
DPA Development

Table of contents

Overview

DOCA Libs and Drivers

Programming Model

FlexIO

Prerequisites

Architecture

API

Resource Management

DPA Memory Management

DPA Window

DPA Event Handler

Version API and Backward Compatibility

Application Debugging

FlexIO Samples

DPA Application Authentication

Root of Trust Principles

ELF File Structure

Known Limitations

Supported Devices

Supported Host OS

Supported SDKs

DPA Development 1

Table of contents

Overview

DOCA Libs and Drivers

Programming Model

FlexIO

Prerequisites

Architecture

API

Resource Management

DPA Memory Management

DPA Window

DPA Event Handler

Version API and Backward Compatibility

Application Debugging

FlexIO Samples

DPA Application Authentication

Root of Trust Principles

ELF File Structure

Known Limitations

Supported Devices

Supported Host OS

Supported SDKs

Toolchain

FlexIO

DPA Development 2

Toolchain

FlexIO

DPA Development 3

List of Figures
Figure 0. Different Processes In System Version 1 Modificationdate
1710697862863 Api V2

Figure 1. Signed User Dpa Code Version 1 Modificationdate
1710697862613 Api V2

Figure 2.
Be2ad944364a59626dfbec77704b8a73946f1d8feac5bf2bc4d0530169a0

Figure 3. Rot Certificate Chain Including Nvidia Root And Customer
Certificate Chain Version 1 Modificationdate 1710697861247 Api V2

Figure 4. Elf File Structure Schematic Version 1 Modificationdate
1710697860663 Api V2

Figure 5. Signing Flow Version 1 Modificationdate 1710697860390 Api
V2

Figure 6. Elf Cryptographic Data Section Layout Version 1
Modificationdate 1710697860080 Api V2

Figure 7. Hash Fields Big Endian Bytes Alignment Version 1
Modificationdate 1710697858933 Api V2

DPA Development 4

Overview

DOCA Libs and Drivers

The NVIDIA DOCA framework is the key for unlocking the potential of NVIDIA®
BlueField®-3 platforms.

DOCA's software environment allows developers to program the DPA to accelerate
workloads. Specifically, DOCA includes:

DOCA DPA SDK – a high-level SDK for application-level protocol acceleration

DOCA FlexIO SDK – a low-level SDK to load DPA programs into the DPA, manage the
DPA memory, create the execution handlers and the needed hardware rings and
contexts

DPACC – DPA toolchain for compiling and ELF file manipulation of the DPA code

Programming Model

The DPA is intended to accelerate datapath operations for the DPU and host CPU. The
accelerated portion of the application using DPA is presented as a library for the host
application. The code within the library is invoked in an event-driven manner in the
context of a process that is running on the DPA. One or many DPA execution units may
work to handle the work associated with network events. The programmer specifies
different conditions when each function should be called using the appropriate SDK APIs
on the host or DPU.

The DPA cannot be used as a standalone CPU.

Management of the DPA, such as loading processes and allocating memory, is performed
from a host or DPU process. The host process discovers the DPA capabilities on the
device and drives the control plane to set up the different DPA objects. The DPA objects
exist as long as the host process exists. When the host process is destroyed, the DPA
objects are freed. The host process decides which functions it wants to accelerate using
the DPA: Either its entire data plane or only a part of it.

DPA Development 5

The following diagram illustrates the different processes that exist in the system:

Compiler

DPACC is a compiler for the DPA processor. It compiles code targeted for the DPA
processor into an executable and generates a DPA program. A DPA program is a host
library with interfaces encapsulating the DPA executable.

This DPA program is linked with the host application to generate a host executable. The
host executable can invoke the DPA code through the DPA SDK's runtime.

Compiler Keywords

DPACC implements the following keywords:

DPA Development 6

Keyword Application Usage Comment

__dpa_global__

Annotate all event handlers that
execute on the DPA and all common
user-defined datatypes (including
user-defined structures) which are
passed from the host to the DPA as
arguments.

Used by the compiler to generate
entry points in the DPA
executable and automatically
replicate user-defined datatypes
between the host and DPA.

__dpa_rpc__

Annotate all RPC calls which are
invoked by the host and execute on
the DPA. RPC calls return a value of
uint64_t.

Used by the compiler to generate
RPC specific entry points.

Please refer to NVIDIA DOCA DPACC Compiler for more details.

FlexIO

Supported at beta level.

FlexIO is a low-level event-driven library to program and accelerate functions on the DPA.

FlexIO Execution Model

To load an application onto the DPA, the user must create a process on the DPA, called a
FlexIO process. FlexIO processes are isolated from each other like standard host OS
processes.

FlexIO supports the following options for executing a user-defined function on the DPA:

1. FlexIO event hander – the event handler executes its function each time an event
occurs. An event on this context is a completion event (CQE) received on the NIC
completion queue (CQ) when the CQ was in the armed state. The event triggers an
internal DPA interrupt that activates the event handler. When the event handler is
activated, it is provided with a user-defined argument. The argument in most cases
is a pointer to the software execution context of the event handler.

The following pseudo-code example describes how to create an event handler and
attach it to a CQ:

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPACC+Compiler

DPA Development 7

2. RPC – remote, synchronous, one-time call of a specific function. RPC is mainly used
for the control path to update DPA memory contexts of a process. The RPC's return
value is reported back to the host application.

The following pseudo-code example describes how to use the RPC:

// Device code
__dpa_global__ void myFunc(flexio_uintptr_t myArg){
 struct my_db *db = (struct my_db *)myArg;
 get_completion(db->myCq)
 work();
 arm_cq(myCq);
 // reschedule the thread
 flexio_dev_thread_reschedule();
}

// Host code
main() {

 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);

 /* Create event handler to run my_func with my_arg */
 flexio_event_handler_create(myProcess, myFunc, myArg,
&myEventHandler);

 /* Associate the event hanlder with a specific CQ */
 create_cq(&myCQ,… , myEventHandler)

 /* Start the event handler */
 flexio_event_handler_run(myEventHandler)
 …
}

// Device code

DPA Development 8

FlexIO Memory Management

The DPA process can access several memory locations:

Global variables defined in the DPA process.

Stack memory – local to the DPA execution unit. Stack memory is not guaranteed to
be preserved between different execution of the same handler.

Heap memory – this is the process' main memory. The heap memory contents are
preserved as long as the DPA process is active.

External registered memory – remote to the DPA but local to the server. The DPA
can access any memory location that can be registered to the local NIC using the
provided API. This includes BlueField DRAM, external host DRAM, GPU memory, and
more.

__dpa_rpc__ uint64_t myFunc(myArg) {
 struct my_db *db = (struct my_db *)myArg;
 if (db->flag) return 1;
 db->flag = 1;
 return 0;
}

// Host code
main() {
 …

 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);

 /* run the function */
 flexio_process_call(myProcess, myFunc, myArg, &returnValue);
 …
}

DPA Development 9

The heap and external registered memory locations are managed from the host process.
The DPA execution units can load/store from stack/heap and external memory locations.
Note that for external memory locations, the window should be configured appropriately
using FlexIO Window APIs.

FlexIO allows the user to allocate and populate heap memory on the DPA. The memory
can later be used by in the DPA application as an argument to the execution context (RPC
and event handler):

FlexIO allows accessing external registered memory from the DPA execution units using
FlexIO Window. FlexIO Window maps a memory region from the DPA process address
space to an external registered memory. A memory key for the external memory region
is required to be associated with the window. The memory key is used for address
translation and protection. FlexIO window is created by the host process and is
configured and used by the DPA handler during execution. Once configured, LD/ST from
the DPA execution units access the external memory directly.

The access for external memory is not coherent. As such, an explicit memory fencing is
required to flush the cached data to maintain consistency. See section "Memory Fences"
for more.

The following example code demonstrates the window management:

/* Load the application code into the DPA */
flexio_process_create(device, application, &myProcess);

/* allocate some memory */
flexio_buf_dev_alloc(process, size, ptr)

/* populate it with user defined data */
flexio_host2dev_memcpy(process, src, size, ptr)

/* run the function */
flexio_process_call(myProcess, function, ptr, &return value);

// Device code
__dpa_rpc__ uint64_t myFunc(arg1, arg2, arg3)
{

DPA Development 10

Send and Receive Operation

A DPA process can initiate send and receive operations using the FlexIO outbox object.
The FlexIO outbox contains memory-mapped IO registers that enable the DPA application
to issue device doorbells to manage the send and receive planes. The DPA outbox can be

 struct flexio_dev_thread_ctx *dtctx;
 flexio_dev_get_thread_ctx(&dtctx);
 uint32_t windowId = arg1;
 uint32_t mkey = arg2;
 uint64_t *dev_ptr;
 flexio_dev_window_config(dtctx, windowId, mkey);
 /* get ptr to the external memory (arg3) from the DPA process address space */
 flexio_dev_status status = flexio_dev_window_ptr_acquire (dtctx, arg3, dev_ptr);
 /* will set the external memory */
 *dev_ptr = 0xff;
 /* flush the data out */
 __dpa_thread_window_writeback();
 return 0;
}

// Host code
main() {
 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);
 /* define an array on host */
 uint64_t var= {0};
 /* register host buffer */
 mkey =ibv_reg_mr(&var, …)
 /* create the window */
 flexio_window_create(process, doca_device->pd, mkey, &window_ctx);
 /* run the function */
 flexio_process_call(myProcess, myFunc, flexio_window_get_id(window_ctx),
mkey, &var, &returnValue);
}

DPA Development 11

configured during run time to perform send and receive from a specific NIC function
exposed by the DPU. This capability is not available for Host CPUs that can only access
their assigned NIC function.

Each DPA execution engine has its own outbox. As such, each handler can efficiently use
the outbox without needing to lock to protect against accesses from other handlers. To
enforce the required security and isolation, the DPA outbox enables the DPA application
to send and receive only for queues created by the DPA host process and only for NIC
functions the process is allowed to access.

Like the FlexIO window, the FlexIO outbox is created by the host process and configured
and used at run time by the DPA process.

// Device code
__dpa_rpc__ uint64_t myFunc(arg1,arg2,arg3) {

 struct flexio_dev_thread_ctx *dtctx;

 flexio_dev_get_thread_ctx(&dtctx);

 uint32_t outbox = arg1;
 flexio_dev_outbox_config (dtctx, outbox);

 /* Create some wqe and post it on sq */

 /* Send DB on sq*/

 flexio_dev_qp_sq_ring_db(dtctx, sq_pi,arg3);

 /* Poll CQ (cq number is in arg2) */
 return 0;
}

// Host code
main() {

 /* Load the application code into the DPA */

DPA Development 12

Synchronization Primitives

The DPA execution units support atomic instructions to protect from concurrent access
to the DPA process heap memory. Using those instructions, multiple synchronization
primitives can be designed.

FlexIO currently supports basic spin lock primitives. More advanced thread pipelining can
be achieved using DOCA DPA events.

DOCA DPA

Supported at beta level.

 flexio_process_create(device, application, &myProcess);

 /* Allocate uar */
 uar = ibv_alloc_uar(ibv_ctx);

 /* Create queues*/
 flexio_cq_create(myProcess, ibv_ctx, uar, cq_attr, &myCQ);
 my_hwcq = flexio_cq_get_hw_cq (myCQ);

 flexio_sq_create(myProcess, ibv_ctx, myCQ, uar, sq_attr, &mySQ);
 my_hwsq = flexio_sq_get_hw_sq(mySQ);

 /* Outbox will allow access only for queues created with the same UAR*/
 flexio_outbox_create(process, ibv_ctx, uar, &myOutbox);

 /* Run the function */
 flexio_process_call(myProcess, myFunc, myOutbox, my_hwcq->cq_num,
my_hwsq->sq_num, &return_value);
}

DPA Development 13

The DOCA DPA SDK eases DPA code management by providing high-level primitives for
DPA work offloading, synchronization, and communication. This leads to simpler code
but lacks the low-level control that FlexIO SDK provides.

User-level applications and libraries wishing to utilize the DPA to offload their code may
choose DOCA DPA. Use-cases closer to the driver level and requiring access to low-level
NIC features would be better served using FlexIO.

The implementation of DOCA DPA is based on the FlexIO API. The higher level of
abstraction enables the user to focus on their program logic and not the low-level
mechanics.

Memory Model

The DPA offers a coherent but weakly ordered memory model. The application is
required to use fences to impose the desired memory ordering. Additionally, where
applicable, the application is required to write back data for the data to be visible to NIC
engines (see the coherency table).

The memory model offers "same address ordering" within a thread. This means that, if a
thread writes to a memory location and subsequently reads that memory location, the
read returns the contents that have previously been written.

The memory model offers 8-byte atomicity for aligned accesses to atomic datatypes. This
means that all eight bytes of read and write are performed in one indivisible transaction.

The DPA does not support unaligned accesses, such as accessing N bytes of data from an
address not evenly divisible by N.

The DPA processes memory can be divided into the following memory spaces:

Info

Refer to DOCA DPA documentation for more details.

file:///doca/sdk/DOCA+DPA

DPA Development 14

Memory Space Definition

Heap
Memory locations within the DPA process heap.
Referenced as __DPA_HEAP in the code.

Memory
Memory locations belonging to the DPA process (including stack,
heap, BSS and data segment) except the memory-mapped IO.
Referenced as __DPA_MEMORY in the code.

MMIO
(memory-
mapped I/O)

External memory outside the DPA process accessed via memory-
mapped IO. Window and Outbox accesses are considered MMIO.
Referenced as __DPA_MMIO in the code.

System
All memory locations accessible to the thread within Memory and
MMIO spaces as described above.
Referenced as __DPA_SYSTEM in the code.

The coherency between the DPA threads and NIC engines is described in the following
table:

Pro
duc
er

Obs
erv
er

Coh
ere
ncy

Comments

DP
A
thr
ead

NIC
eng
ine

Not
coh
ere
nt

Data to be read by the NIC must be written back using the appropriate
intrinsic (see section "Memory Fence and Cache Control Usage
Examples").

NIC
eng
ine

DP
A
Thr
ead

Coh
ere
nt

Data written by the NIC is eventually visible to the DPA threads.
The order in which the writes are visible to the DPA threads is
influenced by the ordering configuration of the memory region (see
IBV_ACCESS_RELAXED_ORDERING).
In a typical example of the NIC writing data and generating a
completion entry (CQE), it is guaranteed that when the write to the CQE
is visible, the DPA thread can read the data without additional fences.

DP
A
thr
ead

DP
A
thr
ead

Coh
ere
nt

Data written by a DPA thread is eventually visible to the other DPA
threads without additional fences. The order in which writes made by a
thread are visible to other threads is undefined when fences are not
used. Programmers can enforce ordering of updates using fences (see
section "Memory Fences") .

DPA Development 15

Memory Fences

Fence APIs are intended to impose memory access ordering. The fence operations are
defined on the different memory spaces. See information on memory spaces under
section "Memory Model".

The fence APIs apply ordering between the operations issued by the calling thread. As a
performance note, the fence APIs also have a side effect of writing back data to the
memory space used in the fence operation. However, programmers should not rely on
this side effect. See section "Cache Control" for explicit cache control operations. The
fence APIs have an effect of a compiler-barrier which means that memory accesses are
not reordered around the fence API invocation by the compiler.

A fence applies between the "predecessor" and the "successor" operations. The
predecessor and successor ops can be refenced using __DPA_R, __DPA_W, and __DPA_RW in
the code.

The generic memory fence operation can operate on any memory space and any set of
predecessor and successor operations. The other fence operations are provided as
convenient shortcuts that are specific to the use case. It is preferable for programmers to
use the shortcuts when possible.

Fence operations can be included using the dpaintrin.h header file.

Generic Fence

This fence can apply to any DPA thread memory space. Memory spaces are defined
under section "Memory Model". The fence ensures that all operations (pred_op) performed
by the calling thread, before the call to __dpa_thread_fence(), are performed and made visible
to all threads in the DPA, host, NIC engines, and peer devices as occurring before all
operations (succ_op) to the memory space after the call to __dpa_thread_fence().

System Fence

void __dpa_thread_fence(memory_space, pred_op, succ_op);

void __dpa_thread_system_fence();

DPA Development 16

This is equivalent to calling __dpa_thread_fence(__DPA_SYSTEM, __DPA_RW, __DPA_RW).

Outbox Fence

This is equivalent to calling __dpa_thread_fence(__DPA_MMIO, pred_op, succ_op).

Window Fence

This is equivalent to calling __dpa_thread_fence(__DPA_MMIO, pred_op, succ_op).

Memory Fence

This is equivalent to calling __dpa_thread_fence(__DPA_MEMORY, pred_op, succ_op).

Cache Control

Cache control operations allow the programmer to exercise fine-grained control over
data resident in the DPA's caches. They have an effect of a compiler-barrier. The
operations can be included using the dpaintrin.h header file.

Window Read Contents Invalidation

void __dpa_thread_outbox_fence(pred_op, succ_op);

void __dpa_thread_window_fence(pred_op, succ_op);

void __dpa_thread_memory_fence(pred_op, succ_op);

DPA Development 17

The DPA can cache data that was fetched from external memory using a window.
Subsequent memory accesses to the window memory location may return the data that
is already cached. In some cases, it is required by the programmer to force a read of
external memory (see example under "Polling Externally Set Flag"). In such a situation,
the window read contents cached must be dropped.

This function ensures that contents in the window memory space of the thread before
the call to __dpa_thread_window_read_inv() are invalidated before read operations made by the
calling thread after the call to __dpa_thread_window_read_inv().

Window Writeback

Writes to external memory must be explicitly written back to be visible to external
entities.

This function ensures that contents in the window space of the thread before the call to
__dpa_thread_window_writeback() are performed and made visible to all threads in the DPA,
host, NIC engines, and peer devices as occurring before any write operation after the call
to __dpa_thread_window_writeback().

Memory Writeback

Writes to DPA memory space may need to be written back. For example, the data must
be written back before the NIC engines can read it. Refer to the coherency table for more.

This function ensures that the contents in the memory space of the thread before the call
to __dpa_thread_writeback_memory() are performed and made visible to all threads in the DPA,

void __dpa_thread_window_read_inv();

void __dpa_thread_window_writeback();

void __dpa_thread_memory_writeback();

DPA Development 18

host, NIC engines, and peer devices as occurring before any write operation after the call
to __dpa_thread_writeback_memory().

Memory Fence and Cache Control Usage Examples

These examples illustrate situations in which programmers must use fences and cache
control operations.

In most situations, such direct usage of fences is not required by the application using
FlexIO or DOCA DPA SDKs as fences are used within the APIs.

Issuing Send Operation

In this example, a thread on the DPA prepares a work queue element (WQE) that is read
by the NIC to perform the desired operation.

The ordering requirement is to ensure the WQE data contents are visible to the NIC
engines read it. The NIC only reads the WQE after the doorbell (MMIO operation) is
performed. Refer to coherency table.

#
User Code – WQE Present in
DPA Memory

Comment

1 Write WQE
Write to memory locations in the DPA (memory
space = __DPA_MEMORY)

2 __dpa_thread_memory_writeback(); Cache control operation

3 Write doorbell MMIO operation via Outbox

In some cases, the WQE may be present in external memory. See the description of
flexio_qmem below. The table of operations in such a case is below.

#
User Code – WQE Present in
External Memory

Comment

1 Write WQE
Write to memory locations in the DPA (memory
space = __DPA_MMIO)

2 __dpa_thread_window_writeback(); Cache control operation

DPA Development 19

#
User Code – WQE Present in
External Memory

Comment

3 Write doorbell MMIO operation via Outbox

Posting Receive Operation

In this example, a thread on the DPA is writing a WQE for a receive queue and advancing
the queue's producer index. The DPA thread will have to order its writes and writeback
the doorbell record contents so that the NIC engine can read the contents.

#
User Code – WQE Present in
DPA Memory

Comment

1 Write WQE
Write to memory locations in the DPA (memory
space = __DPA_MEMORY)

2 __dpa_thread_memory_fence(__DPA_
W, __DPA_W);

Order the write to the doorbell record with respect
to WQE

3 Write doorbell record
Write to memory locations in the DPA (memory
space = __DPA_MEMORY)

4 __dpa_thread_memory_writeback();
Ensure that contents of doorbell record are visible
to the NIC engine

Polling Externally Set Flag

In this example, a thread on the DPA is polling on a flag that will be updated by the host
or other peer device. The memory is accessed by the DPA thread via a window. The DPA
thread must invalidate the contents so that the underlying hardware performs a read.

User Code – Flag Present in External
Memory

Comment

flag is a memory location read using a
window

while (!flag) {
 __dpa_thread_window_read_inv();
}

DPA Development 20

Thread-to-thread Communication

In this example, a thread on the DPA is writing a data value and communicating that the
data is written to another thread via a flag write. The data and flag are both in DPA
memory.

User Code –
Thread 1

User Code –
Thread 2

Comment

Initial condition, flag = 0

var1 = x;
while(*
((volatile int
*)&flag) !=1);

Thread 1 - write to var1
Thread 2 - flag is accessed as a volatile variable,
so the compiler preserves the intended program
order of reads

__dpa_thread_memory
_fence(__DPA_W,
__DPA_W);

Thread 1 – write to flag cannot bypass write to var1

var_t2 = var1;

flag = 1;
assert(var_t2
== x); var_t2 must be equal to x

Setting Flag to be Read Externally

In this example, a thread on the DPA sets a flag that is observed by a peer device. The flag
is written using a window.

User Code – Flag Present in
External Memory

Comment

flag = data; flag is updated in local DPA memory

__dpa_thread_window_writeback();
Contents from DPA memory for the window are
written to external memory

DPA Development 21

Polling Completion Queue

In this example, a thread on the DPA reads a NIC completion queue and updates its
consumer index.

First, the DPA thread polls the memory location for the next expected CQE. When the
CQE is visible, the DPA thread processes it. After processing is complete, the DPA thread
updates the CQ's consumer index. The consumer index is read by the NIC to determine
whether a completion queue entry has been read by the DPA thread. The consumer
index is used by the NIC to monitor a potential completion queue overflow situation.

User Code – CQE
in DPA Memory

Comment

while(*((volatile
uint8_t
*)&cq op_own) & 0x1
== hw_owner);

Poll CQ owner bit in DPA memory until the value indicates the CQE
is in software ownership.
Coherency model ensures update to the CQ is visible to the DPA
execution unit without additional fences or cache control
operations.
Coherency model ensures that data in the CQE or referenced by it
are visible when the CQE changes ownership to software.

process_cqe(); User processes the CQE according to the application's logic.

cq cq_index++; //
next CQ index. Handle
wraparound if
necessary

Calculate the next CQ index taking into account any wraparound of
the CQ depth.

update_cq_dbr(cq,
cq_index); // writes
cq_index to DPA
memory

Memory operation to write the new consumer index.

__dpa_thread_memor
y_writeback();

Ensures that write to CQ's consumer index is visible to the NIC.
Depending on the application's logic, the
__dpa_thread_memory_writeback() may be coalesced or eliminated if the
CQ is configured in overrun ignore mode.

arm_cq();
Arm the CQ to generate an event if this handler is going to call
flexio_dev_thread_reschedule(). Arming the CQ is not required if the
handler calls flexio_dev_thread_finish().

DPA Development 22

DPA-specific Operations

The DPA supports some platform-specific operations. These can be accessed using the
functions described in the following subsections. The operations can be included using
the dpaintrin.h header file.

Clock Cycles

Returns a counter containing the number of cycles from an arbitrary start point in the
past on the execution unit the thread is currently scheduled on.

Note that the value returned by this function in the thread is meaningful only for the
duration of when the thread remains associated with this execution unit.

This function also acts as a compiler barrier, preventing the compiler from moving
instructions around the location where it is used.

Timer Ticks

Returns the number of timer ticks from an arbitrary start point in the past on the
execution unit the thread is currently scheduled on.

Note that the value returned by this function in the thread is meaningful only for the
duration of when the thread remains associated with this execution unit.

This intrinsic also acts as a compiler barrier, preventing the compiler from moving
instructions around the location where the intrinsic is used.

Instructions Retired

uint64_t __dpa_thread_cycles();

uint64_t __dpa_thread_time();

DPA Development 23

Returns a counter containing the number of instructions retired from an arbitrary start
point in the past by the execution unit the thread is currently scheduled on.

Note that the value returned by this function in the software thread is meaningful only
for the duration of when the thread remains associated with this execution unit.

This intrinsic also acts as a compiler barrier, preventing the compiler from moving
instructions around the location where the intrinsic is used.

Fixed Point Log2

This function evaluates the fixed point Q16.16 base 2 logarithm. The input is an unsigned
integer.

Fixed Point Reciprocal

This function evaluates the fixed point Q16.16 reciprocal (1/x) of the value provided.

Fixed Point Pow2

This function evaluates the fixed point Q16.16 power of 2 of the provided value.

uint64_t __dpa_thread_inst_ret();

int __dpa_fxp_log2(unsigned int);

int __dpa_fxp_rcp(int);

int __dpa_fxp_pow2(int);

DPA Development 24

FlexIO

This chapter provides an overview and configuration instr uctions for DOCA FlexIO SDK
API.

The DPA processor is an auxiliary processor designed to accelerate packet processing
and other data-path operations. The FlexIO SDK exposes an API for managing the DPA
device and executing native code over it.

The DPA processor is supported on NVIDIA® BlueField®-3 DPUs and later generations.

After DOCA installation, FlexIO SDK headers may be found under /opt/mellanox/flexio/include

and libraries may be found under /opt/mellanox/flexio/lib/.

Prerequisites

DOCA FlexIO applications can run either on the host machine or on the target DPU.

Developing programs over FlexIO SDK requires knowledge of DPU networking queue
usage and management.

Architecture

FlexIO SDK library exposes a few layers of functionality:

libflexio – library for Host-side operations. It is used for resource management.

libflexio_dev – library for DPA-side operations. It is used for data path implementation.

libflexio_libc – a lightweight C library for DPA device code. libflexio_libc may expose very
partial functionality compared to a standard libc.

A typical application is composed of two parts: One running on the host machine or the
DPU target and another running directly over the DPA.

DPA Development 25

API

Please refer to the NVIDIA DOCA Driver APIs.

Resource Management

DPA programs cannot create resources. The responsibility of creating resources, such as
FlexIO process, thread, outbox and window, as well as queues for packet processing
(completion, receive and send), lies on the DPU program. The relevant information
should be communicated (copied) to the DPA side and the address of the copied
information should be passed as an argument to the running thread.

Example

Host side:

1. Declare a variable to hold the DPA buffer address.

2. Allocate a buffer on the DPA side.

3. Copy application data to the DPA buffer.

struct my_app_data should be common between the DPU and DPA applications so the
DPA application can access the struct fields.

flexio_uintptr_t app_data_dpa_daddr;

flexio_buf_dev_alloc(flexio_process, sizeof(struct my_app_data),
&app_data_dpa_daddr);

flexio_host2dev_memcpy(flexio_process, (uintptr_t)app_data, sizeof(struct
my_app_data), app_data_dpa_daddr);

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Driver+APIs

DPA Development 26

The event handler should get the address to the DPA buffer with the copied data:

DPA side:

DPA Memory Management

As mentioned previously, the DPU program is responsible for allocating buffers on the
DPA side (same as resources). The DPU program should allocate device memory in
advance for the DPA program needs (e.g., queues data buffer and rings, buffers for the
program functionality, etc).

The DPU program is also responsible for releasing the allocated memory. For this
purpose, the FlexIO SDK API exposes the following memory management functions:

Allocating NIC Queues for Use by DPA

flexio_event_handler_create(flexio_process, net_entry_point,
app_data_dpa_daddr, NULL, flexio_outbox, &app_ctx.net_event_handler)

__dpa_rpc__ uint64_t event_handler_init(uint64_t thread_arg)
{
 struct my_app_data *app_data;
 app_data = (my_app_data *)thread_arg;
 ...
}

flexio_status flexio_buf_dev_alloc(struct flexio_process *process, size_t buff_bsize,
flexio_uintptr_t *dest_daddr_p);
flexio_status flexio_buf_dev_free(flexio_uintptr_t daddr_p);
flexio_status flexio_host2dev_memcpy(struct flexio_process *process, void

*src_haddr, size_t buff_bsize, flexio_uintptr_t dest_daddr);
flexio_status flexio_buf_dev_memset(struct flexio_process *process, int value, size_t
buff_bsize, flexio_uintptr_t dest_daddr);

DPA Development 27

The FlexIO SDK exposes an API for allocating work queues and completion queues for the
DPA. This means that the DPA may have direct access and control over these queues,
allowing it to create doorbells and access their memory.

When creating a FlexIO SDK queue, the user must pre-allocate and provide memory
buffers for the queue's work queue elements (WQEs). This buffer may be allocated on the
DPU or the DPA memory.

To this end, the FlexIO SDK exposes the flexio_qmem struct, which allows the user to
provide the buffer address and type (DPA or DPU).

Memory Allocation Best Practices

To optimize process device memory allocation, it is recommended to use the following
allocation sizes (or closest to it):

Up to 1 page (4KB)

26 pages (256KB)

211 pages (8MB)

216 pages (256MB)

Using these sizes minimizes memory fragmentation over the process device memory
heap. If other buffer sizes are required, it is recommended to round the allocation up to
one of the listed sizes and use it for multiple buffers.

DPA Window

DPA windows are used to access external memory, such as on the DPU's DDR or host's
memory. DPA windows are the software mechanism to use the Memory Apertures
mentioned in section "DPA Memory and Caches". To use the window functionality, DPU
or host memory must be registered for the device using the ibv_reg_mr() call.

https://docs.nvidia.com//doca/sdk/DPA+Subsystem#src-2477574991_id-.DPASubsystemv2.6.0-DPAMemoryandCaches

DPA Development 28

Both the address and size provided to this call must be 64 bytes aligned for the window
to operate. This alignment may be obtained using the posix_memalign() allocation call.

DPA Event Handler

Default Window/Outbox

The DPA event handler expects a DPA window and DPA outbox structs upon creation.
These are used as the default for the event handler thread. Users may choose to set one
or both to NULL, in which case there would be no valid default value for one/both of
them.

Upon thread invocation on the DPA side, the thread context is set for the provided
default IDs. If, at any point, the outbox/window IDs are changed, then the thread context
on the next invocation is restored to the default IDs. This means that the DPA Window
MKey must be configured each time the thread is invoked, as it has no default value.

Execution Unit Management

DPA execution units (EUs) are the equivalent to logical cores. For a DPA program to
execute, it must be assigned an EU.

It is possible to set EU affinity for an event handler upon creation. This causes the event
handler to execute its DPA program over specific EUs (or a group of EUs).

DPA supports three types of affinity: none , strict, group .

The affinity type and ID, if applicable, are passed to the event handler upon creation
using the affinity field of the flexio_event_handler_attr struct.

For more information, please refer to NVIDIA DOCA DPA Execution Unit Management Tool.

Execution Unit Partitions

To work over DPA, an EU partition must be created for the used device. A partition is a
selection of EUs marked as available for a device. For the DPU ECPF, a default partition is
created upon boot with all EUs available in it. For any other device (i.e., function), the user

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+DPA+Execution+Unit+Management+Tool

DPA Development 29

must create a partition. This means that running an application on a non-ECPF function
without creating a partition would result in failure.

FlexIO SDK uses strict and none affinity for internal threads, which require a partition with
at least one EU for the participating devices. Failing to comply with this assumption may
cause failures.

Virtual Execution Units

Users should be aware that beside the default EU partition, which is exposed to the real
EU numbers, all other partitions created use virtual EUs.

For example, if a user creates a partition with the range of EUs 20-40, querying the
partition info from one of its virtual HCAs (vHCAs) it would display EUs from 0-20. So, the
real EU number, 39 in this example, would correspond to the virtual EU number 19.

Version API and Backward Compatibility

FlexIO SDK supports partial backward compatibility. The may follow one of the following
options:

1. Work only with the latest version. The user must align their entire code according to
the changes in the FlexIO SDK API listed in the document accompanying each
version.

2. Ensure partial backward compatibility for the working code. The user must inform
the SDK which version they intend to work with. The SDK provides a set of tools that
ensure backward compatibility. The set consists of compile-time and runtime tools.

Version API Toolkit

To support backward compatibility, the FlexIO SDK uses the macros FLEXIO_VER for the
host and FLEXIO_DEV_VER for the DPA device. The macros have 3 parameters, where the
first is the major version (year), the second is the minor version (month), and the third is
the sub-minor version (not used, always 0).

DPA Development 30

Compile-time

This toolkit is available for both the host and DPA device. The header files flexio_ver.h and
flexio_dev_ver.h contain the macros FLEXIO_VER and FLEXIO_VER_LATEST for the host and
FLEXIO_DEV_VER and FLEXIO_DEV_VER_LATEST for the DPA device. For example, to set backward
compatibility for version 24.04, the user must declare the following construct for the host:

And the user must declare the following construct for the DPA device:

Where 24 is the major version, and 4 is the minor version.

Runtime

This toolkit is only present for the host. For backward compatibility in runtime, the user
can call the function flexio_status flexio_version_set(uint64_t version); in flexio.h once before calling

#include <libflexio/flexio_ver.h>
#define FLEXIO_VER_USED FLEXIO_VER(24, 4, 0)
#include <libflexio/flexio.h>

#include <libflexio-dev/flexio_dev_ver.h>
#define FLEXIO_DEV_VER_USED FLEXIO_DEV_VER(24, 4, 0)
#include <libflexio-dev/flexio_dev.h>

Warning

The files flexio.h and flexio_dev.h have the macros FLEXIO_CURRENT_VERSION

and FLEXIO_LAST_SUPPORTED_VERSION for the host
FLEXIO_DEV_CURRENT_VERSION and FLEXIO_DEV_LAST_SUPPORTED_VERSION for
the DPA device. These versions are provided for internal use and user
information. The user should not use these macros.

DPA Development 31

any other function from the API, with the version parameter they wish to work with. The
function returns an error in the following cases:

If the specified version is less than FLEXIO_LAST_SUPPORTED_VERSION

If it exceeds FLEXIO_CURRENT_VERSION

If the function is called again with a version value different from the previous one

It is recommended to use the FLEXIO_VER_USED macro as a parameter :

End of Backward Compatibility

The backward compatibility tools are designed to have an endpoint. With each new
version, it is possible to gradually raise the value of FLEXIO_LAST_SUPPORTED_VERSION for the
host and FLEXIO_DEV_LAST_SUPPORTED_VERSION for the DPA device. If FLEXIO_VER_USED equals
FLEXIO_LAST_SUPPORTED_VERSION, then the compiler will issue a warning. This is a sign for the
user to start transitioning to a newer version. This way the user has time at least until the
next version to modify their code to comply with the older version. If FLEXIO_VER_USED is
lower than FLEXIO_LAST_SUPPORTED_VERSION, then the compiler will issue errors. This is a sign
for the user to immediately transition to a newer version. T he same behavior for the DPA
device.

Application Debugging

status = flexio_version_set(FLEXIO_VER(24, 4, 0));
if (status == FLEXIO_STATUS_FAILED)
{
return ERROR;
}

flexio_version_set(FLEXIO_VER_USED);

DPA Development 32

Because application execution is divided between the host side and the DPA processor
services, debugging may be somewhat challenging, especially since the DPA side does not
have a terminal allowing the use of the C stdio library printf services.

Using Device Messaging Stream API

Another logging (messaging) option is to use FlexIO SDK infrastructure to send strings or
formatted text in general, from the DPA side to the host side console or file. The host
side's flexio.h file provides the flexio_msg_stream_create API function for initializing the
required infrastructures to support this. Once initialized, the DPA side must have the
thread context, which can be obtained by calling flexio_dev_get_thread_ctx. flexio_dev_msg can
then be called to write a string generated on the DPA side to the stream created (using its
ID) on the host side, where it is directed to the console or a file, according to user
configuration in the creation stage.

It is important to call flexio_msg_stream_destroy when exiting the DPU application to ensure
proper clean-up of the print mechanism resources.

Device messages use an internal QP for communication between the DPA and the DPU.
When running over an InfiniBand fabric, the user must ensure that the subnet is well-
configured, and that the relevant device's port is in active state.

Message Stream Functionality

The user can create as many streams as they see fit, up to a maximum of
FLEXIO_MSG_DEV_MAX_STREAMS_AMOUNT as defined in flexio.h.

Every stream has its own messaging level which serves as a filter where messages with a
level below that of the stream are filtered out.

The first stream created is the default_stream gets stream ID 0, and it is created with
messaging level FLEXIO_MSG_DEV_INFO by default.

The stream ID defined by FLEXIO_MSG_DEV_BROADCAST_STREAM serves as a broadcast stream
which means it messagaes all open streams (with the proper messaging level).

A stream can be configured with a synchronization mode attribute according to the
following options:

sync – displays the messages as soon as they are sent from the device to the host
side using the verb SEND.

DPA Development 33

async – uses the verb RDMA write. When the programmer calls the stream's flush
functionality, all the messages in the buffer are displayed (unless there was a
wraparound due to the size of messages being bigger than the size allocated for
them). In this synchronization mode, the flush should be called at the end of the
run.

batch – uses RDMA write and RDMA write with immediate. It works similarly to the
async mode, except the fact each batch size of messages is being flushed and
therefore displayed automatically in every batch. The purpose is to allow the host to
use fewer resources for device messaging.

Device Messaging Assumptions

Device messaging uses RPC calls to create, modify, and destroy streams. By default, these
RPC calls run with affinity none, which requires at least one available EU on the default
group. If the user wants to set the management affinity of a stream to a different option
(any affinity option is supported, including forcing none, which is the default behavior)
they should specify this in the stream attributes using the mgmt_affinity field.

Printf Support

Only limited functionality is implemented for printf. Not all libc printf is supported.

Please consult the following list for supported modifiers:

Formats – %c, %s, %d, %ld, %u, %lu, %i, %li, %x, %hx, %hxx, %lx, %X, %lX, %lo, %p, %%

Flags – ., *, -, +, #

General supported modifiers:

"0" padding

Min/max characters in string

General unsupported modifiers:

Floating point modifiers – %e, %E, %f, %lf, %LF

DPA Development 34

Octal modifier %o is partially supported

Precision modifiers

Core Dump

If the DPA process encounters a fatal error, the user can create a core dump file to review
the application's status at that point using a GDB app.

Creating a core dump file can be done after the process has crashed (as indicated by the
flexio_err_status API) and before the process is destroyed by calling the flexio_coredump_create

API.

Recommendations for opening DPA core dump file using GDB:

Use the gdb-multiarch application

The Program parameter for GDB should be the device-side ELF file

Use the dpacc-extract tool (provided with the DPACC package) to extract the
device-side ELF file from the application's ELF file

FlexIO Samples

This section describes samples based on the FlexIO SDK. These samples illustrate how to
use the FlexIO API to configure and execute code on the DPA.

Running FlexIO Sample

The FlexIO SDK samples serve as a reference for building and running FlexIO-based DPA
applications. They provide a collection of out-of-the-box working DPA applications that
encompass the basic functionality of the FlexIO SDK.

Documentation

DPA Development 35

Refer to NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software

Refer to NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with
the installation, compilation, or execution of DOCA samples

Minimal Requirements

The user must have the following installed:

DOCA DPACC package

DOCA RDMA package

pkg-config package

Python3 package

Gcc with version 7.0 or higher

Meson package with version 0.53.0 or higher

Ninja package

DOCA FlexIO SDK

Sample Structure

Each sample is situated in its own directory and is accompanied by a corresponding
description in README files. Every sample comprises two applications:

The first, located in the device directory, is designed for DPA

The second, found in the host directory, is intended for execution on the DPU or host
in a Linux OS environment

Additionally, there is a common directory housing libraries for the examples. These
libraries are further categorized into device and host directories to facilitate linking with

https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Installation+Guide+for+Linux
https://docs.nvidia.com//doca/sdk/NVIDIA+DOCA+Troubleshooting+Guide

DPA Development 36

similar applications. Beyond containing functions and macros, these libraries also serve
as illustrative examples for how to use them.

The list of the samples:

flexio_rpc – sample demonstrating how to run RPC functions from DPA

packet_processor – sample demonstrating how to process a package

Building the Samples

Samples

flexio_rpc

This sample application executes FlexIO with a remote process call.

The device program calculates the sum of 2 input parameters, prints the result, and
copies the result back to the host application.

This sample demonstrates how applications are built (DPA and host), how to create
processes and message streams, how to open the IBV device, and how to use RPC from
the host to DPA function.

Compilation

The output path:

cd /opt/mellanox/fleio/samples/
./build.sh --check-compatibility --rebuild

cd /opt/mellanox/flexio/samples/
./build.sh --check-compatibility --rebuild

DPA Development 37

Usage

Where:

mlx5_device – IBV device with DPA

arg1 – first numeric argument

arg2 – second numeric argument

Example:

flexio_packet_process

This example demonstrates packet processing handling.

The device application implements a handler for flexio_pp_dev that receives packets from
the network, swaps MAC addresses, inserts some text into the packet, and sends it back.

This allows the user to send UDP packets (with a packet length of 65 bytes) and check the
content of returned packets. Additionally, the console displays the execution of packet
processing, printing each new packet index. Device messaging operates in synchronous
mode (i.e., each message from the device received by the host is output immediately).

/opt/mellanox/flexio/samples/build/flexio_rpc/host/flexio_rpc

<sample_root>/build/flexio_rpc/host/flexio_rpc <mlx5_device> <arg1> <arg2>

$/opt/mellanox/flexio/samples/build/flexio_rpc/host/flexio_rpc mlx5_0 44 55

Welcome to 'Flex IO RPC' sample
Registered on device mlx5_0
/ 2/Calculate: 44 + 55 = 99

Result: 99

Flex IO RPC sample is done

DPA Development 38

This sample illustrates how applications work with libraries (DPA and host), how to create
SQ, RQ, CQ, memory keys, and doorbell rings, how to create and use DPA memory
buffers, how to use UAR, and how to create and run event handlers.

Compilation

The output path:

Usage

Where:

mlx5_device – name of IB device with DPA

--nic-mode – optional parameter indicating that the application is run from the host. If
the application is run from DPU, then the parameter should not be used.

For example

The application must run with root privileges.

Running with Traffic

Run host-side sample:

cd /opt/mellanox/flexio/samples/
./build.sh --check-compatibility --rebuild

/opt/mellanox/flexio/samples/build/packet_processor/host/flexio_packet_processor

<sample_root>/build/packet_processor/host/flexio_packet_processor
<mlx5_device>

$sudo /build/packet_processor/host/flexio_packet_processor mlx5_0

DPA Development 39

Use another machine connected to the setup running the application. Bring the interface
used as packet generator up:

Use scapy to run traffic to the device the application is running on:

$ cd <sample_root>
$ sudo ./build/packet_processor/host/flexio_packet_processor mlx5_0

$ sudo ifconfig my_interface up

$ python

>>> from scapy.all import *
>>> from scapy.layers.inet import IP, UDP, Ether

>>> sendp(Ether(src="02:42:7e:7f:eb:02",
dst='52:54:00:79:db:d3')/IP()/UDP()/Raw(load="===============12345678"),
iface="my_interface")

Note

Source MAC must be same as above as the application defines a
steering rule for it. Destination MAC can be anything.

Note

The load should be kept the same as above, as the application looks
for this pattern and changes it during processing.

DPA Development 40

The packets can be viewed using tcpdump:

Example output

DPA Application Authentication

Note

Interface name should be changed to the interfaced used for traffic
generation.

$ sudo tcpdump -i my_interface -en host 127.0.0.1 -X

Example output:
11:53:51.422075 02:42:7e:7f:eb:02 > 52:54:00:12:34:56, ethertype IPv4 (0x0800), length 65:
127.0.0.1.domain > 127.0.0.1.domain: 15677 op7+% [b2&3=0x3d3d] [15677a] [15677q]
[15677n] [15677au][|domain]
0x0000: 4500 0033 0001 0000 4011 7cb7 7f00 0001 E..3....@.|.....
0x0010: 7f00 0001 0035 0035 001f 42c6 3d3d 3d3d5.5..B.==== <-- Original data
0x0020: 3d3d 3d3d 3d3d 3d3d 3d3d 3d31 3233 3435 ===========12345

0x0030: 3637 38 678

11:53:51.700038 52:54:00:12:34:56 > 02:42:7e:7f:eb:02, ethertype IPv4 (0x0800), length 65:
127.0.0.1.domain > 127.0.0.1.domain: 26144 op8+% [b2&3=0x4576] [29728a] [25966q]
[25701n] [28015au][|domain]
0x0000: 4500 0033 0001 0000 4011 7cb7 7f00 0001 E..3....@.|.....
0x0010: 7f00 0001 0035 0035 001f 42c6 6620 45765.5..B.f.Ev <-- Modified data
0x0020: 656e 7420 6465 6d6f 2a2a 2a2a 2a2a 2a2a ent.demo********
0x0030: 2a2a 2a ***

DPA Development 41

DPA Application Authentication is supported at beta level for BlueField-3.

DPA Application Authentication is currently only supported with statically linked libraries.
Dynamically linked libraries are currently not supported.

This section provides instructions for developing, signing, and using authenticated
BlueField-3 data-path accelerator (DPA) applications. It includes information on:

Principles of root of trust and structures supporting it
Device ownership transfer/claiming flow (i.e., how the user should configure the
device so that it will authenticate the DPA applications coming from the user)
Crypto signing flow and ELF file structure and tools supporting it

Root of Trust Principles

Signing of 3rd Party DPA App Code

NVIDIA® BlueField®-3 introduces the ability for customers/device owners to sign
applications running on the DPA with their private key and have it authenticated by a
device-embedded certificate chain. This provides the benefit of ensuring that only code
permitted by the customer can run on the DPA. The customer can be any party writing
code intended to run on the DPA (e.g., a cloud service provider, OEM, etc).

The following figure illustrates the signature of customer code. This signature will allow
NVIDIA firmware to authenticate the source of the application's code.

Example of Customer DPA Code Signed by Customer for Authentication

DPA Development 42

The high-level scheme is as follows (see figure "Loading of Customer Keys and CA
Certificates and Provision of DPA Firmware to BlueField-3 Device"):

The numbers of these steps correspond to the numbers indicated in the figure below.

1. Customer provides NVIDIA Enterprise Support the public key for device ownership.
2. NVIDIA signs the customer's public key and sends it back to the customer.
3. Customer uploads the NVIDIA-signed public key to the device, enabling "Transfer of

Ownership" to the customer (from NVIDIA).
4. Using the private key corresponding to the public key uploaded to the device, the

customer can now enable DPA authentication and load the root certificate used for
authentication of DPA App code.

DPA Development 43

5. DPA app code crypto-signed by the customer serves to authenticate the source of
the app code.

The public key used to authenticate the DPA app is provided as part of the
certificate chain (leaf certificate), together with the DPA firmware image.

6. App code and the owner signature serves to authorize the app execution by the
NVIDIA firmware (similar to NVIDIA own signature).

Loading of Customer Keys and CA Certificates and Provision of DPA Firmware to BlueField-3
Device

The following sections provide more details about this high-level process.

Verification of Authenticity of DPA App Code

Authentication of application firmware code before authorization to execute shall consist
of validation of the customer certificate chain and customer signature using the

DPA Development 44

customer's public key.

Public Keys (Infrastructure, Delivery, and Verification)

For the purposes of the authentication verification of the application firmware, the public
key must be securely provided to the hardware. To do so, a secure Management
Component Control (MCC) Flow shall be used. Using this, the content of the downloaded
certificate is enveloped in an MCC Download Container and signed by NVIDIA Private Key.

The following is an example of how to use the MCC flow describes in detail the
procedures, tools and structures supporting this (Section "Loading of CSP CA Certificates
and Keys and Provisioning of DPA Firmware to Device" describes the high-level flow for
this).

The following command burns the certificate container:

Two use cases are possible:

The DPA application is developed internally in NVIDIA, and the authentication is
based on internal NVIDIA keys and signing infrastructure
The DPA application is developed by a customer, and the authentication is based on
the customer certificate chain

In either case, the customer must download the relevant CA certificate to the device.

ROT Certificate Chain

flint -d <mst device> -i <signed-certificate-container> burn

https://docs.ndis.nvidia.com/Root%20CA%20Containers/DPA%20Root%20CA.html

DPA Development 45

This figure illustrates the build of the certificate chain used for validation of DPA app
images. The leaf certificate of these chains is used to validate the DPA application
supplied by the customer (with ROT from customer CA). The NVIDIA certificate chain for
validation of DPA applications (built internally in NVIDIA) is structured in a very similar
way. OEMDpaCert CA is the root CA which can be used by the customer to span their
certificate chain up to the customer leaf certificate which is used for validating the
signature of the application's image. Similarly, NVDADpaCert CA is the root CA used
internally in NVIDIA to build the DPA certificate chain for validation of NVIDIA DPA apps.

Customer private keys must be kept secure and are the sole responsibility of the
customer to maintain. It is recommended to have a set of keys ready and usable by
customer for redundancy purposes.The whole customer certificate chain, including root
CA and leaf, must not exceed 4 certificates.

The NVDA_CACert_DPA and OEM_CACert_DPA certificates are self-signed and trusted
because they are loaded by the secure MCC flow and authenticated by the firmware.

The customer certificate chain beyond OEM_CACert_DPA is delivered with the DPA image,
including the leaf certificate that is used for validating the cryptographic signature of the
DPA firmware (see table "ELF Crypto Data Section Fields Description").

For more details on the certificates and their location in the flash, contact NVIDIA

DPA Development 46

Enterprise Support to obtain the Flash Application Note. The rest of the certificate chain
used for the DPA firmware authentication includes:

For NVIDIA-signed images (e.g., figure "ROT Certificate Chain"): NVDA DPA root
certificate (NVDA_CACert_DPA can be downloaded here)
For customer-signed images (e.g., figure "ROT Certificate Chain"): Customer CA
certificate, customer product, and customer leaf certificates

In both cases (NVIDIA internal and customer-signed) these parts of the certificate chain
are attached to the DPA firmware image.

Loading of CSP CA Certificates and Keys and Provisioning of DPA Firmware to
Device

The figure "Loading of Customer Keys and CA Certificates and Provision of DPA Firmware
to BlueField-3 Device" shows, at high-level, the procedures for loading user public keys to
the device, signing and loading of customer certificates MCC container, and downloading
the DPA firmware images.

For clarity, the hierarchy of ROT validation is as follows:

1. Customer public key to be used for customer TLVs and CACert_DPA certificate
validation, PK_TLV (i.e., NV_LC_NV_PUBLIC_KEY):

1. For a device whose DPA authentication ability the customer wishes to enable
for the first time, the customer must get it signed and authenticated by NVIDIA
keys by reaching out to NVIDIA Enterprise Support. The complete flow is
described in "Device Ownership Claiming Flow".

2. After PK_TLV is loaded, it can be updated by authenticating the update using
either the same PK_TLV. The complete flow is described in "Device Ownership
Claiming Flow".

3. Authentication of TLV for enabling/disabling DPA authentication is also
validated by the PK_TLV. The complete flow is described in section "DPA
Authentication Enablement".

2. Loading of CA certificate (CACert_DPA) to be used for DPA code validation. It is
authenticated using the same PK_TLV.

The complete flow is described in "Uploading DPA Root CA Certificate".

https://docs.ndis.nvidia.com/Root%20CA%20Containers/DPA%20Root%20CA.html

DPA Development 47

3. The public key in the leaf of the certificate chain anchored by CACert_DPA is used
for authentication of the DPA firmware Image.

The structure of the ELF file containing the DPA app and the certificate chain is
described in "ELF File Structure".

A scalable and reliable infrastructure is required to support many users. The customer
must also have an infrastructure to support their own code signing process according to
their organization's security policy. Both matters are out of the scope of this document.

Device Ownership Claiming Flow

NVIDIA networking devices allow the user of the device to customize the configurations,
and in some cases change the behavior of the device. This set of available customizations
is controlled by higher level NVIDIA configurations that come either as part of the device
firmware or as a separate update file. To allow customers/device owners to change the
set of available configurations and allowed behaviors, each device can have a device
owner who is allowed to change the default behaviors and configurations of the device,
and to change what configurations are exposed to the user.

The items controlled by the customer/device owner are:

Device configurations: The customer/device owner can change the default value of
any configuration available to users. They can also prevent users from changing the
value.

Note

Trying to utilize the DPA signing flow in a firmware version prior to
DOCA 2.2.0 is not supported.

DPA Development 48

Trusted root certificates: The customer/device owner can control what root
certificates the device trusts. These certificates control various behaviors (e.g., what
3rd party code the BlueField DPA accepts).

After the device has the public key of the owner, whenever an NVconfig file is signed with
this key, one of two things must be true:

The nv_file_id field in the NVconfig file must have the parameter keep_same_priority
as True; or
The NVconfig file must contain the public key itself (so the public key is rewritten to
the device)

Otherwise, the public key is removed from the device, and as such will not accept files
signed by the matching private key.

Detailed Ownership Claiming Flow

1. Customer generates a private-public key pair, and a UUID for the key pair.

1. Generating UUID for the key pair:

Example output:

2. Generating an RSA key pair:

Example output:

uuidgen -t

77dd4ef0-c633-11ed-9e20-001dd8b744ff

openssl genrsa -out OEM.77dd4ef0-c633-11ed-9e20-001dd8b744ff.pem
4096

Generating RSA private key, 2048 bit long modulus
...........+++
..............+++

DPA Development 49

3. Extracting the public key file from the RSA key pair:

Output:

The public key should look similar to the following:

2. Customer provides NVIDIA Enterprise Support the public key for device ownership
with its UUID.

3. NVIDIA generates a signed NVconfig file with this public key and sends it to the
customer. This key may only be applied to devices that do not have a device
ownership key installed yet.

4. Customer uses mlxconfig to install the OEM key on the needed devices.

e is 65537 (0x10001)

openssl rsa -in OEM.77dd4ef0-c633-11ed-9e20-001dd8b744ff.pem -out
OEM.77dd4ef0-c633-11ed-9e20-001dd8b744ff.public -pubout -outform
PEM

writing RSA key

-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAxfijde+27A3pQ7MoZ
mtpyuHO1JY9AUeKaHUXkWRiopL9Puswx1KcGfWJSNzlEPZRevTHraYlLQCru4
W9NBE/qIwS2n7kiFwCCvZK6FKUUqZAuMJTpfuNtv9o4C4v0ZiX4TQqWDND8
hPf3QLRiJ/ux4G6uHIFwENSwagershuKD0RI6BaZ1g9S9IxdXcD0vTdEuDPqQ0
CwEs/3xnksNRLUM+TiPEZoc5MoEoKyJv4GFbGttabhDCt5sr9RqAqTNUSDI9B
XoQBQQpqRgYd3lQ31Fhh3G9GjtoAcUQ6l0Gct3DXKFTAADV3Lyo1vjFNrOKU
pjDKzNmZAsxyIZI0buc24TCgj1yPyFboJtpnHmltyxfm9e+EJsdSIpRiX8YTWwkN
aIzNj08VswULwbKow5Gu5FFpE/uXDE3cXjLOUNnKihszFv4qkqsQjKaK4GszXg
jfiEwsDKwS+cuWd9ihnyLrIWF23+OX0S5xjFXDJE8UthOD+3j3gGmP3kze1Iz2Y
Qvh3ITPRsqQltaiYh+CivqaCHC0voIMOP1ilAEZ/rW85pi6LA8EsudNMG2ELrUy
SznBzZI/OxMk4qKx9nGgjaP2YjmcPw2Ffc9zZcwl57ThEOhlyS6w3E9xwBvZIN
gMuOIWsu1FK3lIGxMSCUZQsCAwEAAQ==
-----END PUBLIC KEY-----

mlxconfig -d /dev/mst/<dev> apply oem_public_key_nvconfig.bin

DPA Development 50

To check if the upload process has been successful, the customer can use mlxconfig to
query the device and check if the new public key has been applied. The relevant
parameters to query are LC_NV_PUB_KEY_EXP, LC_NV_PUB_KEY_UUID, and
LC_NV_PUB_KEY_0_255.

Example of query command and expected response:

Uploading DPA Root CA Certificate

After uploading a device ownership public key to the device, the owner can upload DPA
root CA certificates to the device. There can be multiple DPA root CA certificates on the
device at the same time.

If the owner wants to upload authenticated DPA apps developed by NVIDIA, they must
upload the NVIDIA DPA root CA certificate found here.

If the owner wants to sign their own DPA apps, they must create another public-private
key pair (in addition to the device ownership key pair), create a certificate containing the
DPA root CA public key, and create a container with this certificate using mlxdpa.

To upload a signed container with a DPA root CA certificate to the device, mlxdpa must
be used. This can be done both for either NVIDIA or customer-created certificates.

Generating DPA Root CA Certificate

1. Create a DER encoded certificate containing the public key used to validate DPA
apps.

1. Generating a certificate and a new key pair:

mlxconfig -d <dev>-e q LC_NV_PUB_KEY_0_255

openssl req -x509 -newkey rsa:4096 -keyout OEM-DPA-root-CA-key.pem -
outform der -out OEM-DPA-root-CA-cert.crt -sha512 -nodes -subj

https://docs.ndis.nvidia.com/Root%20CA%20Containers/DPA%20Root%20CA.html

DPA Development 51

Output:

2. Create a container for the certificate and sign it with the device ownership private
key.

1. To create and add a container:

Output example:

2. To sign a container:

"/C=XX/ST=OEMStateName/L=OEMCityName/O=OEMCompanyName/OU=O
-days 3650

Note
Both SHA256 and SHA512 are supported in cert. Only a
RSA 4096 key is supported. The size of each certificate in
DER format must be less than 1792 bytes.

Generating a 4096 bit RSA private key
......++
......................++
writing new private key to 'OEM-DPA-root-CA-key.pem'

mlxdpa --cert_container_type add -c <cert.der> -o <path to output> --
life_cycle_priority <Nvidia/OEM/User> create_cert_container

Certificate container created successfully!

mlxdpa --cert_container <path to container> -p <key file> --keypair_uuid
<uuid> --cert_uuid <uuid> --life_cycle_priority <Nvidia/OEM/User> -o
<path-to-output> sign_cert_container

DPA Development 52

Manually Signing Container

If the server holding the private key cannot run mlxdpa, it is possible to manually sign the
certificate container and add the signature to the container. In that case, the following
process should be followed:

1. Generate unsigned cert container:

2. Generate signature field header:

3. Generate signature of container (in whatever way, this is an example only):

4. Concatenate unsigned container, signature header, and signature into one file:

Uploading Certificates

Upload each signed container containing the desired certificates for the device.

Certificate container signed successfully!

mlxdpa --cert_container_type add -c <.DER-formatted-certificate> -o
<unsigned-container-path> --keypair_uuid <uuid> --cert_uuid <uuid> --
life_cycle_priority OEM create_cert_container

echo "90 01 02 0C 10 00 00 00 00 00 00 00" | xxd -r -p - <signature-header-
path>

openssl dgst -sha512 -sign <private-key-pem-file> -out <container-signature-
path> <unsigned-container-path>

cat <unsigned-container-path> <signature-header-path> <container-signature-
path> > <signed-container-path>

flint -d <dev> -i <signed-container> -y b

DPA Development 53

Output example:

Removing Certificates

To remove root CA certificates from the device, the user must apply a certificate removal
container signed by the device ownership private key.

There are two ways to remove certificates, either removing all certificates, or removing all
installed certificates:

Removing all root CA certificates from the device:
1. Create a certificate container.

Output example:

2. Sign the certificate container.

Output example:

3. Apply the container to the device.

Output example:

-I- Downloading FW ...
FSMST_INITIALIZE - OK
Writing DIGITAL_CACERT_REMOVAL component - OK
-I- Component FW burn finished successfully.

mlxdpa --cert_container_type remove --remove_all_certs -o <path-to-
output> --life_cycle_priority <Nvidia/OEM/User> create_cert_container

Certificate container created successfully!

mlxdpa --cert_container <path-to-container> -p <key-file> --keypair_uuid
<uuid> --life_cycle_priority <Nvidia/OEM/User> -o <path-to-signed-
container> sign_cert_container

Certificate container signed successfully!

flint -d <dev> -i <signed-container> -y b

-I- Downloading FW ...
FSMST_INITIALIZE - OK

DPA Development 54

Removing specific root CA certificates according to their UUID:

1. Generate a signed container to remove certificate based on UUID.

2. Apply the container to the device:

Output:

DPA Authentication Enablement

After the device has a device ownership key and DPA root CA certificates installed, the
owner of the device can enable DPA authentication. To do this, they must create an
NVconfig file, sign it with the device ownership private key, and upload the NVconfig to
the device.

Writing DIGITAL_CACERT_REMOVAL component - OK
-I- Component FW burn finished successfully.

mlxdpa --cert_container_type remove --cert_uuid <uuid> -o <path to
output> --life_cycle_priority <Nvidia/OEM/User> create_cert_container
Certificate container created successfully!

mlxdpa --cert_container <path to container> -p <key file> --keypair_uuid
<uuid> --cert_uuid <uuid> --life_cycle_priority <Nvidia/OEM/User> -o
<path to output> sign_cert_container
Certificate container signed successfully!

flint -d <dev> -i <signed container> -y b

-I- Downloading FW ...
FSMST_INITIALIZE - OK
Writing DIGITAL_CACERT_REMOVAL component - OK
-I- Component FW burn finished successfully.

DPA Development 55

Generating NVconfig Enabling DPA Authentication

1. Create XML with TLVs to enable DPA authentication.

1. Get list of available TLVs for this device:

Output:

Example part of the generated text file:

2. Edit the text file to contain the following TLVs:

3. Convert the .txt file to XML format with another mlxconfig command:

mlxconfig -d /dev/mst/<dev> gen_tlvs_file enable_dpa_auth.txt

Saving output...
Done!

file_applicable_to 0
file_comment 0
file_signature 0
file_dbg_fw_token_id 0
file_cs_token_id 0
file_btc_token_id 0
file_mac_addr_list 0
file_public_key 0
file_signature_4096_a 0
file_signature_4096_b 0
…

file_applicable_to 1
nv_file_id_vendor 1
nv_dpa_auth 1

mlxconfig -a gen_xml_template enable_dpa_auth.txt
enable_dpa_auth.xml

DPA Development 56

Output:

The generated .xml file:

Saving output...
Done!

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://www.mellanox.com/config">
<file_applicable_to ovr_en='1' rd_en='1' writer_id='0'>
 <psid></psid>
 <psid_branch></psid_branch>
</file_applicable_to>

<nv_file_id_vendor ovr_en='1' rd_en='1' writer_id='0'>

 <!-- Legal Values: False/True -->
 <disable_override></disable_override>

 <!-- Legal Values: False/True -->
 <keep_same_priority></keep_same_priority>

 <!-- Legal Values: False/True -->
 <per_tlv_priority></per_tlv_priority>

 <!-- Legal Values: False/True -->
 <erase_lower_priority></erase_lower_priority>
 <file_version></file_version>
 <day></day>
 <month></month>
 <year></year>
 <seconds></seconds>
 <minutes></minutes>
 <hour></hour>

</nv_file_id_vendor>

DPA Development 57

4. Edit the XML file and add the information for each of the TLVs, as seen in the
following example XML file:

<nv_dpa_auth ovr_en='1' rd_en='1' writer_id='0'>
 <!-- Legal Values: False/True -->
 <dpa_auth_en></dpa_auth_en>

</nv_dpa_auth>
</config>

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://www.mellanox.com/config">

<file_applicable_to ovr_en='0' rd_en='1' writer_id='0'>
 <psid>TODO</psid>
 <psid_branch>TODO</psid_branch>
</file_applicable_to>

<nv_file_id_vendor ovr_en='0' rd_en='1' writer_id='0'>
 <disable_override>False</disable_override>
 <keep_same_priority>True</keep_same_priority>
 <per_tlv_priority>False</per_tlv_priority>
 <erase_lower_priority>False</erase_lower_priority>
 <file_version>TODO</file_version>
 <day>TODO</day>
 <month>TODO</month>
 <year>TODO</year>
 <seconds>TODO</seconds>
 <minutes>TODO</minutes>
 <hour>TODO</hour>
</nv_file_id_vendor>

<nv_dpa_auth ovr_en='0' rd_en='1' writer_id='0'>
 <dpa_auth_en>True</dpa_auth_en>
</nv_dpa_auth>

DPA Development 58

2. Convert XML file to binary NVconfig file and sign it using mlxconfig:

Output of create_conf command:

3. Upload NVconfig file to device by writing the file to the device:

Output:

4. Verify that the device has DPA authentication enabled by reading the status of DPA
authentication from the device:

</config>

Note
In nv_file_id_vendor, keep_same_priority must be True to
avoid removing the ownership public key from the device.
More information they can be found in section "Device
Ownership Claiming Flow".

Note
The ovr_en should be set to 0. This can ignore user priority
changing nv_dpa_auth.

mlxconfig -p OEM.77dd4ef0-c633-11ed-9e20-001dd8b744ff.pem -u 77dd4ef0-
c633-11ed-9e20-001dd8b744ff create_conf enable_dpa_auth.xml
enable_dpa_auth.bin

Saving output...
Done!

mlxconfig -d /dev/mst/<dev> apply enable_dpa_auth.bin

Saving output...
Done!

DPA Development 59

Output:

The DPU's factory default setting is configured with dpa_auth_en=0 (i.e., DPA
applications can run without authentication). To prevent configuration change by
any user, it is strongly recommended for the customer to generate and install
NVconfig with dpa_auth_en=0/1, according to their preferences, with ovr_en=0.

Manually Signing NVconfig File

If the server holding the private key cannot run mlxconfig, it is possible to manually sign
the binary NVconfig file and add the signature to the file. In this case, the following
process should be followed instead of step 2:

1. Generate unsigned NVconfig bin file from the XML file:

2. Generate random UUID for signature:

3. Generate signature of NVconfig bin file (in whatever way, this is an example only):

mlxconfig -d /dev/mst/<dev> -e q DPA_AUTHENTICATION

Device #1:

Device type: BlueField3
...
...
Configurations: Default Current Next Boot
 RO DPA_AUTHENTICATION True(1) True(1) True(1)

mlxconfig create_conf <xml-nvconfig-path> <unsigned-nvconfig-path>

uuidgen -r | xxd -r -p - <signature-uuid-path>

openssl dgst -sha512 -sign <private-key-pem-file> -out <nvconfig-signature-
path> <unsigned-nvconfig-path>

DPA Development 60

4. Split the signature into two parts:

5. Add signing key UUID:

Use the signing key UUID, which must have a length of exactly 16 bytes, in a format
like aa9c8c2f-8b29-4e92-9b76-2429447620e0.

6. Generate headers for signature struct:

7. Concatenate everything:

Device Ownership Transfer

The device owner may change the device ownership key to change the owner of the
device or to remove the owner altogether.

First Installation

head -c 256 <nvconfig-signature-path> > <signature-part-1-path> && tail -c 256
<nvconfig-signature-path> > <signature-part-2-path>

echo "<signing-key-UUID>" | xxd -r -p - <signing-key-uuid-path>

echo "03 00 01 20 06 00 00 0B 00 00 00 00" | xxd -r -p - <signature-1-header-
path>
echo "03 00 01 20 06 00 00 0C 00 00 00 00" | xxd -r -p - <signature-2-header-
path>

cat <unsigned-nvconfig-path> <signature-1-header-path> <signature-uuid-
path> <signing-key-uuid-path> <signature-part-1-path> <signature-2-header-
path> <signature-uuid-path> <signing-key-uuid-path> <signature-part-2-path>
> <signed-nvconfig-path>

DPA Development 61

To install the first OEM_PUBLIC_KEY on the device, the user must upload an NVCONFIG
file signed by NVIDIA. This file would contain the 3 FILE_OEM_PUBLIC_KEY TLVs of the
current user.

Removing Device Ownership Key

Before removing the device ownership key completely, it is recommended that the device
owner reverts any changes made to the device since it is not possible to undo them after
the key is removed. Mainly, the root CA certificates installed by the owner should be
removed.

1. To remove device ownership key completely, follow the steps in section "Generating
NVconfig Enabling DPA Authentication" to create an XML file with TLVs.

2. Edit the XML file to contain the following TLVs:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://www.mellanox.com/config">

<file_applicable_to ovr_en='0' rd_en='1' writer_id='0'>
 <psid> MT_0000000911</psid>
 <psid_branch> </psid_branch>
</file_applicable_to>

<nv_file_id_vendor ovr_en='0' rd_en='1' writer_id='0'>
 <disable_override>False</disable_override>
 <keep_same_priority>False</keep_same_priority>
 <per_tlv_priority>False</per_tlv_priority>
 <erase_lower_priority>False</erase_lower_priority>
 <file_version>0</file_version>
 <day>17</day>
 <month>7</month>
 <year>7e7</year>
 <seconds>1</seconds>
 <minutes>e</minutes>

DPA Development 62

The TLVs in this file are the only TLVs that will have OEM priority after this file is
applied, and as the device ownership key will no longer be on the device, the OEM
will no longer be able to change the TLVs. To have OEM priority TLVs on the device
after removing the device ownership key, add to this XML any TLV that must stay as
default on the device.

3. Convert the XML file to a binary NVconfig TLV file signed by the device ownership
key as described in section "Generating NVconfig Enabling DPA Authentication".

4. Apply the NVconfig file to the device as described in section "Generating NVconfig
Enabling DPA Authentication".

Changing Device Ownership Key

To transfer ownership of the device to another entity, the previous owner can change the
device ownership public key to the public key of the new owner.

To do this, they can use an NVconfig file, and include in it the following TLVs:

 <hour>15</hour>
</nv_file_id_vendor>
</config>

<nv_ls_nv_public_key_0 ovr_en='0' rd_en='1' writer_id='0'>
 <public_key_exp>65537</public_key_exp>
 <keypair_uuid>77dd4ef0-c633-11ed-9e20-001dd8b744ff</keypair_uuid>
</nv_ls_nv_public_key_0>

<nv_ls_nv_public_key_1 ovr_en='0' rd_en='1' writer_id='0'>
 <key>
 c5:f8:a3:75:ef:b6:ec:0d:e9:43:b3:28:66:79:
 66:9a:da:72:b8:73:b5:25:8f:40:51:e2:9a:1d:45:
 e4:59:18:a8:a4:bf:4f:ba:cc:31:d4:a7:06:7d:62:
 52:37:39:44:3d:94:5e:bd:31:eb:69:89:4b:40:2a:
 ee:e2:87:eb:5b:d3:41:13:fa:88:c1:2d:a7:ee:48:
 85:c0:20:af:64:ae:85:29:45:2a:64:0b:8c:25:3a:
 5f:b8:db:6f:f6:8e:02:e2:fd:19:89:7e:13:42:a5:
 83:34:3f:21:cb:ed:4b:84:f7:f7:40:b4:62:27:fb:

DPA Development 63

 b1:e0:6e:ae:1c:81:70:10:d4:b0:6a:07:ab:b2:1b:
 8a:0f:44:48:e8:16:99:d6:0f:52:f4:8c:5d:5d:c0:
 f4:bd:37:44:b8:33:ea:43:49:b8:0b:01:2c:ff:7c:
 67:92:c3:51:2d:43:3e:4e:23:c4:66:87:39:32:81:
 28:2b:22:6f:e0:61:5b:1a:db:5a:6e:10:c2:b7:9b:
 2b:f5:1a:80:a9:33:54:48:32:3d:07:48:eb:5e:84:
 01:41:0a:6a:46:06:1d:de:54:37:d4:58:61:dc:6f:
 46:8e:da:00:71:44:3a:97:41:9c:b7:70:d7:28:54:
 c0:00:35:77:2f:2a:35:be:31:4d:ac:e2:94:85:d8:
 53:a6:
 </key>
</nv_ls_nv_public_key_1>

<nv_ls_nv_public_key_2 ovr_en='0' rd_en='1' writer_id='0'>
 <key>
 30:ca:cc:d9:99:02:cc:72:21:92:34:6e:e7:
 36:e1:30:a0:8f:5c:8f:c8:56:e8:26:da:67:1e:69:
 6d:cb:17:e6:f5:ef:84:26:c7:52:22:94:62:5f:c6:
 13:5b:09:0d:68:8c:cd:8f:4f:15:b3:05:0b:c1:b2:
 a8:c3:91:ae:e4:51:69:13:fb:97:0c:4d:dc:5e:32:
 ce:50:d9:ca:8a:1b:33:16:fe:2a:92:ab:10:8c:a6:
 8a:e0:6b:33:5e:07:be:8d:f8:84:c2:c0:ca:c1:2f:
 9c:b9:67:7d:8a:19:f2:2e:b2:16:17:6d:fe:39:7d:
 12:e7:18:c5:5c:32:44:f1:4b:61:38:3f:b7:8f:78:
 06:98:fd:e4:cd:ed:48:cf:66:0f:42:f8:77:21:33:
 d1:b2:a4:25:b5:a8:98:87:e0:a2:be:a6:82:1c:2d:
 2f:a0:83:0e:3f:58:a5:00:46:7f:ad:6f:39:a6:2e:
 8b:03:c1:2c:b9:d3:4c:1b:61:0b:ad:4c:a5:4b:39:
 c1:cd:92:3f:3b:13:24:e2:a2:b1:f6:71:a0:8d:a3:
 f6:62:39:9c:3f:0d:85:7d:cf:73:65:cc:25:e7:b4:
 e1:10:e8:65:c9:2e:b0:dc:4f:71:c0:1b:d9:20:d2:
 de:80:cb:8e:21:6b:2e:d4:52:b7:94:81:b1:31:20:
 94:65:0b
 </key>
</nv_ls_nv_public_key_2>

DPA Development 64

If the transfer is internal, the owner should set keep_same_priority=True in
nv_file_id_vendor TLV and only include the 3 nv_ls_nv_public_key_* TLVs,
file_applicable_to and nv_file_id_vendor TLVs in the NVconfig file.

If the transfer is to another OEM/CSP, the owner should clean the device (similarly to
removing the device ownership key) and set keep_same_priority=False in
nv_file_id_vendor TLV.

ELF File Structure

For maximal firmware code reuse, the format of the DPA image loaded from driver
should be the same as for the file loaded from flash. As for files loaded from the host, ELF
is the default file format. This is chosen as the format for the DPA image, both for flash
and for files loaded from the host.

The following figure shows, schematically, a generic ELF file structure.

To support DPA Code authentication additional information needs to be presented to
firmware. This info must include:

Cryptographic signature of the DPA code
Customer certificate chain including a Leaf Certificate with the public key to be used
for signature validation (as described in section "Public Keys (Infrastructure,
Delivery, and Verification)")

ELF File Structure Schematic

DPA Development 65

Crypto Signing Flow

The host ELF includes parts which run on the host, and those that run on DPA. DPA code
files are incorporated in the "big" host ELF as binaries. Each host file may include several
DPA applications.

When it is required to sign the DPA applications, the following steps need to be
performed by the MFT Signing Tool (also see figure "Crypto Signing Flow"):

1. Using ELF manipulation library APIs of DPACC, extract Apps List Table

1. Input – host ELF
2. Output – apps list data table to include:

1. DPA app index
2. DPA app name
3. Offset in host ELF
4. Size of app
5. Name of corresponding crypto data section

https://docs.nvidia.com/networking/display/mftv4260/mlxdpa+%E2%80%93+dpa+applications+sign+tool

DPA Development 66

For each DPA application (from i=1 to i=N, N- number of DPA apps in the
host ELF) run steps 2 and 3.

2. Fill hash list table:

Input: Dpa_App_i
Output: Hash list table

3. Sign the crypto data:

Input: {Metadata, Hash List Table}, key handle (e.g., UUID from leaf of the
Certificate Chain)
Output: Crypto_Data "Blob", including: Metadata, Hash List Table, Crypto
Signature, Certificate Chain

4. Add crypto data section to host ELF:

Inputs: Host ELF, crypto data section name to use
Output: File name of host ELF with signature added

The structures used in the flow (hash list table, metadata, etc.) are described in sections
"ELF Crypto Data Section Content" and "Hash List Table Layout".

Signing the crypto data may be done using a signing server or a locally stored key.

Crypto Signing Flow

DPA Development 67

ELF Cryptographic Data Section

This figure shows, schematically, the layout of the cryptographic data section, and the
following subsections provide details about the ELF section header and the rest of the
structures.

ELF Cryptographic Data Section Layout

DPA Development 68

Crypto Data ELF Section Header

Defined according to the ELF section header format.

ELF Section Header

Name
Off
set

Ra
nge

Description

sh_na
me 0x0 4B

&("Cryptographic Data Section DPA App X")
An offset to a string (in the .shstrtab section of ELF) which represents
the name of this section

sh_typ
e 0x4 4B

0x70000666
SHT_CRYPTODATA – the section is proprietary and holds crypto
information defined in this document

sh_flag
s 0X8 8B 0 – no flags

sh_add
r

0x1
0

8B Virtual address of the section in memory, for sections that are loaded

sh_offs
et

0x1
8

8B Offset of the section in the file image

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format#File_layout

DPA Development 69

Name
Off
set

Ra
nge

Description

sh_size
0x2
0

8B
Size in bytes of the section in the file image. Depends on the content
(e.g., presence and type of public key certificate chain and signature).

sh_link
0x2
8

4B 0 – =SHN_UNDEF, no link information

sh_info
0x2
C

4B 0 – no extra information about the section

sh_add
ralign

0x3
0

8B
Contains the required alignment of the section. This field must be a
power of two.

sh_ent
size

0x3
8

8B

0

0x4
0

End of section header (size)

ELF Crypto Data Section Content

ELF Crypto Data Section Fields Description

Name Offset Range Description

metadata_v
ersion

0x0 15:0
Version metadata structure format.
Initial version is 0.

Reserved
(DPA_fw_type

)
0x4 15:8 Reserved

Reserved 0x8 31:0 Reserved

Reserved 0xC 31:0 Reserved. Shall be set to all zeros.

Reserved 0x10 16B Reserved. Shall be set to all zeros.

Reserved 0x20 4 bytes Reserved. Shall be set to all zeros.

Reserved 0x24 24B Reserved. Shall be set to all zeros.

signature_t
ype

0x3c 15:0 Signature Type. Only relevant for
signed firmware:

DPA Development 70

Name Offset Range Description

0, 1 – Reserved
2 – RSA_ SHA_512
>3 – Reserved

Hash List
Table

0x40
HashTabl
eLength

Crypto
Signature

0x40 +
HashTableLength

Signatur
e_Length

Signature_Length depends on the
signature_type.

Certificate_
Chain

0x40 +
HashTableLength +
Signature_Length

CrtChain
_Length

Structure given the table under section
"Certificate Chain Layout".

Padding
FF-padding to align the full size of the
data to multiples of DWords (DWs)

The full length of the ELF crypto data section shall be a multiple of DWs (due to firmware
legacy implementation). Thus, the MFT (as part of the flow described in figure "Crypto
Signing Flow") shall add FF-padding for this structure to align to multiple of DW.

Hash List Table Layout

This table specifies the hash table layout (proposal).

The table contains two parts:

The 1st part corresponds to the segments of the ELF file, as referenced by the
Program Header Table of the EFL file
The 2nd part corresponds to the sections of the ELF file, as referenced by the
Section Header Table

The hash algorithm to be used is SHA-256.

Hash List Table Layout (Proposal)

DPA Development 71

Name Offset
Ran
ge

Description

Hash Table Magic Pattern 0x0
8
byte
s

ASCII "HASHLIST' string:
0x0: 31:24 – "H", 23:16 – "A",
15:8 – "S", 7:0 – "H"
0x4: 31:24 – "L", 23:16 – "I", 15:8
– "S", 7:0 – "T"

Number of Entries – Segments 0x8 7:0
Number of entries in Hashes
Segments part, N_Segments.

Reserved 0x8 31:8 Reserved

Number of Entries – Sections 0xc 7:0
Number of entries in Hashes
Sections part, N_Sections.
Minimum – 0

Reserved 0xc 31:8 Reserved

Reserved 0x10
16
byte
s

Reserved

DPA Application ELF Hash 0x20
32
byte
s

Hash of the full ELF App file

ELF Header Hash 0x40
32
byte
s

Hash of the ELF Header

Program Header Hash 0x60
32
byte
s

Hash of the program header

Hash of 1st Segment referenced in
the Program Header Table

0x80
32
byte
s

Hash of 1st segment referenced
in the Program Header Table

Hash of 2nd Segment referenced
in the Program Header Table

0xA0
32
byte
s

Hash of 2nd Segment
referenced in the Program
Header Table

…… …… ….. ……

DPA Development 72

Name Offset
Ran
ge

Description

Hash of N_Segments (last)
Segment referenced in the
Program Header Table

0x60 +
N_Segment
s*0x20

32
byte
s

Hash of 2nd segment
referenced in the Program
Header Table

Section Header Table Hash
0x80 +
N_Segment
s*0x20

32
byte
s

Hash of the Section Header
Table

Hash of 1st Section referenced in
the Section Header Table

+ 0x20
32
byte
s

Hash of 1st section referenced
in the Section Header Table

Hash of 2nd Section referenced in
the Section Header Table

+ 0x20
32
byte
s

Hash of 2nd section referenced
in the Section Header Table

…… …… ….. ……

Hash of N_Sections (last) Section
referenced in the Section Header
Table

+ 0x20
32
byte
s

Hash of N_Sections (last) section
referenced in the Section
Header Table

The 32-bytes hash fields of different sections/segments in the previous table shall follow
Big-Endian convention, as illustrated here:

Hash Fields (Big Endian) Bytes Alignment

DPA Development 73

Certificate Chain Layout

The following table specifies the certificate chain layout. The leaf (the last certificate) of
the chain is used as the public key for authentication of the DPA code. This structure is
aligned with the certificate chain layout as defined in the Flash Application Note.

Certificate Chain Layout

Name Offset
Ra
ng
e

Description

Type 0x0 3:0 Chain type. Shall be set to 1. 3rd party code authentication
certificate chain.

Count 0x0 7:4 Number of certificates in this chain

Lengt
h

0x0
23:
8

Total length of the certificate chain, in bytes, including all fields in
this table

Reser
ved

0x4
31:
0

31:0 – Reserved

CRC 0x8
15:
0

The CRC of the header, for header integrity check, covering DWs in
0x0, 0x4

Certifi
cates

0xC-
0x100
0

One or more ASN.1 DER-encoded X509v3 certificates. The ASN.1
DER encoding of each individual certificate can be analyzed to
determine its length.
The certificates shall be listed in hierarchical order, with the leaf
certificate being the last on the list.

Known Limitations

Supported Devices

BlueField-3 based DPUs

DPA Development 74

Supported Host OS

Windows is not supported

Supported SDKs

DOCA FlexIO at beta level

DOCA DPA at beta level

Toolchain

DPA image-signing and signature-verification are not currently supported

Debugger (GDB) is currently not supported

FlexIO

When flexio_dev_outbox_config_uar_extension API is called with a device_id parameter
different than PF/ECPF ID (i.e., move to SF/VF outbox) and the APIs flexio_dev_yield(),
flexio_dev_print(), or flexio_dev_msg() are called, then when either of those 3 APIs return,
the user cannot work with the SF/VF queues.

© Copyright 2024, NVIDIA. PDF Generated on 06/04/2024

	Overview
	DOCA Libs and Drivers
	Programming Model

	FlexIO
	Prerequisites
	Architecture
	API
	Resource Management
	DPA Memory Management
	DPA Window
	DPA Event Handler
	Version API and Backward Compatibility
	Application Debugging
	FlexIO Samples

	DPA Application Authentication
	Root of Trust Principles
	ELF File Structure

	Known Limitations
	Supported Devices
	Supported Host OS
	Supported SDKs
	Toolchain
	FlexIO

