 360

IPsec rules and other configuration can be added with a JSON config file which is passed
using the --config parameter.

Sect
ion

Field
Ty
pe

Description Example

confi
g switch

bo
ol

Configures whether DOCA Flow runs in VNF
(false) or switch (true) mode

esp-
header-
offload

str
in
g

Decap and encap offloading: both, encap, decap,
or none. Default is both (offloading both encap
and decap).

sw-sn-
inc-
enable

bo
ol

Increments sequence number of ESP in
software if set to true. Default is false.

sw-
antirepl
ay-
enable

bo
ol

Enables anti-replay mechanism in software if
set to true. Default is false.

"switch": true

"esp-header-

offload": "none"

Note
Available only if
esp_header_offload is decap or
none.

"sw-sn-inc-

enable": true

Note
Available only if
esp_header_offload is encap or
none.

Note
Window size is 64. Not ESN.
Supports non-zero sn_initial.

"sw-antireplay-

enable": true

DOCA Documentation v2.7.0 361

Sect
ion

Field
Ty
pe

Description Example

sn-
initial

ui
nt

Initial sequence number for ESP header. Used
also when sw_antireplay_enable is true. Default is 0.

debug
bo
ol

Set debug counter for all entries when true.
Default is false.
This parameter is also used from CLI, will be
taken as true if was sent in one of them.

fwd-
bad-
syndro
me

str
in
g

Forward packets that has bad syndrome: drop,
RSS. Default is drop.

perf-
measur
ements

str
in
g

Possible values: none, insertion-rate, bandwidth, both.
Default is none.

insertion-rate – print the total time it took to
add the entries
bandwidth – optimize the pipe to improve
pps for IPv6

encr
ypt_r
ules

ip-
version int

Source and destination IP version. Possible
values: 4, 6. Optional; default is 4.

src-ip
str
in
g

Source IP to match

dst-ip
str
in
g

Destination IP to match

protoco
l

str
in

L4 protocol: TCP or UDP

"sn-initial": 0

"debug": false

Note
Only available in debug
mode.

"fwd-bad-

syndrome":
"drop"

"perf-

measurements":
"both"

"ip-version": 6

"src-ip": "1.2.3.4"

"dst-ip":
"101:101:101:101:
101:101:101:101"

"protocol"

DOCA Documentation v2.7.0 362

Sect
ion

Field
Ty
pe

Description Example

g

src-port int Source port to match

dst-port int Destination port to match

encap-
ip-
version

int Encap IP version: 4 or 6. Optional; default is 4.

encap-
dst-ip

str
in
g

Encap destination IP

spi int SPI integer to set in the ESP header

key
str
in
g

Key for creating the SA (in hex format)

key-
type int Key size: 128 or 256. Optional; default is 256.

salt int Salt value for creating the SA. Default is 6.

icv-
length int ICV length value: 8, 12, or 16. Default is 16.

decr
ypt_r
ules

ip-
version int

Destination IP version: 4 or 6. Optional; default
is 4.

dst-ip str
in

Destination IP to match

"dst-port": 55

"ip-version": 4

Note
Mandatory for tunnel mode
only.

"encap-dst-ip":
"1.1.1.1"

"spi": 5

"key":
"11223344556677
8899aabbccdd"

"key-type": 128

"salt": 1212

"icv-length": 12

"ip-version": 6

"dst-ip":
"1122:3344:5566:

DOCA Documentation v2.7.0 363

Sect
ion

Field
Ty
pe

Description Example

g

inner-
ip-
version

int

Inner IP version: 4 or 6. Optional; default is 4.

spi int SPI to match in the ESP header

key
str
in
g

Key for creating the SA (in hex format)

key-
type int Key size: 128 or 256. Optional; default is 256.

salt int Salt value for creating the SA. Default is 6.

icv-
length int ICV length value: 8, 12, or 16. Default is 16.

Dynamic Configuration IPsec Rules

The application listens on the UDS socket for receiving a predefined structure for the
IPsec policy defined in the policy.h file.

The client program or keying daemon should connect to the socket with the same socket
file path provided to the application by the --ipc/-i flags, and send the policy structure as
packed to the application through the same socket.

7788:99aa:bbcc:d
dee:ff00"

Note
Mandatory for tunnel mode
only.

"inner-ip-version":
4

"spi": 5

"key":
"11223344556677
8899aabbccdd"

"key-type": 128

"salt": 1212

"icv-length": 12

DOCA Documentation v2.7.0 364

The IPsec policy structure:

Note

In the dynamic configuration, the application uses the config section
from the JSON config file and ignores the encrypt_rules and decrypt_rules

sections.

struct ipsec_security_gw_ipsec_policy {
/* Protocols attributes */

uint16_t src_port; /* Policy inner source port */

uint16_t dst_port; /* Policy inner destination port */

uint8_t l3_protocol; /* Policy L3 proto {POLICY_L3_TYPE_IPV4, POLICY_L3_TYPE_IPV6} */

uint8_t l4_protocol; /* Policy L4 proto {POLICY_L4_TYPE_UDP, POLICY_L4_TYPE_TCP} */

uint8_t outer_l3_protocol; /* Policy outer L3 type {POLICY_L3_TYPE_IPV4, POLICY_L3_TYPE_IPV6} */

/* Policy attributes */

uint8_t policy_direction; /* Policy direction {POLICY_DIR_IN, POLICY_DIR_OUT} */

uint8_t policy_mode; /* Policy IPSEC mode {POLICY_MODE_TRANSPORT, POLICY_MODE_TUNNEL}

*/

/* Security Association attributes */

uint8_t esn; /* Is ESN enabled? */

uint8_t icv_length; /* ICV length in bytes {8, 12, 16} */

uint8_t key_type; /* AES key type {POLICY_KEY_TYPE_128, POLICY_KEY_TYPE_256} */

uint32_t spi; /* Security Parameter Index */

uint32_t salt; /* Cryptographic salt */

uint8_t enc_key_data[MAX_KEY_LEN]; /* Encryption key (binary) */

/* Policy inner and outer addresses */

char src_ip_addr[MAX_IP_ADDR_LEN + 1]; /* Policy inner IP source address in string format */

char dst_ip_addr[MAX_IP_ADDR_LEN + 1]; /* Policy inner IP destination address in string format

*/

char outer_src_ip[MAX_IP_ADDR_LEN + 1]; /* Policy outer IP source address in string format */

DOCA Documentation v2.7.0 365

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications .

Application Code Flow

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register the application's parameters.

char outer_dst_ip[MAX_IP_ADDR_LEN + 1]; /* Policy outer IP destination address in string

format */

};

Note

The policy type, whether it is encrypted or decrypted, is classified
according to the policy_direction attribute:

POLICY_DIR_IN – decryption policy

POLICY_DIR_OUT – encryption policy

doca_argp_init();

register_ipsec_security_gw_params();

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 366

3. Parse the arguments.

1. Parse app parameters.

2. DPDK initialization.

Call rte_eal_init() to initialize EAL resources with the provided EAL flags for not probing
the ports.

3. Parse config file.

4. Initialize devices and ports.

1. Open DOCA devices with input PCIe addresses / interface names.

2. Probe DPDK port from each opened device.

5. Initialize and start DPDK ports.

1. Initialize DPDK ports, including mempool allocation.

2. Initialize hairpin queues if needed.

3. Binds hairpin queues of each port to its peer port.

6. Initialize DOCA Flow.

doca_argp_start();

rte_eal_init();

ipsec_security_gw_parse_config();

ipsec_security_gw_init_devices();

dpdk_queues_and_ports_init();

DOCA Documentation v2.7.0 367

1. Initialize DOCA Flow library.

2. Find the indices of the DPDK-probed ports and start DOCA Flow ports with
them.

7. Insert rules.

1. Insert encryption rules.

2. Insert decryption rules.

8. Wait for traffic.

1. wait in a loop until the user terminates the program.

9. IPsec security gateway cleanup:

1. DOCA Flow cleanup; destroy initialized ports.

2. SA destruction.

3. IPsec objects destruction.

ipsec_security_gw_init_doca_flow();

ipsec_security_gw_insert_encrypt_rules();

ipsec_security_gw_insert_decrypt_rules();

ipsec_security_gw_wait_for_traffic();

doca_flow_cleanup();

ipsec_security_gw_destroy_sas();

DOCA Documentation v2.7.0 368

4. Destroy DPDK ports and queues.

5. DPDK finish.

Calls rte_eal_destroy() to destroy initialized EAL resources.

6. Arg parser destroy.

Keying Daemon Integration (StrongSwan)

strongSwan is a keying daemon that uses the Internet Key Exchange Version 2 (IKEv2)
protocol to establish SAs between two peers. s trongSwan includes a DOCA plugin that is
part of the strongSwan package in BFB. The plugin is loaded only if the DOCA IPsec
Security Gateway is triggered. The plugin connects to UDS socket and sends IPsec policies
to the application after the key exchange completes.

For more information about the key daemon, refer to strongSwan documentation .

End-to-end Architecture

The following diagram presents an architecture where two BlueField DPUs are connected
to each other with DOCA IPsec Security Gateway running on each.

ipsec_security_gw_ipsec_ctx_destroy();

dpdk_queues_and_ports_fini();

dpdk_fini();

doca_argp_destroy()

https://wiki.strongswan.org/projects/strongswan/wiki/IntroductiontostrongSwan

DOCA Documentation v2.7.0 369

swanctl is a command line tool used for strongSwan IPsec configuration:

1. Run DOCA IPsec Security Gateway on both sides in a dynamic configuration.

2. Start strongSwan service.

3. Configure strongSwan IPsec using the swanctl.conf configuration file on both sides.

DOCA Documentation v2.7.0 370

4. Start key exchange between the two peers. At the end of the flow, the result arrives
to the DOCA plugin, populates the policy-defined structure, and sends it to the
socket.

5. DOCA IPsec Security Gateway on both sides reads new policies from the socket,
performs the parsing, creates a DOCA SA object, and adds flow decrypt/encrypt
entry.

This architecture uses P1 uplink on both BlueField DPUs to run the strongSwan key
daemon. To configure the uplink:

1. Configure an IP addresses for the PFs of both DPUs:

1. On BF1:

2. On BF2:

2. Verify the connection between two BlueField DPUs.

ip addr add 192.168.50.1/24 dev p1

ip addr add 192.168.50.2/24 dev p1

Note

It is possible to configure multiple IP addresses to uplinks
to run key exchanges with different policy attributes.

BF1> ping 192.168.50.2

Note

DOCA Documentation v2.7.0 371

3. Configure the swanctl.conf files for each machine. The file should be located under
/etc/swanctl/conf.d/.
Adding swanctl.conf file examples:

Transport mode

swanctl.conf example for BF1:

Make sure that the uplink is not in OVS bridges.

connections {
BF1-BF2 {
local_addrs = 192.168.50.1
remote_addrs = 192.168.50.2
rekey_time = 0

local {
auth = psk
id = host1
}
remote {
auth = psk
id = host2
}

children {
bf {
local_ts = 192.168.50.1/32 [udp/60]
remote_ts = 192.168.50.2/32 [udp/90]
esp_proposals = aes128gcm128-x25519-esn
mode = transport
policies_fwd_out = yes
life_time = 0
}
}

DOCA Documentation v2.7.0 372

swanctl.conf example for BF2:

version = 2
mobike = no
reauth_time = 0
proposals = aes128-sha256-x25519
}
}

secrets {
ike-BF {
id-host1 = host1
id-host2 = host2
secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
}
}

connections {
BF2-BF1 {
local_addrs = 192.168.50.2

remote_addrs = 192.168.50.1

rekey_time = 0

local {
auth = psk
id = host2
}
remote {
auth = psk
id = host1
}

children {
bf {
local_ts = 192.168.50.2/32 [udp/90]

DOCA Documentation v2.7.0 373

Tunnel mode

remote_ts = 192.168.50.1/32 [udp/60]
esp_proposals = aes128gcm128-x25519-esn
mode = transport
life_time = 0
}
}
version = 2
mobike = no
reauth_time = 0
proposals = aes128-sha256-x25519
}
}

secrets {
ike-BF {
id-host1 = host1
id-host2 = host2
secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
}
}

connections {
BF1-BF2 {
local_addrs = 192.168.50.2
remote_addrs = 192.168.50.1
rekey_time = 0

local {
auth = psk
id = host2
}
remote {
auth = psk

DOCA Documentation v2.7.0 374

id = host1
}

children {
bf {
local_ts = 2001:db8:85a3::8a2e:370:7334/128 [udp/3030]
remote_ts = 2001:db8:85a3::8a2e:370:7335/128 [udp/55]
esp_proposals = aes128gcm128-x25519-esn
life_time = 0
}
}
version = 2
mobike = no
proposals = aes128-sha256-x25519
}
}

secrets {
ike-BF {
id-host1 = host1
id-host2 = host2
secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
}
}

Note

local_ts and remote_ts must have a netmask of /32 for IPv4
addresses and /128 for IPv6 addresses.

Note

DOCA Documentation v2.7.0 375

DOCA IPsec only supports ESP headers, AES-GCM encryption algorithm, and key sizes 128
or 256. Therefore, when setting ESP proposals in the swanctl.conf, please adhere to the
values provided in the following table:

ESP Proposal Algorithm Type Including ICV Length Key Size

aes128gcm8 ENCR_AES_GCM_ICV8 128

aes128gcm64 ENCR_AES_GCM_ICV8 128

aes128gcm12 ENCR_AES_GCM_ICV12 128

aes128gcm96 ENCR_AES_GCM_ICV12 128

aes128gcm16 ENCR_AES_GCM_ICV16 128

aes128gcm128 ENCR_AES_GCM_ICV16 128

aes128gcm ENCR_AES_GCM_ICV16 128

aes256gcm8 ENCR_AES_GCM_ICV8 256

aes256gcm64 ENCR_AES_GCM_ICV8 256

aes256gcm12 ENCR_AES_GCM_ICV12 256

aes256gcm96 ENCR_AES_GCM_ICV12 256

aes256gcm16 ENCR_AES_GCM_ICV16 256

aes256gcm128 ENCR_AES_GCM_ICV16 256

aes256gcm ENCR_AES_GCM_ICV16 256

Running the Solution

Run the following commands on both BlueField peers.

SA rekey is not supported in DOCA plugin.
connection.rekey_time must be set to 0 and
connection.child.life_time must be set to 0.

DOCA Documentation v2.7.0 376

1. Run DOCA IPsec Security Gateway in dynamic configuration, assuming the socket
location is /tmp/rules_socket.

2. Edit the /etc/strongswan.d/charon/doca.conf file and add the UDS socket path. If the
socket_path is not set, the plugin uses the default path /tmp/strongswan_doca_socket.

3. Restart the strongSwan server:

doca_ipsec_security_gw -s 03:00.0 -un <sf_net_dev> -c
./ipsec_security_gw_config.json -m transport -i /tmp/rules_socket

Note

DOCA IPsec Security Gateway application should be run first.

doca {

Whether to load the plugin
load = yes

Path to DOCA socket
socket_path = /tmp/rules_socket
}

Note

You must provide the application with this path as well.

systemctl restart strongswan.service

DOCA Documentation v2.7.0 377

4. Verify that the swanctl.conf file exists in /etc/swanctl/conf.d/. directory.

5. Load IPsec configuration:

6. Start IKE protocol on either the initiator or the target side:

Building strongSwan

Note

If the application has been run with log level debug, you can see
that the connection has been done successfully and the
application is waiting for new IPsec policies.

Note

It is recommended to remove any unused conf files under
/etc/swanctl/conf.d/.

swanctl --load-all

swanctl -i --child <child_name>

Info

In the example above, the child's name is bf.

DOCA Documentation v2.7.0 378

To perform some changes in the DOCA plugin in strongSwan zone:

1. Verify that the dependencies listed here are installed in your environment. libgmp-dev

is missing from that list so make sure to install that as well.

2. Git clone https://github.com/Mellanox/strongswan.git.

3. Git checkout BF-5.9.10 branch.

4. Add your changes in the plugin located under src/libcharon/plugins/doca.

5. Run autogen.sh within the strongSwan repo.

6. Run the following:

References

/opt/mellanox/doca/applications/ipsec_security_gw/

/opt/mellanox/doca/applications/ipsec_security_gw/ipsec_security_gw_params.json

NVIDIA DOCA NAT Application Guide
This document provides a NAT implementation on top of NVIDIA® BlueField® DPU.

Introduction

The Network Address Translation (NAT) reference application leverages the DPU's
hardware capability to switch packets with local IP addresses to global ones and vise

./configure --enable-openssl --disable-random --prefix=/usr/local --
sysconfdir=/etc --enable-systemd --enable-doca
make
make install
systemctl daemon-reload
systemctl restart strongswan.service

https://github.com/Mellanox/strongswan/tree/BF-5.9.6
https://github.com/Mellanox/strongswan/blob/BF-5.9.6/HACKING
https://github.com/Mellanox/strongswan.git

DOCA Documentation v2.7.0 379

versa.

The NAT application is based on the DOCA Flow API used for the programming of the
DPU's hardware.

NAT can operate in three modes:

Static mode – application gets pairs of local IP address and global IP address from
the user using a JSON file

Dynamic mode – user provides pool of global IP addresses that can be used. The
application should pick one address from the pool for new local area network (LAN)
IP address and use it. Once the session closes, the addresses are returned to the
pool.

PAT mode (DNS offload) – the user provides one global address to use. In addition,
the user provides mapping between the local port address to the global port. For
each packet, the local address is replaced with the global one and ports are
replaced according to mapping table.

System Design

The NAT application is design to run on the DPU. The DPU intercepts ingress traffic from
both wire and host, switches the relevant IP address and port according to data
configured by the user, and forwards it to the egress port.

https://docs.nvidia.com//doca/sdk/DOCA+Flow

DOCA Documentation v2.7.0 380

Application Architecture

NAT runs on the DPU to classify packets.

The app should be configured using a JSON file which includes the operation mode.

Static Mode

For static mode, the JSON file should include pairs of local and global IP addresses. No
change for ports in this mode.

DOCA Documentation v2.7.0 381

Dynamic Mode

The user must provide a pool of global IP addresses to use. The application allocates a
global address to every miss in the pipe (new local address).

If no more global addresses are available in the pool, the user gets an error message and
the packet is sent as is.

The application performs a callback to remove the matching of global and local IPs and
returns the address to the pool.

PAT (NAT Offload) Mode

The user provides a global address to replace all local addresses in the user LAN.

DOCA Documentation v2.7.0 382

The user provides a matching of local IP and port to global port.

The application changes the local IP of every match to the global IP provided by the user
and updates the port number according to user configuration.

DOCA Libraries

This application leverages the following DOCA library:

DOCA Flow

Refer to its respective programming guide for more information.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

https://docs.nvidia.com/doca/sdk/flow-programming-guide/index.html
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 383

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/nat/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Compiling NAT Application Only

To directly build only the NAT application:

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_nat is created under /tmp/build/nat/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_nat=true

file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 384

Alternatively, users can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_nat to true

2. Run the following compilation commands :

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

ninja -C /tmp/build

Info

doca_nat is created under /tmp/build/nat/.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_nat is created under /tmp/build/nat/

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 385

Running the Application

Prerequisites

The NAT application is based on DOCA Flow. Therefore, the user is required to allocate
huge pages.

echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

Note

On some operating systems (RockyLinux, OpenEuler, CentOS 8.2) the
default huge page size on the DPU (and Arm hosts) is larger than
2MB, and is often 512MB instead. Once can find out the sige of the
huge pages using the following command:

Given that the guiding principal is to allocate 4GB of RAM, in such
cases instead of allocating 2048 pages, one should allocate the
matching amount (8 pages):

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

DOCA Documentation v2.7.0 386

Application Execution

The NAT application is provided in source form. Therefore, a compilation is required
before the application can be executed.

1. Application usage instructions:

echo '8' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
524288kB/nr_hugepages

Usage: doca_nat [DPDK Flags] -- [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-m, --mode <mode> set NAT mode
-r, --nat-rules <path> Path to the JSON file with NAT rules
-lan, --lan-intf <lan intf> name of LAN interface

-wan, --wan-intf <wan intf> name of wan interface

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

DOCA Documentation v2.7.0 387

2. CLI example for running the application on the BlueField:

./doca_nat -- -h

Info

For additional information, refer to section "Command Line
Flags".

./doca_nat -a auxiliary:mlx5_core.sf.4,dv_flow_en=2 -a
auxiliary:mlx5_core.sf.5,dv_flow_en=2 -- -m static -r nat_static_rules.json -lan sf3
-wan sf4

Note

SFs must be enabled according to NVIDIA BlueField DPU
Scalable Function User Guide.

Note

The flag -a auxiliary:mlx5_core.sf.4,dv_flow_en=2 -a

auxiliary:mlx5_core.sf.5,dv_flow_en=2 is mandatory for proper usage of
the application. Modifying this flag results in unexpected
behavior as only 2 ports are supported. The SF number is
arbitrary and configurable.

file:///doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide
file:///doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

DOCA Documentation v2.7.0 388

3. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

Command Line Flags

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

DPDK
Flags

a devices Add a PCIe device into the list of
devices to probe

Note

The SF numbers must match the identifiers of the configured
SFs.

./doca_nat --json [json_file]

./doca_nat --json ./nat_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment.

"devices":
[

DOCA Documentation v2.7.0 389

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

General
flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with TRACE log
level support)

N/A sdk-log-level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json
Parse all command flags from an
input json file

N/A

 {"device": "sf",
"id": "4","hws":
true},
 {"device": "sf",
"id": "5","hws":
true},
]

"log-level": 60

"sdk-log-level": 40

DOCA Documentation v2.7.0 390

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Progra
m Flags

m mode Set NAT mode

r nat-rules Path to the JSON file with NAT rules

lan lan-intf Name of LAN interface

wan Wan-intf Name of WAN interface

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications .

Application Code Flow

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

"mode": "static"

"nat-rules":
"nat_static_rules.jso
n"

"lan-intf": "sf3"

"wan-intf": "sf4"

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 391

2. Register NAT application.

3. Parse the arguments.

1. Parse DPDK flags and invoke handler for calling the rte_eal_init() function.

2. Parse app parameters.

2. DPDK initialization.

Calls rte_eal_init() to initialize EAL resources with the provided EAL flags.

3. DPDK port initialization and start.

1. Initialize DPDK ports, including mempool allocation.

2. Initialize hairpin queues if needed.

3. Bind hairpin queues of each port to its peer port.

4. NAT initialization.

1. DOCA Flow and DOCA Flow port initialization.

doca_argp_init();

register_nat_params()

doca_argp_start();

dpdk_init();

dpdk_queues_and_ports_init();

nat_init();

DOCA Documentation v2.7.0 392

5. Init user configuration rules into app structure.

6. Init pipes and entry according to rules.

7. Wait for signal to end application.

8. NAT destroy.

9. DPDK ports and queues destruction.

10. DPDK finish.

1. Calls rte_eal_destroy() to destroy initialized EAL resources.

11. Arg parser destroy.

References

/opt/mellanox/doca/applications/nat/

/opt/mellanox/doca/applications/nat/nat_params.json

parsing_nat_rules();

nat_pipes_init();

nat_destroy();

dpdk_queues_and_ports_fini();

dpdk_fini();

doca_argp_destroy();

DOCA Documentation v2.7.0 393

NVIDIA DOCA PCC Application Guide
This document provides a DOCA PCC implementation on top of NVIDIA® BlueField®
networking p latform .

Introduction

Programmable Congestion Control (PCC) allows users to design and implement their own
congestion control (CC) algorithm, giving them the flexibility to work out an optimal
solution to handle congestion in their clusters. On BlueField-3 networking p latforms ,
PCC is provided as a component of DOCA.

The application leverages the DOCA PCC API to provide users the flexibility to manage
allocation of DPA resources according to their requirements.

Typical DOCA application includes App running on host/Arm and App running on DPA.
Developers are advised to use the host/Arm application with minimal changes and focus
on developing their algorithm and integrating it into the DPA application.

System Design

https://docs.nvidia.com//doca/sdk/DOCA+PCC

DOCA Documentation v2.7.0 394

DOCA PCC application consists of two parts:

Host/Arm app is the control plane. It is responsible for allocating all resources and
handover to the DPA app initially, then destroying everything when the DPA app
finishes its operation. The host app must always be alive to stay in control while the
device app is working.

Device/DPA app is the data plane. It is mainly for reaction point CC event handler.
When the first thread is activated, DPA App initialization is done in the DOCA PCC
library by calling the algorithm initialization function implemented by the user in the
app. Moreover, the user algorithm execution function is called when a CC event
arrives. The user algorithm takes event data as input and performs a calculation
using per-flow context and replies with updated rate value and a flag to sent RTT
request.

The host/Arm application sends a command to the BlueField platform firmware when
allocating or destroying resources. CC events are generated by the BlueField platform
hardware automatically when sending data or receiving ACK/NACK/CNP/RTT packets,
then the device application handles these events by calling the user algorithm. After the
DPA application replies to hardware, handling of current event is done and the next event
can arrive.

Application Architecture

Info

The device/DPA app is as well capable of functioning as a
telemetry program for notification point NIC operations, which
users can configure as a runtime option.

/opt/mellanox/doca/applications/pcc/
 host

 pcc.c
 pcc_core.c
 pcc_core.h

DOCA Documentation v2.7.0 395

The main content of the reference DOCA PCC application files are the following:

host/pcc.c – entry point to entire application

host/pcc_core.c – host functions to initialize and destroy the PCC application resources,
parsers for PCC command line parameters

device/rp/pcc_rp_dev.c – callbacks for user CC algorithm initialization, user CC algorithm
calculation, algorithm parameter change notification

device/rp/algo/* – user CC algorithm reference template. Put user algorithm code here.

device/np_nic_telemetry/pcc_np_nic_telemetry_dev.c – callback for user notification point
handling, implemented as a NIC telemetry program to observe RX counters

DOCA Libraries

This application leverages the following DOCA library:

DOCA PCC

Refer to its respective programming guide for more information.

Dependencies

NVIDIA BlueField-3 Platform is required

Firmware 32.38.1000 and higher

 device
 rp

 algo
 rtt_template.h
 rtt_template_algo_params.h
 rtt_template_ctxt.h
 rtt_template.c
 pcc_rp_dev.c

 np_nic_telemetry
 pcc_np_nic_telemetry_dev.c

https://docs.nvidia.com//doca/sdk/DOCA+PCC

DOCA Documentation v2.7.0 396

MFT 4.25 and higher

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/pcc/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build

file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 397

Compiling Only the Current Application

To directly build only the PCC application:

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_pcc to true

2. Run the following compilation commands :

ninja -C /tmp/build

Info

doca_pcc is created under /tmp/build/pcc/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_pcc=true

ninja -C /tmp/build

Info

doca_pcc is created under /tmp/build/pcc/.

DOCA Documentation v2.7.0 398

Compilation Options

The application offers specific compilation flags which one can set for a desired behavior
in the device/DPA program.

In the meson_options.txt file, one can find the following options:

enable_pcc_application_tx_counter_sampling: set to trueto use TX counters sampled at
runtime in the reaction point CC handling algorithm.

enable_pcc_application_np_rx_rate: set to trueto use RX counters received from notification
point in the reaction point CC handling algorithm.

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application.

Running the Application

Prerequisites

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_pcc is created under /tmp/build/pcc/.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 399

Enable USER_PROGRAMMABLE_CC in mlxconfig:

Perform a BlueField system reboot for the mlxconfig settings to take effect.

Application Execution

The PCC application is provided in source form. Therefore, a compilation is required
before the application can be executed.

1. Application usage instructions:

mlxconfig -y -d /dev/mst/mt41692_pciconf0 set USER_PROGRAMMABLE_CC=1

Usage: doca_pcc [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-d, --device <IB device names> IB device name that supports PCC
(mandatory).
 -np-nt, --np-nic-telemetry <PCC Notification Point NIC Telemetry> Flag to
indicate running as a Notification Point NIC Telemetry (optional). By default the
flag is set to false.
 -t, --threads <pcc-threads-list> A list of the PCC threads numbers to be chosen
for the DOCA PCC context to run on (optional). Must be provided as a string,
such that the number are separated by a space.

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Reset+and+Reboot+Procedures

DOCA Documentation v2.7.0 400

-w, --wait-time <PCC wait time> The duration of the DOCA PCC wait (optional),
can provide negative values which means infinity. If not provided then -1 will
be chosen.
-p, --probe-packet-format <PCC probe-packet format> The probe packet
format of the DOCA PCC (optional). Available values for each type: CCMAD-0,
IFA1-1, IFA2-2. By default format is set to CCMAD.
-r-handler, --remote-sw-handler <CCMAD remote SW handler> CCMAD remote
SW handler flag (optional). If not provided then false will be chosen.
 -gns, --global-namespace <IFA2 global namespace> The IFA2 probe packet
global namespace (optional). If not provided then 0XF will be chosen.
 -gns-ignore_mask, --global-namespace-ignore-mask <IFA2 global namespace
ignore mask> The IFA2 probe packet global namespace ignore mask (optional).
If not provided then 0 will be chosen.
 -gns-ignore_val, --global-namespace-ignore-value <IFA2 global namespace
ignore value> The IFA2 probe packet global namespace ignore value (optional).
If not provided then 0 will be chosen.
-f, --coredump-file <PCC coredump file> A pathname to the file to write
coredump data in case of unrecoverable error on the device (optional). Must be
provided as a string.
-i, --port-id <Physical port ID> The physical port ID of the device running the
application (optional). If not provided then ID 0 will be chosen.

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_pcc -h

Info

DOCA Documentation v2.7.0 401

2. CLI example for running the application on the BlueField Platform or the host:

3. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

For additional information, refer to section "Command Line
Flags".

./doca_pcc -d mlx5_0

Note

The IB device identifier (mlx5_0) should match the identifier of
the desired IB device.

./doca_pcc --json [json_file]

./doca_pcc --json ./pcc_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment.

DOCA Documentation v2.7.0 402

Command Line Flags

Fla
g
Typ
e

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Ge
ner
al
flag
s

h help Prints a help synopsis N/A

v version
Prints program version
information

N/A

l log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

N/A

Info
The
appli
catio
n
uses
a
uniq
ue
loggi
ng
imple
ment
ation
that
make
s use

DOCA Documentation v2.7.0 403

Fla
g
Typ
e

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

N/A sdk-log-level

Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

N/A

j json
Parse all command flags from
an input JSON file

N/A

Pro
gra
m
flag
s

d device
IB device name that supports
PCC

np-nt np-nic-
telemetry

(Optional) Flag to indicate
running as a Notification Point
NIC Telemetry.
The DOCA PCC application can
also run as a Notification Point
NIC telemetry program,
instead of a Reaction point
that runs the CC algorithm. If
the user uses this flag, the
application will load a program
to run on the DPA to sample

of
DOC
A's
loggi
ng
levels
.

"device": ""

"np-nic-telemetry": false

DOCA Documentation v2.7.0 404

Fla
g
Typ
e

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

RX NIC counters and send
them in response packet.

t threads (Optional) A list of the PCC EU
indexes to be chosen for the
DOCA PCC event handler
threads to run on. Must be
provided as a string, such that
the numbers are separated by
a space.
The placement of the PCC
threads per core can be
controlled using the EU
indexes. Utilizing a large
number of EUs, while limiting
the number of threads per
core, gives the best event
handling rate and lowest
event latency.
The last EU is used for
communication with the
BlueField Platform while all
others are for data path CC
event handling.

Note
If np-nic-
telemetry
option is
chosen by
the user, a
different
set of
threads
will be

"pcc-threads":
"176 177 178 179 180 181 18

2 183
184 185 186 187 192 193 194

 195 196 197 198 199
200 201 202 203 208 209 210

 211 212 213 214 215
216 217 218 219 224 225 226

 227 228 229 230 231
232 233 234 235 240"

DOCA Documentation v2.7.0 405

Fla
g
Typ
e

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

w wait-time

(Optional) In seconds, the
duration of the DOCA PCC
wait. Negative values mean
infinity.

p
probe-
packet-
format

(Optional) The probe packet
format of the DOCA PCC
(optional). Available values for
each type: CCMAD-0, IFA1-1,
IFA2-2. By default, format is
set to CCMAD.

r-
handler

remote-sw-
handler

(Optional) CCMAD remote SW
handler flag. Relevant for
reaction point contexts. This
flag indicates whether the
expected CCMAD probe
packet responses are
generated by a remote DOCA
notification point process or
not.

chosen as
default
list.

"wait-time": -1

"probe-packet-format": 0

Note
If using
other
probe
types than
CCMAD,
probe
packet

"remote-sw-handler": false

DOCA Documentation v2.7.0 406

Fla
g
Typ
e

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

gns
global-
namespace

(Optional) The IFA2 probe
packet global namespace

gns-
ignore-
mask

global-
namespace-
ignore-mask

(Optional) The IFA2 probe
packet global namespace
ignore mask

responses
are always
expected
to be
generated
from a
remote
DOCA
notificatio
n point
process.

Info
Relevant
for
reaction
point
contexts.

"global-namespace": 0xF

Info
Relevant
for

"global-namespace-ignore-

mask": 0

DOCA Documentation v2.7.0 407

Fla
g
Typ
e

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

gns-
ignore-
val

global-
namespace-
ignore-value

(Optional) The IFA2 probe
packet global namespace
ignore value

f
coredump-
file

(Optional) A pathname to the
file to write core dump data if
an unrecoverable error occurs
on the device

i port-id
(Optional) The physical port ID
of the device running the
application

notificatio
n point
contexts.

Info
Relevant
for
notificatio
n point
contexts.

"global-namespace-ignore-

value": 0

"coredump-file":
"/tmp/doca_pcc_coredump.txt
"

"port-id": 0

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 408

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications.

Application Code Flow

This section lists the application's configuration flow, explaining the different DOCA
function calls and wrappers.

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register PCC application parameters.

3. Parse the arguments.

1. Parse DOCA flags.

2. Parse DOCA PCC parameters.

2. PCC initialization.

1. Open DOCA device that supports PCC.

doca_argp_init();

register_pcc_params();

doca_argp_start();

pcc_init();

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 409

2. Create DOCA PCC context.

3. Configure affinity of threads handling CC events.

3. Start DOCA PCC.

1. Create PCC process and other resources.

2. Trigger initialization of PCC on device.

3. Register the PCC in the BlueField Platform hardware so CC events can be
generated and an event handler can be triggered.

4. Process state monitor loop.

1. Get the state of the process:

State Description

DOCA_PCC_PS_ACTI
VE = 0

The process handles CC events (only one process is active
at a given time)

DOCA_PCC_PS_STAN
DBY = 1

The process is in standby mode (another process is
already ACTIVE)

DOCA_PCC_PS_DEA
CTIVATED = 2

The process has been deactivated by the BlueField
Platform firmware and should be destroyed

DOCA_PCC_PS_ERR
OR = 3 The process is in error state and should be destroyed

2. Wait on process events from the device.

5. PCC destroy.

doca_pcc_start();

doca_pcc_get_process_state();
doca_pcc_wait();

DOCA Documentation v2.7.0 410

1. Destroy PCC resources. The process stops handling PCC events.

2. Close DOCA device.

6. Arg parser destroy.

Port Programmable Congestion Control Register

The Port Programmable Congestion Control (PPCC) register allows the user to configure
and read PCC algorithms and their parameters/counters.

It supports the following functionalities:

Enabling different algorithms on different ports

Querying information of both algorithms and tunable parameters/counters

Changing algorithm parameters without compiling and reburning user image

Querying or clearing programmable counters

Usage

The PPCC register can be accessed using a string similar to the following:

Where you must:

Set the cmd_type and the indexes

doca_pcc_destroy();

doca_argp_destroy()

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=0" --reg_name
PPCC --indexes "local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"
sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --set "cmd_type=1" --reg_name PPCC
--indexes "local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

DOCA Documentation v2.7.0 411

Give values for algo_slot, algo_param_index

Keep local_port=1, pnat=0, lp_msb=0

Keep doca_pcc application running

cmd
_typ
e

Description
Met
hod

Index
Input (in --
set)

Output

0x0
Get
algorithm
info

Get

algo_slo
t

N/A

Value – 32-bit algo_num or 0 if no
algo is available at this index
Text – algorithm description
sl_bitmask_support – indicates
whether the device supports
sl_bitmask logic

0x1
Enable
algorithm

Set
sl_bitmask
trace_en
counter_en

N/A

0x2
Disable
algorithm

Set N/A N/A

0x3

Get
algorithm
enabling
status

Get N/A

Value:
0 – disabled
1 – enabled

sl_bitmask – this field allows to
apply to specific SLs based on the
bitmask
sl_bitmask_support – indicates
whether the device supports
sl_bitmask logic

0x4
Get number
of
parameters

Get N/A Value – num of params of algo

0x5 Get
parameter
information

Get algo_slo
t
algo_pa
ram_ind
ex

N/A param_value1 – default value of
param
param_value2 – min value of param
param_value3 – max value of param
prm –

DOCA Documentation v2.7.0 412

cmd
_typ
e

Description
Met
hod

Index
Input (in --
set)

Output

0: read-only
1: read-write
2: read-only but may be
cleared using the "get and
clear" command

0x6
Get
parameter
value

Get N/A Value – param value

0x7
Get and
clear
parameter

Get N/A Value – param value

0x8
Set
parameter
value

Set
Parameter
value

N/A

0xA
Bulk get
parameters

Get

algo_slo
t

N/A
text_length – param num x 4 bytes
text[0]…text[n] – param values

0xB
Bulk set
parameters

Set

text_length -
param num
x 4
text[0]…
text[n] -
param
values

N/A

0xC
Bulk get
counters

Get N/A
text_length – counter num x 4 bytes
text[0]…text[n] – counter values

0xD
Bulk get and
clear
counters

Get N/A
text_length – counter num x 4 bytes
text[0]…text[n] – counter values

0xE
Get number
of counters

Get N/A Value – num of counters of algo

DOCA Documentation v2.7.0 413

cmd
_typ
e

Description
Met
hod

Index
Input (in --
set)

Output

0xF
Get counter
information

Get

algo_slo
t
algo_pa
ram_ind
ex

N/A

param_value3 – max value of
parameter
prm –

0: read-only
1: read-write
2: read-only but may be
cleared via "get & clear"
command

0x10
Get
algorithm
info array

Get N/A N/A

text_length – algo slot initialized x 4
bytes
text[0]…text[n] – 32-bit algo_num or 0
if no algorithm is available at this
slot index

Internal Default Algorithm

The internal default algorithm is used when enhanced connection establishment (ECE)
negotiation fails. It is mainly used for backward compatibility and can be disabled using
"force mode". Otherwise, users may change doca_pcc_dev_user_algo() in the device app to run
a specific algorithm without considering the algorithm negotiation.

The force mode command is per port:

Counters

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=2" --reg_name
PPCC --indexes "local_port=1,pnat=0,lp_msb=0,algo_slot=15,algo_param_index=0"

sudo mlxreg -d /dev/mst/mt41692_pciconf0.1 -y --get --op "cmd_type=2" --reg_name
PPCC --indexes "local_port=1,pnat=0,lp_msb=0,algo_slot=15,algo_param_index=0"

DOCA Documentation v2.7.0 414

Counters are shared on the port and are only enabled on one algo_slot per port. The
following command enables the counters while enabling the algorithm according to the
algo_slot:

After counters are enabled on the algo_slot, they can be queried using cmd_type 0xC or 0xD.

References

/opt/mellanox/doca/applications/pcc/

/opt/mellanox/doca/applications/pcc/pcc_params.json

NVIDIA DOCA PSP Gateway
Application Guide
This document describes the usage of the NVIDIA DOCA PSP Gateway sample application
on top of an NVIDIA® BlueField® networking platform or NVIDIA® ConnectX® SmartNIC.

Introduction

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --set "cmd_type=1,counter_en=1" --
reg_name PPCC --indexes "local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=12" --reg_name
PPCC --indexes "local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=13" --reg_name
PPCC --indexes "local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

Note

DOCA PSP Gateway is supported at alpha level.

DOCA Documentation v2.7.0 415

The DOCA PSP Gateway application leverages the BlueField or ConnectX hardware
capability for fully offloaded secure network communication using the PSP security
protocol. The application demonstrates how to exchange keys between application
instances and insert rules controlling PSP encryption and decryption using the DOCA
Flow library.

The application can be configured to establish out-bound PSP tunnel connections via
individual command-line arguments, or via a text file configured via a command-line
argument. The connections are established on-demand by default, but can also be
configured to connect at startup.

Warning

The application exchanges keys using an unencrypted gRPC channel.
If your environment requires the protection of encryption keys, you
must modify the application to create the gRPC channel using the
applicable certificates.

Info

The PSP Gateway application supports only the PSP tunnel protocol.
The PSP transport protocol is not supported by the application in this
release, although it is supported by the underlying DOCA Flow library.

Info

The PSP Gateway application supports only IPv4 inner and IPv6 outer
headers. Other combinations are not supported by the application in
the current release, although they are supported by the underlying
DOCA Flow library.

https://github.com/google/psp
https://grpc.io/

DOCA Documentation v2.7.0 416

System Design

The DOCA PSP Gateway is designed to run with three ports:

A secure (encrypted) uplink netdev (i.e., p0)
An unsecured (plaintext) netdev representor (VF or SF)
An out-of-bound (OOB) management port, used to communicate with peer
instances using standard sockets

Whether the DOCA PSP Gateway is deployed to a BlueField DPU or a ConnectX NIC, the
functionality is the same. The Out of Bounds (OOB) network device carries PSP
parameters between peers, the Uplink port carries secure (encrypted) traffic, and the VF
carries the unencrypted traffic.

DOCA Documentation v2.7.0 417

DOCA Documentation v2.7.0 418

DOCA PSP Gateway - Deployment to DPU

When the application is deployed to a DPU, the operation of the PSP encryption protocol
is entirely transparent to the Host. All the resources required to manage the PSP
connections are physically located on the DPU.

When the
application is deployed to the host, the operation of the PSP encryption protocol is the
responsibility of the host, and resources are allocated from the host. However, the
operation of the PSP encryption protocol is entirely transparent to any virtual machines
and containers attached to the VF network devices.

Application Architecture

The creation of PSP tunnel connections requires two-way communication between peers.
Each "sender" must request a unique security parameters index (SPI) and encryption key
from the intended "receiver". The receiver derives sequential SPIs and encryption keys

DOCA Documentation v2.7.0 419

using the hardware resources inside the BlueField or ConnectX device, which manages a
secret pair of master keys to produce the SPIs and encryption keys.

One key architectural benefit of PSP over similar protocols (e.g., IPsec) is that the receiver
does not incur any additional resource utilization whenever it creates a new SPI and
encryption key. This is because the decryption key associated with the SPI is computed on
the fly, based on the SPI and master key, for each received packet. This lack of
requirement for additional context memory for each additional decryption rule is partly
responsible for the ability of the PSP protocol to scale to many thousands of peers.

Startup vs. On-Demand Tunnel Creation

The default mode of operation is on-demand tunnel creation. That is, when a packet is
received from the unsecured port for which the flow pipeline does not have an
encryption rule, the packet misses to RSS, where the CPU must decide how to handle the
packet. If the destination IP address in the packet belongs to a known peer’s virtual
network, the CPU uses gRPC on the OOB network connection to attempt a key exchange
with the peer. If the key exchange is successful and a new encryption flow is created
successfully, then the packet is then resubmitted to the pipeline, where it is encrypted
and sent just as any of the following packets having the same destination IP address.

The following diagram illustrates this sequence (the "Slow Path"), for Virtual Machine V1
which intends to send a packet to Virtual Machine V2. In this case, V1 is hosted on
physical host H1 and V2 on physical host H2. The first packet sent (1) results in a miss (2),
so the packet is retained (3) while the keys are exchanged in both directions (4-8). Then
the pipeline is updated (9) and the original packet is resubmitted (10). From there, the
packet follows the same logic as the fast path, below.

DOCA Documentation v2.7.0 420

Once the tunnel is established, and packets received from the VF (1) match a rule (2) and
are encrypted and sent (3-4) without any intervention from the CPU ("Fast Path").

DOCA Documentation v2.7.0 421

In the case of on-startup tunnel creation, the application's main thread repeatedly
attempts to perform the key exchange for each of the peers specified on the command
line until the list is completed. Each peer is connected only once and, if a connection to
one peer fails, the loop continues onto the next peer and retries the failed connection
after all the others have been attempted.

Sampling

The PSP gateway application supports the sample-at-receiver (S) bit in the PSP header. If
sampling is enabled, then packets marked with the S bit are mirrored to the RSS queues
and logged to the console. In addition, on transmit, a random subset of packets (1 out of
2^N for command-line parameter N) will have the S bit set to 1, and those packets will
also be mirrored to RSS.

DOCA Documentation v2.7.0 422

Pipelines

Host-to-Network Flows

Traffic sent from the local, unsecured port (host-to-net) without sampling enabled travels
through the pipeline as shown in the diagrams that follow. Note that the Ingress Root
Pipe is the first destination for packets arriving from either the VF or the secured uplink
port. However, the Egress ACL pipe is the first destination for packets sent via tx_burst on
the PF (in the switch model's expert mode).

The Empty Pipe is a vestigial transition from the Default Domain, in which the Ingress
Root Pipe is created, to the Secure Egress Domain, where the Egress ACL pipe performs
encryption.

Note

Sampling packets on transmit is currently supported only following
encryption. Sampling of egress packets before encryption will be
supported in a future release.

Note

This pipe may be removed in a future release.

DOCA Documentation v2.7.0 423

If sampling is enabled, the host-to-net pipeline is modified as shown in the following:

Here, an Egress Sampling Pipe is added between the Egress ACL Pipe and the Secured
Port. It performs a match of the random metadata, masked according to command-line
parameters, and then:

On match, the following actions occur:

1. Packet modifications:

1. The S bit in the PSP header is set to true.

2. The pkt_meta field is set to a sentinel value to indicate to CPU software
why the packet was sent to RSS.

2. The original packet is forwarded to RSS.

3. The mirror action forwards the packet to the secured port.

DOCA Documentation v2.7.0 424

On miss, the following actions occur:

1. No packet modifications are made.

2. The packet is forwarded to a vestigial pipe which can then forward the packet
to the wire.

Network-to-Host Flows

When a packet arrives from the secured port, the following flows are executed.

As before, the Ingress Root Pipe is the first destination and, here, the secured port ID as
well as IPv6 outer L3 type are matched for. Matching packets flow to the decryption pipe,
which matches the outer UDP port number against 1000, the constant specified in the

Info

A fwd_miss cannot target a port.

Note

This pipe may be removed in a future release.

DOCA Documentation v2.7.0 425

PSP specification. On match, the packet is decrypted, but not yet de-capped. Then the
Ingress ACL pipe checks the following:

PSP_Syndrome – did the packet decrypt correctly and pass its ICV check?

PSP SPI and inner IP src address – was this packet encrypted with the key associated
with the given source?

If the packet passes the syndrome and ACL check, it is forwarded to the VF. Otherwise,
the Syndrome Stats pipe counts the occurrences of the different bits in the PSP
Syndrome word.

When sampling is enabled, the Ingress Sampling Pipe is inserted before the ACL. Unlike
the Egress Sampling Pipe, no randomness is involved; the match criteria is the sample-
on-receive flag in the PSP header. On a match, the incoming packet are mirrored to RSS
with pkt_meta indicating the reason for forwarding the packet to RSS. On match or miss,
the next pipe is the Ingress ACL Pipe.

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA Flow

Refer to their respective programming guide for more information.

Compiling the Application

https://docs.nvidia.com//doca/sdk/DOCA+Flow

DOCA Documentation v2.7.0 426

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/psp_gateway/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 427

Compiling Only the Current Application

To directly build only the PSP Gateway application:

Alternatively, users can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_psp_gateway to true

2. Run the following compilation commands :

doca_psp_gateway is created under /tmp/build/psp_gateway/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_psp_gateway=true

ninja -C /tmp/build

Info

doca_psp_gateway is created under /tmp/build/psp_gateway/.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

DOCA Documentation v2.7.0 428

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

Running the Application

Prerequisites

The PSP gateway application is based on DOCA Flow. Therefore, the user is required to
allocate huge pages:

Info

doca_psp_gateway is created under /tmp/build/psp_gateway/.

echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Note

On some OSs (e.g., RockyLinux, OpenEuler, CentOS 8.2), the default
huge page size on the BlueField (and Arm hosts) is larger than 2MB,
and is often 512MB instead. The user can find out the size of the
huge pages using the following command:

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 429

Application Execution

The PSP Gateway application is provided in source form. Therefore, a compilation is
required before the application can be executed.

1. Application usage instructions:

Given that the guiding principle is to allocate 4GB of RAM, in such
cases instead of allocating 2048 pages, the user should allocate the
matching amount (8 pages):

HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

echo '8' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
524288kB/nr_hugepages

Usage: doca_psp_gateway [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

DOCA Documentation v2.7.0 430

2. This usage printout can be printed to the command line using the -h (or --help)
options:

3. CLI example for running the application on the BlueField or host:

Program Flags:
-p, --pci-addr PCI BDF of the device in BB:DD.F format

-r, --repr Device representor list in vf[x-y]pf[x-y] format

-m, --core-mask EAL Core Mask
-d, --decap-dmac mac_dst addr of the decapped packets
-n, --nexthop-dmac next-hop mac_dst addr of the encapped packets
-s, --svc-addr Service address of locally running gRPC server; port number
optional
-t, --tunnel Remote host tunnel(s), formatted 'mac-addr,phys-ip,virt-ip'

-f, --tunnels-file Specifies the location of the tunnels-file. Format: rpc-addr:virt-
addr,virt-addr,...
-c, --cookie Enable use of PSP virtualization cookies
-a, --disable-ingress-acl Allows any ingress packet that successfully decrypts
-, --sample-rate Sets the log2 sample rate: 0: disabled, 1: 50%, ... 16: 1.5e-3%
-x, --max-tunnels Specify the max number of PSP tunnels
-o, --crypt-offset Specify the PSP crypt offset
--psp-version Specify the PSP version for outgoing connections (0 or 1)
-z, --static-tunnels Create tunnels at startup using the given local IP addr
-k, --debug-keys Enable debug keys

./doca_psp_gateway -h

Info

For additional information, refer to section "Command Line
Flags".

DOCA Documentation v2.7.0 431

The PCIe address identifier (-p flag) should match the addresses of the desired
PCIe device

The -d flag indicates the MAC address that should be applied to incoming
packets upon decap. It should match the MAC address of the virtual function
specified by the -r argument.

The -t flag indicates the mapping of the virtual IP address 192.168.x.y to an out-
of-bounds network address 10.1.1.55

4. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

Command Line Flags

./doca_psp_gateway -p 03:00.0 -r vf0 -d 11:22:33:44:55:66 -t
10.1.1.55:192.168.1.55

./doca_psp_gateway --json [json_file]

./doca_psp_gateway --json psp_gateway_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment.

DOCA Documentation v2.7.0 432

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Genera
l flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation
with TRACE log level support)

N/A sdk-log-level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json
Parse all command flags from an
input JSON file

N/A

Progra
m flags p pci-addr

PCIe BDF of the device in BB:DD.F

format

r repr
Device representor list in vf[x-y]pf[x-y]

format

m core-mask EAL core mask

d decap-dmac mac_dst address of the decapped
packets

"log-level": 60

"sdk-log-

level": 40

"p": "03:00.0"

"r": "vf0"

"m": "0xf"

"decap-

dmac": "11:22:33:

DOCA Documentation v2.7.0 433

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

n
nexthop-
dmac

Next-hop mac_dst address of the
encapped packets

s svc-addr
Service address of locally running
gRPC server; port number optional

t tunnel Remote host tunnel(s), formatted rpc-
addr:virt-addr

f tunnels-file
Specifies the location of the tunnels-
file. Format: rpc-addr:virt-addr,virt-addr,...

c cookie
Enable use of PSP virtualization
cookies

a
disable-
ingress-acl

Allows any ingress packet that
successfully decrypts

N/A sample-rate

Sets the log2 sample rate:

0 – disabled,
1 – 50%, ...
16 – 1.5e-3%

x
max-
tunnels

Specify the max number of PSP
tunnels

o crypt-offset Specify the PSP crypt offset

44:55:66"

"nexthop-

dmac": "77:88:99:

aa:bb:cc"

"svc-

addr": "10.1.1.50"

"tunnel": "10.1.1.5

5:192.168.1.100"

"tunnels-file":
"tunnels.txt"

"cookie": true

"disable-ingress-

acl": true

"sample-rate": 16

"max-

tunnels": 4096

"crypt-offset": 7

DOCA Documentation v2.7.0 434

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

N/A psp-version
Specify the PSP version for outgoing
connections (0 or 1)

z
static-
tunnels

Create tunnels at startup using the
given local IP address

k debug-keys Enable debug keys

Refer to DOCA Arg Parser for more information regarding the supported flags and
execution modes.

Tunnel Mappings File

A text file which maps an OOB network address to a list of virtual IP addresses behind
that physical address can be specified on the command line. The format is as follows:

When a packet from the VF does not match any existing flows, this table defines the
physical host which should provide the tunnel to the given (virtual) destination.

"psp-version": 0

"static-

tunnels": "192.16

8.1.99"

"debug-

keys": true

(Comments are allowed)
Format:
svc-oob-ip-addr:virt-addr,virt-addr,...
Specify a service address of 10.1.1.55 which hosts virtual addresses 192.168.1.101 and
others.
10.1.1.55:192.168.1.101,192.168.1.102,192.168.1.103,192.168.1.104

Specify a service address of 10.1.1.56 which hosts virtual addresses 192.168.1.201 and
others.
10.1.1.56:192.168.1.201,192.168.1.202,192.168.1.203,192.168.1.204

https://docs.nvidia.com//doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 435

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications .

Application Code Flow

1. Main loop code flow

1. Initialize the logger facility.

1. The standard logger and the SDK logger are created, and the SDK logger
default log level is selected.

2. The signal handler is connected to enable a clean shutdown.

2. Parse application arguments. The main function invokes psp_gw_argp_exec(),
which initializes the arg parser resources and registers DOCA general
parameters, and then registers the PSP application-specific parameters. Then
the parser is invoked.

doca_log_backend_create_standard();
doca_log_backend_create_with_file_sdk(stdout, &sdk_log);
doca_log_backend_set_sdk_level(sdk_log,
DOCA_LOG_LEVEL_WARNING);

signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);

doca_argp_init();
psp_gw_register_params();
doca_argp_start();

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 436

3. DPDK initialization. Call rte_eal_init() to initialize EAL resources with the provided
EAL flags for not probing the ports (-a00:0.0).

4. Initialize devices and ports.

1. Open DOCA devices with input PCIe addresses/interface names.

2. Probe DPDK port from each opened device.

3. The MAC and IP addresses of the PF are queried and logged.

5. Initialize and start DPDK ports. Initialize DPDK ports, including mempool
allocation. No hairpin queues are created.

6. Initialize DOCA Flow objects used by the PSP Gateway application. The DOCA
Flow library is initialized with the string "switch,hws,isolated,expert", because it is
desirable for the application to act as an intermediary between the uplink
physical port and some number of VF representors (switch mode), and hws

(hardware steering mode) and isolated mode are mandatory for switch mode.
The optional expert flag prevents DOCA Flow from automating certain packet
operations and gives more control to the application, as described in the
DOCA Flow page.

rte_eal_init(n_eal_args, (char **)eal_args);

open_doca_device_with_pci(...); // not part of doca_flow; see
doca/samples/common.c
doca_dpdk_port_probe(...);

rte_eth_macaddr_get(...);
doca_devinfo_get_ipv6_addr(...);
DOCA_LOG_INFO("Port %d: Detected PF mac addr: %s, IPv6 addr: %s, total

ports: %d", ...);

dpdk_queues_and_ports_init(); // not part of doca_flow; see
doca/applications/common/dpdk_utils.c

https://docs.nvidia.com//doca/sdk/DOCA+Flow

DOCA Documentation v2.7.0 437

1. Initialize DOCA Flow library.

2. Start the ports.

3. Allocate shared resources (PSP crypto objects and Mirror actions).

4. Create the ingress and egress pipes.

7. Create the gRPC service.

8. Launch the L-Core threads to handle RSS packets.

9. Launch the gRPC service.

1. This implementation uses InsecureServerCredentials. Update as needed.

10. Wait for traffic. If configured to connect at startup, process the list of
remaining connections. Then display the flow pipe counters.

PSP_GatewayFlows psp_flows(&pf_dev, vf_port_id, &app_config);
psp_flows.init();

PSP_GatewayImpl psp_svc(&app_config, &psp_flows);

rte_eal_remote_launch(lcore_pkt_proc_func, &lcore_params, lcore_id);

grpc::ServerBuilder builder;
builder.AddListeningPort(server_address,
grpc::InsecureServerCredentials());
builder.RegisterService(&psp_svc);
auto server_instance = builder.BuildAndStart();

while (!force_quit) {
psp_svc.try_connect(remotes_to_connect, local_vf_addr);
...
psp_flows.show_static_flow_counts();

DOCA Documentation v2.7.0 438

Wait in a loop until the user terminates the program.

11. PSP Gateway cleanup:

1. Destroy DPDK ports and queues.

2. DPDK finish.

Calls rte_eal_destroy() to destroy initialized EAL resources.

3. Arg parser destroy.

2. Miss-packet code flow.

1. The L-Core launch routine from the main loop pointed to the lcore_pkt_proc_func

routine.

2. The force_quit flag is polled to respond to the signal handler.

3. The rte_eth_rx_burst function polls the PF queue for received packets.

psp_svc.show_flow_counts();
}

dpdk_queues_and_ports_fini();

dpdk_fini();

doca_argp_destroy()

while (!*params->force_quit) { ... }

nb_rx_packets = rte_eth_rx_burst(port_id, queue_id, rx_packets,
MAX_RX_BURST_SIZE);

DOCA Documentation v2.7.0 439

4. Inside handle_packet(), the packet metadata is inspected to detect whether this
packet is sampled on ingress, sampled on egress, or a miss packet.

1. Sampled packets are simply logged using the rte_pktmbuf_dump function.

5. Miss packets are passed to the handle_miss_packet method of the gRPC service.
This method handles cases where an application attached to the VF wishes to
send a packet to another virtual address, but a PSP tunnel must first be
established by exchanging SPI and key information between hosts.

6. The service acts as a gRPC client, and the appropriate server is looked up from
the config->net_config.hosts vector, which is comprised of hosts passed via the -t
tunnels arguments or the -f tunnels file argument.

7. Once the client connection exists, the request_tunnel_to_host method takes care of
invoking the the RequestTunnelParams operation defined in the schema.

Optionally, this function generates a corresponding set of tunnel
parameters appropriate for the server host to send traffic back via
generate_tunnel_params().

8. The RPC operation is invoked, and if successful, create_tunnel_flow is called to
create the egress flow:

9. The create_tunnel_flow method translates the resulting Protobuf objects to
application-specific data structures and passes them to the add_encrypt_entry

method of the flows object. Here, the PSP SPI and key are programmed into an
available crypto_id index as follows.

uint32_t pkt_meta = rte_flow_dynf_metadata_get(packet);

doca_flow_crypto_psp_spi_key_bulk_generate(bulk_key_gen);
doca_flow_crypto_psp_spi_key_bulk_get(bulk_key_gen, 0, &spi, key);
doca_flow_crypto_psp_spi_key_wipe(bulk_key_gen, 0);

status = stub->RequestTunnelParams(&context, request, &response);

DOCA Documentation v2.7.0 440

Note

SPI and crypto_id are two independent concepts:

The SPI value in the PSP packet header indicates to
the receiver which key was used by the sender to
encrypt the data. Each receiver computes an SPI and
key to provide to a sender. Since each receiver is
responsible for tracking its next SPI, multiple
receivers may provide the same SPI to a sender, so
one sender may send the same SPI to multiple
different peers. This is allowed, as each of the
receiving peers has its own decryption key to handle
that SPI.

The crypto_id acts as an index into the bucket of PSP
keys allocated by DOCA Flow. The
doca_flow_shared_resource_cfg() function writes a given
PSP encryption key to a given slot in the bucket of
keys in NIC memory. These slots can be overwritten
as needed by the application.

There is no explicit association between crypto_id and
SPI. The doca_flow_shared_resource_cfg() function writes a
key at the slot provided by the crypto_id argument,
then the flow pipe entry actions.crypto.crypto_id

references this key, and actions.crypto_encap.encap_data

includes a PSP header with the desired SPI.

struct doca_flow_shared_resource_cfg res_cfg = {};
res_cfg.domain = DOCA_FLOW_PIPE_DOMAIN_SECURE_EGRESS;
res_cfg.psp_cfg.key_cfg.key_type = DOCA_FLOW_CRYPTO_KEY_256;
res_cfg.psp_cfg.key_cfg.key = (uint32_t *)encrypt_key;
doca_flow_shared_resource_cfg(DOCA_FLOW_SHARED_RESOURCE_PSP,
session->crypto_id, &res_cfg);

DOCA Documentation v2.7.0 441

10. A flow pipe entry which references the newly programmed PSP encryption key
(via its index crypto.crypto_id) must be inserted. Additionally, this pipe entry must
specify all the outer Ethernet, IP, UDP, and PSP header fields to insert.

11. The original packet received via rte_ethdev_rx_burst is sent back through the
newly updated pipelines via rte_ethdev_tx_burst. Since the port_id argument is that
of the PF, and since DOCA Flow has been initialized in expert mode, the packet
is transferred to the root of the egress domain (the "empty pipe" before
egress_acl_pipe).

3. Tunnel parameter request handling

1. The gRPC service provided by the PSP Gateway implements the
RequestTunnelParams operation referenced above. A client uses this operation to
request an SPI and key to encrypt traffic to send to the server's NIC device. The
request indicates the virtual remote address for which the tunnel will be
created.

2. This operation begins by generating a new SPI and key inside
generate_tunnel_params() as described previously.

3. The operation creates an ACL entry permitting the new SPI and the remote
virtual address using the add_ingress_acl_entry method of the Flows object.

format_encap_data(session, actions.crypto_encap.encap_data);
actions.crypto.action_type = DOCA_FLOW_CRYPTO_ACTION_ENCRYPT;
actions.crypto.resource_type = DOCA_FLOW_CRYPTO_RESOURCE_PSP;
actions.crypto.crypto_id = session->crypto_id;
...

doca_flow_pipe_add_entry(pipe_queue, pipe, match, actions, mon, fwd,
flags, &status, entry);
...

doca_flow_entries_process(port, 0, DEFAULT_TIMEOUT_US,
num_of_entries);

nsent = rte_eth_tx_burst(port_id, queue_id, &packet, 1);

DOCA Documentation v2.7.0 442

4. If the request included parameters for traffic in the reverse direction (traffic to
encrypt and send to the client), these parameters are translated and passed to
the Flows object by calling create_tunnel_flow described above.

References

PSP Security Protocol Specification

Google's Open-Source PSP tools

Google Remote Procedure Calls library

NVIDIA DOCA Secure Channel
Application Guide
This guide provides a secure channel implementation on top of NVIDIA® BlueField® DPU.

Introduction

doca_flow_match match = {};
match.parser_meta.psp_syndrome = 0;
match.tun.type = DOCA_FLOW_TUN_PSP;
match.tun.psp.spi = RTE_BE32(session->spi_ingress);
match.inner.l3_type = DOCA_FLOW_L3_TYPE_IP4;
match.inner.ip4.src_ip = session->src_vip;
...

doca_flow_pipe_add_entry(pipe_queue, pipe, match, actions, mon, fwd,
flags, &status, entry);
...

doca_flow_entries_process(port, 0, DEFAULT_TIMEOUT_US,
num_of_entries);

https://raw.githubusercontent.com/google/psp/main/doc/PSP_Arch_Spec.pdf
https://github.com/google/psp
https://grpc.io/

DOCA Documentation v2.7.0 443

The DOCA Secure Channel reference application leverages the DOCA Comch API which
creates a secure, network independent communication channel between the host and
the NVIDIA BlueField DPU.

Comm channel allows the host to control services on the DPU, activate certain offloads,
or exchange messages using client-server framework.

The client (host) side is able to communicate only with one server at a time while the
server side is able to communicate with multiple clients.

The API allows communication between any PF/VF/SF on the host to the server located on
the DPU.

Secure channel allows the user to select the message size and amount to be exchanged
between the client and the server to simulate heavy load on the channel.

System Design

A secure channel application runs on client mode (host) and server mode (DPU). Once a
channel is open, messages can flow from both sides.

https://docs.nvidia.com//doca/sdk/DOCA+Comch

DOCA Documentation v2.7.0 444

Application Architecture

The secure channel application runs on top of the DOCA Comm Channel API. Full
connection flow between the client and the server is illustrated in the following:

DOCA Documentation v2.7.0 445

1. Both sides initiate create().

2. Server listens and waits for new connections.

3. Server initiates recvfrom() to indicate it is ready to exchange messages

4. Client executes connect() to server and starts connection initialization.

5. Client sends first message to server.

6. Server sends a response.

DOCA Libraries

This application leverages the following DOCA library:

DOCA Comch

https://docs.nvidia.com//doca/sdk/DOCA+Comch

DOCA Documentation v2.7.0 446

Refer to its respective programming guide for more information.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/secure_channel/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build

file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 447

Compiling Only the Current Application

To directly build only the secure channel application:

Alternatively, users can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_secure_channel to true

2. Run the following compilation commands :

ninja -C /tmp/build

Info

doca_secure_channel is created under /tmp/build/secure_channel/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_secure_channel=true

ninja -C /tmp/build

Info

doca_secure_channel is created under /tmp/build/secure_channel/.

DOCA Documentation v2.7.0 448

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

Running the Application

Application Execution

The secure channel application is provided in source form. Therefore, a compilation is
required before the application can be executed.

1. Application usage instructions:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_secure_channel is created under /tmp/build/secure_channel/.

Usage: doca_secure_channel [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 449

2. CLI example for running the application on the BlueField:

--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-s, --msg-size Message size to be sent
-n, --num-msgs Number of messages to be sent
-p, --pci-addr DOCA Comm Channel device PCI address
-r, --rep-pci DOCA Comm Channel device representor PCI address (needed
only on DPU)

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_secure_channel -h

Info

For additional information, refer to section "Command Line
Flags".

./doca_secure_channel -s 256 -n 10 -p 03:00.0 -r 3b:00.0

Note

DOCA Documentation v2.7.0 450

3. CLI example for running the application on the host:

4. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

Both the DOCA Comm Channel device PCIe address (03:00.0) and
the DOCA Comm Channel device representor PCIe address
(3b:00.0) should match the addresses of the desired PCIe devices.

./doca_secure_channel -s 256 -n 10 -p 3b:00.0

Note

The DOCA Comm Channel device PCIe address (3b:00.0) should
match the address of the desired PCIe device.

./doca_secure_channel --json [json_file]

./doca_secure_channel --json ./sc_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment.

DOCA Documentation v2.7.0 451

Command Line Flags

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Genera
l flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with
TRACE log level support)

N/A sdk-log-level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json
Parse all command flags from an input
JSON file

N/A

"log-

level": 60

"sdk-log-

level": 40

DOCA Documentation v2.7.0 452

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Progra
m flags

s msg-size

Message size in bytes

n num-msgs

Number of messages to send on both sides

p pci-addr

DOCA Comm Channel device PCIe address

Note
This is a mandatory
flag.

"msg-

size": 128

Note
This is a mandatory
flag.

"num-

msgs":
256

Note
This is a mandatory
flag.

"pci-

addr":
03:00.1

DOCA Documentation v2.7.0 453

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

r rep-pci

DOCA Comm Channel device representor
PCIe address

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications .

Application Code Flow

1. Parse application argument.

1. Initialize the arg parser resources and register DOCA general parameters.

Note
This is a mandatory flag
only on the DPU.

"rep-pci":
b1:00.1

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 454

2. Register secure channel application parameters.

3. Parse application parameters:

2. Run main logic.

1. Initiate synchronization mechanism between send and receive threads.

2. Initiate Comm Channel endpoint.

3. Server side starts listening for new connections and client side connects to
server.

4. Initiate signal masking and epoll file descriptor.

5. Start send and receive threads. Both threads share the same Comm Channel
so each one must "lock" the channel before any send/receive operation.

6. Send thread prints total number of messages successfully sent.

7. Once Ctrl+C is entered in the shell, receive thread prints the total number of
messages successfully received.

8. Close and destroy resources.

References

/opt/mellanox/doca/applications/secure_channel/

doca_argp_init();

register_secure_channel_params();

doca_argp_start();

sc_start();

DOCA Documentation v2.7.0 455

/opt/mellanox/doca/applications/secure_channel/sc_params.json

NVIDIA DOCA Simple Forward VNF
Application Guide
This guide provides a Simple Forward implementation on top of NVIDIA® BlueField®
DPU.

Introduction

Simple forward is a forwarding application that leverages the DOCA Flow API to take
either VXLAN, GRE, or GTP traffic from a single RX port and transmits it on a single TX
port.

For every packet received on an RX queue on a given port, DOCA Simple Forward checks
the packet's key, which consists of a 5-tuple. If it finds that the packet matches an existing
flow, then it does not create a new one. Otherwise, a new flow is created with a
FORWARDING component. Finally, the packet is forwarded to the TX queue of the egress
port if the "rx-only" mode is not set.

The FORWARDING component type depends on the flags delivered when running the
application. For example, if the hairpinq flag is provided, then the FORWARDING
component would be hairpin. Otherwise, it would be RSS'd to software, and hence every
VXLAN, GTP, or GRE packet would be received on RX queues.

Simple forward should be run with dual ports. By using a traffic generator, the RX port
receives the VXLAN, GRE, or GTP packets and forwarding forwards them back to the
traffic generator.

System Design

The following diagram illustrates simple forward's packet flows. It receives traffic coming
from the wire and passes it to the other port.

https://docs.nvidia.com//doca/sdk/DOCA+Flow

DOCA Documentation v2.7.0 456

Application Architecture

Simple forward first initializes DPDK, after which the application handles the incoming
packets.

The following diagram illustrates the initialization process.

DOCA Documentation v2.7.0 457

1. Init_DPDK – EAL init, parse argument from command line and register signal.

2. Start port – mbuf_create, dev_configure, rx/tx/hairpin queue setup and start the port.

3. Simple_fwd INIT – create flow tables, build default forward pipes.

The following diagram illustrates how to process the packet.

1. Based on the packet's info, find the key values (e.g. src/dst IP, src/dst port, etc).

2. Traverse the inner flow tables, check if the keys exist or not.

If yes, update inner counter

If no, a new flow table is added to the DPU

3. Forward the packet to the other port.

DOCA Libraries

This application leverages the following DOCA library:

DOCA Flow

Refer to its respective programming guide for more information.

https://docs.nvidia.com//doca/sdk/DOCA+Flow

DOCA Documentation v2.7.0 458

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/simple_fwd_vnf/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 459

Compiling Simple Forward Application Only

To directly build only the simple forward application:

Alternatively, users can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_simple_fwd_vnf to true

2. Run the following compilation commands :

Info

doca_simple_fwd_vnf is created under /tmp/build/simple_fwd_vnf/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_simple_fwd_vnf=true

ninja -C /tmp/build

Info

doca_simple_fwd_vnf is created under /tmp/build/simple_fwd_vnf/.

cd /opt/mellanox/doca/applications/
meson /tmp/build

DOCA Documentation v2.7.0 460

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

Running the Application

Prerequisites

1. A FLEX profile number should be manually set to 3 on the system for the application
to build the GRE, standard VXLAN and GRE pipes.

1. Set FLEX profile number to 3 from the DPU.

2. Perform a BlueField system reboot for the mlxconfig settings to take effect.

ninja -C /tmp/build

Info

doca_simple_fwd_vnf is created under /tmp/build/simple_fwd_vnf/.

sudo mlxconfig -d <pcie_address> s FLEX_PARSER_PROFILE_ENABLE=3

Info

Resetting the firmware can be done from the BlueField as
well. For more information, refer to step 3.b of the

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Reset+and+Reboot+Procedures

DOCA Documentation v2.7.0 461

2. The Simple Forward application is based on DOCA Flow. Therefore, the user is
required to allocate huge pages.

On some operating systems (RockyLinux, OpenEuler, CentOS 8.2) the default huge
page size on the DPU (and Arm hosts) is larger than 2MB, and is often 512MB
instead. Once can find out the sige of the huge pages using the following command:

Given that the guiding principal is to allocate 4GB of RAM, in such cases instead of
allocating 2048 pages, one should allocate the matching amount (8 pages):

Application Execution

"Upgrading Firmware" section of the NVIDIA DOCA
Installation Guide for Linux.

echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

echo '8' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
524288kB/nr_hugepages

file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 462

The simple forward application is provided in source form. Therefore, a compilation is
required before the application can be executed.

1. Application usage instructions:

Usage: doca_simple_forward_vnf [DPDK Flags] -- [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-t, --stats-timer <time> Set interval to dump stats information
-q, --nr-queues <num> Set queues number
-r, --rx-only Set rx only
-o, --hw-offload Set PCI address of the RXP engine to use
-hq, --hairpinq Set forwarding to hairpin queue
-a, --age-thread Start thread do aging

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_simple_fwd_vnf -- -h

Info

DOCA Documentation v2.7.0 463

2. CLI example for running the application on the BlueField:

For additional information, refer to section "Command Line
Flags".

./doca_simple_fwd_vnf -a auxiliary:mlx5_core.sf.4 -a auxiliary:mlx5_core.sf.5 -- -l
60

Note

SFs must be enabled according to the NVIDIA BlueField DPU
Scalable Function User Guide.

Before creating SFs on a specific physical port, it is important to
verify the encap mode on the respective PF FDB. The default
mode is basic. To check the encap mode, run:

In this case, disable encap on the PF FDB before creating the SFs
by running:

cat /sys/class/net/p0/compat/devlink/encap

/opt/mellanox/iproute2/sbin/devlink dev eswitch set

pci/0000:03:00.0 mode legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set

pci/0000:03:00.1 mode legacy
echo none > /sys/class/net/p0/compat/devlink/encap
echo none > /sys/class/net/p1/compat/devlink/encap
/opt/mellanox/iproute2/sbin/devlink dev eswitch set

pci/0000:03:00.0 mode switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set

pci/0000:03:00.1 mode switchdev

file:///doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide
file:///doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

DOCA Documentation v2.7.0 464

3. CLI example for running the application on the host:

If the encap mode is set to basic then the application fails upon
initialization.

Note

The flag -a auxiliary:mlx5_core.sf.4 -a auxiliary:mlx5_core.sf.5 is
mandatory for proper usage of the application.

1. Modifying this flag results unexpected behavior as only 2
ports are supported.

2. The SF number is arbitrary and configurable.

Note

The SF numbers must match the desired SF devices.

./doca_simple_fwd_vnf -a 04:00.3 -a 04:00.4 -- -l 60

Note

The device identifiers must match the desired network devices.

Info

DOCA Documentation v2.7.0 465

4. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

Command Line Flags

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

DPDK
Flags

a devices Add a PCIe device into the list of
devices to probe.

For more information, refer to section "Running DOCA
Application on Host" in NVIDIA DOCA Virtual Functions User
Guide.

./doca_simple_fwd_vnf --json [json_file]

./doca_simple_fwd_vnf --json ./simple_fwd_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment.

"devices":
[
{"device": "sf",
"id": "4","sft":
true},

file:///doca/sdk/NVIDIA+DOCA+Virtual+Functions+User+Guide
file:///doca/sdk/NVIDIA+DOCA+Virtual+Functions+User+Guide

DOCA Documentation v2.7.0 466

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Genera
l flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with TRACE log level
support)

N/A sdk-log-level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json
Parse all command flags from an
input JSON file

N/A

Progra
m flags

t stats-timer
Set interval to dump stats
information.

{"device": "sf",
"id": "5","sft":
true},
]

"log-level": 60

"sdk-log-level": 40

"stats-timer": 2

DOCA Documentation v2.7.0 467

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

q nr-queues Set queues number.

r rx-only
Set RX only. When set, the packets
will not be sent to the TX queues.

o hw-offload
Set HW offload of the RXP engine to
use.

hq hairpinq Set forwarding to hairpin queue.

a age-thread
Start a dedicated thread that handles
the aged flows.

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications .

Application Code Flow

1. Parse application argument.

"nr-queues": 4

"rx-only": false

"hw-offload":
false

"hairpinq": false

"age-thread":
false

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 468

1. Initialize arg parser resources and register DOCA general parameters.

2. Register application parameters.

3. Parse the arguments.

1. Parse DPDK flags and invoke handler for calling the rte_eal_init() function.

2. Parse app parameters.

2. DPDK initialization.

Calls rte_eal_init() to initialize EAL resources with the provided EAL flags.

3. DPDK port initialization and start.

1. Initialize DPDK ports.

2. Create mbuf pool using rte_pktmbuf_pool_create.

3. Driver initialization – use rte_eth_dev_configure to configure the number of
queues.

4. Rx/Tx queue initialization – use rte_eth_rx_queue_setup and rte_eth_tx_queue_setup to
initialize the queues.

doca_argp_init();

register_simple_fwd_params();

doca_argp_start();

dpdk_init();

dpdk_queues_and_ports_init();

DOCA Documentation v2.7.0 469

5. Rx hairpin queue initialization – use rte_eth_rx_hairpin_queue_setup to initialize the
queues.

6. Start the port using rte_eth_dev_start.

4. Simple forward initialization.

1. simple_fwd_create_ins – create flow tables using simple_fwd_ft_create.

2. simple_fwd_init_ports_and_pipes – initialize DOCA port using simple_fwd_init_doca_port

and build default pipes for each port.

5. Main loop.

1. Receive packets using rte_eth_rx_burst in a loop.

2. Process packets using simple_fwd_process_offload.

3. Transmit the packets on the other port by calling rte_eth_tx_burst. Or free the
packet mbuf if rx_only is set to true.

6. Process packets.

1. Parse the packet's rte_mbuf using simple_fwd_pkt_info.

2. Handle the packet using simple_fwd_handle_packet. If the packet's key does not
match the existed the flow entry, create a new flow entry and PIPE using
simple_fwd_handle_new_flow. Otherwise, increase the total packet's counter.

7. Simple forward destroy.

simple_fwd_init();

simple_fwd_process_pkts();

simple_fwd_process_offload();

DOCA Documentation v2.7.0 470

Simple forward close port and clean the flow resources.

8. DPDK ports and queues destruction.

9. DPDK finish.

Calls rte_eal_destroy() to destroy initialized EAL resources.

10. Arg parser destroy.

Free DPDK resources by call rte_eal_cleanup() function.

References

/opt/mellanox/doca/applications/simple_fwd_vnf/

/opt/mellanox/doca/applications/simple_fwd_vnf/simple_fwd_params.json

NVIDIA DOCA Switch Application
Guide
This guide provides an example of switch implementation on top of NVIDIA® BlueField®
DPU.

Introduction

simple_fwd_destroy();

dpdk_queues_and_ports_fini();

dpdk_fini();

doca_argp_destroy();

DOCA Documentation v2.7.0 471

DOCA Switch is a network application that leverages the DPU's hardware capability for
internal switching between representor ports on the DPU.

DOCA Switch is based on the DOCA Flow library. As such, it exposes a command line
interface which receives DOCA Flow like commands to allow adding rules in real time.

System Design

DOCA Switch is designed to run on the DPU as a standalone application (all network
traffic goes directly through it).

Traffic flows between two VMs on the host:

Traffic flow from a physical port to a VM on the host:

https://docs.nvidia.com//doca/sdk/DOCA+Flow

DOCA Documentation v2.7.0 472

Application Architecture

DOCA Switch is based on 3 modules:

Command line interface – receives pre-defined DOCA Flow-like commands and
parses them

Flow pipes manger – generates a unique identification number for each DOCA Flow
structure created

Switch core – combines all modules together and calls necessary DOCA Flow API

DOCA Documentation v2.7.0 473

Port initialization cannot be made dynamically. All ports must be defined when running
the application with standard DPDK flags.

When adding a pipe or an entry, the user must run commands to create the
relevant structs beforehand

Optional parameters must be specified by the user in the command line; otherwise,
NULL is used

After a pipe or an entry is created successfully, the relevant ID is printed for future
use

DOCA Libraries

DOCA Documentation v2.7.0 474

This application leverages the following DOCA libraries:

DOCA Flow

Refer to its respective programming guide for more information.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's
directory:/opt/mellanox/doca/applications/switch/ .

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

https://docs.nvidia.com//doca/sdk/DOCA+Flow
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 475

Recompiling Only the Current Application

To directly build only the switch application:

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_switch to true

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_switch is created under /tmp/build/switch/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_switch=true

ninja -C /tmp/build

Info

doca_switch is created under /tmp/build/switch/.

DOCA Documentation v2.7.0 476

2. Run the following compilation commands :

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

Running the Application

Prerequisites

The switch application is based on DOCA Flow. Therefore, the user is required to allocate
huge pages.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_switch is created under /tmp/build/switch/.

echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

Note

On some operating systems (RockyLinux, OpenEuler, CentOS 8.2) the
default huge page size on the DPU (and Arm hosts) is larger than

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 477

Application Execution

The switch application is provided in source form. Therefore, hence a compilation is
required before the application can be executed.

1. Application usage instructions:

2MB, and is often 512MB instead. Once can find out the sige of the
huge pages using the following command:

Given that the guiding principal is to allocate 4GB of RAM, in such
cases instead of allocating 2048 pages, one should allocate the
matching amount (8 pages):

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

echo '8' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
524288kB/nr_hugepages

Usage: doca_switch [DPDK Flags] -- [DOCA Flags]

DOCA Flags:

DOCA Documentation v2.7.0 478

2. CLI example for running the application on the BlueField:

-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_switch -- -h

Info

For additional information, refer to section "Command Line
Flags".

./doca_switch -a 03:00.0,representor=[0-2],dv_flow_en=2 -- -l 60

Note

dv_flow_en=2 is necessary to run the application with hardware
steering.

DOCA Documentation v2.7.0 479

Command Line Flags

Flag
Type

Short
Flag

Long
Flag

Description JSON Content

General
flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with
TRACE log level support)

N/A sdk-log-
level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json
Parse all command flags from an input JSON
file

N/A

Note

The PCIe address (03:00.0) should match the address of the
desired PCIe device.

"log-level":
60

"sdk-log-

level": 40

DOCA Documentation v2.7.0 480

Supported Commands

create pipe port_id=[port_id][,<optional_parameters>]Available optional parameters:

name=<pipe-name>

root_enable=[1|0]

monitor=[1|0]

match_mask=[1|0]

fwd=[1|0]

fwd_miss=[1|0]

type=[basic|control]

add entry pipe_id=<pipe_id>,pipe_queue=<pipe_queue>[,<optional_parameters>]Available optional
parameters:

monitor=[1|0]

fwd=[1|0]

add control_pipe entry priority=<priority>,pipe_id=<pipe_id>,pipe_queue=<pipe_queue>[,
<optional_parameters>]Available optional parameters:

match_mask=[1|0]

fwd=[1|0]

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 481

destroy pipe pipe_id=<pipe_id>

rm entry pipe_queue=<pipe_queue>,entry_id=[entry_id]

port pipes flush port_id=[port_id]

port pipes dump port_id=[port_id],file=[file_name]

query entry_id=[entry_id]

create [struct] [field=value,…]
Struct options: pipe_match, entry_match, match_mask, actions, monitor, fwd, fwd_miss

Match struct fields:

Fields Field Options

flags

port_meta

outer.eth.src_mac

outer.eth.dst_mac

outer.eth.type

outer.vlan_tci

outer.l3_type ipv4, ipv6

outer.src_ip_addr

outer.dst_ip_addr

outer.l4_type_ext tcp, udp , gre

outer.tcp.flags FIN, SYN, RST, PSH, ACK, URG, ECE, CWR

outer.tcp_src_port

outer.tcp_dst_port

outer.udp_src_port

outer.udp_dst_port

tun_type

vxlan_tun_id

gre_key

gtp_teid

DOCA Documentation v2.7.0 482

Fields Field Options

inner.eth.src_mac

inner.eth.dst_mac

inner.eth.type

inner.vlan_tci

inner.l3_type ipv4, ipv6

inner.src_ip_addr

inner.dst_ip_addr

inner.l4_type_ext tcp, udp

inner.tcp.flags FIN, SYN, RST, PSH, ACK, URG, ECE, CWR

inner.tcp_src_port

inner.tcp_dst_port

inner.udp_src_port

inner.udp_dst_port

Actions struct fields:

Fields Field Options

decap true, false

mod_src_mac

mod_dst_mac

mod_src_ip_type ipv4, ipv6

mod_src_ip_addr

mod_dst_ip_type ipv4, ipv6

mod_dst_ip_addr

mod_src_port

mod_dst_port

ttl

has_encap true, false

encap_src_mac

DOCA Documentation v2.7.0 483

Fields Field Options

encap_dst_mac

encap_src_ip_type ipv4, ipv6

encap_src_ip_addr

encap_dst_ip_type ipv4, ipv6

encap_dst_ip_addr

encap_tup_type vxlan, gtpu, gre

encap_vxlan-tun_id

encap_gre_key

encap_gtp_teid

FWD struct fields:

Fields Field Options

type rss, port, pipe, drop

rss_flags

rss_queues

num_of_queues

port_id

next_pipe_id

Monitor struct fields:

flags

cir

cbs

aging

The physical port number (only one physical port is supported) will always be 0 and all
representor ports are numbered from 1 to N where N is the number of representors
being used. For example:

DOCA Documentation v2.7.0 484

Physical port ID: 0

VF0 representor port ID: 1

VF1 representor port ID: 2

VF2 representor port ID: 3

The following is an example of creating a pipe and adding one entry into it:

1. Pipe is configured on port ID 0 (physical port).

2. Entry is configured to forward all traffic directly into port ID 1 (VF0).

3. When the forwarding rule is no longer needed, the entry is deleted.

4. Ultimately, both entries are deleted, each according to the unique random ID it was
given:

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications.

Application Code Flow

1. Parse application argument.

create fwd type=port,port_id=0xffff

create pipe port_id=0,name=p0_to_vf1,root_enable=1,fwd=1

create fwd type=port,port_id=1

add entry pipe_queue=0,fwd=1,pipe_id=1012

....
rm entry pipe_queue=0,entry_id=447

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 485

1. Initialize the arg parser resources and register DOCA general parameters.

2. Register application parameters.

3. Parse app parameters.

2. Count total number of ports.

1. Check how many ports are entered when running the application.

3. Initialize DPDK ports and queues.

4. Initialize DOCA Switch.

1. Initialize DOCA Flow.

2. Create port pairs.

3. Create Flow Pipes Manger module.

4. Register an action for each relevant CLI command.

doca_argp_init();

register_switch_params();

doca_argp_start();

switch_ports_count();

dpdk_queues_and_ports_init();

switch_init();

DOCA Documentation v2.7.0 486

5. Initialize Flow Parser.

1. Reset all internal Flow Parser structures.

2. Start the command line interface.

3. Receive user commands, parse them, and call the required DOCA Flow API
command.

4. Close the interactive shell once a "quit" command is entered.

6. Clean Flow Parser resources.

7. Destroy Switch resources.

1. Destroy Flow Pipes Manager resources.

8. Destroy DOCA Flow.

9. Destroy DPDK ports and queues.

10. DPDK finish.

flow_parser_init();

flow_parser_cleanup();

switch_destroy();

switch_destroy();

dpdk_queues_and_ports_fini();

dpdk_fini();

DOCA Documentation v2.7.0 487

1. Call rte_eal_destroy() to destroy initialized EAL resources.

11. Arg parser destroy.

References

/opt/mellanox/doca/applications/switch/

NVIDIA DOCA UROM RDMO
Application Guide
This guide provides a DOCA Remote Direct Memory Operation implementation on top of
NVIDIA® BlueField® DPU using Unified Communication X (UCX) .

Introduction

A remote direct memory operation (RDMO) is conceptionally an active message which is
executed outside the context of the target process.

An RDMO involves the following entities:

Target – establishes a connection to the server to use as the control path. The target
interacts with the server to define target endpoints and memory regions. The target
exchanges endpoint and memory region information with an initiator to facilitate its
connection.

Initiator – establishes a connection to the server to use as the data path. An RDMO
is initiated by sending an RDMO command with an optional payload to the server.
The server parses the commands and runs an associated RDMO handler. An RDMO
handler interacts with the target process by performing one-sided memory accesses
to target-defined memory regions.

Server – responsible for executing RDMOs asynchronously from the target process.
The server implements an RDMO handler for each supported operation. RDMO
handlers may maintain a state within the server for optimization.

doca_argp_destroy();

DOCA Documentation v2.7.0 488

The DOCA UROM RDMO application includes the above three entities, split into the
following parts:

BlueField side – the implementation of RDMO plugin component to be loaded by
the DOCA UROM worker (which is the RDMO server)

Host side – host application that runs using two modes: target and initiator

RDMOs are designed to take advantage of extra computing resources on a platform.
While application processes run on the primary compute resources, an RDMO server can
run on idle resources on the same host or be offloaded to run on a separate device (i.e.,
BlueField).

System Design

The application demonstrates the implementation of RDMO operations as a DOCA UROM
worker plugin component. A target process would use the DOCA UROM API to create a
worker with RDMO capabilities. An initiator process establishes an RDMO connection to
the UROM worker. The plugin uses UCX as its transport.

DOCA Documentation v2.7.0 489

Bootstrap Procedure

To connect the RDMO initiator and target, on the target side, UROM is used to retrieve an
address for each created RDMO worker. This address would need to be delivered to the
RDMO initiator side for connection establishment. The initiator address is obtained from
the UCX worker created explicitly by the RDMO application. Both addresses are
exchanged over the out-of-band (OOB) network and used to establish the connection:

On the RDMO initiator side, a UCX endpoint is created using UCX API

On the RDMO target side, the initiator's address is communicated to the RDMO
worker using the UROM command channel

Memory Management

UROM returns an identifier (ID) for each memory region imported to the RDMO plugin
component. This ID is used to refer to a target memory region in RDMO requests. It must
be exchanged with the initiator process OOB.

RDMO UROM Worker Operation

DOCA Documentation v2.7.0 490

Communication between the RDMO initiator and worker is implemented on top of UCX
active messages. The worker’s active message handler is the entry point that identifies
the type of the RDMO operation based on the RDMO request header. The request is then
forwarded to the corresponding RDMO operation handler which determines the
operation parameters by inspecting the operation-specific sub-header in the request.

UCX active messages support eager and rendezvous protocols. When using a rendezvous
protocol, the worker can choose whether to pull data to the server or move it directly to a
target memory using a UCX-imported memory handle.

An RDMO operation handler may perform any combination of computation, initiator and
target memory accesses, server state updates, or responses.

The RDMO client uses UROM to instantiate an RDMO worker and to configure target
endpoints and memory regions. The client uses UCX directly to connect endpoints to the
RDMO server. The client uses UCX to send formatted RDMO messages.

Application Architecture

DOCA's UROM RDMO application implementation uses UCX to support data exchange
between endpoints. It utilizes UCX's sockaddr-based connection establishment and the
UCX active messages (AM) API for communications, and UCX is responsible for all RDMO
communications (control and data path) .

DOCA Documentation v2.7.0 491

The RDMO server application initiates a DOCA UROM worker RDMO component via the
DOCA UROM service and shares the UROM worker UCX EP with the DOCA UROM RDMO
client application. The RDMO server application imports memory regions into the UROM
worker to facilitate RDMA operations from the BlueField on host memory.

The RDMO client application performs RDMO operations via the DOCA UROM worker.
Upon receiving the UCX EP address from the server, the client application initially
establishes a connection with the worker. It then proceeds to request the worker to
execute the operation without the server application's awareness.

UROM RDMO Worker Component

The UROM RDMO worker plugin component defines a small set of commands to enable
the target to:

Establish a UCX communication channel between the client and the worker

Create a UCX endpoint capable of receiving RDMO request

Import memory regions that can be used as a source or target for RDMA initiated by
the worker

The set of commands are:

DOCA Documentation v2.7.0 492

The a ssociated notification types are:

Init

The C lient Init command initializes the client to receive RDMOs. This includes establishing
a connection between worker and host to allow the RDMO worker to access client
memory.

The command is of type UROM_WORKER_CMD_RDMO_CLIENT_INIT . Command format:

id – client ID used to identify the target process in RDMO commands

addr – pointer to the client's UCP worker address to use for a worker-to-host
connection

enum urom_worker_rdmo_cmd_type {
UROM_WORKER_CMD_RDMO_CLIENT_INIT,
UROM_WORKER_CMD_RDMO_RQ_CREATE,
UROM_WORKER_CMD_RDMO_RQ_DESTROY,
UROM_WORKER_CMD_RDMO_MR_REG,
UROM_WORKER_CMD_RDMO_MR_DEREG,
};

enum urom_worker_rdmo_notify_type {
UROM_WORKER_NOTIFY_RDMO_CLIENT_INIT,
UROM_WORKER_NOTIFY_RDMO_RQ_CREATE,
UROM_WORKER_NOTIFY_RDMO_RQ_DESTROY,
UROM_WORKER_NOTIFY_RDMO_MR_REG,
UROM_WORKER_NOTIFY_RDMO_MR_DEREG,
};

struct urom_worker_rdmo_cmd_client_init {
uint64_t id;
void *addr;
uint64_t addr_len;
};

DOCA Documentation v2.7.0 493

addr_len – length of the address

This command returns a notification of type UROM_WORKER_NOTIFY_RDMO_CLIENT_INIT .
Notification format:

addr – pointer to the component's UCP worker address to use for initiator-to-server
connections

addr_len – length of the address

RQ Create

This Receive Queue (RQ) Create command creates and connects a new endpoint on the
server. The endpoint may be targeted by formatted RDMO messages.

This command is of type UROM_WORKER_CMD_RDMO_RQ_CREATE . C ommand format:

addr – the UCP worker address to use to connect the new endpoint

addr_len – the length of address

The command returns a notification of type UROM_WORKER_NOTIFY_RDMO_RQ_CREATE . N
otification format:

struct urom_worker_rdmo_notify_client_init {
void *addr;
uint64_t addr_len;

struct urom_worker_rdmo_cmd_rq_create {
void *addr;
uint64_t addr_len;
};

struct urom_worker_rdmo_notify_rq_create {
uint64_t rq_id;

DOCA Documentation v2.7.0 494

rq_id – the RQ ID to use to destroy the RQ

RQ Destroy

The RQ Destroy command destroys an RQ.

The RQ Destroy command is of type UROM_WORKER_CMD_RDMO_RQ_DESTROY . C ommand
format:

rq_id – the ID of a previously created RQ

The RQ destroy command returns a notification of type
UROM_WORKER_NOTIFY_RDMO_RQ_DESTROY . N otification format:

rq_id – the destroyed receive queue id

MR Register

The Memory Region (MR) Register command registers a UCP memory handle with the
RDMO component. An MR must be registered with the RDMO component before use in
RDMOs.

The command is of type UROM_WORKER_CMD_RDMO_MR_REG. Command format:

};

struct urom_worker_rdmo_cmd_rq_destroy {
uint64_t rq_id;
};

struct urom_worker_rdmo_notify_rq_destroy {
uint64_t rq_id;
};

DOCA Documentation v2.7.0 495

va – the virtual address of the MR

len – the length of the MR

packed_rkey – pointer to the UCP packed R-key for the MR

packed_rkey_len – the length of packed_rkey

packed_mem_h – pointer to the UCP-packed memory handle for the MR. The memory
handle must be packed with flag UCP_MEMH_PACK_FLAG_EXPORT.

packed_memh_len – the length of packed_memh

The command returns a notification of type UROM_WORKER_NOTIFY_RDMO_MR_REG .
Notification format:

rkey – t he ID used in RDMOs to refer to the MR

MR Deregister

The MR deregister command deregisters an MR from the RDMO component.

The command is of type UROM_WORKER_CMD_RDMO_MR_DEREG . Command format:

struct urom_worker_rdmo_cmd_mr_reg {
uint64_t va;
uint64_t len;
void *packed_rkey;
uint64_t packed_rkey_len;
void *packed_memh;
uint64_t packed_memh_len;
};

struct urom_worker_rdmo_notify_mr_reg {
uint64_t rkey;
};

DOCA Documentation v2.7.0 496

rkey – the ID of a previously registered MR

The command returns a notification of type UROM_WORKER_NOTIFY_RDMO_MR_DEREG .
Notification format:

rkey – the deregistered memory region remote key

Command Format

An RDMO is initiated by sending an RDMO request via UCP active message to a UROM
RDMO worker server.

The RDMO request format is:

The RDMO header identifies the operation type and flags, modifying how the RDMO is
processed. The operation (op) header includes arguments specific to the operation type.
Optionally, the operation type may include an arbitrary-sized payload.

RDMO header format:

struct urom_worker_rdmo_cmd_mr_dereg {
uint64_t rkey;
};

struct urom_worker_rdmo_notify_mr_dereg {
uint64_t rkey;
};

struct urom_rdmo_hdr {
uint32_t id;
uint32_t op_id;

DOCA Documentation v2.7.0 497

id – the client ID

op_id – the RDMO operation type ID

flags – flags modifying how the RDMO is processed by the server

Valid flag values:

UROM_RDMO_REQ_FLAG_FENCE – Complete all outstanding RDMO requests on the
connection before executing this request. This flag is required to implement a flush
operation that guarantees remote completion.

Optionally, an operation may return a response to the initiator.

Response header format:

op_id – the RDMO response type ID

Append

RDMO Append atomically appends data to a queue in remote memory. This can be
achieved in a one-sided programming model with a Fetching-Add operation to the
location of a pointer in remote memory, followed by a Put to the fetched address. RDMO
Append allows these dependent operations to be offloaded to the target.

The following diagram provides a comparison of native and RDMO approaches to the
Append operation:

uint32_t flags;
};

enum urom_rdmo_req_flags {
 UROM_RDMO_REQ_FLAG_FENCE,
};

struct urom_rdmo_rsp_hdr {
 uint16_t op_id;
};

DOCA Documentation v2.7.0 498

Combining two dependent operations into a single RDMO allows the non-blocking
implementation of Append, as the initiator does not need to wait between the Fetching
Atomic and the data write operations. Using RDMO, the initiator can create a pipeline of
operations and achieve a higher message rate.

The rate at which the RDMO server can perform operations on the target memory is
expected to be a bottleneck. To improve the rate, the following optimizations can be
looked at:

The result of the Fetch-and-ADD (FADD) after the initial Append is performed can be
cached in the server. Subsequent Appends can re-use the cached value, eliminating
the atomic FADD operation. The modified pointer value is required to be
synchronized during the flush command.

For small Append sizes, the Append data can be cached in the RDMO server and
coalesced into a single Put. As a result, the server requires, on average, a single Put
access to target memory to execute several RDMOs.

To avoid extra memory usage and lost bandwidth for large Append operations, the
RDMO server may initiate direct transfers from the initiator to the target memory
bypassing the acceleration device memory.

The Append operation uses an operation of type UROM_RDMO_OP_APPEND. Append header
format:

struct urom_rdmo_append_hdr {
 uint64_t ptr_addr;
 uint16_t ptr_rkey;
 uint16_t data_rkey;

DOCA Documentation v2.7.0 499

ptr_addr – the address of the queue pointer in target memory

ptr_rkey – the R-key used to access ptr_addr

data_rkey – the R-key used to access the queue data

The RDMO payload is the local data buffer.

Flush

RDMO Flush is used to implement synchronization between the initiator and server. On
execution, Flush sends a response message back to the initiator. Flush can be used to
guarantee remote completion of a previously issued RDMO.

To achieve this, the initiator sends an in-order Flush command including the RDMO flag
UROM_RDMO_REQ_FLAG_FENCE. This flag causes the server to complete all previously received
RDMOs before executing the Flush. To complete previous operations, the server must
write any cached data and make it visible in the target memory. Once complete, the
server executes the Flush. Flush sends a response to the initiator. When the initiator
receives the flush message, the result of all previously sent RDMOs is guaranteed to be
visible in the target memory.

The Flush operation uses operation type UROM_RDMO_OP_FLUSH. Flush header format:

flush_id – local ID used to track completion

Flush returns a response with the following header format:

};

struct urom_rdmo_flush_hdr {
 uint64_t flush_id;
};

struct urom_rdmo_flush_rsp_hdr {
 uint64_t flush_id;

DOCA Documentation v2.7.0 500

flush_id – the ID of the completed Flush

Flush requests and responses do not include a payload.

Scatter

RDMO Scatter is used to support aggregating non-contiguous memory Puts. A n RDMO
may be defined to map non-contiguous virtual addresses into a single memory region
using a network interface at the target platform, and then return a memory key for this
region. The initiator may then perform Puts to this memory region, which are scattered
by target hardware. Alternatively, an RDMO may be defined to post an IOV Receive. The
initiator could then post a matching Send to scatter data at the target.

The Scatter operation uses operation type UROM_RDMO_OP_SCATTER. Scatter header format:

count – Number of IOVs in the RDMO payload

IOVs are packed into the Scatter request payload, descriptor followed by data:

addr – scattered data address

rkey – data remote key

len – data length

};

struct urom_rdmo_scatter_hdr {
uint64_t count; /* Number of IOVs in the payload */

};

struct urom_rdmo_scatter_iov {
uint64_t addr; /* Scattered data address */

uint64_t rkey; /* Data remote key */

uint16_t len; /* Data length */

};

DOCA Documentation v2.7.0 501

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA UROM

UCX framework DOCA driver

Refer to their respective programming guide for more information.

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/urom_rdmo/.

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

https://docs.nvidia.com//doca/sdk/DOCA+UROM
https://docs.nvidia.com//doca/sdk/DOCA+DMA
https://docs.nvidia.com//doca/sdk/DOCA+UROM
https://docs.nvidia.com//doca/sdk/DOCA+UCX
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 502

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Compiling Only the Current Application

To directly build only the UROM RDMO application (host) or plugin (DPU):

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

On the host, doca_urom_rdmo is created under /tmp/build/urom_rdmo/host/.
On the BlueField side, the RDMO worker plugin worker_rdmo.so is
created under /tmp/build/urom_rdmo/dpu/.

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_urom_rdmo=true

ninja -C /tmp/build

Info

DOCA Documentation v2.7.0 503

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_urom_rdmo to true

2. Run the following compilation commands :

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

On the host, doca_urom_rdmo is created under /tmp/build/urom_rdmo/host/.
On the BlueField side, the RDMO worker plugin worker_rdmo.so is
created under /tmp/build/urom_rdmo/dpu/.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

On the host, doca_urom_rdmo is created under
/tmp/build/urom_rdmo/host/. On the BlueField side, the RDMO
worker plugin worker_rdmo.so is created under
/tmp/build/urom_rdmo/dpu/.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 504

Running the Application

Host Application Execution

The UROM RDMO application is provided in source form; therefore, a compilation is
required before the application can be executed.

1. Application usage instructions:

Usage: doca_urom_rdmo [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-d, --device <IB device name> IB device name.
-s, --server-name <server name> server name.
-m, --mode {server, client} Set mode type {server, client}

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_urom_rdmo -h

DOCA Documentation v2.7.0 505

2. CLI example for running the application with server mode:

3. CLI example for running the application with client mode:

4. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

RDMO DPU Plugin Component

The UROM RDMO plugin component is provided in source form, hence a compilation is
required before the application can be executed in order when spawning UROM worker
could load the plugin in runtime and it is compiled as .so file.

The plugin exposes the following symbols:

Get DOCA worker plugin interface for RDMO plugin:

Info

For additional information, refer to section "Command Line
Flags".

./doca_urom_rdmo -d mlx5_0 -m server

./doca_urom_rdmo -m clinet -s <server_host_name>

./doca_urom_rdmo --json [json_file]

./doca_urom_rdmo --json ./urom_rdmo_params.json

DOCA Documentation v2.7.0 506

Get the RDMO plugin version which will be used to verify that the host and DPU
plugin versions are compatible:

Command Line Flags

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

General
flags

h help Print a help synopsis N/A

v version Print program version information N/A

l log-level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with TRACE log level
support)

doca_error_t urom_plugin_get_iface(struct urom_plugin_iface *iface);

doca_error_t urom_plugin_get_version(uint64_t *version);

"log-level": 60

DOCA Documentation v2.7.0 507

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

N/A sdk-log-level

Set the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json
Parse all command flags from an
input JSON file

N/A

Progra
m flags

d device DOCA UROM IB device name

s server-name RDMO server name

m mode
RDMO application mode [server,
client]

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications.

"sdk-log-level": 40

"device": "mlx5_0"

"server-name": "
<host-name>-oob"

"mode": "client"

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 508

Application Code Flow

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register UROM RDMO application parameters.

3. Parse the arguments.

2. Run main logic:

If the application mode is server:

1. Create UROM objects and spawn UROM worker on the BlueField.

2. Initialize UCP with features: UCP_FEATURE_AM, UCP_FEATURE_EXPORTED_MEMH.

3. Create a UCP worker and query the worker address

4. Initialize the RDMO worker client with the command
UROM_WORKER_CMD_RDMO_CLIENT_INIT.

5. Send UROM RDMO worker address to the initiator via OOB channel and
receive the intiator's UCP worker address

6. Create a UCP memory handle and register it with the RDMO server using
the command UROM_WORKER_CMD_RDMO_MR_REG. Receive an R-key in
return.

doca_argp_init();

register_urom_rdmo_params();

doca_argp_start();

DOCA Documentation v2.7.0 509

7. Send the RDMO key to the initiator

8. Create an RDMO RQ by passing the initiator's UCP worker address to the
UROM command UROM_WORKER_CMD_RDMO_RQ_CREATE.

9. Wait till the RDMO append operation is done and next validate the
memory data.

10. Wait till the RDMO scatter operation is done and next validate the
memory data.

11. Destroy the UCP resources.

12. Destroy UROM RDMO worker and UROM objects.

If the application mode is client:

1. Create UCP worker using UCX API directly.

2. Receive the UROM RDMO worker address via OOB channel and send the
initiator's UCP worker address.

3. Create a UCP endpoint using the RDMO worker address.

4. Install an Active Message handler on the endpoint to receive RDMO
responses.

5. Send an RDMO requests via UCP Active Message protocol with the
header pointing to the serialized RDMO and Op headers, and data
pointing to the payload. The request parameter flag:
UCP_AM_SEND_FLAG_REPLY will be set to allow the RDMO server to identify
the sender.

6. Once the RDMO operations are done, Destroy UCP resources.

3. Arg parser destroy.

References

doca_argp_destroy();

DOCA Documentation v2.7.0 510

/opt/mellanox/doca/applications/urom_rdmo/

/opt/mellanox/doca/applications/urom_rdmo/urom_rdmo_params.json

NVIDIA DOCA YARA Inspection
Application Guide
This guide provides YARA inspection implementation on top of NVIDIA® BlueField® DPU.

Introduction

YARA inspection monitors all processes in the host system for specific YARA rules using
the DOCA App Shield library.

This security capability helps identify malware detection patterns in host processes from
an independent and trusted DPU. This is an innovative Intrusion Detection System (IDS)
as it is designed to run independently on the DPU's Arm cores without hindering the host.

This DOCA App Shield based application provides the capability to read, analyze, and
authenticate the host (bare metal/VM) memory directly from the DPU.

Using the library, this application scans host processes and looks for pre-defined YARA
rules. After every scan iteration, the application indicates if any of the rules matched.
Once there is a match, the application reports which rules were detected in which
process. The reports are both printed to the console and exported to the DOCA
Telemetry Service (DTS) using inter-process communication (IPC).

This guide describes how to build YARA inspection using the DOCA App Shield library
which leverages DPU abilities such as hardware-based DMA, integrity, and more.

Note

As the DOCA App Shield library only supports the YARA API for
Windows hosts, this application can only be used to inspect Windows
hosts.

https://docs.nvidia.com//doca/sdk/DOCA+App+Shield
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Telemetry+Service+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Telemetry+Service+Guide

DOCA Documentation v2.7.0 511

System Design

The host's involvement is limited to generating the required ZIP and JSON files to pass to
the DPU. This is done before the app is triggered, when the host is still in a "safe" state.

Generating the needed files can be done by running DOCA App Shield's doca_apsh_config.py

tool on the host. See DOCA App Shield for more info.

Application Architecture

The user creates the ZIP and JSON files using the DOCA tool doca_apsh_config.py and copies
them to the DPU.

https://docs.nvidia.com//doca/sdk/DOCA+App+Shield

DOCA Documentation v2.7.0 512

The application can report YARA rules detection to the:

File

Terminal

DTS

1. The files are generated by running doca_apsh_config.py on the host against the process
at time zero.

2. The following steps recur at regular time intervals:

1. The YARA inspection app requests a list of all apps from the DOCA App Shield
library.

2. The app loops over all processes and checks for YARA rules match using the
DOCA App Shield library.

3. If YARA rules are found (1 or more), the YARA attestation app reports results
with a timestamp and details about the process and rules to:

Local telemetry files – a folder and files representing the data a real DTS
would have received

Note

DOCA Documentation v2.7.0 513

DOCA log

DTS IPC interface (even if no DTS is active)

3. The App Shield agent exits on first YARA rule detection.

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA App Shield

DOCA Telemetry

Refer to their respective programming guide for more information.

Limitations

The application is only available on Ubuntu 22.04 environments

The application only supports the inspection of Windows hosts

Compiling the Application

These files are used for the purpose of this example
only as normally this data is not exported into user-
readable files.

Info

Please refer to the NVIDIA DOCA Installation Guide for Linux for
details on how to install BlueField-related software.

https://docs.nvidia.com//doca/sdk/DOCA+App+Shield
https://docs.nvidia.com//doca/sdk/DOCA+Telemetry
file:///doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 514

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/yara_inspection/.

Compiling All Applications

All DOCA applications are defined under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Compiling Only the Current Application

Tip

For more information about the applications as well as development
and compilation tips, refer to the DOCA Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_yara_inspection is created under /tmp/build/yara_inspection/.

file:///doca/sdk/DOCA+Applications

DOCA Documentation v2.7.0 515

To directly build only the YARA inspection application:

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

1. Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt:

Set enable_all_applications to false

Set enable_yara_inspection to true

2. Run the following compilation commands :

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_yara_inspection=true

ninja -C /tmp/build

Info

doca_yara_inspection is created under /tmp/build/yara_inspection/.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_yara_inspection is created under /tmp/build/yara_inspection/.

DOCA Documentation v2.7.0 516

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application .

Running the Application

Prerequisites

1. Configure the BlueField's firmware

1. On the BlueField system, configure the PF base address register and NVME
emulation. Run:

2. Perform a BlueField system reboot for the mlxconfig settings to take effect.

3. This configuration can be verified using the following command:

2. Download target system (host/VM) symbols.

For Ubuntu:

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_SIZE=2

PF_BAR2_ENABLE=1 NVME_EMULATION_ENABLE=1

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -E "NVME|BAR"

host> sudo tee /etc/apt/sources.list.d/ddebs.list << EOF
deb http://ddebs.ubuntu.com/ $(lsb_release -cs) main restricted universe multiverse

deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-updates main restricted universe

multiverse

deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-proposed main restricted universe

multiverse

EOF
host> sudo apt install ubuntu-dbgsym-keyring

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Reset+and+Reboot+Procedures

DOCA Documentation v2.7.0 517

For CentOS:

No action is needed for Windows

3. Perform IOMMU passthrough. This stage is only needed on some of the cases
where IOMMU is not enabled by default (e.g., when the host is using an AMD CPU).

Locate your OS's grub file (most likely /boot/grub/grub.conf, /boot/grub2/grub.cfg, or
/etc/default/grub) and open it for editing. Run:

Search for the line defining GRUB_CMDLINE_LINUX_DEFAULT and add the argument
iommu=pt. For example:

host> sudo apt-get update
host> sudo apt-get install linux-image-$(uname -r)-dbgsym

host> yum install --enablerepo=base-debuginfo kernel-devel-$(uname -r)
kernel-debuginfo-$(uname -r) kernel-debuginfo-common-$(uname -
m)-$(uname -r)

Note

Skip this step if you are not sure whether you need it. Return to
it only if DMA fails with a message in dmesg similar to the
following:

host> dmesg
[3839.822897] mlx5_core 0000:81:00.0: AMD-Vi: Event logged
[IO_PAGE_FAULT domain=0x0047 address=0x2a0aff8

flags=0x0000]

host> vim /etc/default/grub

DOCA Documentation v2.7.0 518

Run:

For Ubuntu:

For CentOS:

For Windows targets: Turn off Hyper-V capability.

4. The DOCA App Shield library uses hugepages for DMA buffers. Therefore, the user
must allocate 42 huge pages.

1. Run:

GRUB_CMDLINE_LINUX_DEFAULT="iommu=pt <intel/amd>_iommu=on"

Note

Prior to performing a power cycle, make sure to do a
graceful shutdown.

host> sudo update-grub
host> ipmitool power cycle

host> grub2-mkconfig -o /boot/grub2/grub.cfg
host> ipmitool power cycle

dpu> nr_huge=$(cat
/sys/devices/system/node/node0/hugepages/hugepages-
2048kB/nr_hugepages)
nr_huge=$((42+$nr_huge))
echo $nr_huge | sudo tee -a
/sys/devices/system/node/node0/hugepages/hugepages-

file:///doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-HowtoPerformGracefulShutdown

DOCA Documentation v2.7.0 519

2. Create the ZIP and JSON files. Run:

If the target system does not have DOCA installed, the script can be copied
from the BlueField.

The required dwaf2json and pdbparse-to-json.py are not provided with DOCA.

Application Execution

The YARA inspection application is provided in source form. Therefore, a compilation is
required before the application can be executed.

1. Application usage instructions:

2048kB/nr_hugepages

target-system> cd /opt/mellanox/doca/tools/
target-system> python3 doca_apsh_config.py <pid-of-process-to-
monitor> --os <windows/linux> --path <path to dwarf2json executable or
pdbparse-to-json.py>
target-system> cp /opt/mellanox/doca/tools/*.* <shared-folder-with-
baremetal>
dpu> scp <shared-folder-with-baremetal>/* <path-to-app-shield-binary>

Note

If the kernel and process .exe have not changed, there no
need to redo this step.

Usage: doca_yara_inspection [DOCA Flags] [Program Flags]

DOCA Flags:

DOCA Documentation v2.7.0 520

2. CLI example for running the application on the BlueField:

-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-m, --memr <path> System memory regions map
-f, --vuid VUID of the System device
-d, --dma DMA device name
-o, --osym <path> System OS symbol map path
-t, --time <seconds> Scan time interval in seconds

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_yara_inspection -h

Info

For additional information, refer to section "Command Line
Flags".

./doca_yara_inspection -m mem_regions.json -o symbols.json -f

DOCA Documentation v2.7.0 521

Command Line Flags

Flag
Type

Sho
rt
Flag

Lon
g
Flag

Description

Gene
ral
flags

h help Prints a help synopsis

v
versi
on Prints program version information

l
log-
level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with TRACE log level support)

MT2125X03335MLNXS0D0F0VF1 -d mlx5_0 -t 3

Note

All used identifiers (-f and -d flags) should match the identifier of
the desired devices.

DOCA Documentation v2.7.0 522

Flag
Type

Sho
rt
Flag

Lon
g
Flag

Description

N/A
sdk-
log-
level

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json Parse all command flags from an input JSON file

Progr
am
flags

m
mem
r

Path to the pre-generated mem_regions.json file transferred from the
host

f pcif System PCIe function vendor unique identifier (VUID) of the VF/PF
exposed to the target system. Used for DMA operations.
To obtain this argument, run:

Example output:

Two VUIDs are printed for each DPU connected to the target system.
The first is of the DPU on pf0 and the second is of the DPU on port
pf1.

target-system> lspci -vv | grep "\[VU\] Vendor specific:"

[VU] Vendor specific: MT2125X03335MLNXS0D0F0
[VU] Vendor specific: MT2125X03335MLNXS0D0F1

Note
Running this command on the DPU outputs
VUIDs with an additional "EC" string in the
middle. You must remove the "EC" to arrive at
the correct VUID.

DOCA Documentation v2.7.0 523

Flag
Type

Sho
rt
Flag

Lon
g
Flag

Description

The VUID of a VF allocated on PF0/1 is the VUID of the PF with an
additional suffix, VF<vf-number>, where vf-number is the VF index +1.
For example, for the output in the example above:

PF0 VUID = MT2125X03335MLNXS0D0F0
PF1 VUID = MT2125X03335MLNXS0D0F1
VUID of VF0 on PF0 = MT2125X03335MLNXS0D0F0VF1

VUIDs are persistent even on reset.

d dma DMA device name to use

o
osy
m Path to the pre-generated symbols.json file transferred from the host

t time Number of seconds to sleep between scans

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications .

Application Code Flow

Info

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
file:///doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 524

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register application parameters.

3. Parse the arguments.

2. Initialize DOCA App Shield lib context.

1. Create lib context.

2. Set DMA device for lib.

3. Start the context

3. Initialize DOCA App Shield lib system context handler.

1. Get the representor of the remote PCIe function exposed to the system.

doca_argp_init();

register_apsh_params();

doca_argp_start();

doca_apsh_create();

open_doca_device_with_ibdev_name();
doca_apsh_dma_dev_set();

doca_apsh_start();
apsh_system_init();

DOCA Documentation v2.7.0 525

2. Create and start the system context handler.

4. Telemetry initialization.

1. Initialize a new telemetry schema.

2. Register YARA type event.

3. Set up output to file (in addition to default IPC).

4. Start the telemetry schema.

5. Initialize and start a new DTS source with the gethostname() name as source ID.

5. Loop until YARA rule is matched.

1. Get all processes from the host.

2. Check for YARA rule identification and send a DTS event if there is a match.

open_doca_device_rep_with_vuid();

doca_apsh_system_create();
doca_apsh_sys_os_symbol_map_set();
doca_apsh_sys_mem_region_set();
doca_apsh_sys_dev_set();
doca_apsh_sys_os_type_set();
doca_apsh_system_start();

telemetry_start();

doca_apsh_processes_get();

doca_apsh_yara_get();
if (yara_matches_size != 0) {
/* event fill logic

DOCA Documentation v2.7.0 526

6. Telemetry destroy.

7. YARA inspection clean-up.

8. Arg parser destroy.

References

/opt/mellanox/doca/applications/yara_inspection/

doca_telemetry_source_report();
DOCA_LOG_INFO();
sleep();

telemetry_destroy();

doca_apsh_system_destroy();
doca_apsh_destroy();
doca_dev_close();
doca_dev_rep_close();

doca_argp_destroy();

DOCA Documentation v2.7.0 527

DOCA Tools
This is an overview of the set of tools provided by DOCA and their purpose.

Introduction

DOCA tools are a set of executables/scripts that are needed to produce inputs to some of
the DOCA libraries and applications.

All tools are installed with DOCA, as part of the doca-tools package, and can either be
directly accessed from the terminal or can be found at /opt/mellanox/doca/tools. Refer to
NVIDIA DOCA Installation Guide for Linux for more information.

Tools

DOCA Bench

CLI name: doca_bench

DOCA Bench is a tool that allows a user to evaluate the performance of DOCA
applications, with reasonable accuracy for real-world applications. It provides a flexible
architecture to evaluate multiple features in series with multi-core scaling to provide
detailed throughput and latency analysis.

Capabilities Print Tool

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 528

CLI name: doca_caps

The caps tool is used to print the available devices and their representor devices (in the
DPU), all their capabilities, and the available DOCA libraries.

DPA Tools

DOCA DPA tools are a set of executables that enable the DPA application developer and
the system administrator to manage and monitor DPA resources and to debug DPA
applications.

PCC Counter

CLI name: pcc_counters.sh

The PCC Counter tool is used to print PCC-related hardware counters. The output
counters help debug the PCC user algorithm embedded in the DOCA PCC application.

Socket Relay

CLI name: doca_socket_relay

DOCA Socket Relay allows Unix Domain Socket (AF_UNIX family) server applications to be
offloaded to Bluefield while communication between the two sides is proxied by DOCA
Comm Channel.

NVIDIA DOCA Bench
Introduction

DOCA Documentation v2.7.0 529

NVIDIA DOCA Bench allows users to evaluate the performance of DOCA applications, with
reasonable accuracy for real-world applications. It provides a flexible architecture to
evaluate multiple features in series with multi-core scaling to provide detailed throughput
and latency analysis. e. The output and intermediate buffers is sized

This tool can be used to evaluate the performance of multiple DOCA operations, gain
insight into each stage in complex DOCA operations and understand how items such as
buffer sizing, scaling, and GGA configuration affect throughput and latency.

Feature Overview

DOCA Bench is designed as a unified testing tool for all BlueField accelerators. It,
therefore, provides these major features:

BlueField execution, utilizing the Arm cores and GGAs "locally"

Host (x86) execution, utilizing x86 cores and the GGAs on the BlueField over PCIe

Support for following DOCA/DPU features:

DOCA AES GCM

DOCA Comch

DOCA Compress

DOCA DMA

DOCA EC

DOCA Eth

DOCA RDMA

DOCA SHA

Multi-core/multi-thread support

Schedule executions based on time, job counts, etc.

Ability to construct complex pipelines with multiple GGAs (where data moves
serially through the pipeline)

DOCA Documentation v2.7.0 530

Various data sources (random data, file data, groups of files, etc.)

Remote memory operations

Use data location on the host x86 platform as input to GGAs

Comprehensive output to screen or CSV

Query function to report supported software and hardware feature

Sweeping of parameters between a start and end value, using a specific increment
each time

Specific attributes can be set per GGA instance, allowing fine control of GGA
operation

Installation

DOCA Bench is installed and available in both DOCA-for-Host and DOCA BlueField Arm
packages. It is located under the /opt/mellanox/doca/tools folder.

Prerequisites

DOCA 2.7.0 and higher.

Operating Modes

DOCA Bench measures performance of either throughput (bandwidth) or latency.

Throughput Measurements

In this mode, DOCA Bench measures the maximum performance of a given pipeline (see
"Core Principles"). At the end of the execution, a short summary along with more detailed
statistics is presented:

Aggregate stats
 Duration: 3000049 micro seconds

DOCA Documentation v2.7.0 531

Latency Measurements

Latency is the measurement of time taken to perform a particular operation. In this
instance, DOCA Bench measures the time taken between submitting a job and receiving a
response.

DOCA Bench provides two different types of latency measurement figures:

Bulk latency mode – attempts to submit a group of jobs in parallel to gain maximum
throughput, while reporting latency as the time between the first job submitted in
the group and the last job received.

Precision latency mode – used to ensure that only one job is submitted and
measured before the next job is scheduled.

Bulk Latency

This latency mode effectively runs the pipelines at full rate, trying to maintain the
maximum throughput of any pipeline while also recording latency figures for jobs
submitted.

To record latency, while operating at the pipelines maximum throughput, users must
place the latency figures inside groups or "buckets" (rather than record each individual
job latency). Using this method, users can avoid the large memory and CPU overheads
associated with recording millions of latency figures per second (which would otherwise
significantly reduce the performance).

As each pipeline operation is different, and therefore has different latency characteristics,
the user can supply the boundaries of the latency measure. DOCA Bench internally
creates 100 buckets, of which the user can specify the starting value and the width or size
of each bucket. The first and last bucket have significance:

The first bucket contains all jobs that executed faster than the starting period

 Enqueued jobs: 17135128

 Dequeued jobs: 17135128

 Throughput: 005.712 MOperations/s
 Ingress rate: 063.832 Gib/s
 Egress rate: 063.832 Gib/s

DOCA Documentation v2.7.0 532

The last bucket contains a count of jobs that took longer than the maximum time
allowed

The command line option --latency-bucket-range is used to supply two values representing
the starting time period of the first bucket, and the width of each sequential bucket. For
example, --latency-bucket-range 10us,100us would start with the lowest bucket measuring
<10μs response times, then 100 buckets which are 100μs wide, and a final bucket for
results taking longer than 10010μs.

The report generated by bulk mode visualizes the latency data in two methods:

1. A bar graph is provided to visually show the spread of values across the range
specified by the --latency-bucket-range option:

2. A breakdown of the number of jobs per bucket is presented. This example shortens
the output to show that the majority of values lie between 27000ns and 31000ns.

Latency report:
 :
 :
 :
 :
 :
 ::
 ::
 ::
 ::
 .::.
--

[25000ns -> 25999ns]: 0
[26000ns -> 26999ns]: 0
[27000ns -> 27999ns]: 128

[28000ns -> 28999ns]: 2176

[29000ns -> 29999ns]: 1152

[30000ns -> 30999ns]: 128

[31000ns -> 31999ns]: 0

DOCA Documentation v2.7.0 533

Precision Latency

This latency mode operates on a single job at a time. At the cost of greatly reduced
throughput, this allows the minimum latency to be precisely recorded. As shown below,
the statistics generated are precise and include various fields such as min, max, median,
and percentile values.

Core Principles

The following subsections elaborate on principles which are essential to understand how
DOCA Bench operates.

Host or BlueField Arm Execution

[32000ns -> 32999ns]: 0
[33000ns -> 33999ns]: 128

[34000ns -> 34999ns]: 0
[35000ns -> 35999ns]: 0

Aggregate stats

 min: 1878 ns
 max: 4956 ns
 median: 2134 ns
 mean: 2145 ns
 90th %ile: 2243 ns
 95th %ile: 2285 ns
 99th %ile: 2465 ns
 99.9th %ile: 3193 ns
 99.99th %ile: 4487 ns

DOCA Documentation v2.7.0 534

Whether executing DOCA Bench on an x86 host or BlueField Arm, the behavior of DOCA
Bench is identical. The performance measured is be dependent on the environment.

Pipelines

DOCA Bench is a highly flexible tool, providing the ability to configure how and what
operations occur and in what order. To accomplish this, DOCA Bench uses a pipeline of
operations, which are termed "steps". These steps can be a particular function (e.g.,
Ethernet receive, SHA hash generation, data compression). Therefore, a pipeline of steps
can accomplish a number of sequential operations. DOCA Bench can measure the
throughput performance or latency of these pipelines, whether running on single or
multiple cores/threads.

Warm-up Period

To ensure correct measurement, the pipelines must be run "hot" (i.e., any initial memory,
caches, and hardware subsystems must be running prior to actual performance
measurements begin). This is known as the "warm-up" period and, by default, runs
approximately 100 jobs through the pipeline before starting measurements.

Info

Only execution on x86 hosts is supported.

Info

Currently, DOCA supports running only one pipeline at a time.

DOCA Documentation v2.7.0 535

Defaults

DOCA Bench has a large number of parameters but, to simplify execution, only a few
must be supplied to commence a performance measurement. Therefore various
parameters have defaults which should be sufficient for most cases. To fine tune
performance, users should pay close attention to any default parameters which may
affect their pipeline's operation.

Optimizing Performance

To obtain maximum performance, a certain amount of tuning is required for any given
environment. While outside the scope of this documentation, it is recommended for
users to:

Avoid using CPU 0 as most OS processes and interrupt request (IRQ) handlers are
scheduled to execute on this core

Enable CPU/IRQ isolation in the kernel boot parameters to remove kernel activities
from any cores they wish to execute performance tests on

On hosts, ensure to not cross any n on-uniform memory access (NUMA) regions
when addressing the BlueField

Understand the memory allocation requirements of scenarios, to avoid over-
allocating or running into near out-of-memory situations

Supported BlueField Feature Matrix

Info

When executed, DOCA Bench reports a full list of all parameters and
configured values.

DOCA Documentation v2.7.0 536

DOCA Bench can be executed on both host and BlueField Arm environments, and can
target BlueField networking platforms.

The following table shows which operations are possible using either DOCA Bench. It also
provides two columns showing whether remote memory can be used as an input or
output to that operation. For example, DMA operations on the BlueField Arm can access
remote memory as an input to pull memory from the host into the BlueField Arm).

BlueField-2
Networking
Platform

BlueFIeld-3
Networking
Platform

Execute
on Host
Side

Execute
on
BlueField
Arm

Remote
Memory as
Input
Allowed?

Remote
Memory as
Output
Allowed?

doca_com
press::com
press

doca_com
press::dec
ompress

 1

doca_dma

doca_ec::c
reate

doca_ec::r
ecover

doca_ec::u
pdate

doca_sha

doca_rdm
a::send

doca_rdm
a::receive

doca_aes_
gcm::encry
pt

doca_aes_
gcm::decry

DOCA Documentation v2.7.0 537

BlueField-2
Networking
Platform

BlueFIeld-3
Networking
Platform

Execute
on Host
Side

Execute
on
BlueField
Arm

Remote
Memory as
Input
Allowed?

Remote
Memory as
Output
Allowed?

pt

doca_cc::cl
ient_produ
cer

doca_cc::cl
ient_consu
mer

doca_eth::
rx

doca_eth::
tx

1. Input remote memory is not supported for lz4 decompression

Remote Operations

A subset of BlueField operations have a remote element, whether this is an RDMA
connection, Ethernet connectivity, or memory residing on an x86 host. All these
operations require an agent to be present on the far side to facilitate the benchmarking
of that particular feature.

In DOCA Bench, this agent is an additional standalone application called the "companion
app". It provides the remote benchmarking facilities and is part of the standard DOCA
Bench installation.

The following diagram provides an overview of the function and communications
between DOCA Bench and the companion app:

DOCA Documentation v2.7.0 538

In this particular setup, the BlueField executes "DOCA Bench" while the host (x86) is
executes the companion App.

DOCA Bench also acts as the controller of the tests, instructing the companion app to
perform the necessary operations as required. There is an out-of-band communications
channel operating between the two applications that utilizes either standard TCP/IP
sockets or a DOCA Comch channel (depending on the test scenario/user preferences).

CPU Core and Thread Selection

A key requirement to scaling any application is the number of CPU cores or threads
allocated to any given activity. DOCA Bench provides the ability to specify the numbers of
cores, and the number of threads to be created per core, to maximize the number of jobs
submitted to a given pipeline.

The following care should be given when selecting the number of CPU's or threads:

Threads that are on cores located on distant NUMA regions (i.e., not the same
NUMA region the BlueField is connected to) will experience lower performance and
higher latency

Core 0 is often most used by the OS and should be avoided

Note

Selection of the correct CPU cores and threads has a significant
impact on the performance or latency obtained. Read this section
carefully.

https://docs.nvidia.com//doca/sdk/DOCA+Comch%C2%A0%E2%80%93+New

DOCA Documentation v2.7.0 539

Standard Linux Kernel installations allow the OS to move processes on any CPU core
resulting in unexpected drops in performance, or higher latency, due to process
switching

The selection of CPU cores is provided through the --core-mask, --core-list, --core-count

parameters, while thread selection is made via the --threads-per-core parameter.

Device Selection

When executing from a host (x86) environment DOCA Bench can target one or more
BlueField devices within an installed environment. When executing from the BlueField
Arm, the target is always the local BlueField.

The default method of targeting a given BlueField from either the host or the BlueField
Arm is using the --device or -A parameters, which can be provided as:

Device PCIe address (i.e., 03:00.0);

Device IB name (mlx5_0); or

Device interface name (ens4f0)

From the BlueField Arm environment, DOCA Bench should be targeted at the local PCIe
address (i.e., --device 03:00.0) or the IB device name (i.e., mlx5_0).

Input Data Selection and Sizing of Jobs

DOCA Bench supports different methods of supplying data to jobs and providing
information on the amount of data to process per job. These are referred to as "Data
Providers".

Input Data Selection

The following subsections provide the modes available to provide data for input into any
operation.

File

A single file is used as input to the operation. The contents of the file are not important
for certain operations (e.g., DMA, SHA, etc.) but must be valid and specific for others (e.g.,

DOCA Documentation v2.7.0 540

decompress, etc). The data may be used multiple times and repeated if the operations
required more data than the single file contains. For more information on how file data is
handled in complex operations, see section "Command-line Parameters".

File Sets

File sets are a group of files that are primarily used for structured data. The data in the
file set is effectively a list of files, separated by a new line that is used sequentially as
input data for jobs. Each file pointed to by the file set would have its entire contents read
into a single buffer. This is useful for operations that require structured data (i.e., a
complete valid block of data, such as decompression or AES).

Random Data

Random data is provided when the actual data required for the given operation is not
specific (e.g., DMA).

Job Sizing

Each job in DOCA Bench consists of three buffers: An original input buffer, an output, and
an intermediate buffer.

Note

The use of random data for certain operations may reduce the
maximum performance obtained. For example, compressing random
data results in lower performance than compressing actual file data
(due to the lack of repeating patterns in random data).

DOCA Documentation v2.7.0 541

The input buffer is provided by the data provider for the first step in the pipeline to use,
after which the following steps use the output and intermediate buffers (can be sized by
using --job-output-buffer-size) in a ping-pong fashion. This means, the pipeline can always
start with the same deterministic data while allowing for each step to provide its newly
generated output data to be used as input to the next step.

The input buffer is specified in one of two ways: using uniform-job-size to make every
input buffer the exact same size, or using a file set to size each buffer based on the size
of the selected input data file(s). Users should ensure the data generated by each step in
the pipeline will fit in the provided output buffer.

Controlling Test Duration

DOCA Bench has a variety of ways to control the length of executing tests—whether
based on data or time limit.

Limit to Specific Number of Seconds

Using the --run-limit-seconds or -s parameter ensures that the execution continues for a
specific number of seconds.

Limited Through Total Number of Jobs

It may be desirable to measure a specific number of jobs passing through a pipeline. The
--run-limit-jobs or -J parameter is used to specify the exact number of jobs submitted to the
pipeline and allowed to complete before execution finishes.

GGA-specific Attributes

As DOCA Bench supports a wide range of both GGA and software based DOCA libraries,
the ability to fine tune their invocation is important. Command-line parameters are
generally used for configuration options that apply to all aspects of DOCA Bench, without
being specific to a particular DOCA library.

DOCA Documentation v2.7.0 542

Attributes are the method of providing configuration options to a particular DOCA
Library, whilst some shared attributes exist the majority of libraries have specific
attributes designed to control their specific behavior.

For example, the attribute doca_ec.data_block_count allows you to set the data block count for
the DOCA EC library, whilst the attribute doca_sha.algorithm controls the selection of the
SHA algorithm.

For a full list of support attributes, see the "Command-line Parameters" section.

Command-line Parameters

DOCA Bench allows users to specify a series of operations to be performed and then
scale that workload across multiple CPU cores/threads to get an estimation of how that
workload performs and some insight into which stage(s), if any, cause performance
problems for them. The user can then modify various configuration properties to explore
how issues can be tuned to better serve their need.

When running, DOCA Bench creates a number of execution threads with affinities to the
specific CPU specified by the user. Each thread creates, uniquely for themselves, a jobs
pool (with job data initialized by a data provider) and a pipeline of workload steps.

CPU Core and Thread Count Configuration

There are many factors involved when carrying out performance tests, one of these is the
CPU selection:

The user should consider NUMA regions when selecting which cores to use, as using
a CPU which is distant from the device under test can impact the performance
achievable

Info

Due to batching it is possible that more than the supplied jobs are
executed.

DOCA Documentation v2.7.0 543

The user may also wish to avoid core 0 as this is typically the default core for kernel
interrupt handlers.

--core-mask

Default value: 0x02

Core mask is the simplest way to specify which cores to use but is limited in that it can
only specify up to 32 CPUs (0-31). Usage example: --core-mask 0xF001 selects CPU cores 0,
12, 13, 14, and 15.

--core-list

Core list can specify any/all CPU cores in a given system as a list, range, or combination of
the two. Usage example: --core-list 0,3,6-10 selects CPU cores 0, 3, 6, 7, 8, 9, and 10.

--core-count

The user can select the first N cores from a given core set (list or mask) if desired. Usage
example: --core-count N.

Note

CPU core selection has an impact on the total memory footprint of
the test. See section "Test Memory Footprint" for more details.

Info

Sweep testing is supported. See section "Sweep Tests" for more
details.

DOCA Documentation v2.7.0 544

--threads-per-core -t

To test the impacts of contention within a single CPU core, the user can specify this value
so that instead of only one thread being created per core, N threads are created with
their affinity mask set to the given core for each core selected. For example, 3 cores and 2
threads per core create 6 threads total.

Device Configuration

The test requires the use of at least one BlueField to execute. With remote system
testing, a second device may be required.

--device -A

Specify the device to use from the perspective of the system under test. The value can be
for any one of either the device PCIe address (e.g., 03:00.0), the device IB device name (e.g.,
mlx5_0), or the device interface name (e.g., ens4f0).

--representor -R

This option is used only when performing remote memory operations between a
BlueField device and its host using DOCA Comch. This is typically automated by the
companion connection string but exists for some developer debug use-cases.

Info

Sweep testing is supported. See section "Sweep Tests" for more
details.

DOCA Documentation v2.7.0 545

Input Data and Buffer Size Configuration

DOCA Bench supports multiple methods of acquiring data to use to initialize job buffers.
The user can also configure the output/intermediate buffers associated with each job.

--data-provider -I

DOCA Bench supports a number of different input data sources:

file

file-set

random-data

File Data Provider

The file data provider produces uniform/non-structured data buffers by using a single
input file. The input data is stripped and or repeated to fill each data buffer as required,
returning back to the start of the file each time it is exhausted to collect more data. This is

Info

This option used to be important before the companion connection
string property was introduced but now is rarely used.

Info

Input data and buffer size configuration has an impact on the total
memory footprint of the test. See section "Test Memory Footprint"
for more details.

DOCA Documentation v2.7.0 546

desirable when the performance of the component(s) under test is meant to show
different performance characteristics depending on the input data supplied.

For example, doca_dma and doca_sha would execute in constant time regardless of the input
data. Whereas doca_compress would be faster with data with more duplication and slower
for truly random data and would produce different output depending on the input data.

Example 1 – Small Input File with Large Buffers

Given a small input data (i.e., smaller than the data buffer size), the file contents are
repeated until the buffer is filled and then continue onto the next buffer(s). So, if the
input file contained the data 012345 and the user requested two 20-byte buffers, the
buffers would appear as follows:

01234501234501234501

23450123450123450123

Example 2 – Large Input File with Smaller Buffers

Given a large input data (i.e., greater than the data buffer size), the file contents are
distributed across the data buffers. If the the input file contained the data
0123456789abcdef and the user requested three 12-byte buffers, the buffers would appear
as follows:

0123456789ab

cdef01234567

89abcdef0123

File Set Data Provider

The file set data provider produces structured data. The file set input file itself is a file
containing one or more filenames (relative to the input "command working directory (cwd)" not
relative to the file set file). Each file listed inside the file set would have its entire contents
used as a job buffer. This is useful for operations where the data must be a complete

DOCA Documentation v2.7.0 547

valid data block for the operation to succeed like decompression with doca_compress or
decryption with doca_aes.

Example – File Set and Its Contents

Given a file set in the "command working directory (cwd)" referring to data_1.bin and data_2.bin

(one file name per line), and data_1.bin contains 33 bytes and data_2.bin contains 69 bytes,
then the data required by the buffers would be filled with these two files in a round-robin
manner until the buffers are full . Unlike uniform (non-structured) data each task can
have different lengths.

Random-data Data Provider

The random data data provider provides uniform (non-structured) data from a random
data source. Each buffer will have unique (pseudo) random bytes of content.

--data-provider-job-count

Default value: 128

Each thread in DOCA Bench has its own allocation of job data buffers to avoid memory
contention issues. Users may select how many jobs should be created per thread using
this parameter.

Info

Sweep testing is supported. See section "Sweep Tests" for more
details.

DOCA Documentation v2.7.0 548

--data-provider-input-file

For data providers which use an input file, the filename can be specified here. The
filename is relative to the input_cwd.

--uniform-job-size

Specify the size of uniform input buffers (in bytes) that should be created.

--job-output-buffer-size

Info

Sweep testing is supported. See section "Sweep Tests" for more
details.

Note

Does not apply and should not be specified when using structured
data input sources.

Info

Sweep testing is supported. See section "Sweep Tests" for more
details.

DOCA Documentation v2.7.0 549

Default value: 16384

Specify the size of output/intermediate buffers (in bytes). Each job has 3 buffers:
immutable input buffer and two output/intermediate buffers. This allows for a pipeline to
mutate the data an infinite number of times throughout the pipeline while allowing for it
to be reset and re-used at the end, and allowing any step to use the new mutated data
created by the previous step.

--input-cwd -i

To ease configuration management, the user may opt to use a separate folder for the
input data for a given scenario outside of the DOCA build/install directory.

Example 1 – Running DOCA Bench from Current Working Directory

Considering a user executing DOCA Bench from /home/bob/doca/build, values specified in --
data-provider-input-file and filenames within a file set would search relative to the shell's
"command working directory (cwd)": /home/bob/doca/build. Their command might look
something like:

And assuming my_file_set.txt contains data_1.bin, the files that would be loaded by DOCA
Bench after path resolution would be:

/home/bob/doca/build/my_file_set.txt

/home/bob/doca/build/data_1.bin

Tip

It is recommended to use relative file paths for the input files.

doca_bench --data-provider file-set --data-provider-input-file my_file_set.txt

DOCA Documentation v2.7.0 550

Example 2 – Running DOCA Bench from Another Directory

Considering the user executed that same test from one level up. Something like:

The files to be loaded would be:

/home/bob/doca/build/my_file_set.txt

/home/bob/doca/data_1.bin

Notice how both files were loaded relative to the "command working directory (cwd)" and the
data file was not loaded relative to the file set.

Example 3 – Example 2 Revisited Using input-cwd

The user can solve this easily by keeping all input files in a single directory and then
referring to that directory using the parameter input-cwd. In this case, the command like
may look something like:

Note that the value for --data-provider-input-file also changed to be relative to the new
"command working directory (cwd)".

The files loaded this time are back to being what is expected:

/home/bob/doca/build/my_file_set.txt

/home/bob/doca/build/data_1.bin

build/doca_bench --data-provider file-set --data-provider-input-file
build/my_file_set.txt

build/doca_bench --data-provider file-set --data-provider-input-file my_file_set.txt --
input-cwd build

DOCA Documentation v2.7.0 551

Test Execution Control

DOCA Bench supports multiple test modes and run execution limits to allow the user to
configure the test type and duration.

--mode

Default value: throughput

Select which type of test is to be performed.

Throughput Mode

Throughput mode is optimized to increase the volume of data processed in a given
period with little or no regard for latency impact. Throughput mode tries to keep each
component under test as busy as possible. A summary of the bandwidth and job
execution rate are provided as output.

Bulk-latency Mode

Bulk latency mode strikes a balance between throughout and latency, submitting a batch
of jobs and waiting for them all to complete to measure the latency of each job. This
mode uses a bucketing mechanism to allow DOCA Bench to handle many millions of jobs
worth of results. DOCA Bench keeps a count of the number of jobs that complete within
each bucket to allow it to run for long periods of time. A summery of the distribution of
results with an ASCII histogram of the results are provided as output. The latency
reported is the time taken between the first job submission (for a batch of jobs) until the
final job response is received (for that same batch of jobs).

Precision-latency Mode

Precision latency mode executes one job at a time to allow DOCA Bench to calculate the
minimum possible latency of the jobs. This causes the components which can process
many jobs in parallel to be vastly underutilized and so greatly reduces bandwidth. As this
mode records every result individually, it should not be used to execute more than
several thousand jobs. Precision latency mode requires 8 bytes of storage for each result,
so be mindful of the memory overhead of the number of jobs to be executed.

DOCA Documentation v2.7.0 552

A statistical analysis including minimum, maximum, mean, median and some percentiles
of the latency value are provided as output.

--latency-bucket-range

Default value: 100ms,10ms

Only applicable to bulk-latency mode. Allows the user to specify the starting value of the
buckets, and the width of each bucket. There are 100 buckets of the given size and an
under flow and over flow bucket for results that fall outside of the central range.

For example:

This would start with the lowest bucket measuring <10μs response times, then 100
buckets which are 100μs wide, and a final bucket for results taking longer than >10010μs

Execution Limits

By default, a test runs forever. This is typically undesirable so the user can specify a limit
to the test.

--run-limit-seconds -s

Runs the test for N seconds as specified by the user.

--latency-bucket-range 10us,100us

Note

Precision-latency mode only supports job limited execution.

DOCA Documentation v2.7.0 553

--run-limit-jobs -J

Runs the test until at least N jobs have been submitted, then allowing in-flight jobs to
complete before exiting. More jobs than N may be executed based on batch size.

--run-limit-bytes -b

Runs the test until at least N bytes of data have been submitted, then allowing in-flight
jobs to complete before exiting. More data may be processed than desired if the limit is
not a multiple of the job input buffer size.

Gather/Scatter Support

Gather support involved breaking incoming input data from a single buffer into multiple
buffers, which are "gathered" into a single gather list. Currently only gather is supported.

--gather-value

Default value: 1

Specifies the partitioning of input data from a single buffer into a gather list. The value
can be specified in two flavors:

--gather-value 4 – splits input buffers into 4 parts as evenly as possible with odd bytes
in the last segment

--gather-value 4KiB – splits buffers after each 4KB of data. See
doca_bench/utility/byte_unit.hpp for the list of possible units.

Stats Output

DOCA Documentation v2.7.0 554

--rt-stats-interval

By default, DOCA Bench emits the results of an iteration once it completes. The user can
ask for transient snapshots of the stats as the test progresses by providing the --rt-stats-

interval argument with a value representing the number of milliseconds between stat
prints. The end-result of the run is still displayed as normal.

--csv-output-file

DOCA Bench can produce an output file as part of its execution which can contain stats
and the configuration values used to produce that stat. This is enabled by specifying the --
csv-output-file argument with a file path as the value. Providing a value for this argument
enables CSV stats output (in addition to the normal console output). When performing a
sweep test, one line per iteration of the sweep test is populated.

By default, the CSV output contains every possible value. The user can tune this by
applying a filter.

--csv-stats

Provide one or more filters (positive or negative) to tune which stats are displayed. The
value for this argument is a comma-separated list of filter strings. Negative filters start
with a minus sign ('-').

Example 1 – Emit Only Statistical Values (No Configuration Values)

Note

This may produce a large amount of console output.

--csv-stats "stats.*"

DOCA Documentation v2.7.0 555

Example 2 – Emit Statistical Values and Some Configuration Values (Remove
Attribute Values)

--csv-append-mode

Default: false

When enabled, DOCA Bench appends to a CSV file if it exists or creates a new one. It is
assumed that all invocation uses the exact same set of output values. This is not verified
by DOCA Bench. The user must ensure that all tests that append to the CSV use the same
set of output values.

--csv-separate-dynamic-values

A special case which creates a non-standard CSV file. All values that are not supported by
sweep tests are reported only once first, then a new line of headers for values emitted
during the test, then a row for each test result. This is reserved for an internal use case
and should not be relied upon by anyone else.

--enable-environment-information

Note

The quotes around the * prevent the shell from interpreting it as a
wild card for filenames in the command.

--csv-stats "stats.*,-attribute*

DOCA Documentation v2.7.0 556

Instructs DOCA Bench to collect some detailed system information as part of the test
startup procedure which are then made available for output in the CSV. These also gather
the same details from the companion side if the companion is in use.

Remote Memory Testing

Some libraries (e.g., doca_dma) support the use of remote memory. To enable this, the user
can specify one or both of the remote memory flags --use-remote-input-buffers and --use-

remote-output-buffers. This tells DOCA Bench to use the companion to create a remote
mmap. This remote mmap is then used to create buffers that are submitted to the
component under test.

--use-remote-input-buffers

Specifies that the memory used for the initial immutable job input buffers into a pipeline
should be backed by an mmap on the remote side.

Warning

This collection can take a long time (up to a few minutes in some
circumstances) to complete, so it is not recommended unless you
know you need it.

Note

These flags should be used with caution and an understanding that if
the underlying components under test can support this scenario,
there is no automated checking. It is user responsibility to ensure
these are used appropriately.

DOCA Documentation v2.7.0 557

--use-remote-output-buffers

Specifies that all output and translation buffers in use are backed by an mmap on the
remote side.

Network Options

--mtu-size

For use with doca_rdma. Value is an enum: 256B 512B 1KB 2KB 4KB or raw_eth.

--receive-queue-size

For use with doca_rdma. Configure the RDMA RQ size independently of the SQ size.

Note

Requires the companion app to be configured.

Note

Requires the companion app to be configured.

DOCA Documentation v2.7.0 558

--send-queue-size

For use with doca_rdma. Configure the RDMA SQ size independently of the RQ size.

DOCA Lib Configuration Options

--task-pool-size

Default value: 1024

Configure the maximum task pool size used when libraries initialize task pools.

Pipeline Configuration

DOCA Bench is based on a pipeline of operations, This allow for complex test scenarios
where multiple components are tested in parallel. Currently only a single chain of
operations in a pipeline is supported (but scaled across multiple cores or threads), future
versions will allow for varied pipeline's per CPU core.

A pipeline is described as a series of steps. All steps have a few general characteristics:

Step type: doca_dma, doca_sha, doca_compress, etc.

An operation category – transformative or non-transformative

An input data category – structured or non structured

Individual step types may also have some additional metadata information or
configuration as defined on a per step basis.

Metadata examples:

doca_compress requires an operation type: compress or decompress

doca_aes requires an operation type: encrypt or decrypt

DOCA Documentation v2.7.0 559

doca_ec requires an operation type: create , recover or update

doca_rdma requires a direction: send , receive or bidir

Configuration examples:

--pipeline-steps doca_dma

--pipeline-steps doca_compress::compress,doca_compress::decompress

--pipeline-steps

Define the step(s) (comma-separated list) to be executed by each thread of the test.

The following is the list of supported steps:

doca_compress::compress

doca_compress::decompress

doca_dma

doca_ec::create

doca_ec::recover

doca_ec::update

doca_sha

doca_rdma::send

doca_rdma::receive

doca_rdma::bidir

doca_aes_gcm::encrypt

doca_aes_gcm::decrypt

doca_cc::client_producer

doca_cc::client_consumer

DOCA Documentation v2.7.0 560

doca_eth::rx

doca_eth::tx

--attribute

Some of the options are very niche or specific to a single step/mmo type, so they are
defined simply as attributes instead of a unique command-line argument.

The following is the list of supported options:

doption.mmp.log_qp_depth

doption.mmo.log.num_qps

doption.companion_app.path

doca_compress.algorithm

doca_ec.matrix_count

doca_ec.data_block_count

doca_ec.redundancy_block_count

doca_sha.algorithm

doca_rdma.gid-index

doca_eth.max_burst_size

Info

Some modules may be unavailable if they were not compiled as part
of DOCA when DOCA Bench was compiled.

DOCA Documentation v2.7.0 561

doca_eth.l3_chksum_offload

doca_eth.l4_chksum_offload

--warm-up-jobs

Default value: 100

Warm-up serves two purposes:

Firstly, it runs N tasks in a round robin fashion to get the data path code, tasks
memory, and tasks data buffers memory into the CPU caches before the
measurement of the test begins

Secondly, it uses doca_task_try_submit instead of doca_task_submit to validate the jobs.
This validation is not desirable during the proper hot path as it costs time
revalidating the task each execution.

The user should ensure their warmup count equals or exceeds the number of tasks being
used per thread (see --data-provider-job-count).

Companion Configuration

Some tests require a remote system to function. For this purpose, DOCA Bench comes
bundled with a companion application (this application is installed as part of the DOCA-
for-Host or BlueField packages). The companion is responsible for providing services to
DOCA Bench such as creating a doca_mmap on the remote side and exporting it for use
with remote operations like doca_dma/doca_sha, or other doca_libs that support remote
memory input buffers. DOCA Bench can also provide remote worker processes for
libraries that require them such as doca_rdma and doca_cc. The companion is enabled by
providing the --companion-connection-string argument. Companion remote workers are
enabled by providing either of the arguments --companion-core-list or --companion-core-mask.

Info

DOCA Documentation v2.7.0 562

The companion connection may also specify the no-launch option.

The user may also specify a path to a specific companion binary to allow them to test
companion binaries not in the default install path using the following command:

--companion-connection-string

Specifies the details required to establish a connection to and execute the companion
process.

Example of running DOCA Bench from the host side using the BlueField for the
remote side using doca_comch as the communications method:

DOCA Bench requires that an SSH key is configured to allow the user
specified to SSH without a password to the remote system using the
supplied address (to launch the companion). Refer to your OS's
documentation for information on how to achieve this.

Warning

This is reserved for expert developer use.

--attribute
doption.companion_app.path=/tmp/my_doca_build/tools/bench/doca_bench_compan

Warning

This is reserved for expert developer use.

DOCA Documentation v2.7.0 563

Example of running DOCA Bench from the BlueField side using the host for the
remote side using doca_comch as the communications method:

Example of running DOCA Bench on one host with the companion on another host
using TCP as the communications method:

--companion-core-list

Works the same way as --core-list but defines the cores to be used on the companion side.

--companion-connection-string
"proto=dcc,mode=DPU,user=bob,addr=172.17.0.1,dev=03:00.0,rep=d8:00.0"

--companion-connection-string
"proto=dcc,mode=host,user=bob,addr=172.17.0.1,dev=d8:00.0"

--companion-connection-string
"proto=tcp,user=bob,addr=172.17.0.1,port=12345,dev=d8:00.0"

Note

For doca_rdma only.

Note

Must be at least as large as the --core-list.

DOCA Documentation v2.7.0 564

--companion-core-mask

Works the same way as --core-mask but defines the cores to be used on the companion
side.

Sweep Tests

--sweep

DOCA Bench supports executing a set of tests based on a number of value ranges. For
example, to understand the performance of multi-threading, the user may wish to run
the same test for various CPU core counts. They may also wish to vary more than one
aspect of the test. Providing one or more --sweep parameters activates sweep test mode
where every combination of values is tested with a single invocation of DOCA Bench.

The following is a list of the supported sweep test options:

core-count

data-provider-input-file

data-provider-job-count

gather-value

mtu-size

receive-queue-size

send-queue-size

Note

Must be at least as large as the --core-mask.

DOCA Documentation v2.7.0 565

threads-per-core

task-pool-size

uniform-job-size

doption.mmo.log_qp_depth

doption.mmo.log_num_qps

doca_rdma.transport-type

doca_rdma.gid-index

Sweep test argument values take one of three forms:

--sweep param,start_value,end_value,+N

--sweep param,start_value,end_value,*N

--sweep param,value1,...,valueN

Sweep core count and input file example:

This would sweep cores 1-8, inclusive, multiplying the value each time as 1,2,4,8 and two
different input files resulting in a cumulative 8 test cases:

Iteration Number Core Count Input File

1 1 file1.bin

2 2 file1.bin

3 4 file1.bin

4 8 file1.bin

5 1 file2.bin

6 2 file2.bin

7 4 file2.bin

--sweep core-count,1,8,*2 –sweep data-provider-input-file,file1.bin,file2.bin

DOCA Documentation v2.7.0 566

Iteration Number Core Count Input File

8 8 file2.bin

Queries

Device Capabilities

DOCA Bench allows the querying of a device to report which step types are available as
well as information of valid configuration options for each step. A device must be
specified:

For each supported library, this would report:

Capable – if that library is enabled in DOCA Bench at compile time (if not capable,
installing the library would not make it become available to bench)

Installed – if the library is installed on the machine executing the query (if not
installed, installing it would make it available to bench)

Library wide attributes

A list of supported task types (~= step name)

If the task type is supported

Task specific attributes/capabilities

tools/bench/doca_bench --device 03:00.0 --query device-capabilities

doca_compress:
Capable: yes

Installed: yes

Tasks:
compress::deflate:
Supported: no
compress::lz4:

DOCA Documentation v2.7.0 567

Supported Sweep Attributes

Shows the possible parameters that can be used with the sweep test parameter

Example output:

Supported: no
compress::lz4_stream:
Supported: no
decompress::deflate:
Supported: yes

Max buffer length: 134217728
decompress::lz4:
Supported: yes

Max buffer length: 134217728
decompress::lz4_stream:
Supported: yes

Max buffer length: 134217728

tools/bench/doca_bench --query sweep-properties

Supported query properties: [
core-count
threads-per-core
uniform-job-size
task-pool-size
data-provider-job-count
gather-value
mtu-size
send-queue-size
receive-queue-size
doption.mmo.log_qp_depth
doption.mmo.log_num_qps
doca_rdma.transport-type

DOCA Documentation v2.7.0 568

Test Memory Footprint

DOCA Bench allocates memory for all the tasks required by the test based on the input
buffer size, output/intermediate buffer size, number of cores, number of threads, and
number of jobs in use. All jobs contain an input buffer, an output buffer, and an
intermediate buffer. The input buffer is immutable and sized based on the data provider
in use. The output and intermediate buffers are sized based on the users specification or
automatically calculated at the users request. For a library which produces the same
amount of output as it consumes (e.g., doca_dma), typically the user should set the buffers
all to the same size to make things as efficient as possible.

The memory footprint for job buffers can be calculated as: (number-of-tasks) * (number-of-

cores) * (number-of-threads-per-core) * (input-buffer-size + (output/intermediate-buffer-size * 2)). For a 1KB
job with the default of 32 jobs, 1 core, and 1 core per thread, the memory footprint would
be 96KB.

For sweep testing and structured data input, it can be difficult to pick a suitable output
buffer size so the user may choose to specify 0 and have DOCA Bench try all the tasks
once to calculate the required output buffer sizes. This only has a cost in terms of time
taken to perform the calculation. After this, there is no difference between auto-sizing
and manually sizing the jobs output buffers.

NVIDIA DOCA Capabilities Print Tool

doca_rdma.gid-index
]

Note

When running DOCA Bench on the BlueField and on some host OSs,
it may be necessary to increase the limit of how much memory the
process can acquire. Consult your OS's documentation for details of
how to do this.

DOCA Documentation v2.7.0 569

This document provides instruction on the usage of the DOCA Capabilities Print Tool.

Introduction

This tool is used to print all the available DOCA libraries and devices. For each DOCA
device, the tool prints its representor devices and the capabilities it supports in each
DOCA library.

Prerequisites

DOCA 2.6.0 and higher.

Description

This tool can be executed on the host or Arm sides.

The following capabilities are supported by this tool:

DOCA device list – print the PCIe device of every available DOCA device and its
capabilities

DOCA representor device list – for every DOCA device, print the PCIe device of every
available DOCA representor device and its capabilities

DOCA library list – print the available DOCA libraries supported by the running OS
and their availability for specific OSs

DOCA library capabilities – for every DOCA device, print the capabilities it supports
in every DOCA library

Execution

To print all the available DOCA devices and their capabilities, run:

/opt/mellanox/doca/tools/doca_caps --list-devs

Info

DOCA Documentation v2.7.0 570

Example output:

Printing the capabilities of a specific DOCA device can be done
using the --pci-addr flag.

/opt/mellanox/doca/tools/doca_caps --list-devs
PCI: 0000:03:00.0
ibdev_name mlx5_0
iface_name p0
mac_addr 94:6d:ae:5c:9e:04
ipv4_addr 0.0.0.0
ipv6_addr fe80:0000:0000:0000:966d:aeff:fe5c:9e04
gid_table_size 255
GID[0] fe80:0000:0000:0000:966d:aeff:fe5c:9e04
PCI: 0000:03:00.1
ibdev_name mlx5_1
iface_name p1
mac_addr 94:6d:ae:5c:9e:05
ipv4_addr 0.0.0.0
ipv6_addr fe80:0000:0000:0000:966d:aeff:fe5c:9e05
gid_table_size 255
GID[0] fe80:0000:0000:0000:966d:aeff:fe5c:9e05
PCI: 0000:03:00.0
ibdev_name mlx5_2
iface_name enp3s0f0s0
mac_addr 02:c6:d0:fd:56:d7
ipv4_addr 0.0.0.0
ipv6_addr fe80:0000:0000:0000:00c6:d0ff:fefd:56d7
gid_table_size 255
GID[0] fe80:0000:0000:0000:00c6:d0ff:fefd:56d7
PCI: 0000:03:00.1
ibdev_name mlx5_3
iface_name enp3s0f1s0
mac_addr 02:b6:4f:a9:fa:9a

DOCA Documentation v2.7.0 571

To print all the available DOCA representor devices and their capabilities, run:

Example output:

ipv4_addr 0.0.0.0
ipv6_addr fe80:0000:0000:0000:00b6:4fff:fea9:fa9a
gid_table_size 255
GID[0] fe80:0000:0000:0000:00b6:4fff:fea9:fa9a

/opt/mellanox/doca/tools/doca_caps --list-rep-devs

Info

This command is available only on the Arm side.

Info

Printing the representor list of a specific DOCA device can be
done using the --pci-addr flag.

/opt/mellanox/doca/tools/doca_caps --list-rep-devs
PCI: 0000:03:00.0
representor-PCI: 0000:3b:00.0
pci_func_type PF
hotplug no
vuid MT2308XZ0BN0MLNXS0D0F0
representor-PCI: 0000:3b:00.0
pci_func_type SF
hotplug no
vuid MT2308XZ0BN0ECMLNXS0D0F0SF32800

DOCA Documentation v2.7.0 572

To print all the supported DOCA libraries by the OS and their availability status, run:

Example output:

PCI: 0000:03:00.1
representor-PCI: 0000:3b:00.1
pci_func_type PF
hotplug no
vuid MT2308XZ0BN0MLNXS0D0F1
representor-PCI: 0000:3b:00.1
pci_func_type SF
hotplug no
vuid MT2308XZ0BN0ECMLNXS0D0F1SF32800
PCI: 0000:03:00.0
PCI: 0000:03:00.1

/opt/mellanox/doca/tools/doca_caps --list-libs

Info

Different OSs may support different DOCA libraries.

/opt/mellanox/doca/tools/doca_caps --list-libs
common installed
aes_gcm installed
apsh installed
argp installed
cc installed
comm_channel installed
compress installed
dma installed
dpa installed

DOCA Documentation v2.7.0 573

To print all the capabilities for all the available libraries, that have capabilities, for
every DOCA device, run:

Example output:

dpdk_bridge installed
erasure_coding installed
eth installed
ipsec installed
flow installed
flow_ct installed
pcc installed
rdma installed
sha installed
telemetry installed

/opt/mellanox/doca/tools/doca_caps

Info

Printing the capabilities of one specific DOCA device can be
done using the --pci-addr flag.

Info

Printing the capabilities of one specific DOCA library can be
done using the --lib flag.

/opt/mellanox/doca/tools/doca_caps
PCI: 0000:03:00.0

DOCA Documentation v2.7.0 574

common
mmap_export_pci supported
mmap_create_from_export_pci supported
hotplug_manager unsupported
rep_filter_all supported
rep_filter_net supported
rep_filter_emulated unsupported
aes_gcm
task_encrypt supported
task_encrypt_get_max_iv_len 12
task_encrypt_tag_96 supported
task_encrypt_tag_128 supported
task_encrypt_128b_key supported
task_encrypt_256b_key supported
task_encrypt_max_buf_size 2097152
task_encrypt_max_list_buf_num_elem 128
task_decrypt supported
task_decrypt_get_max_iv_len 12
task_decrypt_tag_96 supported
task_decrypt_tag_128 supported
task_decrypt_128b_key supported
task_decrypt_256b_key supported
task_decrypt_max_buf_size 2097152
task_decrypt_max_list_buf_num_elem 128
max_num_tasks 65536
cc
server supported
client supported
max_name_len 120
max_msg_size 4080
max_recv_queue_size 8192
max_send_tasks 8192
max_clients 512
consumer supported
consumer_max_num_tasks 65536
consumer_max_buf_size 2097152

DOCA Documentation v2.7.0 575

producer supported
producer_max_num_tasks 65536
producer_max_buf_size 2097152
comm_channel
max_service_name_len 120
max_message_size 4080
max_send_queue_size 8192
max_recv_queue_size 8192
service_max_num_connections 512
compress
task_compress_deflate unsupported
task_compress_deflate_get_max_buf_size 0
task_compress_deflate_get_max_buf_list_len 0
task_decompress_deflate supported
task_decompress_deflate_get_max_buf_size 2097152
task_decompress_deflate_get_max_buf_list_len 128
task_decompress_lz4 supported
task_decompress_lz4_get_max_buf_size 2097152
task_decompress_lz4_get_max_buf_list_len 128
max_num_tasks 65536
dma
task_memcpy supported
max_buf_size 2097152
max_buf_list_len 64
max_num_tasks 65536
dpa
dpa supported
max_threads_per_kernel 128
kernel_max_run_time 12
erasure_coding
task_galois_mul supported
task_create supported
task_update supported
task_recover supported
max_block_size 1048576
max_buf_list_len 128

DOCA Documentation v2.7.0 576

eth
rxq_cyclic_cpu unsupported
rxq_cyclic_gpu supported
rxq_managed_mempool_cpu unsupported
rxq_managed_mempool_gpu supported
rxq_regular_cpu unsupported
rxq_regular_gpu supported
rxq_max_recv_buf_list_len 32
rxq_max_packet_size 16384
rxq_max_burst_size 32768
txq_regular_cpu unsupported
txq_regular_gpu supported
txq_max_send_buf_list_len 48
txq_max_lso_header_size 256
txq_txq_max_lso_msg_size 262144
txq_l3_chksum_offload supported
txq_l4_chksum_offload supported
txq_wait_on_time_type unsupported
flow_ct
flow_ct supported
ipsec
task_sa_create supported
task_sa_destroy supported
nvrd_transport
task_write supported
rc_max_src_buf_list_len 0
dc_max_src_buf_list_len 0
pcc
pcc unsupported
pcc_np unsupported
min_num_threads 0
max_num_threads 0
rdma
task_send supported
task_send_imm supported
task_read supported

DOCA Documentation v2.7.0 577

task_write supported
task_write_imm supported
task_atomic_cmp_swp supported
task_atomic_fetch_add supported
task_receive supported
rc_transport_type supported
dc_transport_type unsupported
rc_task_receive_get_max_dst_buf_list_len 31
dc_task_receive_get_max_dst_buf_list_len 0
task_remote_net_sync_event_get supported
task_remote_net_sync_event_notify_set supported
task_remote_net_sync_event_notify_add supported
max_send_queue_size 32768
max_recv_queue_size 32768
max_send_buf_list_len 13
max_message_size 1073741824
sha
sha1 unsupported
sha256 unsupported
sha512 unsupported
sha1_partial unsupported
sha256_partial unsupported
sha512_partial unsupported
max_list_num_elem 0
max_src_buf_size 0
sha1_min_dst_buf_size 0
sha256_min_dst_buf_size 0
sha512_min_dst_buf_size 0
sha1_partial_hash_block_size 0
sha256_partial_hash_block_size 0
sha512_partial_hash_block_size 0
PCI: 0000:03:00.1
common
mmap_export_pci supported
mmap_create_from_export_pci supported
hotplug_manager unsupported

DOCA Documentation v2.7.0 578

rep_filter_all supported
rep_filter_net supported
rep_filter_emulated unsupported
aes_gcm
task_encrypt supported
task_encrypt_get_max_iv_len 12
task_encrypt_tag_96 supported
task_encrypt_tag_128 supported
task_encrypt_128b_key supported
task_encrypt_256b_key supported
task_encrypt_max_buf_size 2097152
task_encrypt_max_list_buf_num_elem 128
task_decrypt supported
task_decrypt_get_max_iv_len 12
task_decrypt_tag_96 supported
task_decrypt_tag_128 supported
task_decrypt_128b_key supported
task_decrypt_256b_key supported
task_decrypt_max_buf_size 2097152
task_decrypt_max_list_buf_num_elem 128
max_num_tasks 65536
cc
server supported
client supported
max_name_len 120
max_msg_size 4080
max_recv_queue_size 8192
max_send_tasks 8192
max_clients 512
consumer supported
consumer_max_num_tasks 65536
consumer_max_buf_size 2097152
producer supported
producer_max_num_tasks 65536
producer_max_buf_size 2097152
comm_channel

DOCA Documentation v2.7.0 579

max_service_name_len 120
max_message_size 4080
max_send_queue_size 8192
max_recv_queue_size 8192
service_max_num_connections 512
compress
task_compress_deflate unsupported
task_compress_deflate_get_max_buf_size 0
task_compress_deflate_get_max_buf_list_len 0
task_decompress_deflate supported
task_decompress_deflate_get_max_buf_size 2097152
task_decompress_deflate_get_max_buf_list_len 128
task_decompress_lz4 supported
task_decompress_lz4_get_max_buf_size 2097152
task_decompress_lz4_get_max_buf_list_len 128
max_num_tasks 65536
dma
task_memcpy supported
max_buf_size 2097152
max_buf_list_len 64
max_num_tasks 65536
dpa
dpa supported
max_threads_per_kernel 128
kernel_max_run_time 12
erasure_coding
task_galois_mul supported
task_create supported
task_update supported
task_recover supported
max_block_size 1048576
max_buf_list_len 128
eth
rxq_cyclic_cpu unsupported
rxq_cyclic_gpu supported
rxq_managed_mempool_cpu unsupported

DOCA Documentation v2.7.0 580

rxq_managed_mempool_gpu supported
rxq_regular_cpu unsupported
rxq_regular_gpu supported
rxq_max_recv_buf_list_len 32
rxq_max_packet_size 16384
rxq_max_burst_size 32768
txq_regular_cpu unsupported
txq_regular_gpu supported
txq_max_send_buf_list_len 48
txq_max_lso_header_size 256
txq_txq_max_lso_msg_size 262144
txq_l3_chksum_offload supported
txq_l4_chksum_offload supported
txq_wait_on_time_type unsupported
flow_ct
flow_ct supported
ipsec
task_sa_create supported
task_sa_destroy supported
nvrd_transport
task_write supported
rc_max_src_buf_list_len 0
dc_max_src_buf_list_len 0
pcc
pcc unsupported
pcc_np unsupported
min_num_threads 0
max_num_threads 0
rdma
task_send supported
task_send_imm supported
task_read supported
task_write supported
task_write_imm supported
task_atomic_cmp_swp supported
task_atomic_fetch_add supported

DOCA Documentation v2.7.0 581

task_receive supported
rc_transport_type supported
dc_transport_type unsupported
rc_task_receive_get_max_dst_buf_list_len 31
dc_task_receive_get_max_dst_buf_list_len 0
task_remote_net_sync_event_get supported
task_remote_net_sync_event_notify_set supported
task_remote_net_sync_event_notify_add supported
max_send_queue_size 32768
max_recv_queue_size 32768
max_send_buf_list_len 13
max_message_size 1073741824
sha
sha1 unsupported
sha256 unsupported
sha512 unsupported
sha1_partial unsupported
sha256_partial unsupported
sha512_partial unsupported
max_list_num_elem 0
max_src_buf_size 0
sha1_min_dst_buf_size 0
sha256_min_dst_buf_size 0
sha512_min_dst_buf_size 0
sha1_partial_hash_block_size 0
sha256_partial_hash_block_size 0
sha512_partial_hash_block_size 0
PCI: 0000:03:00.0
common
mmap_export_pci supported
mmap_create_from_export_pci supported
hotplug_manager unsupported
rep_filter_all unsupported
rep_filter_net unsupported
rep_filter_emulated unsupported
aes_gcm

DOCA Documentation v2.7.0 582

task_encrypt supported
task_encrypt_get_max_iv_len 12
task_encrypt_tag_96 supported
task_encrypt_tag_128 supported
task_encrypt_128b_key supported
task_encrypt_256b_key supported
task_encrypt_max_buf_size 2097152
task_encrypt_max_list_buf_num_elem 128
task_decrypt supported
task_decrypt_get_max_iv_len 12
task_decrypt_tag_96 supported
task_decrypt_tag_128 supported
task_decrypt_128b_key supported
task_decrypt_256b_key supported
task_decrypt_max_buf_size 2097152
task_decrypt_max_list_buf_num_elem 128
max_num_tasks 65536
cc
server unsupported
client supported
max_name_len 120
max_msg_size 4080
max_recv_queue_size 8192
max_send_tasks 8192
max_clients 0
consumer supported
consumer_max_num_tasks 65536
consumer_max_buf_size 2097152
producer supported
producer_max_num_tasks 65536
producer_max_buf_size 2097152
comm_channel
max_service_name_len 120
max_message_size 4080
max_send_queue_size 8192
max_recv_queue_size 8192

DOCA Documentation v2.7.0 583

service_max_num_connections 0
compress
task_compress_deflate unsupported
task_compress_deflate_get_max_buf_size 0
task_compress_deflate_get_max_buf_list_len 0
task_decompress_deflate supported
task_decompress_deflate_get_max_buf_size 2097152
task_decompress_deflate_get_max_buf_list_len 128
task_decompress_lz4 supported
task_decompress_lz4_get_max_buf_size 2097152
task_decompress_lz4_get_max_buf_list_len 128
max_num_tasks 65536
dma
task_memcpy supported
max_buf_size 2097152
max_buf_list_len 64
max_num_tasks 65536
dpa
dpa supported
max_threads_per_kernel 128
kernel_max_run_time 12
erasure_coding
task_galois_mul supported
task_create supported
task_update supported
task_recover supported
max_block_size 1048576
max_buf_list_len 128
eth
rxq_cyclic_cpu supported
rxq_cyclic_gpu supported
rxq_managed_mempool_cpu supported
rxq_managed_mempool_gpu supported
rxq_regular_cpu supported
rxq_regular_gpu supported
rxq_max_recv_buf_list_len 32

DOCA Documentation v2.7.0 584

rxq_max_packet_size 16384
rxq_max_burst_size 32768
txq_regular_cpu supported
txq_regular_gpu supported
txq_max_send_buf_list_len 48
txq_max_lso_header_size 256
txq_txq_max_lso_msg_size 262144
txq_l3_chksum_offload supported
txq_l4_chksum_offload supported
txq_wait_on_time_type unsupported
flow_ct
flow_ct unsupported
ipsec
task_sa_create unsupported
task_sa_destroy unsupported
nvrd_transport
task_write supported
rc_max_src_buf_list_len 0
dc_max_src_buf_list_len 0
pcc
pcc unsupported
pcc_np unsupported
min_num_threads 0
max_num_threads 0
rdma
task_send supported
task_send_imm supported
task_read supported
task_write supported
task_write_imm supported
task_atomic_cmp_swp supported
task_atomic_fetch_add supported
task_receive supported
rc_transport_type supported
dc_transport_type unsupported
rc_task_receive_get_max_dst_buf_list_len 31

DOCA Documentation v2.7.0 585

dc_task_receive_get_max_dst_buf_list_len 0
task_remote_net_sync_event_get supported
task_remote_net_sync_event_notify_set supported
task_remote_net_sync_event_notify_add supported
max_send_queue_size 32768
max_recv_queue_size 32768
max_send_buf_list_len 13
max_message_size 1073741824
sha
sha1 unsupported
sha256 unsupported
sha512 unsupported
sha1_partial unsupported
sha256_partial unsupported
sha512_partial unsupported
max_list_num_elem 0
max_src_buf_size 0
sha1_min_dst_buf_size 0
sha256_min_dst_buf_size 0
sha512_min_dst_buf_size 0
sha1_partial_hash_block_size 0
sha256_partial_hash_block_size 0
sha512_partial_hash_block_size 0
PCI: 0000:03:00.1
common
mmap_export_pci supported
mmap_create_from_export_pci supported
hotplug_manager unsupported
rep_filter_all unsupported
rep_filter_net unsupported
rep_filter_emulated unsupported
aes_gcm
task_encrypt supported
task_encrypt_get_max_iv_len 12
task_encrypt_tag_96 supported
task_encrypt_tag_128 supported

DOCA Documentation v2.7.0 586

task_encrypt_128b_key supported
task_encrypt_256b_key supported
task_encrypt_max_buf_size 2097152
task_encrypt_max_list_buf_num_elem 128
task_decrypt supported
task_decrypt_get_max_iv_len 12
task_decrypt_tag_96 supported
task_decrypt_tag_128 supported
task_decrypt_128b_key supported
task_decrypt_256b_key supported
task_decrypt_max_buf_size 2097152
task_decrypt_max_list_buf_num_elem 128
max_num_tasks 65536
cc
server unsupported
client supported
max_name_len 120
max_msg_size 4080
max_recv_queue_size 8192
max_send_tasks 8192
max_clients 0
consumer supported
consumer_max_num_tasks 65536
consumer_max_buf_size 2097152
producer supported
producer_max_num_tasks 65536
producer_max_buf_size 2097152
comm_channel
max_service_name_len 120
max_message_size 4080
max_send_queue_size 8192
max_recv_queue_size 8192
service_max_num_connections 0
compress
task_compress_deflate unsupported
task_compress_deflate_get_max_buf_size 0

DOCA Documentation v2.7.0 587

task_compress_deflate_get_max_buf_list_len 0
task_decompress_deflate supported
task_decompress_deflate_get_max_buf_size 2097152
task_decompress_deflate_get_max_buf_list_len 128
task_decompress_lz4 supported
task_decompress_lz4_get_max_buf_size 2097152
task_decompress_lz4_get_max_buf_list_len 128
max_num_tasks 65536
dma
task_memcpy supported
max_buf_size 2097152
max_buf_list_len 64
max_num_tasks 65536
dpa
dpa supported
max_threads_per_kernel 128
kernel_max_run_time 12
erasure_coding
task_galois_mul supported
task_create supported
task_update supported
task_recover supported
max_block_size 1048576
max_buf_list_len 128
eth
rxq_cyclic_cpu supported
rxq_cyclic_gpu supported
rxq_managed_mempool_cpu supported
rxq_managed_mempool_gpu supported
rxq_regular_cpu supported
rxq_regular_gpu supported
rxq_max_recv_buf_list_len 32
rxq_max_packet_size 16384
rxq_max_burst_size 32768
txq_regular_cpu supported
txq_regular_gpu supported

DOCA Documentation v2.7.0 588

txq_max_send_buf_list_len 48
txq_max_lso_header_size 256
txq_txq_max_lso_msg_size 262144
txq_l3_chksum_offload supported
txq_l4_chksum_offload supported
txq_wait_on_time_type unsupported
flow_ct
flow_ct unsupported
ipsec
task_sa_create unsupported
task_sa_destroy unsupported
nvrd_transport
task_write supported
rc_max_src_buf_list_len 0
dc_max_src_buf_list_len 0
pcc
pcc unsupported
pcc_np unsupported
min_num_threads 0
max_num_threads 0
rdma
task_send supported
task_send_imm supported
task_read supported
task_write supported
task_write_imm supported
task_atomic_cmp_swp supported
task_atomic_fetch_add supported
task_receive supported
rc_transport_type supported
dc_transport_type unsupported
rc_task_receive_get_max_dst_buf_list_len 31
dc_task_receive_get_max_dst_buf_list_len 0
task_remote_net_sync_event_get supported
task_remote_net_sync_event_notify_set supported
task_remote_net_sync_event_notify_add supported

DOCA Documentation v2.7.0 589

NVIDIA DOCA Comm Channel Admin
Tool
This document provides instructions on the usage of the DOCA Comm Channel Admin
Tool.

Introduction

The Comm Channel Admin Tool is used to print a snapshot of DOCA Comch (comm
channel) connections:

On the BlueField Arm side, it includes DOCA Comch servers and their current
connection information

max_send_queue_size 32768
max_recv_queue_size 32768
max_send_buf_list_len 13
max_message_size 1073741824
sha
sha1 unsupported
sha256 unsupported
sha512 unsupported
sha1_partial unsupported
sha256_partial unsupported
sha512_partial unsupported
max_list_num_elem 0
max_src_buf_size 0
sha1_min_dst_buf_size 0
sha256_min_dst_buf_size 0
sha512_min_dst_buf_size 0
sha1_partial_hash_block_size 0
sha256_partial_hash_block_size 0
sha512_partial_hash_block_size 0

https://docs.nvidia.com//doca/sdk/DOCA+Comch%C2%A0%E2%80%93+New

DOCA Documentation v2.7.0 590

On the host side, it includes all active client connections and the server they are
connected to

Only client-to-server control channels are reported; fast path producer/consumer
channels are not.

Prerequisites

The Comm Channel Admin Tool is for Linux only and requires an up-to-date BFB bundle
or DOCA host packages of at least 2.7, which include in the Resource dump binary.

Description and Execution

The Comm Channel Admin Tool can be executed on the host or Arm CPUs. By default, the
tool scans all available PCIe slots to detect supported DOCA devices and reports any
Comch information available.

The tool can be run on BlueField Arm or x86 host using the following command:

Sample Output from BlueField Arm

On the BlueField Arm side, any active DOCA Comch servers are be reported:

/opt/mellanox/doca/tools/doca_comm_channel_admin

DOCA Documentation v2.7.0 591

The following information is available:

Server Name – the name assigned to the server

PID – the Linux process ID of the application which created the server

Connections – the number of connections active on the server out of the total
allowed (e.g., 2/512 means 2 active connections of a maximum of 512)

PCIe – the PCIe address of the device which the server has been detected on

Interface Name – the interface name associated with the PCIe address

Sample Output from x86

The x86 host cannot run DOCA Comch servers. Therefore, individual client connections
are reported:

Note

Connections may also be displayed on the BlueField Arm like on x86.
This occurs if SF ports are detected here. The interface name
associated with the PCIe address indicates the SF port.

DOCA Documentation v2.7.0 592

The following information is available:

Server Name – the name of the BlueField Arm server that a client has connected to

PID – the Linux process ID of the application running a DOCA Comch client

PCIe – the PCIe address of the BlueField networking platform which the destination
server is running on

Interface Name – the interface name associated with the PCIe address

NVIDIA DPA Tools

DOCA Documentation v2.7.0 593

Introduction

DPA tools are a set of executables that enable the DPA application developer and the
system administrator to manage and monitor DPA resources and to debug DPA
applications.

DPA Tools

DPACC Compiler

CLI name: dpacc

DPACC is a high-level compiler for the DPA processor. It compiles code targeted for the
DPA processor into an executable and generates a DPA program.

The DPA program is a host library with interfaces encapsulating the DPA executable. This
DPA program can be linked with the host application to generate a host executable
where the DPA code is invoked through the FlexIO runtime API.

DPA EU Management Tool

CLI name: dpaeumgmt

This tool allows users to manage the DPA's EUs which are the basic resource of the DPA.
The tool enables the resource control of EUs to optimize the usage of computation
resources of the DPA. Using this tool, users may query, create, and destroy EU partitions
and groups , thus ensuring proper EU allocation between devices.

FlexIO Build

CLI name: build_flexio_device.sh

The FlexIO Build tool is used to build and compile FlexIO device code into a static library.

It is designed to generate a host library that encapsulating DPA execution. This tool relies
on DPACC.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+Execution+Unit+Management+Tool

DOCA Documentation v2.7.0 594

DPA GDB Server Tool

CLI name: dpa-gdbserver

The DPA GDB Server tool enables debugging FlexIO DEV programs.

DPA PS Tool

CLI name: dpa-ps

This tool allows users to monitor running DPA processes and threads.

DPA Statistic Tool

CLI name: dpa-statistics

This tool allows users to monitor and obtain statistics on thread execution per running
DPA process and thread.

NVIDIA DOCA PCC Counter Tool
This document provides instruction on the usage of the PCC Counter tool.

Introduction

The PCC Counter tool is used to print PCC-related hardware counters. The output
counters help debug the PCC user algorithm embedded in the DOCA PCC application.

Prerequisites

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+PS+Tool
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+Statistics+Tool

DOCA Documentation v2.7.0 595

DOCA 2.2.0 and higher.

Description

If NVIDIA® BlueField®-3 is operating in DPU mode, the script must be executed on the
Arm side. If BlueField-3 is operating in NIC mode, the script must be executed on the host
side.

The following performance counters are supported for PCC:

MAD_RTT_PERF_CONT_REQ – the number of RTT requests received in total

MAD_RTT_PERF_CONT_RES – the number of RTT responses received in total

SX_EVENT_WRED_DROP – the number of TX events dropped due to the CC event queue
being full

SX_RTT_EVENT_WRED_DROP – the number of "TX event with RTT request sent indication"
dropped due to the CC event queue being full

ACK_EVENT_WRED_DROP – the number of Ack events dropped due to the CC event
queue being full

NACK_EVENT_WRED_DROP – the number of Nack events dropped due to the CC event
queue being full

CNP_EVENT_WRED_DROP – the number of CNP events dropped due to the CC event
queue being full

RTT_EVENT_WRED_DROP – the number of RTT events dropped due to the CC event
queue being full

Info

Refer to NVIDIA BlueField Modes of Operation for more information
on the DPU's modes of operation.

file:///doca/sdk/NVIDIA+BlueField+Modes+of+Operation

DOCA Documentation v2.7.0 596

HANDLED_SXW_EVENTS – the number of handled CC events related to SXW

HANDLED_RXT_EVENTS – the number of handled CC events related to RXT

DROP_RTT_PORT0_REQ – the number of RTT requests dropped in total from port 0

DROP_RTT_PORT1_REQ – the number of RTT requests dropped in total from port 1

DROP_RTT_PORT0_RES – the number of RTT responses dropped in total from port 0

DROP_RTT_PORT1_RES – the number of RTT responses dropped in total from port 1

RTT_GEN_PORT0_REQ – the number of RTT requests sent in total from port 0

RTT_GEN_PORT1_REQ – the number of RTT requests sent in total from port 1

RTT_GEN_PORT0_RES – the number of RTT responses sent in total from port 0

RTT_GEN_PORT1_RES – the number of RTT responses sent in total from port 1

PCC_CNP_COUNT – the number of CNP received in total, regardless of whether it is
handled or ignored

Execution

To use the PCC Counter:

1. Initialize all supported hardware counters. Run:

2. Query all supported hardware counters. Run:

sudo ./pcc_counters.sh set /dev/mst/mt41692_pciconf0

Info

Counters are zeroed after each set command.

DOCA Documentation v2.7.0 597

Example output:

sudo ./pcc_counters.sh query /dev/mst/mt41692_pciconf0

Info

The output counters are counted from the time the set

command is executed to the time when the query command is
issued.

sudo ./pcc_counters.sh query /dev/mst/mt41692_pciconf0
-----------------PCC Counters-----------------
Counter: MAD_RTT_PERF_CONT_REQ Value: 000000000028b85b
Counter: MAD_RTT_PERF_CONT_RES Value: 000000000028b85a
Counter: SX_EVENT_WRED_DROP Value: 0000000000000000
Counter: SX_RTT_EVENT_WRED_DROP Value: 0000000000000000
Counter: ACK_EVENT_WRED_DROP Value: 0000000000ccdf4f
Counter: NACK_EVENT_WRED_DROP Value: 0000000000000000
Counter: CNP_EVENT_WRED_DROP Value: 0000000000000000
Counter: RTT_EVENT_WRED_DROP Value: 0000000000000000
Counter: HANDLED_SXW_EVENTS Value: 000000000932543a
Counter: HANDLED_RXT_EVENTS Value: 000000000028b85c
Counter: DROP_RTT_PORT0_REQ Value: 0000000000000000
Counter: DROP_RTT_PORT1_REQ Value: 0000000000000000
Counter: DROP_RTT_PORT0_RES Value: 0000000000000000
Counter: DROP_RTT_PORT1_RES Value: 0000000000000000
Counter: RTT_GEN_PORT0_REQ Value: 0000000000000000
Counter: RTT_GEN_PORT1_REQ Value: 000000000028b85c
Counter: RTT_GEN_PORT0_RES Value: 0000000000000000
Counter: RTT_GEN_PORT1_RES Value: 000000000028b85d
Counter: PCC_CNP_COUNT Value: 0000000000000000

DOCA Documentation v2.7.0 598

NVIDIA DOCA Socket Relay
This document describes DOCA Socket Relay architecture, usage, etc.

Introduction

DOCA Socket Relay allows Unix Domain Socket (AF_UNIX family) server applications to be
offloaded to the DPU while communication between the two sides is proxied by DOCA
Comm Channel.

Socket relay only supports SOCK_STREAM communication with a limit of 512 AF_UNIX
application clients.

The tool is coupled to the client AF_UNIX server application. That is, a socket relay
instance should be initiated per AF_UNIX server application.

https://docs.nvidia.com//doca/sdk/DOCA+Comm+Channel+%E2%80%93%C2%A0Deprecated
https://docs.nvidia.com//doca/sdk/DOCA+Comm+Channel+%E2%80%93%C2%A0Deprecated

DOCA Documentation v2.7.0 599

Socket relay is transparent to the application except for the following TCP flows:

Connection termination must be done by the host side application only

Once a FIN packet (shutdown system call has been made) is sent by the host side
application, data cannot be transferred between the DPU and the host, and the
connection must be closed.

The following details the communication flow between the client and server:

The AF_UNIX client application connects to the socket relay AF_UNIX server in the
same way as in the original flow

DOCA Documentation v2.7.0 600

The AF_UNIX client application sends SOCK_STREAM packets

The socket relay (host) AF_UNIX server receives the client application packets, and
the Comm Channel client sends them on the channel

The socket relay (DPU) Comm Channel server receives the client application packets
and the AF_UNIX client sends them to the user's AF_UNIX server application

Prerequisites

Windows 10 build 17063 is the minimal Windows version to run DOCA Socket Relay on a
Windows host.

Dependencies

NVIDIA® BlueField®-2 firmware version 24.35.1012 or higher.

Execution

To execute DOCA Socket Relay:

Usage: doca_socket_relay [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-s, --socket Unix domain socket path, host side will bind to and DPU connect to
-n, --cc-name Comm Channel service name
-p, --pci-addr DOCA Comm Channel device PCI address

DOCA Documentation v2.7.0 601

For example (DPU side):

To run doca_socket_relay using a JSON file:

For example:

Arg Parser DOCA Flags

Refer to the DOCA Arg Parser for more information.

Flag
Typ
e

Sh
ort
Fla
g

Long
Flag/
JSON
Key

Description
JSON
Content

Gen
eral
flag
s

h help Prints a help synopsis N/A

v
versio
n Prints program version information N/A

-r, --rep-pci DOCA Comm Channel device representor PCI address (needed only on
DPU)

doca_socket_relay -s /tmp/sr_server.socket -n cc_channel -p 03:00.0 -r b1:00.0

doca_socket_relay --json [json_file]

doca_socket_relay --json /tmp/doca_socket_relay.json

https://docs.nvidia.com//doca/sdk/DOCA+Arg+Parser

DOCA Documentation v2.7.0 602

Flag
Typ
e

Sh
ort
Fla
g

Long
Flag/
JSON
Key

Description
JSON
Content

l
log-
level

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with TRACE log
level support)

N/
A

sdk-
log-
level

SDK log events are currently unsupported for this tool N/A

j json Parse all command flags from an input JSON file N/A

Pro
gra
m
flag
s

s
socke
t

AF_UNIX (SOCK_STREAM) path. On the host, this is the path
of the socket relay AF_UNIX server for the client's
application to connect to. On the DPU, this is the path of
the client AF_UNIX server application.

n
cc-
name

Comm Channel service name

"log-

level":
60

Note
This flag is mandatory.

"socket"

:
"/tmp/u
ds-
server.s
ocket"

Note
This flag is mandatory.

"cc-

name":
sr_cha
nnel

DOCA Documentation v2.7.0 603

Flag
Typ
e

Sh
ort
Fla
g

Long
Flag/
JSON
Key

Description
JSON
Content

p
pci-
addr

DOCA Comm Channel device PCIe address

r
rep-
pci

DOCA Comm Channel device representor PCIe address

Note
This flag is mandatory.

"pci-

addr":
b1:00.1

Note
This flag is available and mandatory
only on the DPU.

"rep-

pci":
b1:02.2

DOCA Documentation v2.7.0 604

DOCA Services
This is an overview of the set of services provided by DOCA and their purpose.

Introduction

DOCA services are DOCA-based products, wrapped in a container for fast and easy
deployment on top of the NVIDIA® BlueField® DPU. DOCA services leverage DPU
capabilities to offer telemetry, time synchronization, networking solutions, and more.

Services containers can be found under the official NGC catalog, labeled under the
"DOCA" and "DPU" NGC labels, as well as the built-in NVIDIA platform option ("DOCA") on
the container catalog.

For information on the deployment of the services, refer to the NVIDIA BlueField
Container Deployment Guide.

Development Lifecycle

DOCA-based containers consist of two main categories:

DOCA Base Images – containerized DOCA environments for both runtime and
development. Used either by developers for their development environment or in
the process of containerizing a DOCA-based solution.

DOCA Services – containerized DOCA-based products

The process of developing and containerizing a DOCA-based product is described in the
following sections.

Development

Before containerizing a product, users must first design and develop it using the same
process for a bare-metal deployment on the BlueField DPU.

This process consists of the steps:

https://catalog.ngc.nvidia.com/
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide

DOCA Documentation v2.7.0 605

1. Identifying the requirements for the DOCA-based solution.

2. Reviewing the feature set offered by the DOCA SDK libraries, as shown in detail in
their respective programming guides.

3. Starting the development process by following our Developer Guide to make the
best use of our provided tips and tools.

4. Testing the developed solution.

Once the developed product is mature enough, it is time to start containerizing it.

Containerization

In this process, it is recommended to make use of DOCA's provided base-images, as
available on DOCA's NGC page.

Three image flavors are provided:

base-rt – includes the DOCA runtime, using the most basic runtime environment
required by DOCA's SDK

full-rt – builds on the previous image and includes the full list of runtime packages,
which are all user-mode components that can be found under the doca-runtime
package

devel – builds on the previous image and adds headers and development tools for
developing and debugging DOCA applications. This image is particularly useful for
multi-stage builds.

All images are preconfigured to use to the DOCA repository of the matching DOCA
version. This means that installing an additional DOCA package as part of a Dockerfile /
within the development container can be done using the following commands:

apt update
apt install <package name>

https://docs.nvidia.com//doca/sdk/DOCA+Programming+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Developer+Guide
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca

DOCA Documentation v2.7.0 606

For DOCA and CUDA environments, there are similar flavors for these images combined
with CUDA's images:

base-rt (DOCA) + base (CUDA)

full-rt (DOCA) + runtime (CUDA)

devel (DOCA) + devel (CUDA)

Once the containerized solution is mature enough, users may start profiling it in
preparation for a production-grade deployment.

Profiling

As mentioned in the NVIDIA BlueField Container Deployment Guide, the current
deployment model of containers on top of the DPU is based on kubelet-standalone. And
more specifically, this Kubernetes-based deployment makes use of YAML files to describe
the resources required by the pod such as:

CPU

RAM

Huge pages

It is recommended to profile your product so as to estimate the resources it requires
(under regular deployments, as well as under stress testing) so that the YAML would
contain an accurate "resources" section. This allows an administrator to better

Note

DOCA provides base images for both the DPU and the Host. For host-
related DOCA base images, please refer to the image tag suffixed
with "-host".

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuda
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide

DOCA Documentation v2.7.0 607

understand what the requirements are for deploying your service, as well as allow the
k8s infrastructure to ensure that the service is not misbehaving once deployed.

Once done, the containerized DOCA-based product is ready for the final testing rounds,
after which it will be ready for deployment in production environments.

Services

Container Deployment

This page provides an overview and deployment configuration of DOCA containers for
NVIDIA® BlueField® DPU.

DOCA BlueMan

DOCA BlueMan service runs in the DPU as a standalone web dashboard and consolidates
all the basic information, health, and telemetry counters into a single interface. This
friendly, easy-to-use web dashboard acts as a one-stop shop for all the information
needed to monitor the DPU.

DOCA Firefly

DOCA Firefly service provides precision time protocol (PTP) based time syncing services to
the BlueField DPU . PTP is used to synchronize clocks in a network which, when used in
conjunction with hardware support, PTP is capable of sub-microsecond accuracy, which is
far better than what is normally obtainable with network time protocol (NTP).

DOCA Flow Inspector

DOCA Flow Inspector service allows monitoring real-time data and extraction of telemetry
components which can be utilized by various services for security, big data and more.

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide

DOCA Documentation v2.7.0 608

Specific mirrored packets can be transferred to Flow Inspector for parsing and analyzing.
These packets are forwarded to DTS, which gathers predefined statistics determined by
various telemetry providers.

DOCA HBN

DOCA Host-Based Networking service orchestrates network connectivity of dynamically
created VMs/containers on cloud servers. HBN service is a BGP router that supports
EVPN extension to enable multi-tenant clouds.

At its core, HBN is the Linux networking acceleration driver of the DPU, Netlink-to-DOCA
daemon which seamlessly accelerates Linux networking using DOCA hardware
programming APIs.

DOCA Management Service

DOCA Management Service (DMS) is a one-stop shop for the user to configure and
operate NVIDIA BlueField Networking Platforms and NVIDIA ConnectX Adapters (NICs).
DMS governs all scripts/tools of NVIDIA with an easy open API created by the OpenConfig
community. The user can configure BlueField or ConnectX for any mode whether locally
(ssh) or remotely (grpc). It makes it easy to migrate and bootstrap any customer for any
NVIDIA network device.

DOCA Telemetry

DOCA Telemetry service (DTS) collects data from built-in providers and from external
telemetry applications. Collected data is stored in binary format locally on the DPU and
can be propagated onwards using Prometheus endpoint pulling, pushing to Fluent Bit, or
using other supported providers. Exporting NetFlow packets collected using the DOCA
Telemetry NetFlow API is a great example of DTS usage.

DOCA UROM

DOCA Documentation v2.7.0 609

The DOCA UROM service provides a framework for offloading significant portions of HPC
software stack directly from the host and to the BlueField networking platform.

NVIDIA BlueField Container
Deployment Guide
This guide provides an overview and deployment configuration of DOCA containers for
NVIDIA® BlueField® DPU.

Introduction

DOCA containers allow for easy deployment of ready-made DOCA environments to the
DPU, whether it is a DOCA service bundled inside a container and ready to be deployed,
or a development environment already containing the desired DOCA version.

Containerized environments enable the users to decouple DOCA programs from the
underlying BlueField software. Each container is pre-built with all needed libraries and
configurations to match the specific DOCA version of the program at hand. One only
needs to pick the desired version of the service and pull the ready-made container of that
version from NVIDIA's container catalog.

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Documentation v2.7.0 610

The different DOCA containers are listed on NGC, NVIDIA's container catalog, and can be
found under both the "DOCA" and "DPU" labels.

Prerequisites

Refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField related software

BlueField image version required is 3.9.0 and higher

Container Deployment

Deploying containers on top of the BlueField DPU requires the following setup sequence:

Note

Container deployment based on standalone Kubelet, as presented in
this guide, is currently in alpha version and is subject to change in
future releases.

https://ngc.nvidia.com/catalog
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 611

1. Pull the container .yaml configuration files.
2. Modify the container's .yaml configuration file.
3. Deploy the container. The image is automatically pulled from NGC.

Some of the steps only need to be performed once, while others are required before the
deployment of each container.

What follows is an example of the overall setup sequence using the DOCA Firefly
container as an example.

Pull Container YAML Configurations

Note

DOCA Documentation v2.7.0 612

To pull the latest resource version:

1. Pull the entire resource as a *.zip file:

2. Unzip the resource:

More information about additional versions can be found in the NGC resource page.

Container-specific Instructions

Some containers require specific configuration steps for the resources used by the
application running inside the container and modifications for the .yaml configuration file
of the container itself.

Refer to the container-specific instructions listed under the container's relevant page on
NGC.

Structure of NGC Resource

This step pulls the .yaml configurations from NGC. If you have already
performed this step for other DOCA containers you may skip to the
next section.

wget
https://api.ngc.nvidia.com/v2/resources/nvidia/doca/doca_container_configs/ver
-O doca_container_configs_2.7.0v2.zip

unzip -o doca_container_configs_2.7.0v2.zip -d doca_container_configs_2.7.0v2

DOCA Documentation v2.7.0 613

The DOCA NGC resource downloaded in section "Pull Container YAML Configurations"
contains a configs directory under which a dedicated folder per DOCA version is located.
For example, 2.0.2 will include all currently available .yaml configuration files for DOCA
2.0.2 containers.

In addition, the resource also contains a scripts directory under which services may
choose to provide additional helper-scripts and configuration files to use with their
services.

The folder structure of the scripts directory is as follows:

doca_container_configs_2.0.2v1
 configs

 1.2.0
 ...
 2.0.2
 doca_application_recognition.yaml
 doca_blueman.yaml
 doca_devel.yaml
 doca_devel_cuda.yaml
 doca_firefly.yaml
 doca_flow_inspector.yaml
 doca_hbn.yaml
 doca_ips.yaml
 doca_snap.yaml
 doca_telemetry.yaml
 doca_url_filter.yaml

+ doca_container_configs_2.0.2v1
+-+ configs
| +-- ...
+-+ scripts
+-+ doca_firefly <== Name of DOCA Service
+-+ doca_hbn <== Name of DOCA Service
| +-+ 1.3.0
| | +-- ... <== Files for the DOCA HBN version "1.3.0"

| +-+ 1.4.0

DOCA Documentation v2.7.0 614

A user wishing to deploy an older version of the DOCA service would still have access to
the suitable YAML file (per DOCA release under configs) and scripts (under the service-
specific version folder which resides under scripts).

Spawn Container

Once the desired .yaml file is updated, simply copy the configuration file to Kubelet's
input folder. Here is an example using the doca_firefly.yaml, corresponding to the DOCA
Firefly service.

Kubelet automatically pulls the container image from NGC and spawns a pod executing
the container. In this example, the DOCA Firelfy service starts executing right away and its
printouts would be seen via the container's logs.

Review Container Deployment

When deploying a new container, it is recommended to follow this procedure to ensure
successful completion of each step in the deployment:

1. View currently active pods and their IDs:

| | +-- ... <== Files for the DOCA HBN version "1.4.0"

cp doca_firefly.yaml /etc/kubelet.d

sudo crictl pods

Info

DOCA Documentation v2.7.0 615

When deploying a new container, search for a matching line in the command's
output:

2. If a matching line fails to appear, it is recommended to view Kubelet's logs to get
more information about the error:

Once the issue is resolved, proceed to the next steps.

3. Verify that the container image is successfully downloaded from NGC into the DPU's
container registry (download time may vary based on the size of the container
image):

Example output:

It may take up to 20 seconds for the pod to start.

POD ID CREATED STATE NAME NAMESPACE ATTEMPT RUNTIME
06bd84c07537e 4 seconds ago Ready doca-firefly-my-dpu default 0 (default)

sudo journalctl -u kubelet --since -5m

Info

For more troubleshooting information and tips, refer to the
matching section in our Troubleshooting Guide.

sudo crictl images

IMAGE TAG IMAGE ID SIZE
k8s.gcr.io/pause 3.2 2a060e2e7101d 251kB
nvcr.io/nvidia/doca/doca_firefly 1.1.0-doca2.0.2 134cb22f34611 87.4MB

file:///doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-doca_service_troubleshooting

DOCA Documentation v2.7.0 616

4. View currently active containers and their IDs:

Once again, find a matching line for the deployed container (boot time may vary
depending on the container's image size):

5. In case of failure, to see a line matching the container, check the list of all recent
container deployments:

It is possible that the container encountered an error during boot and exited right
away:

6. During the container's lifetime, and for a short timespan after it exits, once can view
the containers logs as were printed to the standard output:

In this case, the user can learn from the log that the wrong configuration was
passed to the container:

sudo crictl ps

CONTAINER IMAGE CREATED STATE NAME ATTEMPT POD ID POD
b505a05b7dc23 134cb22f34611 4 minutes ago Running doca-firefly 0
06bd84c07537e doca-firefly-my-dpu

sudo crictl ps -a

CONTAINER IMAGE CREATED STATE NAME ATTEMPT POD ID POD
de2361ec15b61 134cb22f34611 1 second ago Exited doca-firefly 1
4aea5f5adc91d doca-firefly-my-dpu

sudo crictl logs <container-id>

$ sudo crictl logs de2361ec15b61
Starting DOCA Firefly - Version 1.1.0
...
Requested the following PTP interface: p10
Failed to find interface "p10". Aborting

DOCA Documentation v2.7.0 617

Stop Container

The recommended way to stop a pod and its containers is as follows:

1. Delete the .yaml configuration file for Kubelet to stop the pod:

2. Stop the pod directly (only if it still shows "Ready"):

3. Once the pod stops, it may also be necessary to stop the container itself:

Troubleshooting Common Errors

This section provides a list of common errors that may be encountered when spawning a
container. These account for the vast majority of deployment errors and are easy to
verify first before trying to parse the Kubelet journal log.

Info

For additional information and guides on using crictl, refer to the
Kubernetes documentation.

rm /etc/kubelet.d/<file name>.yaml

sudo crictl stopp <pod-id>

sudo crictl stop <container-id>

Info

https://kubernetes.io/docs/tasks/debug-application-cluster/crictl/

DOCA Documentation v2.7.0 618

Yaml Syntax

The syntax of the .yaml file is extremely sensitive and minor indentation changes may
cause it to stop working. The file uses spaces (' ') for indentations (two per indent). Using
any other number of spaces causes an undefined behavior.

Huge Pages

The container only spawns once all the required system resources are allocated on the
DPU and can be reserved for the container. The most notable resource is huge pages.

1. Before deploying the container, make sure that:

1. Huge pages are allocated as required per container.

2. Both the amount and size of pages match the requirements precisely.

2. Once huge pages are allocated, it is recommended to restart the container service
to apply the change:

3. Once the above operations are completed successfully, the container could be
deployed (YAML can be copied to /etc/kubelet.d).

Advanced Troubleshooting

Manual Execution from Within Container - Debugging

If more troubleshooting is required, refer to the matching section in
the Troubleshooting Guide.

sudo systemctl restart kubelet.service
sudo systemctl restart containerd.service

file:///doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-doca_service_troubleshooting

DOCA Documentation v2.7.0 619

Although most containers define the entrypoint.sh script as the container's ENTRYPOINT,
this option is only valid for interaction-less sessions. In some debugging scenarios, it is
useful to have better control of the programs executed within the container via an
interactive shell session. Hence, the .yaml file supports an additional execution option.

Uncommenting (i.e., removing # from) the following 2 lines in the .yaml file causes the
container to boot without spawning the container's entrypoint script.

In this execution mode, users can attach a shell to the spawned container:

Once attached, users get a full shell session enabling them to execute internal programs
directly at the scope of the container.

Air-gapped Container Deployment

Container deployment on the BlueField DPU can be done in air-gapped networks and
does not require an Internet connection. As explained previously, per DOCA service
container, there are 2 required components for successful deployment:

Container image – hosted on NVIDIA's NGC catalog

Note

The deployment described in this section requires an in-depth
knowledge of the container's structure. As this structure might
change from version to version, it is only recommended to use this
deployment for debugging, and only after other debugging steps
have been attempted.

command: ["sleep"]
args: ["infinity"]

crictl exec -it <container-id> /bin/bash

DOCA Documentation v2.7.0 620

YAML file for the container

From an infrastructure perspective, one additional module is required:

k8s.gcr.io/pause container image

Pulling Container for Offline Deployment

When preparing an air-gapped environment, users must pull the required container
images in advance so they could be imported locally to the target machine:

The following example pulls DOCA Firefly 1.1.0-doca2.0.2:

Importing Container Image

After exporting the image from the container catalog, users must place the created *.tar

files on the target machine on which to deploy them. The import command is as follows:

docker pull <container-image:tag>
docker save <container-image:tag> > <name>.tar

docker pull nvcr.io/nvidia/doca/doca_firefly:1.1.0-doca2.0.2
docker save nvcr.io/nvidia/doca/doca_firefly:1.1.0-doca2.0.2 > firefly_v1.1.0.tar

Note

Some of DOCA's container images support multiple architectures,
causing the docker pull command to pull the image according to the
architecture of the machine on which it is invoked. Users may force
the operation to pull an Arm image by passing the --platform flag:

docker pull --platform=linux/arm64 <container-image:tag>

DOCA Documentation v2.7.0 621

For example, to import the firefly .tar file pulled in the previous section:

Examining the status of the operation can be done using the image inspection command:

Built-in Infrastructure Support

The DOCA image comes pre-shipped with the k8s.gcr.io/pause image:

This image is imported by default during boot as part of the automatic activation of DOCA
Telemetry Service (DTS).

In versions prior to DOCA 4.2.0, this image can be pulled and imported as follows:

Exporting the image:

ctr --namespace k8s.io image import <name>.tar

ctr --namespace k8s.io image import firefly_v1.1.0.tar

crictl images

/opt/mellanox/doca/services/infrastructure/
 docker_pause_3_2.tar
 enable_offline_containers.sh

Note

Importing the image independently of DTS can be done using the
enable_offline_container.sh script located under the same directory as the
image's *.tar file.

DOCA Documentation v2.7.0 622

Importing the image:

DOCA Services for Host

A subset of the DOCA services are available for host-based deployment as well. This is
indicated in those services' deployment and can also be identified by having container
tags on NGC with the *-host suffix.

In contrast to the managed DPU environment, the deployment of DOCA services on the
host is based on docker. This deployment can be extended further based on the user's
own container runtime solution.

Docker Deployment

DOCA services for the host are deployed directly using Docker.

1. Make sure Docker is installed on your host. Run:

If it is not installed, visit the official Install Docker Engine webpage for installation
instructions.

2. Make sure the Docker service is started. Run:

docker pull k8s.gcr.io/pause:3.2

docker save k8s.gcr.io/pause:3.2 > docker_pause_3_2.tar

ctr --namespace k8s.io image import docker_pause_3_2.tar
crictl images
IMAGE TAG IMAGE ID SIZE
k8s.gcr.io/pause 3.2 2a060e2e7101d 487kB

docker version

sudo systemctl daemon-reload

https://docs.docker.com/engine/install/

DOCA Documentation v2.7.0 623

3. Pull the container image directly from NGC (can also be done using the docker run

command):

1. Visit the NGC page of the desired container.

2. Under the "Tags" menu, select the desired tag and click the paste icon so it is
copied to the clipboard.

3. The docker pull command will be as follows:

For example:

4. Deploy the DOCA service using Docker:

1. The deployment is performed using the following command:

sudo systemctl start docker

sudo docker pull <NGC container tag here>

sudo docker pull nvcr.io/nvidia/doca/doca_firefly:1.1.0-doca2.0.2-host

Note

For DOCA services with deployments on both DPU and
host, make sure to select the tag ending with -host.

sudo docker run --privileged --net=host -v <host directory>:<container
directory> -e <env variables> -it <container tag> /entrypoint.sh

Info

DOCA Documentation v2.7.0 624

2. The specific deployment command for each DOCA service is listed in their
respective deployment guide.

NVIDIA DOCA BlueMan Service Guide
This guide provides instructions on how to use the DOCA BlueMan service on top of
NVIDIA® BlueField® DPU.

Introduction

DOCA BlueMan runs in the DPU as a standalone web dashboard and consolidates all the
basic information, health, and telemetry counters into a single interface.

All the information that BlueMan provides is gathered from the DOCA Telemetry Service
(DTS), starting from DTS version 1.11.1-doca1.5.1.

For more information, refer to Docker's official
documentation.

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

DOCA Documentation v2.7.0 625

Requirements

BlueField image version 3.9.3.1 or higher

DTS and the DOCA Privileged Executer (DPE) daemon must be up and running

Verifying DTS Status

All the information that BlueMan provides is gathered from DTS .

Verify that the state of the DTS pod is ready:

Verify that the state of the DTS container is running:

Verifying DPE Status

All the information that DTS gathers for BlueMan is from the the DPE daemon .

Verify that the DPE daemon is active:

If the daemon is inactive, activate it by starting the dpe.service:

Service Deployment

$ crictl pods --name doca-telemetry-service

$ crictl ps --name doca-telemetry-service

$ systemctl is-active dpe.service
active

$ systemctl start dpe.service

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Telemetry+Service+Guide#src-2655143587_id-.NVIDIADOCATelemetryServiceGuidev2.7.0-DOCAPrivilegedExecuter

DOCA Documentation v2.7.0 626

For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to the NVIDIA DOCA Container Deployment Guide.

DOCA Service on NGC

BlueMan is available on NGC, NVIDIA's container catalog. Service-specific configuration
steps and deployment instructions can be found under the service's container page.

Default Deployment – BlueField BSP

BlueMan service is located under /opt/mellanox/doca/services/blueman /.

The following is a list of the files under the BlueMan directory:

Enabling BlueMan Service

Using Script

Run bring_up_doca_blueman_service.sh:

Manual Procedure

1. Import images to crictl images:

doca_blueman_fe_service_<version>-doca<version>_arm64.tar
doca_blueman_conv_service_<version>-doca<version>_arm64.tar
doca_blueman_standalone.yaml
bring_up_doca_blueman_service.sh

$ chmod +x
/opt/mellanox/doca/services/blueman/bring_up_doca_blueman_service.sh
$ /opt/mellanox/doca/services/blueman/bring_up_doca_blueman_service.sh

$ cd /opt/mellanox/doca/services/blueman/

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_blueman_fe

DOCA Documentation v2.7.0 627

2. Verify that the DPE daemon is active:

If the daemon is inactive, activate it by starting the dpe.service:

3. Copy blueman_standalone.yaml to /etc/kubelet.d/:

Verifying Deployment Success

1. Verify that the DPE daemon is active:

2. Verify that the state of the DTS container is running:

3. Verify that the state of the BlueMan service container is running:

$ ctr --namespace k8s.io image import doca_blueman_fe_service_<version>-
doca<version>_arm64.tar
$ ctr --namespace k8s.io image import doca_blueman_conv_service_<version>-
doca<version>_arm64.tar

$ systemctl is-active dpe.service
active

$ systemctl start dpe.service

$ cp doca_blueman_standalone.yaml /etc/kubelet.d/

$ systemctl is-active dpe.service

$ crictl ps --name doca-telemetry-service

DOCA Documentation v2.7.0 628

Configuration

The configuration of the BlueMan back end is located under
/opt/mellanox/doca/services/telemetry/config/blueman_config.ini. Users can interact with the
blueman_config.ini file which contains the default range values of the Pass, Warning, and
Failed categories which are used in the health page. Changing these values gets reflected
in the BlueMan webpage within 60 seconds.

Example of blueman_config.ini:

Collected Data

Info

General info – OS name, kernel, part number, serial number, DOCA version,
driver, board ID, etc.

Installed packages – list of all installed packages on the DPU including their
version

CPU info – vendor, cores, model, etc.

FW info – all the mlxconfig parameters with default/current/next boot data

DPU operation mode

$ crictl ps --name doca-blueman-fe
$ crictl ps --name doca-blueman-conv

;Health Cpu usages Pass, warning, Failed
[Health:CPU_Usages:Pass]
range = 0,80

[Health:CPU_Usages:Warning]
range = 80,90

[Health:CPU_Usages:Failed]
range = 90,100

DOCA Documentation v2.7.0 629

Health

System service

Kernel modules

Dmesg

DOCA services

Port status of the PF and OOB

Core usage and processes running on each core

Memory usage

Disk usage

Temperature

Telemetry – all telemetry counters that come from DTS according to the enabled
providers displayed on tables

Users have the ability to build graphs of specific counters

Connecting to BlueMan Web Interface

To log into BlueMan, enter the IP address of the DPU's OOB interface (http://<DPU_OOB_IP>)
to a web browser located in the same network as the DPU .

The login credentials to use are the same pair used for the SSH connection to the DPU.

DOCA Documentation v2.7.0 630

Troubleshooting

For general troubleshooting, refer to the NVIDIA DOCA Troubleshooting Guide.

For container-related troubleshooting, refer to the "Troubleshooting" section in the
NVIDIA DOCA Container Deployment Guide.

The following are additional troubleshooting tips for DOCA BlueMan:

The following error message in the login page signifies a failure to connect to the
DPE daemon: "The service is currently unavailable. Please check server up and
running."

1. Restart the DPE daemon:

2. Verify that DTS is up and running by following the instructions in section
"Verifying DTS Status".

If the message "Invalid Credentials" appears in the login page, v erify that the
username and password are the same ones used to SSH to the DPU.

$ systemctl restart dpe.service

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide

DOCA Documentation v2.7.0 631

If all of the above is configured as expected and there is still some failure to log in, it
is recommended to check if there are any firewall rules that block the connection.

For other issues, check the /var/log/syslog and /var/log/doca/telemetry/blueman_service.log log
file.

NVIDIA DOCA Firefly Service Guide
This guide provides instructions on how to use the DOCA Firefly service container on top
of NVIDIA® BlueField® DPU.

Introduction

DOCA Firefly Service provides precision time protocol (PTP) based time syncing services
to the BlueField DPU .

PTP is a protocol used to synchronize clocks in a network. When used in conjunction with
hardware support, PTP is capable of sub-microsecond accuracy, which is far better than
is what is normally obtainable with network time protocol (NTP). PTP support is divided
between the kernel and user space. The ptp4l program implements the PTP boundary
clock and ordinary clock. With hardware time stamping, it is used to synchronize the PTP
hardware clock to the master clock.

DOCA Documentation v2.7.0 632

Requirements

Some of the features provided by Firefly require specific BlueField DPU hardware
capabilities:

PTP – Supported by all BlueField DPUs

PPS – Requires BlueField DPU with PPS capabilities

SyncE - Requires converged card BlueField DPUs

Failure to run PPS due to missing hardware support will be noted in the service's output.
However, the service will continue to run the timing services it can provide on the
provided hardware.

Firmware Version

DOCA Documentation v2.7.0 633

Firmware version must be 24.34.1002 or higher.

BlueField BSP Version

Supported BlueField image versions are 3.9.0 and higher.

Embedded Mode

Configuring Firmware Settings on DPU for Embedded Mode

1. Set the DPU to embedded mode (default mode):

2. Enable the real time clock (RTC):

3. Graceful shutdown and power cycle the DPU to apply the configuration.

4. You may check the DPU mode using the following command:

Ensuring OVS Hardware Offload

DOCA Firefly requires that hardware offload is activated in Open vSwitch (OVS). This is
enabled by default as part of the BFB image installed on the DPU.

To verify the hardware offload configuration in OVS:

sudo mlxconfig -y -d 03:00.0 s INTERNAL_CPU_MODEL=1

sudo mlxconfig -d 03:00.0 set REAL_TIME_CLOCK_ENABLE=1

sudo mlxconfig -d 03:00.0 q | grep INTERNAL_CPU_MODEL
Example output

 INTERNAL_CPU_MODEL EMBEDDED_CPU(1)

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-HowtoPerformGracefulShutdown

DOCA Documentation v2.7.0 634

If inactive:

1. Activate hardware offloading by running:

2. Restart the OVS service:

3. Graceful shutdown and power cycle the DPU to apply the configuration.

Helper Scripts

Firefly's deployment contains a script to help with the configuration steps required for
the network interface in embedded mode:

scripts/doca_firefly/<firefly-version>/prepare_for_embedded_mode.sh

scripts/doca_firefly/<firefly-version>/set_new_sf.sh

The latest DOCA Firefly version is 1.4.0.

Both scripts are included as part of DOCA's container resource which can be downloaded
according to the instructions in the NVIDIA DOCA Container Deployment Guide. For more
information about the structure of the DOCA container resource, refer to section
"Structure of NGC Resource" in the deployment guide.

sudo ovs-vsctl get Open_vSwitch . other_config | grep hw-offload
Example output

 {hw-offload="true"}

sudo ovs-vsctl set Open_vSwitch . other_config:hw-offload=true;

sudo /etc/init.d/openvswitch-switch restart

Note

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-HowtoPerformGracefulShutdown
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide#src-2587737676_id-.NVIDIABlueFieldContainerDeploymentGuidev2.7.0-StructureofNGCResource

DOCA Documentation v2.7.0 635

prepare_for_embedded_mode.sh

This script automates all the steps mentioned in section "Setting Up Network Interfaces
for Embedded Mode" and configures a freshly installed BFB image to the settings
required by DOCA Firefly.

Notes:

The script deletes all previous OVS settings and creates a single OVS bridge that
matches the definitions in section "Setting Up Network Interfaces for Embedded
Mode"

The script should only be run once when connecting to the DPU for the first time or
after a power cycle

The only manual step required after using this script is configuring the IP address
for the created network interface (step 5 in section "Setting Up Network Interfaces
for Embedded Mode")

Script arguments:

SF number (checks if already exists)

Examples:

Prepare OVS settings using an SF indexed 4:

The script makes use of set_new_sf.sh as a helper script.

Due to technical limitations of the NGC resource, both scripts are
provided without execute (+x) permissions. This could be resolved by
running the following command:

chmod +x scripts/doca_firefly/<firefly-version>/*.sh

chmod +x ./*.sh
./prepare_for_embedded_mode.sh 4

DOCA Documentation v2.7.0 636

set_new_sf.sh

Creates a new trusted SF and marks it as "trusted".

Script arguments:

PCIe address

SF number (checks if already exists)

MAC address (if absent, a random address is generated)

Examples:

Create SF with number "4" over port 0 of the DPU:

Create SF with number "5" over port 0 of the DPU and a specific MAC address:

Create SF with number "4" over port 1 of the DPU:

The first two examples should work out of the box for a BlueField-2 device and create SF4
and SF5 respectively.

Setting Up Network Interfaces for DPU Mode

1. Create a trusted SF to be used by the service according to the Scalable Function
Setup Guide .

./set_new_sf.sh 0000:03:00.0 4

./set_new_sf.sh 0000:03:00.0 5 aa:bb:cc:dd:ee:ff

./set_new_sf.sh 0000:03:00.1 4

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

DOCA Documentation v2.7.0 637

2. Create the required OVS setting as is shown in the architecture diagram:

3. Verify the OVS settings:

4. Enable TX timestamping on the SF interface (not the representor):

5. Enable the interface and set an IP address for it:

Note

The following instructions assume that the SF has been created
using index 4.

$ sudo ovs-vsctl add-br uplink
$ sudo ovs-vsctl add-port uplink p0
$ sudo ovs-vsctl add-port uplink en3f0pf0sf4
This port is needed to ensure we have traffic host<->network as well

$ sudo ovs-vsctl add-port uplink pf0hpf

sudo ovs-vsctl show
Bridge uplink
Port pf0hpf
Interface pf0hpf
Port en3f0pf0sf4
Interface en3f0pf0sf4
Port p0
Interface p0
Port uplink
Interface uplink
type: internal

tx port timestamp offloading

sudo ethtool --set-priv-flags enp3s0f0s4 tx_port_ts on

DOCA Documentation v2.7.0 638

6. Configure OVS to support TX timestamping over this SF and multicast traffic in
general:

configure ip for the interface:

sudo ifconfig enp3s0f0s4 <ip-addr> up

Multicast-related definitions

$ sudo ovs-vsctl set Bridge uplink mcast_snooping_enable=true

$ sudo ovs-vsctl set Bridge uplink other_config:mcast-snooping-disable-flood-
unregistered=true

$ sudo ovs-vsctl set Port p0 other_config:mcast-snooping-flood=true

$ sudo ovs-vsctl set Port p0 other_config:mcast-snooping-flood-reports=true

PTP-related definitions

$ sudo ovs-ofctl add-flow uplink
in_port=en3f0pf0sf4,udp,tp_src=319,actions=output:p0
$ sudo ovs-ofctl add-flow uplink
in_port=p0,udp,tp_src=319,actions=output:en3f0pf0sf4
$ sudo ovs-ofctl add-flow uplink
in_port=en3f0pf0sf4,udp,tp_src=320,actions=output:p0
$ sudo ovs-ofctl add-flow uplink
in_port=p0,udp,tp_src=320,actions=output:en3f0pf0sf4

Note

If your OVS bridge uses a name other than uplink, make sure that
the used name is reflected in the ovs-vsctland ovs-ofctl commands.
For instance:

$ sudo ovs-vsctl set Bridge <bridge-name>
mcast_snooping_enable=true

DOCA Documentation v2.7.0 639

Separated Mode

Configuring Firmware Settings on DPU for Separated Mode

1. Set the BlueField mode of operation to "Separated":

2. Enable RTC:

3. Graceful shutdown and power cycle the DPU to apply the configuration.

4. You may check the BlueField's operation mode using the following command:

Setting Up Network Interfaces for Separated Mode

1. Make sure that that p0 is not connected to an OVS bridge:

2. Enable TX timestamping on the p0 interface:

3. Enable the interface and set an IP address for it:

sudo mlxconfig -y -d 03:00.0 s INTERNAL_CPU_MODEL=0

sudo mlxconfig -d 03:00.0 set REAL_TIME_CLOCK_ENABLE=1

sudo mlxconfig -d 03:00.0 q | grep INTERNAL_CPU_MODEL
Example output

 INTERNAL_CPU_MODEL SEPARATED_HOST(0)

sudo ovs-vsctl show

TX port timestamp offloading (assuming PTP interface is p0)

sudo ethtool --set-priv-flags p0 tx_port_ts on

Configure IP for the interface

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-HowtoPerformGracefulShutdown

DOCA Documentation v2.7.0 640

Host-based Deployment

Host-based deployment requires the same configuration described under section
"Separated Mode".

Service Deployment

DPU Deployment

For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

Service-specific configuration steps and deployment instructions can be found under the
service's container page.

Host Deployment

DOCA Firefly has a version adapted for host-based deployments. For more information
about the deployment of DOCA containers on top of a host, refer to the NVIDIA BlueField
DPU Container Deployment Guide.

sudo ifconfig p0 <ip-addr> up

Note

DOCA Firefly can also be deployed on DPUs not connected to the
Internet. For instructions, refer to the relevant section in the NVIDIA
DOCA Container Deployment Guide.

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide#src-2587737676_id-.NVIDIABlueFieldContainerDeploymentGuidev2.7.0-DOCA_Host_Containers
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide#src-2587737676_id-.NVIDIABlueFieldContainerDeploymentGuidev2.7.0-DOCA_Host_Containers
file:///doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide#src-2587737676_id-.NVIDIABlueFieldContainerDeploymentGuidev2.7.0-air-gapped-deployment
file:///doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide#src-2587737676_id-.NVIDIABlueFieldContainerDeploymentGuidev2.7.0-air-gapped-deployment

DOCA Documentation v2.7.0 641

The following is the docker command for deploying DOCA Firefly on the host:

Where:

Additional YAML configs may be passed as environment variables as additional -e
key-value pairs as done with PTP_INTERFACE above

The exact container tag should be the desired tag as chosen on DOCA Firefly's NGC
page

Configuration

All modules within the service have configuration files that allow customizing various
settings, both general and PTP-related.

Built-In Config File

Each profile has its own base PTP configuration file for ptp4l. For example, the Media
profile PTP configuration file is ptp4l-media.conf.

The built-in PTP configuration files can be found in section "PTP Profile Default Config
Files". For ease-of-use, those files are provided as part of DOCA's container resource as
downloaded from NGC and are placed under Firefly's configs directory
(scripts/doca_firefly/<firefly version>/configs).

sudo docker run --privileged --net=host -v /var/log/doca/firefly:/var/log/firefly -v
/etc/firefly:/etc/firefly -e PTP_INTERFACE='eth2' -it
nvcr.io/nvidia/doca/doca_firefly:1.4.0-doca2.7.0-host /entrypoint.sh

Note

When using a built-in configuration file, Firefly uses the files as stored
within the container itself in the /etc/linuxptp directory. The
configuration files included in the NGC resource are only provided for
ease of access. Modifying them does not impact the configuration

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly

DOCA Documentation v2.7.0 642

Custom Config File

Instead of using a profile's base config file, users can create a file of their own, for each of
the modules.

To set a custom config file, users should locate their config file in the directory /etc/firefly

and set the config file name in DOCA Firefly's YAML file.

For example, to set a custom linuxptp config file, the user can set the parameter
PTP_CONFIG_FILE in the YAML file:

In this example, my_custom_ptp.conf should be placed at /etc/firefly/my_custom_ptp.conf.

Overriding Specific Config File Parameters

used in practice by the container. Instead, updates to the
configuration should be done as described in the following sections.

- name: PTP_CONFIG_FILE
 value: my_custom_ptp.conf

Note

A config file must not define values for the UDS-related ports
(/var/run/ptp4l and /var/run/ptp4lro), as those will impact internal
container behavior. Such settings will prompt a warning and will be
ignored when preparing the finalized configuration (See more in the
next sections).

DOCA Documentation v2.7.0 643

Instead of replacing the entire config file, users may opt to override specific parameters.
This can be done using the following variable syntax in the YAML file:
CONF_<TYPE>_<SECTION>_<PARAMETER_NAME>.

TYPE – either PTP, MONITOR, PHC2SYS, SYNCE, or SERVO

SECTION – the section in the config file that the parameter should be placed in

PARAMETER_NAME – the config parameter name as should be placed in the config file

For example, the following variable in the YAML file definition changes the value of the
parameter priority1 under section global in the PTP config file to 64.

Note

If the specified section does not already exist in the config file, a
new section is created unless it refers to a PTP network
interface that has not been included in the PTP_INTERFACE YAML
field.

Note

If the parameter name already exists in the config file, then the
value is changed according to the value provided in the .yaml file.
If the parameter name does not already exist in the config file,
then it is added.

- name: CONF_PTP_global_priority1
 value: "64"

Note

DOCA Documentation v2.7.0 644

Ensuring and Debugging Correctness of Config Files

The previous sections describe 2 layers for the configuration file definitions:

Basic configuration file – either a built-in config file or a custom config file

Adding/overriding values to/from the YAML file

In practice, there are slightly more layers in place, and the precedence is as follows
(presented in increasing order):

Default configuration values of the PTP program (ptp4l for instance) – holds values
of all available configuration options

Your chosen configuration file – contains a subset of options

Definitions from the YAML file – narrower subset

Firefly mandatory values

When combining the supplied configuration file with the definitions from the YAML file,
Firefly goes over those definitions and checks them against a predefined set of
configuration options:

Warning only – warns if a certain value leads to known issues in a supported
deployment scenario

Override – container-internal definitions that should not be set by the user and will
be overridden by Firefly

Suitable log messages are provided in either case:

Configuring unicast_master_table through the YAML file is not supported
due to the structure of the table (i.e., multiple entries sharing the
same key).

DOCA Documentation v2.7.0 645

At the end of this process, an updated configuration file is generated by Firefly to be used
later by the various time providers (as mentioned below). To avoid accidental
modification of a user-supplied configuration file or permission issues, the finalized file is
generated within the container under the /tmp directory.

For instance, if using a custom configuration file named my_custom_ptp.conf under the
/etc/firefly directory on the DPU, the updated file will reside within the container at the
following path: /tmp/my_custom_ptp.conf.

For troubleshooting possible issues with the configuration file, one can do one of the
following:

Connect to the container directly as is explained in the debugging finalized
configuration file bullet under "Troubleshooting".

Map the container's /tmp directory to the DPU using the built-in support in the YAML
file:

Before the change:

Example for a warning
2023-01-31 11:55:13 - Firefly - Config - INFO - Missing explicit definition
"fault_reset_interval", verifying default value instead: "4"
2023-01-31 11:55:13 - Firefly - Config - WARNING - Value "4" for definition
"fault_reset_interval" will be invalid in Embedded Mode, expected a value lesser or
equal to "1"
2023-01-31 11:55:13 - Firefly - Config - WARNING - Continuing with invalid value
Example for an override
2023-01-31 11:21:00 - Firefly - Config - WARNING - Invalid value "/var/run/ptp4l2" for
definition "uds_address", expected "/var/run/ptp4l"
2023-01-31 11:21:00 - Firefly - Config - INFO - Setting definition "uds_address" value
to the following: "/var/run/ptp4l"

Uncomment when debugging the finalized configuration files used -
Part #1

#- name: debug-firefly-volume
hostPath:

DOCA Documentation v2.7.0 646

After the change:

path: /tmp/firefly
type: DirectoryOrCreate
containers:
...
volumeMounts:
- name: logs-firefly-volume
mountPath: /var/log/firefly
- name: conf-firefly-volume
mountPath: /etc/firefly
Uncomment when debugging the finalized configuration files used -
Part #2

#- name: debug-firefly-volume
mountPath: /tmp

Uncomment when debugging the finalized configuration files used -
Part #1

- name: debug-firefly-volume
hostPath:
path: /tmp/firefly
type: DirectoryOrCreate
containers:
...
volumeMounts:
- name: logs-firefly-volume
mountPath: /var/log/firefly
- name: conf-firefly-volume
mountPath: /etc/firefly
Uncomment when debugging the finalized configuration files used -
Part #2

- name: debug-firefly-volume
mountPath: /tmp

DOCA Documentation v2.7.0 647

Description

Providers

DOCA Firefly Service uses the following third-party providers to provide time syncing
services:

Linuxptp - Version v4.2

PTP – PTP service, provided by the PTP4L program

PHC2SYS – OS time calibration, provided by the PHC2SYS program

Testptp

PPS - PPS settings service

In addition, DOCA Firefly Service also makes use of the following NVIDIA modules:

SyncE

SYNCE – Synchronous Ethernet Deamon (synced)

Firefly

MONITOR - Firefly PTP Monitor

Firefly

Note

The finalized configuration file keeps the sections and config options
in the same order as they appear in the original file, yet the file is
stripped from spare new lines or comment lines. This should be
taken into considerations when directly accessing it during a
debugging session.

DOCA Documentation v2.7.0 648

SERVO - Firefly PTP Servo

Each of the providers can be enabled, disabled, or set to use the setting defined by the
configuration profile:

YAML setting – <provider name>_STATE

Supported values – enable, disable, defined_by_profile

An example YAML setting for specifically disabling the phc2sys provider is the following:

Profiles

DOCA Firefly Service includes profiles which represent common use cases for the Firefly
service that provide a different default configuration per profile:

Note

For the default profile settings per provider, refer to the table under
section "Profiles".

- name: PHC2SYS_STATE
 value: "disable"

Note

The defined_by_profile setting is only available for well-defined profiles.
As such, it cannot be used when the custom profile is selected. For
more information about the profile settings, refer to the table under
section "Profiles".

DOCA Documentation v2.7.0 649

Default Media
Telco
(L2)

Custom

Purpose
Any user that
requires PTP

Media
production
s

Telco
networks

Custom configuration for a
dedicated user scenario

PTP Enabled Enabled Enabled
No default. Enable/disable
should be set by the user.

PTP profile
PTP default
profile

SMPTE
2059-2

G.8275.1 Set by the user

PTP
Client/Serv
er 1

Both Client-only Both Set by the user

PHC2SYS Enabled Enabled Enabled
No default. Enable/disable
should be set by the user.

PPS (in/out) Enabled Enabled Enabled
No default. Enable/disable
should be set by the user.

PTP
Monitor

Disabled Disabled Disabled
No default. Enable/disable
should be set by the user.

SyncE Disabled Disabled Enabled
No default. Enable/disable
should be set by the user.

Servo Disabled Disabled Disabled
No default. Enable/disable
should be set by the user.

1. Client-only is only relevant to a single PTP interface. If more than one PTP interface
is provided in the YAML file, both modes are enabled.

Outputs

Container Output

While running, the full output of the DOCA Firefly Service container can be viewed using
the following command:

DOCA Documentation v2.7.0 650

Where CONTANIER-ID can be retrieved using the following command:

For example, in the following output, the container ID is 8f368b98d025b.

The output of the container depends on the services supported by the hardware and
enabled by configuration and the selected profile. However, note that any of the
configurations runs PTP, so when DOCA FireFly is running successfully expect to see the
line "Running ptp4l".

The following is an example of the expected container output when running the default
profile on a DPU that supports PPS:

sudo crictl logs <CONTAINER-ID>

sudo crictl ps

$ sudo crictl ps

CONTAINER IMAGE CREATED STATE NAME
 ATTEMPT POD ID POD
8f368b98d025b 289809f312b4c 2 seconds ago Running doca-firefly
 0 5af59511b4be4 doca-firefly-some-computer-name

2023-09-07 14:04:23 - Firefly - Init - INFO - Starting DOCA Firefly - Version 1.4.0
2023-09-07 14:04:23 - Firefly - Init - INFO - Selected features:
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PTP - Enabled - ptp4l will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] MONITOR - Enabled - PTP Monitor will
be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PHC2SYS - Enabled - phc2sys will be
used
2023-09-07 14:04:23 - Firefly - Init - INFO - [-] SyncE - Disabled
2023-09-07 14:04:23 - Firefly - Init - INFO - [-] SERVO - Disabled
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS - Enabled - testptp will be used (if
supported by hardware)
2023-09-07 14:04:23 - Firefly - Init - INFO - Going to analyze the configuration files
2023-09-07 14:04:23 - Firefly - Init - INFO - Requested the following PTP interface: p0

DOCA Documentation v2.7.0 651

The following is an example of the expected container output when running the default
profile on a DPU that does not support PPS:

2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Starting PPS configuration
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS is supported by hardware
2023-09-07 14:04:23 - Firefly - Init - INFO - set pin function okay
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS in - Activated
2023-09-07 14:04:23 - Firefly - Init - INFO - set pin function okay
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS out - Activated
2023-09-07 14:04:23 - Firefly - Init - INFO - name mlx5_pps0 index 0 func 1 chan 0
2023-09-07 14:04:23 - Firefly - Init - INFO - name mlx5_pps1 index 1 func 2 chan 0
2023-09-07 14:04:23 - Firefly - Init - INFO - periodic output request okay
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Running ptp4l
2023-09-07 14:04:23 - Firefly - Init - INFO - Running Firefly PTP Monitor
2023-09-07 14:04:23 - Firefly - Init - INFO - Running phc2sys

2023-09-07 14:04:23 - Firefly - Init - INFO - Starting DOCA Firefly - Version 1.3.0
2023-09-07 14:04:23 - Firefly - Init - INFO - Selected features:
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PTP - Enabled - ptp4l will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] MONITOR - Enabled - PTP Monitor will
be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PHC2SYS - Enabled - phc2sys will be
used
2023-09-07 14:04:23 - Firefly - Init - INFO - [-] SyncE - Disabled
2023-09-07 14:04:23 - Firefly - Init - INFO - [-] SERVO - Disabled
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS - Enabled - testptp will be used (if
supported by hardware)
2023-09-07 14:04:23 - Firefly - Init - INFO - Going to analyze the configuration files
2023-09-07 14:04:23 - Firefly - Init - INFO - Requested the following PTP interface: p0
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Starting PPS configuration
2023-09-07 14:04:23 - Firefly - Init - WARNING - [-] PPS capability is missing, seems
that the card doesn't support PPS

DOCA Documentation v2.7.0 652

Firefly Output

On top of the container's log, Firefly defines an additional, non-volatile log that can be
found in /var/log/doca/firefly/firefly.log.

This file contains the same output described in section "Container Output" and is useful
for debugging deployment errors should the container stop its execution.

ptp4l Output

2023-09-07 14:04:23 - Firefly - Init - INFO - capabilities:
2023-09-07 14:04:23 - Firefly - Init - INFO - 50000000 maximum frequency
adjustment (ppb)
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable alarms
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 external time stamp channels
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable periodic signals
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 pulse per second
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable pins
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 cross timestamping
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Running ptp4l
2023-09-07 14:04:23 - Firefly - Init - INFO - Running Firefly PTP Monitor
2023-09-07 14:04:23 - Firefly - Init - INFO - Running phc2sys

Note

To avoid disk space issues, the /var/log/doca/firefly/firefly.log file only
contains the log from Firefly's initialization, and not the logs of the
rest of the modules (ptp4l, phc2sys, etc.) or that of the PTP monitor.
The latter is still included in the container log and can be inspected
using the command sudo crictl logs <CONTAINER-ID>.

DOCA Documentation v2.7.0 653

The ptp4l output can be found in the file /var/log/doca/firefly/ptp4l.log.

Example output:

phc2sys Output

The phc2sys output can be found in the file /var/log/doca/firefly/phc2sys.log.

Example output:

SyncE Output

The SyncE output can be found in the file /var/log/doca/firefly/synced.log.

Example output:

ptp4l[192710.691]: rms 1 max 1 freq -114506 +/- 0 delay -15 +/- 0
ptp4l[192712.692]: rms 6 max 9 freq -114501 +/- 3 delay -15 +/- 0
ptp4l[192714.692]: rms 7 max 9 freq -114511 +/- 3 delay -13 +/- 0
ptp4l[192716.692]: rms 5 max 7 freq -114502 +/- 1 delay -13 +/- 0
ptp4l[192718.693]: rms 4 max 6 freq -114509 +/- 2 delay -13 +/- 0
ptp4l[192720.693]: rms 3 max 3 freq -114506 +/- 2 delay -13 +/- 0
ptp4l[192722.694]: rms 4 max 6 freq -114510 +/- 3 delay -12 +/- 0
ptp4l[192724.694]: rms 5 max 7 freq -114510 +/- 5 delay -12 +/- 1
ptp4l[192726.695]: rms 4 max 5 freq -114508 +/- 3 delay -11 +/- 0
ptp4l[192728.695]: rms 6 max 9 freq -114504 +/- 4 delay -11 +/- 0

phc2sys[1873325.928]: reconfiguring after port state change
phc2sys[1873325.928]: selecting CLOCK_REALTIME for synchronization
phc2sys[1873325.928]: selecting enp3s0f0s4 as the master clock
phc2sys[1873325.928]: CLOCK_REALTIME phc offset 1378 s2 freq -165051 delay 255
phc2sys[1873326.928]: CLOCK_REALTIME phc offset 1378 s2 freq -163673 delay 240
phc2sys[1873327.928]: port 62b785.fffe.0c9369-1 changed state
phc2sys[1873327.929]: CLOCK_REALTIME phc offset 14 s2 freq -164624 delay 255
phc2sys[1873328.936]: CLOCK_REALTIME phc offset 89 s2 freq -164545 delay 240

DOCA Documentation v2.7.0 654

Firefly Servo Output

The Firefly servo output can be found in the file /var/log/doca/firefly/servo.log.

INFO [05/09/2023 05:11:01.493414]: SyncE Group #0: is in TRACKING holdover
acquired mode on p0, frequency_diff: 0 (ppb)
INFO [05/09/2023 05:11:02.502963]: SyncE Group #0: is in TRACKING holdover
acquired mode on p0, frequency_diff: -113 (ppb)
INFO [05/09/2023 05:11:03.512491]: SyncE Group #0: is in TRACKING holdover
acquired mode on p0, frequency_diff: 37 (ppb)

Note

The verbosity of the output from the SYNCE module is limited by
default. To set the output to be more verbose, set the verbose option
to 1 (True).

Before:

After:

Example #4 - Overwrite the value of verbose in the [global]
section of the SyncE configuration file.
#- name: CONF_SYNCE_global_verbose
value: "1"

Example #4 - Overwrite the value of verbose in the [global]
section of the SyncE configuration file.
- name: CONF_SYNCE_global_verbose
value: "1"

DOCA Documentation v2.7.0 655

Example output:

Tx Timestamping Support on DPU Mode

When the BlueField is operating in DPU mode, additional OVS configuration is required as
mentioned in step 6 of section "Setting Up Network Interfaces for DPU Mode". This
configuration achieves the following:

Proper support for incoming/outgoing multicast traffic

Enabling Tx timestamping

Firefly only gets the packet timestamping for outgoing PTP messages (Tx timestamping)
when they are offloaded to the hardware. As such, when working with OVS, users must
ensure this traffic flow is properly recognized and offloaded. If offloading does not take
place, Firefly gets stuck in a fault loop while waiting to receive the Tx timestamp events:

2024-03-18 09:04:22 - Firefly - SERVO - INFO - offset +8 +/- 2 freq -5.66 +/- 0.41 delay
-48 +/- 2
2024-03-18 09:04:24 - Firefly - SERVO - INFO - offset +4 +/- 2 freq -6.35 +/- 0.36 delay
-47 +/- 2
2024-03-18 09:04:26 - Firefly - SERVO - INFO - offset +2 +/- 2 freq -6.75 +/- 0.41 delay
-47 +/- 1
2024-03-18 09:04:28 - Firefly - SERVO - INFO - offset +0 +/- 2 freq -6.97 +/- 0.35 delay
-47 +/- 1
2024-03-18 09:04:30 - Firefly - SERVO - INFO - offset +0 +/- 3 freq -7.30 +/- 0.60 delay
-47 +/- 1
2024-03-18 09:04:33 - Firefly - SERVO - INFO - offset +1 +/- 2 freq -6.93 +/- 0.41 delay
-47 +/- 1
2024-03-18 09:04:35 - Firefly - SERVO - INFO - offset +1 +/- 2 freq -6.81 +/- 0.48 delay
-47 +/- 1
2024-03-18 09:04:37 - Firefly - SERVO - INFO - offset +2 +/- 2 freq -6.76 +/- 0.52 delay
-48 +/- 2

ptp4l[2912.797]: timed out while polling for tx timestamp

DOCA Documentation v2.7.0 656

The solution to this issue:

Activation of hardware offloading in OVS

OpenFlow rules that ensure OVS properly recognizes the traffic and offloads it to
the hardware

Modification to the fault_reset_interval configuration value to ensure timely recovery
from the fault induced by the first packet being always treated by software (until the
rule is offloaded to hardware). As such, Firefly requires that the fault_reset_interval

value is 1 or less. Proper warnings are raised if an improper value is detected. The
value is updated accordingly in the built-in profiles.

When these configurations are in order, Firefly includes a report for a single fault during
boot, but recovers from it and continues as usual:

Troubleshooting Tx Timestamp Issues

As explained earlier, there are several layers required to ensure Tx timestamping works
as necessary by Firefly. The following is a list of commands to debug the state of each
layer:

1. Inspect the OpenFlow rules:

ptp4l[2912.797]: increasing tx_timestamp_timeout may correct this issue, but it is
likely caused by a driver bug
ptp4l[2912.797]: port 1 (enp3s0f0s4): send sync failed
ptp4l[2923.528]: timed out while polling for tx timestamp
ptp4l[2923.528]: increasing tx_timestamp_timeout may correct this issue, but it is
likely caused by a driver bug
ptp4l[2923.528]: port 1 (enp3s0f0s4): send sync failed

ptp4l[3715.687]: timed out while polling for tx timestamp
ptp4l[3715.687]: increasing tx_timestamp_timeout may correct this issue, but it is
likely caused by a driver bug
ptp4l[3715.687]: port 1 (enp3s0f0s4): send delay request failed

$ sudo ovs-ofctl dump-flows uplink

DOCA Documentation v2.7.0 657

2. Inspect hardware TC rules while DOCA Firefly is deployed (the rules age out after 10
seconds without traffic):

cookie=0x0, duration=4075.576s, table=0, n_packets=2437, n_bytes=209582,
udp,in_port=en3f0pf0sf4,tp_src=319 actions=output:p0
cookie=0x0, duration=4075.549s, table=0, n_packets=1216, n_bytes=109420,
udp,in_port=p0,tp_src=319 actions=output:en3f0pf0sf4
cookie=0x0, duration=4075.521s, table=0, n_packets=13, n_bytes=1242,
udp,in_port=en3f0pf0sf4,tp_src=320 actions=output:p0
cookie=0x0, duration=4074.604s, table=0, n_packets=3034, n_bytes=297376,
udp,in_port=p0,tp_src=320 actions=output:en3f0pf0sf4
cookie=0x0, duration=4075.856s, table=0, n_packets=184, n_bytes=12901,
priority=0 actions=NORMAL

$ sudo tc -s -d filter show dev en3f0pf0sf4 egress
filter ingress protocol ip pref 4 flower chain 0
filter ingress protocol ip pref 4 flower chain 0 handle 0x1
eth_type ipv4
ip_proto udp
src_port 320
ip_flags nofrag
in_hw in_hw_count 1
action order 1: mirred (Egress Redirect to device p0) stolen
index 3 ref 1 bind 1 installed 7 sec used 7 sec
Action statistics:
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
cookie bec8bd6ede4e86341e9045a6edb58ca2
no_percpu

filter ingress protocol ip pref 4 flower chain 0 handle 0x2
eth_type ipv4
ip_proto udp
src_port 319
ip_flags nofrag

DOCA Documentation v2.7.0 658

PTP

Firefly uses the ptp4l utility to handle the Precision Time Protocol (IEEE 1588).

Through the YAML file, users can configure the network interfaces used for the protocol:

Before the deployment of the container, users should configure this field to point at the
desired network interface(s) configured in the previous steps.

in_hw in_hw_count 1
action order 1: mirred (Egress Redirect to device p0) stolen
index 4 ref 1 bind 1 installed 6 sec used 6 sec
Action statistics:
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
cookie c568d97efd400de98608fbbf86ccdf3c
no_percpu

Note

If no TC rules are present when Firefly is running, this usually
indicates that hardware offloading is disabled at the OVS level,
in which case it should be activated as explained under
"Ensuring OVS Hardware Offload".

Network interfaces to be used (For multiple interfaces use a space (" ") separated
list)
- name: PTP_INTERFACE
Set according to used interfaces on the local setup
value: "p0"

DOCA Documentation v2.7.0 659

PHC2SYS

Firefly uses the phc2sys utility to synchronize the OS's clock to the accurate time stamps
received by ptp4l.

Through the YAML file, users can configure the command-line arguments used by the
phc2sys program:

Firefly adds the following command-line arguments on top of the user-selected flags:

Use of chosen configuration file (empty configuration file by default, or user-
supplied file if specified in the YAML file)

Redirection of output to a log file using the -m command line option

- name: PHC2SYS_ARGS
value: "-a -r"

Note

phc2sys must use the same domainNumber setting used by ptp4l. If the
same domainNumber is not set by the user, Firefly does that
automatically.

Note

phc2sys is only able to accurately sync the clock of the hosting
environment (usually the DPU, but may also be the host if deployed
there) if other timing services, such as NTP, are disabled.

So, for instance, on Ubuntu 22.04, users must ensure that the NTP
timing service is disabled by running:

DOCA Documentation v2.7.0 660

SYNCE

Firefly uses the proprietary synced utility to implement the Synchronous Ethernet protocol,
aimed at ensuring synchronization of the clock's frequency with the reference clock. Once
achieved, both clocks are declared as "syntonized".

Through the YAML file, users can configure the network interfaces used for the protocol:

Before the deployment of the container, one should configure this field to point at the
desired network interface(s) configured in the previous steps.

Linux kernel 6.8 and above include synced support for the "dpll" backend (default) which
adds support for SFs and VFs. Prior to Linux kernel 6.8, only PFs were supported with the
"mft" backend.

The "dpll" backend is the default backend used. If DOCA detects the system does not
support it, it will automatically falls back to the "mft" backend. To explicitly set the backend
option, one can set it through the YAML file by uncommenting the following lines:

systemctl stop systemd-timesyncd

Note

This feature is supported at beta level.

Network interfaces to be used (For multiple interfaces use a space (" ") separated
list)
- name: SYNCE_INTERFACE
Set according to used interfaces on the local setup
value: "p0"

https://en.wikipedia.org/wiki/Synchronous_Ethernet

DOCA Documentation v2.7.0 661

Befo
re

After

The following is an example for the OVS commands required to route the SyncE-related
traffic when using a SF on top of the "dpll" backend:

Example #5 - Explicitly specify the used backend in the [global] section of
the SyncE configuration file.
#- name: CONF_SYNCE_global_backend
Options are "mft"/"dpll". If nothing is specified in YAML, "dpll" is taken as
the default

value: "mft"

Example #5 - Explicitly specify the used backend in the [global] section of
the SyncE configuration file.
- name: CONF_SYNCE_global_backend
Options are "mft"/"dpll". If nothing is specified in YAML, "dpll" is taken as the
default

value: "mft"

Note

DOCA Firefly 1.4.0 YAML file explicitly specifies the use of the "mft"

backend for SyncE so as to work around a known issue in the
BlueField image.

$ sudo ovs-ofctl add-flow uplink
dl_dst=01:80:c2:00:00:02,in_port=en3f0pf0sf4,actions=p0
$ sudo ovs-ofctl add-flow uplink
dl_dst=01:80:c2:00:00:02,in_port=p0,actions=en3f0pf0sf4
$ sudo ovs-ofctl add-flow uplink dl_dst=01:80:c2:00:00:02,actions=controller

Info

DOCA Documentation v2.7.0 662

If the kernel version does not yet support this feature, and SF/VF are used, the following
error is printed:

If this error is shown, only PFs can be used, and synced falls back to using the "mft"

backend.

PTP Monitor

PTP monitor periodically queries for various PTP-related information and prints it to the
container's log.

The following is a sample output of this tool:

This example uses the same OVS settings used earlier in the guide:

uplink – bridge name

en3f0pf0sf4 – SF representor

p0 – PF interface we are working (port 0)

If your deployment uses different values make sure to adjust the
above commands accordingly.

...
mlx5 DPLL kernel support appears to be missing
Falling back to MFT tools backend
...

gmIdentity: 48:B0:2D:FF:FE:5C:4D:24 (48b02d.fffe.5c4d24)
portIdentity: 48:B0:2D:FF:FE:5C:53:44 (48b02d.fffe.5c5344-1)
port_state: Active
domainNumber: 2
master_offset: avg: 1 max: -8 rms: 3

DOCA Documentation v2.7.0 663

Among others, this monitoring provides the following information:

Details about the Grandmaster the DPU is syncing with

Current PTP timestamp

Health information such as connection errors during execution and whether they
have been recovered from

PTP monitoring is disabled by default and can be activated by replacing the disable value
with the IP address for the monitor server to use:

Once activated, the information can viewed from the container using the following
command:

It is recommended to use the following watch command to actively monitor the PTP state:

gmPresent: true

ptp_stable: Recovered
UtcOffset: 37

timeTraceable: 0
frequencyTraceable: 0
grandmasterPriority1: 128

gmClockClass: 248

gmClockAccuracy: 0x6

grandmasterPriority2: 128

gmOffsetScaledLogVariance: 0xffff

ptp_time (TAI): Thu Sep 7 11:22:50 2023

ptp_time (UTC adjusted): Thu Sep 7 11:22:13 2023

system_time (UTC): Thu Sep 7 11:22:13 2023

error_count: 1
last_err_time (UTC): Thu Sep 7 09:55:48 2023

- name: MONITOR_STATE
Value: "<IP address for the monitoring server>"

sudo crictl logs --tail=20 <CONTAINER-ID>

DOCA Documentation v2.7.0 664

When triaging deployment issues, additional logging information can be found in the
monitor's developer logs: /var/log/doca/firefly/firefly_monitor_dev.log.

Configuration

The PTP monitor supports configuration options which are passed through a dedicated
configuration file like the rest of DOCA Firefly's modules. The built-in monitor
configuration file can be found in the section "PTP Monitor". For ease of use, the file is
also provided as part of DOCA's container resource as downloaded from NGC.

"Firefly Modules Configuration Options" contains a complete explanation of each of the
configuration options alongside their default values.

To set a custom config file, users should locate their config file in the directory /etc/firefly

and set the config file name in DOCA Firefly's YAML file.

In this example, my_custom_monitor.conf should be placed at /etc/firefly/my_custom_monitor.conf.

Time Representations (PTP Time vs System Time)

sudo watch -n 1 crictl logs --tail=20 <CONTAINER-ID>

Note

The monitoring feature connects to ptp4l's local UDS server to query
the necessary information. This is why the configuration manager
prevents users from modifying the uds_address and uds_ro_address fields
used by ptp4l within the container.

- name: MONITOR_CONFIG_FILE
 value: my_custom_monitor.conf

DOCA Documentation v2.7.0 665

Under most deployment scenarios, the PTP time shown by the monitor is presented
according to the International Atomic Time (TAI) standard, while the system time would
most commonly use the Coordinated Universal Time (UTC). Due to the differences
between these time representation models, the monitor provides 2 different time
readings (each marked accordingly):

This difference (37 seconds in the above example) is intentional and stems from the
amount of leap seconds since epoch. This is indicated by the UtcOffset field that is also
included in the monitor's report.

Monitor Server

In addition to printing the monitoring data to the container's standard output available
through the container logs, the monitoring data is also exposed through a gRPC server
that clients can subscribe to. This allows a monitoring client on the host to subscribe to
monitor events from the service running on top of the DPU, thus providing better
visibility.

The following diagram presents the recommended deployment architecture for
connecting the monitoring client (on the host) to the monitor server (on the DPU).

...
UtcOffset: 37
...
ptp_time (TAI): Thu Sep 7 11:22:50 2023
ptp_time (UTC adjusted): Thu Sep 7 11:22:13 2023
system_time (UTC): Thu Sep 7 11:22:13 2023

DOCA Documentation v2.7.0 666

Based on the above, when activating the monitor feature, the user must provide the IP
address to be used by the monitor server:

- name: MONITOR_STATE
value: "<IP address for the monitoring server>"

DOCA Documentation v2.7.0 667

Users can choose to only view the monitoring events through the container logs without
connecting to the monitoring server. In this case, it is recommended to configure the
local host IP address (127.0.0.1) in the YAML file to avoid exposing it to an unwanted
network.

Monitor Client

The required files for the monitor client are available under the service's dedicated NGC
resource "scripts" directory.

Example command line for executing the python-based monitor client from a Linux host:

Firefly Servo

Firefly's Servo module can be seen as an extension to the built-in set of servos offered by
linuxptp. When active, linuxptp is automatically set to "free running" and the control over
the physical hardware clock (PHC) is handed over to Firefly's own servo.

The following is a sample output of this tool when using the l2-telco profile (16 messages
per seconds):

$ export PYTHONPATH=${PYTHONPATH}:/opt/mellanox/grpc/python3/lib
$./doca_firefly_monitor_client.py <ip-address-for-the-monitoring-server>

Note

Reference source files and the .proto file used for Firefly's monitor are
placed under the src/ within the NGC resource.

DOCA Documentation v2.7.0 668

2024-03-18 07:46:45 - Firefly - SERVO - INFO - Detected new master clock:
48b02d.fffe.5c4d24-1
2024-03-18 07:46:45 - Firefly - SERVO - INFO - Transition from servo state IDLE to
FREE_RUNNING
2024-03-18 07:46:47 - Firefly - SERVO - INFO - Estimated a logSyncInterval of: -4
2024-03-18 07:46:47 - Firefly - SERVO - INFO - Measured offset 18691 delay -47

2024-03-18 07:46:48 - Firefly - SERVO - INFO - Transition from servo state
FREE_RUNNING to LOCKED
2024-03-18 07:46:50 - Firefly - SERVO - INFO - offset +164 +/- 164 freq -1.50 +/- 0.00 delay
-48 +/- 1
2024-03-18 07:46:52 - Firefly - SERVO - INFO - Transition from servo state LOCKED to
LOCKED_STABLE
2024-03-18 07:46:52 - Firefly - SERVO - INFO - offset +0 +/- 1 freq -1.41 +/- 0.47 delay -48

+/- 1
2024-03-18 07:46:54 - Firefly - SERVO - INFO - offset -8 +/- 4 freq -4.21 +/- 1.40 delay -47 +/-
1

2024-03-18 07:46:57 - Firefly - SERVO - INFO - offset -12 +/- 2 freq -5.46 +/- 0.73 delay -47

+/- 1
2024-03-18 07:46:59 - Firefly - SERVO - INFO - offset -13 +/- 2 freq -6.13 +/- 0.65 delay -47

+/- 1
2024-03-18 07:47:01 - Firefly - SERVO - INFO - offset -13 +/- 3 freq -6.19 +/- 1.23 delay -47

+/- 2
2024-03-18 07:47:03 - Firefly - SERVO - INFO - offset -19 +/- 2 freq -8.04 +/- 0.96 delay -47

+/- 1
2024-03-18 07:47:06 - Firefly - SERVO - INFO - offset -14 +/- 3 freq -6.46 +/- 1.11 delay -47

+/- 1
2024-03-18 07:47:08 - Firefly - SERVO - INFO - offset -16 +/- 2 freq -7.32 +/- 0.78 delay -48

+/- 2
2024-03-18 07:47:10 - Firefly - SERVO - INFO - offset -15 +/- 2 freq -7.11 +/- 0.87 delay -47

+/- 2
2024-03-18 07:47:12 - Firefly - SERVO - INFO - offset -14 +/- 1 freq -6.74 +/- 0.57 delay -47

+/- 2
2024-03-18 07:47:15 - Firefly - SERVO - INFO - offset -12 +/- 3 freq -6.20 +/- 1.01 delay -48

+/- 1

DOCA Documentation v2.7.0 669

As can be seen, the servo's behavior is similar to that of linuxptp's ptp4l and consists of a
state machine that tracks the state of the active PTP port (FREE_RUNNING, LOCKED,
LOCKED_STABLE, etc).

Firefly's Servo is disabled by default (in all profiles) and can be activated by replacing the
define_by_profile value with enable:

Once activated, the information can viewed from the module's log file
/var/log/doca/firefly/servo.log.

Firefly Servo Configuration

Firefly's Servo is currently aimed for telco-related deployments, using the l2-telco profile
including the use of SyncE. As such, the default values in the built-in configuration file are
optimized for those scenarios.

The servo supports configuration options which are passed through a dedicated
configuration file like the rest of DOCA Firefly's modules. The built-in servo configuration
file can be found in the section "Firefly Servo". For ease of use, the file is also provided as
part of DOCA's container resource as downloaded from NGC.

"Firefly Modules Configuration Options" contains a complete explanation of each of the
configuration options alongside their default values.

2024-03-18 07:47:17 - Firefly - SERVO - INFO - offset -13 +/- 2 freq -6.40 +/- 0.89 delay -47

+/- 1
2024-03-18 07:47:19 - Firefly - SERVO - INFO - offset -11 +/- 2 freq -5.98 +/- 0.86 delay -48

+/- 1
2024-03-18 07:47:21 - Firefly - SERVO - INFO - offset -10 +/- 2 freq -5.75 +/- 0.87 delay -46

+/- 1
2024-03-18 07:47:24 - Firefly - SERVO - INFO - offset -8 +/- 1 freq -5.15 +/- 0.42 delay -47 +/-
1

Activation status
- name: SERVO_STATE
Options are "enable"/"disable"/"defined_by_profile"

value: "enable"

DOCA Documentation v2.7.0 670

To set a custom config file, users should locate their config file in the directory /etc/firefly

and set the config file name in DOCA Firefly's YAML file.

In this example, my_custom_servo.conf should be placed at /etc/firefly/my_custom_servo.conf.

Dynamic Packet Rate Support

The servo has the ability to dynamically detect the packet rate used by the PTP
grandmaster clock, so to calibrate itself accordingly incase it differs from the
recommended 16 packets per seconds.

In a case the message rate is constant and known in advance, the dynamic estimation
can be disabled, in favour of a provided message rate:

In the above example, a fixed message rate of 4 packets per seconds will be used
(logSyncInterval of "-2").

- name: SERVO_CONFIG_FILE
 value: my_custom_servo.conf

2024-03-18 07:46:45 - Firefly - SERVO - INFO - Transition from servo state IDLE to
FREE_RUNNING
2024-03-18 07:46:47 - Firefly - SERVO - INFO - Estimated a logSyncInterval of: -4
2024-03-18 07:46:47 - Firefly - SERVO - INFO - Measured offset 18691 delay -47

- name: CONF_SERVO_global_servo_const_log_sync_interval
value: "-2"

Note

While the servo was tested to produce stable results with various
packets rates (2, 4, 8, 16, 32, 64, 128), it is only officially

DOCA Documentation v2.7.0 671

VLAN Tagging

DOCA Firefly natively supports VLAN-tagging-enabled network interfaces.

Separated Mode

The name of the VLAN-enabled network interface should be the one passed through the
YAML file in the PTP_INTERFACE field.

Embedded Mode

In addition to passing on the VLAN-enabled interface through the YAML as listed in the
previous section, the user is also required to configure the network routing within the
DPU to support the VLAN tagging:

1. The following example configures a VLAN tag of 10 to the enp3s0f0s4 interface:

In this example, enp3s0f0s4.10 is the interface to be passed to DOCA Firefly.

2. Additional commands to route the traffic within the DPU:

recommended for use in deployments using a packet rate of 16
packets per second.

$ sudo ip link add link enp3s0f0s4 name enp3s0f0s4.10 type vlan id 10
$ sudo ip link set up enp3s0f0s4.10
$ sudo ifconfig enp3s0f0s4.10 192.168.104.1 up

$ sudo ovs-ofctl add-flow uplink
in_port=en3f0pf0sf4,dl_vlan=10,actions=output:p0
$ sudo ovs-ofctl add-flow uplink
in_port=p0,dl_vlan=10,actions=output:en3f0pf0sf4

DOCA Documentation v2.7.0 672

Multiple Interfaces

DOCA Firefly can support multiple network interfaces through the following YAML file
syntax:

For example:

Troubleshooting

- name: PTP_INTERFACE
value: "<space (' ') separated list of interface names>"

- name: PTP_INTERFACE
value: "p0 p1"

Note

The monitoring feature is supported for multiple interfaces only
when the clientOnly configuration is enabled.

Note

Automatic mode (-a) for phc2sys is not supported when working with
multiple interfaces. It is recommended to disable phc2sys in this mode.

DOCA Documentation v2.7.0 673

When troubleshooting container deployment issues, it is highly recommended to follow
the deployment steps and tips in the "Review Container Deployment" section of the
NVIDIA DOCA Container Deployment Guide.

To debug the finalized configuration file used by Firefly, users can connect to the
container as follows:

1. Open a shell session on the running container using the container ID:

2. Once connected the to container, the finalized configuration file can be found under
the /tmp directory using the same filename as the original configuration file.

Pod is Marked as "Ready" and No Container is Listed

Error

When deploying the container, the pod's STATE is marked as Ready, an image is listed,
however no container can be seen running:

sudo crictl exec -it <container-id> /bin/bash

Info

More information regarding the configuration files can be found
under section "Ensuring and Debugging Correctness of Config
File".

$ sudo crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT RUNTIME
06bd84c07537e 4 seconds ago Ready doca-firefly-my-dpu default 0 (default)

$ sudo crictl images
IMAGE TAG IMAGE ID SIZE
k8s.gcr.io/pause 3.2 2a060e2e7101d 251kB

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide#src-2587737676_id-.NVIDIABlueFieldContainerDeploymentGuidev2.7.0-ReviewContainerDeployment

DOCA Documentation v2.7.0 674

Solution

In most cases, the container did start, but immediately exited. This could be checked
using the following command:

Should the container fail (i.e., state of Exited) it is recommended to examine Firefly's main
log at /var/log/doca/firefly/firefly.log.

In addition, for a short period of time after termination, the container logs could also be
viewed using the the container's ID:

Custom Config File is Not Found

Error

When DOCA Firefly is deployed using a custom configuration file, a deployment error
occurs and the following log message appears:

nvcr.io/nvidia/doca/doca_firefly 1.1.0-doca2.0.2 134cb22f34611 87.4MB

$ sudo crictl ps

CONTAINER IMAGE CREATED STATE NAME ATTEMPT POD ID POD

$ sudo crictl ps -a
CONTAINER IMAGE CREATED STATE NAME ATTEMPT POD ID POD
556bb78281e1d 134cb22f34611 7 seconds ago Exited doca-firefly 1
06bd84c07537e doca-firefly-my-dpu

$ sudo crictl logs 556bb78281e1d
Starting DOCA Firefly - Version 1.1.0
...
Requested the following PTP interface: p10
Failed to find interface "p10". Aborting

DOCA Documentation v2.7.0 675

Solution

Check the custom file name written in the YAML file and make sure that you properly
placed the file with that name under the /etc/firefly/ directory of the DPU.

Profile is Not Supported

Error

When DOCA Firefly is deployed, a deployment error occurs and the following log message
appears:

Solution

Verify that the profile selected in the YAML file matches one of the supported profiles as
listed in the profiles table.

...
2023-09-07 14:04:23 - Firefly - Init - ERROR - Custom config file not found:
my_file.conf. Aborting
...

...
2023-09-07 14:04:23 - Firefly - Init - ERROR - profile <name> is not supported.
Aborting
...

Note

DOCA Documentation v2.7.0 676

PPS Capability is Missing

Error

When DOCA Firefly is deployed and configured to use the PPS module, a deployment
error occurs and the following log message appears:

Solution

This log indicates that the DPU hardware does not support PPS. However, PTP can still
run on this hardware and you should see the line Running ptp4l in the container log,
indicating that PTP is running successfully.

The profile name is case sensitive. The name must be specified in
lower-case letters.

...
2023-09-07 14:04:23 - Firefly - Init - INFO - Starting PPS configuration
2023-09-07 14:04:23 - Firefly - Init - WARNING - [-] PPS capability is missing, seems
that the card doesn't support PPS
2023-09-07 14:04:23 - Firefly - Init - INFO - capabilities:
2023-09-07 14:04:23 - Firefly - Init - INFO - 50000000 maximum frequency
adjustment (ppb)
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable alarms
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 external time stamp channels
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable periodic signals
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 pulse per second
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable pins
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 cross timestamping
...

DOCA Documentation v2.7.0 677

Timed Out While Polling for Tx Timestamp

Error

When the BlueField is operating in DPU mode, DOCA Firefly gets stuck in a fault loop
while waiting to receive the Tx timestamp events:

Solution

DOCA Firefly's configurations were already adjusted to accommodate for Tx port
timestamping. For more information about the reason for this error and for the designed
recovery mechanism from it, refer to section "Tx Timestamping Support on DPU Mode".

ptp4l[2912.797]: timed out while polling for tx timestamp
ptp4l[2912.797]: increasing tx_timestamp_timeout may correct this issue, but it is
likely caused by a driver bug
ptp4l[2912.797]: port 1 (enp3s0f0s4): send sync failed
ptp4l[2923.528]: timed out while polling for tx timestamp
ptp4l[2923.528]: increasing tx_timestamp_timeout may correct this issue, but it is
likely caused by a driver bug
ptp4l[2923.528]: port 1 (enp3s0f0s4): send sync failed

Info

DOCA Firefly has a known gap leading to this error appearing once,
after which ptp4l recovers from it. This section only covers the case in
which there is a fault loop and no recovery occurs.

DOCA Documentation v2.7.0 678

Warning – Time Jumped Backwards

Error

When using Firefly's Servo module, the following warning log message is encountered on
start:

Solution

This warning message indicates that the system's time jumped backwards with a value of
at least one minute. This event is logged by Firefly given that such jumps might have
system-wide implications. For more information, refer to section "Failed to Reserve
Sandbox Name" in the NVIDIA DOCA Troubleshooting Guide.

Such jumps can only happen during Firefly's boot, before the Servo achieves initial time
synchronization with the reference clock.

PTP Profile Default Config Files

Media Profile

2024-01-01 14:04:23 - Firefly - SERVO - WARNING - Clock is going to jump backwards
in time - this might have a system-wide impact

#
This config file contains configurations for media & entertainment alongside
DOCA Firefly specific adjustments.
#

[global]
domainNumber 127

priority1 128

priority2 127

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-FailedtoReserveSandboxName
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-FailedtoReserveSandboxName
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 679

Default Profile

Telco (L2) Profile

use_syslog 1
logging_level 6
tx_timestamp_timeout 30

hybrid_e2e 1
dscp_event 46

dscp_general 46

logAnnounceInterval -2
announceReceiptTimeout 3
logSyncInterval -3
logMinDelayReqInterval -3
delay_mechanism E2E
network_transport UDPv4
Value lesser or equal to 1 is required for Embedded Mode
fault_reset_interval 1
Required for multiple interfaces support
boundary_clock_jbod 1

#
This config file extends linuxptp default.cfg config file with DOCA Firefly
specific adjustments.
#

[global]
Value lesser or equal to 1 is required for Embedded Mode
fault_reset_interval 1
Required for multiple interfaces support
boundary_clock_jbod 1

DOCA Documentation v2.7.0 680

Firefly Modules Configuration Options

PTP Monitor

monitor-default.conf

#
This config file extends linuxptp G.8275.1.cfg config file with DOCA Firefly
specific adjustments.
#

[global]
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128

maxStepsRemoved 255

logAnnounceInterval -3
logSyncInterval -4
logMinDelayReqInterval -4
G.8275.portDS.localPriority 128

ptp_dst_mac 01:80:C2:00:00:0E
network_transport L2
domainNumber 24

Value lesser or equal to 1 is required for Embedded Mode
fault_reset_interval 1
Required for multiple interfaces support
boundary_clock_jbod 1

#
Default values for all of Firefly's PTP monitor configuration values.
#

[global]
General
report_interval 1000

DOCA Documentation v2.7.0 681

Configuration Options

report_interval – the time interval (in milliseconds) for when the monitor should
publish a report to all defined output providers (standard output, gRPC clients, etc).
Default: 1000 (1 second).

doca_logging_level – Logging level for the module, based on DOCA's logging levels.
Default is 50 (INFO). Valid options:

10=DISABLE

20=CRITICAL

30=ERROR

40=WARNING

50=INFO

60=DEBUG

Firefly Servo

servo-default.conf

Debugging & Logging
doca_logging_level 50

#
Default values for all of Firefly's servo configuration values
#

[global]
Time thresholds
offset_from_master_min_threshold -1500

DOCA Documentation v2.7.0 682

Configuration Options

offset_from_master_min_threshold – Minimal threshold (in nanoseconds) for declaring
time offset from the master clock as "stable". Default is -1500 (-1.5 microseconds).

offset_from_master_max_threshold – Maximal threshold (in nanoseconds) for declaring
time offset from the master clock as "stable". Default is +1500 (+1.5 microseconds).

init_max_time_adjustment – When active, defines the maximal allowed time (step)
adjustment (in nanoseconds) before the servo reaches the "locked" state. Default is
0 (disabled).

max_time_adjustment – When active, defines the maximal allowed reference time
adjustment (in nanoseconds) after the servo has reached the "locked" state. Default
is 1500 (1.5 microseconds).

offset_from_master_max_threshold 1500

init_max_time_adjustment 0
max_time_adjustment 1500

step_adjustment_threshold 0
hold_over_timer 0
Sampling Window & servo logic
warmup_period 1500

sync_filter_length 6
delay_request_filter_length 6
servo_adjustment_interval 4
servo_init_adjustment_interval 24

servo_const_log_sync_interval 0xFF

servo_window_min_samples 2
servo_num_offset_values 5
servo_pi_cutoff_frequency 0.0159

servo_pi_dumping_factor 7.85

Debugging & Logging
summary_interval 2000

doca_logging_level 50

free_running 0

DOCA Documentation v2.7.0 683

step_adjustment_threshold – When active, defines the thresholds above which a time
(step) adjustment (in nanoseconds) would be allowed, even after the servo has
reached the "locked" state. Default is 0 (disabled).

hold_over_timer – When active, defines the time duration (in seconds) in which the
servo stays in "hold over" mode, until reverting back to "free running". Default is 0
("hold over" state is disabled).

warmup_period – Time span (in milliseconds) during which samples are collected to
estimate the logSyncInterval value (packet rate). Default is 1500 (1.5 seconds).

sync_filter_length – Number of SYNC messages in the servo's history buffer. Default is 6.

delay_request_filter_length – Number of DELAY_REQUEST messages in the servo's history
buffer. Default is 6 messages.

servo_adjustment_interval – Number of SYNC messages after which the PHC is updated
once the servo has reached the "locked" state at least once. Default is 4 messages.

servo_init_adjustment_interval – Number of SYNC messages after which the PHC is
updated before the servo has ever reached the "locked" state. Default is 24
messages.

servo_const_log_sync_interval – Known fixed value to be used as the logSyncInterval instead
of trying to estimate it at runtime. Default is 0xFF (disabled).

servo_window_min_samples – Minimal number of samples needed for a servo
calculation. Default is 2 messages.

servo_num_offset_values – Number of consecutive timestamps within the "offset from
master" threshold that are required so to transition from the "locked" state and to
the "locked stable" state. Default is 5 offset values.

servo_pi_cutoff_frequency – The PI servo's cutoff frequency value. Default is 0.0159.

servo_pi_dumping_factor – The PI servo's dumping factor value. Default is 7.85.

summary_interval – The time interval (in milliseconds) for when the servo should
publish a report log event. Default is 2000 (2 seconds).

doca_logging_level – Logging level for the module, based on DOCA's logging levels.
Default is 50 (INFO). Valid options:

DOCA Documentation v2.7.0 684

10=DISABLE

20=CRITICAL

30=ERROR

40=WARNING

50=INFO

60=DEBUG

free_running – Tell the servo to only log the operations, without actually adjusting the
PHC. Default is 0 (disabled).

NVIDIA DOCA Flow Inspector Service
Guide
This guide provides instructions on how to use the DOCA Flow Inspector service
container on top of NVIDIA® BlueField® DPU.

Introduction

DOCA Flow Inspector service enables real-time data monitoring and extraction of
telemetry components. These components can be leveraged by various services,
including those focused on security, big data, and other purposes.

DOCA Flow Inspector service is linked to DOCA Telemetry Service (DTS). It receives
mirrored packets from the user parses the data, and forwards it to the DTS, which
aggregates predefined statistics from various providers and sources. The service utilizes
the DOCA Telemetry API to communicate with the DTS, while the DPDK infrastructure
facilitates packet acquisition at a user-space layer.

DOCA Flow Inspector operates within its dedicated Kubernetes pod on BlueField, aimed
at receiving mirrored packets for analysis. The received packets are parsed and

DOCA Documentation v2.7.0 685

transmitted, in a predefined structure, to a telemetry collector that manages the
remaining telemetry aspects.

Service Flow

The DOCA Flow Inspector receives a configuration file in a JSON format which includes
which of the mirrored packets should be filtered and which information should be sent to
DTS for inspection.

The configuration file can include several export units under the "export-units" attribute.
Each one is comprised of a "filter" and an "export". Each packet that matches one filter
(based on the protocol and ports in the L4 header) is then parsed to the corresponding
requested struct defined in the export. That information only is sent for inspection. A
packet that does not match any filter is dropped.

In addition, the configuration file could contain FI optional configuration flags, see JSON
format and example in the Configuration section.

The service watches for changes in the JSON configuration file in runtime and for any
change that reconfigures the service.

DOCA Documentation v2.7.0 686

The DOCA Flow Inspector runs on top of DPDK to acquire L4. The packets are then
filtered and HW-marked with their export unit index. The packets are then parsed
according to their export unit and export struct, and then forwarded to the telemetry
collector using IPC.

Configuration phase:

1. A JSON file is used as input to configure the export units (i.e., filters and
corresponding export structs).

2. The filters are translated to HW rules on the SF (scalable function port) using the
DOCA Flow library.

3. The connection to the telemetry collector is initialized and all export structures are
registered to DTS.

DOCA Documentation v2.7.0 687

Inspection phase:

1. Traffic is mirrored to the relevant SF.

2. Ingress traffic is received through the configured SF.

3. Non-L4 traffic and packets that do not match any filter are dropped using hardware
rules.

4. Packets matching a filter are marked with the export unit index they match and are
passed to the software layer in the Arm cores.

5. Packets are parsed to the desired struct by the index of export unit.

6. The telemetry information is forwarded to the telemetry agent using IPC.

7. Mirrored packets are freed.

8. If the JSON file is changed, run the configuration phase with the updated file.

Requirements

Before deploying the flow inspector container, ensure that the following prerequisites are
satisfied:

1. Create the needed files and directories. Folders should be created automatically.
Make sure the .json file resides inside the folder:

Validate that DTS's configuration folders exist. They should be created automatically
when DTS is deployed.

$ touch
/opt/mellanox/doca/services/flow_inspector/bin/flow_inspector_cfg.json

$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/config
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/ipc_sockets
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/data

DOCA Documentation v2.7.0 688

2. Allocate huge pages as needed by DPDK. This requires root privileges.

Or alternatively:

Deploy a scalable function according to NVIDIA BlueField DPU Scalable Function
User Guide and mirror packets accordingly using the Open vSwitch command.
For example:

1. Mirror packets from p0 to sf4:

2. Mirror packets from pf0hpf or p0 that pass through sf4:

$ sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

$ sudo echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages
$ sudo mkdir /mnt/huge
$ sudo mount -t hugetlbfs nodev /mnt/huge

$ ovs-vsctl add-br ovsbr1
$ ovs-vsctl add-port ovsbr1 p0
$ ovs-vsctl add-port ovsbr1 en3f0pf0sf4
$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf4 \
-- --id=@p2 get port p0 \
-- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-
port=@p2 output-port=@p1 \
-- set bridge ovsbr1 mirrors=@m

$ ovs-vsctl add-br ovsbr1
$ ovs-vsctl add-port ovsbr1 pf0hpf
$ ovs-vsctl add-port ovsbr1 p0
$ ovs-vsctl add-port ovsbr1 en3f0pf0sf4
$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf4 \
-- --id=@p2 get port pf0hpf \

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

DOCA Documentation v2.7.0 689

The output of last command (creating the mirror) should output a sequence of
letters and numbers similar to the following:

Service Deployment

For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

DTS is available on NGC, NVIDIA's container catalog. Service-specific configuration steps
and deployment instructions can be found under the service's container page.

-- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-
port=@p2 output-port=@p1 \
-- set bridge ovsbr1 mirrors=@m

$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf4 \
-- --id=@p2 get port p0 \
-- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-
port=@p2 output-port=@p1 \
-- set bridge ovsbr1 mirrors=@m

0d248ca8-66af-427c-b600-af1e286056e1

Note

The designated SF must be created as a trusted function.
Additional details can be found in the NVIDIA BlueField
DPU Scalable Function User Guide.

Note

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_flow_inspector
file:///doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide
file:///doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

DOCA Documentation v2.7.0 690

Configuration

JSON Input

The DOCA Flow Inspector configuration file should be placed under
/opt/mellanox/doca/services/flow_inspector/bin/<json_file_name>.json and be built in the following
format:

The order of running DTS and DOCA Flow Inspector is important. You
must launch DTS, wait a few seconds, and then launch DOCA Flow
Inspector.

{
/* Optional param, time period to check for changes in JSON config file (in seconds) and flush telemetry
buffer if enabled (default is 60 seconds) */

"config-sample-rate": <time>,

/* Optional param, telemetry buffer size in bytes (default is 60KB) */

"telemetry-buffer-size": <size>,

/* Optional param, enable periodic telemetry buffer flush and defining the period time (in seconds) */

"telemetry-flush-rate": <numeric value in seconds>,

/* Mandatory param, Flow Inspector export units */

"export-units":
[

/* Export Unit 0 */

{
"filter":
{ "protocols": [<L4 protocols separated by comma>], # What L4 protocols are
allowed
 "ports":
[
[<source port>, <destination port>],

DOCA Documentation v2.7.0 691

Export Unit Attributes

Allowed protocols:

"TCP"

"UDP"

Port range:

It is possible to insert a range of ports for both source and destination

Range should include borders [start_port-end_port]

Allowed ports:

All ports in range 0-65535 as a string

Or * to indicate any ports

Allowed fields in export struct:

timestamp – timestamp indicating when it was received by the service

[<source ports range>, <destination ports range>],
<... more pairs of source, dest ports>
]
},
"export":
{
"fields": [<fields to be part of export struct, separated by comma>] # the Telemetry
event will contain these fields.

}
},
 <... More Export Units>
]
}

DOCA Documentation v2.7.0 692

host_ip – the IP of the host running the service

src_mac – source MAC address

dst_mac – destination MAC address

src_ip – source IP

dst_ip – destination IP

protocol – L4 protocol

src_port – source port

dst_port – destination port

flags – additional flags (relevant to TCP only)

data_len – data payload length

data_short – short version of data (payload sliced to first 64 bytes)

data_medium – medium version of data (payload sliced to first 1500 bytes)

data_long – long version of data (payload sliced to first 9*1024 bytes)

JSON example:

{
/* Optional param, time period to check for changes in JSON config file (in seconds)
and flush telemetry buffer if enabled (default is 60 seconds) */
 "config-sample-rate": 30,

/* Optional param, telemetry maximum buffer size in bytes */
"telemetry-buffer-size": 70000,

/* Optional param, enable periodic telemetry buffer flush and defining the period
time (in seconds) */
"telemetry-flush-rate": 1.5,

DOCA Documentation v2.7.0 693

 /* Mandatory param, Flow Inspector export units */
"export-units":
[

/* Export Unit 0 */
{
"filter":
{
"protocols": ["tcp", "udp"],
"ports":
[
["*","433-460"],
["20480","28341"],
["28341","20480"],
["68", "67"],
["67", "68"]
]
},
"export":
{
"fields": ["timestamp", "host_ip", "src_mac", "dst_mac", "src_ip", "dst_ip", "protocol", "src_port",
"dst_port", "flags", "data_len", "data_long"]
}
},

/* Export Unit 1 */
{
"filter":
{
"protocols": ["tcp"],
"ports":
[
["5-10","422"],
["80","80"]
]
},

DOCA Documentation v2.7.0 694

Yaml File

The .yaml file downloaded from NGC can be easily edited according to your needs.

The SF_NUM_1 value can be changed according to the SF used in the OVS
configuration and can be found using the command in NVIDIA BlueField DPU
Scalable Function User Guide.

"export":
{
"fields": ["timestamp","dst_ip", "host_ip", "data_len", "flags", "data_medium"]
}
}
]
}

Note

If a packet header contains L4 ports or L4 protocol which are not
specified in any filter, they are filtered out.

env:
Set according to the local setup
- name: SF_NUM_1
value: "2" # Additional EAL flags, if needed
- name: EAL_FLAGS
value: "" # Service-Specific command line arguments
- name: SERVICE_ARGS
value: "--policy /flow_inspector/flow_inspector_cfg.json -l 60"

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

DOCA Documentation v2.7.0 695

The EAL_FLAGS value must be changed according to the DPDK flags required when
running the container.

The SERVICE_ARGS are the runtime arguments received by the service:

-l, --log-level <value> – sets the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>

-p, --policy <json_path> – sets the JSON path inside the container

Verifying Output

Enabling write to data in the DTS allows debugging the validity of the DOCA Flow
Inspector.

To allow DTS to write locally, uncomment the following line in
/opt/mellanox/doca/services/telemetry/config/dts_config.ini:

The schema folder contains JSON-formatted metadata files which allow reading the
binary files containing the actual data. The binary files are written according to the
naming convention shown in the following example:

#output=/data

Note

Any changes in dts_config.ini necessitate restarting the pod for the new
settings to apply.

Note

DOCA Documentation v2.7.0 696

New binary files appear when:

The service starts

When the binary file's max age/size restriction is reached

When JSON file is changed and new schemas of telemetry are created

An hour passes

If no schema or no data folders are present, refer to the Troubleshooting section in
NVIDIA DOCA Telemetry Service Guide.

Requires installing the tree runtime utility (apt install tree).

$ tree /opt/mellanox/doca/services/telemetry/data/
/opt/mellanox/doca/services/telemetry/data/

 {year}
 {mmdd}
 {hash}
 {source_id}
 {source_tag}{timestamp}.bin
 {another_source_id}
 {another_source_tag}{timestamp}.bin

 schema
 schema_{MD5_digest}.json

Note

source_id is usually set to the machine hostname. source_tag is a line
describing the collected counters, and it is often set as the provider's
name or name of user-counters.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Telemetry+Service+Guide

DOCA Documentation v2.7.0 697

Reading the binary data can be done from within the DTS container using the following
command:

The data written locally should be shown in the following format assuming a packet
matching Export Unit 1 from the example has arrived:

Troubleshooting

When troubleshooting container deployment issues, it is highly recommended to follow
the deployment steps and tips in the "Review Container Deployment" section of the
NVIDIA DOCA Container Deployment Guide.

Pod is Marked as "Ready" and No Container is Listed

Error

When deploying the container, the pod's STATE is marked as Ready, an image is listed,
however no container can be seen running:

crictl exec -it <Container-ID> /opt/mellanox/collectx/bin/clx_read -s /data/schema
/data/path/to/datafile.bin

{
"timestamp": 1656427771076130,
"host_ip": "10.237.69.238",
"src_ip": "11.7.62.4",
"dst_ip": "11.7.62.5",
"data_len": 1152,
"data_short": "Hello World"

}

$ sudo crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT RUNTIME
3162b71e67677 4 seconds ago Ready doca-flow-inspector-my-dpu default 0
(default)

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide#src-2587737676_id-.NVIDIABlueFieldContainerDeploymentGuidev2.7.0-ReviewContainerDeployment

DOCA Documentation v2.7.0 698

Solution

In most cases, the container did start, but immediately exited. This could be checked
using the following command:

Should the container fail (i.e., state of Exited), it is recommended to examine the Flow
Inspector's main log at /var/log/doca/flow_inspector/flow_inspector_fi_dev.log.

In addition, for a short period of time after termination, the container logs could also be
viewed using the container's ID:

Pod is Not Listed

Error

$ sudo crictl images
IMAGE TAG IMAGE ID SIZE
k8s.gcr.io/pause 3.2 2a060e2e7101d 487kB
nvcr.io/nvidia/doca/doca_flow_inspector 1.1.0-doca2.0.2 2af1e539eb7ab 86.8MB

$ sudo crictl ps

CONTAINER IMAGE CREATED STATE NAME ATTEMPT POD ID POD

$ sudo crictl ps -a
CONTAINER IMAGE CREATED STATE NAME ATTEMPT POD ID POD
556bb78281e1d 2af1e539eb7ab 6 seconds ago Exited doca-flow-inspector 1
 3162b71e67677 doca-flow-inspector-my-dpu

$ sudo crictl logs 556bb78281e1d
...
2023-10-04 11:42:55 - flow_inspector - FI - ERROR - JSON file was not found <config-
file-path>.

DOCA Documentation v2.7.0 699

When placing the container's YAML file in the Kubelet's input folder, the service pod is not
listed in the list of pods:

Solution

In most cases, the pod does not start due to the absence of the requested hugepages.
This can be verified using the following command:

NVIDIA DOCA HBN Service Guide
This guide provides instructions on how to use the DOCA HBN Service container on top of
NVIDIA® BlueField® networking platform .

Introduction

Release Notes

For the release notes of HBN 2.2.0, please refer to "HBN Service Release Notes".

HBN Overview

$ sudo crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT RUNTIME

$ sudo journalctl -u kubelet -e. . .
Oct 04 12:12:19 <my-dpu> kubelet[2442376]: I1004 12:12:19.905064 2442376
predicate.go:103] "Failed to admit pod, unexpected error while attempting to recover from

admission failure" pod="default/doca-flow-inspector-<my-dpu>" err="preemption: error finding a set

of pods to preempt: no set of running pods found to reclaim resources: [(res: hugepages-2Mi, q:
104563999874),]"

https://docs.nvidia.com//doca/sdk/HBN+Service+Release+Notes

DOCA Documentation v2.7.0 700

Host-based Networking (HBN) is a DOCA service that enables the network architect to
design a network purely on L3 protocols, enabling routing to run on the server-side of the
network by using the BlueField as a BGP router. The EVPN extension of BGP, supported
by HBN, extends the L3 underlay network to multi-tenant environments with overlay L2
and L3 isolated networks.

The HBN solution packages a set of network functions inside a container which, itself, is
packaged as a service pod to be run on BlueField Arm. At the core of HBN is the Linux
networking BlueField acceleration driver Netlink-to-DOCA, or nl2docad. This daemon
seamlessly accelerates Linux networking using DOCA APIs to program specific packet
processing rules in BlueField hardware.

The driver mirrors the Linux kernel routing and bridging tables into the BlueField
hardware tables by discovering the configured Linux networking objects using the Linux
Netlink API. Dynamic network flows, as learned by the Linux kernel networking stack, are
also programmed by the driver into BlueField hardware by listening to Linux kernel
networking events.

The following diagram captures an overview of HBN and the interactions between various
components of HBN.

DOCA Documentation v2.7.0 701

ifupdown2 is the interface manager which pushes all the interface related states to
kernel

The routing stack is implemented in FRR and pushes all the control states (EVPN
MACs and routes) to kernel via netlink

Kernel maintains the whole network state and relays the information using netlink.
The kernel is also involved in the punt path and handling traffic that does not match
any rules in the eSwitch.

nl2docad listens for the network state via netlink and invokes the DOCA interface to
accelerate the flows in BlueField hardware tables. nl2docad also offloads these
flows to eSwitch.

Service Function Chaining

HBN is a "bump-in-the-wire" service and requires specific network configuration on
BlueField called service function chaining (SFC). SFC configuration is used to redirect
network traffic, which is originated from or forwarded to the host or BlueField itself via
the HBN data plane.

DOCA Documentation v2.7.0 702

The diagram below shows the fully detailed default configuration for HBN with SFC.

In this setup, the HBN container is configured to use sub-function ports (SFs) instead of
the actual uplinks, PFs and VFs. To illustrate, for example:

Uplinks – use p0_sf instead of p0

PF – use pf0hpf_sf instead of pf0hpf

VF – use pf0vf0_sf instead of pf0vf0

The indirection layer between the SF and the actual ports is managed via a br-hbn OVS
bridge automatically configured when the BFB image is installed on BlueField with HBN
enabled. This indirection layer allows other services to be chained to existing SFs and
provide additional functionality to transit traffic.

Requirements

Info

Refer to the "HBN Service Release Notes" page for information on the
specific hardware and software requirements for HBN.

file:///doca/sdk/HBN+Service+Release+Notes

DOCA Documentation v2.7.0 703

The following subsections describe specific prerequisites for the BlueField before
deploying the DOCA HBN Service.

Enabling BlueField DPU Mode

HBN requires BlueField to work in either DPU mode or zero-trust mode of operation.
Information about configuring BlueField modes of operation can be found under "NVIDIA
BlueField Modes of Operation".

Enabling SFC

HBN requires SFC configuration to be activated on the BlueField before running the HBN
service container. SFC allows for additional services/containers to be chained to HBN and
provides additional data manipulation capabilities.

The following subsections provide additional information about SFC and instructions on
enabling it during BlueField DOCA image installation.

Deploying BlueField DOCA Image with SFC from Host

For DOCA image installation on BlueField, the user should follow the instructions under
NVIDIA DOCA Installation Guide for Linux with the following extra notes to enable BlueField
for HBN setup:

1. Make sure link type is set to ETH under the "Installing Software on Host" section.

2. Add the following parameters to the bf.cfg configuration file:

1. Enable HBN specific OVS bridge on BlueField Arm by setting
ENABLE_BR_HBN=yes.

2. Define the uplink ports to be used by HBN BR_HBN_UPLINKS='<port>'.

Note

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Modes+of+Operation
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Modes+of+Operation
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 704

3. Include PF and VF ports to be used by HBN. The following example sets both
PFs and 8 VFs on each uplink: BR_HBN_REPS='pf0hpf,pf1hpf,pf0vf0-pf0vf7,pf1vf0-pf1vf7'.

4. (Optional) Include SF devices to be created and connected to HBN bridge on
the BlueField Arm side by setting BR_HBN_SFS='pf0dpu1,pf0dpu3'.

3. Then run:

Must include both ports (i.e., p0,p1) for dual-port BlueField
devices and only p0 for single-port BlueField devices.

Info

If nothing is provided, pf0dpu1 and pf0dpu3 are created by
default.

Warning

While older formats of bf.cfg still work in this release, they
will be deprecated over the next 2 releases. So, its
advisable to move to the new format to avoid any upgrade
issues in future releases. The following is an example for
the old bf.cfg format:

ENABLE_SFC_HBN=yes

NUM_VFs_PHYS_PORT0=12 # <num VFs supported by HBN

on Physical Port 0> (valid range: 0-127) Default 14

NUM_VFs_PHYS_PORT1=2 # <num VFs supported by HBN

on Physical Port 1> (valid range: 0-127) Default 0

DOCA Documentation v2.7.0 705

Deploying BlueField DOCA Image with SFC Using PXE Boot

To enable HBN SFC using a PXE installation environment with BFB content, use the
following configuration for PXE:

The kickstart script (bash) should include the following lines:

The /etc/bf.cfg generated above is sourced by the BFB install.sh script.

bfb-install -c bf.cfg -r rshim0 -b <BFB-image>

bfnet=<IFNAME>:<IPADDR>:<NETMASK> or <IFNAME>:dhcp
bfks=<URL of the kickstart script>

cat >> /etc/bf.cfg << EOF

ENABLE_BR_HBN=yes

BR_HBN_UPLINKS='p0,p1'

BR_HBN_REPS='pf0hpf,pf1hpf,pf0vf0-pf0vf7,pf1vf0-pf1vf7'

BR_HBN_SFS='pf0dpu1,pf0dpu3'
EOF

Note

It is recommended to verify the accuracy of the BlueField's clock post-
installation. This can be done using the following command:

Please refer to the known issues listed in the "NVIDIA DOCA Release
Notes" for more information.

$ date

file:///doca/sdk/NVIDIA+DOCA+Release+Notes
file:///doca/sdk/NVIDIA+DOCA+Release+Notes

DOCA Documentation v2.7.0 706

Deploying HBN with Other Services

When the HBN container is deployed by itself, BlueField Arm is configured with 3k huge
pages. If it is deployed with other services, the actual number of huge-pages must be
adjusted based on the requirements of those services. For example, SNAP or NVMesh
need approximately 1k huge pages. So if HBN is running with either of these services on
the same BlueField, the total number of huge pages must be set to 4k (3k for HBN and 1k
for SNAP or NVMesh).

To do that, add the following parameters to the bf.cfg configuration file alongside other
desired parameters.

Service Deployment

HBN Service Container Deployment

HBN service is available on NGC, NVIDIA's container catalog. For information about the
deployment of DOCA containers on top of the BlueField, refer to NVIDIA DOCA Container
Deployment Guide.

Downloading DOCA Container Resource File

HUGEPAGE_COUNT=4096

Warning

This should be performed only on a BlueField-3 running with 32G of
memory. Doing this on 16G system may cause memory issues for
various applications on BlueField Arm.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_hbn
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide

DOCA Documentation v2.7.0 707

Pull the latest DOCA container resource as a *.zip file from NGC and extract it to the
<resource> folder (doca_container_configs_2.7.0v1 in this example):

Running HBN Preparation Script

The HBN script (hbn-dpu-setup.sh) performs the following steps on BlueField Arm which are
required for HBN service to run:

1. Sets the BlueField to DPU mode if needed.

2. Enables IPv4/IPv6 kernel forwarding.

3. Sets up interface MTU if needed.

4. Sets up mount points between BlueField Arm and HBN container for logs and
configuration persistency.

5. Sets up various paths as needed by supervisord and other services inside container.

The script is located in <resource>/scripts/doca_hbn/<hbn_version>/ folder, which is downloaded
as part of the DOCA Container Resource.

wget
https://api.ngc.nvidia.com/v2/resources/nvidia/doca/doca_container_configs/versions/
-O doca_container_configs_2.7.0v1.zip
unzip -o doca_container_configs_2.7.0v1.zip -d doca_container_configs_2.7.0v1

Note

To achieve the desired configuration on HBN's first boot, before
running preparation script, users can update default NVUE or flat
(network interfaces and FRR) configuration files, which are located in
<resource>/scripts/doca_hbn/<hbn_version>/.

For NVUE-based configuration:

etc/nvue.d/startup.yaml

DOCA Documentation v2.7.0 708

Run the following commands to execute the hbn-dpu-setup.sh script:

Spawning HBN Container

HBN container .yaml configuration is called doca_hbn.yaml and it is located in
<resource>/configs/<doca_version>/ directory. To spawn the HBN container, simply copy the
doca_hbn.yaml file to the /etc/kubelet.d directory:

Kubelet automatically pulls the container image from NGC and spawns a pod executing
the container. The DOCA HBN Service starts executing right away.

For flat-files based configuration:

etc/network/interfaces

etc/frr/frr.conf

etc/frr/daemons

cd <resource>/scripts/doca_hbn/2.2.0/
chmod +x hbn-dpu-setup.sh
sudo ./hbn-dpu-setup.sh

Note

After running the script, perform BlueField system-level reset.

cd <resource>/configs/2.7.0/
sudo cp doca_hbn.yaml /etc/kubelet.d/

file:///doca/sdk/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-2799458725_id-.NVIDIABlueFieldResetandRebootProceduresv2.7.0-BlueFieldSystem-levelReset

DOCA Documentation v2.7.0 709

Verifying HBN Container is Running

To inspect the HBN container and verify if it is running correctly:

1. Check HBN pod and container status and logs:

1. Examine the currently active pods and their IDs (it may take up to 20 seconds
for the pod to start):

2. View currently active containers and their IDs:

3. Examine logs of a given container:

4. Examine kubelet logs if something did not work as expected:

2. Log into the HBN container:

3. While logged into HBN container, verify that the frr, nl2doca, and neighmgr services are
running:

4. Users may also examine various logs under /var/log inside the HBN container.

sudo crictl pods

sudo crictl ps

sudo crictl logs

sudo journalctl -u kubelet@mgmt

sudo crictl exec -it $(crictl ps | grep hbn | awk '{print $1;}') bash

(hbn-container)$ supervisorctl status frr
(hbn-container)$ supervisorctl status nl2doca
(hbn-container)$ supervisorctl status neighmgr

DOCA Documentation v2.7.0 710

HBN Default Deployment Configuration

The HBN service comes with four types of configurable interfaces:

Two uplinks (p0_sf, p1_sf)

Two PF port representors (pf0hpf_sf, pf1hpf_sf)

User-defined number of VFs (i.e., pf0vf0_sf, pf0vf1_sf, …, pf1vf0_sf, pf1vf1_sf, …)

Two interfaces to connect to services running on BlueField, outside of the HBN
container (pf0dpu1_sf and pf0dpu3_sf)

The *_sf suffix indicates that these are sub-functions and are different from the physical
uplinks (i.e., PFs, VFs). They can be viewed as virtual interfaces from a virtualized
BlueField.

Each of these interfaces is connected outside the HBN container to the corresponding
physical interface, see section "Service Function Chaining" (SFC) for more details.

The HBN container runs as an isolated namespace and does not see any interfaces
outside the container (oob_net0, real uplinks and PFs, *_sf_r representors).

DOCA Documentation v2.7.0 711

pf0dpu1_sf and pf0dpu3_sf are special interfaces for HBN to connect to services running on
BlueField. Their counterparts pf0dpu0_sf and pf0dpu2_sf respectively are located outside the
HBN container. See section "Connecting to DOCA Services to HBN on BlueField Arm" for
deployment considerations when using the pf0dpu1_sf or pf0dpu3_sf interface in HBN.

eth0 is equivalent to the oob_net0 interface in the HBN container. It is part of the
management VRF of the container. It is not configurable via NVUE and does not need any
configuration from the user. See section "MGMT VRF Inside HBN Container" for more
details on this interface and the management VRF.

HBN Deployment Considerations

DOCA Documentation v2.7.0 712

SF Interface State Tracking

When HBN is deployed with SFC, the interface state of the following network devices is
propagated to their corresponding SFs:

Uplinks – p0, p1

PFs – pf0hpf, pf1hpf

VFs – pf0vfX, pf1vfX where X is the VF number

For example, if the p0 uplink cable gets disconnected:

p0 transitions to DOWN state with NO-CARRIER (default behavior on Linux); and

p0 state is propagated to p0_sf whose state also becomes DOWN with NO-CARRIER

After p0 connection is reestablished:

p0 transitions to UP state; and

p0 state is propagated to p0_sf whose state becomes UP

Interface state propagation only happens in the uplink/PF/VF-to-SF direction.

A daemon called sfc-state-propagation runs on BlueField, outside of the HBN container, to
sync the state. The daemon listens to netlink notifications for interfaces and transfers the
state to SFs.

SF Interface MTU

In the HBN container, all the interfaces MTU are set to 9216 by default. MTU of specific
interfaces can be overwritten using flat-files configuration or NVUE.

On BlueField side (i.e., outside of the HBN container), the MTU of the uplinks, PFs and VFs
interfaces are also set to 9216. This can be changed by modifying /etc/systemd/network/30-

hbn-mtu.network or by adding a new configuration file in the /etc/systemd/network for specific
directories.

To reload this configuration, execute systemctl restart systemd-networkd.

DOCA Documentation v2.7.0 713

Connecting to DOCA Services to HBN on BlueField Arm

There are various SF ports (named pf0dpuX_sf, where X is [0..n]) on BlueField Arm, which
can be used to run any services on BlueField and use HBN to provide network
connectivity. These ports are always created and connected in pairs of even and odd
numbered ports, where even numbered ports are on BlueField side and odd numbered
port are on the HBN side. For example, pf0dpu0_sf can be used by another service running
on BlueField Arm to connect to HBN port pf0dpu1_sf.

Traffic between BlueField and the outside world is hardware-accelerated when the HBN
side port is an L3 interface or access-port using switch virtual interface (SVI). So, it is
treated the same way as PF or VF ports from a traffic handling standpoint.

Disabling BlueField Uplinks

The uplink ports must be always kept administratively up for proper operation of HBN.
Otherwise, the NVIDIA® ConnectX® firmware would bring down the corresponding
representor port which would cause data forwarding to stop.

Info

There are 2 SF port pairs created by default on BlueField Arm side so
there can be 2 separate DOCA services running at same time.

Note

Change in operational status of uplink (e.g., carrier down) would
result in traffic being switched to the other uplink.

DOCA Documentation v2.7.0 714

When using ECMP failover on the two uplink SFs, locally disabling one uplink does not
result in traffic switching to the second uplink. Disabling local link in this case means to
set one uplink admin DOWN directly on BlueField.

To test ECMP failover scenarios correctly, the uplink must be disabled from its remote
counterpart (i.e., execute admin DOWN on the remote system's link which is connected
to the uplink).

HBN NVUE User Credentials

The preconfigured default user credentials are as follows:

Username nvidia

Password nvidia

NVUE user credentials can be added post installation:

1. This can be done by specifying additional –-username and –-password to the HBN
startup script (refer to "Running HBN Preparation Script"). For example:

2. After executing this script, respawn the container or start the decrypt-user-add script
inside running HBN container:

The script creates a new user in the HBN container:

sudo ./hbn-dpu-setup.sh -u newuser -p newpassword

supervisorctl start decrypt-user-add
decrypt-user-add: started

cat /etc/passwd | grep newuser
newuser:x:1001:1001::/home/newuser:/bin/bash

DOCA Documentation v2.7.0 715

HBN NVUE Interface Classification

Interface Interface Type NVUE Type

p0_sf Uplink representor swp

p1_sf Uplink representor swp

lo Loopback loopback

pf0hpf_sf Host representor swp

pf1hpf_sf Host representor swp

pf0vfx_sf (where x is 0-255) VF representor swp

pf1vfx_sf (where x is 0-255) VF representor swp

HBN Files Persistence

The following directories are mounted from BlueField Arm to the HBN container
namespace and are persistent across HBN service restarts and BlueField reboots:

BlueField Arm Mount Point
HBN Container Mount
Point

Configuration file
mount points

/var/lib/hbn/etc/network/ /etc/network/

/var/lib/hbn/etc/frr/ /etc/frr/

/var/lib/hbn/etc/nvue.d/ /etc/nvue.d/

/var/lib/hbn/etc/supervisor/conf.d/ /etc/supervisor/conf.d/

/var/lib/hbn/var/lib/nvue/ /var/lib/nvue/

Support and log
file mount points

/var/lib/hbn/var/support/ /var/support/

/var/log/doca/hbn/ /var/log/hbn/

SR-IOV Support in HBN

Creating SR-IOV VFs on Host

DOCA Documentation v2.7.0 716

The first step to use SR-IOV is to create Virtual Functions (VFs) on the host server.

VFs can be created using the following command:

Where:

<host-rep> is one of the two host representors (e.g., ens1f0 or ens1f1)

0≤N≤16 is the desired total number of VFs

Set N=0 to delete all the VFs on 0≤N≤16

N=16 is the maximum number of VFs supported on HBN across all
representors

Automatic Creation of VF Representors and SF Devices on BlueField

VFs created on the host must have corresponding VF representor devices and SF devices
for HBN on BlueField side. For example:

ens1f0vf0 is the first SR-IOV VF device from the first host representor; this interface is
created on the host server

pf0vf0 is the corresponding VF representor device to ens1f0vf0; this device is present
on the BlueField Arm side and automatically created at the same time as ens1f0vf0 is
created by the user on the host side

pf0vf0_sf is the corresponding SF device for pf0vf0 which is used to connect the VF to
HBN pipeline

The creation of the SF device for VFs is done ahead of time when provisioning the
BlueField and installing the DOCA image on it, see section "Enabling SFC" to see how to
select how many SFs to create ahead of time.

The SF devices for VFs (i.e., pfXvfY) are pre-mapped to work with the corresponding VF
representors when these are created with the command from the previous step.

sudo echo N > /sys/class/net/<host-rep>/device/sriov_numvfs

DOCA Documentation v2.7.0 717

Management VRF

Two management VRFs are automatically configured for HBN when BlueField is deployed
with SFC:

The first management VRF is outside the HBN container on BlueField. This VRF
provides separation between out-of-band (OOB) traffic (via oob_net0 or tmfifo_net0)
and data-plane traffic via uplinks and PFs.

The second management VRF is inside the HBN container and provides similar
separation. The OOB traffic (via eth0) is isolated from the traffic via the *_sf

interfaces.

MGMT VRF on BlueField Arm

The management (mgmt) VRF is enabled by default when the BlueField is deployed with
SFC (see section "Enabling SFC"). The mgmt VRF provides separation between the OOB
management network and the in-band data plane network.

The uplinks and PFs/VFs use the default routing table while the oob_net0 (OOB Ethernet
port) and the tmifo_net0 netdevices use the mgmt VRF to route their packets.

When logging in either via SSH or the console, the shell is by default in mgmt VRF context.
This is indicated by a mgmt added to the shell prompt:

When logging into the HBN container with crictl, the HBN shell will be in the default VRF.
Users must switch to MGMT VRF manually if OOB access is required. Use ip vrf exec to do
so.

root@bf2:mgmt:/home/ubuntu#

root@bf2:mgmt:/home/ubuntu# ip vrf identify

mgmt.

root@bf2:mgmt:/home/ubuntu# ip vrf exec mgmt bash

DOCA Documentation v2.7.0 718

The user must run ip vrf exec mgmt to perform operations requiring OOB access (e.g., apt-
get update).

Network devices belonging to the mgmt VRF can be listed with the vrf utility:

To show the routing table for the default VRF, run:

To show the routing table for the mgmt VRF, run:

root@bf2:mgmt:/home/ubuntu# vrf link list

VRF: mgmt

tmfifo_net0 UP 00:1a:ca:ff:ff:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
oob_net0 UP 08:c0:eb:c0:5a:32 <BROADCAST,MULTICAST,UP,LOWER_UP>

root@bf2:mgmt:/home/ubuntu# vrf help

vrf <OPTS>

VRF domains:
vrf list

Links associated with VRF domains:
vrf link list [<vrf-name>]

Tasks and VRF domain asociation:
vrf task exec <vrf-name> <command>
vrf task list [<vrf-name>]
vrf task identify <pid>

NOTE: This command affects only AF_INET and AF_INET6 sockets opened by the
command that gets exec'ed. Specifically, it has *no* impact on netlink
sockets (e.g., ip command).

root@bf2:mgmt:/home/ubuntu# ip route show

DOCA Documentation v2.7.0 719

MGMT VRF Inside HBN Container

Inside the HBN container, a separate mgmt VRF is present. Similar commands as those
listed under section "MGMT VRF on BlueField Arm" can be used to query management
routes.

The *_sf interfaces use the default routing table while the eth0 (OOB) uses the mgmt VRF
to route out-of-band packets out of the container. The OOB traffic gets NATed through
the oob_net0 interface on BlueField Arm, ultimately using the BlueField OOB's IP address.

When logging into the HBN container via crictl, the shell enters the default VRF context by
default. Switching to the mgmt VRF can be done using the command ip vrf exec mgmt <cmd>.

Existing Services in MGMT VRF on BlueField Arm

On the BlueField Arm, outside the HBN container, a set of existing services run in the
mgmt VRF context as they need OOB network access:

containerd

kubelet

ssh

docker

These services can be restarted and queried for their status using the command systemctl

while adding @mgmt to the original service name. For example:

To restart containerd:

To query containerd status:

root@bf2:mgmt:/home/ubuntu# ip route show vrf mgmt

root@bf2:mgmt:/home/ubuntu# systemctl restart containerd@mgmt

DOCA Documentation v2.7.0 720

Running New Service in MGMT VRF on BlueField Arm

If a service needs OOB access to run, it can be added to the set of services running in
mgmt VRF context. Adding such a service is only possible on the BlueField Arm (i.e.,
outside the HBN container).

To add a service to the set of mgmt VRF services:

1. Add it to /etc/vrf/systemd.conf (if it is not present already). For example, NTP is already
listed in this file.

2. Run the following:

3. Stop and disable to the non-VRF version of the service to be able to start the mgmt
VRF one:

root@bf2:mgmt:/home/ubuntu# systemctl status containerd@mgmt

Note

The original version of these services (without @mgmt) are not used
and must not be started.

root@bf2:mgmt:/home/ubuntu# systemctl daemon-reload

root@bf2:mgmt:/home/ubuntu# systemctl stop ntp
root@bf2:mgmt:/home/ubuntu# systemctl disable ntp
root@bf2:mgmt:/home/ubuntu# systemctl enable ntp@mgmt
root@bf2:mgmt:/home/ubuntu# systemctl start ntp@mgmt

DOCA Documentation v2.7.0 721

Configuration

To start configuring HBN, log into the HBN container:

General Network Configuration

Flat Files Configuration

Add network interfaces and FRR configuration files to HBN to achieve the desired
configuration:

/etc/network/interfaces

/etc/frr/frr.conf; /etc/frr/daemons

sudo crictl exec -it $(crictl ps | grep hbn | awk '{print $1;}') bash

Note

Refer to NVIDIA® Cumulus® Linux documentation for more
information.

Note

Refer to NVIDIA® Cumulus® Linux documentation for more
information.

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/Layer-3/FRRouting/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/Layer-3/FRRouting/

DOCA Documentation v2.7.0 722

NVUE Configuration

This section assumes familiarity with NVIDIA user experience (NVUE) Cumulus Linux
documentation. The following subsections, only expand on HBN-specific aspects of NVUE.

NVUE Service

HBN installs NVUE by default and enables NVUE service at boot.

NVUE REST API

HBN enables REST API by default.

Users may run the cURL commands from the command line. Use the default HBN
username nvidia and password nvidia.

To change the default password of the nvidia user or add additional users for NVUE
access, refer to section "HBN NVUE User Credentials".

REST API example:

curl -u 'nvidia:nvidia' --insecure
https://<mgmt_ip>:8765/nvue_v1/vrf/default/router/bgp
{
"configured-neighbors": 2,
"established-neighbors": 2,
"router-id": "10.10.10.201"
}

Note

For information about using the NVUE REST API, refer to the NVUE
API documentation .

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/api/index.html
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/api/index.html

DOCA Documentation v2.7.0 723

NVUE CLI

For information about using the NVUE CLI, refer to the NVUE CLI documentation

NVUE Startup Configuration File

When the network configuration is saved using NVUE, HBN writes the configuration to
the /etc/nvue.d/startup.yaml file.

Startup configuration is applied by following the supervisor daemon at boot time. nvued-

startup will appear in EXITED state after applying the startup configuration.

HBN Configuration Examples

HBN Default Configuration

supervisorctl status nvued-startup

nvued-startup EXITED Apr 17 10:04 AM

Note

nv config apply startup applies the yaml configuration saved at /etc/nvue.d/.

Note

nv config save saves the running configuration to /etc/nvue.d/startup.yaml.

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/#nvue-cli

DOCA Documentation v2.7.0 724

After a fresh HBN installation, the default /etc/network/interfaces file would contain only the
declaration of the two uplink SFs and a loopback interface.

FRR configuration files would also be present under /etc/frr/ but no configuration would be
enabled.

Layer-3 Routing

Native Routing with BGP and ECMP

HBN supports unicast routing with BGP and ECMP for IPv4 and IPv6 traffic. ECMP is
achieved by distributing traffic using hash calculation based on the source IP , destination
IP, and protocol type of the IP header.

ECMP Example

source /etc/network/interfaces.d/*.intf

auto lo
iface lo inet loopback

auto p0_sf
iface p0_sf

auto p1_sf
iface p1_sf

Info

For TCP and UDP packets, it also includes source port and destination
port.

DOCA Documentation v2.7.0 725

ECMP is implemented any time routes have multiple paths over uplinks or host ports. For
example, 20.20.20.0/24 has 2 paths using both uplinks, so a path is selected based on a
hash of the IP headers.

Sample NVUE Configuration for Native Routing

20.20.20.0/24 proto bgp metric 20
nexthop via 169.254.0.1 dev p0_sf weight 1 onlink <<<<< via uplink p0_sf
nexthop via 169.254.0.1 dev p1_sf weight 1 onlink <<<<< via uplink p1_sf

Info

HBN supports up to 16 paths for ECMP.

nv set interface lo ip address 10.10.10.1/32
nv set interface lo ip address 2010:10:10::1/128
nv set interface vlan100 type svi
nv set interface vlan100 vlan 100
nv set interface vlan100 base-interface br_default
nv set interface vlan100 ip address 2030:30:30::1/64
nv set interface vlan100 ip address 30.30.30.1/24
nv set bridge domain br_default vlan 100
nv set interface pf0hpf_sf,pf1hpf_sf bridge domain br_default access 100
nv set vrf default router bgp router-id 10.10.10.1
nv set vrf default router bgp autonomous-system 65501
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf default router bgp address-family ipv6-unicast enable on

DOCA Documentation v2.7.0 726

Sample Flat Files Configuration for Native Routing

Example /etc/network/interfaces configuration:

nv set vrf default router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf default router bgp neighbor p0_sf remote-as external
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p0_sf address-family ipv4-unicast enable on
nv set vrf default router bgp neighbor p0_sf address-family ipv6-unicast enable on
nv set vrf default router bgp neighbor p1_sf remote-as external
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf address-family ipv4-unicast enable on
nv set vrf default router bgp neighbor p1_sf address-family ipv6-unicast enable on

auto lo
iface lo inet loopback
address 10.10.10.1/32
address 2010:10:10::1/128

auto p0_sf
iface p0_sf

auto p1_sf
iface p1_sf

auto pf0hpf_sf
iface pf0hpf_sf
bridge-access 100

auto pf1hpf_sf
iface pf1hpf_sf
bridge-access 100

auto vlan100

DOCA Documentation v2.7.0 727

Example /etc/frr/daemons configuration:

iface vlan100
address 2030:30:30::1/64
address 30.30.30.1/24
vlan-raw-device br_default
vlan-id 100

auto br_default
iface br_default
bridge-ports pf0hpf_sf pf1hpf_sf
bridge-vlan-aware yes
bridge-vids 100
bridge-pvid 1

bgpd=yes
vtysh_enable=yes

FRR Config file @ /etc/frr/frr.conf -
!
frr version 7.5+cl5.3.0u0
frr defaults datacenter
hostname BLUEFIELD2
log syslog informational
no zebra nexthop kernel enable
!
router bgp 65501
bgp router-id 10.10.10.1
bgp bestpath as-path multipath-relax
neighbor p0_sf interface remote-as external
neighbor p0_sf advertisement-interval 0
neighbor p0_sf timers 3 9
neighbor p0_sf timers connect 10
neighbor p1_sf interface remote-as external

DOCA Documentation v2.7.0 728

Direct Routing on Host-facing Interfaces

Host-facing interfaces (PFs and VFs) are not restricted to be part of the bridge for routing.
HBN supports L3-only configuration with direct routing on host-facing PFs and VFs.

Sample NVUE Configuration

neighbor p1_sf advertisement-interval 0
neighbor p1_sf timers 3 9
neighbor p1_sf timers connect 10
!
address-family ipv4 unicast
redistribute connected
maximum-paths 64
maximum-paths ibgp 64
exit-address-family
!
address-family ipv6 unicast
redistribute connected
neighbor p0_sf activate
neighbor p1_sf activate
maximum-paths 64
maximum-paths ibgp 64
exit-address-family
!
line vty
!
end

nv set interface pf0hpf_sf ip address 30.30.11.1/24
nv set interface pf0hpf_sf ip address 2030:30:11::1/64
nv set interface pf0vf0_sf ip address 30.30.13.1/24
nv set interface pf0vf0_sf ip address 2030:30:13::1/64

DOCA Documentation v2.7.0 729

Sample Flat File Configuration

BGP Peering with the Host

HBN supports the ability to establish a BGP session between the host and the HBN
service running on BlueField Arm and allow the host to announce arbitrary route prefixes
through the BlueField into the underlay fabric. The host can use any standard BGP
protocol stack implementation to establish BGP peering with HBN.

Traffic to and from endpoints on the host gets offloaded.

It is possible to apply route filtering for these prefixes to limit the potential security
impact in this configuration.

Sample NVUE Configuration for Host BGP Peering

The following code block shows configuration to peer to host at 45.3.0.4 and
2001:cafe:1ead::4. The BGP session can be established using IPv4 or IPv6 address.

auto pf0hpf_sf
iface pf0hpf_sf
address 2030:30:11::1/64
address 30.30.11.1/24

auto pf0vf0_sf
iface pf0vf0_sf
address 2030:30:13::1/64
address 30.30.13.1/24

Note

Both IPv4 and IPv6 unicast AFI/SAFI are supported.

DOCA Documentation v2.7.0 730

NVUE configuration for peering with host:

Sample Flat Files Configuration for Host BGP peering

The following block shows configuration to peer to host at 45.3.0.4 and 2001:cafe:1ead::4. The
BGP session can be established using IPv4 or IPv6 address.

frr.conf file:

Note

Either of these sessions can support IPv4 unicast and IPv6 unicast
AFI/SAFI.

nv set vrf default router bgp autonomous-system 63642
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 45.3.0.4 nexthop-connected-check off
nv set vrf default router bgp neighbor 45.3.0.4 peer-group dpu_host
nv set vrf default router bgp neighbor 45.3.0.4 type numbered
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 nexthop-connected-check
off
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 peer-group dpu_host
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 type numbered
nv set vrf default router bgp peer-group dpu_host address-family ipv4-unicast
enable on
nv set vrf default router bgp peer-group dpu_host address-family ipv6-unicast
enable on
nv set vrf default router bgp peer-group dpu_host remote-as external

router bgp 63642
bgp router-id 27.0.0.4
bgp bestpath as-path multipath-relax
neighbor dpu_host peer-group

DOCA Documentation v2.7.0 731

Sample FRR configuration on the Host

Any BGP implementation can be used on the host to peer to HBN and advertise
endpoints. The following is an example using FRR BGP:

Sample FRR configuration on the host:

neighbor dpu_host remote-as external
neighbor dpu_host advertisement-interval 0
neighbor dpu_host timers 3 9
neighbor dpu_host timers connect 10
neighbor dpu_host disable-connected-check
neighbor fabric peer-group
neighbor fabric remote-as external
neighbor fabric advertisement-interval 0
neighbor fabric timers 3 9
neighbor fabric timers connect 10
neighbor 45.3.0.4 peer-group dpu_host
neighbor 2001:cafe:1ead::4 peer-group dpu_host
neighbor p0_sf interface peer-group fabric
neighbor p1_sf interface peer-group fabric
!
address-family ipv4 unicast
neighbor dpu_host activate
!
address-family ipv6 unicast
neighbor dpu_host activate

bf2-s12# sh run
Building configuration...

Current configuration:
!
frr version 7.2.1
frr defaults traditional

DOCA Documentation v2.7.0 732

Sample interfaces configuration on the host:

hostname bf2-s12
no ip forwarding
no ipv6 forwarding
!
router bgp 1000008
!
router bgp 1000008 vrf v_200_2000
neighbor 45.3.0.2 remote-as external
neighbor 2001:cafe:1ead::2 remote-as external
!
address-family ipv4 unicast
redistribute connected
exit-address-family
!
address-family ipv6 unicast
redistribute connected
neighbor 45.3.0.2 activate
neighbor 2001:cafe:1ead::2 activate
exit-address-family
!
line vty
!
end

root@bf2-s12:/home/cumulus# ifquery -a
auto lo
iface lo inet loopback
address 27.0.0.7/32
address 2001:c000:10ff:f00d::7/128

auto v_200_2000
iface v_200_2000
address 60.1.0.1

DOCA Documentation v2.7.0 733

VRF Route Leaking

VRFs are typically used when multiple independent routing and forwarding tables are
desirable. However, users may want to reach destinations in one VRF from another VRF,
as in the following cases:

To make a service, such as a firewall available to multiple VRFs

To enable routing to external networks or the Internet for multiple VRFs, where the
external network itself is reachable through a specific VRF

Route leaking can be used to reach remote destinations as well as directly connected
destinations in another VRF. Multiple VRFs can import routes from a single source VRF,
and a VRF can import routes from multiple source VRFs. This can be used when a single
VRF provides connectivity to external networks or a shared service for other VRFs. It is
possible to control the routes leaked dynamically across VRFs with a route map.

When route leaking is used:

The redistribute command (not network command) must be used in BGP to leak non-
BGP routes (connected or static routes)

address 60.1.0.2
address 60.1.0.3
address 2001:60:1::1
address 2001:60:1::2
address 2001:60:1::3
vrf-table auto
auto ens1f0np0
iface ens1f0np0
address 45.3.0.4/24
address 2001:cafe:1ead::4/64
gateway 45.3.0.1
gateway 2001:cafe:1ead::1
vrf v_200_2000
hwaddress 00:03:00:08:00:12
mtu 9162

DOCA Documentation v2.7.0 734

It is not possible to leak routes between the default and non-default VRF

In the following example commands, routes in the BGP routing table of VRF BLUE

dynamically leak into VRF RED:

The following example commands delete leaked routes from VRF BLUE to VRF RED:

To exclude certain prefixes from the import process, configure the prefixes in a route
map.

The following example configures a route map to match the source protocol BGP and
imports the routes from VRF BLUE to VRF RED. For the imported routes, the community is
11:11 in VRF RED.

Note

Ping or other IP traffic from a locally connected host in vrfX to a local
interface IP address on the BlueField/HBN in vrfY does not work, even
if VRF route-leaking is enabled between these two VRFs.

nv set vrf RED router bgp address-family ipv4-unicast route-import from-vrf list BLUE
nv config apply

nv unset vrf RED router bgp address-family ipv4-unicast route-import from-vrf list
BLUE
nv config apply

nv set vrf RED router bgp address-family ipv4-unicast route-import from-vrf list BLUE
nv set router policy route-map BLUEtoRED rule 10 match type ipv4
nv set router policy route-map BLUEtoRED rule 10 match source-protocol bgp
nv set router policy route-map BLUEtoRED rule 10 action permit
nv set router policy route-map BLUEtoRED rule 10 set community 11:11

DOCA Documentation v2.7.0 735

To check the status of the VRF route leaking, run:

NVUE command:

Vtysh command:

For example:

To show more detailed status information, the following NVUE commands are available:

nv show vrf <vrf-name> router bgp address-family ipv4-unicast route-import from-vrf

nv show vrf <vrf-name> router bgp address-family ipv4-unicast route-import from-vrf list

nv show vrf <vrf-name> router bgp address-family ipv4-unicast route-import from-vrf list <leak-vrf-id>

To view the BGP routing table, run:

NVUE command:

nv set vrf RED router bgp address-family ipv4-unicast route-import from-vrf route-
map BLUEtoRED
nv config

nv show vrf <vrf-name> router bgp address-family ipv4-unicast route-import

show ip bgp vrf <vrf-name> ipv4|ipv6 unicast route-leak command.

nv show vrf RED router bgp address-family ipv4-unicast route-import

operational applied
-------------- ------------ ---------
from-vrf
enable on
route-map BLUEtoRED
[list] BLUE BLUE
[route-target] 10.10.10.1:3

DOCA Documentation v2.7.0 736

Vtysh command:

To view the FRR IP routing table, run:

Vtysh command:

Or:

VLAN Subinterfaces

A VLAN subinterface is a VLAN device on an interface. The VLAN ID appends to the parent
interface using dot (.) VLAN notation which is a standard way to specify a VLAN device in
Linux.

For example:

A VLAN with ID 100 which is a subinterface of p0_sf is annotated as p0_sf.100

nv show vrf <vrf-name> router bgp address-family ipv4-unicast

show ip bgp vrf <vrf-name> ipv4|ipv6 unicast

show ip route vrf <vrf-name>

net show route vrf <vrf-name>

Info

These commands show all routes, including routes leaked from
other VRFs.

DOCA Documentation v2.7.0 737

The subinterface p0_sf.100 only receives packets that have a VLAN 100 tag on port
p0_sf

Any packets transmitted from p0_sf.100 would have VLAN tag 100

In HBN, VLAN subinterfaces can be created on uplink ports as well as on the host-facing
PF and VF ports. A VLAN subinterface only receives traffic tagged for that VLAN.

In the following example, uplink subinterface on p0_sf with VLAN ID 10 and a host facing
subinterface on VF ports pf1vf0_sf with VLAN ID 999 are created. The host-facing
subinterface is also assigned with IPv4 and IPv6 addresses.

Subinterface configuration using NVUE commands:

Same configuration using sample flat file in /etc/network/interfaces:

Note

VLAN subinterfaces are L3 interfaces and should not be added to a
bridge.

nv set interface p0_sf.10 base-interface p0_sf
nv set interface p0_sf.10 type sub
nv set interface p0_sf.10 vlan 10

nv set interface pf1vf0_sf type swp
nv set interface pf1vf0_sf.999 base-interface pf1vf0_sf
nv set interface pf1vf0_sf.999 type sub
nv set interface pf1vf0_sf.999 vlan 999
nv set interface pf1vf0_sf ip address 30.30.14.1/24
nv set interface pf1vf0_sf ip address 2030:30:14::1/64

auto p0_sf.10
iface p0_sf.10

DOCA Documentation v2.7.0 738

Ethernet Virtual Private Network – EVPN

HBN supports VXLAN with EVPN control plane for intra-subnet bridging (L2) services for
IPv4 and IPv6 traffic in the overlay.

For the underlay, only IPv4 or BGP unnumbered configuration is supported.

Single VXLAN Device

With a single VXLAN device, a set of VXLAN network identifiers (VNIs) represents a single
device model. The single VXLAN device has a set of attributes that belong to the VXLAN
construct. Individual VNIs include VLAN-to-VNI mapping which allows users to specify
which VLANs are associated with which VNIs. A single VXLAN device simplifies the
configuration and reduces the overhead by replacing multiple traditional VXLAN devices
with a single VXLAN device.

Users may configure a single VXLAN device automatically with NVUE, or manually by
editing the /etc/network/interfaces file. When users configure a single VXLAN device with
NVUE, NVUE creates a unique name for the device in the following format using the
bridge name as the hash key: vxlan<id>.
This example configuration performs the following steps:

1. Creates a single VXLAN device (vxlan21).

auto pf1vf0_sf.999
iface pf1vf0_sf.999
address 2030:30:40::1/64
address 30.30.40.1/24

Note

HBN supports VXLAN encapsulation only over uplink parent
interfaces.

DOCA Documentation v2.7.0 739

2. Maps VLAN 10 to VNI 10 and VLAN 20 to VNI 20.

3. Adds the VXLAN device to the default bridge.

Alternately, users may edit the file /etc/network/interfaces as follows, then run the ifreload -a

command to apply the SVD configuration.

cumulus@leaf01:~$ nv set bridge domain bridge vlan 10 vni 10
cumulus@leaf01:~$ nv set bridge domain bridge vlan 20 vni 20
cumulus@leaf01:~$ nv set nve vxlan source address 10.10.10.1
cumulus@leaf01:~$ nv config apply

auto lo
iface lo inet loopback
vxlan-local-tunnelip 10.10.10.1

auto vxlan21
iface vxlan21
bridge-vlan-vni-map 10=10 20=20
bridge-learning off

auto bridge
iface bridge
bridge-vlan-aware yes
bridge-ports vxlan21 pf0hpf_sf pf1hpf_sf
bridge-vids 10 20
bridge-pvid 1

Note

Users may not use a combination of single and traditional VXLAN
devices.

DOCA Documentation v2.7.0 740

Sample Switch Configuration for EVPN

The following is a sample NVUE config for underlay switches (NVIDIA® Spectrum® with
Cumulus Linux) to enable EVPN deployments with HBN.

It assumes that the uplinks on all BlueField devices are connected to ports swp1-4 on the
switch.

nv set evpn enable on
nv set router bgp enable on

nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on

nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 63640
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor swp1 peer-group fabric
nv set vrf default router bgp neighbor swp1 type unnumbered
nv set vrf default router bgp neighbor swp2 peer-group fabric
nv set vrf default router bgp neighbor swp2 type unnumbered
nv set vrf default router bgp neighbor swp3 peer-group fabric
nv set vrf default router bgp neighbor swp3 type unnumbered
nv set vrf default router bgp neighbor swp4 peer-group fabric
nv set vrf default router bgp neighbor swp4 type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable
on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable
on
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-
tx off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group fabric remote-as external

DOCA Documentation v2.7.0 741

Layer-2 EVPN

Sample NVUE Configuration for L2 EVPN

The following is a sample NVUE configuration which has L2-VNIs (2000, 2001) for EVPN
bridging on BlueField.

nv set vrf default router bgp router-id 27.0.0.10

nv set interface lo ip address 2001:c000:10ff:f00d::10/128
nv set interface lo ip address 27.0.0.10/32
nv set interface lo type loopback
nv set interface swp1,swp2,swp3,swp4 type swp

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default vlan 200 vni 2000 flooding enable auto
nv set bridge domain br_default vlan 200 vni 2000 mac-learning off
nv set bridge domain br_default vlan 201 vni 2001 flooding enable auto
nv set bridge domain br_default vlan 201 vni 2001 mac-learning off

nv set evpn enable on
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.4
nv set router bgp enable on
nv set system global anycast-mac 44:38:39:42:42:07
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on

nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 63642
nv set vrf default router bgp enable on

DOCA Documentation v2.7.0 742

nv set vrf default router bgp neighbor p0_sf peer-group fabric
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf peer-group fabric
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable
on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast policy
outbound route-map MY_ORIGIN_ASPATH_ONLY
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable
on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast policy
outbound route-map MY_ORIGIN_ASPATH_ONLY
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-
tx off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp router-id 27.0.0.4

nv set interface lo ip address 2001:c000:10ff:f00d::4/128
nv set interface lo ip address 27.0.0.4/32
nv set interface lo type loopback
nv set interface p0_sf,p1_sf,pf0hpf_sf,pf1hpf_sf type swp
nv set interface pf0hpf_sf bridge domain br_default access 200
nv set interface pf1hpf_sf bridge domain br_default access 201

nv set interface vlan200-201 base-interface br_default
nv set interface vlan200-201 ip ipv4 forward on
nv set interface vlan200-201 ip ipv6 forward on
nv set interface vlan200-201 ip vrr enable on
nv set interface vlan200-201 ip vrr state up
nv set interface vlan200-201 link mtu 9050
nv set interface vlan200-201 type svi
nv set interface vlan200 ip address 2001:cafe:1ead::3/64
nv set interface vlan200 ip address 45.3.0.2/24
nv set interface vlan200 ip vrr address 2001:cafe:1ead::1/64

DOCA Documentation v2.7.0 743

Sample Flat Files Configuration for L2 EVPN

The following is a sample flat files configuration which has L2-VNIs (vx-2000, vx-2001) for
EVPN bridging on BlueField.

This file is located at /etc/network/interfaces:

nv set interface vlan200 ip vrr address 45.3.0.1/24
nv set interface vlan200 vlan 200
nv set interface vlan201 ip address 2001:cafe:1ead:1::3/64
nv set interface vlan201 ip address 45.3.1.2/24
nv set interface vlan201 ip vrr address 2001:cafe:1ead:1::1/64
nv set interface vlan201 ip vrr address 45.3.1.1/24
nv set interface vlan201 vlan 201

auto lo
iface lo inet loopback
address 2001:c000:10ff:f00d::4/128
address 27.0.0.4/32
vxlan-local-tunnelip 27.0.0.4

auto p0_sf
iface p0_sf

auto p1_sf
iface p1_sf

auto pf0hpf_sf
iface pf0hpf_sf
bridge-access 200

auto pf1hpf_sf
iface pf1hpf_sf
bridge-access 201

DOCA Documentation v2.7.0 744

This file tells the frr package which daemon to start and is located at /etc/frr/daemons:

auto vlan200
iface vlan200
address 2001:cafe:1ead::3/64
address 45.3.0.2/24
mtu 9050
address-virtual 00:00:5e:00:01:01 2001:cafe:1ead::1/64 45.3.0.1/24
vlan-raw-device br_default
vlan-id 200

auto vlan201
iface vlan201
address 2001:cafe:1ead:1::3/64
address 45.3.1.2/24
mtu 9050
address-virtual 00:00:5e:00:01:01 2001:cafe:1ead:1::1/64 45.3.1.1/24
vlan-raw-device br_default
vlan-id 201

auto vxlan48
iface vxlan48
bridge-vlan-vni-map 200=2000 201=2001
217=2017
bridge-learning off

auto br_default
iface br_default
bridge-ports pf0hpf_sf pf1hpf_sf vxlan48
bridge-vlan-aware yes
bridge-vids 200 201
bridge-pvid 1

bgpd=yes
ospfd=no

DOCA Documentation v2.7.0 745

ospf6d=no
isisd=no
pimd=no
ldpd=no
pbrd=no
vrrpd=no
fabricd=no
nhrpd=no
eigrpd=no
babeld=no
sharpd=no
fabricd=no
ripngd=no
ripd=no

vtysh_enable=yes
zebra_options=" -M cumulus_mlag -M snmp -A 127.0.0.1 -s 90000000"
bgpd_options=" -M snmp -A 127.0.0.1"
ospfd_options=" -M snmp -A 127.0.0.1"
ospf6d_options=" -M snmp -A ::1"
ripd_options=" -A 127.0.0.1"
ripngd_options=" -A ::1"
isisd_options=" -A 127.0.0.1"
pimd_options=" -A 127.0.0.1"
ldpd_options=" -A 127.0.0.1"
nhrpd_options=" -A 127.0.0.1"
eigrpd_options=" -A 127.0.0.1"
babeld_options=" -A 127.0.0.1"
sharpd_options=" -A 127.0.0.1"
pbrd_options=" -A 127.0.0.1"
staticd_options="-A 127.0.0.1"
fabricd_options="-A 127.0.0.1"
vrrpd_options=" -A 127.0.0.1"

frr_profile="datacenter"

DOCA Documentation v2.7.0 746

FRR configuration file is located at /etc/frr/frr.conf:

!---- Cumulus Defaults ----
frr defaults datacenter
log syslog informational
no zebra nexthop kernel enable
vrf default
outer bgp 63642 vrf default
bgp router-id 27.0.0.4
bgp bestpath as-path multipath-relax
timers bgp 3 9
bgp deterministic-med
! Neighbors
neighbor fabric peer-group
neighbor fabric remote-as external
neighbor fabric timers 3 9
neighbor fabric timers connect 10
neighbor fabric advertisement-interval 0
neighbor p0_sf interface peer-group fabric
neighbor p1_sf interface peer-group fabric
address-family ipv4 unicast
maximum-paths ibgp 64
maximum-paths 64
distance bgp 20 200 200
neighbor fabric activate
exit-address-family
address-family ipv6 unicast
maximum-paths ibgp 64
maximum-paths 64
distance bgp 20 200 200
neighbor fabric activate
exit-address-family
address-family l2vpn evpn
advertise-all-vni
neighbor fabric activate

DOCA Documentation v2.7.0 747

Layer-3 EVPN with Symmetric Routing

In distributed symmetric routing, each VXLAN endpoint (VTEP) acts as a layer-3 gateway,
performing routing for its attached hosts. However, both the ingress VTEP and egress
VTEP route the packets (similar to traditional routing behavior of routing to a next-hop
router). In a VXLAN encapsulated packet, the inner destination MAC address is the router
MAC address of the egress VTEP to indicate that the egress VTEP is the next hop and that
it must also perform the routing.

All routing happens in the context of a tenant (VRF). For a packet that the ingress VTEP
receives from a locally attached host, the SVI interface corresponding to the VLAN
determines the VRF. For a packet that the egress VTEP receives over the VXLAN tunnel,
the VNI in the packet has to specify the VRF. For symmetric routing, this is a VNI
corresponding to the tenant and is different from either the source VNI or the destination
VNI. This VNI is a layer-3 VNI or interconnecting VNI. The regular VNI, which maps a VLAN,
is the layer-2 VNI.

For more details about this, refer to the Cumulus Linux User Manual .

exit-address-family

Info

HBN uses a one-to-one mapping between an L3 VNI and a tenant
(VRF).

Info

The VRF to L3 VNI mapping has to be consistent across all VTEPs.

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/Network-Virtualization/Ethernet-Virtual-Private-Network-EVPN/Inter-subnet-Routing/#symmetric-routing

DOCA Documentation v2.7.0 748

In an EVPN symmetric routing configuration, when the switch announces a type-2
(MAC/IP) route, in addition to containing two VNIs (L2 and L3 VNIs), the route also
contains separate route targets (RTs) for L2 and L3. The L3 RT associates the route with
the tenant VRF. By default, this is auto-derived using the L3 VNI instead of the L2 VNI.
However, this is configurable.

For EVPN symmetric routing, users must perform the configuration listed in the following
subsections. Optional configuration includes configuring a r oute distinguisher (RD) and
RTs for the tenant VRF, and advertising the locally-attached subnets.

Sample NVUE Configuration for L3 EVPN

If using NVUE to configure EVPN symmetric routing, the following is a sample
configuration using NVUE commands:

Info

An L3 VNI and an L2 VNI cannot have the same ID.

nv set bridge domain br_default vlan 111 vni 1000111

nv set bridge domain br_default vlan 112 vni 1000112

nv set bridge domain br_default vlan 213 vni 1000213

nv set bridge domain br_default vlan 214 vni 1000214

nv set evpn enable on
nv set interface lo ip address 6.0.0.19/32

nv set interface lo type loopback
nv set interface p0_sf description 'alias p0_sf to leaf-21 swp3'

nv set interface p0_sf,p1_sf,pf0hpf_sf,pf0vf0_sf,pf1hpf_sf,pf1vf0_sf type swp
nv set interface p1_sf description 'alias p1_sf to leaf-22 swp3'

nv set interface pf0hpf_sf bridge domain br_default access 111

nv set interface pf0hpf_sf description 'alias pf0hpf_sf to host-211 ens2f0np0'

nv set interface pf0vf0_sf bridge domain br_default access 112

nv set interface pf0vf0_sf description 'alias pf0vf0_sf to host-211 ens2f0np0v0'

nv set interface pf1hpf_sf bridge domain br_default access 213

nv set interface pf1hpf_sf description 'alias pf1hpf_sf to host-211 ens2f1np1'

DOCA Documentation v2.7.0 749

nv set interface pf1vf0_sf bridge domain br_default access 214

nv set interface pf1vf0_sf description 'alias pf1vf0_sf to host-211 ens2f1np0v0'

nv set interface vlan111 ip address 60.1.1.21/24

nv set interface vlan111 ip address 2060:1:1:1::21/64

nv set interface vlan111 ip vrr address 60.1.1.250/24

nv set interface vlan111 ip vrr address 2060:1:1:1::250/64

nv set interface vlan111 vlan 111

nv set interface vlan111,213 ip vrf vrf2
nv set interface vlan111-112,213-214 ip vrr enable on
nv set interface vlan111-112,213-214 ip vrr mac-address 00:00:5e:00:01:01

nv set interface vlan111-112,213-214 ip ipv4 forward on
nv set interface vlan111-112,213-214 ip ipv6 forward on
nv set interface vlan111-112,213-214 type svi
nv set interface vlan112 ip address 50.1.1.21/24

nv set interface vlan112 ip address 2050:1:1:1::21/64

nv set interface vlan112 ip vrr address 50.1.1.250/24

nv set interface vlan112 ip vrr address 2050:1:1:1::250/64

nv set interface vlan112 vlan 112

nv set interface vlan112,214 ip vrf vrf1
nv set interface vlan213 ip address 60.1.210.21/24

nv set interface vlan213 ip address 2060:1:1:210::21/64

nv set interface vlan213 ip vrr address 60.1.210.250/24

nv set interface vlan213 ip vrr address 2060:1:1:210::250/64

nv set interface vlan213 vlan 213

nv set interface vlan214 ip address 50.1.210.21/24

nv set interface vlan214 ip address 2050:1:1:210::21/64

nv set interface vlan214 ip vrr address 50.1.210.250/24

nv set interface vlan214 ip vrr address 2050:1:1:210::250/64

nv set interface vlan214 vlan 214

nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan source address 6.0.0.19

nv set platform
nv set router bgp enable on
nv set router policy route-map ALLOW_LOBR rule 10 action permit
nv set router policy route-map ALLOW_LOBR rule 10 match interface lo

DOCA Documentation v2.7.0 750

nv set router policy route-map ALLOW_LOBR rule 20 action permit
nv set router policy route-map ALLOW_LOBR rule 20 match interface br_default
nv set router policy route-map ALLOW_VRF1 rule 10 action permit
nv set router policy route-map ALLOW_VRF1 rule 10 match interface vrf1
nv set router policy route-map ALLOW_VRF2 rule 10 action permit
nv set router policy route-map ALLOW_VRF2 rule 10 match interface vrf2
nv set router vrr enable on
nv set system global system-mac 00:01:00:00:1e:03

nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast multipaths ebgp 16

nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
route-map ALLOW_LOBR
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 650019

nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor p0_sf address-family l2vpn-evpn add-path-tx
off
nv set vrf default router bgp neighbor p0_sf address-family l2vpn-evpn enable on
nv set vrf default router bgp neighbor p0_sf peer-group TOR_LEAF_SPINE
nv set vrf default router bgp neighbor p0_sf remote-as external
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf address-family l2vpn-evpn add-path-tx
off
nv set vrf default router bgp neighbor p1_sf address-family l2vpn-evpn enable on
nv set vrf default router bgp neighbor p1_sf peer-group TOR_LEAF_SPINE
nv set vrf default router bgp neighbor p1_sf remote-as external
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp path-selection routerid-compare on
nv set vrf default router bgp peer-group TOR_LEAF_SPINE address-family ipv4-unicast
enable on
nv set vrf default router bgp router-id 6.0.0.19

nv set vrf vrf1 evpn enable on
nv set vrf vrf1 evpn vni 104001

DOCA Documentation v2.7.0 751

nv set vrf vrf1 loopback ip address 50.1.21.21/32

nv set vrf vrf1 loopback ip address 2050:50:50:21::21/128

nv set vrf vrf1 router bgp address-family ipv4-unicast enable on
nv set vrf vrf1 router bgp address-family ipv4-unicast redistribute connected enable
on
nv set vrf vrf1 router bgp address-family ipv4-unicast redistribute connected route-
map ALLOW_VRF1
nv set vrf vrf1 router bgp address-family ipv4-unicast route-export to-evpn enable
on
nv set vrf vrf1 router bgp address-family ipv6-unicast enable on
nv set vrf vrf1 router bgp address-family ipv6-unicast redistribute connected enable
on
nv set vrf vrf1 router bgp address-family ipv6-unicast redistribute connected route-
map ALLOW_VRF1
nv set vrf vrf1 router bgp address-family ipv6-unicast route-export to-evpn enable
on
nv set vrf vrf1 router bgp autonomous-system 650019

nv set vrf vrf1 router bgp enable on
nv set vrf vrf1 router bgp router-id 50.1.21.21

nv set vrf vrf2 evpn enable on
nv set vrf vrf2 evpn vni 104002

nv set vrf vrf2 loopback ip address 60.1.21.21/32

nv set vrf vrf2 loopback ip address 2060:60:60:21::21/128

nv set vrf vrf2 router bgp address-family ipv4-unicast enable on
nv set vrf vrf2 router bgp address-family ipv4-unicast redistribute connected enable
on
nv set vrf vrf2 router bgp address-family ipv4-unicast redistribute connected route-
map ALLOW_VRF2
nv set vrf vrf2 router bgp address-family ipv4-unicast route-export to-evpn enable
on
nv set vrf vrf2 router bgp address-family ipv6-unicast enable on
nv set vrf vrf2 router bgp address-family ipv6-unicast redistribute connected enable
on
nv set vrf vrf2 router bgp address-family ipv6-unicast redistribute connected route-
map ALLOW_VRF2

DOCA Documentation v2.7.0 752

Sample Flat Files Configuration for L3 EVPN

The following is a sample flat files configuration which has L2 VNIs and L3 VNIs for EVPN
bridging and symmetric routing on BlueField.

This file is located at /etc/network/interfaces:

nv set vrf vrf2 router bgp address-family ipv6-unicast route-export to-evpn enable
on
nv set vrf vrf2 router bgp autonomous-system 650019

nv set vrf vrf2 router bgp enable on
nv set vrf vrf2 router bgp router-id 60.1.21.21

auto lo
iface lo inet loopback
address 6.0.0.19/32
vxlan-local-tunnelip 6.0.0.19

auto vrf1
iface vrf1
address 2050:50:50:21::21/128
address 50.1.21.21/32
vrf-table auto

auto vrf2
iface vrf2
address 2060:60:60:21::21/128
address 60.1.21.21/32
vrf-table auto

auto p0_sf
iface p0_sf
alias alias p0_sf to leaf-21 swp3

auto p1_sf

DOCA Documentation v2.7.0 753

iface p1_sf
alias alias p1_sf to leaf-22 swp3

auto pf0hpf_sf
iface pf0hpf_sf
alias alias pf0hpf_sf to host-211 ens2f0np0
bridge-access 111

auto pf0vf0_sf
iface pf0vf0_sf
alias alias pf0vf0_sf to host-211 ens2f0np0v0
bridge-access 112

auto pf1hpf_sf
iface pf1hpf_sf
alias alias pf1hpf_sf to host-211 ens2f1np1
bridge-access 213

auto pf1vf0_sf
iface pf1vf0_sf
alias alias pf1vf0_sf to host-211 ens2f1np0v0
bridge-access 214

auto vlan111
iface vlan111
address 2060:1:1:1::21/64
address 60.1.1.21/24
address-virtual 00:00:5e:00:01:01 2060:1:1:1::250/64 60.1.1.250/24
hwaddress 00:01:00:00:1e:03
vrf vrf2
vlan-raw-device br_default
vlan-id 111

auto vlan112
iface vlan112
address 2050:1:1:1::21/64

DOCA Documentation v2.7.0 754

address 50.1.1.21/24
address-virtual 00:00:5e:00:01:01 2050:1:1:1::250/64 50.1.1.250/24
hwaddress 00:01:00:00:1e:03
vrf vrf1
vlan-raw-device br_default
vlan-id 112

auto vlan213
iface vlan213
address 2060:1:1:210::21/64
address 60.1.210.21/24
address-virtual 00:00:5e:00:01:01 2060:1:1:210::250/64 60.1.210.250/24
hwaddress 00:01:00:00:1e:03
vrf vrf2
vlan-raw-device br_default
vlan-id 213

auto vlan214
iface vlan214
address 2050:1:1:210::21/64
address 50.1.210.21/24
address-virtual 00:00:5e:00:01:01 2050:1:1:210::250/64 50.1.210.250/24
hwaddress 00:01:00:00:1e:03
vrf vrf1
vlan-raw-device br_default
vlan-id 214

auto vlan4058_l3
iface vlan4058_l3
vrf vrf1
vlan-raw-device br_default
address-virtual none
vlan-id 4058

auto vlan4059_l3
iface vlan4059_l3

DOCA Documentation v2.7.0 755

FRR configuration is located at /etc/frr/frr.conf:

vrf vrf2
vlan-raw-device br_default
address-virtual none
vlan-id 4059

auto vxlan48
iface vxlan48
bridge-vlan-vni-map 111=1000111 112=1000112 213=1000213 214=1000214
4058=104001 4059=104002
bridge-learning off

auto br_default
iface br_default
bridge-ports pf0hpf_sf pf0vf0_sf pf1hpf_sf pf1vf0_sf vxlan48
hwaddress 00:01:00:00:1e:03
bridge-vlan-aware yes
bridge-vids 111 112 213 214
bridge-pvid 1

frr version 8.4.3
frr defaults datacenter
hostname doca-hbn-service-bf3-s05-1-ipmi
log syslog informational
no zebra nexthop kernel enable
service integrated-vtysh-config
!
vrf vrf1
vni 104001
exit-vrf
!
vrf vrf2
vni 104002
exit-vrf

DOCA Documentation v2.7.0 756

!
router bgp 650019
bgp router-id 6.0.0.19
bgp bestpath as-path multipath-relax
bgp bestpath compare-routerid
neighbor TOR_LEAF_SPINE peer-group
neighbor TOR_LEAF_SPINE advertisement-interval 0
neighbor TOR_LEAF_SPINE timers 3 9
neighbor TOR_LEAF_SPINE timers connect 10
neighbor p0_sf interface peer-group TOR_LEAF_SPINE
neighbor p0_sf remote-as external
neighbor p0_sf advertisement-interval 0
neighbor p0_sf timers 3 9
neighbor p0_sf timers connect 10
neighbor p1_sf interface peer-group TOR_LEAF_SPINE
neighbor p1_sf remote-as external
neighbor p1_sf advertisement-interval 0
neighbor p1_sf timers 3 9
neighbor p1_sf timers connect 10
!
address-family ipv4 unicast
redistribute connected route-map ALLOW_LOBR
maximum-paths 16
maximum-paths ibgp 64
exit-address-family
!
address-family l2vpn evpn
neighbor p0_sf activate
neighbor p1_sf activate
advertise-all-vni
exit-address-family
exit
!
router bgp 650019 vrf vrf1
bgp router-id 50.1.21.21
!

DOCA Documentation v2.7.0 757

address-family ipv4 unicast
redistribute connected route-map ALLOW_VRF1
maximum-paths 64
maximum-paths ibgp 64
exit-address-family
!
address-family ipv6 unicast
redistribute connected route-map ALLOW_VRF1
maximum-paths 64
maximum-paths ibgp 64
exit-address-family
!
address-family l2vpn evpn
advertise ipv4 unicast
advertise ipv6 unicast
exit-address-family
exit
!
router bgp 650019 vrf vrf2
bgp router-id 60.1.21.21
!
address-family ipv4 unicast
redistribute connected route-map ALLOW_VRF2
maximum-paths 64
maximum-paths ibgp 64
exit-address-family
!
address-family ipv6 unicast
redistribute connected route-map ALLOW_VRF2
maximum-paths 64
maximum-paths ibgp 64
exit-address-family
!
address-family l2vpn evpn
advertise ipv4 unicast
advertise ipv6 unicast

DOCA Documentation v2.7.0 758

Multi-hop eBGP Peering for EVPN (Route Server in Symmetric EVPN Routing)

eBGP multi-hop peering for EVPN support in a route server-like role in EVPN topology,
allows the deployment of EVPN on any cloud that supports IP transport.

R oute servers and BF/HBN VTEPs are connected via the IP cloud. That is:

Switches in the cloud provider need not be EVPN-aware

Switches in the provider fabric provide IPv4 and IPv6 transport and do not have to
support EVPN

Sample Route Server Configuration for EVPN

The following is a sample configuration of an Ubuntu server running FRR 9.0 stable,
configured as EVPN route server and an HBN VTEP that is peering to two spine switches
for IP connectivity and 3 Route servers for EVPN overlay control.

exit-address-family
exit
!
route-map ALLOW_LOBR permit 10
match interface lo
exit
!
route-map ALLOW_LOBR permit 20
match interface br_default
exit
!
route-map ALLOW_VRF1 permit 10
match interface vrf1
exit
!
route-map ALLOW_VRF2 permit 10
match interface vrf2
exit

DOCA Documentation v2.7.0 759

FRR configuration (frr.conf):

root@sn1:/home/cumulus# uname -a
Linux sn1 5.15.0-88-generic #98-Ubuntu SMP Mon Oct 2 15:18:56 UTC 2023 x86_64
x86_64 x86_64 GNU/Linux
root@sn1:/home/cumulus# dpkg -l frr
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture Description
+++-==============-=====================-============-
===
ii frr 9.0.1-0~ubuntu22.04.1 amd64 FRRouting suite of internet protocols (BGP, OSPF,
IS-IS, ...)
root@sn1:/home/cumulus#

sn1# sh run
Building configuration...

Current configuration:
!
frr version 9.0.1
frr defaults datacenter
hostname sn1
no ip forwarding
no ipv6 forwarding
service integrated-vtysh-config
!
router bgp 4200065507

bgp router-id 6.0.0.7

timers bgp 60 180

neighbor rclients peer-group
neighbor rclients remote-as external

DOCA Documentation v2.7.0 760

neighbor rclients ebgp-multihop 10

neighbor rclients update-source lo
neighbor rclients advertisement-interval 0
neighbor rclients timers 3 9
neighbor rclients timers connect 10

neighbor rcsuper peer-group
neighbor rcsuper remote-as external
neighbor rcsuper advertisement-interval 0
neighbor rcsuper timers 3 9
neighbor rcsuper timers connect 10

neighbor swp1 interface peer-group rcsuper
bgp listen range 6.0.0.0/24 peer-group rclients
!
address-family ipv4 unicast
redistribute connected
neighbor fabric route-map pass in
neighbor fabric route-map pass out
no neighbor rclients activate
maximum-paths 64

maximum-paths ibgp 64

exit-address-family
!
address-family l2vpn evpn
neighbor rclients activate
neighbor rcsuper activate
exit-address-family
exit
!
route-map pass permit 10

set community 11:11 additive
exit
!
end
sn1#

DOCA Documentation v2.7.0 761

Interfaces configuration (/etc/network/interfaces):

Sample HBN configuration for deployments with EVPN Route Server

root@sn1:/home/cumulus# ifquery -a
auto lo
iface lo inet loopback
address 6.0.0.7/32

auto lo
iface lo inet loopback

auto swp1
iface swp1

auto eth0
iface eth0
address 192.168.0.15/24

gateway 192.168.0.2

root@sn1:/home/cumulus#

root@doca-hbn-service-bf2-s12-1-ipmi:/tmp# nv config show -o commands
nv set bridge domain br_default vlan 101 vni 10101

nv set bridge domain br_default vlan 102 vni 10102

nv set bridge domain br_default vlan 201 vni 10201

nv set bridge domain br_default vlan 202 vni 10202

nv set evpn enable on
nv set evpn route-advertise svi-ip off
nv set interface ilan3200 ip vrf internet1
nv set interface ilan3200 vlan 3200

nv set interface ilan3200,slan3201,vlan101-102,201-202,3001-3002 base-interface

br_default
nv set interface ilan3200,slan3201,vlan101-102,201-202,3001-3002 type svi

DOCA Documentation v2.7.0 762

nv set interface lo ip address 6.0.0.13/32

nv set interface lo ip address 2001::13/128

nv set interface lo type loopback
nv set interface

p0_sf,p1_sf,pf0hpf_sf,pf0vf0_sf,pf0vf1_sf,pf0vf2_sf,pf0vf3_sf,pf0vf4_sf,pf0vf5_sf,pf0vf6_
type swp
nv set interface pf0vf0_sf bridge domain br_default access 101

nv set interface pf0vf1_sf bridge domain br_default access 102

nv set interface pf0vf2_sf bridge domain br_default access 201

nv set interface pf0vf3_sf bridge domain br_default access 202

nv set interface slan3201 ip vrf special1
nv set interface slan3201 vlan 3201

nv set interface vlan101 ip address 21.1.0.13/16

nv set interface vlan101 ip address 2020:0:1:1::13/64

nv set interface vlan101 ip vrr address 21.1.0.250/16

nv set interface vlan101 ip vrr address 2020:0:1:1::250/64

nv set interface vlan101 ip vrr mac-address 00:00:01:00:00:65

nv set interface vlan101 vlan 101

nv set interface vlan101-102,201-202 ip vrr enable on
nv set interface vlan101-102,3001 ip vrf tenant1
nv set interface vlan102 ip address 21.2.0.13/16

nv set interface vlan102 ip address 2020:0:1:2::13/64

nv set interface vlan102 ip vrr address 21.2.0.250/16

nv set interface vlan102 ip vrr address 2020:0:1:2::250/64

nv set interface vlan102 ip vrr mac-address 00:00:01:00:00:66

nv set interface vlan102 vlan 102

nv set interface vlan201 ip address 22.1.0.13/16

nv set interface vlan201 ip address 2020:0:2:1::13/64

nv set interface vlan201 ip vrr address 22.1.0.250/16

nv set interface vlan201 ip vrr address 2020:0:2:1::250/64

nv set interface vlan201 ip vrr mac-address 00:00:02:00:00:c9
nv set interface vlan201 vlan 201

nv set interface vlan201-202,3002 ip vrf tenant2
nv set interface vlan202 ip address 22.2.0.13/16

nv set interface vlan202 ip address 2020:0:2:2::13/64

nv set interface vlan202 ip vrr address 22.2.0.250/16

DOCA Documentation v2.7.0 763

nv set interface vlan202 ip vrr address 2020:0:2:2::250/64

nv set interface vlan202 ip vrr mac-address 00:00:02:00:00:ca
nv set interface vlan202 vlan 202

nv set interface vlan3001 vlan 3001

nv set interface vlan3002 vlan 3002

nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan source address 6.0.0.13

nv set platform
nv set router bgp autonomous-system 4200065011

nv set router bgp enable on
nv set router bgp router-id 6.0.0.13

nv set router vrr enable on
nv set system config snippet
nv set system global
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 6.0.0.7 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.7 type numbered
nv set vrf default router bgp neighbor 6.0.0.8 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.8 type numbered
nv set vrf default router bgp neighbor 6.0.0.9 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.9 type numbered
nv set vrf default router bgp neighbor p0_sf peer-group fabric
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf peer-group fabric
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on

nv set vrf default router bgp peer-group fabric remote-as external

DOCA Documentation v2.7.0 764

nv set vrf default router bgp peer-group rservers address-family ipv4-unicast enable
off
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn add-
path-tx off
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn enable
on
nv set vrf default router bgp peer-group rservers multihop-ttl 3
nv set vrf default router bgp peer-group rservers remote-as external
nv set vrf default router bgp peer-group rservers update-source lo
nv set vrf internet1 evpn enable on
nv set vrf internet1 evpn vni 42000

nv set vrf internet1 loopback ip address 8.1.0.13/32

nv set vrf internet1 loopback ip address 2008:0:1::13/64

nv set vrf internet1 router bgp address-family ipv4-unicast enable on
nv set vrf internet1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf internet1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf internet1 router bgp enable on
nv set vrf special1 evpn enable on
nv set vrf special1 evpn vni 42001

nv set vrf special1 loopback ip address 9.1.0.13/32

nv set vrf special1 loopback ip address 2009:0:1::13/64

nv set vrf special1 router bgp address-family ipv4-unicast enable on
nv set vrf special1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf special1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf special1 router bgp enable on
nv set vrf tenant1 evpn enable on
nv set vrf tenant1 evpn vni 30001

nv set vrf tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast route-export to-evpn
enable on

DOCA Documentation v2.7.0 765

Verifying BGP sessions in HBN:

nv set vrf tenant1 router bgp enable on
nv set vrf tenant1 router bgp router-id 6.0.0.13

nv set vrf tenant2 evpn enable on
nv set vrf tenant2 evpn vni 30002

nv set vrf tenant2 router bgp address-family ipv4-unicast enable on
nv set vrf tenant2 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant2 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf tenant2 router bgp enable on
nv set vrf tenant2 router bgp router-id 6.0.0.13

root@doca-hbn-service-bf2-s12-1-ipmi:/tmp#

doca-hbn-service-bf2-s12-1-ipmi# sh bgp sum

IPv4 Unicast Summary (VRF default):
BGP router identifier 6.0.0.13, local AS number 4200065011 vrf-id 0
BGP table version 20

RIB entries 21, using 4032 bytes of memory
Peers 2, using 40 KiB of memory
Peer groups 2, using 128 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt
Desc
spine11(p0_sf) 4 65201 30617 30620 0 0 0 1d01h30m 9 11 N/A
spine12(p1_sf) 4 65201 30620 30623 0 0 0 1d01h30m 9 11 N/A

Total number of neighbors 2

IPv6 Unicast Summary (VRF default):
BGP router identifier 6.0.0.13, local AS number 4200065011 vrf-id 0
BGP table version 0

DOCA Documentation v2.7.0 766

The command output shows that the HBN has BGP sessions with spine switches
exchanging IPv4/IPv6 unicast. BGP sessions with route servers sn1, sn2, and sn3 only
exchanging L2VPN EVPN AFI/SAFI.

Downstream VNI (DVNI)

RIB entries 0, using 0 bytes of memory
Peers 2, using 40 KiB of memory
Peer groups 2, using 128 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt
Desc
spine11(p0_sf) 4 65201 30617 30620 0 0 0 1d01h30m 0 0 N/A
spine12(p1_sf) 4 65201 30620 30623 0 0 0 1d01h30m 0 0 N/A

Total number of neighbors 2

L2VPN EVPN Summary (VRF default):
BGP router identifier 6.0.0.13, local AS number 4200065011 vrf-id 0
BGP table version 0
RIB entries 79, using 15 KiB of memory
Peers 3, using 60 KiB of memory
Peer groups 2, using 128 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt
Desc
sn1(6.0.0.7) 4 4200065507 31410 31231 0 0 0 00:27:51 69 95 N/A
sn2(6.0.0.8) 4 4200065508 31169 31062 0 0 0 02:34:47 69 95 N/A
sn3(6.0.0.9) 4 4200065509 31285 31059 0 0 0 02:34:47 69 95 N/A

Total number of neighbors 3
doca-hbn-service-bf2-s12-1-ipmi#

DOCA Documentation v2.7.0 767

Downstream VNI (symmetric EVPN route leaking) allows users to leak remote EVPN
routes without having the source tenant VRF locally configured. A common use case is
where upstream switches learn the L3VNI from downstream leaf switches and impose
the learned L3VNI to the traffic VXLAN routed to the associated VRF. This eliminates the
need to configure L3VNI-SVI interfaces on all leaf switches and enables shared service
and hub-and-spoke scenarios .

To configure access to a shared service in a specific VRF, users must:

1. Configure route-target import statements, effectively leaking routes from remote
tenants to the shared VRF.

2. Import shared VRF's route-target at the remote nodes.

The route target import or export statement takes the following format:

For example:

For route target import statements, users can use route-target import ANY:<vni> for NVUE
commands or route-target import *:<vni> in the /etc/frr/frr.conf file. ANY in NVUE commands or
the asterisk (*) in the /etc/frr/frr.conf file use any ASN (a utonomous system number) as a
wildcard.

The NVUE commands are as follows:

1. To configure a route import statement:

2. To configure a route export statement:

route-target import|export <asn>:<vni>

route-target import 65101:6000

nv set vrf <vrf> router bgp route-import from-evpn route-target <asn>:<vni>

nv set vrf <vrf> router bgp route-export from-evpn route-target <asn>:<vni>

DOCA Documentation v2.7.0 768

Important considerations when implementing DVNI configuration:

EVPN symmetric mode supports downstream VNI with L3 VNIs and single VXLAN
devices only

You can configure multiple import and export route targets in a VRF

You cannot leak (import) overlapping tenant prefixes into the same destination VRF

DVNI Configurations for Shared Internet Service

Configuration example here considers a scenario where External/Internet connectivity is
available via a firewall (FW), which is connected to a shared VRF (vrf external in this
example).

The routes on super spine switches have external VRF configured in which the route-
targets from remote tenants are imported.

On BlueField devices with HBN, a local tenant VRF imports route-target corresponding to
the shared external VRF.

Note

If symmetric EVPN configuration is using automatic import/export
(which is often the case), when DVNI is configured, automatic import
of tenant's VNI is disabled, isolating VRF from the tenant. User must
specifically add 'route-target import auto' in such cases to avoid the
problem.

DOCA Documentation v2.7.0 769

L3VNI:

Tenant L3VNI

tenant1 30001 On HBN VTEPs

tenant2 30002 On HBN VTEPs

tenant3 30003 On HBN VTEPs

tenant4 30004 On HBN VTEPs

DOCA Documentation v2.7.0 770

Tenant L3VNI

tenant5 30005 On HBN VTEPs

tenant6 30006 On HBN VTEPs

external 60000 Configured on superspines and connects to external world

On BlueField devices with HBN, every tenant VRF on HBN one must import VNI of shared
external VRF:

On super spine switches (SS1 in this example), every remote tenant VRF that needs
access to shared services has to be leaked to the shared external VRF.

nv set vrf tenant1 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant1 router bgp route-import from-evpn route-target auto
nv set vrf tenant2 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant2 router bgp route-import from-evpn route-target auto
nv set vrf tenant3 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant3 router bgp route-import from-evpn route-target auto
nv set vrf tenant4 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant4 router bgp route-import from-evpn route-target auto
nv set vrf tenant5 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant5 router bgp route-import from-evpn route-target auto
nv set vrf tenant6 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant6 router bgp route-import from-evpn route-target auto
root@doca-hbn-service-bf3-s06-1-ipmi:/tmp#

nv set vrf external router bgp route-import from-evpn route-target ANY:30001

nv set vrf external router bgp route-import from-evpn route-target ANY:30002

nv set vrf external router bgp route-import from-evpn route-target ANY:30003

nv set vrf external router bgp route-import from-evpn route-target ANY:30004

nv set vrf external router bgp route-import from-evpn route-target ANY:30005

nv set vrf external router bgp route-import from-evpn route-target ANY:30006

nv set vrf external router bgp route-import from-evpn route-target auto
root@superspine1:mgmt:/home/cumulus#

DOCA Documentation v2.7.0 771

All super spines in this case need this configuration.

DVNI Leaked Routes in VRF Table of HBN

Kernel table for all tenant VRFs, showing the imported shared service:

Info

Each super spine here is advertising reachability providing 4-way
overlay ECMP.

root@doca-hbn-service-bf3-s06-1-ipmi:/tmp# ip -4 route show table all 6.0.0.4/32

6.0.0.4 table tenant1 proto bgp metric 20

nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48
weight 1 onlink
6.0.0.4 table tenant2 proto bgp metric 20

nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48
weight 1 onlink
6.0.0.4 table tenant3 proto bgp metric 20

DOCA Documentation v2.7.0 772

nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48
weight 1 onlink
6.0.0.4 table tenant4 proto bgp metric 20

nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48
weight 1 onlink
6.0.0.4 table tenant5 proto bgp metric 20

nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48
weight 1 onlink
6.0.0.4 table tenant6 proto bgp metric 20

nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48
weight 1 onlink
nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48
weight 1 onlink

DOCA Documentation v2.7.0 773

FRR RIB table:

root@doca-hbn-service-bf3-s06-1-ipmi:/tmp#

root@doca-hbn-service-bf3-s06-1-ipmi:/tmp# vtysh

Hello, this is FRRouting (version 8.4.3).
Copyright 1996-2005 Kunihiro Ishiguro, et al.

doca-hbn-service-bf3-s06-1-ipmi# sh ip route vrf tenant1
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, A - Babel, D - SHARP, F - PBR, f - OpenFabric,
Z - FRR,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
t - trapped, o - offload failure

VRF tenant1:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:36

B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:38

* via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38

* via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38

* via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38

B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:38

B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:38

B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:38

B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:38

B>* 7.1.0.6/32 [20/0] via 6.0.0.6, vlan4052_l3 onlink, weight 1, 00:05:37

C>* 7.1.0.16/32 is directly connected, tenant1, 00:10:36

B>* 7.1.0.18/32 [20/0] via 6.0.0.18, vlan4052_l3 onlink, weight 1, 00:05:37

DOCA Documentation v2.7.0 774

B>* 7.1.0.20/32 [20/0] via 6.0.0.20, vlan4052_l3 onlink, weight 1, 00:05:37

C>* 21.1.0.0/16 is directly connected, vlan101, 00:10:36

C * 21.1.0.0/16 [0/1024] is directly connected, vlan101-v0, 00:10:36

C * 21.2.0.0/16 [0/1024] is directly connected, vlan102-v0, 00:10:36

C>* 21.2.0.0/16 is directly connected, vlan102, 00:10:36

B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:38

B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:38

B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:38

B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:38

doca-hbn-service-bf3-s06-1-ipmi# sh ip route vrf all
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, A - Babel, D - SHARP, F - PBR, f - OpenFabric,
Z - FRR,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
t - trapped, o - offload failure

VRF default:
B>* 6.0.0.6/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:06:47

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:06:47

B>* 6.0.0.7/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:05:48

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:05:48

B>* 6.0.0.8/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:05:38

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:05:38

B>* 6.0.0.9/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:05:28

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:05:28

B>* 6.0.0.10/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:06:49

B>* 6.0.0.11/32 [20/0] via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:06:47

B>* 6.0.0.12/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:06:47

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:06:47

B>* 6.0.0.13/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:06:47

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:06:47

DOCA Documentation v2.7.0 775

B>* 6.0.0.14/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:06:47

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:06:47

B>* 6.0.0.15/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:06:47

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:06:47

C>* 6.0.0.16/32 is directly connected, lo, 00:10:42

B>* 6.0.0.18/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:06:47

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:06:47

B>* 6.0.0.20/32 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:06:47

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:06:47

B>* 192.168.0.0/24 [20/0] via fe80::202:ff:fe00:1f, p0_sf, weight 1, 00:05:48

* via fe80::202:ff:fe00:27, p1_sf, weight 1, 00:05:48

VRF internet1:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42

B>* 8.1.0.6/32 [20/0] via 6.0.0.6, vlan4004_l3 onlink, weight 1, 00:05:43

C>* 8.1.0.16/32 is directly connected, internet1, 00:10:42

B>* 8.1.0.18/32 [20/0] via 6.0.0.18, vlan4004_l3 onlink, weight 1, 00:05:43

B>* 8.1.0.20/32 [20/0] via 6.0.0.20, vlan4004_l3 onlink, weight 1, 00:05:43

VRF mgmt:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42

C>* 10.88.0.0/16 is directly connected, eth0, 00:10:42

VRF special1:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42

B>* 9.1.0.6/32 [20/0] via 6.0.0.6, vlan4033_l3 onlink, weight 1, 00:05:43

C>* 9.1.0.16/32 is directly connected, special1, 00:10:42

B>* 9.1.0.18/32 [20/0] via 6.0.0.18, vlan4033_l3 onlink, weight 1, 00:05:43

B>* 9.1.0.20/32 [20/0] via 6.0.0.20, vlan4033_l3 onlink, weight 1, 00:05:43

VRF tenant1:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42

B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

* via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

DOCA Documentation v2.7.0 776

* via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 7.1.0.6/32 [20/0] via 6.0.0.6, vlan4052_l3 onlink, weight 1, 00:05:43

C>* 7.1.0.16/32 is directly connected, tenant1, 00:10:42

B>* 7.1.0.18/32 [20/0] via 6.0.0.18, vlan4052_l3 onlink, weight 1, 00:05:43

B>* 7.1.0.20/32 [20/0] via 6.0.0.20, vlan4052_l3 onlink, weight 1, 00:05:43

C>* 21.1.0.0/16 is directly connected, vlan101, 00:10:42

C * 21.1.0.0/16 [0/1024] is directly connected, vlan101-v0, 00:10:42

C * 21.2.0.0/16 [0/1024] is directly connected, vlan102-v0, 00:10:42

C>* 21.2.0.0/16 is directly connected, vlan102, 00:10:42

B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

VRF tenant2:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42

B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

* via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

DOCA Documentation v2.7.0 777

B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 7.2.0.6/32 [20/0] via 6.0.0.6, vlan4037_l3 onlink, weight 1, 00:05:43

C>* 7.2.0.16/32 is directly connected, tenant2, 00:10:42

B>* 7.2.0.18/32 [20/0] via 6.0.0.18, vlan4037_l3 onlink, weight 1, 00:05:43

B>* 7.2.0.20/32 [20/0] via 6.0.0.20, vlan4037_l3 onlink, weight 1, 00:05:43

C * 22.1.0.0/16 [0/1024] is directly connected, vlan201-v0, 00:10:42

C>* 22.1.0.0/16 is directly connected, vlan201, 00:10:42

C * 22.2.0.0/16 [0/1024] is directly connected, vlan202-v0, 00:10:42

C>* 22.2.0.0/16 is directly connected, vlan202, 00:10:42

B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

VRF tenant3:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42

B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

* via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

DOCA Documentation v2.7.0 778

B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 7.3.0.6/32 [20/0] via 6.0.0.6, vlan4022_l3 onlink, weight 1, 00:05:43

C>* 7.3.0.16/32 is directly connected, tenant3, 00:10:42

B>* 7.3.0.18/32 [20/0] via 6.0.0.18, vlan4022_l3 onlink, weight 1, 00:05:43

B>* 7.3.0.20/32 [20/0] via 6.0.0.20, vlan4022_l3 onlink, weight 1, 00:05:43

C>* 23.17.0.0/16 is directly connected, pf0vf4_sf.3, 00:10:42

B>* 23.19.0.0/16 [20/0] via 6.0.0.18, vlan4022_l3 onlink, weight 1, 00:05:43

B>* 23.21.0.0/16 [20/0] via 6.0.0.20, vlan4022_l3 onlink, weight 1, 00:05:43

B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

VRF tenant4:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42

B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

* via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 7.4.0.6/32 [20/0] via 6.0.0.6, vlan4017_l3 onlink, weight 1, 00:05:43

C>* 7.4.0.16/32 is directly connected, tenant4, 00:10:42

B>* 7.4.0.18/32 [20/0] via 6.0.0.18, vlan4017_l3 onlink, weight 1, 00:05:43

DOCA Documentation v2.7.0 779

B>* 7.4.0.20/32 [20/0] via 6.0.0.20, vlan4017_l3 onlink, weight 1, 00:05:43

C>* 24.17.0.0/16 is directly connected, pf0vf4_sf.4, 00:10:42

B>* 24.19.0.0/16 [20/0] via 6.0.0.18, vlan4017_l3 onlink, weight 1, 00:05:43

B>* 24.21.0.0/16 [20/0] via 6.0.0.20, vlan4017_l3 onlink, weight 1, 00:05:43

B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

VRF tenant5:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42

B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

* via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 7.5.0.6/32 [20/0] via 6.0.0.6, vlan4046_l3 onlink, weight 1, 00:05:43

C>* 7.5.0.16/32 is directly connected, tenant5, 00:10:42

B>* 7.5.0.18/32 [20/0] via 6.0.0.18, vlan4046_l3 onlink, weight 1, 00:05:43

B>* 7.5.0.20/32 [20/0] via 6.0.0.20, vlan4046_l3 onlink, weight 1, 00:05:43

C>* 25.17.0.0/16 is directly connected, pf0vf4_sf.5, 00:10:42

B>* 25.19.0.0/16 [20/0] via 6.0.0.18, vlan4046_l3 onlink, weight 1, 00:05:43

B>* 25.21.0.0/16 [20/0] via 6.0.0.20, vlan4046_l3 onlink, weight 1, 00:05:43

DOCA Documentation v2.7.0 780

B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

VRF tenant6:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42

B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

* via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

* via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 7.6.0.6/32 [20/0] via 6.0.0.6, vlan4041_l3 onlink, weight 1, 00:05:43

C>* 7.6.0.16/32 is directly connected, tenant6, 00:10:42

B>* 7.6.0.18/32 [20/0] via 6.0.0.18, vlan4041_l3 onlink, weight 1, 00:05:43

B>* 7.6.0.20/32 [20/0] via 6.0.0.20, vlan4041_l3 onlink, weight 1, 00:05:43

C>* 26.17.0.0/16 is directly connected, pf0vf4_sf.6, 00:10:42

B>* 26.19.0.0/16 [20/0] via 6.0.0.18, vlan4041_l3 onlink, weight 1, 00:05:43

B>* 26.21.0.0/16 [20/0] via 6.0.0.20, vlan4041_l3 onlink, weight 1, 00:05:43

B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

DOCA Documentation v2.7.0 781

DVNI Debugging

BGP/Zebra debug:

B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1,
00:05:44

doca-hbn-service-bf3-s06-1-ipmi#

May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf
tenant1: import evpn prefix [5]:[0]:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410

May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new

pi dest 0xaaaafe524650 (l 2) pi 0xaaaafe5ae400 (l 1, f 0x4010)
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf
tenant2: import evpn prefix [5]:[0]:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410

May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new

pi dest 0xaaaafe51c420 (l 2) pi 0xaaaafe55d230 (l 1, f 0x4010)
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf
tenant3: import evpn prefix [5]:[0]:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410

May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new

pi dest 0xaaaafe51a670 (l 2) pi 0xaaaafe674820 (l 1, f 0x4010)
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf
tenant4: import evpn prefix [5]:[0]:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410

May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new

pi dest 0xaaaafe519fb0 (l 2) pi 0xaaaafe675e40 (l 1, f 0x4010)
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf
tenant5: import evpn prefix [5]:[0]:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410

May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new

pi dest 0xaaaafe55ae50 (l 2) pi 0xaaaafe5482f0 (l 1, f 0x4010)
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf
tenant6: import evpn prefix [5]:[0]:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410

May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new

pi dest 0xaaaafdaf3590 (l 2) pi 0xaaaafe48fbf0 (l 1, f 0x4010)

DOCA Documentation v2.7.0 782

DVNI table:

root@doca-hbn-service-bf3-s06-1-ipmi:/tmp# cat /cumulus/nl2docad/run/software-
tables/15

{
"table": {
"id": 15,
"name": "HAL Downstream-VNI Table ",
"count": 1,
"records": [
{
"vni": 60000,
"fid": 4098,
"mark-for-del": 0,
"vtep-users":
{
"count": 4,
"vtep-user-list": [
{
"dest-vtep": "6.0.0.12",
"dest-mac": "44:38:39:f0:00:12",
"is-dmac-null": 0,
"ref-cnt": 36

},
{
"dest-vtep": "6.0.0.14",
"dest-mac": "44:38:39:f0:00:14",
"is-dmac-null": 0,
"ref-cnt": 36

},
{
"dest-vtep": "6.0.0.13",
"dest-mac": "44:38:39:f0:00:13",
"is-dmac-null": 0,
"ref-cnt": 36

},

DOCA Documentation v2.7.0 783

Sample DVNI Configuration

HBN configuration example for BlueField devices:

{
"dest-vtep": "6.0.0.15",
"dest-mac": "44:38:39:f0:00:15",
"is-dmac-null": 0,
"ref-cnt": 36

}
]
}
}
]
}
}root@doca-hbn-service-bf3-s06-1-ipmi:/tmp#

root@doca-hbn-service-bf3-s06-1-ipmi:/tmp# nv config show -o commands
nv set bridge domain br_default vlan 101 vni 10101

nv set bridge domain br_default vlan 102 vni 10102

nv set bridge domain br_default vlan 201 vni 10201

nv set bridge domain br_default vlan 202 vni 10202

nv set evpn enable on
nv set evpn route-advertise svi-ip off
nv set interface ilan3200 ip vrf internet1
nv set interface ilan3200 vlan 3200

nv set interface ilan3200,slan3201,vlan101-102,201-202,3001-3006 base-interface

br_default
nv set interface ilan3200,slan3201,vlan101-102,201-202,3001-3006 type svi
nv set interface lo ip address 6.0.0.16/32

nv set interface lo ip address 2001::16/128

nv set interface lo type loopback
nv set interface

p0_sf,p1_sf,pf0hpf_sf,pf0vf0_sf,pf0vf1_sf,pf0vf2_sf,pf0vf3_sf,pf0vf4_sf,pf0vf5_sf,pf0vf6_
type swp

DOCA Documentation v2.7.0 784

nv set interface pf0vf0_sf bridge domain br_default access 101

nv set interface pf0vf1_sf bridge domain br_default access 102

nv set interface pf0vf2_sf bridge domain br_default access 201

nv set interface pf0vf3_sf bridge domain br_default access 202

nv set interface pf0vf4_sf.3 ip address 23.17.0.16/16

nv set interface pf0vf4_sf.3 ip address 2020:0:3:17::16/64

nv set interface pf0vf4_sf.3 vlan 3
nv set interface pf0vf4_sf.3,vlan3003 ip vrf tenant3
nv set interface pf0vf4_sf.3-6 base-interface pf0vf4_sf
nv set interface pf0vf4_sf.3-6 type sub
nv set interface pf0vf4_sf.4 ip address 24.17.0.16/16

nv set interface pf0vf4_sf.4 ip address 2020:0:4:17::16/64

nv set interface pf0vf4_sf.4 vlan 4
nv set interface pf0vf4_sf.4,vlan3004 ip vrf tenant4
nv set interface pf0vf4_sf.5 ip address 25.17.0.16/16

nv set interface pf0vf4_sf.5 ip address 2020:0:5:17::16/64

nv set interface pf0vf4_sf.5 vlan 5
nv set interface pf0vf4_sf.5,vlan3005 ip vrf tenant5
nv set interface pf0vf4_sf.6 ip address 26.17.0.16/16

nv set interface pf0vf4_sf.6 ip address 2020:0:6:17::16/64

nv set interface pf0vf4_sf.6 vlan 6
nv set interface pf0vf4_sf.6,vlan3006 ip vrf tenant6
nv set interface slan3201 ip vrf special1
nv set interface slan3201 vlan 3201

nv set interface vlan101 ip address 21.1.0.16/16

nv set interface vlan101 ip address 2020:0:1:1::16/64

nv set interface vlan101 ip vrr address 21.1.0.250/16

nv set interface vlan101 ip vrr address 2020:0:1:1::250/64

nv set interface vlan101 ip vrr mac-address 00:00:01:00:00:65

nv set interface vlan101 vlan 101

nv set interface vlan101-102,201-202 ip vrr enable on
nv set interface vlan101-102,3001 ip vrf tenant1
nv set interface vlan102 ip address 21.2.0.16/16

nv set interface vlan102 ip address 2020:0:1:2::16/64

nv set interface vlan102 ip vrr address 21.2.0.250/16

nv set interface vlan102 ip vrr address 2020:0:1:2::250/64

DOCA Documentation v2.7.0 785

nv set interface vlan102 ip vrr mac-address 00:00:01:00:00:66

nv set interface vlan102 vlan 102

nv set interface vlan201 ip address 22.1.0.16/16

nv set interface vlan201 ip address 2020:0:2:1::16/64

nv set interface vlan201 ip vrr address 22.1.0.250/16

nv set interface vlan201 ip vrr address 2020:0:2:1::250/64

nv set interface vlan201 ip vrr mac-address 00:00:02:00:00:c9
nv set interface vlan201 vlan 201

nv set interface vlan201-202,3002 ip vrf tenant2
nv set interface vlan202 ip address 22.2.0.16/16

nv set interface vlan202 ip address 2020:0:2:2::16/64

nv set interface vlan202 ip vrr address 22.2.0.250/16

nv set interface vlan202 ip vrr address 2020:0:2:2::250/64

nv set interface vlan202 ip vrr mac-address 00:00:02:00:00:ca
nv set interface vlan202 vlan 202

nv set interface vlan3001 vlan 3001

nv set interface vlan3002 vlan 3002

nv set interface vlan3003 vlan 3003

nv set interface vlan3004 vlan 3004

nv set interface vlan3005 vlan 3005

nv set interface vlan3006 vlan 3006

nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan source address 6.0.0.16

nv set platform
nv set router bgp autonomous-system 65011

nv set router bgp enable on
nv set router bgp router-id 6.0.0.16

nv set router vrr enable on
nv set system config snippet
nv set system global
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on

DOCA Documentation v2.7.0 786

nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 6.0.0.7 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.7 type numbered
nv set vrf default router bgp neighbor 6.0.0.8 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.8 type numbered
nv set vrf default router bgp neighbor 6.0.0.9 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.9 type numbered
nv set vrf default router bgp neighbor p0_sf peer-group fabric
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf peer-group fabric
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric bfd detect-multiplier 3
nv set vrf default router bgp peer-group fabric bfd enable on
nv set vrf default router bgp peer-group fabric bfd min-rx-interval 1000

nv set vrf default router bgp peer-group fabric bfd min-tx-interval 1000

nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group rservers address-family ipv4-unicast enable
off
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn add-
path-tx off
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn enable
on
nv set vrf default router bgp peer-group rservers multihop-ttl 10

nv set vrf default router bgp peer-group rservers remote-as external
nv set vrf default router bgp peer-group rservers update-source lo
nv set vrf internet1 evpn enable on
nv set vrf internet1 evpn vni 42000

nv set vrf internet1 loopback ip address 8.1.0.16/32

nv set vrf internet1 loopback ip address 2008:0:1::16/64

nv set vrf internet1 router bgp address-family ipv4-unicast enable on
nv set vrf internet1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf internet1 router bgp address-family ipv4-unicast route-export to-evpn
enable on

DOCA Documentation v2.7.0 787

nv set vrf internet1 router bgp address-family ipv6-unicast enable on
nv set vrf internet1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf internet1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf internet1 router bgp enable on
nv set vrf special1 evpn enable on
nv set vrf special1 evpn vni 42001

nv set vrf special1 loopback ip address 9.1.0.16/32

nv set vrf special1 loopback ip address 2009:0:1::16/64

nv set vrf special1 router bgp address-family ipv4-unicast enable on
nv set vrf special1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf special1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf special1 router bgp address-family ipv6-unicast enable on
nv set vrf special1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf special1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf special1 router bgp enable on
nv set vrf tenant1 evpn enable on
nv set vrf tenant1 evpn vni 30001

nv set vrf tenant1 loopback ip address 7.1.0.16/32

nv set vrf tenant1 loopback ip address 2007:0:1::16/64

nv set vrf tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf tenant1 router bgp enable on

DOCA Documentation v2.7.0 788

nv set vrf tenant1 router bgp neighbor 21.1.0.17 peer-group hostgroup
nv set vrf tenant1 router bgp neighbor 21.1.0.17 type numbered
nv set vrf tenant1 router bgp peer-group hostgroup address-family ipv4-unicast
enable on
nv set vrf tenant1 router bgp peer-group hostgroup address-family ipv6-unicast
enable on
nv set vrf tenant1 router bgp peer-group hostgroup remote-as external
nv set vrf tenant1 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant1 router bgp route-import from-evpn route-target auto
nv set vrf tenant1 router bgp router-id 6.0.0.16

nv set vrf tenant2 evpn enable on
nv set vrf tenant2 evpn vni 30002

nv set vrf tenant2 loopback ip address 7.2.0.16/32

nv set vrf tenant2 loopback ip address 2007:0:2::16/64

nv set vrf tenant2 router bgp address-family ipv4-unicast enable on
nv set vrf tenant2 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant2 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf tenant2 router bgp address-family ipv6-unicast enable on
nv set vrf tenant2 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf tenant2 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf tenant2 router bgp enable on
nv set vrf tenant2 router bgp neighbor 22.1.0.17 peer-group hostgroup
nv set vrf tenant2 router bgp neighbor 22.1.0.17 type numbered
nv set vrf tenant2 router bgp peer-group hostgroup address-family ipv4-unicast
enable on
nv set vrf tenant2 router bgp peer-group hostgroup address-family ipv6-unicast
enable on
nv set vrf tenant2 router bgp peer-group hostgroup remote-as external
nv set vrf tenant2 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant2 router bgp route-import from-evpn route-target auto
nv set vrf tenant2 router bgp router-id 6.0.0.16

nv set vrf tenant3 evpn enable on

DOCA Documentation v2.7.0 789

nv set vrf tenant3 evpn vni 30003

nv set vrf tenant3 loopback ip address 7.3.0.16/32

nv set vrf tenant3 loopback ip address 2007:0:3::16/64

nv set vrf tenant3 router bgp address-family ipv4-unicast enable on
nv set vrf tenant3 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant3 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf tenant3 router bgp address-family ipv6-unicast enable on
nv set vrf tenant3 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf tenant3 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf tenant3 router bgp enable on
nv set vrf tenant3 router bgp neighbor 23.17.0.17 peer-group hostgroup
nv set vrf tenant3 router bgp neighbor 23.17.0.17 type numbered
nv set vrf tenant3 router bgp peer-group hostgroup address-family ipv4-unicast
enable on
nv set vrf tenant3 router bgp peer-group hostgroup address-family ipv6-unicast
enable on
nv set vrf tenant3 router bgp peer-group hostgroup remote-as external
nv set vrf tenant3 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant3 router bgp route-import from-evpn route-target auto
nv set vrf tenant3 router bgp router-id 6.0.0.16

nv set vrf tenant3 table auto
nv set vrf tenant4 evpn enable on
nv set vrf tenant4 evpn vni 30004

nv set vrf tenant4 loopback ip address 7.4.0.16/32

nv set vrf tenant4 loopback ip address 2007:0:4::16/64

nv set vrf tenant4 router bgp address-family ipv4-unicast enable on
nv set vrf tenant4 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant4 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf tenant4 router bgp address-family ipv6-unicast enable on

DOCA Documentation v2.7.0 790

nv set vrf tenant4 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf tenant4 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf tenant4 router bgp enable on
nv set vrf tenant4 router bgp neighbor 24.17.0.17 peer-group hostgroup
nv set vrf tenant4 router bgp neighbor 24.17.0.17 type numbered
nv set vrf tenant4 router bgp peer-group hostgroup address-family ipv4-unicast
enable on
nv set vrf tenant4 router bgp peer-group hostgroup address-family ipv6-unicast
enable on
nv set vrf tenant4 router bgp peer-group hostgroup remote-as external
nv set vrf tenant4 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant4 router bgp route-import from-evpn route-target auto
nv set vrf tenant4 router bgp router-id 6.0.0.16

nv set vrf tenant4 table auto
nv set vrf tenant5 evpn enable on
nv set vrf tenant5 evpn vni 30005

nv set vrf tenant5 loopback ip address 7.5.0.16/32

nv set vrf tenant5 loopback ip address 2007:0:5::16/64

nv set vrf tenant5 router bgp address-family ipv4-unicast enable on
nv set vrf tenant5 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant5 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf tenant5 router bgp address-family ipv6-unicast enable on
nv set vrf tenant5 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf tenant5 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf tenant5 router bgp enable on
nv set vrf tenant5 router bgp neighbor 25.17.0.17 peer-group hostgroup
nv set vrf tenant5 router bgp neighbor 25.17.0.17 type numbered
nv set vrf tenant5 router bgp peer-group hostgroup address-family ipv4-unicast
enable on

DOCA Documentation v2.7.0 791

SS1 switch configuration example:

nv set vrf tenant5 router bgp peer-group hostgroup address-family ipv6-unicast
enable on
nv set vrf tenant5 router bgp peer-group hostgroup remote-as external
nv set vrf tenant5 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant5 router bgp route-import from-evpn route-target auto
nv set vrf tenant5 router bgp router-id 6.0.0.16

nv set vrf tenant5 table auto
nv set vrf tenant6 evpn enable on
nv set vrf tenant6 evpn vni 30006

nv set vrf tenant6 loopback ip address 7.6.0.16/32

nv set vrf tenant6 loopback ip address 2007:0:6::16/64

nv set vrf tenant6 router bgp address-family ipv4-unicast enable on
nv set vrf tenant6 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant6 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf tenant6 router bgp address-family ipv6-unicast enable on
nv set vrf tenant6 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf tenant6 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf tenant6 router bgp enable on
nv set vrf tenant6 router bgp neighbor 26.17.0.17 peer-group hostgroup
nv set vrf tenant6 router bgp neighbor 26.17.0.17 type numbered
nv set vrf tenant6 router bgp peer-group hostgroup address-family ipv4-unicast
enable on
nv set vrf tenant6 router bgp peer-group hostgroup address-family ipv6-unicast
enable on
nv set vrf tenant6 router bgp peer-group hostgroup remote-as external
nv set vrf tenant6 router bgp route-import from-evpn route-target ANY:60000

nv set vrf tenant6 router bgp route-import from-evpn route-target auto
nv set vrf tenant6 router bgp router-id 6.0.0.16

nv set vrf tenant6 table auto
root@doca-hbn-service-bf3-s06-1-ipmi:/tmp#

DOCA Documentation v2.7.0 792

root@superspine1:mgmt:/home/cumulus# nv config show -o commands
nv set bridge domain br_default vlan 101 vni 10101

nv set bridge domain br_default vlan 102 vni 10102

nv set bridge domain br_default vlan 201 vni 10201

nv set bridge domain br_default vlan 202 vni 10202

nv set evpn enable on
nv set interface eth0 ip address 192.168.0.15/24

nv set interface eth0 ip gateway 192.168.0.2

nv set interface eth0 type eth
nv set interface lo ip address 6.0.0.12/32

nv set interface lo ip address 2001::12/128

nv set interface lo type loopback
nv set interface swp1-6 type swp
nv set interface swp6 ip address 101.12.4.12/24

nv set interface swp6 ip address 2101:12::4:12/112

nv set interface swp6 ip vrf external
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan source address 6.0.0.12

nv set platform
nv set router bgp autonomous-system 65300

nv set router bgp enable on
nv set router bgp router-id 6.0.0.12

nv set system config snippet
nv set system global system-mac 44:38:39:f0:00:12

nv set system hostname superspine1
nv set system ssh-server permit-root-login enabled
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor swp1 peer-group fabric
nv set vrf default router bgp neighbor swp1 type unnumbered

DOCA Documentation v2.7.0 793

nv set vrf default router bgp neighbor swp2 peer-group fabric
nv set vrf default router bgp neighbor swp2 type unnumbered
nv set vrf default router bgp neighbor swp3 peer-group rservers
nv set vrf default router bgp neighbor swp3 type unnumbered
nv set vrf default router bgp neighbor swp4 peer-group rservers
nv set vrf default router bgp neighbor swp4 type unnumbered
nv set vrf default router bgp neighbor swp5 peer-group rservers
nv set vrf default router bgp neighbor swp5 type unnumbered
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric bfd detect-multiplier 3
nv set vrf default router bgp peer-group fabric bfd enable on
nv set vrf default router bgp peer-group fabric bfd min-rx-interval 1000

nv set vrf default router bgp peer-group fabric bfd min-tx-interval 1000

nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group rservers address-family ipv4-unicast enable
on
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn add-
path-tx off
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn enable
on
nv set vrf default router bgp peer-group rservers remote-as external
nv set vrf external evpn enable on
nv set vrf external evpn vni 60000

nv set vrf external loopback ip address 6.6.0.12/32

nv set vrf external loopback ip address 2006:0:6::12/64

nv set vrf external router bgp address-family ipv4-unicast enable on
nv set vrf external router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf external router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf external router bgp address-family ipv6-unicast enable on
nv set vrf external router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf external router bgp address-family ipv6-unicast route-export to-evpn
enable on

DOCA Documentation v2.7.0 794

Gateway Application Using Downstream VNI and Subinterface

A DPU running the HBN service can be deployed in the role of a border gateway using a
combination of HBN features, specifically, EVPN symmetric routing, downstream VNI, VRF
route-leaking, and VLAN sub-interfaces. Such a border gateway can do the northbound
traffic handoff (to external networks or the Internet) for one or more tenants. In this
gateway configuration, the BlueField's uplinks must carry both the tenant traffic which
would be in the "overlay" and VXLAN-encapsulated, as well as traffic to and from the
external network or Internet, which would be direct-routed in the "underlay". This is
accomplished by configuring and running VXLAN-EVPN on the uplink interfaces while
configuring and using additional VLAN sub-interfaces on those same uplinks for the
traffic to and from external networks. These VLAN sub-interfaces would be configured
into an Internet or external VRF for separation from the VXLAN-encapsulated traffic which
is carried over the default VRF.

With a BlueField running HBN able to act as a border gateway, there is no longer a
dependence on physical switches and routers to terminate VXLAN traffic and perform
this role, hence the requirements on the underlying network is simply to provide end-to-

nv set vrf external router bgp address-family l2vpn-evpn enable on
nv set vrf external router bgp enable on
nv set vrf external router bgp neighbor swp6 peer-group peer-group-fw
nv set vrf external router bgp neighbor swp6 type unnumbered
nv set vrf external router bgp peer-group peer-group-fw address-family ipv4-unicast
enable on
nv set vrf external router bgp peer-group peer-group-fw address-family ipv6-unicast
enable on
nv set vrf external router bgp peer-group peer-group-fw remote-as external
nv set vrf external router bgp route-import from-evpn route-target ANY:30001

nv set vrf external router bgp route-import from-evpn route-target ANY:30002

nv set vrf external router bgp route-import from-evpn route-target ANY:30003

nv set vrf external router bgp route-import from-evpn route-target ANY:30004

nv set vrf external router bgp route-import from-evpn route-target ANY:30005

nv set vrf external router bgp route-import from-evpn route-target ANY:30006

nv set vrf external router bgp route-import from-evpn route-target auto
root@superspine1:mgmt:/home/cumulus#

DOCA Documentation v2.7.0 795

end IP/UDP connectivity and facilitate the setup of overlay networks on top. Additionally,
multiple border gateways can be easily deployed in the network, including dedicated
gateways per tenant or shared gateways for groups of tenants.

For more details and configuration of some of the key features that together enable the
border gateway functionality, refer to sections on Downstream VNIs and VLAN
Subinterfaces.

Gateway Application Example

The following topology diagram and associated configuration snippets show two different
use cases of border gateway deployment:

tenant1 is an example of a tenant hosted on a server(s) with a non-gateway BlueField,
using a dedicated border gateway on BlueField Gw-HBN1 for Internet connectivity.
Traffic flow to and from the Internet for this tenant is m arked in pink.

gw_tenant1 is an example of a tenant hosted on a server(s) with a gateway BlueField.
In this case, the border gateway for this tenant is provided by BlueField Gw-HBN2.
Traffic flow to and from the Internet for this tenant is depicted in blue .

Note

Since HBN currently does not support network address translation
(NAT), a dedicated border gateway must be deployed per tenant, for
those tenants that have overlapping IP addresses.

DOCA Documentation v2.7.0 796

L3 VNI Origin Map

HBN VRF L3 VNI

gw-hbn1 and gw-hbn2 internet1 10000

gw-hbn1 and gw-hbn2 gw_tenant1 30000

tenant-hbn3 and tenant-hbn4 tenant1 20000

Configuration Snippet for Internet VRF

Internet VRF is established in BGP sessions using sub-interface features with
underlay switches (i.e., p0_sf.60 and p1_sf.60)

DOCA Documentation v2.7.0 797

The Internet VRF also imports all the tenant VRFs (local and remote) using the
downstream VNI feature with from-EVPN syntax

nv set interface p0_sf.60,p1_sf.60,vlan10 ip vrf internet1
nv set vrf internet1 evpn enable on
nv set vrf internet1 evpn vni 10000

nv set vrf internet1 loopback ip address 6.2.0.1/32

nv set vrf internet1 loopback ip address 2001:cafe:feed::1/128

nv set vrf internet1 router bgp address-family ipv4-unicast enable on
nv set vrf internet1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf internet1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf internet1 router bgp address-family ipv6-unicast enable on
nv set vrf internet1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf internet1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf internet1 router bgp address-family l2vpn-evpn enable on
nv set vrf internet1 router bgp autonomous-system 65552

nv set vrf internet1 router bgp enable on
nv set vrf internet1 router bgp neighbor p0_sf.60 capabilities source-address
internet1
nv set vrf internet1 router bgp neighbor p0_sf.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p0_sf.60 type unnumbered
nv set vrf internet1 router bgp neighbor p1_sf.60 capabilities source-address
internet1
nv set vrf internet1 router bgp neighbor p1_sf.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p1_sf.60 type unnumbered
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv4-unicast
enable on
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv6-unicast
enable on
nv set vrf internet1 router bgp peer-group l3_pg1 remote-as external
nv set vrf internet1 router bgp route-export to-evpn route-target 65552:10000

nv set vrf internet1 router bgp route-import from-evpn route-target ANY:20000

DOCA Documentation v2.7.0 798

Configuration Snippet for Gateway Local Tenant

gw_tenant is stretched across 2 gateway and connected using L3 VNI

gw_tenant has multiple SVIs, which are represented as vlan30 and vlan31 SVIs

Internet L3 VNI is imported using DVNI. The example also explicitly adds route
targets using auto.

gw_tenant VRF:

nv set vrf internet1 router bgp route-import from-evpn route-target ANY:30000

nv set vrf internet1 router bgp route-import from-evpn route-target auto
nv set vrf internet1 router bgp router-id 27.0.0.5

nv set interface vlan30-31 ip vrf gw_tenant1
nv set vrf gw_tenant1 evpn enable on
nv set vrf gw_tenant1 evpn vni 30000

nv set vrf gw_tenant1 loopback ip address 15.3.0.1/32

nv set vrf gw_tenant1 loopback ip address 2001:bad:c0de::1/128

nv set vrf gw_tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf gw_tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf gw_tenant1 router bgp autonomous-system 65552

nv set vrf gw_tenant1 router bgp enable on
nv set vrf gw_tenant1 router bgp route-export to-evpn route-target 65552:30000

nv set vrf gw_tenant1 router bgp route-import from-evpn route-target ANY:10000

nv set vrf gw_tenant1 router bgp route-import from-evpn route-target auto

DOCA Documentation v2.7.0 799

Configuration Snippet for Remote Tenant

tenant1 is stretched across 2 remote HBN VTEP and connected using L3 VNI

tenant1 is importing Internet L3 VNI routes in tenant1 and adding its own using route-
target auto

Tenant VRF:

nv set vrf gw_tenant1 router bgp router-id 27.0.0.5

nv set interface vlan20-21 ip vrf tenant1
nv set vrf tenant1 evpn enable on
nv set vrf tenant1 evpn vni 20000

nv set vrf tenant1 loopback ip address 15.1.0.1/32

nv set vrf tenant1 loopback ip address 2001:c001:c0de::1/128

nv set vrf tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf tenant1 router bgp autonomous-system 6300656

nv set vrf tenant1 router bgp enable on
nv set vrf tenant1 router bgp route-export to-evpn route-target 6300656:20000

nv set vrf tenant1 router bgp route-import from-evpn route-target ANY:10000

nv set vrf tenant1 router bgp route-import from-evpn route-target auto
nv set vrf tenant1 router bgp router-id 27.0.0.17

DOCA Documentation v2.7.0 800

HBN Accelerated Routing Plan

The following subsections pick a few IP endpoints from the code snippets above and
examine their route distribution.

The gateway devices have a remote tenant

Internet route is injected using the default originator from the exit node

Gateway-1 Route Info

BGP sharing the uplink via a sub-interface feature in the Internet VRF.

Local Tenant routing information: The Internet is reached using L3 VNI via a peer
gateway.

Remote tenant routing reachability via gateway1 using DVNI CFG.

Considering an IP endpoint from the remote tenant1 VRF on Tenant-HBN3.

root@hbn:/# ip -4 route show vrf internet1 default

default proto bgp metric 20
nexthop via 169.254.0.1 dev p0_sf.60 weight 1 onlink
nexthop via 169.254.0.1 dev p1_sf.60 weight 1 onlink

root@hbn:/# ip -6 route show vrf internet1 default

default proto bgp metric 20 pref medium
nexthop via fe80::202:ff:fe00:1b dev p0_sf.60 weight 1
nexthop via fe80::202:ff:fe00:23 dev p1_sf.60 weight 1

root@hbn:/# ip -4 route show vrf gw_tenant1 default

default encap ip id 10000 src 0.0.0.0 dst 27.0.0.7 ttl 0 tos 0 via 27.0.0.7 dev vxlan48
proto bgp metric 20 onlink

root@hbn:/# ip -6 route show vrf gw_tenant1 default

default encap ip id 10000 src 0.0.0.0 dst 27.0.0.7 ttl 0 tos 0 via ::ffff:27.0.0.7 dev
vxlan48 proto bgp metric 20 onlink pref medium

DOCA Documentation v2.7.0 801

Tenant-HBN3 Route Info

IP endpoint as gateway1 VRF loopback and DVNI handoff for the VNI is reaching the
gateway1 node.

Internet VRF default route is reaching the remote tenant VRF.

root@hbn:/# ip -4 route show vrf internet1 15.1.0.1/32

15.1.0.1 encap ip id 20000 src 0.0.0.0 dst 27.0.0.17 ttl 0 tos 0 via 27.0.0.17 dev vxlan48
proto bgp metric 20 onlink

root@hbn:/# ip -6 route show vrf internet1 2001:c001:c0de::1/128

2001:c001:c0de::1 encap ip id 20000 src 0.0.0.0 dst 27.0.0.17 ttl 0 tos 0 via
::ffff:27.0.0.17 dev vxlan48 proto bgp metric 20 onlink pref medium

root@hbn:/# ip -4 route show vrf tenant1 6.2.0.1/32

6.2.0.1 encap ip id 10000 src 0.0.0.0 dst 27.0.0.5 ttl 0 tos 0 via 27.0.0.5 dev vxlan48
proto bgp metric 20 onlink

root@hbn:/# ip -6 route show vrf tenant1 2001:cafe:feed::1/128

2001:cafe:feed::1 encap ip id 10000 src 0.0.0.0 dst 27.0.0.5 ttl 0 tos 0 via ::ffff:27.0.0.5

dev vxlan48 proto bgp metric 20 onlink pref medium

root@hbn:/# ip -4 route show vrf tenant1 default

default proto bgp metric 20
nexthop encap ip id 10000 src 0.0.0.0 dst 27.0.0.5 ttl 0 tos 0 via 27.0.0.5 dev vxlan48
weight 1 onlink
nexthop encap ip id 10000 src 0.0.0.0 dst 27.0.0.7 ttl 0 tos 0 via 27.0.0.7 dev vxlan48
weight 1 onlink

root@hbn:/# ip -6 route show vrf tenant1 default

default proto bgp metric 20 pref medium

DOCA Documentation v2.7.0 802

Gateway and Tenant Complete Configuration Example

Gateway-1 Full Configuration

nexthop encap ip id 10000 src 0.0.0.0 dst 27.0.0.5 ttl 0 tos 0 via ::ffff:27.0.0.5 dev
vxlan48 weight 1 onlink
nexthop encap ip id 10000 src 0.0.0.0 dst 27.0.0.7 ttl 0 tos 0 via ::ffff:27.0.0.7 dev
vxlan48 weight 1 onlink

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default untagged 1
nv set bridge domain br_default vlan 10,30-31

nv set evpn enable on
nv set interface lo ip address 27.0.0.5/32

nv set interface lo ip address 2001:c001:ff:f00d::5/128

nv set interface lo type loopback
nv set interface

p0_sf,p1_sf,pf0hpf_sf,pf0vf0_sf,pf0vf10_sf,pf0vf11_sf,pf0vf12_sf,pf0vf1_sf,pf0vf2_sf,pf0
type swp
nv set interface p0_sf.60 base-interface p0_sf
nv set interface p0_sf.60,p1_sf.60 type sub
nv set interface p0_sf.60,p1_sf.60 vlan 60

nv set interface p0_sf.60,p1_sf.60,vlan10 ip vrf internet1
nv set interface p1_sf.60 base-interface p1_sf
nv set interface pf0hpf_sf bridge domain br_default access 30

nv set interface pf0vf0_sf bridge domain br_default access 31

nv set interface vlan10 ip address 12.2.0.1/24

nv set interface vlan10 ip address 2001:c001:d00d::1/96

nv set interface vlan10 vlan 10

nv set interface vlan10,30-31 ip ipv4 forward on
nv set interface vlan10,30-31 ip ipv6 forward on
nv set interface vlan10,30-31 type svi

DOCA Documentation v2.7.0 803

nv set interface vlan30 ip address 45.3.0.1/24

nv set interface vlan30 ip address 2001:b055:b00c::1/96

nv set interface vlan30 vlan 30

nv set interface vlan30-31 ip vrf gw_tenant1
nv set interface vlan31 ip address 45.3.1.1/24

nv set interface vlan31 ip address 2001:b055:b00c::1:0:1/96

nv set interface vlan31 vlan 31

nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.5

nv set platform
nv set router bgp enable on
nv set system config snippet
nv set system global anycast-mac 44:38:39:42:42:17

nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 65552

nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 27.0.0.11 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.11 type numbered
nv set vrf default router bgp neighbor 27.0.0.12 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.12 type numbered
nv set vrf default router bgp neighbor p0_sf capabilities source-address lo
nv set vrf default router bgp neighbor p0_sf peer-group fabric
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf capabilities source-address lo
nv set vrf default router bgp neighbor p1_sf peer-group fabric
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on

DOCA Documentation v2.7.0 804

nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-tx
off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable off
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group fabric timers connection-retry 5
nv set vrf default router bgp peer-group fabric timers hold 30

nv set vrf default router bgp peer-group fabric timers keepalive 10

nv set vrf default router bgp peer-group rs_client address-family ipv4-unicast enable
off
nv set vrf default router bgp peer-group rs_client address-family ipv6-unicast enable
off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn add-
path-tx off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn enable
on
nv set vrf default router bgp peer-group rs_client multihop-ttl 5
nv set vrf default router bgp peer-group rs_client remote-as external
nv set vrf default router bgp peer-group rs_client timers connection-retry 5
nv set vrf default router bgp peer-group rs_client timers hold 30

nv set vrf default router bgp peer-group rs_client timers keepalive 10

nv set vrf default router bgp router-id 27.0.0.5

nv set vrf gw_tenant1 evpn enable on
nv set vrf gw_tenant1 evpn vni 30000

nv set vrf gw_tenant1 loopback ip address 15.3.0.1/32

nv set vrf gw_tenant1 loopback ip address 2001:bad:c0de::1/128

nv set vrf gw_tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast route-export to-evpn
enable on

DOCA Documentation v2.7.0 805

nv set vrf gw_tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf gw_tenant1 router bgp autonomous-system 65552

nv set vrf gw_tenant1 router bgp enable on
nv set vrf gw_tenant1 router bgp route-export to-evpn route-target 65552:30000

nv set vrf gw_tenant1 router bgp route-import from-evpn route-target ANY:10000

nv set vrf gw_tenant1 router bgp route-import from-evpn route-target auto
nv set vrf gw_tenant1 router bgp router-id 27.0.0.5

nv set vrf internet1 evpn enable on
nv set vrf internet1 evpn vni 10000

nv set vrf internet1 loopback ip address 6.2.0.1/32

nv set vrf internet1 loopback ip address 2001:cafe:feed::1/128

nv set vrf internet1 router bgp address-family ipv4-unicast enable on
nv set vrf internet1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf internet1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf internet1 router bgp address-family ipv6-unicast enable on
nv set vrf internet1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf internet1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf internet1 router bgp address-family l2vpn-evpn enable on
nv set vrf internet1 router bgp autonomous-system 65552

nv set vrf internet1 router bgp enable on
nv set vrf internet1 router bgp neighbor p0_sf.60 capabilities source-address
internet1
nv set vrf internet1 router bgp neighbor p0_sf.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p0_sf.60 type unnumbered
nv set vrf internet1 router bgp neighbor p1_sf.60 capabilities source-address
internet1
nv set vrf internet1 router bgp neighbor p1_sf.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p1_sf.60 type unnumbered
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv4-unicast
enable on
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv6-unicast
enable on

DOCA Documentation v2.7.0 806

Gateway-2 Full Configuration

nv set vrf internet1 router bgp peer-group l3_pg1 remote-as external
nv set vrf internet1 router bgp route-export to-evpn route-target 65552:10000

nv set vrf internet1 router bgp route-import from-evpn route-target ANY:20000

nv set vrf internet1 router bgp route-import from-evpn route-target ANY:30000

nv set vrf internet1 router bgp route-import from-evpn route-target auto
nv set vrf internet1 router bgp router-id 27.0.0.5

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default untagged 1
nv set bridge domain br_default vlan 10,30-31

nv set evpn enable on
nv set interface lo ip address 27.0.0.7/32

nv set interface lo ip address 2001:c001:ff:f00d::7/128

nv set interface lo type loopback
nv set interface

p0_sf,p1_sf,pf0hpf_sf,pf0vf0_sf,pf0vf10_sf,pf0vf11_sf,pf0vf12_sf,pf0vf1_sf,pf0vf2_sf,pf0
type swp
nv set interface p0_sf.60 base-interface p0_sf
nv set interface p0_sf.60,p1_sf.60 type sub
nv set interface p0_sf.60,p1_sf.60 vlan 60

nv set interface p0_sf.60,p1_sf.60,vlan10 ip vrf internet1
nv set interface p1_sf.60 base-interface p1_sf
nv set interface pf0hpf_sf bridge domain br_default access 30

nv set interface pf0vf0_sf bridge domain br_default access 31

nv set interface vlan10 ip address 12.2.1.1/24

nv set interface vlan10 ip address 2001:c001:d00d::1:0:1/96

nv set interface vlan10 vlan 10

nv set interface vlan10,30-31 ip ipv4 forward on
nv set interface vlan10,30-31 ip ipv6 forward on
nv set interface vlan10,30-31 type svi
nv set interface vlan30 ip address 45.3.2.1/24

DOCA Documentation v2.7.0 807

nv set interface vlan30 ip address 2001:b055:b00c::2:0:1/96

nv set interface vlan30 vlan 30

nv set interface vlan30-31 ip vrf gw_tenant1
nv set interface vlan31 ip address 45.3.3.1/24

nv set interface vlan31 ip address 2001:b055:b00c::3:0:1/96

nv set interface vlan31 vlan 31

nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.7

nv set platform
nv set router bgp enable on
nv set system config snippet
nv set system global anycast-mac 44:38:39:42:42:19

nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 65554

nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 27.0.0.11 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.11 type numbered
nv set vrf default router bgp neighbor 27.0.0.12 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.12 type numbered
nv set vrf default router bgp neighbor p0_sf capabilities source-address lo
nv set vrf default router bgp neighbor p0_sf peer-group fabric
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf capabilities source-address lo
nv set vrf default router bgp neighbor p1_sf peer-group fabric
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on

DOCA Documentation v2.7.0 808

nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-tx
off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable off
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group fabric timers connection-retry 5
nv set vrf default router bgp peer-group fabric timers hold 30

nv set vrf default router bgp peer-group fabric timers keepalive 10

nv set vrf default router bgp peer-group rs_client address-family ipv4-unicast enable
off
nv set vrf default router bgp peer-group rs_client address-family ipv6-unicast enable
off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn add-
path-tx off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn enable
on
nv set vrf default router bgp peer-group rs_client multihop-ttl 5
nv set vrf default router bgp peer-group rs_client remote-as external
nv set vrf default router bgp peer-group rs_client timers connection-retry 5
nv set vrf default router bgp peer-group rs_client timers hold 30

nv set vrf default router bgp peer-group rs_client timers keepalive 10

nv set vrf default router bgp router-id 27.0.0.7

nv set vrf gw_tenant1 evpn enable on
nv set vrf gw_tenant1 evpn vni 30000

nv set vrf gw_tenant1 loopback ip address 15.3.0.2/32

nv set vrf gw_tenant1 loopback ip address 2001:bad:c0de::2/128

nv set vrf gw_tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf gw_tenant1 router bgp address-family l2vpn-evpn enable on

DOCA Documentation v2.7.0 809

nv set vrf gw_tenant1 router bgp autonomous-system 65554

nv set vrf gw_tenant1 router bgp enable on
nv set vrf gw_tenant1 router bgp route-export to-evpn route-target 65554:30000

nv set vrf gw_tenant1 router bgp route-import from-evpn route-target ANY:10000

nv set vrf gw_tenant1 router bgp route-import from-evpn route-target auto
nv set vrf gw_tenant1 router bgp router-id 27.0.0.7

nv set vrf internet1 evpn enable on
nv set vrf internet1 evpn vni 10000

nv set vrf internet1 loopback ip address 6.2.0.2/32

nv set vrf internet1 loopback ip address 2001:cafe:feed::2/128

nv set vrf internet1 router bgp address-family ipv4-unicast enable on
nv set vrf internet1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf internet1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf internet1 router bgp address-family ipv6-unicast enable on
nv set vrf internet1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf internet1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf internet1 router bgp address-family l2vpn-evpn enable on
nv set vrf internet1 router bgp autonomous-system 65554

nv set vrf internet1 router bgp enable on
nv set vrf internet1 router bgp neighbor p0_sf.60 capabilities source-address
internet1
nv set vrf internet1 router bgp neighbor p0_sf.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p0_sf.60 type unnumbered
nv set vrf internet1 router bgp neighbor p1_sf.60 capabilities source-address
internet1
nv set vrf internet1 router bgp neighbor p1_sf.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p1_sf.60 type unnumbered
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv4-unicast
enable on
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv6-unicast
enable on
nv set vrf internet1 router bgp peer-group l3_pg1 remote-as external

DOCA Documentation v2.7.0 810

Tenant-HBN-3 Full Configuration

nv set vrf internet1 router bgp route-export to-evpn route-target 65554:10000

nv set vrf internet1 router bgp route-import from-evpn route-target ANY:20000

nv set vrf internet1 router bgp route-import from-evpn route-target ANY:30000

nv set vrf internet1 router bgp route-import from-evpn route-target auto
nv set vrf internet1 router bgp router-id 27.0.0.7

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default untagged 1
nv set bridge domain br_default vlan 20-21

nv set evpn enable on
nv set interface lo ip address 27.0.0.17/32

nv set interface lo ip address 2001:c001:ff:f00d::11/128

nv set interface lo type loopback
nv set interface p0-1,pf0hpf,pf0vf0-12,pf1hpf,pf1vf0-4 type swp
nv set interface pf0hpf bridge domain br_default access 20

nv set interface pf0vf0 bridge domain br_default access 21

nv set interface vlan20 ip address 45.1.0.1/24

nv set interface vlan20 ip address 2001:c001:b00c::1/96

nv set interface vlan20 vlan 20

nv set interface vlan20-21 ip ipv4 forward on
nv set interface vlan20-21 ip ipv6 forward on
nv set interface vlan20-21 ip vrf tenant1
nv set interface vlan20-21 type svi
nv set interface vlan21 ip address 45.1.1.1/24

nv set interface vlan21 ip address 2001:c001:b00c::1:0:1/96

nv set interface vlan21 vlan 21

nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.17

nv set platform

DOCA Documentation v2.7.0 811

nv set router bgp enable on
nv set system global anycast-mac 44:38:39:42:42:21

nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 6300656

nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 27.0.0.11 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.11 type numbered
nv set vrf default router bgp neighbor 27.0.0.12 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.12 type numbered
nv set vrf default router bgp neighbor p0 capabilities source-address lo
nv set vrf default router bgp neighbor p0 peer-group fabric
nv set vrf default router bgp neighbor p0 type unnumbered
nv set vrf default router bgp neighbor p1 capabilities source-address lo
nv set vrf default router bgp neighbor p1 peer-group fabric
nv set vrf default router bgp neighbor p1 type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-tx
off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable off
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group fabric timers connection-retry 5
nv set vrf default router bgp peer-group fabric timers hold 30

nv set vrf default router bgp peer-group fabric timers keepalive 10

nv set vrf default router bgp peer-group rs_client address-family ipv4-unicast enable
off
nv set vrf default router bgp peer-group rs_client address-family ipv6-unicast enable
off

DOCA Documentation v2.7.0 812

Tenant-HBN-4 Full Configuration

nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn add-
path-tx off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn enable
on
nv set vrf default router bgp peer-group rs_client multihop-ttl 5
nv set vrf default router bgp peer-group rs_client remote-as external
nv set vrf default router bgp peer-group rs_client timers connection-retry 5
nv set vrf default router bgp peer-group rs_client timers hold 30

nv set vrf default router bgp peer-group rs_client timers keepalive 10

nv set vrf default router bgp router-id 27.0.0.17

nv set vrf tenant1 evpn enable on
nv set vrf tenant1 evpn vni 20000

nv set vrf tenant1 loopback ip address 15.1.0.1/32

nv set vrf tenant1 loopback ip address 2001:c001:c0de::1/128

nv set vrf tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf tenant1 router bgp autonomous-system 6300656

nv set vrf tenant1 router bgp enable on
nv set vrf tenant1 router bgp route-export to-evpn route-target 6300656:20000

nv set vrf tenant1 router bgp route-import from-evpn route-target ANY:10000

nv set vrf tenant1 router bgp route-import from-evpn route-target auto
nv set vrf tenant1 router bgp router-id 27.0.0.17

DOCA Documentation v2.7.0 813

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default untagged 1
nv set bridge domain br_default vlan 20-21

nv set evpn enable on
nv set interface lo ip address 27.0.0.19/32

nv set interface lo ip address 2001:c001:ff:f00d::13/128

nv set interface lo type loopback
nv set interface p0-1,pf0hpf,pf0vf0-12,pf1hpf,pf1vf0-4 type swp
nv set interface pf0hpf bridge domain br_default access 20

nv set interface pf0vf0 bridge domain br_default access 21

nv set interface vlan20 ip address 45.1.2.1/24

nv set interface vlan20 ip address 2001:c001:b00c::2:0:1/96

nv set interface vlan20 vlan 20

nv set interface vlan20-21 ip ipv4 forward on
nv set interface vlan20-21 ip ipv6 forward on
nv set interface vlan20-21 ip vrf tenant1
nv set interface vlan20-21 type svi
nv set interface vlan21 ip address 45.1.3.1/24

nv set interface vlan21 ip address 2001:c001:b00c::3:0:1/96

nv set interface vlan21 vlan 21

nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.19

nv set platform
nv set router bgp enable on
nv set system global anycast-mac 44:38:39:42:42:23

nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on

DOCA Documentation v2.7.0 814

nv set vrf default router bgp autonomous-system 6300658

nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 27.0.0.11 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.11 type numbered
nv set vrf default router bgp neighbor 27.0.0.12 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.12 type numbered
nv set vrf default router bgp neighbor p0 capabilities source-address lo
nv set vrf default router bgp neighbor p0 peer-group fabric
nv set vrf default router bgp neighbor p0 type unnumbered
nv set vrf default router bgp neighbor p1 capabilities source-address lo
nv set vrf default router bgp neighbor p1 peer-group fabric
nv set vrf default router bgp neighbor p1 type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-tx
off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable off
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group fabric timers connection-retry 5
nv set vrf default router bgp peer-group fabric timers hold 30

nv set vrf default router bgp peer-group fabric timers keepalive 10

nv set vrf default router bgp peer-group rs_client address-family ipv4-unicast enable
off
nv set vrf default router bgp peer-group rs_client address-family ipv6-unicast enable
off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn add-
path-tx off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn enable
on
nv set vrf default router bgp peer-group rs_client multihop-ttl 5
nv set vrf default router bgp peer-group rs_client remote-as external
nv set vrf default router bgp peer-group rs_client timers connection-retry 5
nv set vrf default router bgp peer-group rs_client timers hold 30

nv set vrf default router bgp peer-group rs_client timers keepalive 10

nv set vrf default router bgp router-id 27.0.0.19

DOCA Documentation v2.7.0 815

Access Control Lists

Access Control Lists (ACLs) are a set of rules that are used to filter network traffic. These
rules are used to specify the traffic flows that must be permitted or blocked at
networking device interfaces. There are two types of ACLs:

Stateless ACLs – rules that are applied to individual packets. They inspect each
packet individually and permit/block the packets based on the packet header
information and the match criteria specified by the rule.

Stateful ACLs – rules that are applied to traffic sessions/connections. They inspect
each packet with respect to the state of the session/connection to which the packet

nv set vrf tenant1 evpn enable on
nv set vrf tenant1 evpn vni 20000

nv set vrf tenant1 loopback ip address 15.1.0.2/32

nv set vrf tenant1 loopback ip address 2001:c001:c0de::2/128

nv set vrf tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast redistribute connected
enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast route-export to-evpn
enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast redistribute connected
enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast route-export to-evpn
enable on
nv set vrf tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf tenant1 router bgp autonomous-system 6300658

nv set vrf tenant1 router bgp enable on
nv set vrf tenant1 router bgp route-export to-evpn route-target 6300658:20000

nv set vrf tenant1 router bgp route-import from-evpn route-target ANY:10000

nv set vrf tenant1 router bgp route-import from-evpn route-target auto
nv set vrf tenant1 router bgp router-id 27.0.0.19

DOCA Documentation v2.7.0 816

belongs to determine whether to permit/block the packet.

Stateless ACLs

HBN supports configuration of stateless ACLs for IPv4 packets, IPv6 packets, and Ethernet
(MAC) frames. The following examples depict how stateless ACLs are configured for each
case, with NVUE and with flat files (cl-acltool).

NVUE Examples for Stateless ACLs

NVUE IPv4 ACLs Example

The following is an example of an ingress IPv4 ACL that permits DHCP request packets
ingressing on the pf0hpf_sf port towards the DHCP server:

Bind the ingress IPv4 ACL to host representor port pf0hpf_sf of BlueField in the inbound
direction:

The following is an example of an egress IPv4 ACL that permits DHCP reply packets
egressing out of the pf0hpf_sf port towards the DHCP client:

root@hbn01-host01:~# nv set acl acl1_ingress type ipv4
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip protocol udp
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip dest-port 67
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip source-port 68
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 action permit

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl1_ingress inbound
root@hbn01-host01:~# nv config apply

root@hbn01-host01:~# nv set acl acl2_egress type ipv4
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip protocol udp
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip dest-port 68
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip source-port 67
root@hbn01-host01:~# nv set acl acl2_egress rule 200 action permit

DOCA Documentation v2.7.0 817

Bind the egress IPv4 ACL to host representor port pf0hpf_sf of BlueField in the outbound
direction:

NVUE IPv6 ACLs Example

The following is an example of an ingress IPv6 ACL that permits traffic with matching dest-

ip and protocol tcp ingress on port pf0hpf_sf:

Bind the ingress IPv6 ACL to host representor port pf0hpf_sf of BlueField in the inbound
direction:

The following is an example of an egress IPv6 ACL that permits traffic with matching
source-ip and protocol tcp egressing out of port pf0hpf_sf:

Bind the egress IPv6 ACL to host representor port pf0hpf_sf of BlueField in the outbound
direction:

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl2_egress outbound
root@hbn01-host01:~# nv config apply

root@hbn01-host01:~# nv set acl acl5_ingress type ipv6
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 match ip protocol tcp
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 match ip dest-ip
48:2034::80:9
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 action permit

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl5_ingress inbound
root@hbn01-host01:~# nv config apply

root@hbn01-host01:~# nv set acl acl6_egress type ipv6
root@hbn01-host01:~# nv set acl acl6_egress rule 101 match ip protocol tcp
root@hbn01-host01:~# nv set acl acl6_egress rule 101 match ip source-ip
48:2034::80:9
root@hbn01-host01:~# nv set acl acl6_egress rule 101 action permit

DOCA Documentation v2.7.0 818

NVUE MAC ACLs Example

The following is an example of an ingress MAC ACL that permits traffic with matching
source-mac and dest-mac ingressing to port pf0hpf_sf:

Bind the ingress MAC ACL to host representor port pf0hpf_sf of BlueField in the inbound
direction:

The following is an example of an egress MAC ACL that permits traffic with matching
source-mac and dest-mac egressing out of port pf0hpf_sf:

Bind the egress MAC ACL to host representor port pf0hpf_sf of BlueField in the outbound
direction:

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl6_egress outbound
root@hbn01-host01:~# nv config apply

root@hbn01-host01:~# nv set acl acl3_ingress type mac
root@hbn01-host01:~# nv set acl acl3_ingress rule 1 match mac source-mac
00:00:00:00:00:0a
root@hbn01-host01:~# nv set acl acl3_ingress rule 1 match mac dest-mac
00:00:00:00:00:0b
root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl3_ingress inbound

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl3_ingress inbound
root@hbn01-host01:~# nv config apply

root@hbn01-host01:~# nv set acl acl4_egress type mac
root@hbn01-host01:~# nv set acl acl4_egress rule 2 match mac source-mac
00:00:00:00:00:0b
root@hbn01-host01:~# nv set acl acl4_egress rule 2 match mac dest-mac
00:00:00:00:00:0a
root@hbn01-host01:~# nv set acl acl4_egress rule 2 action permit

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl4_egress outbound

DOCA Documentation v2.7.0 819

Flat Files (cl-acltool) Examples for Stateless ACLs

For the same examples cited above, the following are the corresponding ACL rules which
must be configured under /etc/cumulus/acl/policy.d/<rule_name.rules> followed by invoking cl-

acltool -i. The rules in /etc/cumulus/acl/policy.d/<rule_name.rules> are configured using Linux
iptables/ip6tables/ebtables.

Flat Files IPv4 ACLs Example

The following example configures an ingress IPv4 ACL rule matching with DHCP request
under /etc/cumulus/acl/policy.d/<rule_name.rules> with the ingress interface as the host
representor of BlueField followed by invoking cl-acltool -i:

The following example configures an egress IPv4 ACL rule matching with DHCP reply
under /etc/cumulus/acl/policy.d/<rule_name.rules> with the egress interface as the host
representor of BlueField followed by invoking cl-acltool -i:

Flat File IPv6 ACLs Example

The following example configures an ingress IPv6 ACL rule matching with dest-ip and tcp

protocol under /etc/cumulus/acl/policy.d/<rule_name.rules> with the ingress interface as the host
representor of BlueField followed by invoking cl-acltool -i:

root@hbn01-host01:~# nv config apply

[iptables]
ACL acl1_ingress in dir inbound on interface pf1vf1_sf
-t filter -A FORWARD -m physdev --physdev-in pf1vf1_sf -p udp --sport 68 --dport 67 -
j ACCEPT

[iptables]
ACL acl2_egress in dir outbound on interface pf1vf1_sf
-t filter -A FORWARD -m physdev --physdev-out pf1vf1_sf -p udp --sport 67 --dport 68
-j ACCEPT

[ip6tables]

DOCA Documentation v2.7.0 820

The following example configures an egress IPv6 ACL rule matching with source-ip and tcp

protocol under /etc/cumulus/acl/policy.d/<rule_name.rules> with the egress interface as the host
representor of BlueField followed by invoking cl-acltool -i:

Flat Files MAC ACLs Example

The following example configures an ingress MAC ACL rule matching with source-mac and
dest-mac under /etc/cumulus/acl/policy.d/<rule_name.rules> with the ingress interface as the host
representor of BlueField followed by invoking cl-acltool -i:

The following example configures an egress MAC ACL rule matching with source-mac and
dest-mac under /etc/cumulus/acl/policy.d/<rule_name.rules> with egress interface as host
representor of BlueField followed by invoking cl-acltool -i:

Stateful ACLs

ACL acl5_ingress in dir inbound on interface pf0hpf_sf
-t filter -A FORWARD -m physdev --physdev-in pf0hpf_sf -d 48:2034::80:9 -p tcp -j
ACCEPT

[ip6tables]
ACL acl6_egress in dir outbound on interface pf0hpf_sf
-t filter -A FORWARD -m physdev --physdev-out pf0hpf_sf -s 48:2034::80:9 -p tcp -j
ACCEPT

[ebtables]
ACL acl3_ingress in dir inbound on interface pf0hpf_sf
-t filter -A FORWARD -m physdev --physdev-in pf0hpf_sf -s
00:00:00:00:00:0a/ff:ff:ff:ff:ff:ff -d 00:00:00:00:00:0b/ff:ff:ff:ff:ff:ff -j ACCEPT

[ebtables]
ACL acl4_egress in dir outbound on interface pf0hpf_sf
-t filter -A FORWARD -m physdev --physdev-out pf0hpf_sf -s
00:00:00:00:00:0b/ff:ff:ff:ff:ff:ff -d 00:00:00:00:00:0a/ff:ff:ff:ff:ff:ff -j ACCEPT

DOCA Documentation v2.7.0 821

Stateful ACLs facilitate monitoring and tracking traffic flows to enforce per-flow traffic
filtering (unlike stateless ACLs which filter traffic on a per-packet basis). HBN supports
stateful ACLs using reflexive ACL mechanism. Reflexive ACL mechanism is used to allow
initiation of connections from "within" the network to "outside" the network and allow
only replies to the initiated connections from "outside" the network (or vice versa).

HBN supports stateful ACL configuration for IPv4 traffic.

Stateful ACLs can be applied for native routed traffic (north-south underlay routed traffic
in EVPN deployments), EVPN bridged traffic (east-west overlay bridged/L2 traffic in EVPN
deployments) and EVPN routed traffic (east-west overlay routed traffic in EVPN
deployments). Stateful ACLs applied for native routed traffic are called "Native-L3 stateful
ACLs". Stateful ACLs applied for EVPN bridged traffic and EVPN routed traffic are called
"EVPN-L2 stateful ACLs" and "EVPN-L3 stateful ACLs", respectively.

Stateful ACLs in HBN are disabled by default. To enable stateful ACL functionality, use the
following NVUE commands:

If using flat-file configuration (and not NVUE), edit the file /etc/cumulus/nl2docad.d/acl.conf and
set the knob rflx.reflexive_acl_enable to TRUE. To apply this change, execute:

NVUE Example for Native-L3 Stateful ACLs

The following is an example of allowing HTTP (TCP) connection originated by the host,
where BlueField is hosted, to an HTTP server (with the IP address 11.11.11.11) on an
external network. Two sets of ACLs matching with CONNTRACK state must be configured
for a CONNTRACK entry to be established in the kernel which would be offloaded to
hardware:

Configure an ACL rule matching TCP/HTTP connection/flow details with CONNTRACK
state of NEW, ESTABLISHED and bind it to the SVI in the inbound direction.

Configure an ACL rule matching TCP/HTTP connection/flow details with CONNTRACK
state of ESTABLISHED and bind it to the SVI in the outbound direction.

root@hbn03-host00:~# nv set system reflexive-acl enable
root@hbn03-host00:~# nv config apply

root@hbn03-host00:~# supervisorctl start nl2doca-reload

DOCA Documentation v2.7.0 822

Native-L3 stateful ACLs should be bound to an SVI interface. In this example, SVI interface
is vlan101.

1. Configure the ingress ACL rule:

2. Bind this ACL to the SVI interface in the inbound direction:

3. Configure the egress ACL rule:

root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 action
permit
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match
conntrack new
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match
conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip
dest-ip 11.11.11.11/32
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip
dest-port 80
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip
protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host type ipv4

root@hbn03-host00:~# nv set interface vlan101 acl allow_tcp_conn_from_host
inbound
root@hbn03-host00:~# nv config apply

root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 action
permit
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 match
conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 match ip
protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server type ipv4
root@hbn03-host00:~# nv config apply

DOCA Documentation v2.7.0 823

4. Bind this ACL to the SVI interface in the outbound direction:

root@hbn03-host00:~# nv set interface vlan101 acl
allow_tcp_resp_from_server outbound
root@hbn03-host00:~# nv config apply

Note

If virtual router redundancy (VRR) is set, L3 stateful ACLs must
be bound to all the related SVI interfaces. For example, if VRR is
configured on SVI vlan101 as follows in the /etc/network/interfaces

file:

With this configuration, two SVI interfaces, vlan101 and vlan101-v0

would be created in the system:

In this case, stateful ACLs must be bound to both SVI interfaces
(vlan101 and vlan101-v0). In the stateful ACL described in the
current section, the binding would be:

auto vlan101
iface vlan101
 address 45.3.1.2/24

 address-virtual 00:00:5e:00:01:01 45.3.1.1/24

 vlan-raw-device br_default
vlan-id 101

root@hbn03-host00:~# ip -br addr show | grep vlan101
vlan101@br_default UP 45.3.1.2/24
fe80::204:4bff:fe8a:f100/64
vlan101-v0@vlan101 UP 45.3.1.1/24 metric 1024
fe80::200:5eff:fe00:101/64

DOCA Documentation v2.7.0 824

Flat Files (cl-acltool) Example for Native-L3 Stateful ACLs

For the same NVUE example for Native-L3 stateful ACLs cited above (HTTP server at IP
address 11.11.11.11 on an external network), the following are the corresponding ACL
rules which must be configured under /etc/cumulus/acl/policy.d/<rule_name.rules> followed by
invoking cl-acltool -i to install the rules in BlueField hardware.

1. Configure an ingress ACL rule matching with TCP flow details and CONNTRACK state
of NEW, ESTABLISHED under /etc/cumulus/acl/policy.d/stateful_acl.rules with the ingress
interface as the SVI followed by invoking cl-acltool -i:

root@hbn03-host00:~# nv set interface vlan101,vlan101-
v0 acl allow_tcp_conn_from_host inbound
root@hbn03-host00:~# nv set interface vlan101,vlan101-
v0 acl allow_tcp_resp_from_server outbound
root@hbn03-host00:~# nv config apply

[iptables]
ACL allow_tcp_conn_from_host in dir inbound on interface vlan101
-t filter -A FORWARD -i vlan101 -p tcp -d 11.11.11.11/32 --dport 80 -m
conntrack --ctstate EST,NEW -m connmark ! --mark 7998 -j CONNMARK --set-
mark 7999
-t filter -A FORWARD -i vlan101 -p tcp –d 11.11.11.11/32 --dport 80 -m
conntrack --ctstate EST,NEW -j ACCEPT

Note

As shown above, an additional rule must be configured with
CONNMARK action. The CONNMARK values (-j CONNMARK --set-

mark <value>) for ingress ACL rules are protocol dependent: 7999
for TCP, 7997 for UDP, and 7995 for ICMP.

DOCA Documentation v2.7.0 825

2. Configure an egress ACL rule matching the TCP flow and CONNTRACK state of
ESTABLISHED, RELATED under /etc/cumulus/acl/policy.d/stateful_acl.rules file with the
egress interface as SVI followed by invoking cl-acltool -i:

NVUE Example for EVPN-L2 Stateful ACLs

The following is an example allowing HTTP (TCP) connection originated by the host,
hosting BlueField, to an HTTP server (with the IP address 192.168.5.5) accessible on the
EVPN bridged network (L2 stretch). Two sets of ACLs matching with CONNTRACK state
must be configured for a CONNTRACK entry to be established in the kernel which would
be offloaded to hardware:

Configure an ACL rule matching TCP/HTTP connection/flow details with a
CONNTRACK state of NEW, ESTABLISHED, and bind it to the host interface in the
inbound direction

Configure an ACL rule matching TCP/HTTP connection/flow details with a
CONNTRACK state of ESTABLISHED, and bind it to the host interface in the
outbound direction

[iptables]
ACL allow_tcp_resp_from_server in dir outbound on interface vlan101
-t filter -A FORWARD -o vlan101 -p tcp -s 11.11.11.11/32 --sport 80 -m
conntrack --ctstate EST -j CONNMARK --set-mark 7998
-t filter -A FORWARD -o vlan101 -p tcp -s 11.11.11.11/32 --sport 80 -m
conntrack --ctstate EST -j ACCEPT

Note

As shown above, an additional rule must be configured with
CONNMARK action. The CONNMARK values (-j CONNMARK --set-

mark <value>) for egress ACL rules are protocol dependent: 7998
for TCP, 7996 for UDP, and 7994 for ICMP.

DOCA Documentation v2.7.0 826

EVPN-L2 stateful ACLs should be bound to a host interface. In this example, the host
interface is pf1vf7_sf.

1. Configure the ingress ACL rule:

2. Bind this ACL to the host interface in the inbound direction:

3. Configure the egress ACL rule:

root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 action
permit
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match
conntrack new
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match
conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip
dest-ip 192.168.5.5/32
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip
dest-port 80
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip
protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host type ipv4

root@hbn03-host00:~# nv set interface pf1vf7_sf acl
allow_tcp_conn_from_host inbound
root@hbn03-host00:~# nv config apply

root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 action
permit
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 match
conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 match ip
protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server type ipv4
root@hbn03-host00:~# nv config apply

DOCA Documentation v2.7.0 827

4. Bind this ACL to the host interface in the outbound direction:

Flat Files (cl-acltool) Example for EVPN-L2 Stateful ACLs

For the same NVUE EPVN-L2 stateful ACLs example cited above (HTTP server at IP
address 192.168.5.5 accessible over bridged network), the following are the
corresponding ACL rules which must be configured under
/etc/cumulus/acl/policy.d/<rule_name.rules> followed by invoking cl-acltool -i.

1. Configure an ingress ACL rule matching with TCP flow details and CONNTRACK state
of NEW, ESTABLISHED under /etc/cumulus/acl/policy.d/stateful_acl.rules with the ingress
interface as the host representor of BlueField, followed by invoking cl-acltool -i:

root@hbn03-host00:~# nv set interface pf1vf7_sf acl
allow_tcp_resp_from_server outbound
root@hbn03-host00:~# nv config apply

[iptables]
ACL allow_tcp_conn_from_host in dir inbound on interface pf1vf7_sf
-t filter -A FORWARD -m physdev --physdev-in pf1vf7_sf -p tcp -d
192.168.5.5/32 --dport 80 -m conntrack --ctstate EST,NEW -m connmark ! --
mark 9998 -j CONNMARK --set-mark 9999
-t filter -A FORWARD -m physdev --physdev-in pf1vf7_sf -p tcp -d
192.168.5.5/32 --dport 80 -m conntrack --ctstate EST,NEW -j ACCEPT

Note

As shown above, an additional rule must be configured with
CONNMARK action. The CONNMARK values (-j CONNMARK --set-

mark <value>) for ingress ACL rules are protocol dependent: 9999
for TCP, 9997 for UDP, and 9995 for ICMP.

DOCA Documentation v2.7.0 828

2. Configure an egress ACL rule matching with TCP and CONNTRACK state of
ESTABLISHED, RELATED under /etc/cumulus/acl/policy.d/stateful_acl.rules with the egress
interface as the host representor of BlueField, followed by invoking cl-acltool -i:

NVUE Example for EVPN-L3 Stateful ACLs

The following is an example allowing an HTTP (TCP) connection originated by the host,
hosting BlueField, to an HTTP server (with the IP address 21.1.1.2) accessible on the EVPN
routed network (EVPN Symmetric Routing). Two sets of ACLs matching with CONNTRACK
state must be configured for a CONNTRACK entry to be established in the kernel which
would be offloaded to hardware:

Configure an ACL rule matching TCP/HTTP connection/flow details with a
CONNTRACK state of NEW, ESTABLISHED, and bind it to the host interface in the
inbound direction

Configure an ACL rule matching TCP/HTTP connection/flow details with a
CONNTRACK state of ESTABLISHED, and bind it to the host interface in the
outbound direction

[iptables]
ACL allow_tcp_resp_from_server in dir outbound on interface pf1vf7_sf
-t filter -A FORWARD -m physdev --physdev-out pf1vf7_sf -p tcp -s
192.168.5.5/32 --sport 80 -m conntrack --ctstate EST -j CONNMARK --set-mark
9998
-t filter -A FORWARD -m physdev --physdev-out pf1vf7_sf -p tcp -s
192.168.5.5/32 --sport 80 -m conntrack --ctstate EST -j ACCEPT

Note

As shown above, an additional rule must be configured with
CONNMARK action. The CONNMARK values (-j CONNMARK --set-

mark <value>) for egress ACL rules are protocol dependent: 9998
for TCP, 9996 for UDP, and 9994 for ICMP.

DOCA Documentation v2.7.0 829

EVPN-L3 stateful ACLs should be bound to an SVI interface. In this example, the SVI
interface is vlan105.

1. Configure the ingress ACL rule:

2. Bind this ACL to the host interface in the inbound direction:

3. Configure the egress ACL rule:

root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 action
permit
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match
conntrack new
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match
conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip
dest-ip 21.1.1.2/32
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip
dest-port 80
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip
protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host type ipv4

root@hbn03-host00:~# nv set interface vlan105 acl allow_tcp_conn_from_host
inbound
root@hbn03-host00:~# nv config apply

root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 action
permit
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 match
conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 match ip
protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server type ipv4
root@hbn03-host00:~# nv config apply

DOCA Documentation v2.7.0 830

4. Bind this ACL to the host interface in the outbound direction:

Flat Files (cl-acltool) Example for EVPN-L3 Stateful ACLs

For the same NVUE EVPN-L3 stateful ACLs example cited under "NVUE Example for EVPN-
L3 Stateful ACLs" (HTTP server at IP address 21.1.1.2 accessible over EVPN routed overlay
network), the following are the corresponding ACL rules which must be configured under
/etc/cumulus/acl/policy.d/<rule_name.rules> followed by invoking cl-acltool -i.

1. Configure an ingress ACL rule matching with TCP flow details and CONNTRACK state
of NEW, ESTABLISHED under /etc/cumulus/acl/policy.d/stateful_acl.rules with the ingress
interface as the SVI interface, followed by invoking cl-acltool -i:

root@hbn03-host00:~# nv set interface vlan105 acl
allow_tcp_resp_from_server outbound
root@hbn03-host00:~# nv config apply

[iptables]
ACL allow_tcp_conn_from_host in dir inbound on interface vlan105
-t filter -A FORWARD -i vlan105 -p tcp -d 21.1.1.2/32 --dport 80 -m conntrack --
ctstate EST,NEW -m connmark ! --mark 7998 -j CONNMARK --set-mark 7999
-t filter -A FORWARD -i vlan105 -p tcp -d 21.1.1.2/32 --dport 80 -m conntrack --
ctstate EST,NEW -j ACCEPT

Note

As shown above, an additional rule must be configured with
CONNMARK action. The CONNMARK values (-j CONNMARK --set-

mark <value>) for ingress ACL rules are protocol dependent: 7999
for TCP, 7997 for UDP, and 7995 for ICMP.

DOCA Documentation v2.7.0 831

2. Configure an egress ACL rule matching with TCP and CONNTRACK state of
ESTABLISHED, RELATED under /etc/cumulus/acl/policy.d/stateful_acl.rules file with the
egress interface as the SVI interface, followed by invoking cl-acltool -i:

DHCP Relay on HBN

DHCP is a client server protocol that automatically provides IP hosts with IP addresses
and other related configuration information. A DHCP relay (agent) is a host that forwards
DHCP packets between clients and servers. DHCP relays forward requests and replies
between clients and servers that are not on the same physical subnet.

DHCP relay can be configured using either flat file (supervisord configuration) or through
NVUE.

Configuration

HBN is a non-systemd based container. Therefore, the DHCP relay must be configured as
explained in the following subsections.

[iptables]
ACL allow_tcp_resp_from_server in dir outbound on interface vlan105
-t filter -A FORWARD -o vlan105 -p tcp -s 21.1.1.2/32 --sport 80 -m conntrack --
ctstate EST -j CONNMARK --set-mark 7998
-t filter -A FORWARD -o vlan105 -p tcp -s 21.1.1.2/32 --sport 80 -m conntrack --
ctstate EST -j ACCEPT

Note

As shown above, an additional rule must be configured with
CONNMARK action. The CONNMARK values (-j CONNMARK --set-

mark <value>) for egress ACL rules are protocol dependent: 7998
for TCP, 7996 for UDP, and 7994 for ICMP.

DOCA Documentation v2.7.0 832

Flat File Configuration (Supervisord)

The HBN initialization script installs default configuration files on BlueField in
/var/lib/hbn/etc/supervisor/conf.d/. BlueField directory is mounted to /etc/supervisor/conf.d which
achieves configuration persistence.

By default, DHCP relay is disabled. Default configuration applies to one instance of
DHCPv4 relay and DHCPv6 relay in the default VRF.

NVUE Configuration

The user can use NVUE to configure and maintain DHCPv4 and DHCPv6 relays with CLI
and REST API. NVUE generates all the required configurations and maintains the relay
service.

DHCPv4 Relay Configuration

NVUE Example

The following configuration starts a relay service which listens for the DHCP messages on
p0_sf, p1_sf, and vlan482 and relays the requests to DHCP server 10.89.0.1 with gateway-

interface as lo.

Flat Files Example

nv set service dhcp-relay default gateway-interface lo
nv set service dhcp-relay default interface p0_sf
nv set service dhcp-relay default interface p1_sf
nv set service dhcp-relay default interface vlan482 downstream
nv set service dhcp-relay default server 10.89.0.1

[program: isc-dhcp-relay-default]
command = /usr/sbin/dhcrelay --nl -d -i p0_sf -i p1_sf -id vlan482 -U lo 10.89.0.1
autostart = true
autorestart = unexpected

DOCA Documentation v2.7.0 833

Where:

Option Description

-i Network interface to listen on for requests and replies

-iu Upstream network interface

-id Downstream network interface

-U
[address]%%i
fname

Gateway IP address interface. Use %% for IP%%ifname. % is used as an escape
character.

--loglevel-
debug Debug logging. Location: /var/log/syslog.

-a
Append an agent option field to each request before forwarding it to the
server with default values for circuit-id and remote-id

-r remote-id
Set a custom remote ID string (max of 255 chars). To use this option, you
must also enable the -a option.

--use-pif-
circuit-id

Set the underlying physical interface which receives the packet as the circuit-

id. To use this option you must also enable the -a option.

DHCPv4 Relay Option 82

NVUE Example

The following NVUE command is used to enable option 82 insertion in DHCP packets with
default values:

startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

nv set service dhcp-relay default agent enable on

DOCA Documentation v2.7.0 834

To provide a custom remote-id (e.g., host10) using NVUE:

To use the underlying physical interface on which the request is received as circuit-id using
NVUE:

Flat Files Example

DHCPv6 Relay Configuration

NVUE Example

The following NVUE command starts the DHCPv6 Relay service which listens for DHCPv6
requests on vlan482 and sends relayed DHCPv6 requests towards p0_sf and p1_sf.

Flat Files Example

nv set service dhcp-relay default agent remote-id host10

nv set service dhcp-relay default agent use-pif-circuit-id enable on

[program: isc-dhcp-relay-default]
command = /usr/sbin/dhcrelay --nl -d -i p0_sf -i p1_sf -id vlan482 -U lo -a --use-pif-
circuit-id -r host10 10.89.0.1
autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

nv set service dhcp-relay6 default interface downstream vlan482
nv set service dhcp-relay6 default interface upstream p0_sf
nv set service dhcp-relay6 default interface upstream p1_sf

DOCA Documentation v2.7.0 835

Where:

Option Description

-l
[address]%%ifname[#ind
ex]

Downstream interface. Use %% for IP%%ifname. % is used as escape
character.

-u [address]%%ifname
Upstream interface. Use %% for IP%%ifname. % is used as escape
character.

-6 IPv6

--loglevel-debug Debug logging located at /var/log/syslog

DHCP Relay and VRF Considerations

DHCP relay can be spawned inside a VRF context to handle the DHCP requests in that
VRF. There can only be 1 instance each of DHCPv4 relay and DHCPv6 relay per VRF. To
achieve that, the user can follow these guidelines:

DHCPv4 on default VRF:

DHCPv4 on VRF:

[program: isc-dhcp-relay6-default]
command = /usr/sbin/dhcrelay --nl -6 -d -l vlan482 -u p0_sf -u p1_sf
autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

/usr/sbin/dhcrelay --nl -i <interface> -U [address]%%<interface> <server_ip>

DOCA Documentation v2.7.0 836

DHCPv6 on default VRF:

DHCPv6 on VRF:

Troubleshooting

HBN Container Stuck in init-sfs

The HBN container starts as init-sfs and should transition to doca-hbn within 2 minutes as
can be seen using crictl ps. But sometimes it may remain as init-sfs.

This can happen if interface p0_sf is missing. Run the command ip -br link show dev p0_sf in
BlueField and inside the container to check if p0_sf is present or not. If its missing, make
sure the firmware is upgraded to the latest version. Perform BlueField system-level reset
for the new firmware to take effect.

Host-side PF/VF Down After BlueField Reboot

In general, the host can use any interface manager to manage host interfaces belonging
to BlueField. When the host uses an interface manager other than Netplan or
NetworkManager, some ports may remain down after BlueField reboot.

Apply the following workaround if interfaces stay down:

/usr/sbin/ip vrf exec <vrf> /usr/sbin/dhcrelay –-nl -i <interface> -U
[address]%%<interface> <server_ip>

/usr/sbin/dhcrelay --nl -6 -l <interface> -u <interface>

/usr/sbin/ip vrf exec <vrf> /usr/sbin/dhcrelay --nl -6 -l <interface> -u
<interface>

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-2799458725_id-.NVIDIABlueFieldResetandRebootProceduresv2.7.0-BlueFieldSystem-levelReset

DOCA Documentation v2.7.0 837

1. Restart openibd:

2. Recreate SR-IOV interfaces if they are needed.

3. Replay interface config. For example:

If using ifupdown2:

If using Netplan:

BGP Session not Establishing

One of the main causes of a BGP session not getting established is a mismatch in MTU
configuration. Make sure the MTU on all interfaces is the same. For example, if BGP is
failing on p0, check and verify that there is a matching MTU value for p0, p0_sf_r, p0_sf, and
the remote peer of p0.

Generating Support Dump

HBN support dump can be generated using the cl-support command, inside the HBN
container:

systemctl restart openibd

ifreload -a

netplan apply

root@bf2:/tmp# cl-support
Please send /var/support/cl_support_bf2-s02-1-ipmi_20221025_180508.txz to
Cumulus support

DOCA Documentation v2.7.0 838

The generated dump would be available in /var/support in the HBN container and would
contain any process core dump as well as log files.

The /var/support directory is also mounted on the BlueField Arm side at
/var/lib/hbn/var/support.

SFC Troubleshooting

To troubleshoot flows going through SFC interfaces, the first step is to disable the nl2doca

service in the HBN container:

Stopping nl2doca effectively stops hardware offloading and switches to software
forwarding. All packets would appear on tcpdump capture on BlueField interfaces.

tcpdump can be performed on SF interfaces as well as VLAN, VXLAN, and uplinks to
determine where a packet gets dropped or which flow a packet is taking.

General nl2doca Troubleshooting

The following steps can be used to make sure the nl2doca daemon is up and running:

1. Make sure there are no errors in the nl2doca log file at /var/log/hbn/nl2docad.log.

2. To check the status of the nl2doca daemon under supervisor, run:

3. Use ps to check that the actual nl2doca process is running:

root@bf2:/tmp# supervisorctl stop nl2doca
nl2doca: stopped

supervisorctl status nl2doca

DOCA Documentation v2.7.0 839

4. The core file should be in /var/support/core/.

5. Check if the /cumulus/nl2docad/run/stats/punt is accessible. Otherwise, nl2doca may be
stuck and should be restarted:

nl2doca Offload Troubleshooting

If a certain traffic flow does not work as expected, disable nl2doca (i.e., disable hardware
offloading):

 With hardware offloading disabled, you can confirm it is an offloading issue if the traffic
starts working. If it is not an offloading issue, use tcpdump on various interfaces to see
where the packet gets dropped.

Offloaded entries can be checked in following files, which contain the programming
status of every IP prefix and MAC address known to system.

Bridge entries are available in the file /cumulus/nl2docad/run/software-tables/17 . It includes
all the MAC addresses in the system including local and remote MAC addresses.

Example format:

ps -eaf | grep nl2doca
root 18 1 0 06:31 ? 00:00:00 /bin/bash /usr/bin/nl2doca-docker-start
root 1437 18 0 06:31 ? 00:05:49 /usr/sbin/nl2docad

supervisorctl restart nl2doca

supervisorctl stop nl2doca

- flow-entry: 0xaaab0cef4190
flow-pattern:
fid: 112
dst mac: 00:00:5e:00:01:01
flow-actions:

DOCA Documentation v2.7.0 840

Router entries are available in the file /cumulus/nl2docad/run/software-tables/18 . It
includes all the IP prefixes known to the system.

Example format for Entry with ECMP:

SET VRF: 2
OUTPUT-PD-PORT: 20(TO_RTR_INTF)
STATS:
pkts: 1719
bytes: 191286

Entry with ECMP:
- flow-entry: 0xaaaada723700
flow-pattern:
IPV6: LPM
VRF: 0
destination-ip: ::/0
flow-actions :
ECMP: 2
STATS:
pkts: 0
bytes: 0

Entry without ECMP: - flow-entry: 0xaaaada7e1400
 flow-pattern:
 IPV4: LPM
 VRF: 0
 destination-ip: 60.1.0.93/32
 flow-actions :
 SET FID: 200
 SMAC: 00:04:4b:a7:88:00
 DMAC: 00:03:00:08:00:12
 OUTPUT-PD-PORT: 19(TO_BR_INTF)
 STATS:
 pkts: 0

DOCA Documentation v2.7.0 841

ECMP entries are available in the file /cumulus/nl2docad/run/software-tables/19 . It includes
all the next hops in the system.

Example format:

To check counters for packets going to the kernel, run:

For a specific type of packet flow, programming can be referenced in block specific files.
The typical flow is as follows:

For example, to check L2 EVPN ENCAP flows for remote MAC 8a:88:d0:b1:92:b1 on port
pf0vf0_sf, the basic offload flow should look as follows: RxPort (pf0vf0_sf) -> BR (Overlay) ->
RTR (Underlay) -> BR (Underlay) -> TxPort (one of the uplink p0_sf or p1_sf based on ECMP
hash).

Step-by-step procedure:

1. Navigate to the interface file /cumulus/nl2docad/run/software-tables/20.

 bytes: 0

- ECMP: 2
ref-count: 2
num-next-hops: 2
entries:
- { index: 0, fid: 4100, src mac: 'b8:ce:f6:99:49:6a', dst mac: '00:02:00:00:00:0a' }
- { index: 1, fid: 4101, src mac: 'b8:ce:f6:99:49:6b', dst mac: '00:02:00:00:00:0e' }

cat /cumulus/nl2docad/run/stats/punt
 PUNT miss pkts:3154 bytes:312326
PUNT miss drop pkts:0 bytes:0
PUNT control pkts:31493 bytes:2853186
PUNT control drop pkts:0 bytes:0
ACL PUNT pkts:68 bytes:7364
ACL drop pkts:0 bytes:0

DOCA Documentation v2.7.0 842

2. Check for the RxPort (pf0vf0_sf):

FID 112 is given to the receive port .

3. Check the bridge table file /cumulus/nl2docad/run/software-tables/17 with destination MAC
8a:88:d0:b1:92:b1 and FID 112:

4. Check the router table file /cumulus/nl2docad/run/software-tables/18 with destination IP
6.0.0.26 and VRF 0:

Interface: pf0vf0_sf
PD PORT: 6
HW PORT: 16
NETDEV PORT: 11
Bridge-id: 61
Untagged FID: 112

flow-pattern:
fid: 112
dst mac: 8a:88:d0:b1:92:b1
flow-actions:
VXLAN ENCAP:
ENCAP dst ip: 6.0.0.26
ENCAP vni id: 1000112
SET VRF: 0
OUTPUT-PD-PORT: 20(TO_RTR_INTF)
STATS:
pkts: 100
bytes: 10200

flow-pattern:
IPV4: LPM
VRF: 0
ip dst: 6.0.0.26/32
flow-actions :

DOCA Documentation v2.7.0 843

5. Check the ECMP table file /cumulus/nl2docad/run/software-tables/19 with ECMP 1:

6. The ECMP hash calculation picks one of these paths for next-hop rewrite. Check
bridge table file for them (fid=4100, dst mac: 00:02:00:00:00:2f or fid=4115, dst mac:

00:02:00:00:00:33):

This will show the packet going out on the uplink.

NVUE Troubleshooting

To check the status of the NVUE daemon, run:

ECMP: 1
OUTPUT PD PORT: 2(TO_BR_INTF)
STATS:
pkts: 300
bytes: 44400

- ECMP: 1
ref-count: 7
 num-next-hops: 2
 entries:
- { index: 0, fid: 4100, src mac: 'b8:ce:f6:99:49:6a', dst mac: '00:02:00:00:00:2f' }
- { index: 1, fid: 4115, src mac: 'b8:ce:f6:99:49:6b', dst mac: '00:02:00:00:00:33' }

flow-pattern:
fid: 4100
dst mac: 00:02:00:00:00:2f
flow-actions:
OUTPUT-PD-PORT: 36(p0_sf)
STATS:
pkts: 1099
bytes: 162652

DOCA Documentation v2.7.0 844

To restart the NVUE daemon, run:

NVIDIA DOCA Management Service
Guide
This guide provides instructions on how to use the DOCA Management Service on top of
NVIDIA® BlueField® Networking Platform or ConnectX® Network Adapters.

Introduction

DOCA Management Service (DMS) is a one-stop shop for the user to configure and
operate NVIDIA BlueField and ConnectX devices. DMS governs all scripts/tools of NVIDIA
with an easy and industry-standard API created by the OpenConfig community. The user
can configure BlueField or ConnectX for any mode whether locally (ssh) or remotely (grpc).
It makes it easy to migrate and bootstrap any customer for any NVIDIA network device.

DMS exposes configurable BlueField/ConnectX parameters over the external interface to
support a management station in an automated configuration of the NVIDIA Network
Adapters. The exposed interface presents a uniform approach for BF/CX device
configuration and keeps hidden details about the internal tools used for the
configuration of BlueField or ConnectX features.

supervisorctl status nvued

supervisorctl restart nvued

Note

DOCA DMS service is currently supported at Alpha level.

DOCA Documentation v2.7.0 845

The DMS is a Client-Server architecture. Using a daemon, the service handles the
discovery of resources, and is ready to receive commands from clients, the user can use
DMSc (DMS Client) which delivers as part of the DMS, or use/create any other client.

The Yang models describe a config tree which is easy to navigate and find any "config
leaf" using XPath capabilities. Most gNMI/gNOI protocols are common with the
OpenConfig community, utilizing gRPC protocol for transferring the command.

Info

Please refer to the OpenConfig site for an explanation of the
OpenConfig protocol.

Note

The DOCA Yang model is experimental.

Note

The gNMI Subscribe mechanism for streaming telemetry is not
currently supported yet.

Info

DMS can run either on the host machine where BlueField or
ConnectX devices are installed or on BlueField Arm itself (when
BlueField is operating in DPU mode).

https://www.openconfig.net/
file:///doca/sdk/NVIDIA+BlueField+Modes+of+Operation

DOCA Documentation v2.7.0 846

Requirements

DMS requires DOCA to be installed on the target system, where DMS Service will be
running:

DMS for Host - requires DOCA for Host package to be installed on the host system
(with doca-networking or doca-all profiles).

DMS for DPU (BlueField Arm) - requires DOCA Image to be installed on BlueField
Arm.

Please follow these instructions to install DOCA: NVIDIA DOCA Installation Guide for
Linux.

Service Deployment

DMS has 3 major components:

DMSd – Server – DMS server inside the BlueField or on the host with an NVIDIA PCIe
device

DMSc – Client – DOCA provides OpenConfig client. Customers can choose to use this
client, any other open-source client, or develop their own (gRPC-based) client.

Yang files – Yang model files contain the data model used to configure the BlueField
device, NVIDIA-specific extension to common OpenConfig YANG Models.

OpenConfig consists of 2 main protocols:

gNMI – gRPC Network Management Interface, protocol to configure of network
device.

Note

DMS supports only Linux-based environments today.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://www.openconfig.net/projects/models/

DOCA Documentation v2.7.0 847

gNOI – gRPC Network Operations Interface, a protocol to perform operational
commands on network device (i.e., provision, upgrade, reboot).

The following is an architectural diagram of DMS:

The following diagram presents the DMS mode of operation, as the DMS client can
operate from anywhere:

1. Both DMS client and server components are deployed on the Host

2. Both DMS client and server components are deployed on DPU (BlueField Arm)

3. DMS server component is deployed on the Host, while DMS client is deployed
remotely (connecting to DMS server over management network)

4. DMS server component is deployed on DPU (BlueField Arm), while DMS client is
deployed remotely (connecting to DMS server over management network)

DOCA Documentation v2.7.0 848

Configuration

To see the full list of flags, user the help flag (i.e., dmsd -help, dmsd -h).

General Flags

-bind_address <string> – Bind to <address>:<port> or just :<port> (default is :9339). Can be
localhost for local use case, or an IP address for remote use case.

-v <value> – log level for V logs

-target_pci <string> – The target PCIe address (i.e., 03:00). Auto-select if only one NVIDIA
network device is present; otherwise, the PCIe address must be specified.

Security Flags

-auth string – this flag has 3 options:

Shadow

Zero-touch, admin not required to create any dedicated additional user for
DMS (re-use OS user)

Read the hashed password in real time on each client request

Use flags -username -shadow

Example: -username root -shadow /etc/shadow/

DOCA Documentation v2.7.0 849

To disable: -noauth flag

Credentials

Admin must set a strong password

Use flags -username -password

Example: -username root -password 123456

To disable: -noauth flag

Can leave password flag empty to invoke prompt for password at demon boot

Certificate File

The most secure option, based on (m)TLS

Example: -ca /tmp/ca.crt -ca_key /tmp/ca.key

To disable: -notls option

Provisioning Flags

-target_pci <string> – The target PCIe address (i.e., 03:00). Auto-select if only one NVIDIA
network device is present; otherwise, the PCIe address must be specified.

-image_folder <string> – Specify image install folder. Can copy images directly to the
folder to avoid transfer over the net. Default create folder: /tmp/dms.

-chunk_size_ack <uint> – The chunk size of the image to respond with a
TransfreResponse in bytes (default: 12000000)

Description

gNMI Command

DOCA Documentation v2.7.0 850

In DMSc, the gNMI part is powered by the GNMIC project.

Prompt mode with autocomplete options can be invoked using the command prompt.

Get Request

Get requests happen in real-time without cache. Get command require providing the
Yang Xpath as described in the following:

Info

For more information, please refer to GNMIC documentation.

dmsc -a localhost:9339 -u root -p <password> --
file /opt/mellanox/doca/service/dms/yang <command>

dmsc <flags> get --path /interfaces/interface[name=p0]/config/mtu
[
{
"source": "localhost:9339",
"timestamp": 1712485149723248511,
"time": "2024-04-07T10:19:09.723248511Z",
"updates": [
{
"Path": "interfaces/interface[name=p0]/config/mtu",
"values": {
"interfaces/interface/config/mtu": "1500"

}
}
]
}
]

https://github.com/openconfig/gnmic
https://gnmic.openconfig.net/

DOCA Documentation v2.7.0 851

Set Request

Set requests happen immediately, invoking tools to configure the OS.

Set commands require providing Yang Xpath as described in the following:

Info

To insert params in the path, as an indication of the interface name
(p0).

Note

Some set commands cannot currently be detected with GET
commands.

dmsc <flags> set --update /interfaces/interface[name=p0]/config/mtu:::int:::9216
{
"source": "localhost:9339",
"time": "1970-01-01T00:00:00Z",
"results": [
{
"operation": "UPDATE",
"path": "interfaces/interface[name=p0]/config/mtu"

}
]
}

DOCA Documentation v2.7.0 852

It is also possible to invoke a command JSON list:

req.json example:

Info

To insert params in the path, as an indication of the interface name
(p0).

Note

The value provided must be separated by value type and char.

Note

Currently, only the --update flag is supported in set.

dmsc <flags> set --request-file req.json

{
"updates":
[
{
"path": "/interfaces/interface[name=p0]/config/mtu",
"value": 9216,
"encoding": "uint"

},
{

DOCA Documentation v2.7.0 853

gNOI Commands

In DMSc, the gNOI part is powered by GNOIC project, for full docs refer to GNOIC docs

Prompt mode with autocomplete options can be invoked using the command prompt.

All commands are blocking unless specified otherwise.

OS

The following subsections present actions for provisioning a new DOCA Image (BFB) or
firmware on BlueField.

Install

This command transmits the file from the client to the server and authenticates the file's
validity:

The file is saved to the folder specified in the -image_folder flag (default /tmp/dms) if the file
authenticates successfully. The file's extension is autodetected and is written
automatically if none is provided in the --version field. Users may copy the file to the folder

"path": "/interfaces/interface[name=p0]/config/enabled",
"value": true,
"encoding": "bool"

}
]
}

dmsc -a localhost --port 9339 --tls-cert client.crt --tls-key client.key <command>

dmsc <flags> os install --version <free_text_version> --pkg <bfb|cfg|fw path>
dmsc <flags> os install --version 2_7_0 --pkg DOCA_2.7.0_Ubuntu.bfb
dmsc <flags> os install --version 2_7_0 --pkg config.cfg
dmsc <flags> os install --version 1_3_5_custom.bfb --pkg custom.bfb

https://github.com/karimra/gnoic
https://gnoic.kmrd.dev/

DOCA Documentation v2.7.0 854

manually and invoke the command with file extension to authenticate the file. No file
transfer is initiated if the file already exists in the folder and the version specified with the
extension.

Activate

Activate the command deploy the BFB bundle/firmware to the hardware:

The --version flag provides a version to search for in the folder specified by the -image_folder

flag (default /tmp/dms). If no extension is provided, the command uses all files under the
version name.

To activate separate files, use the --version flag separated by semi-colon.

Verify

Verify command retrieves the firmware and BFB bundle version:

The return value consists of both versions separated by semi-colon.

dmsc <flags> os activate --version 2_7_0 # Invoke all files under 2_7_0 name

dmsc <flags> os activate --version "2_7_0.bfb;0_0_1.cfg;24_29_0046.fw"

Note

After running the command to activate firmware, firmware reset is
automatically invoked.

dmsc <flags> os verify

DOCA Documentation v2.7.0 855

System

The following subsections provide actions for rebooting the BFB bundle/firmware on the
BlueField.

Reboot Status

Verify BFB is on reboot operation

The value returned is false if the system is active. It is true if the system is in reboot status.

If the status cannot be retrieved, the status appears as a failure and the message field
indicates what the issue is.

Reboot

Reboot the BlueField Arm and firmware.

Note

Currently, the BFB bundle can only be retrieved if it was installed via
DMS.

Note

Alpha version does not support components

dmsc <flags> system reboot-status

DOCA Documentation v2.7.0 856

This command is not blocking and returns immediately.

The flag --delay specifies the time interval to wait before invoking the reset.

NVIDIA DOCA Telemetry Service
Guide
This guide provides instructions on how to use the DOCA Telemetry Service (DTS)
container on top of NVIDIA® BlueField® DPU.

Introduction

DOCA Telemetry Service (DTS) collects data from built-in providers and from external
telemetry applications. The following providers are available:

Data providers:

sysfs

ethtool

tc (traffic control)

Aggregation providers:

fluent_aggr

prometheus_aggr

dmsc <flags> system reboot --delay 10s

Note

DOCA Documentation v2.7.0 857

DTS stores collected data into binary files under the /opt/mellanox/doca/services/telemetry/data

directory. Data write is disabled by default due to BlueField storage restrictions.

DTS can export the data via Prometheus Endpoint (pull) or Fluent Bit (push).

DTS allows exporting NetFlow packets when data is collected from the DOCA Telemetry
NetFlow API client application. NetFlow exporter is enabled from dts_config.ini by setting
NetFlow collector IP/address and port.

Service Deployment

Available Images

Built-in DOCA Service Image

DOCA Telemetry Service is enabled by default on the DPU and is shipped as part of the
BlueField image. That is, every BlueField image contains a fixed service version so as to
provide out-of-the-box support for programs based on the DOCA Telemetry library.

DOCA Service on NGC

In addition to the built-in image shipped with the BlueField boot image, DTS is also
available on NGC, NVIDIA's container catalog. This is useful in case a new version of the

Sysfs provider is enabled by default.

https://docs.nvidia.com//doca/sdk/DOCA+Telemetry
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_telemetry

DOCA Documentation v2.7.0 858

service has been released and the user wants to upgrade from the built-in image. For
service-specific configuration steps and deployment instructions, refer to the service's
container page .

DPU Deployment

As mentioned above, DTS starts automatically on BlueField boot. This is done according
to the .yaml file located at /etc/kubelet.d/doca_telemetry_standalone.yaml. Removing the .yaml file
from this path stops the automatic DTS boot.

DTS files can be found under the directory /opt/mellanox/doca/services/telemetry/.

Container folder mounts:

config

data

ipc_sockets

Backup files:

doca_telemetry_service_${version}_arm64.tar.gz – DTS image

doca_telemetry_standalone.yaml – copy of the default boot .yaml file

Info

For more information about the deployment of DOCA containers on
top of the BlueField DPU, refer to NVIDIA DOCA Container
Deployment Guide.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_telemetry
file:///doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
file:///doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide

DOCA Documentation v2.7.0 859

Host Deployment

DTS supports x86_64 hosts. The providers and exporters all run from a single docker
container.

1. Initialize and configure host DTS with the desired DTS version:

2. Run with:

export DTS_IMAGE=nvcr.io/nvidia/doca/doca_telemetry:<desired-DTS-version>
docker run -v "/opt/mellanox/doca/services/telemetry/config:/config" --rm --
name doca-telemetry-init -it $DTS_IMAGE /bin/bash -c "DTS_CONFIG_DIR=host
/usr/bin/telemetry-init.sh"

Note

Per NGC policy, the "latest" tag does not exist. This means that
when deploying DTS, the user must pick the desired tag from
NGC and ensure that the DTS_IMAGE variable points to the full
image. Example from version 1.16.5-doca2.6.0-host:

export
DTS_IMAGE=nvcr.io/nvidia/doca/doca_telemetry:1.16.5-
doca2.6.0-host

docker run -d --net=host --uts=host --ipc=host \
--privileged \
--ulimit stack=67108864 --ulimit memlock=-1 \
--device=/dev/mst/ \
--device=/dev/infiniband/ \
--gpus all \
-v "/opt/mellanox/doca/services/telemetry/config:/config" \
-v "/opt/mellanox/doca/services/telemetry/ipc_sockets:/tmp/ipc_sockets" \

DOCA Documentation v2.7.0 860

Deployment with Grafana Monitoring

Refer to section "Deploying with Grafana Monitoring".

Configuration

The configuration of DTS is placed under /opt/mellanox/doca/services/telemetry/config by DTS
during initialization. The user can interact with the dts_config.ini file and fluent_bit_configs

-v "/opt/mellanox/doca/services/telemetry/data:/data" \
-v "/usr/lib/mft:/usr/lib/mft" \
-v "/sys/kernel/debug:/sys/kernel/debug" \
--rm --name doca-telemetry -it $DTS_IMAGE /usr/bin/telemetry-run.sh

Note

The following mounts are required by specific services only:

hcaperf provider:

--device=/dev/mst/

-v "/usr/lib/mft:/usr/lib/mft"

-v "/sys/kernel/debug:/sys/kernel/debug"

UCX/RDMA export modes:

--device=/dev/infiniband/

GPU providers (nvidia-smi and dcgm):

--gpu all

DOCA Documentation v2.7.0 861

folder. dts_config.ini contains the main configuration for the service and must be used to
enable/disable providers, exporters, data writing. More details are provided in the
corresponding sections. For every update in this file, DST must be restarted. Interaction
with fluent_bit_configs folder is described in section Fluent Bit.

Init Scripts

The InitContainers section of the .yaml file has 2 scripts for config initialization:

/usr/bin/telemetry-init.sh – generates the default configuration files if, and only if, the
/opt/mellanox/doca/services/telemetry/config folder is empty.

/usr/bin/enable-fluent-forward.sh – configures the destination host and port for Fluent Bit
forwarding. The script requires that both the host and port are present, and only in
this case it would start. The script overwrites the
/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs folder and configures the .exp

file.

Enabling Fluent Bit Forwarding

To enable Fluent Bit forward, add the destination host and port to the command line
found in the initContainers section of the .yaml file:

command: ["/bin/bash", "-c", "/usr/bin/telemetry-init.sh && /usr/bin/enable-fluent-
forward.sh -i=127.0.0.1 -p=24224"]

Note

The host and port shown above are just an example. See section
Fluent Bit to learn about manual configuration.

DOCA Documentation v2.7.0 862

Generating Configuration

The configuration folder /opt/mellanox/doca/services/telemetry/config starts empty by default.
Once the service starts, the initial scripts run as a part of the initial container and create
configuration as described in section Enabling Fluent Bit Forwarding.

Resetting Configuration

Resetting the configuration can be done by deleting the content found in the
configuration folder and restarting the service to generate the default configuration.

Enabling Providers

Providers are enabled from the dts_config.ini configuration file. Uncomment the enable-

provider=$provider-name line to allow data collection for this provider. For example,
uncommenting the following line enables the ethtool provider:

Remote Collection

Certain providers or components are unable to execute properly within the container
due to various container limitations. Therefore, they would have to perform remote
collection or execution.

The following steps enable remote collection:

#enable-provider=ethtool

Note

More information about telemetry providers can be found under the
Providers section.

DOCA Documentation v2.7.0 863

1. Activate DOCA privileged executer (DPE), as DPE is how remote collection is
achieved:

2. Add grpc before provider-name (i.e., enable-provider=grpc.$provider-name). For example, the
following line configures remote collection of the hcaperf provider:

3. If there are any configuration lines that are provider-specific, then add the grpc

prefix as well. Building upon the previous example:

Enabling Data Write

Uncomment the following line in dts_config.ini:

systemctl start dpe

enable-provider=grpc.hcaperf

grpc.hcaperf.mlx5_0=sample
grpc.hcaperf.mlx5_1=sample

#output=/data

Note

Changes in dts_config.ini force the main DTS process to restart in 60
seconds to apply the new settings.

DOCA Documentation v2.7.0 864

Enabling IPC with Non-container Program

For information on enabling IPC between DTS and an application that runs outside of a
container, refer to section "Using IPC with Non-container Application" in the DOCA
Telemetry.

Description

Providers

DTS supports on-board data collection from sysf, ethtool, and tc providers.

Fluent and Prometheus aggregator providers can collect the data from other
applications.

Sysfs Counters List

The sysfs provider has several components: ib_port, hw_port, mr_cache, eth, hwmon and bf_ptm .
By default, all the components (except bf_ptm) are enabled when the provider is enabled:

The components can be disabled separately. For instance, to disable eth:

#disable-provider=sysfs

enable-provider=sysfs
disable-provider=sysfs.eth

Note

ib_port and ib_hvw are state counters which are collected per port.
These counters are only collected for ports whose state is active.

https://docs.nvidia.com//doca/sdk/DOCA+Telemetry#src-2694791996_id-.DOCATelemetryv2.7.0-UsingIPCwithNon-containerApplication
https://docs.nvidia.com//doca/sdk/DOCA+Telemetry
https://docs.nvidia.com//doca/sdk/DOCA+Telemetry

DOCA Documentation v2.7.0 865

ib_port counters:

ib_hw counters:

{hca_name}:{port_num}:ib_port_state
{hca_name}:{port_num}:VL15_dropped
{hca_name}:{port_num}:excessive_buffer_overrun_errors
{hca_name}:{port_num}:link_downed
{hca_name}:{port_num}:link_error_recovery
{hca_name}:{port_num}:local_link_integrity_errors
{hca_name}:{port_num}:multicast_rcv_packets
{hca_name}:{port_num}:multicast_xmit_packets
{hca_name}:{port_num}:port_rcv_constraint_errors
{hca_name}:{port_num}:port_rcv_data
{hca_name}:{port_num}:port_rcv_errors
{hca_name}:{port_num}:port_rcv_packets
{hca_name}:{port_num}:port_rcv_remote_physical_errors
{hca_name}:{port_num}:port_rcv_switch_relay_errors
{hca_name}:{port_num}:port_xmit_constraint_errors
{hca_name}:{port_num}:port_xmit_data
{hca_name}:{port_num}:port_xmit_discards
{hca_name}:{port_num}:port_xmit_packets
{hca_name}:{port_num}:port_xmit_wait
{hca_name}:{port_num}:symbol_error
{hca_name}:{port_num}:unicast_rcv_packets
{hca_name}:{port_num}:unicast_xmit_packets

{hca_name}:{port_num}:hw_state
{hca_name}:{port_num}:hw_duplicate_request
{hca_name}:{port_num}:hw_implied_nak_seq_err
{hca_name}:{port_num}:hw_lifespan
{hca_name}:{port_num}:hw_local_ack_timeout_err
{hca_name}:{port_num}:hw_out_of_buffer
{hca_name}:{port_num}:hw_out_of_sequence
{hca_name}:{port_num}:hw_packet_seq_err

DOCA Documentation v2.7.0 866

ib_mr_cache counters:

eth counters:

{hca_name}:{port_num}:hw_req_cqe_error
{hca_name}:{port_num}:hw_req_cqe_flush_error
{hca_name}:{port_num}:hw_req_remote_access_errors
{hca_name}:{port_num}:hw_req_remote_invalid_request
{hca_name}:{port_num}:hw_resp_cqe_error
{hca_name}:{port_num}:hw_resp_cqe_flush_error
{hca_name}:{port_num}:hw_resp_local_length_error
{hca_name}:{port_num}:hw_resp_remote_access_errors
{hca_name}:{port_num}:hw_rnr_nak_retry_err
{hca_name}:{port_num}:hw_rx_atomic_requests
{hca_name}:{port_num}:hw_rx_dct_connect
{hca_name}:{port_num}:hw_rx_icrc_encapsulated
{hca_name}:{port_num}:hw_rx_read_requests
{hca_name}:{port_num}:hw_rx_write_requests

{hca_name}:mr_cache:size_{n}:cur
{hca_name}:mr_cache:size_{n}:limit
{hca_name}:mr_cache:size_{n}:miss
{hca_name}:mr_cache:size_{n}:size

Note

Where n ranges from 0 to 24.

{hca_name}:{device_name}:eth_collisions
{hca_name}:{device_name}:eth_multicast
{hca_name}:{device_name}:eth_rx_bytes
{hca_name}:{device_name}:eth_rx_compressed

DOCA Documentation v2.7.0 867

BlueField-2 hwmon counters:

{hca_name}:{device_name}:eth_rx_crc_errors
{hca_name}:{device_name}:eth_rx_dropped
{hca_name}:{device_name}:eth_rx_errors
{hca_name}:{device_name}:eth_rx_fifo_errors
{hca_name}:{device_name}:eth_rx_frame_errors
{hca_name}:{device_name}:eth_rx_length_errors
{hca_name}:{device_name}:eth_rx_missed_errors
{hca_name}:{device_name}:eth_rx_nohandler
{hca_name}:{device_name}:eth_rx_over_errors
{hca_name}:{device_name}:eth_rx_packets
{hca_name}:{device_name}:eth_tx_aborted_errors
{hca_name}:{device_name}:eth_tx_bytes
{hca_name}:{device_name}:eth_tx_carrier_errors
{hca_name}:{device_name}:eth_tx_compressed
{hca_name}:{device_name}:eth_tx_dropped
{hca_name}:{device_name}:eth_tx_errors
{hca_name}:{device_name}:eth_tx_fifo_errors
{hca_name}:{device_name}:eth_tx_heartbeat_errors
{hca_name}:{device_name}:eth_tx_packets
{hca_name}:{device_name}:eth_tx_window_errors

{hwmon_name}:{l3cache}:CYCLES
{hwmon_name}:{l3cache}:HITS_BANK0
{hwmon_name}:{l3cache}:HITS_BANK1
{hwmon_name}:{l3cache}:MISSES_BANK0
{hwmon_name}:{l3cache}:MISSES_BANK1
{hwmon_name}:{pcie}:IN_C_BYTE_CNT
{hwmon_name}:{pcie}:IN_C_PKT_CNT
{hwmon_name}:{pcie}:IN_NP_BYTE_CNT
{hwmon_name}:{pcie}:IN_NP_PKT_CNT
{hwmon_name}:{pcie}:IN_P_BYTE_CNT
{hwmon_name}:{pcie}:IN_P_PKT_CNT
{hwmon_name}:{pcie}:OUT_C_BYTE_CNT

DOCA Documentation v2.7.0 868

BlueField-3 hwmon counters:

BlueField-3 bf_ptm counters:

{hwmon_name}:{pcie}:OUT_C_PKT_CNT
{hwmon_name}:{pcie}:OUT_NP_BYTE_CNT
{hwmon_name}:{pcie}:OUT_NP_PKT_CNT
{hwmon_name}:{pcie}:OUT_P_PKT_CNT
{hwmon_name}:{tile}:MEMORY_READS
{hwmon_name}:{tile}:MEMORY_WRITES
{hwmon_name}:{tile}:MSS_NO_CREDIT
{hwmon_name}:{tile}:VICTIM_WRITE
{hwmon_name}:{tilenet}:CDN_DIAG_C_OUT_OF_CRED
{hwmon_name}:{tilenet}:CDN_REQ
{hwmon_name}:{tilenet}:DDN_REQ
{hwmon_name}:{tilenet}:NDN_REQ
{hwmon_name}:{trio}:TDMA_DATA_BEAT
{hwmon_name}:{trio}:TDMA_PBUF_MAC_AF
{hwmon_name}:{trio}:TDMA_RT_AF
{hwmon_name}:{trio}:TPIO_DATA_BEAT
{hwmon_name}:{triogen}:TX_DAT_AF
{hwmon_name}:{triogen}:TX_DAT_AF

{hwmon_name}:{llt}:GDC_BANK0_RD_REQ
{hwmon_name}:{llt}:GDC_BANK1_RD_REQ
{hwmon_name}:{llt}:GDC_BANK0_WR_REQ
{hwmon_name}:{llt}:GDC_BANK1_WR_REQ
{hwmon_name}:{llt_miss}:GDC_MISS_MACHINE_RD_REQ
{hwmon_name}:{llt_miss}:GDC_MISS_MACHINE_WR_REQ
{hwmon_name}:{mss}:SKYLIB_DDN_TX_FLITS
{hwmon_name}:{mss}:SKYLIB_DDN_RX_FLITS

bf:ptm:active_power_profile
bf:ptm:atx_power_available
bf:ptm:core_temp

DOCA Documentation v2.7.0 869

Power Thermal Counters

The bf_ptm component collects BlueField-3 power thermal counters using remote
collection. It is disabled by default and can be enabled as follows:

1. Load kernel module mlxbf-ptm:

2. Enable component using remote collection:

bf:ptm:ddr_temp
bf:ptm:error_state
bf:ptm:power_envelope
bf:ptm:power_throttling_event_count
bf:ptm:power_throttling_state
bf:ptm:thermal_throttling_event_count
bf:ptm:thermal_throttling_state
bf:ptm:throttling_state
bf:ptm:total_power
bf:ptm:vr0_power
bf:ptm:vr1_power

modprobe -v mlxbf-ptm

enable-provider=grpc.sysfs.bf_ptm

Note

DPE server should be active before changing the dts_config.ini file.
See section "Remote Collection" for details.

DOCA Documentation v2.7.0 870

Ethtool Counters

Ethtool counters is the generated list of counters which corresponds to Ethtool utility.
Counters are generated on a per-device basis. See this community post for more
information on mlx5 ethtool counters.

Traffic Control Info

The following TC objects are supported and reported regarding the ingress filters:

Filters

flower

Actions

mirred

tunnel_key

The info is provided as one of the following events:

Basic filter event

Flower/IPv4 filter event

Flower/IPv6 filter event

Basic action event

Mirred action event

Tunnel_key/IPv4 action event

Tunnel_key/IPv6 action event

General notes:

Actions always belong to a filter, so action events share the filter event's ID via the
event_id data member

https://linux.die.net/man/8/ethtool
https://support.mellanox.com/s/article/understanding-mlx5-ethtool-counters
https://www.man7.org/linux/man-pages/man8/tc-flower.8.html
https://man7.org/linux/man-pages/man8/tc-mirred.8.html
https://www.man7.org/linux/man-pages/man8/tc-tunnel_key.8.html

DOCA Documentation v2.7.0 871

Basic filter event only contains textual kind (so users can see which real life objects'
support they are lacking)

Basic action event only contains textual kind and some basic common statistics if
available

Fluent Aggregator

fluent_aggr listens on a port for Fluent Bit Forward protocol input connections. Received
data can be streamed via a Fluent Bit exporter.

The default port is 42442. This can be changed by updating the following option:

Prometheus Aggregator

prometheus_aggr polls data from a list of Prometheus endpoints.

Each endpoint is listed in the following format:

Where N starts from 0.

Aggregated data can be exported via a Prometheus Aggr Exporter endpoint.

Network Interfaces

ifconfig collects network interface data. To enable, set:

fluent-aggr-port=42442

prometheus_aggr_endpoint.{N}={host_name},{host_port_url},{poll_inteval_msec}

enable-provider=ifconfig

https://docs.fluentbit.io/manual/pipeline/outputs/forward

DOCA Documentation v2.7.0 872

If the Prometheus endpoint is enabled, add the following configuration to cache every
collected network interface and arrange the index according to their names:

Metrices are collected for each network interface as follows:

HCA Performance

prometheus-fset-indexes=name

name
rx_packets
tx_packets
rx_bytes
tx_bytes
rx_errors
tx_errors
rx_dropped
tx_dropped
multicast
collisions
rx_length_errors
rx_over_errors
rx_crc_errors
rx_frame_errors
rx_fifo_errors
rx_missed_errors
tx_aborted_errors
tx_carrier_errors
tx_fifo_errors
tx_heartbeat_errors
tx_window_errors
rx_compressed
tx_compressed
rx_nohandler

DOCA Documentation v2.7.0 873

hcaperf collects HCA performance data. Since it requires access to an RDMA device, it must
use remote collection on the DPU. On the host, the user runs the container in privileged
mode and RDMA device mount.

The counter list is device dependent.

hcaperf DPU Configuration

To enable hcaperf in remote collection mode, set:

hcaperf Host Configuration

To enable hcaperf in regular mode, set:

enable-provider=grpc.hcaperf

specify HCAs to sample
grpc.hcaperf.mlx5_0=sample
grpc.hcaperf.mlx5_1=sample

Note

DPE server should be active before changing the dts_config.ini file. See
section "Remote Collection" for details.

enable-provider=hcaperf

specify HCAs to sample
hcaperf.mlx5_0=sample
hcaperf.mlx5_1=sample

DOCA Documentation v2.7.0 874

NVIDIA System Management Interface

The nvidia-smi provider collects GPU and GPU process information provided by the NVIDIA
system management interface.

This provider is supported only on x86_64 hosts with installed GPUs. All GPU cards
supported by nvidia-smi are supported by this provider.

The counter list is GPU dependent. Additionally, per-process information is collected for
the first 20 (by default) nvidia_smi_max_processes processes.

Counters can be either collected as string data "as is" in nvidia-smi or converted to
numbers when nvsmi_with_numeric_fields is set.

To enable nvidia-smi provider and change parameters, set:

NVIDIA Data Center GPU Manager

The dcgm provider collects GPU information provided by the NVIDIA data center GPU
manager (DCGM) API.

This provider is supported only on x86_64 hosts with installed GPUs, and requires
running the nv-hostengine service (refer to DCGM documentation for details).

DCGM counters are split into several groups by context:

GPU – basic GPU information (always)

COMMON – common fields that can be collected from all devices

PROF – profiling fields

ECC – ECC errors

enable-provider=nvidia-smi

Optional parameters:
#nvidia_smi_max_processes=20
#nvsmi_with_numeric_fields=1

https://docs.nvidia.com/datacenter/dcgm/latest/index.html

DOCA Documentation v2.7.0 875

NVLINK / NVSWITCH / VGPU – fields depending on the device type

To enable DCGM provider and counter groups, set:

BlueField Performance

The bfperf provider collects calculated performance counters of BlueField Arm cores. It
requires the executable bfperf_pmc, which is integrated in the DOCA BFB bundle of
BlueField-3, as well as an active DPE.

To enable BlueField performance provider, set:

Data Outputs

enable-provider=dcgm

dcgm_events_enable_common_fields=1
#dcgm_events_enable_prof_fields=0
#dcgm_events_enable_ecc_fields=0
#dcgm_events_enable_nvlink_fields=0
#dcgm_events_enable_nvswitch_fields=0
#dcgm_events_enable_vgpu_fields=0

enable-provider=bfperf

Note

When running, the bfperf provider is expected to recurrently reset the
counters of the sysfs.hwmon component. Consider disabling it if bfperf is
enabled.

DOCA Documentation v2.7.0 876

DTS can send the collected data to the following outputs:

Data writer (saves binary data to disk)

Fluent Bit (push-model streaming)

Prometheus endpoint (keeps the most recent data to be pulled)

Data Writer

The data writer is disabled by default to save space on BlueField. Steps for activating data
write during debug can be found under section Enabling Data Write.

The schema folder contains JSON-formatted metadata files which allow reading the
binary files containing the actual data. The binary files are written according to the
naming convention shown in the following example (apt install tree):

New binary files appears when the service starts or when binary file age/size restriction is
reached. If no schema or no data folders are present, refer to the Troubleshooting
section.

tree /opt/mellanox/doca/services/telemetry/data/
/opt/mellanox/doca/services/telemetry/data/

 {year}
 {mmdd}
 {hash}
 {source_id}
 {source_tag}{timestamp}.bin
 {another_source_id}
 {another_source_tag}{timestamp}.bin

 schema
 schema_{MD5_digest}.json

Note

source_id is usually set to the machine hostname. source_tag is a line
describing the collected counters, and it is often set as the provider's

DOCA Documentation v2.7.0 877

Reading the binary data can be done from within the DTS container using the following
command:

Example output:

name or name of user-counters.

crictl exec -it <Container ID> /opt/mellanox/collectx/bin/clx_read -s /data/schema
/data/path/to/datafile.bin

Note

The path to the data file must be an absolute path.

{
"timestamp": 1634815738799728,
"event_number": 0,
"iter_num": 0,
"string_number": 0,
"example_string": "example_str_1"
}
{
"timestamp": 1634815738799768,
"event_number": 1,
"iter_num": 0,
"string_number": 1,
"example_string": "example_str_2"
}
…

DOCA Documentation v2.7.0 878

Prometheus

The Prometheus endpoint keeps the most recent data to be pulled by the Prometheus
server and is enabled by default.

To check that data is available, run the following command on BlueField:

The command dumps every counter in the following format:

Additionally, endpoint supports JSON and CSV formats:

Configuration Details

Prometheus is configured as a part of dts_config.ini.

By default, the Prometheus HTTP endpoint is set to port 9100. Comment this line out to
disable Prometheus export.

curl -s http://0.0.0.0:9100/metrics

counter_name {list of meta fields} counter_value timestamp

curl -s http://0.0.0.0:9100/json/metrics
curl -s http://0.0.0.0:9100/csv/metrics

Note

The default port for Prometheus can be changed in dts_config.ini.

prometheus=http://0.0.0.0:9100

DOCA Documentation v2.7.0 879

Prometheus can use the data field as an index to keep several data records with different
index values. Index fields are added to Prometheus labels.

The default fset index is device_name. It allows Prometheus to keep ethtool data up for both
the p0 and p1 devices.

If fset index is not set, the data from p1 overwrites p0's data.

For quick name filtering, the Prometheus exporter supports being provided with a
comma-separated list of counter names to be ignored:

For quick filtering of data by tag, the Prometheus exporter supports being provided with
a comma-separated list of data source tags to be ignored.

Users should add tags for all streaming data since the Prometheus exporter cannot be
used for streaming. By default, FI_metrics are disabled.

Prometheus Aggregator Exporter

Prometheus aggregator exporter is an endpoint that keeps the latest aggregated data
using prometheus_aggr.

This exporter labels data according to its source.

Comma-separated counter set description for Prometheus indexing:
#prometheus-indexes=idx1,idx2

Comma-separated fieldset description for prometheus indexing
#prometheus-fset-indexes=idx1,idx2

prometheus-fset-indexes=device_name

#prometheus-ignore-names=counter_name1,counter_name_2

prometheus-ignore-tags=FI_metrics

DOCA Documentation v2.7.0 880

To enable this provider, users must set 2 parameters in dts_config.ini:

Fluent Bit

Fluent Bit allows streaming to multiple destinations. Destinations are configured in .exp

files that are documented in-place and can be found under:

Fluent Bit allows exporting data via "Forward" protocol which connects to the Fluent
Bit/FluentD instance on customer side.

Export can be enabled manually:

1. Uncomment the line with fluent_bit_configs=… in dts_config.ini.

2. Set enable=1 in required .exp files for the desired plugins.

3. Additional configurations can be set according to instructions in the .exp file if
needed.

4. Restart the DTS.

5. Set up receiving instance of Fluent Bit/FluentD if needed.

6. See the data on the receiving side.

Export file destinations are set by configuring .exp files or creating new ones. It is
recommended to start by going over documented example files. Documented examples
exist for the following supported plugins:

forward

file

stdout

prometheus-aggr-exporter-host=0.0.0.0
prometheus-aggr-exporter-port=33333

/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs

DOCA Documentation v2.7.0 881

kafka

es (elastic search)

influx

Export File Configuration Details

Each export destination has the following fields:

name – configuration name

plugin_name – Fluent Bit plugin name

enable – 1 or 0 values to enable/disable this destination

host – the host for Fluent Bit plugin

port – port for Fluent Bit plugin

msgpack_data_layout – the msgpacked data format. Default is flb_std. The other option is
custom. See section Msgpack Data Layout for details.

Note

All .exp files are disabled by default if not configured by initContainer

entry point through .yaml file.

Note

To forward the data to several destinations, create several
forward_{num}.exp files. Each of these files must have their own
destination host and port.

DOCA Documentation v2.7.0 882

plugin_key=val – key-value pairs of Fluent Bit plugin parameter (optional)

counterset/fieldset – file paths (optional). See details in section Cset/Fset Filtering.

source_tag=source_tag1,source_tag2 – comma-separated list of data page source tags for
filtering. The rest tags are filtered out during export. Event tags are event provider
names. All counters can be enabled/disabled only simultaneously with a counters

keyword.

Msgpack Data Layout

Data layout can be configured using .exp files by setting msgpack_data_layout=layout. There are
two available layouts: Standard and Custom.

The standard flb_std data layout is an array of 2 fields:

timestamp double value

a plain dictionary (key-value pairs)

The standard layout is appropriate for all Fluent Bit plugins. For example:

The custom data layout is a dictionary of meta-fields and counter fields. Values are placed
into a separate plain dictionary. Custom data format can be dumped with stdout_raw

output plugin of Fluent-Bit installed or can be forwarded with forward output plugin.

Counters example:

Note

Use # to comment a configuration line.

[timestamp_val, {"timestamp"->ts_val, type=>"counters/events",
"source"=>"source_val", "key_1"=>val_1, "key_2"=>val_2,...}]

DOCA Documentation v2.7.0 883

Events example:

Cset/Fset Filtering

Each export file can optionally use one cset and one fset file to filter UFM telemetry
counters and events data.

cset contains tokens per line to filter data with "type"="counters".

fset contains several blocks started with the header line [event_type_name] and tokens
under that header. An Fset file is used to filter data with "type"="events".

If several tokens must be matched simultaneously, use <tok1>+<tok2>+<tok3>. Exclusive
tokens are available as well. For example, the line <tok1>+<tok2>-<tok3>-<tok4> filters names
that match both tok1 and tok2 and do not match tok3 or tok4.

The following are the details of writing cset files:

{"timestamp"=>timestamp_val, "type"=>"counters", "source"=>"source_val",
"values"=> {"key_1"=>val_1, "key_2"=>val_2,...}}

{"timestamp"=>timestamp_val, "type"=>"events", "type_name"=>"type_name_val",
"source"=>" source_val", "values"=>{"key_1"=>val_1, "key_2"=>val_2,...}}

Note

Event type names could be prefixed to apply the same tokens to
all fitting types. For example, to filter all ethtool events, use
[ethtool_event_*].

Put tokens on separate lines
Tokens are the actual name 'fragments' to be matched
port$ # match names ending with token "port"

DOCA Documentation v2.7.0 884

The following are the details of writing fset files:

^port # match names starting with token "port"
^port$ # include name that is exact token "port
port+xmit # match names that contain both tokens "port" and "xmit"
port-support # match names that contain the token "port" and do not match the
"-" token "support"
#
Tip: To disable counter export put a single token line that fits nothing

Put your events here
Usage:
#
[type_name_1]
tokens
[type_name_2]
tokens
[type_name_3]
tokens
...
Tokens are the actual name 'fragments' to be matched
port$ # match names ending with token "port"
^port # match names starting with token "port"
^port$ # include name that is exact token "port
port+xmit # match names that contain both tokens "port" and "xmit"
port-support # match names that contain the token "port" and do not match the
"-" token "support"

The next example will export all the "tc" events and all events with type prefix
"ethtool_" "ethtool" are filtered with token "port":
[tc]
#
[ethtool_*]
packet

DOCA Documentation v2.7.0 885

NetFlow Exporter

NetFlow exporter must be used when data is collected as NetFlow packets from the
telemetry client applications. In this case, DOCA Telemetry NetFlow API sends NetFlow
data packages to DTS via IPC. DTS uses NetFlow exporter to send data to the NetFlow
collector (3rd party service).

To enable NetFlow exporter, set netflow-collector-ip and netflow-collector-port in dts_config.ini.
netflow-collector-ip could be set either to IP or an address.

For additional information, refer to the dts_config.ini file.

DOCA Privileged Executer

DOCA Privileged Executer (DPE) is a daemon that allows specific DOCA services (DTS
included) to access BlueField information that is otherwise inaccessible from a container
due to technology limitations or permission granularity issues.

When enabled, DPE enriches the information collected by DTS. However, DTS can still be
used if DPE is disabled (default).

DPE Usage

DPE is controlled by systemd, and can be used as follows:

To check DPE status:

To know which event type names are available check export and find field
"type_name"=>"ethtool_event_p0"
...
Corner cases:
1. Empty fset file will export all events.
2. Tokens written above/without [event_type] will be ignored.
3. If cannot open fset file, warning will be printed, all event types will be exported.

DOCA Documentation v2.7.0 886

To start DPE:

To stop DPE:

DPE logs can be found in /var/log/doca/telemetry/dpe.log.

DPE Configuration File

DPE can be configured by the user. This section covers the syntax and implications of its
configuration file.

The DPE configuration file allows users to define the set of commands that DPE should
support. This may be done by passing the -f option in the following line of
/etc/systemd/system/dpe.service:

To use the configuration file:

sudo systemctl status dpe

sudo systemctl start dpe

sudo systemctl stop dpe

Note

The DPU telemetry collected by DTS does not require for this
configuration file to be used.

ExecStart=/opt/mellanox/doca/services/telemetry/dpe/bin/dpeserver -vvv

DOCA Documentation v2.7.0 887

The configuration file supports the following sections:

[server] - list of key=value lines for general server configuration. Allowed keys: socket.

[commands] - list of bash command lines that are not using custom RegEx

[commands_regex] - list of bash command lines that are using custom RegEx

[regex_macros] - custom RegEx definitions used in the commands_regex section

Consider the following example configuration file:

ExecStart=/opt/mellanox/doca/services/telemetry/dpe/bin/dpeserver -vvv -f
/path/to/dpe_config.ini

[server]
socket=/tmp/dpe.sock

[commands]
hostname
cat /etc/os-release

[commands_regex]
crictl inspect $HEXA # resolved as "crictl inspect [a-f0-9]+"
lspci $BDF # resolved as "lspci ([0-9a-f]{4}\:|)[0-9a-f]{2}\:[0-9a-f]{2}\.[0-9a-f]"

[regex_macros]
HEXA=[a-f0-9]+
BDF=([0-9a-f]{4}\:|)[0-9a-f]{2}\:[0-9a-f]{2}\.[0-9a-f]

Note

DPE is shipped with a preconfigured file that matches the commands
used by the standalone DTS version included in the same DOCA

DOCA Documentation v2.7.0 888

Deploying with Grafana Monitoring

This chapter provides an overview and deployment configuration of DOCA Telemetry
Service with Grafana .

Grafana Deployment Prerequisites

BlueField DPU running DOCA Telemetry Service.

Optional remote server to host Grafana and Prometheus.

Prometheus installed on the host machine. Please refer to the Prometheus website
for more information.

Grafana installed on the host machine. Please refer to Grafana Labs website for
more information.

Grafana Deployment Configuration

installation. The file is located in
/opt/mellanox/doca/services/telemetry/dpe/etc/dpe_config.ini.

Note

Using a DPE configuration file allows for a fine-grained control over
the interface exposed by it to the rest of the DOCA services. However,
even when using the pre-supplied configuration file mentioned
above, one should remember that it has been configured to match a
fixed DTS version. That is, replacing the standalone DTS version with
a new one downloaded from NGC means that the used configuration
file might not cover additional features added in the new DTS version.

https://grafana.com/
https://prometheus.io/
https://grafana.com/

DOCA Documentation v2.7.0 889

DTS Configuration (DPU Side)

DTS will be configured to export the sysfs counter using the Prometheus plugin.

1. Make sure the sysfs counter is enabled.

2. Enable Prometheus exporter by setting the prometheus address and port.

Note

Sysfs is used as an example, other counters are available. Please
refer to the .NVIDIA DOCA Telemetry Service Guide v2.7.0 for more
information.

vim /opt/mellanox/doca/services/telemetry/config/dts_config.ini

enable-provider=sysfs

vim /opt/mellanox/doca/services/telemetry/config/dts_config.ini

prometheus=http://0.0.0.0:9100

Note

DOCA Documentation v2.7.0 890

Prometheus Configuration (Remote Server)

Please download Prometheus for your platform.

Prometheus is configured via command-line flags and a configuration file, prometheus.yml.

1. Open the prometheus.yml file and configure the DPU as the endpoint target.

Where:

<dpu-ip> is the DPU IP address. Prometheus reaches to this IP to pull data.

<prometheus-port> the exporter port that set in DTS configuration.

2. Run Prometheus server:

In this example, the Prometheus plugin exports data on
localhost port 9100, this is an arbitrary value and can changed.

Note

DTS must be restarted to apply changes.

vim prometheus.yml
metrics_path defaults to '/metrics'
scheme defaults to 'http'.

static_configs:
- targets: ["<dpu-ip>:<prometheus-port>"]

./prometheus --config.file="prometheus.yml"

DOCA Documentation v2.7.0 891

Grafana Configuration (Remote Server)

Please download and install Grafana for your platform.

1. Setup Grafana. Please refer to Install Grafana guide in Grafana documentation.

2. Log into the Grafana dashboard at http://localhost:3000.

3. Add Prometheus as data source by navigating to Settings Data sources Add data
source Prometheus.

Tip

Prometheus services are available as Docker images. Please
refer to Using Docker in Prometheus' Installation guide.

Note

Port 3000 is the default port number set by Grafana. This can be
changed if needed. The default credentials are admin/admin.

https://grafana.com/docs/grafana/latest/setup-grafana/installation/
https://prometheus.io/docs/prometheus/latest/installation/#using-docker

DOCA Documentation v2.7.0 892

4. Configure the Prometheus data source. Under the HTTP section, set the
Prometheus server address.

5. Save and test.

Note

The Prometheus server's default listen port is 9090. Prometheus
and Grafana are both running on the same server, thus the
address is localhost.

DOCA Documentation v2.7.0 893

Exploring Telemetry Data

Go to the Explore page on the left-hand side, and choose a Prometheus provider.

Choose a metric to display and specify a label. The label can be used to filter out data
based on the source and HCA devices.

Graph display after selecting a metric and specifying a label to filter by:

Troubleshooting

On top of the Troubleshooting section in the NVIDIA DOCA Container Deployment Guide,
here are additional troubleshooting tips for DTS:

For general troubleshooting, refer to the NVIDIA DOCA Troubleshooting Guide.

If the pod's state fails to be marked as "Ready", refer to /var/log/syslog.

Check if the service is configured to write data to the disk as this may cause the
system to run out of disk space.

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 894

If a PIC bus error occurs, configure the following files inside the container:

NVIDIA DOCA UROM Service Guide
This guide provides instructions on how to use the DOCA UROM Service on top of the
NVIDIA® BlueField® networking platform.

Introduction

The DOCA UROM service provides a framework for offloading significant portions of HPC
software stack directly from the host and to the BlueField device.

Using a daemon, the service handles the discovery of resources, the coordination
between the host and BlueField, and the spawning, management, and teardown of the
BlueField workers themselves.

crictl exec -it <container-id> /bin/bash
Add to /config/clx.env the following line:
"
export UCX_TLS=tcp
"

DOCA Documentation v2.7.0 895

The first step in initiating an offload request involves the UROM host application
establishing a connection with the UROM service. Upon receiving the plugin discovery
command, the UROM service responds by providing the application with a list of plugins
available on the BlueField. The application then attaches the plugin IDs that correspond
to the desired workers to their network identifiers. Finally, the service triggers UROM
worker plugin instances on the BlueField to execute the parallel computing tasks. Within
the service's Kubernetes pod, workers are spawned by the daemon in response to these
offload requests. Each computation can utilize either a single library or multiple
computational libraries.

Requirements

Before deploying the UROM service container, ensure that the following prerequisites are
satisfied:

Allocate huge pages as needed by DOCA (this requires root privileges):

DOCA Documentation v2.7.0 896

Or alternatively:

Service Deployment

For information about the deployment of DOCA containers on top of the BlueField, refer
to the NVIDIA BlueField Container Deployment Guide.

Service-specific configuration steps and deployment instructions can be found under the
service's container page.

Description

Plugin Discovery and Reporting

When the application initiates a connection request to the DOCA UROM Service, the
daemon reads the UROM_PLUGIN_PATH environment variable. This variable stores directory
paths to .so files for the plugins with multiple paths separated by semicolons. The
daemon scans these paths sequentially and tries loading each .so file. Once the daemon
finishes the scan, it reports the available BlueField plugins to the host application.

The host application gets the list of available plugins as a list of doca_urom_service_plugin_info

structures:

$ sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

$ sudo echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages
$ sudo mkdir /mnt/huge
$ sudo mount -t hugetlbfs nodev /mnt/huge

struct doca_urom_service_plugin_info {
uint64_t id; // Unique ID to send commands to the plugin

uint64_t version; // Plugin version

char plugin_name[DOCA_UROM_PLUGIN_NAME_MAX_LEN]; // .so filename

};

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_urom

DOCA Documentation v2.7.0 897

The UROM daemon is responsible for generating unique identifiers for the plugins, which
are necessary to enable the worker to distinguish between different plugin tasks.

Loading Plugin in Worker

During the spawning of UROM workers by the UROM daemon, the daemon attaches a list
of desired plugins in the worker command line. Each plugin is passed in a format of
so_path:id.

As part of worker bootstrapping, the flow iterates all .so files and tries to load them by
using dlopen system call and look for urom_plugin_get_iface() symbol to get the plugin
operations interface.

Yaml File

The .yaml file downloaded from NGC can be easily edited according to users' needs:

The SERVICE_ARGS are the runtime arguments received by the service:

-l, --log-level <value> – sets the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>

--sdk-log-level – sets the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>

-m, --max-msg-size – specify UROM communication channel maximum message
size

env:
Service-Specific command line arguments
- name: SERVICE_ARGS
value: "-l 60 -m 4096"

- name: UROM_PLUGIN_PATH
value:
"/opt/mellanox/doca/samples/doca_urom/plugins/worker_sandbox/;/opt/mellanox/doca/samples/doca_u

DOCA Documentation v2.7.0 898

The UROM_PLUGIN_PATH is an env variable that stores directory paths to .so files for the
plugins

For each plugin on the BlueField, it is necessary to add a volume mount inside the service
container. For example:

Troubleshooting

When troubleshooting a container deployment issues, it is highly recommended to follow
the deployment steps and tips found in the "Review Container Deployment" section of
the NVIDIA BlueField Container Deployment Guide .

One could also check the /var/log/doca/urom log files for more details about the running
cycles of service components (daemon and workers).

The log file name for workers is urom_worker_<pid>_dev.log and for the daemon it is
urom_daemon_dev.log.

Pod is Marked as "Ready" and No Container is Listed

Error

When deploying the container, the pod's STATE is marked as Ready and an image is listed,
however, no container can be seen running:

volumes:
- name: urom-sandbox-plugin
hostPath:
path: /opt/mellanox/doca/samples/doca_urom/plugins/worker_sandbox
 type: DirectoryOrCreate
...
volumeMounts:
- mountPath: /opt/mellanox/doca/samples/doca_urom/plugins/worker_sandbox
 name: urom-sandbox-plugin

$ sudo crictl pods

https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide#src-2587737676_id-.NVIDIABlueFieldContainerDeploymentGuidev2.7.0-ReviewContainerDeployment
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide

DOCA Documentation v2.7.0 899

Solution

In most cases, the container did start but immediately exited. This could be checked
using the following command:

Should the container fail (i.e., reporting a state of Exited), it is recommended to examine
the UROM's main log at /var/log/doca/urom/urom_daemon_dev.log.

In addition, for a short period of time after termination, the container logs could also be
viewed using the container's ID:

Pod is Not Listed

POD ID CREATED STATE NAME NAMESPACE ATTEMPT RUNTIME
3162b71e67677 4 seconds ago Ready doca-urom-my-dpu
default 0 (default)

$ sudo crictl images
IMAGE TAG IMAGE ID SIZE
k8s.gcr.io/pause 3.2 2a060e2e7101d 487kB
nvcr.io/nvidia/doca/doca_urom 1.0.0-doca2.7.0 2af1e539eb7ab 86.8MB

$ sudo crictl ps

CONTAINER IMAGE CREATED STATE NAME ATTEMPT POD ID POD

$ sudo crictl ps -a
CONTAINER IMAGE CREATED STATE NAME ATTEMPT POD ID POD
556bb78281e1d 2af1e539eb7ab 6 seconds ago Exited doca-urom 1
3162b71e67677 doca-urom-my-dpu

$ sudo crictl logs 556bb78281e1d
...

DOCA Documentation v2.7.0 900

Error

When placing the container's YAML file in the Kubelet's input folder, the service pod is not
listed in the list of pods:

Solution

In most cases, the pod has not started because of the absence of the requested
hugepages. This can be verified using the following command:

$ sudo crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT RUNTIME

$ sudo journalctl -u kubelet -e. . .
Oct 04 12:12:19 <my-dpu> kubelet[2442376]: I1004 12:12:19.905064 2442376
predicate.go:103] "Failed to admit pod, unexpected error while attempting to recover from

admission failure" pod="default/doca-urom-service-<my-dpu>" err="preemption: error finding a set

of pods to preempt: no set of running pods found to reclaim resources: [(res: hugepages-2Mi, q:
104563999874),]"

DOCA Documentation v2.7.0 901

DOCA Switching
NVIDIA® BlueField® and NVIDIA® ConnectX® platforms provide robust support for
diverse applications through hardware-based offloads, offering unparalleled scalability,
performance, and efficiency.

This section lists the extensive switching capabilities enabled by DOCA libraries and
services on these platforms. It includes detailed configurations of Open Virtual Switch
(OVS) such as the setup of representors, virtualization options, and optional bridge
configurations. These subsections guide users through the steps to effectively implement
these software components.

DOCA Representors Model

BlueField® DPU uses netdev representors to map each one of the host side physical and
virtual functions:

1. Serve as the tunnel to pass traffic for the virtual switch or application running on the
Arm cores to the relevant PF or VF on the Arm side.

2. Serve as the channel to configure the embedded switch with rules to the
corresponding represented function.

Those representors are used as the virtual ports being connected to OVS or any other
virtual switch running on the Arm cores.

When in ECPF ownership mode, we see 2 representors for each one of the DPU’s network
ports: one for the uplink, and another one for the host side PF (the PF representor

Note

This model is only applicable when the BlueField is operating DPU
mode.

file:///doca/sdk/NVIDIA+BlueField+Modes+of+Operation
file:///doca/sdk/NVIDIA+BlueField+Modes+of+Operation

DOCA Documentation v2.7.0 902

created even if the PF is not probed on the host side). For each one of the VFs created on
the host side a corresponding representor would be created on the Arm side. The
naming convention for the representors is as follows:

Uplink representors: p<port_number>

PF representors: pf<port_number>hpf

VF representors: pf<port_number>vf<function_number>

The diagram below shows the mapping of between the PCI functions exposed on the
host side and the representors. For the sake of simplicity, we show a single port model
(duplicated for the second port).

The red arrow demonstrates a packet flow through the representors, while the green
arrow demonstrates the packet flow when steering rules are offloaded to the embedded
switch. More details on that are available in the switch offload section.

Note

DOCA Documentation v2.7.0 903

This section contains the following pages:

OpenvSwitch Offload (OVS in DOCA)

VirtIO Acceleration through Hardware vDPA

Bridge Offload

Link Aggregation

Controlling Host PF and VF Parameters

OpenvSwitch Offload (OVS in DOCA)

The MTU of host functions (PF/VF) must be smaller than the MTUs of
both the uplink and corresponding PF/VF representor. For example, if
the host PF MTU is set to 9000, both uplink and PF representor must
be set to above 9000.

Info

Note on naming conventions:

OVS – Refers to the Open vSwitch distribution within DOCA
framework

OVS-DOCA – Describes the datapath offloading layer (DPIF) that
utilizes the DOCA Flow library for offloading tasks. This layer is a
component of OVS, along with additional DPIF implementations
that facilitate offloading via DPDK or Kernel, known respectively
as OVS-DPDK and OVS-Kernel.

Tip

https://docs.nvidia.com//doca/sdk/OpenvSwitch+Offload+%28OVS+in+DOCA%29
https://docs.nvidia.com//doca/sdk/VirtIO+Acceleration+through+Hardware+vDPA
https://docs.nvidia.com//doca/sdk/Bridge+Offload
https://docs.nvidia.com//doca/sdk/Link+Aggregation
https://docs.nvidia.com//doca/sdk/Controlling+Host+PF+and+VF+Parameters

DOCA Documentation v2.7.0 904

Open vSwitch (OVS) is a software-based network technology that enhances virtual
machine (VM) communication within internal and external networks. Typically deployed
in the hypervisor, OVS employs a software-based approach for packet switching, which
can strain CPU resources, impacting system performance and network bandwidth
utilization. Addressing this, NVIDIA's Accelerated Switching and Packet Processing (ASAP2)
technology offloads OVS data-plane tasks to specialized hardware, like the embedded
switch (eSwitch) within the NIC subsystem, while maintaining an unmodified OVS control-
plane. This results in notably improved OVS performance without burdening the CPU.

NVIDIA's DOCA-OVS extends the traditional OVS-DPDK and OVS-Kernel data-path offload
interfaces (DPIF), introducing OVS-DOCA as an additional DPIF implementation. DOCA-
OVS, built upon NVIDIA's networking API, preserves the same interfaces as OVS-DPDK
and OVS-Kernel while utilizing the DOCA Flow library with the additional OVS-DOCA DPIF.
Unlike the use of the other DPIFs (DPDK, Kernel), OVS-DOCA DPIF exploits unique
hardware offload mechanisms and application techniques, maximizing performance and
features for NVIDA NICs and DPUs. This mode is especially efficient due to its architecture
and DOCA library integration, enhancing e-switch configuration and accelerating
hardware offloads beyond what the other modes can achieve.

NVIDIA advises utilizing the OVS-DOCA DPIF to maximize efficiency,
performance, scalability, and feature support.

Warning

The DPDK and Kernel DPIFs are maintained in their current form
primarily for backward compatibility and are not planned to be
updated with new features.

DOCA Documentation v2.7.0 905

NVIDIA OVS installation contains all three OVS flavors. The following subsections describe
the three flavors (default is OVS-Kernel) and how to configure each of them.

OVS and Virtualized Devices

When OVS is combined with NICs and DPUs (such as NVIDIA® ConnectX®-6 Lx/Dx and
NVIDIA® BlueField®-2 and later), it utilizes the hardware data plane of ASAP2. This data
plane can establish connections to VMs using either SR-IOV virtual functions (VFs) or
virtual host data path acceleration (vDPA) with virtio.

In both scenarios, an accelerator engine within the NIC accelerates forwarding and
offloads the OVS rules. This integrated solution accelerates both the infrastructure (via
VFs through SR-IOV or virtio) and the data plane. For DPUs (which include a NIC
subsystem), an alternate virtualization technology implements full virtio emulation within
the DPU, enabling the host server to communicate with the DPU as a software virtio
device.

When using ASAP2 data plane over SR-IOV virtual functions (VFs), the VF is directly
passed through to the VM, with the NVIDIA driver running within the VM.

When using vDPA, the vDPA driver allows VMs to establish their connections
through VirtIO. As a result, the data plane is established between the SR-IOV VF and
the standard virtio driver within the VM, while the control plane is managed on the
host by the vDPA application.

VirtIO Acceleration through
Hardware vDPA

DOCA Documentation v2.7.0 906

Hardware vDPA Installation

Hardware vDPA requires QEMU v2.12 (or with upstream 6.1.0) and DPDK v20.11 as
minimal versions.

To install QEMU:

1. Clone the sources:

2. Build QEMU:

To install DPDK:

1. Clone the sources:

2. Install dependencies (if needed):

3. Configure DPDK:

git clone https://git.qemu.org/git/qemu.git
cd qemu
git checkout v2.12

mkdir bin
cd bin
../configure --target-list=x86_64-softmmu --enable-kvm
make -j24

git clone git://dpdk.org/dpdk
cd dpdk
git checkout v20.11

yum install cmake gcc libnl3-devel libudev-devel make pkgconfig valgrind-devel
pandoc libibverbs libmlx5 libmnl-devel -y

DOCA Documentation v2.7.0 907

4. Build DPDK:

5. Build the vDPA application:

Hardware vDPA Configuration

To configure huge pages:

To configure a vDPA VirtIO interface in an existing VM's xml file (using libvirt):

1. Open the VM's configuration XML for editing:

2. Perform the following:

export RTE_SDK=$PWD
make config T=x86_64-native-linuxapp-gcc
cd build
sed -i 's/\(CONFIG_RTE_LIBRTE_MLX5_PMD=\)n/\1y/g' .config
sed -i 's/\(CONFIG_RTE_LIBRTE_MLX5_VDPA_PMD=\)n/\1y/g' .config

make -j

cd $RTE_SDK/examples/vdpa/
make -j

mkdir -p /hugepages
mount -t hugetlbfs hugetlbfs /hugepages
echo <more> > /sys/devices/system/node/node0/hugepages/hugepages-
1048576kB/nr_hugepages
echo <more> > /sys/devices/system/node/node1/hugepages/hugepages-
1048576kB/nr_hugepages

virsh edit <domain name>

DOCA Documentation v2.7.0 908

1. Change the top line to:

2. Assign a memory amount and use 1GB page size for huge pages (size must be
the same as that used for the vDPA application), so that the memory
configuration looks as follows.

3. Assign an amount of CPUs for the VM CPU configuration, so that the vcpu and
cputune configuration looks as follows:

4. Set the memory access for the CPUs to be shared, so that the cpu configuration
looks as follows:

<domain type='kvm'
xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>

<memory unit='KiB'>4194304</memory>
<currentMemory unit='KiB'>4194304</currentMemory>
<memoryBacking>
<hugepages>
<page size='1048576' unit='KiB'/>
</hugepages>
</memoryBacking>

<vcpu placement='static'>5</vcpu>
<cputune>
<vcpupin vcpu='0' cpuset='14'/>
<vcpupin vcpu='1' cpuset='16'/>
<vcpupin vcpu='2' cpuset='18'/>
<vcpupin vcpu='3' cpuset='20'/>
<vcpupin vcpu='4' cpuset='22'/>
</cputune>

<cpu mode='custom' match='exact' check='partial'>
<model fallback='allow'>Skylake-Server-IBRS</model>
<numa>

DOCA Documentation v2.7.0 909

5. Set the emulator in use to be the one built in step 2, so that the emulator
configuration looks as follows:

6. Add a virtio interface using QEMU command line argument entries, so that the
new interface snippet looks as follows:

Running Hardware vDPA

<cell id='0' cpus='0-4' memory='8388608' unit='KiB' memAccess='shared'/>
</numa>
</cpu>

<emulator><path to qemu executable></emulator>

<qemu:commandline>
<qemu:arg value='-chardev'/>
<qemu:arg value='socket,id=charnet1,path=/tmp/sock-virtio0'/>
<qemu:arg value='-netdev'/>
<qemu:arg value='vhost-user,chardev=charnet1,queues=16,id=hostnet1'/>
<qemu:arg value='-device'/>
<qemu:arg value='virtio-net-
pci,mq=on,vectors=6,netdev=hostnet1,id=net1,mac=e4:11:c6:d3:45:f2,bus=p
page-per-vq=on,rx_queue_size=1024,tx_queue_size=1024'/>
</qemu:commandline>

Note

In this snippet, the vhostuser socket file path, the amount
of queues, the MAC and the PCIe slot of the virtio device
can be configured.

DOCA Documentation v2.7.0 910

1. Create the ASAP2 environment:

1. Create the VFs.

2. Enter switchdev mode.

3. Set up OVS.

2. Run the vDPA application:

3. Create a vDPA port via the vDPA application CLI:

4. Start the VM:

Note

Hardware vDPA supports switchdev mode only.

cd $RTE_SDK/examples/vdpa/build
./vdpa -w <VF PCI BDF>,class=vdpa --log-level=pmd,info -- -i

create /tmp/sock-virtio0 <PCI DEVICE BDF>

Note

The vhostuser socket file path must be the one used when
configuring the VM.

virsh start <domain name>

DOCA Documentation v2.7.0 911

For further information on the vDPA application, visit the Vdpa Sample Application DPDK
documentation.

Bridge Offload

A Linux bridge is an in-kernel software network switch (based on and implementing a
subset of IEEE 802.1D standard) used to connect Ethernet segments together in a
protocol-independent manner. Packets are forwarded based on L2 Ethernet header
addresses.

mlx5 provides the ability to offload bridge dataplane unicast packet forwarding and VLAN
management to hardware.

Basic Configuration

1. Initialize the ASAP2 environment:

1. Create the VFs.

2. Enter switchdev mode.

2. Create a bridge and add mlx5 representors to bridge:

Note

Bridge offload is supported switchdev mode only.

Note

Bridge offload is supported from kernel version 5.15 onward.

ip link add name bridge0 type bridge

https://doc.dpdk.org/guides/sample_app_ug/vdpa.html

DOCA Documentation v2.7.0 912

Configuring VLAN

1. Enable VLAN filtering on the bridge:

2. Configure port VLAN matching (trunk mode). In this configuration, only packets with
specified VID are allowed.

3. Configure port VLAN tagging (access mode). In this configuration, VLAN header is
pushed/popped upon reception/transmission on port.

VF LAG Support

Bridge supports offloading on bond net device that is fully initialized with mlx5 uplink
representors and is in single (shared) FDB LAG mode. Details about initialization of LAG
are provided in section "SR-IOV VF LAG".

To add a bonding net device to bridge:

For further information on interacting with Linux bridge via iproute2 bridge tool, refer to
man 8 bridge.

Link Aggregation

ip link set enp8s0f0_0 master bridge0

ip link set bridge0 type bridge vlan_filtering 1

bridge vlan add dev enp8s0f0_0 vid 2

bridge vlan add dev enp8s0f0_0 vid 2 pvid untagged

ip link set bond0 master bridge0

https://docs.nvidia.com//doca/sdk/OpenvSwitch+Offload+%28OVS+in+DOCA%29#src-2609481374_safe-id-aWQtLk9wZW52U3dpdGNoT2ZmbG9hZChPVlNpbkRPQ0EpdjIuNy4wLVNSLUlPVlZGTEFH
https://www.man7.org/linux/man-pages/man8/bridge.8.html

DOCA Documentation v2.7.0 913

Network bonding enables combining two or more network interfaces into a single
interface. It increases the network throughput, bandwidth and provides redundancy if
one of the interfaces fails.

NVIDIA ® BlueField ® DPU has an option to configure network bonding on the Arm side
in a manner transparent to the host. Under such configuration, the host would only see a
single PF.

The diagram below describes this configuration:

Note

This functionality is supported when the DPU is set in embedded
function ownership mode for both ports.

Note

While LAG is being configured (starting with step 2 under section
"LAG Configuration"), traffic cannot pass through the physical ports.

DOCA Documentation v2.7.0 914

LAG Modes

Two LAG modes are supported on BlueField:

Queue Affinity mode

Hash mode

Queue Affinity Mode

In this mode, packets are distributed according to the QPs.

1. To enable this mode, run:

Example device name: mt41686_pciconf0.

2. Add/edit the following field from /etc/mellanox/mlnx-bf.conf as follows:

$ mlxconfig -d /dev/mst/<device-name> s LAG_RESOURCE_ALLOCATION=0

LAG_HASH_MODE="no"

DOCA Documentation v2.7.0 915

3. Perform a BlueField system reboot for the mlxconfig settings to take effect. Refer to
the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Hash Mode

In this mode, packets are distributed to ports according to the hash on packet headers.

1. To enable this mode, run:

Example device name: mt41686_pciconf0.

2. Add/edit the following field from /etc/mellanox/mlnx-bf.conf as follows:

3. Perform a BlueField system reboot for the mlxconfig settings to take effect. Refer to
the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Prerequisites

1. Set the LAG mode to work with.

2. (Optional) Hide the second PF on the host. Run:

Note

For this mode, prerequisite steps 3 and 4 are not required.

$ mlxconfig -d /dev/mst/<device-name> s LAG_RESOURCE_ALLOCATION=1

LAG_HASH_MODE="yes"

DOCA Documentation v2.7.0 916

Example device name: mt41686_pciconf0.

3. Delete any installed Scalable Functions (SFs) on the Arm side.

4. Stop the driver on the host side. Run:

5. The uplink interfaces (p0 and p1) on the Arm side must be disconnected from any
OVS bridge.

LAG Configuration

1. Create the bond interface. Run:

$ mlxconfig -d /dev/mst/<device-name> s HIDE_PORT2_PF=True NUM_OF_PF=1

Note

Perform a BlueField system reboot for the mlxconfig settings to
take effect. Refer to the "NVIDIA BlueField Reset and Reboot
Procedures" troubleshooting page for instructions.

$ systemctl stop openibd

$ ip link add bond0 type bond
$ ip link set bond0 down
$ ip link set bond0 type bond miimon 100 mode 4 xmit_hash_policy layer3+4

Note

DOCA Documentation v2.7.0 917

2. Subordinate both the uplink representors to the bond interface. Run:

3. Bring the interfaces up. Run:

The following is an example of LAG configuration in Ubuntu:

While LAG is being configured (starting with the next step),
traffic cannot pass through the physical ports.

$ ip link set p0 down
$ ip link set p1 down
$ ip link set p0 master bond0
$ ip link set p1 master bond0

$ ip link set p0 up
$ ip link set p1 up
$ ip link set bond0 up

cat /etc/network/interfaces

interfaces(5) file used by ifup(8) and ifdown(8)
Include files from /etc/network/interfaces.d:
source /etc/network/interfaces.d/*
auto lo
iface lo inet loopback
#p0
auto p0
iface p0 inet manual
bond-master bond1
#
#p1
auto p1
iface p1 inet manual

DOCA Documentation v2.7.0 918

As a result, only the first PF of the DPU would be available to the host side for
networking and SR-IOV.

For OVS configuration, the bond interface is the one that needs to be added to the OVS
bridge (interfaces p0 and p1 should not be added). The PF representor for the first port
(pf0hpf) of the LAG must be added to the OVS bridge. The PF representor for the second
port (pf1hpf) would still be visible, but it should not be added to OVS bridge. Consider the
following examples:

bond-master bond1
#bond1
auto bond1
iface bond1 inet static

address 192.168.1.1

netmask 255.255.0.0

mtu 1500

bond-mode 2
bond-slaves p0 p1
bond-miimon 100

pre-up (sleep 2 && ifup p0) &
pre-up (sleep 2 && ifup p1) &

Warning

When in shared RQ mode (enabled by default), the uplink
interfaces (p0 and p1) must always stay enabled. Disabling them
will break LAG support and VF-to-VF communication on same
host.

ovs-vsctl add-br bf-lag
ovs-vsctl add-port bf-lag bond0
ovs-vsctl add-port bf-lag pf0hpf

https://confluence.nvidia.com/display/BFDEV/.Shared+RQ+Mode+v3.7.1

DOCA Documentation v2.7.0 919

Removing LAG Configuration

1. If Queue Affinity mode LAG is configured (i.e., LAG_RESOURCE_ALLOCATION=0):

1. Delete any installed Scalable Functions (SFs) on the Arm side.

2. Stop driver (openibd) on the host side. Run:

2. Delete the LAG OVS bridge on the Arm side. Run:

This allows for later restoration of OVS configuration for non-LAG networking.

3. Stop OVS service. Run:

Warning

Trying to change bonding configuration in Queue Affinity mode
(including bringing the subordinated interface up/down) while the
host driver is loaded would cause FW syndrome and failure of the
operation. Make sure to unload the host driver before altering DPU
bonding configuration to avoid this.

Note

When performing driver reload (openibd restart) or reboot, it is required
to remove bond configuration and to reapply the configurations after
the driver is fully up. Refer to steps 1-4 of "Removing LAG
Configuration".

systemctl stop openibd

ovs-vsctl del-br bf-lag

DOCA Documentation v2.7.0 920

4. Run:

As a result, both of the DPU's network interfaces would be available to the host side
for networking and SR-IOV.

5. For the host to be able to use the DPU ports, make sure to attach the ECPF and host
representor in an OVS bridge on the Arm side. Refer to "Virtual Switch on DPU" for
instructions on how to perform this.

6. Revert from HIDE_PORT2_PF, on the Arm side. Run:

7. Restore default LAG settings in the DPU's firmware. Run:

8. Delete the following line from /etc/mellanox/mlnx-bf.conf on the Arm side:

9. Perform a BlueField system reboot for the mlxconfig settings to take effect. Refer to
the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

LAG on Multi-host

Only LAG hash mode is supported with BlueField multi-host.

systemctl stop openvswitch-switch.service

ip link set bond0 down
modprobe -rv bonding

mlxconfig -d /dev/mst/<device-name> s HIDE_PORT2_PF=False NUM_OF_PF=2

mlxconfig -d /dev/mst/<device-name> s
LAG_RESOURCE_ALLOCATION=DEVICE_DEFAULT

LAG_HASH_MODE=...

https://confluence.nvidia.com/display/BFDEV/.Virtual+Switch+on+DPU+v4.6.0#id-.VirtualSwitchonDPUv4.6.0-OVSbridgeconfig

DOCA Documentation v2.7.0 921

LAG Multi-host Prerequisites

1. Enable LAG hash mode.

2. Hide the second PF on the host. Run:

3. Make sure NVME emulation is disabled:

Example device name: mt41686_pciconf0.

4. The uplink interfaces (p0 and p4) on the Arm side, representing port0 and port1,
must be disconnected from any OVS bridge. As a result, only the first PF of the DPU
would be available to the host side for networking and SR-IOV.

LAG Configuration on Multi-host

1. Create the bond interface. Run:

2. Subordinate both the uplink representors to the bond interface. Run:

3. Bring the interfaces up. Run:

$ mlxconfig -d /dev/mst/<device-name> s HIDE_PORT2_PF=True NUM_OF_PF=1

$ mlxconfig -d /dev/mst/<device-name> s NVME_EMULATION_ENABLE=0

$ ip link add bond0 type bond
$ ip link set bond0 down
$ ip link set bond0 type bond miimon 100 mode 4 xmit_hash_policy layer3+4

$ ip link set p0 down
$ ip link set p4 down
$ ip link set p0 master bond0
$ ip link set p4 master bond0

DOCA Documentation v2.7.0 922

4. For OVS configuration, the bond interface is the one that must be added to the OVS
bridge (interfaces p0 and p4 should not be added). The PF representor, pf0hpf, must
be added to the OVS bridge with the bond interface. The rest of the uplink
representors must be added to another OVS bridge along with their PF
representors. Consider the following examples:

Removing LAG Configuration on Multi-host

$ ip link set p0 up
$ ip link set p4 up
$ ip link set bond0 up

ovs-vsctl add-br br-lag
ovs-vsctl add-port br-lag bond0
ovs-vsctl add-port br-lag pf0hpf
ovs-vsctl add-br br1
ovs-vsctl add-port br1 p1
ovs-vsctl add-port br1 pf1hpf
ovs-vsctl add-br br2
ovs-vsctl add-port br2 p2
ovs-vsctl add-port br2 pf2hpf
ovs-vsctl add-br br3
ovs-vsctl add-port br3 p3
ovs-vsctl add-port br3 pf3hpf

Note

When performing driver reload (openibd restart) or reboot, you
must remove bond configuration from NetworkManager, and to
reapply the configurations after the driver is fully up.

DOCA Documentation v2.7.0 923

Refer to section "Removing LAG Configuration".

Controlling Host PF and VF
Parameters
NVIDIA® BlueField® allows control over some of the networking parameters of the PFs
and VFs running on the host side.

Setting Host PF and VF Default MAC Address

From the Arm, users may configure the MAC address of the physical function in the host.
After sending the command, users must reload the NVIDIA driver in the host to see the
newly configured MAC address. The MAC address goes back to the default value in the
FW after system reboot.

Example:

Setting Host PF and VF Link State

vPort state can be configured to Up, Down, or Follow. For example:

Querying Configuration

To query the current configuration, run:

$ echo "c4:8a:07:a5:29:59" > /sys/class/net/p0/smart_nic/pf/mac
$ echo "c4:8a:07:a5:29:61" > /sys/class/net/p0/smart_nic/vf0/mac

$ echo "Follow" > /sys/class/net/p0/smart_nic/pf/vport_state

$ cat /sys/class/net/p0/smart_nic/pf/config
MAC : e4:8b:01:a5:79:5e

DOCA Documentation v2.7.0 924

Zero signifies that the rate limit is unlimited.

Disabling Host Networking PFs

It is possible to not expose ConnectX networking functions to the host for users
interested in using storage or VirtIO functions only. When this feature is enabled, the host
PF representors (i.e. pf0hpf and pf1hpf) will not be seen on the Arm.

Without a PF on the host, it is not possible to enable SR-IOV, so VF representors will
not be seen on the Arm either

Without PFs on the host, there can be no SFs on it

To disable host networking PFs, run:

To reactivate host networking PFs:

For single-port DPUs, run:

For dual-port DPUs, run:

MaxTxRate : 0
State : Follow

mlxconfig -d /dev/mst/mt41686_pciconf0 s NUM_OF_PF=0

mlxconfig -d /dev/mst/mt41686_pciconf0 s NUM_OF_PF=1

mlxconfig -d /dev/mst/mt41686_pciconf0 s NUM_OF_PF=2

Note

When there are no networking functions exposed on the host, the
reactivation command must be run from the Arm.

DOCA Documentation v2.7.0 925

Note

Perform a BlueField system reboot for the mlxconfig settings to take
effect. Refer to the "NVIDIA BlueField Reset and Reboot Procedures"
troubleshooting page for instructions.

DOCA Documentation v2.7.0 926

API References
This section contains the following pages:

NVIDIA DOCA Driver APIs

NVIDIA DOCA Library APIs

NVIDIA DOCA Driver APIs
The driver APIs for this DOCA version are available here.

NVIDIA DOCA Library APIs
The library APIs for this DOCA version are available here.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Driver+APIs
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Library+APIs
https://docs.nvidia.com/doca/api/2.7.0/doca-driver-apis/index.html
https://docs.nvidia.com/doca/api/2.7.0/doca-libraries-api/index.html

DOCA Documentation v2.7.0 927

Miscellaneous (Runtime)
This section contains the following pages:

NVIDIA DOCA Glossary

NVIDIA DOCA Crypto Acceleration

NVIDIA DOCA Services Fluent Logger

NVIDIA DOCA DPU CLI

NVIDIA DOCA Emulated Devices

NVIDIA BlueField Modes of Operation

NVIDIA DOCA with OpenSSL

NVIDIA BlueField DPU Scalable Function User Guide

NVIDIA TLS Offload Guide

NVIDIA DOCA Troubleshooting Guide

NVIDIA DOCA Virtual Functions User Guide

NVIDIA DOCA Glossary
Term Description

ACS Access control services

ASN Autonomous system number

ATF Arm-trusted firmware

BAR Base address register

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Glossary
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Crypto+Acceleration
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Services+Fluent+Logger
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPU+CLI
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Emulated+Devices
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Modes+of+Operation
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+with+OpenSSL
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+TLS+Offload+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Virtual+Functions+User+Guide

DOCA Documentation v2.7.0 928

Term Description

BDF
address

Bus, device, function address. This is the device's PCIe bus address to
uniquely identify the specific device.

BFB BlueField bootstream

BGP Border gateway protocol

BMC Board management controller

BUF Buffer

BSP BlueField support package

CBS Committed burst size

CIR Committed information rate

CMDQ Command queue

CPDS Control pipe dynamic size

CTX Context

DEK Data encryption key

DMA Direct memory access

DOCA DPU SDK

DPA
Data path accelerator; a n auxiliary processor designed to accelerate data-
path operations

DPCP Direct packet control plane

DPDK Data plane development kit

DPI Deep packet inspection

DPIF Datapath offload interface

DPU
Data processing unit, the third pillar of the data center with CPU and GPU.
BlueField is available as a DPU and as a SuperNIC.

DW Dword

EBS Excess burst size

ECE Enhanced connection establishment

ECPF Embedded CPU physical function

DOCA Documentation v2.7.0 929

Term Description

EIR Excess information rate

eMMC Embedded multi-media card

ESP EFI system partition

ESP
header

Encapsulating security payload

EU Execution unit. HW thread; a logical DPA processing unit.

FLR Function level reset

FIPS Federal Information Processing Standards

FPGA Field-programmable gate arrays

FW Firmware

GDB GNU debugger

HCA Host-channel adapter

Host

When referring to "the host" this documentation is referring to the server
host. When referring to the Arm based host, the documentation will
specifically call out "Arm host".

Server host OS refers to the Host Server OS (Linux or Windows)
Arm host refers to the AARCH64 Linux OS which is running on the
BlueField Arm Cores

HW Hardware

hwmon Hardware monitoring

IB InfiniBand

ICM Interface configuration memory

ICV Integrity check value

IDE Integrated development environment

IKE Internet key exchange

IR Intermediate representation

IRQ Interrupt request

DOCA Documentation v2.7.0 930

Term Description

KPI Key performance indicator

LSO Large send offload

LTO Link-time optimization

MFT Mellanox firmware tools

MLNX_
OFED

Mellanox OpenFabrics Enterprise Distribution

MPU Message passing interface

MSB Most significant bit

MSI-X Message signaled interrupts extended

MSS Maximum segment size

MSS Memory subsystem

MST Mellanox software tools

MTU Maximum transmission unit

NAT Network address translation

NIC Network interface card

NIST National Institute of Standards and Technology

NS Namespace

NUMA Non-uniform memory access

OOB Out-of-band

OS Operating system

OVS Open vSwitch

PBA Pending bit array

PBS Peak burst size

PCIe PCI Express; Peripheral Component Interconnect Express

PF Physical function

PE Progress engine

DOCA Documentation v2.7.0 931

Term Description

PHC Physical hardware clock

PIR Peak information rate

PK Platform key

PKA Public key accelerator

POC Proof of concept

PUD Process under debug

RD Route distinguisher

RDMA Remote direct memory access

RegEx Regular expression

REQ Request

RES Response

RN

Request node
RN-F – Fully coherent request node
RN-D – IO coherent request node with DVM support
RN-I – IO coherent request node

RNG Random number generator/generation

RoCE Ethernet and RDMA over converged Ethernet

RQ Receive queue

RShim Random shim

RSP Remote serial protocol

RT Route target

RTOS Real-time operating system

RTT Round-trip time

RX Receive

RXP Regular expression processor

SA Security association

SBSA Server base system architecture

DOCA Documentation v2.7.0 932

Term Description

SDK Software development kit

SF Sub-function or scalable function

SFC Services function chaining

SG Scatter-gather

SHA Secure hash algorithm

SNAP Storage-defined network-accelerated processing

SPDK Storage performance development kit

SPI Security parameters index

SQ Send queue

SR-IOV Single-root IO virtualization

SuperNI
C

a configuration of a DPU that is specific for E-W networking. BlueField has a
SuperNIC configuration

SVI Switch virtual interface

Sync
event

Synchronization event

TAI International Atomic Time

TIR Transport interface receive

TIS Transport interface send

TLS Transport layer security

TX Transmit

UDS Unix domain socket

UEFI Unified extensible firmware interface

UTC Coordinated Universal Time

VF Virtual function

VFE Virtio full emulation

VM Virtual machine

VMA NVIDIA® Messaging Accelerator

DOCA Documentation v2.7.0 933

Term Description

VNI
Virtual network identifier
VXLAN network identifier

VPI Virtual protocol interconnect

VRF Virtual routing and forwarding

VTEP VXLAN tunnel endpoint

WorkQ
or
workq

Work queue

WQE Work queue elements

WR Write

XLIO NVIDIA® Accelerated IO

NVIDIA DOCA Crypto Acceleration
NVIDIA® BlueField® DPU incorporates several Public Key Acceleration (PKA) engines to
offload the processor of the Arm host, providing high-performance computation of PK
algorithms. BlueField's PKA is useful for a wide range of security applications. It can assist
with SSL acceleration, or a secure high-performance PK signature generator/checker and
certificate related operations.

BlueField's PKA software libraries implement a simple, complete framework for crypto
public key infrastructure (PKI) acceleration. It provides direct access to hardware
resources from the user space, and makes available a number of arithmetic operations—
some basic (e.g., addition and multiplication), and some complex (e.g., modular
exponentiation and modular inversion)—and high-level operations such as RSA, Diffie-
Hallman, Elliptic Curve Cryptography, and the Federal Digital Signature Algorithm (DSA as
documented in FIPS-186) public-private key systems.

Some of the use cases for the BlueField PKA involve integrating OpenSSL software
applications with BlueField's PKA hardware. The BlueField PKA dynamic engine for
OpenSSL allows applications integrated with OpenSSL (e.g., StrongSwan) to accomplish a
variety of security-related goals and to accelerate the cryptographic processing with the
BlueField PKA hardware. OpenSSL versions ≥1.0.0, ≤1.1.1, and 3.0.2 are supported.

DOCA Documentation v2.7.0 934

The engine supports the following operations:

RSA

DH

DSA

ECDSA

ECDH

Random number generation that is cryptographically secure.

Up to 4096-bit keys for RSA, DH, and DSA operations are supported. Elliptic Curve
Cryptography support of (nist) prime curves for 160, 192, 224, 256, 384 and 521 bits.

For example:

To sign a file using BlueField's PKA engine:

To verify the signature, execute:

For further details on BlueField PKA, please refer to "PKA Driver Design and
Implementation Architecture Document" and/or "PKA Programming Guide". Directions

Note

With CentOS 7.6, only OpenSSL 1.1 (not 1.0) works with PKA engine
and keygen. Use openssl11 with PKA engine and keygen.

$ openssl dgst -engine pka -sha256 -sign <privatekey> -out <signature> <filename>

$ openssl dgst -engine pka -sha256 -verify <publickey> -signature <signature>
<filename>

DOCA Documentation v2.7.0 935

and instructions on how to integrate the BlueField PKA software libraries are provided in
the README files on our PKA GitHub.

NVIDIA DOCA Services Fluent Logger
This guide provides instructions on how to use the logging infrastructure for DOCA
services on top of NVIDIA® BlueField® DPU.

Introduction

Fluent Bit is a fast log collector that collects information from multiple sources and then
forwards the data onward using Fluent.

On NVIDIA DPUs, the Fluent Bit logger can be easily configured to collect system data and
the logs from the different DOCA services.

Deployment

The deployment is based on a recommended configuration template for the existing
Fluent Bit container.

For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

The following is an example YAML file for deploying the Fluent Bit pod:

apiVersion: v1
kind: Pod
metadata:
name: fluent-bit
spec:
hostNetwork: true

containers:
- name: fluent-bit
image: fluent/fluent-bit:latest
imagePullPolicy: Always
Example resource definitions

https://github.com/Mellanox/pka
https://fluentbit.io/
https://hub.docker.com/r/fluent/fluent-bit/
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide

DOCA Documentation v2.7.0 936

As explained in the "Configuration" section, Fluent Bit uses a configuration file. As such,
to ensure that the example YAML file is shared from the DPU to the deployed Fluent Bit
container, use the following:

resources:
requests:
memory: "100Mi"

cpu: "200m"

limits:
memory: "200Mi"

cpu: "300m"

volumeMounts:
- name: varlog
mountPath: /var/log
- name: config-file
mountPath: /fluent-bit/etc/fluent-bit.conf
volumes:
- name: varlog
hostPath:
path: /var/log
- name: config-file
hostPath:
path: /opt/mellanox/doca/services/fluent-bit.conf
type: File

path: /opt/mellanox/doca/services/fluent-bit.conf

Note

The path below is just an example for where the user can place the
fluent-bit.conf file. The file could be placed in a different directory on
the DPU as long as the YAML file points to the updated location.

DOCA Documentation v2.7.0 937

Configuration

The Fluent Bit configuration file should have the following sections:

[SERVICE] – to define the service specifications

[INPU] – to define folders to collect logs from (there could be multiple inputs)

[OUTPUT] – IP and port to stream the data to

Example configuration file:

[SERVICE]
Flush 2
Log_Level info
Daemon off
Parsers_File parsers.conf
HTTP_Server On
HTTP_Listen 0.0.0.0

HTTP_Port 2020

[INPUT]
Name tail
Tag kube.*
Path /var/log/containers/*.log

Parser docker
Mem_Buf_Limit 5MB
Skip_Long_Lines On
Refresh_Interval 10

[INPUT]
Name tail
Tag sys.*

Path /var/log/doca/*/*.log
Mem_Buf_Limit 5MB
Skip_Long_Lines On
Refresh_Interval 10

DOCA Documentation v2.7.0 938

More information about the full specifications can be found in the official Fluent Bit
manual.

Troubleshooting

For container-related troubleshooting, refer to the "Troubleshooting" section in the
NVIDIA DOCA Container Deployment Guide.

For general troubleshooting, refer to the NVIDIA DOCA Troubleshooting Guide.

When copying the above YAML file, it is possible that the container infrastructure logs
give an error related to RFC 1123". These errors are usually a result of a spacing error in
the file, which sometimes occur when copying the file as is from this page. To fix this
issue, make sure that only the space character (' ') is used as a spacer in the file and not
other whitespace characters that might have been added during the copy operation.

NVIDIA DOCA DPU CLI

[OUTPUT]
Name es
Match *
Host 10.20.30.40

Port 9201

Index fluent_bit
Type cpu_metrics

Note

The most important field to pay attention to is Path for the INPUT

section. DOCA services report their logs to a unique directory under
/var/log/doca/<service_name>/*.log per the respective DOCA service. As
such, the configuration above defines the /var/log/doca/*/*.log input
definition.

https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/classic-mode/configuration-file
https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/classic-mode/configuration-file
https://docs.nvidia.com//doca/sdk/NVIDIA+BlueField+Container+Deployment+Guide
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Documentation v2.7.0 939

This guide provides quick access to a useful set of CLI commands and utilities on the
NVIDIA® BlueField® DPU environment.

Introduction

This guide provides a concise guide on useful commands for DOCA deployment and
configuration.

The tables in this guide provide two categories of commands:

General commands for Linux/networking environment

DOCA/DPU-specific commands

General Commands

Comma
nd

Description

ifconfig

Used to configure kernel-resident network interfaces. It is used at boot time to
set up interfaces as necessary. After that, it is usually only needed when
debugging or when system tuning is needed.
If no arguments are given, ifconfig displays the status of the currently active
interfaces. If a single interface argument is given, it displays the status of the
given interface only. If a single -a argument is given, it displays the status of all
interfaces, even those that are down. Otherwise, it configures an interface.

ethtool
<devnam
e>

Used to query and control network device driver and hardware settings,
particularly for wired Ethernet devices.
<devname> is the name of the network device on which ethtool should operate.

Note

For more information about these commands, such as usage
instructions, flag options, arguments and so on, use the -h option
after the command or use the manual (e.g., man lspci).

DOCA Documentation v2.7.0 940

Comma
nd

Description

lspci
Displays information about PCIe buses in the system and devices connected
to them. By default, it shows a brief list of devices.

tcpdump
Dump traffic on a network. Usage: tcpdump -i <interface> where <interface> is any
port interface (physical/SF rep/VF port rep).

ovs-vsctl
Utility for querying and configuring ovs-vswitchd. The ovs-vsctl program supports
the model of a bridge implemented by Open vSwitch in which a single bridge
supports ports on multiple VLANs.

mount
10.0.0.10:
/vol/mysh
are/
myshare/

Used for mounting a work directory on the DPU.

scp
Secure copy (remote file copy program). Useful for copying files from
BlueField to the host and vice versa.

iperf
Used for server-client connection. Useful to check if the network connection
achieves the speed of the network card on the DPU (line rate).

DPU/DOCA Commands

Command Description

ibdev2netdev Displays available mlnx interfaces

mst
Used to start MST service, to stop it, and for other operations with
NVIDIA devices like reset and enabling remote access

Note
This command shows the speed of the network card of
the DPU.

Note
Must be used after creating a new directory named
myshare under root (i.e., mkdir /myshare)

DOCA Documentation v2.7.0 941

Command Description

cat /etc/mlnx-release Displays the full BlueField image (bfb) version

cat /etc/os-release Displays the details of the underlying OS installed on BlueField

ibv_devinfo
Displays the current InfiniBand connected devices and relevant
information. Useful for checking current firmware version.

ipmitool power cycle

Power cycle

echo 1024 >
/sys/kernel/mm/hugepa
ges/hugepages-
2048kB/nr_hugepages

DPDK setup. Allocates hugepages for DPDK environment
abstraction layer (EAL).

mlxdevm tool

The mlxdevm tool is found under /opt/mellanox/iproute2/sbin/. With
this tool it is possible to create an SF and set its state to active,
configure a HW address and set it to trusted, deploy the created
SF and print info about it.

/opt/mellanox/iproute2/
sbin/mlxdevm port add
pci/<pci_address>
flavour pcisf pfnum
<correspondig_physical_
function_number>
sfnum
<unique_sf_number>

Creates an SF in the flavor of the given PF with the given unique SF
number. Example:

/opt/mellanox/iproute2/
sbin/mlxdevm port
show

Displays information about the available SFs

/opt/mellanox/iproute2/
sbin/mlxdevm port
function set
pci/0000:03:00.0/<sf_ind
ex> hw_addr
<HW_address> trust on
state active

Configures SF capabilities such as setting the HW address, making
it "trusted", and setting its state to active. <sf_index> the SF. To
obtain this index, you may run mlxdevm port show. Example:

Note
Prior to performing a power cycle, make sure
to do a graceful shutdown.

/opt/mellanox/iproute2/sbin/mlxdevm port add
pci/0000:03`:00.0 flavour pcisf pfnum 0 sfnum 4

/opt/mellanox/iproute2/sbin/mlxdevm port function set
pci/0000:03:00.0/229377 hw_addr 02:25:f2:8d:a2:4c trust on state

file:///doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide#src-2587737656_id-.NVIDIADOCATroubleshootingGuidev2.7.0-HowtoPerformGracefulShutdown

DOCA Documentation v2.7.0 942

Command Description

$ echo mlx5_core.sf.
<next_serial> >
/sys/bus/auxiliary/driver
s/mlx5_core.sf_cfg/unbi
nd
$ echo mlx5_core.sf.
<next_serial> >
/sys/bus/auxiliary/driver
s/mlx5_core.sf/bind

These two commands deploy the created SF. The first command
unbinds the SF from the default driver, while the second
command binds the SF to the actual driver. The deployment phase
should be done after the capabilities of the SF are configured. The
SF is identified by <next_serial> which can be obtained by running
the command below.

ls
/sys/bus/auxiliary/devic
es/mlx5_core.sf.*

Displays additional information about the created SFs and their
"next serial numbers".
For example, if mlx5_core.sf.2 exists in the output of the command,
then running cat /sys/bus/auxiliary/devices/mlx5_core.sf.2/sfnum would
output the sfnum related to mlx5_core.sf.2.

/opt/mellanox/iproute2/
sbin/mlxdevm port
function set
pci/<pci_address>/<sf_i
ndex> state inactive
/opt/mellanox/iproute2/
sbin/mlxdevm port del
pci/<pci_address>/<sf_i
ndex>

These two commands must be executed to delete a given SF. First,
users must set the state of the SF to inactive, and only then should
it be deleted.

/opt/mellanox/iproute2/
sbin/mlxdevm port help

Displays additional information about operations that can be used
on created SF ports

crictl pods
Displays currently active K8S pods, and their IDs (it might take up
to 20-30 seconds for the pod to start)

crictl ps Displays currently active containers and their IDs

crictl ps -a
Displays all containers, including containers that recently finished
their execution

crictl logs <container-
id> Examines the logs of a given container

crictl exec -it
<container-id>
/bin/bash

Attaches a shell to a running container

journalctl -u kubelet Examines the Kubelet logs. Useful when a pod/container fails to

active

DOCA Documentation v2.7.0 943

Command Description

spawn.

crictl stopp <pod-id> Stops a running K8S pod

crictl stop <container-
id> Stops a running container

crictl rmi <image-id> Removes a container image from the local K8S registry

NVIDIA DOCA Emulated Devices
For information on virtio-net emulation, please refer to NVIDIA BlueField Virtio-net
documentation.

VirtIO-net Emulated Devices

Virtio-net device emulation enables users to create VirtIO-net emulated PCIe devices in
the system where the NVIDIA® BlueField® DPU is connected. This is done by the virtio-
net-controller software module present in the DPU. Virtio-net emulated devices allow
users to hot plug up to 31 virtio-net PCIe PF Ethernet NIC devices or 504 virtio-net PCIe VF
Ethernet NIC devices in the host system where the DPU is plugged in.

DPU software also enables users to create virtio block PCIe PF and SR-IOV PCIe VF
devices. This is covered in the NVIDIA BlueField SNAP and virtio-blk SNAP Documentation.

VirtIO-net Controller

Virtio-net-controller is a systemd service running on the DPU, with a user interface
frontend to communicate with the background service. An SF representor is created for
each virtio-net device created on the host. Virtio-net controller only uses an SF number
≥1000. Refer to section "Scalable Functions" for more information.

Warning

https://docs.nvidia.com/networking/display/bluefieldvirtionetv2407
https://confluence.nvidia.com/display/BFDEV/Scalable+Functions

DOCA Documentation v2.7.0 944

Each virtio-net PF/VF requires a dedicated SF and it should be reserved from mlxconfig
(see section "VirtIO-net PF Device Configuration"). However, since an SF is a shared
resource on the system, there may be other application-created SFs as well. In that case,
PF_TOTAL_SF must be updated to consider those SFs. Otherwise, virtio-net is not able to
create enough configured PF/VF.

SystemD Service

Controller systemd service is enabled by default and runs automatically if
VIRTIO_NET_EMULATION_ENABLE is true from mlxconfig.

1. To check controller service status, run:

2. To reload the service, make sure to unload virtio-net/virtio-pcie drivers on host.
Then run:

3. To monitor log output of the controller service, run:

SF representor name is determined by udev rules. The default name
is in the format of <prefix><pf_num><sf_num>. For example: en3f0pf0sf1001.

Warning

Since the controller provides hardware resources and acknowledges
(ACKs) the request from the host's virtio driver, it is mandatory to
reboot the host OS first and the DPU second. This also applies to
reconfiguring a controller from the DPU (e.g., reconfiguring LAG);
unloading the virtio-net driver from guest side is recommended.

$ systemctl status virtio-net-controller.service

$ systemctl restart virtio-net-controller.service

DOCA Documentation v2.7.0 945

4. Before reloading MLNX_OFED or changing the driver to legacy mode from the ARP
side, the controller service must be stopped first. Run:

The controller service has an optional configuration file which allows users to customize
several parameters. The configuration file should be defined on the DPU at the following
path /opt/mellanox/mlnx_virtnet/virtnet.conf.

This file is read every time the controller starts. Dynamic change of virtnet.conf is not
supported. It is defined as a JSON format configuration file. The currently supported
options are:

ib_dev_p0 – RDMA device (e.g., mlx5_0) used to create SF on port 0. This port is the
EMU manager when is_lag is 0. Default value is mlx5_0.

ib_dev_p1 – RDMA device (e.g., mlx5_1) used to create SF on port 1. Default value is
mlx5_1.

ib_dev_lag – RDMA LAG device (e.g., mlx5_bond_0) used to create SF on LAG. Default
value is mlx5_bond_0. This port is EMU manager when is_lag is 1. ib_dev_lag and
ib_dev_p0/ib_dev_p1 cannot be configured simultaneously.

ib_dev_for_static_pf – the RDMA device (e.g., mlx5_0) which the static virtio PF is created
on

is_lag – specifies whether LAG is used. Note that if LAG is used, make sure to use the
correct IB dev for static PF.

static_pf –

mac_base – base MAC address for static PFs. MACs are automatically assigned
with the following pattern: pf_mac pf_0, pf_mac+1 pf_1, etc.

$ journalctl -u virtio-net-controller -f

$ systemctl stop virtio-net-controller.service

Warning

DOCA Documentation v2.7.0 946

features – virtio spec-defined feature bits for static PFs. If unsure, leave features

out of the JSON file and a default value is automatically assigned.

vf –

mac_base – base MAC address for static PFs. MACs are automatically assigned
with the following pattern: pf_mac pf_0, pf_mac+1 pf_1, etc.

features – virtio spec-defined feature bits for static VFs. If unsure, leave features

out of the JSON file and a default value is automatically assigned.

vfs_per_pf – number of VFs to create on each PF. This is mandatory if mac_base is
specified.

qp_num – number of QPs for each VF. If not specified, then the QP number
assigned is taken from its parent PF.

recovery – specifies whether recovery is enabled. If unspecified, recovery is enabled
by default. To disable it, set recovery to 0.

sf_pool_percent – determines the initial SF pool size as the percentage of PF_TOTAL_SF of
mlxconfig. Valid range: [0, 100]. For instance, if the value is 5, it means an SF pool with
5% of PF_TOTAL_SF is created. 0 means no SF pool is reserved beforehand (default).

Note that the controller does not validate the MAC address
(other than its length). The user must ensure the MAC is
valid and unique.

Warning

This value does not equal VIRTIO_NET_EMULATION_NUM_VF in
mlxconfig. vfs_per_pf ≤ VIRTIO_NET_EMULATION_NUM_VF.

Warning

DOCA Documentation v2.7.0 947

sf_pool_force_destroy – specifies whether to destroy the SF pool. When set to 1, the
controller destroys the SF pool when stopped/restarted (and the SF pool is
recreated if sf_pool_percent is not 0 when starting), otherwise it does not. Default value
is 0.

For example, the following definition has all static PFs using mlx5_0 (port 0) as the data
path device in a non-lag configuration:

The following is an example for LAG configuration:

PF_TOTAL_SF is shared by all applications. User must ensure the
percent request is guaranteed or else the controller will not be
able to reserve the requested SFs resulting in failure.

{
 "ib_dev_p0": "mlx5_0",
 "ib_dev_p1": "mlx5_1",
 "ib_dev_for_static_pf": "mlx5_0",
 "is_lag": 0,
 "recovery": 1,
 "sf_pool_percent": 0,
 "sf_pool_force_destroy": 0,
 "static_pf": {
 "mac_base": "11:22:33:44:55:66",
 "features": "0x230047082b"
},
 "vf": {
 "mac_base": "CC:48:15:FF:00:00",
 "features": "0x230047082b",
 "vfs_per_pf": 100,
 "qp_num": 4
}
}

{

DOCA Documentation v2.7.0 948

User Frontend

To communicate with the service, a user frontend program (virtnet) is installed on the
DPU. Run the following command to check its usage:

Note that each positional argument has its own help menu as well. For example:

 "ib_dev_lag": "mlx5_bond_0",
 "ib_dev_for_static_pf": "mlx5_bond_0",
 "is_lag": 1,
 "recovery": 1,
 "sf_pool_percent": 0,
 "sf_pool_force_destroy": 0
}

virtnet -h
usage: virtnet [-h] [-v] {hotplug,unplug,list,query,modify,log} ...

Nvidia virtio-net-controller command line interface v1.0.9

positional arguments:
{hotplug,unplug,list,query,modify,log}
** Use -h for sub-command usage
hotplug hotplug virtnet device
unplug unplug virtnet device
list list all virtnet devices
query query all or individual virtnet device(s)
modify modify virtnet device
log set log level

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit

DOCA Documentation v2.7.0 949

To operate a particular device, either the VUID or device index can be used to locate the
device. Both attributes can be fetched from command "virtnet list". For example, to
modify the MAC of a specific VF, you may run either of the following commands:

Or:

virtnet log -h
usage: virtnet log [-h] -l {info,err,debug}
optional arguments:
-h, --help show this help message and exit
-l {info,err,debug}, --level {info,err,debug}
log level: info/err/debug

virtnet modify -p 0 –v 0 device -m 0C:C4:7A:FF:22:98

virtnet modify -u <VUID-string> device -m 0C:C4:7A:FF:22:98

Warning

The following modify options require unbinding the virtio device from
virtio-net driver in the guest OS:

MAC

MTU

Features

Msix_num

max_queue_size

For example:

On the guest OS:

DOCA Documentation v2.7.0 950

Controller Recovery

Recovering the control and data planes is possible if communications are interrupted so
the original traffic can resume.

Recovery depends on the JSON files stored in /opt/mellanox/mlnx_virtnet/recovery where there
is a file that corresponds to each device (either PF or VF). The following is an example of
the data stored in these files:

On the Arm side:

On the guest OS:

$ echo "bdf of virtio-dev" > /sys/bus/pci/drivers/virtio-
pci/unbind

$ virtnet modify ...

$ echo "bdf of virtio-dev" > /sys/bus/pci/drivers/virtio-
pci/bind

{
"port_ib_dev": "mlx5_0",
"pf_id": 0,
"function_type": "pf",
"bdf_raw": 26624,
"device_type": "hotplug",
"mac": "0c:c4:7a:ff:22:93",
"pf_num": 0,
"sf_num": 2000,
"mq": 1

DOCA Documentation v2.7.0 951

Controller Live Update

Live update minimizes network interface down time by performing online upgrade of the
virtio-net controller without necessitating a full restart.

To perform a live update, you must install a newer version of the controller either using
the rpm or deb package (depending on the OS distro used). Run:

For
Ubuntu/Debian

}

Warning

These files should not be modified under normal circumstances. They
are internal to the controller.

Warning

Controller recovery is enabled by default and does not need user
configuration or intervention unless a system reset is needed or
BlueField configuration is changed (i.e., any of the mlxconfig options
PCI_SWITCH_EMULATION_NUM_PORT, VIRTIO_NET_EMULATION_NUM_VF, or
VIRTIO_NET_EMULATION_NUM_PF). To this end, the files under
/opt/mellanox/mlnx_virtnet/recovery must be deleted.

The first time LAG is configured with a controller, recover files must
be cleaned up to ensure the controller does not try to recover devices
with the previous IB parent device.

dpkg --force-all -i virtio-net-controller-x.y.z-

DOCA Documentation v2.7.0 952

For
CentOS/RedHat

It is recommended to use the following command to verify the versions of the controller
currently running and the one just installed:

If the versions that are correct, issue the following command to start the live update
process:

During the update process, the following command may be used to check the update
status:

During the update, all existing virtnet commands (e.g., list, query, modify) are still supported.
VF creation/deletion works as well.

1.mlnx.aarch64.deb

rpm -Uvh virtio-net-controller-x.y.z-1.mlnx.aarch64.rpm --
force

virtnet version

virtnet update --start
virtnet update -s

Warning

If an error appears regarding the "update" command not being
supported, this implies that the controller version you are trying to
install is too old. Reinstalling the proper version will resolve this issue.

virtnet update status
virtnet update -t

DOCA Documentation v2.7.0 953

When the update process completes successfully, the command virtnet update status will
reflect the status accordingly.

VirtIO-net PF Devices

This section covers managing virtio-net PCIe PF devices using virtio-net controller.

VirtIO-net PF Device Configuration

Warning

If a device is actively migrating, the existing virtnet commands will
appear as "migrating" for that specific device so that user can retry
later.

DOCA Documentation v2.7.0 954

1. Run the following commands on the DPU if it is not already configured to DPU
mode:

2. Add the following kernel boot parameters to the Linux boot arguments from the
host OS:

3. Cold reboot the host system.

4. Apply the following configuration on the DPU:

5. Cold reboot the host system a second time.

$ mst start
$ mlxconfig -d /dev/mst/mt41686_pciconf0 s INTERNAL_CPU_MODEL=1

pci=realloc

$ mst start
$ mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_ENABLE=0
PER_PF_NUM_SF=1
$ mlxconfig -d /dev/mst/mt41686_pciconf0 s \
PCI_SWITCH_EMULATION_ENABLE=1 \
PCI_SWITCH_EMULATION_NUM_PORT=16 \
VIRTIO_NET_EMULATION_ENABLE=1 \
VIRTIO_NET_EMULATION_NUM_VF=0 \
VIRTIO_NET_EMULATION_NUM_PF=0 \
VIRTIO_NET_EMULATION_NUM_MSIX=10 \
SRIOV_EN=0 \
PF_SF_BAR_SIZE=10 \
PF_TOTAL_SF=64
$ mlxconfig -d /dev/mst/mt41686_pciconf0.1 s \
PF_SF_BAR_SIZE=10 \
PF_TOTAL_SF=64

DOCA Documentation v2.7.0 955

Creating Modern Hotplug VirtIO-net PF Device

Virtio emulated network PCIe devices are created and destroyed using virtio-net-
controller application console. When this application is terminated, all created virtio-net
emulated devices are hot unplugged.

1. Create a hotplug virtio-net device. Run:

This creates one hotplug virtio-net device with MAC address 0C:C4:7A:FF:22:93, MTU
1500, and 3 virtio queues with a depth of 1024 entries. This device is uniquely
identified by its index. This index is used to query and update device attributes. If
the device is created successfully, an output appears similar to the following:

$ virtnet hotplug -i mlx5_0 -f 0x0 -m 0C:C4:7A:FF:22:93 -t 1500 -n 3 -s 1024

Warning

Note that the controller does not validate the MAC address
(other than its length). The user must ensure MAC is valid
and unique.

Warning

The maximum number of virtio-net queues is bound by the
minimum of the following numbers:

VIRTIO_NET_EMULATION_NUM_MSIX from the command mlxconfig
-d <mst_dev> q

max_virtq from the command virtnet list

{

DOCA Documentation v2.7.0 956

2. Add the representor port of the device to the OVS bridge and bring it up. Run:

Once steps 1-2 are completed, the virtio-net device should be available from guest
OS with the same PCIe bdf.

3. To query all the device configurations of virtio-net device that you created, run:

4. To list all the virtio-net devices, run:

5. To modify device attributes, for example, changing its MAC address, run:

6. Once usage is complete, to hot-unplug a virtio-net device, run:

"bdf": "85:00.0",
"vuid": "VNETS1D0F0",
"id": 3,
"sf_rep_net_device": "en3f0pf0sf2000",
"mac": "0C:C4:7A:FF:22:93"
}

$ ovs-vsctl add-port <bridge> en3f0pf0sf2000
$ ip link set dev en3f0pf0sf2000 up

$ lspci | grep -i virtio
85:00.0 Ethernet controller: Red Hat, Inc. Virtio network device (rev 01)

$ virtnet query –p 0

$ virtnet list

$ virtnet modify -p 0 device -m 0C:C4:7A:FF:22:98

$ virtnet unplug -p 0

DOCA Documentation v2.7.0 957

Creating Transitional Hotplug VirtIO-net PF Device

A transitional device is a virtio device which supports drivers conforming to virtio
specification 1.x and legacy drivers operating under virtio specification 0.95 (i.e., legacy
mode) so that servers with old Linux kernels can still utilize virtio-based technology.

1. Run the following command on the DPU:

2. Add the following parameters to the Linux boot arguments on the guest OS (host
OS or VM) side:

Refer to the known limitations below.

3. Cold reboot the host system.

4. If virtio_pci is a kernel module rather than built-in from the guest OS, run the
following command after both the host and DPU OSes are up:

5. To create a transitional hotplug virtio-net device. Run the following command on the
DPU (with additional -l/--legacy):

$ mst start
$ mlxconfig -d /dev/mst/mt41686_pciconf0 s \
VIRTIO_NET_EMULATION_PF_PCI_LAYOUT=1 \
VIRTIO_EMULATION_HOTPLUG_TRANS=1

virtio_pci.force_legacy=1 intel_iommu=off

modprobe –rv virtio_pci
modprobe –v virtio_pci force_legacy=1

$ virtnet hotplug -i mlx5_0 -f 0x0 -m 0C:C4:7A:FF:22:93 -t 1500 -n 3 -s 1024 -l

DOCA Documentation v2.7.0 958

6. Proceed from step 2 of section "Creating Modern Hotplug VirtIO-net PF Device" for
the rest of configuration.

Virtio-net SR-IOV VF Devices

This section covers managing virtio-net PCIe SR-IOV VF devices using virtio-net-controller.

Warning

Known limitations:

AMD CPU is not supported.

Only kernel versions 3.10 and above are supported.
intel_iommu=off is not required for kernel 5.1 and above.

An x86-64 system has only 64K I/O port space which is shared
by all peripherals. The virtio transitional device uses I/O BAR.
The hotplug device is under one PCIe bridge which is at the
emulated PCIe switch downstream port. According to the PCIe
specification, the granularity for the bridge I/O window is 4K
bytes. If the system cannot satisfy the I/O resource demands by
the emulated PCIe switch (depending on the port number of the
PCIe switch), the I/O BAR allocation will fail. One hot-plug device
requires one emulated PCIe switch port. Each emulated PCIe
switch port takes 4K bytes of I/O space if the transitional virtio
device is supported. Use cat /proc/ioports to check how many I/O
port resources are allocated for the host bridge which contains
the NIC. The number of supported hotplug transitional virtio
device equals: (allocated I/O port space – 4k) / 4k.

DOCA Documentation v2.7.0 959

Virtio-net SR-IOV VF Device Configuration

1. On the DPU, make sure virtio-net-controller service is enabled so that it starts
automatically. Run:

Warning

Virtio-net SR-IOV VF is only supported with statically configured PF,
hot-plugged PF is not currently supported.

systemctl status virtio-net-controller.service

DOCA Documentation v2.7.0 960

2. On the host, enable SR-IOV. Please refer to MLNX_OFED documentation under
Features Overview and Configuration > Virtualization > Single Root IO Virtualization
(SR-IOV) > Setting Up SR-IOV for instructions on how to do that. Make sure the
parameters intel_iommu=on iommu=pt pci=realloc exist in grub.conf file.

3. It is recommended to add pci=assign-busses to the boot command line when creating
more than 127 VFs. Without this option, the following errors might appear from
host and the virtio driver will not probe these devices.

4. Run the following command on the DPU if it is not already configured to DPU mode:

5. Add the following kernel boot parameters to the Linux boot arguments:

6. Cold reboot the host system.

7. Apply the following configuration on the DPU in three steps to support up to 125
VFs per PF (500 VFs in total).

pci 0000:84:00.0: [1af4:1041] type 7f class 0xffffff
pci 0000:84:00.0: unknown header type 7f, ignoring device

mst start && mlxconfig -d /dev/mst/mt41686_pciconf0 s
INTERNAL_CPU_MODEL=1

intel_iommu=on iommu=pt pci=realloc

Note

The maximum number of VFs 504, so
VIRTIO_NET_EMULATION_NUM_PF * VIRTIO_NET_EMULATION_NUM_VF must
be equal to or less than the max value.

https://docs.mellanox.com/category/mlnxofedib

DOCA Documentation v2.7.0 961

1.

2.

3.

8. Cold reboot the host system.

Creating Virtio-net SR-IOV VF Devices

1. On the host, make sure the static virtio network device presents. Run:

2. On the host, make sure virtio_pci and virtio_net are loaded. Run:

The net device should be created:

$ mst start && mlxconfig -d /dev/mst/mt41686_pciconf0 s
PF_BAR2_ENABLE=0 PER_PF_NUM_SF=1

$ mlxconfig -d /dev/mst/mt41686_pciconf0 s \
PCI_SWITCH_EMULATION_ENABLE=0 \
PCI_SWITCH_EMULATION_NUM_PORT=0 \
VIRTIO_NET_EMULATION_ENABLE=1 \
VIRTIO_NET_EMULATION_NUM_VF=126 \
VIRTIO_NET_EMULATION_NUM_PF=4 \
VIRTIO_NET_EMULATION_NUM_MSIX=4 \
NUM_VF_MSIX=4 \
SRIOV_EN=1 \
PF_SF_BAR_SIZE=8 \
PF_TOTAL_SF=508 \
NUM_OF_VFS=0

$ mlxconfig -d /dev/mst/mt41686_pciconf0.1 s PF_TOTAL_SF=1
PF_SF_BAR_SIZE=8

lspci | grep -i virtio
85:00.3 Network controller: Red Hat, Inc. Virtio network device

lsmod | grep virtio

DOCA Documentation v2.7.0 962

3. To create SR-IOV VF devices on the host, run:

2 VFs should be created from the host:

4. From the DPU virtio-net controller, run the following command to get VF
information.

ethtool -i p7p3
driver: virtio_net
version: 1.0.0
firmware-version:
expansion-rom-version:
bus-info: 0000:85:00.3
supports-statistics: no
supports-test: no
supports-eeprom-access: no
supports-register-dump: no
supports-priv-flags: no

echo 2 > /sys/bus/pci/drivers/virtio-pci/0000\:85\:00.3/sriov_numvfs

Warning

When the number of VFs created is high, SR-IOV enablement
may take several minutes.

lspci | grep -i virt
85:00.3 Network controller: Red Hat, Inc. Virtio network device
85:04.5 Network controller: Red Hat, Inc. Virtio network device
85:04.6 Network controller: Red Hat, Inc. Virtio network device

virtnet list

DOCA Documentation v2.7.0 963

You may use the pci-bdf to match the PF/VF on the host to the information showing
on DPU.

To query all the device configurations of the virtio-net device of that VF, run:

Add the corresponding SF representor to the OVS bridge and bring it up. Run:

Now the VF is functional.

{
"vf_id": 0,
"parent_pf_id": 0,
"function_type": "VF",
"vuid": "VNETS0D0F2VF1",
"bdf": "83:00.6",
"sf_num": 3000,
"sf_parent_device": "mlx5_0",
"sf_rep_net_device": "en3f0pf0sf3000",
"sf_rep_net_ifindex": 19,
"sf_rdma_device": "mlx5_7",
"sf_vhca_id": "0x192",
"msix_config_vector": "0x0",
"num_msix": 10,
"max_queues": 4,
"max_queues_size": 256,
"net_mac": "5A:94:07:04:F6:1C",
"net_mtu": 1500
},

$ virtnet query -p 0 -v 0

ovs-vsctl add-port <bridge> en3f0pf0sf1004
ip link set dev en3f0pf0sf1004 up

DOCA Documentation v2.7.0 964

5. To destroy SR-IOV VF devices on the host, run:

Once VFs are destroyed, created SFs from the DPU side are not destroyed but are
saved into the SF pool to be reused later.

Transitional VirtIO-net VF Device Support

Transitional virtio-net VF devices are not currently supported.

Warning

When port MTU (p0/p1 of the DPU) is changed after the
controller is started, you must restart controller service. It is not
recommended to use jumbo MTUs because that may lead to
performance degradation.

echo 0 > /sys/bus/pci/drivers/virtio-pci/0000\:85\:00.3/sriov_numvfs

Warning

When the command returns from the host OS, it does not
necessarily mean the controller finished its operations. Look at
controller log from the DPU and make sure you see a log like
below before removing virtio kernel modules or recreate VFs.

virtio-net-controller[3544]: [INFO]
virtnet.c:617:virtnet_device_vfs_unload: PF(0): Unload (4)
VFs finished

DOCA Documentation v2.7.0 965

Virtio VF PCIe Devices for vHost Acceleration

Virtio VF PCIe devices can be attached to the guest VM using vhost acceleration software
stack. This enables performing live migration of guest VMs.

This section describes the steps to enable VM live migration using virtio VF PCIe devices
along with vhost acceleration software.

DOCA Documentation v2.7.0 966

Prerequisites

Minimum hypervisor kernel version – Linux kernel 5.7 (for VFIO SR-IOV support)

Install vHost Acceleration Software Stack

Vhost acceleration software stack is built using open-source BSD licensed DPDK.

To install vhost acceleration software:

1. Clone the software source code.

DOCA Documentation v2.7.0 967

2. Build software:

To install QEMU:

1. Clone QEMU sources.

git clone https://github.com/Mellanox/dpdk-vhost-vfe

Note

Latest release tag is vfe-1.0.

apt-get install libev-dev
yum install -y numactl-devel libev-devel
meson build -Dexamples=vdpa
ninja -C build

Note

Upstream QEMU later then 8.1 can be used or the following QEMU.

git clone https://github.com/Mellanox/qemu -b stable-8.1-presetup

Note

Latest release tag is vfe-0.4.

DOCA Documentation v2.7.0 968

2. Build QEMU.

Configure vHost and DPU System

1. Set the DPU nvconfig.

2. Cold reboot the system after above configuration.

3. Setup the hypervisor system:

1. Configure hugepages and libvirt VM XML (see OVS Hardware Offloads
Configuration for information on doing that).

2. Add a virtio-net interface and a virtio-blk interface in VM XML.

mkdir bin
cd bin
../configure --target-list=x86_64-softmmu --enable-kvm
make -j24

mlxconfig -d /dev/mst/mt41686_pciconf0 s \
VIRTIO_NET_EMULATION_ENABLE=1 VIRTIO_NET_EMULATION_NUM_PF=1
VIRTIO_NET_EMULATION_NUM_VF=16 \
VIRTIO_BLK_EMULATION_ENABLE=1 VIRTIO_BLK_EMULATION_NUM_PF=1
VIRTIO_BLK_EMULATION_NUM_VF=16 \
VIRTIO_NET_EMULATION_NUM_MSIX=64
VIRTIO_BLK_EMULATION_NUM_MSIX=64 NUM_VF_MSIX=64

<qemu:commandline>
<qemu:arg value='-chardev'/>
<qemu:arg value='socket,id=char0,path=/tmp/vfe-net0,server=on'/>
<qemu:arg value='-netdev'/>
<qemu:arg value='type=vhost-user,id=vdpa,chardev=char0,queues=4'/>
<qemu:arg value='-device'/>

https://docs.nvidia.com/networking/display/mlnxofedv23100550/ovs+offload+using+asap%C2%B2+direct#src-2396915148_safe-id-T1ZTT2ZmbG9hZFVzaW5nQVNBUMKyRGlyZWN0LW92c2h3b2ZmbG9hZHNjb25maWc
https://docs.nvidia.com/networking/display/mlnxofedv23100550/ovs+offload+using+asap%C2%B2+direct#src-2396915148_safe-id-T1ZTT2ZmbG9hZFVzaW5nQVNBUMKyRGlyZWN0LW92c2h3b2ZmbG9hZHNjb25maWc

DOCA Documentation v2.7.0 969

4. Create block device on the DPU:

5. On BlueField-3 SNAP:

Run vHost Acceleration Service

1. Bind the virtio PF devices to vfio-pci driver:

<qemu:arg value='virtio-net-
pci,netdev=vdpa,mac=00:00:00:00:33:00,page-per-
vq=on,rx_queue_size=1024,tx_queue_size=1024,mq=on'/>
<qemu:arg value='-chardev'/>
<qemu:arg value='socket,id=char1,path=/tmp/vfe-blk0,server=on'/>
<qemu:arg value='-device'/>
<qemu:arg value='vhost-user-blk-pci,chardev=char1,page-per-
vq=on,num-queues=4,disable-legacy=on,disable-modern=off'/>
</qemu:commandline>

spdk_rpc.py bdev_null_create Null0 1024 512
snap_rpc.py controller_virtio_blk_create --pf_id 0 --bdev_type spdk mlx5_0 --
bdev Null0 --num_queues 1 --admin_q --force_in_order

spdk_rpc.py bdev_null_create Null0 1024 512
snap_rpc.py virtio_blk_controller_create --pf_id 0 --bdev Null0 --num_queues 1 -
-admin_q --force_in_order

modprobe vfio vfio_pci
echo 1 > /sys/module/vfio_pci/parameters/enable_sriov

echo 0x1af4 0x1041 > /sys/bus/pci/drivers/vfio-pci/new_id
echo 0x1af4 0x1042 > /sys/bus/pci/drivers/vfio-pci/new_id

echo 0000:af:00.2 > /sys/bus/pci/drivers/vfio-pci/bind

DOCA Documentation v2.7.0 970

2. Enable SR-IOV and create a VF(s):

3. Add a VF representor to the OVS bridge on the DPU:

4. Run the vhost acceleration software service:

5. Provision the virtio-net PF and VF.

echo 0000:af:00.3 > /sys/bus/pci/drivers/vfio-pci/bind

lspci -vvv -s 0000:af:00.3 | grep "Kernel driver"
Kernel driver in use: vfio-pci
lspci -vvv -s 0000:af:00.2 | grep "Kernel driver"
Kernel driver in use: vfio-pci

echo 1 > /sys/bus/pci/devices/0000:af:00.2/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000:af:00.3/sriov_numvfs

lspci | grep Virtio
af:00.2 Ethernet controller: Red Hat, Inc. Virtio network device
af:00.3 Non-Volatile memory controller: Red Hat, Inc. Virtio block device
af:04.5 Ethernet controller: Red Hat, Inc. Virtio network device
af:05.1 Non-Volatile memory controller: Red Hat, Inc. Virtio block device

virtnet query -p 0 -v 0 | grep sf_rep_net_device
"sf_rep_net_device": "en3f0pf0sf3000",

ovs-vsctl add-port ovsbr1 en3f0pf0sf3000

cd dpdk-vhost-vfe
sudo ./build/app/dpdk-vfe-vdpa -a 0000:00:00.0 --log-level=.,8 --vfio-vf-
token=cdc786f0-59d4-41d9-b554-fed36ff5e89f -- --client

cd dpdk-vhost-vfe

DOCA Documentation v2.7.0 971

6. Provision the virtio-blk PF and VF.

python ./app/vfe-vdpa/vhostmgmt mgmtpf -a 0000:af:00.2
Wait on virtio-net-controller finishing handle PF FLR

On DPU, change VF MAC address or other device options
virtnet modify -p 0 -v 0 device -m 00:00:00:00:33:00
python ./app/vfe-vdpa/vhostmgmt vf -a 0000:af:04.5 -v /tmp/vfe-net0

cd dpdk-vhost-vfe

python ./app/vfe-vdpa/vhostmgmt mgmtpf -a 0000:af:00.3
Wait on SNAP controller to finish handling PF FLR

On DPU, the user must create a VF device controller before adding the VF
device to the
vhostmgmt upon pf or vf device delete from vhostmgmt, or vhostmgmt
restart:
For BlueField-3, the VF controller is automatically recreated
For BlueField-2, the VF controller must be manually recreated
Use snap_rpc.py controller_list to check for controller exsistence and create
controller if it's not there
snap_rpc.py controller_virtio_blk_create mlx5_0 --pf_id 0 --vf_id 0 --bdev_type
spdk --bdev Null0 --force_in_order
python ./app/vfe-vdpa/vhostmgmt vf -a 0000:af:05.1 -v /tmp/vfe-blk0

Warning

If the SR-IOV is disabled and reenabled, the user must re-
provision the VFs.

DOCA Documentation v2.7.0 972

Start the VM

Simple Live Migration

Prepare two identical hosts and perform the provisioning of the virtio device to DPDK on
both.

Boot the VM on one server:

Remove Device

When finished with using the virtio device, use following commands to remove them
from DPDK:

NVIDIA BlueField Modes of
Operation
This document describes the modes of operation available for NVIDIA® BlueField® DPU.

virsh start <domain-name>

virsh migrate --verbose --live --persistent gen-l-vrt-440-162-CentOS-7.4
qemu+ssh://gen-l-vrt-439/system --unsafe

python ./app/vfe-vdpa/vhostmgmt vf -r 0000:af:04.5
python ./app/vfe-vdpa/vhostmgmt mgmtpf -r 0000:af:00.2

python ./app/vfe-vdpa/vhostmgmt vf -r 0000:af:05.1
python ./app/vfe-vdpa/vhostmgmt mgmtpf -r 0000:af:00.3

DOCA Documentation v2.7.0 973

Introduction

The NVIDIA® BlueField® DPU has several modes of operation:

DPU mode, or embedded function (ECPF) ownership, where the embedded Arm
system controls the NIC resources and data path

Zero-trust mode which is an extension of the ECPF ownership with additional
restrictions on the host side

NIC mode where the DPU behaves exactly like an adapter card from the perspective
of the external host

DPU Mode

This mode, known also as embedded CPU function ownership (ECPF) mode, is the default
mode for BlueField DPU.

In DPU mode, the NIC resources and functionality are owned and controlled by the
embedded Arm subsystem. All network communication to the host flows through a
virtual switch control plane hosted on the Arm cores, and only then proceeds to the host.
While working in this mode, the DPU is the trusted function managed by the data center
and host administrator—to load network drivers, reset an interface, bring an interface up
and down, update the firmware, and change the mode of operation on the DPU device.

A network function is still exposed to the host, but it has limited privileges. In particular:

1. The driver on the host side can only be loaded after the driver on the DPU has
loaded and completed NIC configuration.

Note

The default mode of operation for BlueField DPU is DPU mode

The default mode of operation for BlueField SuperNIC is NIC mode

DOCA Documentation v2.7.0 974

2. All ICM (Interface Configuration Memory) is allocated by the ECPF and resides in the
DPU's memory.

3. The ECPF controls and configures the NIC embedded switch which means that
traffic to and from the host (DPU) interface always lands on the Arm side.

When the server and DPU are initiated, the networking to the host is blocked until the
virtual switch on the DPU is loaded. Once it is loaded, traffic to the host is allowed by
default.

There are two ways to pass traffic to the host interface: Either using representors to
forward traffic to the host (every packet to/from the host would be handled also by the
network interface on the embedded Arm side) or push rules to the embedded switch
which allows and offloads this traffic.

In DPU mode, OpenSM must be run from the DPU side (not the host side). Also,
management tools (e.g., sminfo, ibdev2netdev, ibnetdiscover) can only be run from the DPU
side (not from the host side).

Zero-trust Mode

Zero-trust mode is a specialization of DPU mode which implements an additional layer of
security where the host system administrator is prevented from accessing the DPU from
the host. Once zero-trust mode is enabled, the data center administrator should control
the DPU entirely through the Arm cores and/or BMC connection instead of through the
host.

For security and isolation purposes, it is possible to restrict the host from performing
operations that can compromise the DPU. The following operations can be restricted
individually when changing the DPU host to zero-trust mode:

DOCA Documentation v2.7.0 975

Port ownership – the host cannot assign itself as port owner

Hardware counters – t he host does not have access to hardware counters

Tracer functionality is blocked

RShim interface is blocked

Firmware flash is restricted

Enabling Zero-trust Mode

To enable host restriction:

1. Start the MST service.

2. Set zero-trust mode. From the Arm side, run:

Disabling Zero-trust Mode

To disable host restriction, set the mode to privileged. Run:

$ sudo mlxprivhost -d /dev/mst/<device> r --disable_rshim --disable_tracer --
disable_counter_rd --disable_port_owner

Note

If any --disable_* flags are used, users must perform BlueField
system-level reset as explained in the "NVIDIA BlueField Reset
and Reboot Procedures" troubleshooting page.

$ sudo mlxprivhost -d /dev/mst/<device> p

DOCA Documentation v2.7.0 976

The configuration takes effect immediately.

NIC Mode

In this mode, the DPU behaves exactly like an adapter card from the perspective of the
external host.

Note

I f host restriction has been applied using any --disable_* flags, users
must perform BlueField system-level reset as explained in the
"NVIDIA BlueField Reset and Reboot Procedures" troubleshooting
page.

Note

The following instructions presume the DPU to operate in DPU mode.
If the DPU is operating in zero-trust mode, please return to DPU
mode before continuing.

Note

The following notes are relevant for updating the BFB Bundle in NIC
mode:

During BFB Bundle installation, Linux is expected to boot to
upgrade NIC firmware and BMC software

During the BFB Bundle installation, it is expected for the mlx5
driver to error messages on the x86 host. These prints may be

DOCA Documentation v2.7.0 977

NIC Mode for BlueField-3

NIC mode for BlueField-3 saves power, improves device performance, and improves the
host memory footprint.

Configuring NIC Mode on BlueField-3 from Linux

Enabling NIC Mode on BlueField-3 from Linux

Before moving to NIC mode, make sure you are operating in DPU mode by running:

The output should have INTERNAL_CPU_MODEL= EMBBEDDED_CPU(1) and
EXP_ROM_UEFI_ARM_ENABLE = True (1) (default).

To enable NIC mode from DPU mode:

1. Run the following on the host or Arm:

ignored as they are resolved by a mandatory, post-installation
power cycle.

It is mandatory to power cycle the host after the installation is
complete for the changes to take effect

As Linux is booting during BFB Bundle installation, it is expected
for the mlx5 core driver to timeout on the BlueField Arm

Note

When BlueField-3 is configured to operate in NIC mode, Arm OS will
not boot.

host/dpu> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 -e q

DOCA Documentation v2.7.0 978

2. Perform a BlueField system-level reset, for the mlxconfig settings to take effect. Refer
to the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Disabling NIC Mode on BlueField-3 from Linux

To return to DPU mode from NIC mode:

1. Run the following on the host:

2. Perform a BlueField system-level reset for the mlxconfig settings to take effect. Refer
to the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Configuring NIC Mode on BlueField-3 from Host BIOS HII UEFI Menu

1. Select the network device that presents the uplink (i.e., select the device with the
uplink MAC address).

host/dpu> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 s
INTERNAL_CPU_OFFLOAD_ENGINE=1

host> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 s
INTERNAL_CPU_OFFLOAD_ENGINE=0

Info

The screenshots in this section are examples only and may vary
depending on the vendor of your specific host.

DOCA Documentation v2.7.0 979

2. Select "BlueField Internal Cpu Configuration".

To enable NIC mode, set "Internal Cpu Offload Engine" to "Disabled".

To switch back to DPU mode, set "Internal Cpu Offload Engine" to "Enabled".

DOCA Documentation v2.7.0 980

Configuring NIC Mode on BlueField-3 from Arm UEFI

1. Access the Arm UEFI menu by pressing the Esc button twice.

2. Select "Device Manager".

3. Select "System Configuration".

4. Select "BlueField Modes".

5. Set the "NIC Mode" field to NicMode to enable NIC mode.

6. Exit "BlueField Modes" and "System Configuration" and make sure to save the
settings. Exit the UEFI setup using the 'reset' option. The configuration is not yet
applied and the DPU is expected to boot regularly, still in DPU Mode.

7. Perform a BlueField system-level reset, to change to NIC Mode. Refer to the "NVIDIA
BlueField Reset and Reboot Procedures" troubleshooting page for instructions.

Configuring NIC Mode on BlueField-3 Using Redfish

Info

Configuring Unavailable is inapplicable.

DOCA Documentation v2.7.0 981

Run the following from the BlueField BMC:

1. Get the current BIOS attributes:

2. Change BlueField mode from DpuMode to NicMode:

3. Verify that the BMC has registered the new settings:

4. Issue a software reset then power cycle the host for the change to take effect.

5. Verify the mode is changed:

sudo curl -k -u root:'<password>' -H 'content-type: application/json' -X GET
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/

curl -k -u root:'<password>' -H 'content-type: application/json' -d '{ "Attributes":
{ "NicMode": "NicMode" } }' -X PATCH
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/Settings

Info

To revert back to DPU mode, run:

curl -k -u root:'<password>' -H 'content-type:
application/json' -d '{ "Attributes": { "NicMode":
"DpuMode" } }' -X PATCH
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/Settings

curl -k -u root:'<password>' -H 'content-type: application/json' -X GET
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/Settings

DOCA Documentation v2.7.0 982

Updating Firmware Components in BlueField-3 NIC Mode

Once in NIC mode, updating ATF and UFEI can be done using the standard *.bfb image:

NIC Mode for BlueField-2

In this mode, the ECPFs on the Arm side are not functional but the user is still able to
access the Arm system and update mlxconfig options.

curl -k -u root:'<password>' -H 'content-type: application/json' -X GET
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Oem/Nvidia

Note

To retrieve the mode via BIOS attributes, another BlueField
software reset is required before running the command:

curl -k -u root:'<password>' -H 'content-type: application/json' -X
GET https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios

bfb-install --bfb <BlueField-BSP>.bfb --rshim rshim0

Note

When NIC mode is enabled, the drivers and services on the Arm are
no longer functional.

DOCA Documentation v2.7.0 983

Configuring NIC Mode on BlueField-2 from Linux

Enabling NIC Mode on BlueField-2 from Linux

To enable NIC mode from DPU mode:

1. Run the following from the x86 host side:

2. Perform BlueField system-level reset t o load the new configuration .

$ mst start
$ mlxconfig -d /dev/mst/<device> s \
INTERNAL_CPU_PAGE_SUPPLIER=1 \
INTERNAL_CPU_ESWITCH_MANAGER=1 \
INTERNAL_CPU_IB_VPORT0=1 \
INTERNAL_CPU_OFFLOAD_ENGINE=1

Note

To restrict RShim PF (optional), make sure to configure
INTERNAL_CPU_RSHIM=1 as part of the mlxconfig command.

Info

Refer to the troubleshooting section of the guide for a step-by-
step procedure.

Note

DOCA Documentation v2.7.0 984

Disabling NIC Mode on BlueField-2 from Linux

To change from NIC mode back to DPU mode:

1. Install and start the RShim driver on the host.

2. Disable NIC mode. Run:

Multi-host is not supported when the DPU is operating in NIC mode.

Note

To obtain firmware BINs for BlueField-2 devices, please refer to the
BlueField-2 firmware download page.

$ mst start
$ mlxconfig -d /dev/mst/<device> s \
INTERNAL_CPU_PAGE_SUPPLIER=0 \
INTERNAL_CPU_ESWITCH_MANAGER=0 \
INTERNAL_CPU_IB_VPORT0=0 \
INTERNAL_CPU_OFFLOAD_ENGINE=0

Note

If INTERNAL_CPU_RSHIM=1, then make sure to configure
INTERNAL_CPU_RSHIM=0 as part of the mlxconfig command.

https://network.nvidia.com/support/firmware/bluefield2/

DOCA Documentation v2.7.0 985

3. Perform a BlueField system reboot for the mlxconfig settings to take effect. Refer to
the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Configuring NIC Mode on BlueField-2 from Arm UEFI

Follow the same instructions in section "Configuring NIC Mode on BlueField-3 from Arm
UEFI".

Configuring NIC Mode on BlueField-2 Using Redfish

Follow the same instructions in section "Configuring NIC Mode on BlueField-3 Using
Redfish".

NVIDIA DOCA with OpenSSL
This guide provides instructions on using DOCA SHA for OpenSSL implementations.

Introduction

The doca_sha_offload_engine is an OpenSSL dynamic engine with the ability of offloading SHA
calculation. It can offload the OpenSSL one-shot SHA-1, SHA-256, and SHA-512. It
supports synchronous mode and asynchronous mode by leveraging the OpenSSL
async_jobs library. For more information on the async_jobs library, please refer to official
OpenSSL documentation.

This engine is based on the doca_sha library and the OpenSSL dynamic engine interface
API. For more information on the OpenSSL dynamic engine, please refer to official
OpenSSL documentation.

This engine can be called by an OpenSSL application through the OpenSSL high-level
algorithm call interface, EVP_Digest. For more information on the EVP_Digest, please refer to

https://www.openssl.org/docs/man1.1.1/man3/ASYNC_pause_job.html
https://www.openssl.org/docs/man1.1.1/man3/ASYNC_pause_job.html
https://www.openssl.org/docs/man1.1.1/man1/openssl-engine.html
https://www.openssl.org/docs/man1.1.1/man1/openssl-engine.html

DOCA Documentation v2.7.0 986

official OpenSSL documentation.

Prerequisites

Hardware-based doca_sha engine which can be verified by calling
doca_sha_get_hardware_supported()

Installed OpenSSL version ≥ 1.1.1

Architecture

The following diagram shows the software hierarchy of doca_sha_offload_engine and its
location in the whole DOCA repository.

From the perspective of OpenSSL, this engine is an instantiation of the OpenSSL dynamic
engine interface API by leveraging the doca_sha library.

Capabilities and Limitations

Only one-shot OpenSSL SHA is supported

https://www.openssl.org/docs/manmaster/man3/EVP_Digest.html

DOCA Documentation v2.7.0 987

The maximum message length ≤ 2GB, the same as doca_sha library

OpenSSL Command Line Verification

Verify that the engine can be loaded:

For SHA-1:

For SHA-256:

For SHA-512:

$ openssl engine dynamic -pre NO_VCHECK:1 -pre
SO_PATH:${DOCA_DIR}/infrastructure/doca_sha_offload_engine/libdoca_sha_offload_e
-pre LOAD -vvv -t -c
(dynamic) Dynamic engine loading support
[Success]:
SO_PATH:${DOCA_DIR}/infrastructure/doca_sha_offload_engine/libdoca_sha_offload_e
[Success]: LOAD
Loaded: (doca_sha_offload_engine) Openssl SHA offloading engine based on
doca_sha
[SHA1, SHA256, SHA512]
[available]
set_pci_addr: set the pci address of the doca_sha_engine
(input flags): STRING

$ echo "hello world" | openssl dgst -sha1 -engine
{DOCA_DIR}/infrastructure/doca_sha_offload_engine/libdoca_sha_offload_engine
-engine_impl

$ echo "hello world" | openssl dgst -sha256 -engine
{DOCA_DIR}/infrastructure/doca_sha_offload_engine/libdoca_sha_offload_engine
-engine_impl

DOCA Documentation v2.7.0 988

OpenSSL Throughput Test

openssl-speed is the OpenSSL throughput benchmark tool. For more information, consult
official OpenSSL documentation. doca_sha_offload_engine throughput can also be measured
using openssl-speed.

SHA-1, each job 10000 bytes, using engine:

SHA-256, each job 10000 bytes, using engine, async_jobs=256:

SHA-512, each job 10000 bytes, using engine, async_jobs=256, threads=8:

Using DOCA SHA Offload Engine in OpenSSL Application

More information on the dynamic engine usage can be found in the official OpenSSL
documentation.

1. To load the doca_sha_offload_engine (optionally, set engine PCIe address):

$ echo "hello world" | openssl dgst -sha512 -engine
{DOCA_DIR}/infrastructure/doca_sha_offload_engine/libdoca_sha_offload_engine
-engine_impl

$ openssl speed -evp sha1 -bytes 10000 -elapsed --engine
{DOCA_DIR}/infrastructure/doca_sha_offload_engine/libdoca_sha_offload_engine

$ openssl speed -evp sha256 -bytes 10000 -elapsed --engine
{DOCA_DIR}/infrastructure/doca_sha_offload_engine/libdoca_sha_offload_engine
-async_jobs 256

$ openssl speed -evp sha512 -bytes 10000 -elapsed --engine
{DOCA_DIR}/infrastructure/doca_sha_offload_engine/libdoca_sha_offload_engine
-async_jobs 256 -multi 8

ENGINE *e;

https://www.openssl.org/docs/man1.1.1/man1/openssl-speed.html
https://www.openssl.org/docs/man1.0.2/man3/engine.html
https://www.openssl.org/docs/man1.0.2/man3/engine.html

DOCA Documentation v2.7.0 989

2. To perform SHA calculation by calling the OpenSSL high-level function EVP_XXX:

3. To unload the engine:

NVIDIA BlueField DPU Scalable
Function User Guide
This document provides an overview and configuration of scalable functions (sub-
functions, or SFs) for NVIDIA® BlueField® DPU.

Introduction

const char *doca_engine_path =
"${DOCA_DIR}/infrastructure/doca_sha_offload_engine/libdoca_sha_offload_engine.so";
const char *default_doca_pci_addr = "03:00.0";
ENGINE_load_dynamic();
e = ENGINE_by_id(doca_engine_path);
ENGINE_ctrl_cmd_string(e, "set_pci_addr", doca_engine_pci_addr, 0);
ENGINE_init(e);
ENGINE_set_default_digests(e);

const EVP_MD *evp_md = EVP_sha1();
EVP_MD_CTX *mdctx = EVP_MD_CTX_create();
EVP_DigestInit_ex(mdctx, evp_md, e);
EVP_DigestUpdate(mdctx, msg, msg_len);
EVP_DigestFinal_ex(mdctx, digest, digest_len);
EVP_MD_CTX_destroy(mdctx);

ENGINE_unregister_digests(e);
ENGINE_finish(e);
ENGINE_free(e);

DOCA Documentation v2.7.0 990

Scalable functions (SFs), or sub-functions, are very similar to virtual functions (VFs) which
are part of a Single Root I/O Virtualization (SR-IOV) solution. I/O virtualization is one of the
key features used in data centers today. It improves the performance of enterprise
servers by giving virtual machines direct access to hardware I/O devices. The SR-IOV
specification allows one PCI Express (PCIe) device to present itself to the host as multiple
distinct "virtual" devices. This is done with a new PCIe capability structure added to a
traditional PCIe function (i.e., a physical function or PF).

The PF provides control over the creation and allocation of new VFs. VFs share the
device's underlying hardware and PCIe. A key feature of the SR-IOV specification is that
VFs are very lightweight so that many of them can be implemented in a single device.

To utilize the capabilities of VF in the BlueField, SFs are used. SFs allow support for a
larger number of functions than VFs, and more importantly, they allow running multiple
services concurrently on the DPU.

An SF is a lightweight function which has a parent PCIe function on which it is deployed.
The SF, therefore, has access to the capabilities and resources of its parent PCIe function
and has its own function capabilities and its own resources. This means that an SF would
also have its own dedicated queues (i.e., txq, rxq).

SFs co-exist with PCIe SR-IOV virtual functions (on the host) but also do not require
enabling PCIe SR-IOV.

SFs support E-Switch representation offload like existing PF and VF representors. An SF
shares PCIe-level resources with other SFs and/or with its parent PCIe function.

DOCA Documentation v2.7.0 991

Prerequisites

Refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField related software.

Make sure your firmware version is 20.30.1004 or higher
To enable SF support on the device, change the PCIe address for each port:

$ mlxconfig -d 0000:03:00.0 s PF_BAR2_ENABLE=0 PER_PF_NUM_SF=1
PF_TOTAL_SF=236
PF_SF_BAR_SIZE=10

PF_BAR2_ENABLE: if this config is set, then all PFs and ECPFs have the same
number of SFs. This should be off (deprecated).
If set. PF_TOTAL_SF and PF_SF_BAR_SIZE won’t work.

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 992

SF Configuration

To use an SF, a 3-step setup sequence must be followed first:

1. Create.

2. Configure.

3. Deploy.

These steps can be performed using mlxdevm tool.

PER_PF_NUM_SF: If this config is set, each PF and ECPF configure/control its
own number of SFs.
THE ABOVE TWO CONFIGS AFFECS BOTH BF AND HOST, TREAT WITH CARE!
Also, only one of them can be set. It is INVALID to set them both

PF_TOTAL_SF: maximum number of SFs we wish to configure for the given
PF/ECPF.
PF_SF_BAR_SIZE: size of each SF at the BAR2. The size is in powers of 2 in KB.
For example: PF_SF_BAR_SIZE=10 means each SF is taking 1MB of the BAR.
PF_TOTAL_SF=14 means this PCI function can create up to 14 SFs.
In total: FW will allocate 14MB of BAR2.

Note
Perform a BlueField system-level reset for the mlxconfig settings
to take effect.

Info

file:///doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-2799458725_id-.NVIDIABlueFieldResetandRebootProceduresv2.7.0-BlueFieldSystem-levelReset

DOCA Documentation v2.7.0 993

Configuration Using mlxdevm Tool

1. Create the SF.

SFs are managed using the mlxdevm tool supplied with iproute2 package. The tool is
found at /opt/mellanox/iproute2/sbin/mlxdevm.

An SF is created using the mlxdevm tool. The SF is created by adding a port of pcisf

flavor.

To create an SF port representor, run:

For example:

Output example:

When working on top of an upstream-based kernel, on which the
mlxdevm tool is unavailable, please refer to the Upstream Guide on
Scalable Functions for instructions on using the devlink tool which
should be used instead.

/opt/mellanox/iproute2/sbin/mlxdevm port add pci/<pci_address> flavour
pcisf pfnum <corresponding pfnum> sfnum <sfnum>

Note

Each SF must have a unique number (<sfnum>).

/opt/mellanox/iproute2/sbin/mlxdevm port add pci/0000:03:00.0 flavour pcisf
pfnum 0 sfnum 4

https://github.com/Mellanox/scalablefunctions/wiki/Upstream-step-by-step-guide
https://github.com/Mellanox/scalablefunctions/wiki/Upstream-step-by-step-guide

DOCA Documentation v2.7.0 994

The number 229409 is required to complete the following two steps (i.e.,
configuration and deployment).

pci/0000:03:00.0/229409 is called the SF index.

pci/<pci_address>/<sf_index> can be replaced with <representor_name>. For example:

To see information about the created SF such as its MAC address, trust mode, or
state (active/inactive), run the following command:

Output example:

2. Configure the SF.

A subfunction representor (SF port representor) is created but it is not deployed yet.
Users should configure the hardware address (e.g., MAC address), set trust mode to
on, and activate the SF before deploying it.

The following steps can be executed as separate commands (at any order) or
combined as one:

pci/0000:30:00.0/229409: type eth netdev eth0 flavour pcisf controller 0 pfnum
0 sfnum 4
function:
hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true
max_uc_macs 128 trust off

pci/0000:03:00.0/229409 = en3f0pf0sf4

/opt/mellanox/iproute2/sbin/mlxdevm port show

pci/0000:30:00.0/229409: type eth netdev en3f0pf0sf4 eth0 flavor pcisf
controller 0 pfnum 0 sfnum 4
function:
hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true
max_uc_macs 128 trust off

DOCA Documentation v2.7.0 995

To configure the hardware address, run:

To set the trust mode to on, run:

To activate the created SF, run:

Alternatively, to configure the MAC address, set trust mode on, and set the state as
active, run:

For example:

3. Deploy the SF.

/opt/mellanox/iproute2/sbin/mlxdevm port function set
pci/<pci_address>/<sf_index> hw_addr <MAC address>

/opt/mellanox/iproute2/sbin/mlxdevm port function set
pci/<pci_address>/<sf_index> trust on

/opt/mellanox/iproute2/sbin/mlxdevm port function set
pci/<pci_address>/<sf_index> state active

/opt/mellanox/iproute2/sbin/mlxdevm port function set
pci/<pci_address>/<sf_index> hw_addr <mac_address> trust on state active

/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/0000:03:00.0/229409

hw_addr 00:00:00:00:04:0 trust on state active

Note

The SF capabilities above must be set before deploying the SF.

DOCA Documentation v2.7.0 996

To unbind the SF from the default config driver and bind the actual SF driver, run:

For example:

Useful commands:

To see the available sub-functions, run:

For example, if you run the command before creating, configuring, and
deploying the SF (using the steps detailed earlier), the output would appear as
follows:

echo mlx5_core.sf.<next_serial> >
/sys/bus/auxiliary/drivers/mlx5_core.sf_cfg/unbind
echo mlx5_core.sf.<next_serial> > /sys/bus/auxiliary/drivers/mlx5_core.sf/bind

echo mlx5_core.sf.4 > /sys/bus/auxiliary/drivers/mlx5_core.sf_cfg/unbind
echo mlx5_core.sf.4 > /sys/bus/auxiliary/drivers/mlx5_core.sf/bind

Note

<next_serial> is a number produced by the firmware when
creating the SF (this is the gvmi number of the SF). mlxdevm tool
when creating the SF. To obtain it, refer to the useful commands
provided below.

$ devlink dev show

pci/0000:03:00.0
pci/0000:03:00.1
auxiliary/mlx5_core.sf.2
auxiliary/mlx5_core.sf.3

DOCA Documentation v2.7.0 997

After creating, configuring, and deploying the SF, the output would be:

Note that the <next_serial> number is 4 for the created SF.

To see the sfnum of each sub-function, run:

For example:

Example output:

To remove an SF, you must first make its state inactive and only then remove
the SF representor.

To make the SF's state inactive, run:

To delete the SF port representor, run:

pci/0000:03:00.0
pci/0000:03:00.1
auxiliary/mlx5_core.sf.2
auxiliary/mlx5_core.sf.3
auxiliary/mlx5_core.sf.4

cat /sys/bus/auxiliary/devices/mlx5_core.sf.<next_serial>/sfnum

cat /sys/bus/auxiliary/devices/mlx5_core.sf.4/sfnum

cat /sys/bus/auxiliary/devices/mlx5_core.sf.4/sfnum
4

/opt/mellanox/iproute2/sbin/mlxdevm port function set
pci/<pci_address>/<sf_index> state inactive

/opt/mellanox/iproute2/sbin/mlxdevm port del

DOCA Documentation v2.7.0 998

For example:

4. Use the SF.

Running the application on the DPU requires OVS configuration. By creating SFs, an
SF representor for the OVS is also created and named en3f0pf*sf*. Therefore, each
representor needs to be connected to the correct OVS bridge.

pci/<pci_address>/<sf_index>

/opt/mellanox/iproute2/sbin/mlxdevm port function set
pci/0000:03:00.0/229409 state inactive
/opt/mellanox/iproute2/sbin/mlxdevm port del pci/0000:03:00.0/229409

Note

DOCA Documentation v2.7.0 999

The following example configures 2 SFs and adds their representors to the OVS.

1. Create, configure, and deploy the SFs. Run:

Using the command mlxdevm port show, you can see the SF indices of the created
SFs.

Output example:

2. Configure the MAC address, set trust mode on, and activate the created SFs:

Two SFs related to the same PCIe are necessary for the
configuration in the illustration.

/opt/mellanox/iproute2/sbin/mlxdevm port add pci/0000:03:00.0 flavour
pcisf pfnum 0 sfnum 4
/opt/mellanox/iproute2/sbin/mlxdevm port add pci/0000:03:00.0 flavour
pcisf pfnum 0 sfnum 5

/opt/mellanox/iproute2/sbin/mlxdevm port show

pci/0000:30:00.0/229409: type eth netdev en3f0pf0sf4 flavour pcisf
controller 0 pfnum 0 sfnum 4
function:
hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true
max_uc_macs 128 trust off
pci/0000:30:00.0/229410: type eth netdev en3f0pf0sf5 flavour pcisf
controller 0 pfnum 0 sfnum 5
function:
hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true
max_uc_macs 128 trust off

DOCA Documentation v2.7.0 1000

Using ifconfig, you may see that there are 2 added network interfaces:
en3f0pf0sf4 and en3f0pf0sf5 for the two respective SF port representors.

3. Delete existing OVS bridges (optional).

For example, run the following command to delete an OVS bridge called ovsbr1:

4. Create two bridges sf_bridge1 and sf_bridge2 and configure them as follows:

5. Add the port representors to the OVS bridges:

The OVS bridges after adding the SF representors:

/opt/mellanox/iproute2/sbin/mlxdevm port function set
pci/0000:03:00.0/229409 hw_addr 02:25:f2:8d:a2:4c trust on state active
/opt/mellanox/iproute2/sbin/mlxdevm port function set
pci/0000:03:00.0/229410 hw_addr 02:25:f2:8d:a2:5c trust on state active

ovs-vsctl del-br ovsbr1

ovs-vsctl add-br sf_bridge1
ovs-vsctl add-br sf_bridge2
ovs-vsctl add-port sf_bridge1 p0
ovs-vsctl add-port sf_bridge2 pf0hpf

ovs-vsctl add-port sf_bridge1 en3f0pf0sf4
ovs-vsctl add-port sf_bridge2 en3f0pf0sf5

Bridge sf_bridge1
Port p0
Interface p0
Port sf_bridge1
Interface sf_bridge1
type: internal
Port en3f0pf0sf4

DOCA Documentation v2.7.0 1001

To run the application, use the following command to initialize the SFs during
runtime:

For example:

Interface en3f0pf0sf4
Bridge sf_bridge2
Port sf_bridge2
Interface sf_bridge2
type: internal
Port en3f0pf0sf5
Interface en3f0pf0sf5
Port pf0hpf
Interface pf0hpf
ovs_version: "2.14.1"

Note

The interface might be down by default. Remember to ifconfing

the interface to "up" status.

Note

When deleting the SF port representor, you must also de-attach
it from the bridge it is connected to using the command ovs-vsctl

port-del en3f0pf0sf*. Otherwise, the port representor will still be
connected to the bridge but would not be recognizable.

Executable_binary -a auxiliary:mlx5_core.sf.* -a auxiliary:mlx5_core.sf.*

DOCA Documentation v2.7.0 1002

NVIDIA TLS Offload Guide
This guide provides an overview and configuration steps of TLS hardware offloading via
kernel-TLS, using hardware capabilities of NVIDIA® BlueField® DPU.

Introduction

Transport layer security (TLS) is a cryptographic protocol designed to provide
communications security over a computer network. The protocol is widely used in
applications such as email, instant messaging, and voice over IP (VoIP), but its use in
securing HTTPS remains the most publicly visible.

The TLS protocol aims primarily to provide cryptography, including privacy
(confidentiality), integrity, and authenticity using certificates, between two or more
communicating computer applications. It runs in the application layer and is itself
composed of two layers: the TLS record and the TLS handshake protocols.

TLS works over TCP and consists of 3 phases:

1. Handshake – establishment of a connection

2. Application – sending and receiving encrypted packets

3. Termination – connection termination

TLS Handshake

In the handshake phase, the client and server decide on which cipher suites they will use,
and exchange keys and certificates according to the following flow:

1. Client hello, provides the server at a minimum with the following:

A key exchange algorithm, to determine how symmetric keys are exchanged

doca_<app_name> -a auxiliary:mlx5_core.sf.4 -a auxiliary:mlx5_core.sf.5 --
[application_flags]

DOCA Documentation v2.7.0 1003

An authentication or digital signature algorithm, which dictates how server
authentication and client authentication (if required) are implemented

A bulk encryption cipher, which is used to encrypt the data

A hash/MAC (message authentication code) function, which determines how
data integrity checks are carried out

The version of the protocol it understands

The cipher suites it is capable of working with

A unique random number, which is important to guard against replay attacks

2. Server hello:

Selects a cipher suite

Generates its own random number

Assigns a session ID to the TLS connection

Sends enough information to complete a key exchange—most often, this
means sending a certificate including an RSA public key

3. Client:

Responsible for completing the key exchange using the information the server
provided

At this point, the connection is secured, both sides have agreed on an encryption
algorithm, a MAC algorithm, and respective keys.

kTLS

The Linux kernel provides TLS offload infrastructure. kTLS (kernel TLS) offloads TLS
handling from the user-space to the kernel-space.

kTLS has 3 modes of operation:

DOCA Documentation v2.7.0 1004

SW – all operation is handled in kernel (i.e., handshake, encryption, decryption)

HW-offload (the focus of this guide) – handshake and error handling are performed
in software. Packets are encrypted/decrypted in hardware. In this case, there is an
additional offload from the kernel to the hardware.

HW-record – all operations are handled by the hardware (driver and firmware)
including the handshake. It also handles its own TCP session. This option is currently
not supported.

HW-offloading kTLS

In general, the TLS HW-offload performs best and provides optimal value on longer lived
sessions, with relatively large packets. Scaling in terms of concurrent connections and
connections per second is use-case dependent (e.g., the amount of active concurrent
connections from the overall open concurrent connections is material).

It is necessary to learn the following terms before proceeding:

The transport interface send (TIS) object is responsible for performing all transport-
related operations of the transmit side. Messages from Send Queues (SQs) get
segmented and transmitted by the TIS including all transport required implications.
For example, in the case of a large send offload, the TIS is responsible for the
segmentation. The NVIDIA® ConnectX® hardware uses a TIS object to save and
access the TLS crypto information and state of an offloaded Tx kTLS connection.

The transport interface receive (TIR) object is responsible for performing all
transport-related operations on the receive side. TIR performs the packet

Note

It is important to understand that Rx (receiving) and Tx (sending) can
have two separate modes. For example, Rx can be dealt in SW mode
but Tx in HW-offload mode (i.e., the hardware will only encrypt but
not decrypt).

DOCA Documentation v2.7.0 1005

processing and reassembly and is also responsible for demultiplexing the packets
into different receive queues (RQs).

Both TIS and TIR hold the data encryption key (DEK).

kTLS Offload Flow in High Level

1. Establishes a TLS connection with remote host (server or client) by handling a TLS
handshake by kernel on current host.

2. Initializes the following state for each connection, Rx and Tx:

Crypto secrets (e.g., public key)

Crypto processing state

Record metadata (e.g., record sequence number, offset)

Expected TCP sequence number

Tx flow:

1. Packets belonging to device offloaded sockets arrive to the kernel and it does not
encrypt them.

2. Kernel performs record framing and marks the packet with a connection identifier.

3. Kernel sends packets to the device driver for offloading.

4. Device checks that the sequence number matches the state in the TIS and performs
encryption and authentication.

Rx flow:

Note

The following flow does not include resync and errors.

DOCA Documentation v2.7.0 1006

1. When the connection is created, a HW steering rule is added to steer packets to
their respective TIR.

2. Device receives the packet then validates and checks that sequence number of TCP
matches the state in the TIR.

3. Performs decryption and authentication, and indicates in the CQE (completion
queue entry).

4. Kernel understands that the packet is already decrypted so it does not decrypt it
itself and passes it on to the user-space.

Resync and Error Handling

When the sequence number does not match expectations or if any other error occurs,
the hardware gives control back to the SW which handles the problem.

See more about kTLS modes, resync, and error handling in the Linux Kernel
documentation.

Prerequisites

All commands in this section should be performed on host (not on BlueField) unless
stated otherwise.

Checking Hardware Support for Crypto Acceleration

To check if the BlueField or ConnectX have crypto acceleration, run the following
command from host:

The output should include Crypto Enabled. For example:

host> mst start # turn on mst driver

host> flint -d <device under /dev/mst/ directory> dc | grep Crypto

https://docs.kernel.org/networking/tls-offload.html
https://docs.kernel.org/networking/tls-offload.html

DOCA Documentation v2.7.0 1007

Kernel Requirements

Operating system must be either:

FreeBSD 13.0+.

A Linux distribution built on Linux kernel version 5.3 or later for Tx support
and version 5.9 or later for Rx support. We recommend using the latest
version when possible for the best available optimizations.

Check the current kernel version on the host. Run:

The kernel must be configured to support TLS by setting the options TLS_DEVICE and
MLX5_TLS to y. To check if TLS is configured, run:

host> flint -d /dev/mst/mt41686_pciconf0 dc | grep Crypto
....
;;Description = NVIDIA BlueField-2 E-Series Eng. sample DPU; 200GbE single-port
QSFP56; PCIe Gen4 x16; Secure Boot Disabled; Crypto Enabled; 16GB on-board
DDR; 1GbE OOB management
....

Note

TIS Pool optimization is added to Linux kernel version 6.0.
Instead of creating TIS per new connection, unused TIS
from previous connection, will be recycled. This will
improve Tx connection rate. No further installations
required beyond installing the kernel itself.

host> uname -r

DOCA Documentation v2.7.0 1008

Example output:

If the current kernel does not support one of the options, you can change the
configur ations and recompile, or build a new kernel .

Schematic flow for building a Linux kernel:

1. Enter the Linux kernel directory downloaded (usually in /usr/src/):

2. Update the grub to the new configured kernel then reboot.

Configurations and Useful Commands

host> cat /boot/config-$(uname -r) | grep TLS

host> cat /boot/config-5.4.0-121-generic | grep TLS
...
CONFIG_TLS_DEVICE=y
CONFIG_MLX5_TLS=y
...

Note

Follow the build instructions provided with the kernel provider.

host> make menuconfig # Set TLS_DEVICE=y and MLX5_TLS=y in options.
Setting location in the menu can be found by pressing '/' and typing
'setting'.
host> make -j <num-of-cores> && make -j <num-of-cores>
modules_install && make -j <num of cores> install

DOCA Documentation v2.7.0 1009

TLS Setup

Finding NVIDIA Interfaces

NVIDIA's netdev interfaces are found be under the NET column.

For example:

In this example, the interfaces ens5f1 and ens5f0 are NVIDIA's netdev interfaces.

host> mst start # if mst driver is not loaded.

host> mst status -v

host> mst status -v
....
DEVICE_TYPE MST PCI RDMA NET NUMA
BlueField2(rev:0) /dev/mst/mt41686_pciconf0.1 b1:00.1 mlx5_1 net-ens5f1 1

BlueField2(rev:0) /dev/mst/mt41686_pciconf0 b1:00.0 mlx5_0 net-ens5f0 1

DOCA Documentation v2.7.0 1010

Configuring TLS Offload

To check if the offload option is on or off, run:

Example output:

To turn Tx offload on or off:

To turn Rx offload on or off:

Configuring OVS Bridge on BlueField

host> ethtool -k $iface | grep tls

tls-hw-tx-offload: on
tls-hw-rx-offload: off
tls-hw-record: off [fixed]

Note

tls-hw-record is not required for the device as kTLS does not
support "HW Record" mode.

host> ethtool -K $iface tls-hw-tx-offload <on | off>

host> ethtool -K $iface tls-hw-rx-offload <on | off>

DOCA Documentation v2.7.0 1011

When the host is connected to a BlueField device, an OVS bridge must be configured on
the BlueField so traffic passes bidirectionally from host to uplink. If no OVS bridge is
configured, the host is isolated from the network (see diagram above).

To configure the OVS bridge on BlueField, run the following commands on BlueField:

Where p0/p1 are the uplink interfaces and pf0hpf/pf1hpf are the interfaces facing the host.

Common Use Cases

OpenSSL

OpenSSL is an all-around cryptography library that offers open-source application of the
TLS protocol. It is the main library for using kTLS and other applications since Nginx
depends on it as their base library.

Note

On BlueField image version 3.7.0 or higher the default OVS
configuration can be used without additional modifications.

dpu> for br in $(ovs-vsctl list-br); do ovs-vsctl del-br $br; done # erasing existing bridges

dpu> ovs-vsctl add-br ovs-br0 && ovs-vsctl add-port ovs-br0 p0 && ovs-vsctl add-
port ovs-br0 pf0hpf
dpu> ovs-vsctl add-br ovs-br1 && ovs-vsctl add-port ovs-br1 p1 && ovs-vsctl add-
port ovs-br1 pf1hpf
dpu> ovs-vsctl set Open_vSwitch . other_config:hw-offload=true && systemctl restart
openvswitch-switch

Note

DOCA Documentation v2.7.0 1012

kTLS is supported only in OpenSSL version 3.0.0 or higher, and only on the supported
kernel versions. The supported OpenSSL version is available for download from distro
packages, or it can be downloaded and compiled from the OpenSSL GitHub.

1. Check the version of the default OpenSSL:

2. Follow OpenSSL installation instructions from OpenSSL's supplied guides. During
the configuration process, make sure to set the enable-ktls option before building it
by running it from within the OpenSSL directory (works in version 3.0 and higher).
For example:

3. Check if kTLS is enabled in OpenSSL by running the following command from within
the OpenSSL directory, and check whether ktls is listed under Enabled features:

The kTLS and HW offloading do not depend on OpenSSL. Any
program that can implement a TLS stack can be run instead.
However, because of the vast use of OpenSSL, this guide addresses
installation recommendations.

Warning

Many modules depend on OpenSSL. Changing the default version
may cause problems. Adding --prefix=/var/tmp/ssl --openssldir=/var/tmp/ssl in
the ./Configure command below may prevent the built OpenSSL from
becoming the default one used by the system. Make sure the
directory of the OpenSSL you build manually is not located in any
paths listed in the PATH environment variable.

host> openssl version

host> ./Configure linux-$(uname -p) enable-ktls --prefix=/var/tmp/ssl --
openssldir=/var/tmp/ssl # Add "threads" as well for multithread support

DOCA Documentation v2.7.0 1013

If OpenSSL has been downloaded manually, the OpenSSL executable would be located in
the /<openssl-dir>/apps/ directory. For example, checking the version from within OpenSSL
directory is done using the command ./apps/openssl version.

Nginx

Nginx is a free and open-source software web server that can also be used as a reverse
proxy , load balancer , mail proxy and HTTP cache . Nginx can be configured to depend
on OpenSSL library and therefore Nginx could have the great advantages of TLS HW-
offload on ConnectX-6 Dx, ConnectX-7 or the DPU.

Prerequisites

host> perl configdata.pm --dump | less

Note

Installing a new OpenSSL requires recompiling user tools that were
configured over OpenSSL (e.g., Nginx).

Note

In OpenSSL's master source code, there is a feature "Support for kTLS
Zero-Copy sendfile() on Linux" (Zero-Copy commit). If the Zero-Copy
option is set, SSL_sendfile() uses the Zero-Copy TX mode which means
that the data itself is not copied from the user space to Kernel space.
This gives a performance boost when used with kTLS hardware
offload. Be aware that invalid TLS records may be transmitted if the
file is changed while being sent.

https://github.com/openssl/openssl/pull/18650

DOCA Documentation v2.7.0 1014

Refer to the OpenSSL section for setting OpenSSL.

Configuration

1. Install dependencies. For Ubuntu distribution, for example:

2. Clone Nginx's repository and enter directory:

3. Configure Nginx components to support kTLS:

4. Build Nginx:

5. Add the following lines to the end of the /usr/local/nginx/conf/nginx.conf file (before the
last closing bracket):

host> apt install libpcre3 libpcre3-dev

host> git clone https://github.com/nginx/nginx.git && cd nginx

host> ./auto/configure --with-openssl=/<insert_path_to_openssl_directory> --
with-debug --with-http_ssl_module --with-openssl-opt="enable-ktls -
DOPENSSL_LINUX_TLS -g3"

host> make -j <num of cores> && sudo make -j <num-of-cores> install

Note

If make fails with a deprecated openssl functions error, remove -Werror

for CFLAGS in objs/Makefile and try again.

DOCA Documentation v2.7.0 1015

6. Notice that the key and certificate of the Nginx server should be located in
/usr/local/nginx/conf/. Therefore, after creating a key and certificate (as mentioned in
section "Adding Certificate and Key") they should be copied to the aforementioned
directory:

7. To run Nginx:

server {
listen 443 ssl default_server reuseport;
server_name localhost;
root /tmp/nginx/docs/html/;

include /etc/nginx/default.d/*.conf;
ssl_certificate /usr/local/nginx/conf/cert.pem;
ssl_certificate_key /usr/local/nginx/conf/key.pem;
ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256;
ssl_protocols TLSv1.2;

location / {
index index.html;
}

error_page 404 /404.html;
location = /40x.html {
}

error_page 500 502 503 504 /50x.html;
location = /50x.html {
}
}

host> cp key.pem /usr/local/nginx/conf/ && cp cert.pem /usr/local/nginx/conf/

host> cd nginx && objs/nginx

DOCA Documentation v2.7.0 1016

This command starts Nginx Server in the background.

Stopping Nginx

Wrk – Client

A simple client for requesting Nginx's server is "wrk". It can be installed by running the
following:

Using Wrk

The following is an example of using the wrk client to request the page index.html from the
Nginx server in address 4.4.4.4 (run within wrk's directory):

Testing Offload via OpenSSL

host> pkill nginx

host> git clone https://github.com/wg/wrk.git && cd wrk/ && make -j <num-of-
cores>

host> taskset -c 0 ./wrk -t1 -c10 -d30s https://4.4.4.4:443/index.html

Note

Testing the kTLS offload (with or without hardware offload) is in the
same manner as mentioned in section "Testing kTLS". TBD

DOCA Documentation v2.7.0 1017

This chapter demonstrates how to test the kTLS hardware offload.

TLS Testing Setup

For testing purposes, a server and a client are required. The testing section only tests a
single setup of a host and BlueField-2 or a host ConnectX which will participate either as a
server or as a client. Setting a back-to-back setup of the same kind and installing the
same OpenSSL version can help avoid misconfigurations. Nevertheless, it is required to
have the same OpenSSL version on both the client and server.

Make sure the desired kTLS is configured as detailed in section "Configuring TLS Offload".
To test hardware offload, make sure tls-hw-tx-offload and/or tls-hw-rx-offload are on. To test
kTLS software mode, make sure to turn them off.

In addition, make sure both hosts (server and client) can communicate bidirectionally
through ConnectX or BlueField. One can set the interface that supports the offload (on
the host) with an IP, in same subnet. Make sure that when using BlueField, an OVS bridge
is set on BlueField as shown in "Configuring OVS Bridge on BlueField".

Note

Make sure to refer to section "OpenSSL" before proceeding.

DOCA Documentation v2.7.0 1018

Adding Certificate and Key

The server side should create a certificate and key. The client can also use a certificate,
but it is not necessary for this test case. Run the following command in the installed
OpenSSL directory and fill in all the requested details:

The following files are created:

key.pem – private-key file used to generate the CSR and, later, to secure and verify
connections using the certificate

cert.pem – certificate signing request (CSR) file used to order your SSL certificate and,
later, to encrypt messages that only its corresponding private key can decrypt

host> openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 365
-nodes

Note

DOCA Documentation v2.7.0 1019

Running Server Side

The following example works on OpenSSL version 3.1.0:

In this example, the key and certificate are provided, the cipher suite and TLS version are
configured, and the server listens to port 443 and is instructed to use kTLS.

Running Client Side

The following example works on OpenSSL version 3.1.0:

The server side should be run before client side so that client's
request are answered by server.

host> openssl s_server -key key.pem -cert cert.pem -tls1_2 -cipher ECDHE-RSA-
AES128-GCM-SHA256 -accept 443 -ktls

Note

Notice the -ktls flag.

Note

Refer to official OpenSSL documentation on s_server for more
information.

DOCA Documentation v2.7.0 1020

Where 4.4.4.4 is the IP of the remote server.

Testing kTLS

After the connection is established (handshake is done), a prompt will open and the user,
both on the client and server side, can send a message to other side in a chat-like
manner. Messages should appear on the other side once they are received.

The following example checks kTLS hardware offload on the tested setup by tracking Rx
and Tx TLS on device counters:

To check kTLS over kernel counters:

Output example:

host> openssl s_client -connect 4.4.4.4:443 -tls1_2

Note

Refer to official OpenSSL documentation on s_client for more
information.

host> ethtool -S $iface | grep -i 'tx_tls_encrypted\|rx_tls_decrypted' # ($iface is the interface that

offloads)

host> cat /proc/net/tls_stat

Note

DOCA Documentation v2.7.0 1021

Optimizations over kTLS

XLIO

The NVIDIA accelerated IO (XLIO) software library boosts the performance of TCP/IP
applications based on Nginx (e.g., CDN, DoH) and storage solutions as part of SPDK. XLIO

The comments are not part of the output and are added as
explanation.

host> cat /proc/net/tls_stat
TlsCurrTxSw 0 # Current Tx connections opened in SW mode

TlsCurrRxSw 0 # Current Rx connections opened in SW mode

TlsCurrTxDevice 0 # Current Tx connections opened in HW-offload mode

TlsCurrRxDevice 0 # Current Rx connections opened in HW-offload mode

TlsTxSw 2323828 # Accumulated number of Tx connections opened in SW mode

TlsRxSw 1 # Accumulated number of Rx connections opened in SW mode

TlsTxDevice 12203652 # Accumulated number of Tx connections opened in HW-offload mode

TlsRxDevice 0 # Accumulated number of Rx connections opened in HW-offload mode

TlsDecryptError 0 # Failed record decryption (e.g., due to incorrect authentication tag)

TlsRxDeviceResync 0 # Rx resyncs sent to HW's handling cryptography

TlsDecryptRetry 0 # All Rx records re-decrypted due to TLS_RX_EXPECT_NO_PAD misprediction

TlsRxNoPadViolation 0 # Data Rx records re-decrypted due to TLS_RX_EXPECT_NO_PAD

misprediction

Note

More information about the kernel counters can be found in the
Statistics section of the Kernel TLS documentation.

https://www.kernel.org/doc/html/latest/networking/tls.html#statistics

DOCA Documentation v2.7.0 1022

is a user-space software library that exposes standard socket APIs with kernel-bypass
architecture, enabling a hardware-based direct copy between an application's user-space
memory and the network interface. In particular, XLIO can boost the performance of
applications that use the kTLS hardware offload as OpenSSL and Nginx. Read more about
XLIO in the NVIDIA XLIO Documentation and XLIO TLS HW-offload over kTLS in the TLS
HW Offload section.

Performance Tuning Options

TLS offload performance is related to how fast data can be pumped though the offload
engine. In the case of user space applications, certain system configurations can be tuned
to optimize its performance.

The following are items that can be tuned for optimal performance, mainly focusing on
dedicating the server's work to the NUMA, or non-uniform memory access, cores:

1. Add NUMA cores of the NIC to the isolcpus kernel boot arguments for each server so
that the kernel scheduler does not interrupt the core's running user thread. The

Note

Even though XLIO is a kernel-bypass library, the kernel must support
kTLS for the bypass to work properly.

Note

Non-uniform memory access (NUMA) cores are cores with a
dedicated memory for each of them, granting cores fast access to
their own memory and slower access to others'. This architecture is
best for scenarios when it is not necessary to share memory between
cores.

https://docs.nvidia.com/networking/display/xliov135
https://docs.nvidia.com/networking/display/XLIOv135/Advanced+Features#AdvancedFeatures-TLSHWOffloadTLSHWOffload
https://docs.nvidia.com/networking/display/XLIOv135/Advanced+Features#AdvancedFeatures-TLSHWOffloadTLSHWOffload

DOCA Documentation v2.7.0 1023

following are examples of adding commands:

1. Identify the NIC NUMA node (see NUMA column):

2. Identify the cores of the NIC NUMA node using the NUMA node number
acquired from the previous output:

3. Add the NIC NUMA cores to a grub file (e.g., /etc/default/grub) by adding the line
GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=<NUMA-cores-from-previous-output>". For
example:

4. Update grub:

5. Reboot and check that the configuration has been applied:

2. Disable irqbalance service:

host> mst status -v
DEVICE_TYPE MST PCI RDMA NET NUMA
ConnectX6DX(rev:0) /dev/mst/mt4125_pciconf0 41:00.0 mlx5_0 net-
enp65s0f0np0 1

host> lscpu | grep "NUMA node1"
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23

GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=1,3,5,7,9,11,13,15,17,19,21,23"

host> sudo update-grub

host> cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-5.10.12 root=UUID=1879326c-711f-4f95-a974-
d732af14ef04 ro department=general user_notifier=dovd osi_string None
BOOTIF=01-90-b1-1c-14-02-44 quiet splash
isolcpus=1,3,5,7,9,11,13,15,17,19,21,23

DOCA Documentation v2.7.0 1024

3. Run set_irq_affinity.sh to redistribute IRQs to various cores.

4. Set the interface RSS to the number of cores to use:

Note

Interrupt request, or IRQ, determines what hardware interrupts
arrive to each core.

host> service irqbalance stop

Note

The script is within MLNX_OFED's sources:

1. You can find it in MLNX_OFED downloads.

2. Under "Download" select the correct version and
download the "SOURCES" .tgz file.

3. Extract the .tgz.

4. Under SOURCES, extract the mlnx_tools.

You should find both files set_irq_affinity.sh and its helper file
common_irq_affinity.sh under the sbin directory.

host> ./set_irq_affinity.sh <ConnectX_or_BlueField_network_interface>

host> ethtool -X <ConnectX_or_BlueField_network_interface> equal
<number_of_isolcpus_cores>

https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/

DOCA Documentation v2.7.0 1025

5. Set the interface queues for number of cores to use:

6. Pin the application with taskset to the isolcpus cores used. For example:

Additional Reading

Linux kernel TLS documentation

Linux kernel TLS offload documentation

Autonomous NIC offloads research paper

NVIDIA DOCA Troubleshooting Guide
This guide provides troubleshooting information for common issues and
misconfigurations encountered when using DOCA for NVIDIA® BlueField® DPU.

DOCA Infrastructure

RShim Troubleshooting and How-Tos

Another backend already attached

Several generations of BlueField DPUs are equipped with a USB interface in which RShim
can be routed, via USB cable, to an external host running Linux and the RShim driver.

In this case, typically following a system reboot, the RShim over USB prevails and the DPU
host reports RShim status as "another backend already attached". This is correct behavior, since

host> ethtool -L <ConnectX_or_BlueField_network_interface> combined
<number_of_isolcpus_cores>

host> taskset -c 1,3,5,7,9,11,13,15,17,19,21,23 openssl s_server -key key.pem -
cert cert.pem -tls1_2 -cipher ECDHE-RSA-AES128-GCM-SHA256 -accept 443 -
ktls

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdocs.kernel.org%2Fnetworking%2Ftls.html&data=05%7C01%7Cyelbaum%40nvidia.com%7C74a81311efe9415d54e508da93c346dd%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637984764170110522%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=jRWiPCGmBApLxlUO5LIx%2FlJq4T6dGdVRC1045S%2BwIU0%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdocs.kernel.org%2Fnetworking%2Ftls-offload.html&data=05%7C01%7Cyelbaum%40nvidia.com%7C74a81311efe9415d54e508da93c346dd%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637984764170110522%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=6f9vuBYbhvgoBtjVVqUoGaeXE%2FLWh5i26rgp6jl6OeU%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdl.acm.org%2Fdoi%2F10.1145%2F3445814.3446732&data=05%7C01%7Cyelbaum%40nvidia.com%7C74a81311efe9415d54e508da93c346dd%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637984764170110522%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=GUDTTpSYgJwB2CI6rrBi4Uhs9v%2BZibHDKcgjLMA%2BkF0%3D&reserved=0

DOCA Documentation v2.7.0 1026

there can only be one RShim backend active at any given time. However, this means that
the DPU host does not own RShim access.

To reclaim RShim ownership safely:

1. Stop the RShim driver on the remote Linux. Run:

2. Restart RShim on the DPU host. Run:

The "another backend already attached" scenario can also be attributed to the RShim backend
being owned by the BMC in DPUs with integrated BMC. This is elaborated on further
down on this page.

RShim driver not loading

Verify whether your DPU features an integrated BMC or not. Run:

Example output for DPU with integrated BMC:

If your DPU has an integrated BMC, refer to RShim driver not loading on host with
integrated BMC.

systemctl stop rshim
systemctl disable rshim

systemctl enable rshim
systemctl start rshim

sudo sudo lspci -s $(sudo lspci -d 15b3: | head -1 | awk '{print $1}') -vvv | grep
"Product Name"

Product Name: BlueField-2 DPU 25GbE Dual-Port SFP56, integrated BMC, Crypto
and Secure Boot Enabled, 16GB on-board DDR, 1GbE OOB management, Tall
Bracket, FHHL

DOCA Documentation v2.7.0 1027

If your DPU does not have an integrated BMC, refer to RShim driver not loading on host
on DPU without integrated BMC.

RShim driver not loading on DPU with integrated BMC

RShim driver not loading on host

1. Access the BMC via the RJ45 management port of the DPU.

2. Delete RShim on the BMC:

3. Enable RShim on the host:

4. Restart RShim service. Run:

If RShim service does not launch automatically, run:

This command is expected to display "active (running)".

5. Display the current setting. Run:

This output indicates that the RShim service is ready to use.

systemctl stop rshim
systemctl disable rshim

systemctl enable rshim
systemctl start rshim

sudo systemctl restart rshim

sudo systemctl status rshim

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-0000:04:00.2

DOCA Documentation v2.7.0 1028

RShim driver not loading on BMC

1. Verify that the RShim service is not running on host. Run:

If the output is active, then it may be presumed that the host has ownership of the
RShim.

2. Delete RShim on the host. Run:

3. Enable RShim on the BMC. Run:

4. Display the current setting. Run:

This output indicates that the RShim service is ready to use.

RShim driver not loading on host on DPU without integrated BMC

1. Download the suitable DEB/RPM for RShim (management interface for DPU from
the host) driver.

2. Reinstall RShim package on the host.

systemctl status rshim

systemctl stop rshim
systemctl disable rshim

systemctl enable rshim
systemctl start rshim

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME usb-1.0

DOCA Documentation v2.7.0 1029

For Ubuntu/Debian, run:

For RHEL/CentOS, run:

3. Restart RShim service. Run:

If RShim service does not launch automatically, run:

This command is expected to display "active (running)".

4. Display the current setting. Run:

This output indicates that the RShim service is ready to use.

Change ownership of RShim from NIC BMC to host

1. Verify that your card has BMC. Run the following on the host:

sudo dpkg --force-all -i rshim-<version>.deb

sudo rpm -Uhv rshim-<version>.rpm

sudo systemctl restart rshim

sudo systemctl status rshim

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-0000:04:00.2

sudo sudo lspci -s $(sudo lspci -d 15b3: | head -1 | awk '{print $1}') -vvv |grep
"Product Name"

DOCA Documentation v2.7.0 1030

The product name is supposed to show "integrated BMC".

2. Access the BMC via the RJ45 management port of the DPU.

3. Delete RShim on the BMC:

4. Enable RShim on the host:

5. Restart RShim service. Run:

If RShim service does not launch automatically, run:

This command is expected to display "active (running)".

6. Display the current setting. Run:

This output indicates that the RShim service is ready to use.

Product Name: BlueField-2 DPU 25GbE Dual-Port SFP56, integrated BMC,
Crypto and Secure Boot Enabled, 16GB on-board DDR, 1GbE OOB
management, Tall Bracket, FHHL

systemctl stop rshim
systemctl disable rshim

systemctl enable rshim
systemctl start rshim

sudo systemctl restart rshim

sudo systemctl status rshim

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-0000:04:00.2

DOCA Documentation v2.7.0 1031

Connectivity Troubleshooting

Connection (ssh, screen console) to the DPU is lost

The UART cable in the Accessories Kit (OPN: MBF20-DKIT) can be used to connect to the
DPU console and identify the stage at which BlueField is hanging.

Follow this procedure:

1. Connect the UART cable to a USB socket, and find it in your USB devices.

2. Install the minicom application.

sudo lsusb
Bus 002 Device 003: ID 0403:6001 Future Technology Devices International,
Ltd FT232 Serial (UART) IC

Note

For more information on the UART connectivity, please refer to
the DPU's hardware user guide under Supported Interfaces >
Interfaces Detailed Description > NC-SI Management Interface.

Info

It is good practice to connect the other end of the NC-SI cable to
a different host than the one on which the BlueField DPU is
installed.

https://docs.mellanox.com/category/bluefieldsnic

DOCA Documentation v2.7.0 1032

OS Command

CentOS/RHEL

Ubuntu/Debian

3. Open the minicom application.

4. Go to "Serial port setup".

5. Enter "F" to change "Hardware Flow control" to NO.

6. Enter "A" and change to /dev/ttyUSB0 and press Enter.

7. Press ESC.

8. Type on "Save setup as dfl".

9. Exit minicom by pressing Ctrl + a + z.

Driver not loading in host server

What this looks like in dmsg:

sudo yum install minicom -y

sudo apt-get install minicom

sudo minicom -s -c on

[275604.216789] mlx5_core 0000:af:00.1: 63.008 Gb/s available PCIe bandwidth,
limited by 8 GT/s x8 link at 0000:ae:00.0 (capable of 126.024 Gb/s with 16 GT/s x8
link)
[275624.187596] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW
initialization, timeout abort in 100s
[275644.152994] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW
initialization, timeout abort in 79s
[275664.118404] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW
initialization, timeout abort in 59s

DOCA Documentation v2.7.0 1033

The driver on the host server is dependent on the Arm side. If the driver on Arm is up,
then the driver on the host server will also be up.

Please verify that:

The driver is loaded in the BlueField DPU

The Arm is booted into OS

The Arm is not in UEFI Boot Menu

The Arm is not hanged

Then:

1. Perform graceful shutdown.

2. Power cycle on the host server.

3. If the problem persists, reset nvconfig (sudo mlxconfig -d /dev/mst/<device> -y reset) and
power cycle the host.

[275684.083806] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW
initialization, timeout abort in 39s
[275704.049211] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW
initialization, timeout abort in 19s
[275723.954752] mlx5_core 0000:af:00.1: mlx5_function_setup:1237:(pid 943):
Firmware over 120000 MS in pre-initializing state, aborting
[275723.968261] mlx5_core 0000:af:00.1: init_one:1813:(pid 943): mlx5_load_one
failed with error code -16
[275723.978578] mlx5_core: probe of 0000:af:00.1 failed with error -16

Note

If your DPU is VPI capable, please be aware that this
configuration will reset the link type on the network ports to IB.
To change the network port's link type to Ethernet, run:

DOCA Documentation v2.7.0 1034

4. If this problem still persists, please make sure to install the latest bfb image and
then restart the driver in host server. Please refer to this page for more information.

No connectivity between network interfaces of source host to
destination device

Verify that the bridge is configured properly on the Arm side.

The following is an example for default configuration:

sudo mlxconfig -d <device> s LINK_TYPE_P1=2
LINK_TYPE_P2=2

$ sudo ovs-vsctl show
f6740bfb-0312-4cd8-88c0-a9680430924f
Bridge ovsbr1
Port pf0sf0
Interface pf0sf0
Port p0
Interface p0
Port pf0hpf
Interface pf0hpf
Port ovsbr1
Interface ovsbr1
type: internal
Bridge ovsbr2
Port p1
Interface p1
Port pf1sf0
Interface pf1sf0
Port pf1hpf
Interface pf1hpf
Port ovsbr2

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 1035

If no bridge configuration exists, refer to "Virtual Switch on DPU".

Uplink in Arm down while uplink in host server up

Please check that the cables are connected properly into the network ports of the DPU
and the peer device.

Performance Degradation

Degradation in performance indicates that openvswitch may not be offloaded.

Verify offload state. Run:

If hw-offload = true – Fast Pass is configured (desired result)

If hw-offload = false – Slow Pass is configured

If hw-offload = false :

For RHEL/CentOS, run:

For Ubuntu/Debian, run:

Interface ovsbr2
type: internal
ovs_version: "2.14.1"

ovs-vsctl get Open_vSwitch . other_config:hw-offload

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true;
systemctl restart openvswitch;
systemctl enable openvswitch;

https://docs.nvidia.com//doca/sdk/DOCA+Switching

DOCA Documentation v2.7.0 1036

SR-IOV Troubleshooting

Unable to create VFs

1. Please make sure that SR-IOV is enabled in BIOS.

2. Verify SRIOV_EN is true and NUM_OF_VFS bigger than 1. Run:

3. Verify that GRUB_CMDLINE_LINUX="iommu=pt intel_iommu=on pci=assign-busses".

No traffic between VF to external host

1. Please verify creation of representors for VFs inside the Bluefield DPU. Run:

2. Make sure the representors of the VFs are added to the bridge. Run:

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true;
/etc/init.d/openvswitch-switch restart

mlxconfig -d /dev/mst/mt41686_pciconf0 -e q |grep -i
"SRIOV_EN\|num_of_vf"
Configurations: Default Current Next Boot
* NUM_OF_VFS 16 16 16
* SRIOV_EN True(1) True(1) True(1)

/opt/mellanox/iproute2/sbin/rdma link |grep -i up
...
link mlx5_0/2 state ACTIVE physical_state LINK_UP netdev pf0vf0
...

ovs-vsctl add-port <bridage_name> pf0vf0

DOCA Documentation v2.7.0 1037

3. Verify VF configuration. Run:

eSwitch Troubleshooting

Unable to configure legacy mode

To set devlink to "Legacy" mode in BlueField, run:

$ ovs-vsctl show
bb993992-7930-4dd2-bc14-73514854b024
Bridge ovsbr1
Port pf0vf0
Interface pf0vf0
type: internal
Port pf0hpf
Interface pf0hpf
Port pf0sf0
Interface pf0sf0
Port p0
Interface p0
Bridge ovsbr2
Port ovsbr2
Interface ovsbr2
type: internal
Port pf1sf0
Interface pf1sf0
Port p1
Interface p1
Port pf1hpf
Interface pf1hpf
ovs_version: "2.14.1"

devlink dev eswitch set pci/0000:03:00.0 mode legacy

DOCA Documentation v2.7.0 1038

Please verify that:

No virtual functions are open. To verify if VFs are configured, run:

If any VFs are configured, destroy them by running:

If any SFs are configured, delete them by running:

devlink dev eswitch set pci/0000:03:00.1 mode legacy

/opt/mellanox/iproute2/sbin/rdma link | grep -i up
link mlx5_0/2 state ACTIVE physical_state LINK_UP netdev pf0vf0
link mlx5_1/2 state ACTIVE physical_state LINK_UP netdev pf1vf0

echo 0 > /sys/class/infiniband/mlx5_0/device/mlx5_num_vfs
echo 0 > /sys/class/infiniband/mlx5_1/device/mlx5_num_vfs

/sbin/mlnx-sf -a delete --sfindex <SF-Index>

Note

You may retrieve the <SF-Index> of the currently installed SFs by
running:

mlnx-sf -a show

SF Index: pci/0000:03:00.0/229408
Parent PCI dev: 0000:03:00.0
Representor netdev: en3f0pf0sf0
Function HWADDR: 02:61:f6:21:32:8c
Auxiliary device: mlx5_core.sf.2
netdev: enp3s0f0s0
RDMA dev: mlx5_2

DOCA Documentation v2.7.0 1039

If the error "Error: mlx5_core: Can't change mode when flows are configured" is encountered while
trying to configure legacy mode, please make sure that

1. Any configured SFs are deleted (see above for commands).

2. Shut down the links of all interfaces, delete any ip xfrm rules, delete any configured
OVS flows, and stop openvswitch service. Run:

Pay attention to the SF Index values. For example:

SF Index: pci/0000:03:00.1/294944
Parent PCI dev: 0000:03:00.1
Representor netdev: en3f1pf1sf0
Function HWADDR: 02:30:13:6a:2d:2c
Auxiliary device: mlx5_core.sf.3
netdev: enp3s0f1s0
RDMA dev: mlx5_3

/sbin/mlnx-sf -a delete --sfindex pci/0000:03:00.0/229408
/sbin/mlnx-sf -a delete --sfindex pci/0000:03:00.1/294944

ip link set dev p0 down
ip link set dev p1 down
ip link set dev pf0hpf down
ip link set dev pf1hpf down
ip link set dev vxlan_sys_4789 down

ip x s f ;
ip x p f ;

tc filter del dev p0 ingress
tc filter del dev p1 ingress
tc qdisc show dev p0
tc qdisc show dev p1
tc qdisc del dev p0 ingress

DOCA Documentation v2.7.0 1040

DPU appears as two interfaces

What this looks like:

Check if you are working in legacy mode.

If the following line is printed, this means that you are working in legacy mode:

Please configure the DPU to work in switchdev mode. Run:

Check if you are working in separated mode:

Please configure the DPU to work in embedded mode. Run:

tc qdisc del dev p1 ingress
tc qdisc show dev p0
tc qdisc show dev p1

systemctl stop openvswitch-switch

sudo /opt/mellanox/iproute2/sbin/rdma link
link mlx5_0/1 state ACTIVE physical_state LINK_UP netdev p0
link mlx5_1/1 state ACTIVE physical_state LINK_UP netdev p1

devlink dev eswitch show pci/0000:03:00.<0|1>

pci/0000:03:00.<0|1>: mode legacy inline-mode none encap enable

devlink dev eswitch set pci/0000:03:00.<0|1> mode switchdev

mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -i cpu
* INTERNAL_CPU_MODEL SEPERATED_HOST(0)

DOCA Documentation v2.7.0 1041

DOCA Applications

This chapter deals with troubleshooting issues related to DOCA applications.

EAL Initialization Failure

EAL initialization failure is a common error that may appear while running various DPDK-
related applications.

Error

The error looks like this:

There may be many causes for this error. Some of them are as follows:

The application requires huge pages and none were allocated

The application requires root privileges to run and it was run without elevated
privileges

Solution

The following solutions are respective to the possible causes listed above:

Allocate huge pages. For example, run (on the host or the DPU, depending on where
you are running the application):

mlxconfig -d /dev/mst/mt41686_pciconf0 s INTERNAL_CPU_MODEL=1

[DOCA][ERR][NUTILS]: EAL initialization failed

sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

DOCA Documentation v2.7.0 1042

Run the application using sudo (or as root):

Ring Memory Issue

This is a common memory issue when running application on the host.

Error

The error looks as follows:

The most common cause for this error is lack of memory (i.e., not enough huge pages per
worker threads).

Solution

Possible solutions:

Recommended: Increase the amount of allocated huge pages. Instructions for
allocating huge pages can be found here.

sudo <run_command>

RING: Cannot reserve memory
[13:00:57:290147][DOCA][ERR][UFLTR::Core:156]: DPI init failed

Note

For an SFT application with 64 cores, it is recommended to
increase the allocation from 2048 to 8192.

DOCA Documentation v2.7.0 1043

Alternatively, one can also limit the number of cores used by the application:

-c <core-mask> – Set the hexadecimal bitmask of the cores to run on.

-l <core-list> – list of cores to run on.

For example:

DOCA Apps Using DPDK in Parallel Issue

When running two DOCA apps in parallel that use DPDK, the first app runs but the
second one fails.

Error

The following error is received:

The cause of the error is that the second application is using /var/run/dpdk/rte/config when
the first application is already using it.

Solution

./doca_<app_name> -a 3b:00.3 -a 3b:00.4 -l 0-64 -- -l 60

Failed to start URL Filter with output: EAL: Detected 16 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: RTE Version: 'MLNX_DPDK 20.11.4.0.3' EAL: Detected shared linkage of DPDK
EAL: Cannot create lock on '/var/run/dpdk/rte/config'. Is another primary process
running?
EAL: FATAL: Cannot init config
EAL: Cannot init config
[15:01:57:246339][DOCA][ERR][NUTILS]: EAL initialization failed

DOCA Documentation v2.7.0 1044

To run two applications in parallel, the second application needs to be run with DPDK EAL
option --file-prefix <name>.

In this example, after running the first application (without adding the eal option), to run
the second with the EAL option. Run:

Failure to Set Huge Pages

When trying to configure the huge pages from an unprivileged user account, a
permission error is raised.

Error

Configuring the huge pages results in the following error:

Solution

Using sudo with echo works differently than users usually expect. Instead, the command
should be as follows:

DOCA Libraries

./doca_<app_name> --file-prefix second -a 0000:01:00.6,sft_en=1 -a 0000:01:00.7,sft_en=1

-v -c 0xff -- -l 60

$ sudo echo 600 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
-bash: /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages: Permission
denied

$ echo '600' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

DOCA Documentation v2.7.0 1045

This chapter deals with troubleshooting issues related to DOCA libraries.

DOCA Flow Error

When trying to add new entry to the pipe, an error is received.

Error

The error happens after trying to add new entry function. The error message would look
similar to the following:

The issue here seems to be caused by SF/ports configuration.

Solution

To fix the issue, apply the following commands on the DPU:

mlx5_common: Failed to create TIR using DevX
mlx5_net: Port 0 cannot create DevX TIR.
[10:26:39:622581][DOCA][ERR][dpdk_engine]: create pipe entry fail on index:1,
error=Port 0 create flow fail, type 1 message: cannot get hash queue, type=8

dpu# /opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
legacy
dpu# /opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
legacy
dpu# echo none > /sys/class/net/p0/compat/devlink/encap
dpu# echo none > /sys/class/net/p1/compat/devlink/encap
dpu# /opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
switchdev
dpu# /opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
switchdeV

DOCA Documentation v2.7.0 1046

DOCA SDK Compilation

This chapter deals with troubleshooting issues related to compiling DOCA-based
programs to use the DOCA SDK (e.g., missing dependencies).

Meson Complains About Missing Dependencies

As part of DOCA's installation, a basic set of environment variables are defined so that
projects (such as DOCA applications) could easily compile against the DOCA SDK, and to
allow users easy access to the various DOCA tools. In addition, the set of DOCA
applications sometimes rely on various 3rd party dependencies, some of which require
specific environment variables so to be correctly found by the compilation environment
(meson).

Error

There are multiple forms this error may appear in, such as:

DOCA libraries are missing:

DPDK definitions are missing:

mpicc is missing for DPA All to All application:

Dependency doca found: NO (tried pkgconfig and cmake)
meson.build:13:1: ERROR: Dependency "doca" not found, tried pkgconfig and
cmake

Dependency libdpdk found: NO (tried pkgconfig and cmake)
meson.build:41:1: ERROR: Dependency "libdpdk" not found, tried pkgconfig and
cmake

====================
Skipped Applications
====================
* dpa_all_to_all: Missing mpicc

DOCA Documentation v2.7.0 1047

Solution

All the dependencies mentioned above are installed as part of DOCA's installation, and
yet it is recommended to check that the packages themselves were installed correctly.
The packages that install each dependency define the environment variables needed by
it, and apply these settings per user login session:

If DOCA was just installed (on the host or DPU), user session restart is required to
apply these definitions (i.e., log off and log in).

It is important to compile DOCA using the same logged in user. Logging as ubuntu

and using sudo su, or compiling using sudo, will not work.

If restarting the user session is not possible (e.g., automated non-interactive session), the
following is a list of the needed environment variables:

DOCA Libraries & Tools:

For Ubuntu:

Note

All the following examples use the required environment variables
for the DPU. For the host, the values should be adjusted accordingly
(aarch64 is for the DPU and x86 is for the host): aarch64-linux-gnu

x86_64-linux-gnu.

Tip

It is recommended to define all of the following settings so as to not
have to remember which DOCA application requires which module
(whether DPDK, FlexIO, etc).

DOCA Documentation v2.7.0 1048

For CentOS:

DOCA Applications:

For Ubuntu and CentOS

DPDK:

For Ubuntu:

For CentOS:

FlexIO:

For Ubuntu:

export
PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/doca/lib/aarch64-
linux-gnu/pkgconfig
export PATH=${PATH}:/opt/mellanox/doca/tools

export
PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/doca/lib64/pkgconfig
export PATH=${PATH}:/opt/mellanox/doca/tools

export PATH=${PATH}:/usr/mpi/gcc/openmpi-4.1.7a1/bin
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/mpi/gcc/openmpi-
4.1.7a1/lib

export
PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/dpdk/lib/aarch64-
linux-gnu/pkgconfig

export
PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/dpdk/lib64/pkgconfig

DOCA Documentation v2.7.0 1049

For CentOS:

CollectX:

For Ubuntu and CentOS:

Meson Complains About Permissions

Our guides for compiling the reference samples and applications of DOCA's SDK are
using the meson build system.

Error

A permission error is encountered when trying to reuse a build directory from a previous
build:

export
PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/flexio/lib/pkgconfig

export
PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/flexio/lib/pkgconfig

export
PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/collectx/lib/aarch64-
linux-gnu/pkgconfig

ubuntu@localhost:/opt/mellanox/doca/samples/doca_flow/flow_acl$ meson
/tmp/build
Traceback (most recent call last):
File "/usr/lib/python3/dist-packages/mesonbuild/mesonmain.py", line 146, in run
return options.run_func(options)
File "/usr/lib/python3/dist-packages/mesonbuild/msetup.py", line 294, in run
app.generate()

https://mesonbuild.com/

DOCA Documentation v2.7.0 1050

Solution

Per the meson build instructions, the user can choose any write-accessible directory to
be used as the build directory, using the following syntax:

When reusing a build directory, it is best to ensure that the existing directory was created
by a user with the same permissions, and only then do one of the following:

Removing the old build directory:

Reconfiguring the build directory:

The above error is an indication that the build directory was created by a different user,
and that our user doesn't have permissions to use it. In such cases, it is best to choose a
different build directory, in a directory that our user has write-access to. For example:

Static Compilation on CentOS: Undefined References to
C++

File "/usr/lib/python3/dist-packages/mesonbuild/msetup.py", line 181, in generate
mlog.initialize(env.get_log_dir(), self.options.fatal_warnings)
File "/usr/lib/python3/dist-packages/mesonbuild/mlog.py", line 103, in initialize
log_file = open(os.path.join(logdir, log_fname), 'w', encoding='utf-8')
PermissionError: [Errno 13] Permission denied: '/tmp/build/meson-logs/meson-log.txt'

meson <build-dir>

rm -rf /tmp/build

meson --reconfigure /tmp/build

meson /tmp/build2

https://mesonbuild.com/Running-Meson.html

DOCA Documentation v2.7.0 1051

When statically compiling against the DOCA SDK on RHEL 7.x machines, there could be a
conflict between the libstdc++ version available out-of-the-box and the one used when
building DOCA's SDK libraries.

Error

There are multiple forms this error may appear in, such as:

Solution

Upgrading the devtoolset on the machine to the one used when building the DOCA SDK
resolves the undefined references issue:

Static Compilation on CentOS: Unresolved Symbols

When statically compiling against the DOCA SDK on RHEL 7.x machines, a known issue in
the default pkg-config version (0.27) causes a linking error.

$ cc test.o -o test_out `pkg-config --libs --static doca`
/opt/mellanox/doca/lib64/libdoca_common.a(doca_common_core_src_doca_dev.cpp.o
In function `doca_devinfo_rep_list_create':
(.text.experimental+0x2193): undefined reference to
`__cxa_throw_bad_array_new_length'

/opt/mellanox/doca/lib64/libdoca_common.a(doca_common_core_src_doca_dev.cpp.o): In function

`doca_devinfo_rep_list_create':
(.text.experimental+0x2198): undefined reference to
`__cxa_throw_bad_array_new_length' collect2: error: ld returned 1 exit status

$ sudo yum install epel-release
$ sudo yum install centos-release-scl-rh
$ sudo yum install devtoolset-8
This will enable the use of devtoolset-8 to the *current* bash session
$ source /opt/rh/devtoolset-8/enable

https://doc.dpdk.org/guides/linux_gsg/sys_reqs.html

DOCA Documentation v2.7.0 1052

Error

There are multiple forms this error may appear in. For example:

Solution

Use an updated version of pkg-config or pkgconf instead when building applications (as is
recommended in DPDK's compilation instructions).

Cross-compiling DOCA and CUDA

This chapter deals with troubleshooting issues related to DOCA-CUDA cross-compilation.

Application Build Error

When trying to build with meson, an architecture-related error is received.

Error

The error may happen when trying to build DOCA or DOCA-CUDA applications.

It indicates that some dependency (usually libdpdk) is not taken from the host machine
(i.e., the machine the executable file should be running on). This dependency should be
taken from the Arm dependencies directories (the path is specified in the cross file) but is
skipped if the host's PKG_CONFIG_PATH environment variable is used instead.

$ cc test.o -o test_out 'pkg-config --libs --static doca' ...
/opt/mellanox/dpdk/lib64/librte_net_mlx5.a(net_mlx5_mlx5_sft.c.o): In function
'mlx5_sft_start':
mlx5_sft.c:(.text+0x1827): undefined reference to 'mlx5_malloc' ...

cc1: error: unknown value 'corei7' for -march

https://doc.dpdk.org/guides/linux_gsg/sys_reqs.html

DOCA Documentation v2.7.0 1053

Solution

Make sure that the cross file contains the following PKG_CONFIG related definitions:

In addition, verify that pkg_config_libdir properly points to all pkgconfig-related directories
under your cross-build root directory, and that the dependency reported in the error is
not missing.

DOCA Services (Containers)

This section deals with troubleshooting issues related to DOCA-based containers.

YAML Syntax Error #1

When deploying the container using the respective YAML file, the pod fails to start.

Error

The error may happen after modifying a service's YAML file, or after copying an example
YAML file from one of the guides.

[built-in options]
pkg_config_path = '' [properties]
pkg_config_libdir = … // Some content here

$ crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT RUNTIME
$ journalctl -u kubelet
...
Oct 06 12:10:08 dpu-name kubelet[3260]: E1006 12:10:08.552306 3260 file.go:108] "Unable to

process watch event" err="can't process config file \"/etc/kubelet.d/file_name.yaml\": invalid pod:

[metadata.name: Invalid value: \"-dpu-name\": a lowercase RFC 1123 subdomain must consist of lower
case alphanumeric characters, '-' or '.', and must start and end with an alphanumeric character (e.g.
'example.com', regex used for validation is '[a-z0-9]([-a-z0-9]*[a-z0-9])?(\\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*')
spec.containers: Required value]"

DOCA Documentation v2.7.0 1054

This indicates that some of the fields in the YAML file fail to comply with RFC 1123.

Solution

Both the pod name and container name have a strict alphabet (RFC 1123) restrictions.
This means that users can only use dash ("-") and not underscore ("_") as the latter is an
illegal character and cannot be used in the pod/container name. However, for the
container's image name, use underscore ("_") instead of dash ("-") to help differentiate
the two.

YAML Syntax Error #2

When deploying the container using the respective YAML file, the pod fails to start.

Error

The error may happen after modifying a service's YAML file, or after copying an example
YAML file from one of the guides.

...

Note

This error can occur when there is a whitespace issue if the YAML file
has been copied from one of the guides causing a formatting
mistake. It is important to ensure that the space characters used in
the files are indeed spaces (" ") and not some other whitespace
character.

$ crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT RUNTIME

DOCA Documentation v2.7.0 1055

This indicates that there is a probable indentation issue in line 48 or in the line above it.

Solution

Go over the file and make sure that the file only uses spaces (" ") for indentations (2 per
indent). Using any other number of spaces causes undefined behavior.

Missing Huge Pages

When deploying the container using the respective YAML file, the pod fails to start.

Error

This error indicates that the service expected 1GB (1021313024 bytes) of huge pages of
size 2MB per page, and could not find them.

$ journalctl -u kubelet
...
Oct 04 12:35:58 dpu-name kubelet[3046]: E1004 12:35:58.744406 3046 file.go:187] "Could not

process manifest file" err="/etc/kubelet.d/file_name.yaml: couldn't parse as pod(yaml: line 48: did not

find expected '-' indicator), please check config file" path="/etc/kubelet.d/file_name.yaml"

...

$ crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT RUNTIME
$ journalctl -u kubelet
...
Oct 04 12:39:41 dpu-name kubelet[3046]: I1004 12:39:41.643621 3046 predicate.go:103]
"Failed to admit pod, unexpected error while attempting to recover from admission failure"

pod="default/file_name" err="preemption: error finding a set of pods to preempt: no set of running

pods found to reclaim resources: [(res: hugepages-2Mi, q: 1021313024),]"

...

DOCA Documentation v2.7.0 1056

Solution

1. Remove the YAML file of the service from the deployment directory (/etc/kubelet.d).

2. Allocate huge pages as described in the service's prerequisites steps:

1. Make sure that the huge pages are allocated as required per the desired
container.

2. Both the amount and size of the pages are important and must match
precisely.

3. Restart the container infrastructure daemons:

4. Once the above operations are completed successfully, the container could be
deployed (YAML can be copied to /etc/kubelet.d).

Failed to Reserve Sandbox Name

After rebooting the DPU, the respective pods start. However, the containers repeatedly
fail to spawn and their "attempt" counter does not increment.

Error

sudo systemctl restart kubelet.service
sudo systemctl restart containerd.service

$ crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT RUNTIME
bee147792a85b Less than a second ago Ready doca-hbn-service-my-dpu default 0
(default)
ea66ee46e75a5 Less than a second ago Ready doca-telemetry-service-my-dpu
default 0 (default)

DOCA Documentation v2.7.0 1057

This error indicates that there has been some collision with prior instances of the doca-

hbn-service container, probably pre-reboot.

$ crictl ps -a
CONTAINER IMAGE CREATED STATE NAME ATTEMPT POD ID POD
6a35c025a3590 ce4c0cafd583e Less than a second ago Exited init-sfs 0
bee147792a85b doca-hbn-service-my-dpu
9048f4c7b8f3c 095a5833a3f80 Less than a second ago Running doca-telemetry-
service 0 ea66ee46e75a5 doca-telemetry-service-my-dpu
059d0aa8a3199 095a5833a3f80 Less than a second ago Exited init-telemetry-
service 0 ea66ee46e75a5 doca-telemetry-service-my-dpu
bcfbe536271ea ce4c0cafd583e 33 seconds ago Running init-sfs 1 bee147792a85b
doca-hbn-service-my-dpu

$ journalctl -u containerd
...
"2023-11-28T08:43:42.408173348+02:00" level=error msg="RunPodSandbox for

&PodSandboxMetadata{Name:doca-hbn-service-my-
dpu,Uid:823b1ad0e241a10475edde26e905856b,Namespace:default,Attempt:0,} failed, error"

error="failed to reserve sandbox name \"doca-hbn-service-my-

dpu_default_823b1ad0e241a10475edde26e905856b_0\": name \"doca-hbn-service-my-
dpu_default_823b1ad0e241a10475edde26e905856b_0\" is reserved for
\"bee147792a85bc23a3629a9fcd0a5f388794f6b67ef552c959d4d5e49d04f5b2\""

...

Note

This issue indicates irregularities in the time of the machine, and
usually that the DPU's time pre-reboot was later than the time post-
reboot. This leads to bugs in the recovery of the container
infrastructure daemons. It is of utmost importance that the time of
the system does not jump backwards.

DOCA Documentation v2.7.0 1058

Solution

1. Remove all YAML files from the deployment directory (/etc/kubelet.d).

2. Stop all pods:

3. Clear all containers:

4. Make sure the system's time is correct, and adjust it if needed:

5. Restart the container infrastructure daemons:

6. Once the above operations are completed successfully, the container could be
deployed (YAML can be copied to /etc/kubelet.d).

NVIDIA DOCA Virtual Functions User
Guide
This guide provides an overview and configuration of virtual functions for NVIDIA®
BlueField® and demonstrates a use case for running the DOCA applications over x86
host.

sudo crictl stopp $(crictl pods | tail -n +2 | awk '{ print $1 }')

sudo ctr -n k8s.io container rm $(ctr -n k8s.io container ls | tail -n +2 | awk '{
print $1 }')

date

sudo systemctl restart kubelet.service
sudo systemctl restart containerd.service

DOCA Documentation v2.7.0 1059

Introduction

Single root IO virtualization (SR-IOV) is a technology that allows a physical PCIe device to
present itself multiple times through the PCIe bus. This technology enables multiple
virtual instances of the device with separate resources. NVIDIA adapters are able to
expose virtual instances or functions (VFs) for each port individually. These virtual
functions can then be provisioned separately.

Each VF can be seen as an additional device connected to the physical interface or
function (PF). It shares the same resources with the PF, and its number of ports equals
those of the PF.

SR-IOV is commonly used in conjunction with an SR-IOV-enabled hypervisor to provide
virtual machines direct hardware access to network resources, thereby increasing its
performance.

There are several benefits to running applications on the host. For example, one may
want to utilize a strong and high-resource host machine, or to start DOCA integration on
the host before offloading it to the BlueField DPU.

The configuration in this document allows the entire application to run on the host's
memory, while utilizing the HW accelerators on BlueField.

When VFs are enabled on the host, VF representors are visible on the Arm side which can
be bridged to corresponding PF representors (e.g., the uplink representor and the host
representor). This allows the application to only scan traffic forwarded to the VFs as
configured by the user and to behave as a simple "bump-on-the-wire". DOCA installed on
the host allows access to the hardware capabilities of the BlueField DPU without
comprising features which use HW offload/steering elements embedded inside the
eSwitch.

Prerequisites

To run all the reference applications over the host, you must install the host DOCA
package. Refer to the NVIDIA DOCA Installation Guide for Linux for more information on
host installation.
VFs must be configured as trusted for the hardware jump action to work as intended. The
following steps configure "trusted" mode for VFs:

1. Delete all existing VFs

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux

DOCA Documentation v2.7.0 1060

1. To delete all VFs on a PF run the following on the host:

For example:

2. Delete all existing SFs.

3. Stop the main driver on the host:

4. Before creating the VFs, set them to "trusted" mode on the device by running the
following commands on the DPU side.

1. Setting VFs on port 0:

2. Setting VFs on port 1:

$ echo 0 > /sys/class/net/<physical_function>/device/sriov_numvfs

$ echo 0 > /sys/class/net/ens1f0/device/sriov_numvfs

Info

Refer to NVIDIA BlueField DPU Scalable Function User Guide for
instructions on deleting SFs.

/etc/init.d/openibd stop

$ mlxreg -d /dev/mst/mt41686_pciconf0 --reg_id 0xc007 --reg_len 0x40 --
indexes "0x0.0:32=0x80000000" --yes --set "0x4.0:32=0x1"

$ mlxreg -d /dev/mst/mt41686_pciconf0.1 --reg_id 0xc007 --reg_len 0x40 --
indexes "0x0.0:32=0x80000000" --yes --set "0x4.0:32=0x1"

file:///doca/sdk/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

DOCA Documentation v2.7.0 1061

5. Restart the main driver on the host by running the following command:

VF Creation

1. Make sure mst driver is running:

If it is not loaded, run:

2. Enable SR-IOV. Run:

3. Set number of VFs. Run:

Note

These commands set trusted mode for all created VFs/SFs after
their execution on the DPU.

Note

Setting trusted mode should be performed once per reboot.

/etc/init.d/openibd restart

host $ mst status

host $ mst start

host $ mlxconfig -y -d /dev/mst/mt41686_pciconf0 s SRIOV_EN=1

DOCA Documentation v2.7.0 1062

For example:

After enabling VF, the representor appears on the DPU. The function itself is seen at
the x86 side.

4. To verify that the VFs have been created. Run:

host $ mlxconfig -y -d /dev/mst/mt41686_pciconf0 s NUM_OF_VFS=X

Note

Perform a BlueField system reboot for the mlxconfig settings to
take effect.

host $ echo X > /sys/class/net/<physical_function>/device/sriov_numvfs

host $ mlxconfig -y -d /dev/mst/mt41686_pciconf0 s NUM_OF_VFS=2
host $ reboot
host $ echo 2 > /sys/class/net/ens1f0/device/sriov_numvfs

$ lspci | grep Virtual
b1:00.3 Ethernet controller: Mellanox Technologies ConnectX Family mlx5Gen
Virtual Function (rev 01)
b1:00.4 Ethernet controller: Mellanox Technologies ConnectX Family mlx5Gen
Virtual Function (rev 01)
b1:01.3 Ethernet controller: Mellanox Technologies ConnectX Family mlx5Gen
Virtual Function (rev 01)

Note

file:///doca/sdk/NVIDIA+BlueField+Reset+and+Reboot+Procedures

DOCA Documentation v2.7.0 1063

Running DOCA Application on Host

The following is the CLI example for running a reference application over the host using
VF:

The following is an example with specific PCIe addresses for the VFs:

2 new virtual Ethernet devices are created in this example.

Note

Allocate the required amount of VFs as explained previously.

Note

Allocate any other resources as specified by the application (e.g.,
huge pages).

./opt/mellanox/doca/applications/<app_name>/bin/doca_<app_name> -a "pci
address VF0" -a "pci address VF1" -c 0xff -- [application flags]

./opt/mellanox/doca/applications/<app_name>/bin/doca_<app_name> -a b1:00.3 -a
b1:00.4 -c 0xff -- -l 60

Note

DOCA Documentation v2.7.0 1064

Topology Example

The following is a topology example for running the application over the host.

Configure the OVS on BlueField as follows:

By default, a DPDK application initializes all the cores of the device.
This is usually unnecessary and may even cause unforeseeable
issues. It is recommended to limit the number of cores, especially
when using an AMD-based system, to 16 cores using the -c flag when
running DPDK.

Bridge ovsbr1
Port ovsbr1
Interface ovsbr1

DOCA Documentation v2.7.0 1065

When enabling a new VF over the host, VF representors are created on the Arm side. The
first OVS bridge connects the uplink connection (p0) to the new VF representor (pf0vf0),
and the second bridge connects the second VF representor (pf0vf1) to the host
representors (pf0phf). On the host, the 2 PCIe addresses of the newly created function
must be initialized when running the applications.

When traffic is received (e.g., from the uplink), the following occurs:

1. Traffic is received over p0.

2. Traffic is forwarded to pf0vf0.

3. Application "listens" to pf0vf0 and pf0vf1 and can, therefore, acquire the traffic from
pf0vf0, inspect it, and forward to pf0vf1.

4. Traffic is forwarded from pf0vf1 to pf0hpf.

VF Creation on Adapter Card

type: internal
Port pf0hpf
Interface pf0hpf
Port pf0vf1
Interface pf0vf1
Bridge vf_br
Port p0
Interface p0
Port vf_br
Interface vf_br
type: internal
Port pf0vf0
Interface pf0vf0

Note

DOCA Documentation v2.7.0 1066

The following steps are required only when running DOCA applications on an adapter
card.

1. Set trust level for all VFs. Run:

2. Create X VFs (X being the required number of VFs) and run the following to turn on
trusted mode for the created VFs:

For example, if you are creating 2 VFs, the following commands should be used:

3. Create a VF representor using the following command, replace the PCIe address
with the PCIe address of the created VF:

Supported only for NVIDIA® ConnectX®-6 Dx based adapter cards
and higher.

host# mlxreg -d /dev/mst/mt4125_pciconf0 --reg_name VHCA_TRUST_LEVEL --
yes --set "all_vhca=0x1,trust_level=0x1" --indexes "vhca_id=0x0,all_vhca=0x0"

echo ON | tee /sys/class/net/enp1s0f0np0/device/sriov/X/trust

echo ON | tee /sys/class/net/enp1s0f0np0/device/sriov/0/trust
echo ON | tee /sys/class/net/enp1s0f0np0/device/sriov/1/trust

echo 0000:17:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:17:00.2 > /sys/bus/pci/drivers/mlx5_core/bind

DOCA Documentation v2.7.0 1067

Archives
This section contains the following pages:

NVIDIA DOCA LTS Versions

NVIDIA DOCA Documentation Archives

NVIDIA DOCA LTS Versions
Documentation for DOCA long term support (LTS) releases.

Introduction

DOCA LTS releases are stable and verified DOCA versions. LTS updates include bug fixes
and security vulnerability fixes but not ongoing features and enhancements.

LTS Documentation

Follow these links to navigate to the relevant LTS release or specific update:

DOCA 2.5.0 LTS base version

2.5.1 LTS update

DOCA 1.5.0 LTS base version

1.5.1 LTS update

1.5.2 LTS update

1.5.3 LTS update

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+LTS+Versions
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Documentation+Archives
https://docs.nvidia.com/doca/archive/doca-v2-5-0/index.html
https://docs.nvidia.com/doca/archive/doca-v2-5-1/index.html
https://docs.nvidia.com/doca/archive/doca-v1.5.0/
https://docs.nvidia.com/doca/archive/doca-v1.5.1/
https://docs.nvidia.com/doca/archive/doca-v1.5.2/
https://docs.nvidia.com/doca/archive/doca-v1.5.3/

DOCA Documentation v2.7.0 1068

NVIDIA DOCA Documentation
Archives
Archived documentation of previous DOCA software releases.

DOCA v2.6.0 documentation

DOCA v2.5.1 documentation

DOCA v2.5.0 documentation

DOCA v2.2.1 documentation

DOCA v2.2.0 documentation

DOCA v2.0.2 documentation

DOCA v1.5.3 documentation

DOCA v1.5.2 documentation

DOCA v1.5.1 documentation

DOCA v1.5.0 documentation

DOCA v1.4.0 documentation

DOCA v1.3.0 documentation

DOCA v1.2.1 documentation

DOCA v1.2.0 documentation

DOCA v1.1.1 documentation

DOCA v1.1.0 documentation

DOCA v1.0.0 documentation

© Copyright 2024, NVIDIA. PDF Generated on 06/07/2024

https://docs.nvidia.com/doca/archive/doca-v2-6-0/
https://docs.nvidia.com/doca/archive/doca-v2-5-1/index.html
https://docs.nvidia.com/doca/archive/doca-v2-5-0/
https://docs.nvidia.com/doca/archive/doca-v2.2.1/
https://docs.nvidia.com/doca/archive/doca-v2.2.0/
https://docs.nvidia.com/doca/archive/doca-v2.0.2/
https://docs.nvidia.com/doca/archive/doca-v1.5.3/
https://docs.nvidia.com/doca/archive/doca-v1.5.2/
https://docs.nvidia.com/doca/archive/doca-v1.5.1/
https://docs.nvidia.com/doca/archive/doca-v1.5.0/
https://docs.nvidia.com/doca/archive/doca-v1.4/
https://docs.nvidia.com/doca/archive/doca-v1.3/
https://docs.nvidia.com/doca/archive/doca-v1.2.1/
https://docs.nvidia.com/doca/archive/doca-v1.2/
https://docs.nvidia.com/doca/archive/doca-v1.1.1/
https://docs.nvidia.com/doca/archive/doca-v1.1/
https://docs.nvidia.com/doca/archive/doca-v1.0/

	DOCA SDK v2.7.0
	NVIDIA DOCA Overview
	NVIDIA DOCA Release Notes
	BlueField and DOCA User Types
	NVIDIA DOCA EULA

	Quick Start for BlueField Developers
	NVIDIA DOCA Developer Quick Start Guide

	Installation and Setup
	NVIDIA DOCA Profiles
	NVIDIA DOCA Installation Guide for Linux
	NVIDIA DOCA Developer Guide

	DOCA Programming Guide
	DOCA Programming Overview
	DOCA Backward Compatibility Policy
	DOCA Development Best Practices
	DOCA Libraries
	DOCA Utils
	DOCA Drivers

	DOCA Applications
	NVIDIA DOCA Allreduce Application Guide
	NVIDIA DOCA App Shield Agent Application Guide
	NVIDIA DOCA DMA Copy Application Guide
	NVIDIA DOCA DPA All-to-all Application Guide
	NVIDIA DOCA DPA L2 Reflector Application Guide
	NVIDIA DOCA East-West Overlay Encryption Application
	NVIDIA DOCA Eth L2 Forwarding Application Guide
	NVIDIA DOCA File Compression Application Guide
	NVIDIA DOCA File Integrity Application Guide
	NVIDIA DOCA GPU Packet Processing Application Guide
	NVIDIA DOCA IPsec Security Gateway Application Guide
	NVIDIA DOCA NAT Application Guide
	NVIDIA DOCA PCC Application Guide
	NVIDIA DOCA PSP Gateway Application Guide
	NVIDIA DOCA Secure Channel Application Guide
	NVIDIA DOCA Simple Forward VNF Application Guide
	NVIDIA DOCA Switch Application Guide
	NVIDIA DOCA UROM RDMO Application Guide
	NVIDIA DOCA YARA Inspection Application Guide

	DOCA Tools
	NVIDIA DOCA Bench
	NVIDIA DOCA Capabilities Print Tool
	NVIDIA DOCA Comm Channel Admin Tool
	NVIDIA DPA Tools
	NVIDIA DOCA PCC Counter Tool
	NVIDIA DOCA Socket Relay

	DOCA Services
	NVIDIA BlueField Container Deployment Guide
	NVIDIA DOCA BlueMan Service Guide
	NVIDIA DOCA Firefly Service Guide
	NVIDIA DOCA Flow Inspector Service Guide
	NVIDIA DOCA HBN Service Guide
	NVIDIA DOCA Management Service Guide
	NVIDIA DOCA Telemetry Service Guide
	NVIDIA DOCA UROM Service Guide

	DOCA Switching
	OpenvSwitch Offload (OVS in DOCA)
	VirtIO Acceleration through Hardware vDPA
	Bridge Offload
	Link Aggregation
	Controlling Host PF and VF Parameters

	API References
	NVIDIA DOCA Driver APIs
	NVIDIA DOCA Library APIs

	Miscellaneous (Runtime)
	NVIDIA DOCA Glossary
	NVIDIA DOCA Crypto Acceleration
	NVIDIA DOCA Services Fluent Logger
	NVIDIA DOCA DPU CLI
	NVIDIA DOCA Emulated Devices
	NVIDIA BlueField Modes of Operation
	NVIDIA DOCA with OpenSSL
	NVIDIA BlueField DPU Scalable Function User Guide
	NVIDIA TLS Offload Guide
	NVIDIA DOCA Troubleshooting Guide
	NVIDIA DOCA Virtual Functions User Guide

	Archives
	NVIDIA DOCA LTS Versions
	NVIDIA DOCA Documentation Archives

