
DPA Development

Table of contents

Overview

DOCA Libs and Drivers

Programming Model

Compiler

Flex IO SDK

DOCA DPA

Memory Model

DPA-specific Operations

Flex IO SDK

Prerequisites

Architecture

API

Resource Management

Example

DPA Memory Management

Allocating NIC Queues for Use by DPA

Memory Allocation Best Practices

DPA Window

DPA Event Handler

Default Window/Outbox

Execution Unit Management

Version API and Backward Compatibility

Version API Toolkit

DPA Development 1

Table of contents

Overview

DOCA Libs and Drivers

Programming Model

Compiler

Flex IO SDK

DOCA DPA

Memory Model

DPA-specific Operations

Flex IO SDK

Prerequisites

Architecture

API

Resource Management

Example

DPA Memory Management

Allocating NIC Queues for Use by DPA

Memory Allocation Best Practices

DPA Window

DPA Event Handler

Default Window/Outbox

Execution Unit Management

Version API and Backward Compatibility

Version API Toolkit

Compile-time

Runtime

End of Backward Compatibility

Application Debugging

Using DPA GDB

Using Device Messaging Stream API

Core Dump

Experimental Flex IO APIs

Flex IO Samples

Running Flex IO Sample

Samples

Flex IO SDK Packages

DPA Application Authentication

Root of Trust Principles

Signing of 3rd Party DPA App Code

Verification of Authenticity of DPA App Code

Device Ownership Claiming Flow

Uploading DPA Root CA Certificate

DPA Authentication Enablement

Device Ownership Transfer

ELF File Structure

Crypto Signing Flow

ELF Cryptographic Data Section

Known Limitations

DPA Development 2

Compile-time

Runtime

End of Backward Compatibility

Application Debugging

Using DPA GDB

Using Device Messaging Stream API

Core Dump

Experimental Flex IO APIs

Flex IO Samples

Running Flex IO Sample

Samples

Flex IO SDK Packages

DPA Application Authentication

Root of Trust Principles

Signing of 3rd Party DPA App Code

Verification of Authenticity of DPA App Code

Device Ownership Claiming Flow

Uploading DPA Root CA Certificate

DPA Authentication Enablement

Device Ownership Transfer

ELF File Structure

Crypto Signing Flow

ELF Cryptographic Data Section

Known Limitations

Supported Devices

Supported Host OS

Supported SDKs

Toolchain

Flex IO

DPA Development 3

Supported Devices

Supported Host OS

Supported SDKs

Toolchain

Flex IO

DPA Development 4

Overview

DOCA Libs and Drivers

The NVIDIA DOCA framework is the key for unlocking the potential of NVIDIA®
BlueField®-3 platforms.

DOCA's software environment allows developers to program the DPA to accelerate
workloads. Specifically, DOCA includes:

DOCA DPA SDK – a high-level SDK for application-level protocol acceleration

DOCA Flex IO SDK – a low-level SDK to load DPA programs into the DPA, manage the
DPA memory, create the execution handlers and the needed hardware rings and
contexts

DPACC – DPA toolchain for compiling and ELF file manipulation of the DPA code

Programming Model

The DPA is intended to accelerate datapath operations for the DPU and host CPU. The
accelerated portion of the application using DPA is presented as a library for the host
application. The code within the library is invoked in an event-driven manner in the
context of a process that is running on the DPA. One or many DPA execution units may
work to handle the work associated with network events. The programmer specifies
different conditions when each function should be called using the appropriate SDK APIs
on the host or DPU.

The DPA cannot be used as a standalone CPU.

Management of the DPA, such as loading processes and allocating memory, is performed
from a host or DPU process. The host process discovers the DPA capabilities on the
device and drives the control plane to set up the different DPA objects. The DPA objects
exist as long as the host process exists. When the host process is destroyed, the DPA
objects are freed. The host process decides which functions it wants to accelerate using
the DPA: Either its entire data plane or only a part of it.

The following diagram illustrates the different processes that exist in the system:

DPA Development 5

Compiler

DPACC is a compiler for the DPA processor. It compiles code targeted for the DPA
processor into an executable and generates a DPA program. A DPA program is a host
library with interfaces encapsulating the DPA executable.

This DPA program is linked with the host application to generate a host executable. The
host executable can invoke the DPA code through the DPA SDK's runtime.

Compiler Keywords

DPACC implements the following keywords:

Keyword Application Usage Comment

__dpa_gl
obal__

Annotate all event handlers that
execute on the DPA and all common
user-defined datatypes (including

Used by the compiler to generate
entry points in the DPA
executable and automatically

DPA Development 6

Keyword Application Usage Comment

user-defined structures) which are
passed from the host to the DPA as
arguments.

replicate user-defined datatypes
between the host and DPA.

__dpa_rp
c__

Annotate all RPC calls which are
invoked by the host and execute on
the DPA. RPC calls return a value of
uint64_t .

Used by the compiler to generate
RPC specific entry points.

Please refer to DOCA DPACC Compiler for more details.

Flex IO SDK

Flex IO SDK is a low-level event-driven library to program and accelerate functions on the
DPA.

Flex IO SDK Execution Model

To load an application onto the DPA, the user must create a process on the DPA, called a
Flex IO SDK process. Flex IO SDK processes are isolated from each other like standard
host OS processes.

Flex IO SDK supports the following options for executing a user-defined function on the
DPA:

1. Flex IO SDK event hander – the event handler executes its function each time an
event occurs. An event on this context is a completion event (CQE) received on the
NIC completion queue (CQ) when the CQ was in the armed state. The event triggers
an internal DPA interrupt that activates the event handler. When the event handler is
activated, it is provided with a user-defined argument. The argument in most cases
is a pointer to the software execution context of the event handler.

The following pseudo-code example describes how to create an event handler and
attach it to a CQ:

// Device code
__dpa_global__ void myFunc(flexio_uintptr_t myArg){
 struct my_db *db = (struct my_db *)myArg;

https://docs.nvidia.com/doca/sdk/DOCA+DPACC+Compiler/index.html

DPA Development 7

2. RPC – remote, synchronous, one-time call of a specific function. RPC is mainly used
for the control path to update DPA memory contexts of a process. The RPC's return
value is reported back to the host application.

The following pseudo-code example describes how to use the RPC:

 get_completion(db->myCq)
 work();
 arm_cq(myCq);
 // reschedule the thread
 flexio_dev_thread_reschedule();
}

// Host code
main() {

 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);

 /* Create event handler to run my_func with my_arg */
 flexio_event_handler_create(myProcess, myFunc, myArg,
&myEventHandler);

 /* Associate the event hanlder with a specific CQ */
 create_cq(&myCQ,… , myEventHandler)

 /* Start the event handler */
 flexio_event_handler_run(myEventHandler)
 …
}

// Device code
__dpa_rpc__ uint64_t myFunc(myArg) {
 struct my_db *db = (struct my_db *)myArg;
 if (db->flag) return 1;

DPA Development 8

Flex IO SDK Multi-hardware Model

The Flex IO SDK enables building a single DPA application which supports multiple DPA
hardware models. DPA hardware models refer to different DPA versions tailored to specific
NVIDIA devices, such as NVIDIA® BlueField®-3 and NVIDIA® ConnectX®-8.

When an application is built for multiple hardware models, it generates a copy for each
specified hardware model. Users can then select the appropriate Flex IO program (the Flex
IO representation of the executable) to load into the Flex IO process by searching for the
program by its name and hardware model.

Example implementation:

 db->flag = 1;
 return 0;
}

// Host code
main() {
 …

 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);

 /* run the function */
 flexio_process_call(myProcess, myFunc, myArg,
&returnValue);
 …
}

/* Initialize the Flex IO application selection attributes for the device. */

/* Set the application name to match. */

flexio_app_sel_attr.app_name = DEV_APP_NAME_XSTR(DEV_APP_NAME);

DPA Development 9

This example demonstrates how to search for the appropriate Flex IO program for a
device's hardware model or an older compatible version (as new hardware models
maintain backward compatibility with older code). Users can also request a program for a
specific hardware model, in which case only a Flex IO program explicitly built for that
model will be selected.

Flex IO SDK Memory Management

The DPA process can access several memory locations:

Global variables defined in the DPA process.

Stack memory – local to the DPA execution unit. Stack memory is not guaranteed to
be preserved between different execution of the same handler. For limitations
regarding stack memory, refer to the "Memory Model" section.

Heap memory – this is the process' main memory. The heap memory contents are
preserved as long as the DPA process is active.

External registered memory – remote to the DPA but local to the server. The DPA can
access any memory location that can be registered to the local NIC using the
provided API. This includes BlueField DRAM, external host DRAM, GPU memory, and
more.

The heap and external registered memory locations are managed from the host process.
The DPA execution units can load/store from stack/heap and external memory locations.

/* Set the hardware platform to default - this will automatically select the appropriate program. */

flexio_app_sel_attr.hw_model_id = FLEXIO_HW_MODEL_DEF;

/* Specify the IBV device context to use for the hardware model query. */

flexio_app_sel_attr.ibv_ctx = ctx.ibv_ctx;

/* Retrieve the Flex IO application.
 * The Flex IO application is created per hardware model by DPACC.
 * This function matches the selection attributes (application name and HW model)
 * with the available applications and returns the best match. If no exact match is
 * found, a program built for an older hardware model will be selected.
 */

flexio_app_get(&flexio_app_sel_attr, &ctx.flexio_app);

DPA Development 10

Note that for external memory locations, the window should be configured appropriately
using Flex IO Window APIs.

Flex IO SDK allows the user to allocate and populate heap memory on the DPA. The
memory can later be used by in the DPA application as an argument to the execution
context (RPC and event handler):

Flex IO SDK allows accessing external registered memory from the DPA execution units
using Flex IO Window. Flex IO Window maps a memory region from the DPA process
address space to an external registered memory. A memory key for the external memory
region is required to be associated with the window. The memory key is used for address
translation and protection. Flex IO window is created by the host process and is
configured and used by the DPA handler during execution. Once configured, LD/ST from
the DPA execution units access the external memory directly.

The access for external memory is not coherent. As such, an explicit memory fencing is
required to flush the cached data to maintain consistency. See section "Memory Fences"
for more.

The following example code demonstrates the window management:

/* Load the application code into the DPA */
flexio_process_create(device, application, &myProcess);

/* allocate some memory */
flexio_buf_dev_alloc(process, size, ptr)

/* populate it with user defined data */
flexio_host2dev_memcpy(process, src, size, ptr)

/* run the function */
flexio_process_call(myProcess, function, ptr, &return value);

// Device code
__dpa_rpc__ uint64_t myFunc(arg1, arg2, arg3)
{
 struct flexio_dev_thread_ctx *dtctx;

DPA Development 11

Send and Receive Operation

 flexio_dev_get_thread_ctx(&dtctx);
 uint32_t windowId = arg1;
 uint32_t mkey = arg2;
 uint64_t *dev_ptr;
 flexio_dev_window_config(dtctx, windowId, mkey);
 /* get ptr to the external memory (arg3) from the DPA process
address space */
 flexio_dev_status status = flexio_dev_window_ptr_acquire
(dtctx, arg3, dev_ptr);
 /* will set the external memory */
 *dev_ptr = 0xff;
 /* flush the data out */
 __dpa_thread_window_writeback();
 return 0;
}

// Host code
main() {
 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);
 /* define an array on host */
 uint64_t var= {0};
 /* register host buffer */
 mkey =ibv_reg_mr(&var, …)
 /* create the window */
 flexio_window_create(process, doca_device->pd, mkey,
&window_ctx);
 /* run the function */
 flexio_process_call(myProcess, myFunc,
flexio_window_get_id(window_ctx), mkey, &var, &returnValue);
}

DPA Development 12

A DPA process can initiate send and receive operations using the Flex IO outbox object.
The Flex IO outbox contains memory-mapped IO registers that enable the DPA application
to issue device doorbells to manage the send and receive planes. The DPA outbox can be
configured during run time to perform send and receive from a specific NIC function
exposed by the DPU. This capability is not available for Host CPUs that can only access
their assigned NIC function.

Each DPA execution engine has its own outbox. As such, each handler can efficiently use
the outbox without needing to lock to protect against accesses from other handlers. To
enforce the required security and isolation, the DPA outbox enables the DPA application to
send and receive only for queues created by the DPA host process and only for NIC
functions the process is allowed to access.

Like the Flex IO window, the Flex IO outbox is created by the host process and configured
and used at run time by the DPA process.

// Device code
__dpa_rpc__ uint64_t myFunc(arg1,arg2,arg3) {

 struct flexio_dev_thread_ctx *dtctx;

 flexio_dev_get_thread_ctx(&dtctx);

 uint32_t outbox = arg1;
 flexio_dev_outbox_config (dtctx, outbox);

 /* Create some wqe and post it on sq */

 /* Send DB on sq*/

 flexio_dev_qp_sq_ring_db(dtctx, sq_pi,arg3);

 /* Poll CQ (cq number is in arg2) */
 return 0;
}

// Host code
main() {

DPA Development 13

Synchronization Primitives

The DPA execution units support atomic instructions to protect from concurrent access
to the DPA process heap memory. Using those instructions, multiple synchronization
primitives can be designed.

Flex IO currently supports basic spin lock primitives. More advanced thread pipelining can
be achieved using DOCA DPA events.

 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);

 /* Allocate uar */
 uar = ibv_alloc_uar(ibv_ctx);

 /* Create queues*/
 flexio_cq_create(myProcess, ibv_ctx, uar, cq_attr, &myCQ);
 my_hwcq = flexio_cq_get_hw_cq (myCQ);

 flexio_sq_create(myProcess, ibv_ctx, myCQ, uar, sq_attr,
&mySQ);
 my_hwsq = flexio_sq_get_hw_sq(mySQ);

 /* Outbox will allow access only for queues created with
the same UAR*/
 flexio_outbox_create(process, ibv_ctx, uar, &myOutbox);

 /* Run the function */
 flexio_process_call(myProcess, myFunc, myOutbox, my_hwcq-
>cq_num, my_hwsq->sq_num, &return_value);
}

DPA Development 14

DOCA DPA

Supported at beta level.

The DOCA DPA SDK eases DPA code management by providing high-level primitives for
DPA work offloading, synchronization, and communication. This leads to simpler code but
lacks the low-level control that Flex IO SDK provides.

User-level applications and libraries wishing to utilize the DPA to offload their code may
choose DOCA DPA. Use-cases closer to the driver level and requiring access to low-level
NIC features would be better served using Flex IO.

The implementation of DOCA DPA is based on the Flex IO API. The higher level of
abstraction enables the user to focus on their program logic and not the low-level
mechanics.

Memory Model

The DPA offers a coherent but weakly ordered memory model. The application is required
to use fences to impose the desired memory ordering. Additionally, where applicable, the
application is required to write back data for the data to be visible to NIC engines (see the
coherency table).

The memory model offers "same address ordering" within a thread. This means that, if a
thread writes to a memory location and subsequently reads that memory location, the
read returns the contents that have previously been written.

The memory model offers 8-byte atomicity for aligned accesses to atomic datatypes. This
means that all eight bytes of read and write are performed in one indivisible transaction.

The DPA does not support unaligned accesses, such as accessing N bytes of data from

an address not evenly divisible by N .

The DPA processes memory can be divided into the following memory spaces:

Info

Refer to DOCA DPA documentation for more details.

https://docs.nvidia.com/doca/sdk/DOCA+DPA/index.html

DPA Development 15

Memory Space Definition

Heap
Memory locations within the DPA process heap.
Referenced as __DPA_HEAP in the code.

Memory
Memory locations belonging to the DPA process (including stack,
heap, BSS and data segment) except the memory-mapped IO.
Referenced as __DPA_MEMORY in the code.

MMIO
(memory-
mapped I/O)

External memory outside the DPA process accessed via memory-
mapped IO. Window and Outbox accesses are considered MMIO.
Referenced as __DPA_MMIO in the code.

System
All memory locations accessible to the thread within Memory and
MMIO spaces as described above.
Referenced as __DPA_SYSTEM in the code.

Coherency

The coherency between the DPA threads and NIC engines is described in the following
table:

Pro
duc
er

Ob
ser
ver

Coh
ere
ncy

Comments

DP
A

NIC
eng
ine

Not
coh

Data to be read by the NIC must be written back using the appropriate
intrinsic (see section "Memory Fence and Cache Control Usage
Examples").

Note

As with many other real-time operating systems (RTOS), the
userspace stack is limited in size, and it is user responsibility to ensure
the program does not allocate memory beyond the stack's limits. The
overall memory range for the userspace stack is slightly less than 8
KB (8184 bytes), meaning that the user's program and the ABI used
by the compiler for the function calls themselves should not cross
this limit. DPA programs consuming more memory than the amount
allocated for the stack would cause anomalous behavior.

DPA Development 16

Pro
duc
er

Ob
ser
ver

Coh
ere
ncy

Comments

thr
ead

ere
nt

NIC
eng
ine

DP
A
Thr
ead

Coh
ere
nt

Data written by the NIC is eventually visible to the DPA threads.
The order in which the writes are visible to the DPA threads is
influenced by the ordering configuration of the memory region (see
IBV_ACCESS_RELAXED_ORDERING).

In a typical example of the NIC writing data and generating a
completion entry (CQE), it is guaranteed that when the write to the CQE
is visible, the DPA thread can read the data without additional fences.

DP
A
thr
ead

DP
A
thr
ead

Coh
ere
nt

Data written by a DPA thread is eventually visible to the other DPA
threads without additional fences. The order in which writes made by a
thread are visible to other threads is undefined when fences are not
used. Programmers can enforce ordering of updates using fences (see
section "Memory Fences") .

Memory Fences

Fence APIs are intended to impose memory access ordering. The fence operations are
defined on the different memory spaces. See information on memory spaces under
section "Memory Model".

The fence APIs apply ordering between the operations issued by the calling thread. As a
performance note, the fence APIs also have a side effect of writing back data to the
memory space used in the fence operation. However, programmers should not rely on this
side effect. See section "Cache Control" for explicit cache control operations. The fence
APIs have an effect of a compiler-barrier which means that memory accesses are not
reordered around the fence API invocation by the compiler.

A fence applies between the "predecessor" and the "successor" operations. The
predecessor and successor ops can be refenced using __DPA_R , __DPA_W , and

__DPA_RW in the code.

The generic memory fence operation can operate on any memory space and any set of
predecessor and successor operations. The other fence operations are provided as
convenient shortcuts that are specific to the use case. It is preferable for programmers to
use the shortcuts when possible.

Fence operations can be included using the dpaintrin.h header file.

DPA Development 17

Generic Fence

This fence can apply to any DPA thread memory space. Memory spaces are defined under
section "Memory Model". The fence ensures that all operations (pred_op) performed by

the calling thread, before the call to __dpa_thread_fence() , are performed and made
visible to all threads in the DPA, host, NIC engines, and peer devices as occurring before all
operations (succ_op) to the memory space after the call to __dpa_thread_fence() .

System Fence

This is equivalent to calling
__dpa_thread_fence(__DPA_SYSTEM, __DPA_RW, __DPA_RW) .

Outbox Fence

This is equivalent to calling
__dpa_thread_fence(__DPA_MMIO, pred_op, succ_op) .

Window Fence

void __dpa_thread_fence(memory_space, pred_op, succ_op);

void __dpa_thread_system_fence();

void __dpa_thread_outbox_fence(pred_op, succ_op);

DPA Development 18

This is equivalent to calling
__dpa_thread_fence(__DPA_MMIO, pred_op, succ_op) .

Memory Fence

This is equivalent to calling
__dpa_thread_fence(__DPA_MEMORY, pred_op, succ_op) .

Cache Control

Cache control operations allow the programmer to exercise fine-grained control over data
resident in the DPA's caches. They have an effect of a compiler-barrier. The operations can
be included using the dpaintrin.h header file.

Window Read Contents Invalidation

The DPA can cache data that was fetched from external memory using a window.
Subsequent memory accesses to the window memory location may return the data that
is already cached. In some cases, it is required by the programmer to force a read of
external memory (see example under "Polling Externally Set Flag"). In such a situation, the
window read contents cached must be dropped.

This function ensures that contents in the window memory space of the thread before
the call to __dpa_thread_window_read_inv() are invalidated before read operations

void __dpa_thread_window_fence(pred_op, succ_op);

void __dpa_thread_memory_fence(pred_op, succ_op);

void __dpa_thread_window_read_inv();

DPA Development 19

made by the calling thread after the call to __dpa_thread_window_read_inv() .

Window Writeback

Writes to external memory must be explicitly written back to be visible to external
entities.

This function ensures that contents in the window space of the thread before the call to
__dpa_thread_window_writeback() are performed and made visible to all threads in

the DPA, host, NIC engines, and peer devices as occurring before any write operation after
the call to __dpa_thread_window_writeback() .

Memory Writeback

Writes to DPA memory space may need to be written back. For example, the data must be
written back before the NIC engines can read it. Refer to the coherency table for more.

This function ensures that the contents in the memory space of the thread before the call
to __dpa_thread_writeback_memory() are performed and made visible to all threads
in the DPA, host, NIC engines, and peer devices as occurring before any write operation
after the call to __dpa_thread_writeback_memory() .

Memory Fence and Cache Control Usage Examples

These examples illustrate situations in which programmers must use fences and cache
control operations.

void __dpa_thread_window_writeback();

void __dpa_thread_memory_writeback();

DPA Development 20

In most situations, such direct usage of fences is not required by the application using
Flex IO or DOCA DPA SDKs as fences are used within the APIs.

Issuing Send Operation

In this example, a thread on the DPA prepares a work queue element (WQE) that is read by
the NIC to perform the desired operation.

The ordering requirement is to ensure the WQE data contents are visible to the NIC
engines read it. The NIC only reads the WQE after the doorbell (MMIO operation) is
performed. Refer to coherency table.

#
User Code – WQE Present in
DPA Memory

Comment

1 Write WQE
Write to memory locations in the DPA (memory
space = __DPA_MEMORY)

2
__dpa_thread_memory_wri
teback();

Cache control operation

3 Write doorbell MMIO operation via Outbox

In some cases, the WQE may be present in external memory. See the description of
flexio_qmem below. The table of operations in such a case is below.

#
User Code – WQE Present in
External Memory

Comment

1 Write WQE
Write to memory locations in the DPA (memory
space = __DPA_MMIO)

2
__dpa_thread_window_writ
eback();

Cache control operation

3 Write doorbell MMIO operation via Outbox

Posting Receive Operation

In this example, a thread on the DPA is writing a WQE for a receive queue and advancing
the queue's producer index. The DPA thread will have to order its writes and writeback the
doorbell record contents so that the NIC engine can read the contents.

DPA Development 21

#
User Code – WQE Present in DPA
Memory

Comment

1 Write WQE
Write to memory locations in the DPA
(memory space = __DPA_MEMORY)

2
__dpa_thread_memory_fence(_
_DPA_W, __DPA_W);

Order the write to the doorbell record with
respect to WQE

3 Write doorbell record
Write to memory locations in the DPA
(memory space = __DPA_MEMORY)

4
__dpa_thread_memory_writeba
ck();

Ensure that contents of doorbell record are
visible to the NIC engine

Polling Externally Set Flag

In this example, a thread on the DPA is polling on a flag that will be updated by the host or
other peer device. The memory is accessed by the DPA thread via a window. The DPA
thread must invalidate the contents so that the underlying hardware performs a read.

User Code – Flag Present in External
Memory

Comment

flag is a memory location read using a
window

Thread-to-thread Communication

In this example, a thread on the DPA is writing a data value and communicating that the
data is written to another thread via a flag write. The data and flag are both in DPA
memory.

while (!flag) {
 __dpa_thread_window_read_in
v();
}

DPA Development 22

User Code – Thread 1
User Code –
Thread 2

Comment

Initial condition, flag = 0

var1 = x;

while(*
((volatile
int *)&flag)
!=1);

Thread 1 - write to var1
Thread 2 - flag is accessed as a
volatile variable, so the compiler
preserves the intended program order
of reads

__dpa_thread_me
mory_fence(__DP
A_W, __DPA_W);

Thread 1 – write to flag cannot bypass write
to var1

var_t2 =
var1;

flag = 1;
assert(var_t
2 == x); var_t2 must be equal to x

Setting Flag to be Read Externally

In this example, a thread on the DPA sets a flag that is observed by a peer device. The flag
is written using a window.

User Code – Flag Present in
External Memory

Comment

flag = data; flag is updated in local DPA memory

__dpa_thread_window_writ
eback();

Contents from DPA memory for the window are
written to external memory

Polling Completion Queue

In this example, a thread on the DPA reads a NIC completion queue and updates its
consumer index.

DPA Development 23

First, the DPA thread polls the memory location for the next expected CQE. When the
CQE is visible, the DPA thread processes it. After processing is complete, the DPA thread
updates the CQ's consumer index. The consumer index is read by the NIC to determine
whether a completion queue entry has been read by the DPA thread. The consumer index
is used by the NIC to monitor a potential completion queue overflow situation.

User Code – CQE in DPA
Memory

Comment

while(*((volatile
uint8_t
*)&cq→op_own) &
0x1 == hw_owner);

Poll CQ owner bit in DPA memory until the value indicates the
CQE is in software ownership.
Coherency model ensures update to the CQ is visible to the
DPA execution unit without additional fences or cache control
operations.
Coherency model ensures that data in the CQE or referenced
by it are visible when the CQE changes ownership to software.

process_cqe(); User processes the CQE according to the application's logic.

cq→cq_index++; //
next CQ index.
Handle wraparound
if necessary

Calculate the next CQ index taking into account any
wraparound of the CQ depth.

update_cq_dbr(cq,
cq_index); //
writes cq_index
to DPA memory

Memory operation to write the new consumer index.

__dpa_thread_memo
ry_writeback();

Ensures that write to CQ's consumer index is visible to the
NIC. Depending on the application's logic, the
__dpa_thread_memory_writeback() may be coalesced or

eliminated if the CQ is configured in overrun ignore mode.

arm_cq();

Arm the CQ to generate an event if this handler is going to call
flexio_dev_thread_reschedule() . Arming the CQ is not

required if the handler calls
flexio_dev_thread_finish() .

DPA-specific Operations

DPA Development 24

The DPA supports some platform-specific operations. These can be accessed using the
functions described in the following subsections. The operations can be included using
the dpaintrin.h header file.

Clock Cycles

Returns a counter containing the number of cycles from an arbitrary start point in the
past on the execution unit the thread is currently scheduled on.

Note that the value returned by this function in the thread is meaningful only for the
duration of when the thread remains associated with this execution unit.

This function also acts as a compiler barrier, preventing the compiler from moving
instructions around the location where it is used.

Timer Ticks

Returns the number of timer ticks from an arbitrary start point in the past on the
execution unit the thread is currently scheduled on.

Note that the value returned by this function in the thread is meaningful only for the
duration of when the thread remains associated with this execution unit.

This intrinsic also acts as a compiler barrier, preventing the compiler from moving
instructions around the location where the intrinsic is used.

Instructions Retired

uint64_t __dpa_thread_cycles();

uint64_t __dpa_thread_time();

DPA Development 25

Returns a counter containing the number of instructions retired from an arbitrary start
point in the past by the execution unit the thread is currently scheduled on.

Note that the value returned by this function in the software thread is meaningful only for
the duration of when the thread remains associated with this execution unit.

This intrinsic also acts as a compiler barrier, preventing the compiler from moving
instructions around the location where the intrinsic is used.

Fixed Point Log2

This function evaluates the fixed point Q16.16 base 2 logarithm. The input is an unsigned
integer.

Fixed Point Reciprocal

This function evaluates the fixed point Q16.16 reciprocal (1/x) of the value provided.

Fixed Point Pow2

uint64_t __dpa_thread_inst_ret();

int __dpa_fxp_log2(unsigned int);

int __dpa_fxp_rcp(int);

int __dpa_fxp_pow2(int);

DPA Development 26

This function evaluates the fixed point Q16.16 power of 2 of the provided value.

Flex IO SDK

This chapter provides an overview and configuration instr uctions for DOCA Flex IO SDK
API.

The DPA processor is an auxiliary processor designed to accelerate packet processing and
other data-path operations. The Flex IO SDK exposes an API for managing the DPA device
and executing native code over it.

The DPA processor is supported on NVIDIA® BlueField®-3 DPUs and later generations.

After DOCA installation, Flex IO SDK headers may be found under
/opt/mellanox/flexio/include and libraries may be found under

/opt/mellanox/flexio/lib/ .

Prerequisites

DOCA Flex IO applications can run either on the host machine or on the target DPU.

Developing programs over Flex IO SDK requires knowledge of DPU networking queue
usage and management.

Architecture

Flex IO SDK library exposes a few layers of functionality:

libflexio – library for Host-side operations. It is used for resource management.

libflexio_dev – library for DPA-side operations. It is used for data path
implementation.

libflexio_libc – a lightweight C library for DPA device code. libflexio_libc
may expose very partial functionality compared to a standard libc .

DPA Development 27

A typical application is composed of two parts: One running on the host machine or the
DPU target and another running directly over the DPA.

API

Please refer to the DOCA Driver APIs.

Resource Management

DPA programs cannot create resources. The responsibility of creating resources, such as
Flex IO process, thread, outbox and window, as well as queues for packet processing
(completion, receive and send), lies on the DPU program. The relevant information should
be communicated (copied) to the DPA side and the address of the copied information
should be passed as an argument to the running thread.

Example

Host side:

1. Declare a variable to hold the DPA buffer address.

2. Allocate a buffer on the DPA side.

3. Copy application data to the DPA buffer.

flexio_uintptr_t app_data_dpa_daddr;

flexio_buf_dev_alloc(flexio_process, sizeof(struct
my_app_data), &app_data_dpa_daddr);

flexio_host2dev_memcpy(flexio_process, (uintptr_t)app_data,

https://docs.nvidia.com/doca/sdk/DOCA+Driver+APIs/index.html

DPA Development 28

struct my_app_data should be common between the DPU and DPA applications
so the DPA application can access the struct fields.

The event handler should get the address to the DPA buffer with the copied data:

DPA side:

DPA Memory Management

As mentioned previously, the DPU program is responsible for allocating buffers on the
DPA side (same as resources). The DPU program should allocate device memory in
advance for the DPA program needs (e.g., queues data buffer and rings, buffers for the
program functionality, etc).

The DPU program is also responsible for releasing the allocated memory. For this purpose,
the Flex IO SDK API exposes the following memory management functions:

sizeof(struct my_app_data), app_data_dpa_daddr);

flexio_event_handler_create(flexio_process, net_entry_point,
app_data_dpa_daddr, NULL, flexio_outbox,
&app_ctx.net_event_handler)

__dpa_rpc__ uint64_t event_handler_init(uint64_t thread_arg)
{
 struct my_app_data *app_data;
 app_data = (my_app_data *)thread_arg;
 ...
}

DPA Development 29

Allocating NIC Queues for Use by DPA

The Flex IO SDK exposes an API for allocating work queues and completion queues for the
DPA. This means that the DPA may have direct access and control over these queues,
allowing it to create doorbells and access their memory.

When creating a Flex IO SDK queue, the user must pre-allocate and provide memory
buffers for the queue's work queue elements (WQEs). This buffer may be allocated on the
DPU or the DPA memory.

To this end, the Flex IO SDK exposes the flexio_qmem struct, which allows the user to
provide the buffer address and type (DPA or DPU).

Memory Allocation Best Practices

To optimize process device memory allocation, it is recommended to use the following
allocation sizes (or closest to it):

Up to 1 page (4KB)

26 pages (256KB)

211 pages (8MB)

216 pages (256MB)

flexio_status flexio_buf_dev_alloc(struct flexio_process
*process, size_t buff_bsize, flexio_uintptr_t *dest_daddr_p);
flexio_status flexio_buf_dev_free(flexio_uintptr_t daddr_p);
flexio_status flexio_host2dev_memcpy(struct flexio_process
*process, void *src_haddr, size_t buff_bsize, flexio_uintptr_t
dest_daddr);
flexio_status flexio_buf_dev_memset(struct flexio_process
*process, int value, size_t buff_bsize, flexio_uintptr_t
dest_daddr);

DPA Development 30

Using these sizes minimizes memory fragmentation over the process device memory
heap. If other buffer sizes are required, it is recommended to round the allocation up to
one of the listed sizes and use it for multiple buffers.

DPA Window

DPA windows are used to access external memory, such as on the DPU's DDR or host's
memory. DPA windows are the software mechanism to use the Memory Apertures
mentioned in section "DPA Memory and Caches". To use the window functionality, DPU or
host memory must be registered for the device using the ibv_reg_mr() call.

Both the address and size provided to this call must be 64 bytes aligned for the window to
operate. This alignment may be obtained using the posix_memalign() allocation call.

DPA Event Handler

Default Window/Outbox

The DPA event handler expects a DPA window and DPA outbox structs upon creation.
These are used as the default for the event handler thread. Users may choose to set one
or both to NULL, in which case there would be no valid default value for one/both of them.

Upon thread invocation on the DPA side, the thread context is set for the provided default
IDs. If, at any point, the outbox/window IDs are changed, then the thread context on the
next invocation is restored to the default IDs. This means that the DPA Window MKey
must be configured each time the thread is invoked, as it has no default value.

Execution Unit Management

DPA execution units (EUs) are the equivalent to logical cores. For a DPA program to
execute, it must be assigned an EU.

It is possible to set EU affinity for an event handler upon creation. This causes the event
handler to execute its DPA program over specific EUs (or a group of EUs).

DPA supports three types of affinity: none , strict , group .

https://docs.nvidia.com/doca/sdk/DPA+Subsystem/index.html

DPA Development 31

The affinity type and ID, if applicable, are passed to the event handler upon creation using
the affinity field of the flexio_event_handler_attr struct.

For more information, please refer to DOCA DPA Execution Unit Management Tool.

Execution Unit Partitions

To work over DPA, an EU partition must be created for the used device. A partition is a
selection of EUs marked as available for a device. For the DPU ECPF, a default partition is
created upon boot with all EUs available in it. For any other device (i.e., function), the user
must create a partition. This means that running an application on a non-ECPF function
without creating a partition would result in failure.

Flex IO SDK uses strict and none affinity for internal threads, which require a
partition with at least one EU for the participating devices. Failing to comply with this
assumption may cause failures.

Virtual Execution Units

Users should be aware that beside the default EU partition, which is exposed to the real
EU numbers, all other partitions created use virtual EUs.

For example, if a user creates a partition with the range of EUs 20-40, querying the
partition info from one of its virtual HCAs (vHCAs) it would display EUs from 0-20. So, the
real EU number, 39 in this example, would correspond to the virtual EU number 19.

Version API and Backward Compatibility

Flex IO SDK supports partial backward compatibility. This may follow one of the following
options:

1. Work only with the latest version. The user must align their entire code according to
the changes in the Flex IO SDK API listed in the document accompanying each
version.

2. Ensure partial backward compatibility for the working code. The user must inform
the SDK which version they intend to work with. The SDK provides a set of tools that
ensure backward compatibility. The set consists of compile-time and runtime tools.

https://docs.nvidia.com/doca/sdk/DOCA+DPA+Execution+Unit+Management+Tool/index.html

DPA Development 32

Version API Toolkit

To support backward compatibility, the Flex IO SDK uses the macros FLEXIO_VER for

the host and FLEXIO_DEV_VER for the DPA device. The macros have 3 parameters,
where the first is the major version (year), the second is the minor version (month), and
the third is the sub-minor version (not used, always 0).

Compile-time

This toolkit is available for both the host and DPA device. The header files
flexio_ver.h and flexio_dev_ver.h contain the macros FLEXIO_VER and

FLEXIO_VER_LATEST for the host and FLEXIO_DEV_VER and

FLEXIO_DEV_VER_LATEST for the DPA device. For example, to set backward
compatibility for version 24.04, the user must declare the following construct for the host:

And the user must declare the following construct for the DPA device:

Where 24 is the major version, and 4 is the minor version.

#include <libflexio/flexio_ver.h>
#define FLEXIO_VER_USED FLEXIO_VER(24, 4, 0)
#include <libflexio/flexio.h>

#include <libflexio-dev/flexio_dev_ver.h>
#define FLEXIO_DEV_VER_USED FLEXIO_DEV_VER(24, 4, 0)
#include <libflexio-dev/flexio_dev.h>

Warning

The files flexio.h and flexio_dev.h have the macros

FLEXIO_CURRENT_VERSION and

FLEXIO_LAST_SUPPORTED_VERSION for the host

FLEXIO_DEV_CURRENT_VERSION and

DPA Development 33

Runtime

This toolkit is only present for the host. For backward compatibility in runtime, the user
can call the function flexio_status flexio_version_set(uint64_t version);
in flexio.h once before calling any other function from the API, with the version
parameter they wish to work with. The function returns an error in the following cases:

If the specified version is less than FLEXIO_LAST_SUPPORTED_VERSION

If it exceeds FLEXIO_CURRENT_VERSION

If the function is called again with a version value different from the previous one

It is recommended to use the FLEXIO_VER_USED macro as a parameter :

End of Backward Compatibility

The backward compatibility tools are designed to have an endpoint. With each new
version, it is possible to gradually raise the value of FLEXIO_LAST_SUPPORTED_VERSION

FLEXIO_DEV_LAST_SUPPORTED_VERSION for the DPA device.
These versions are provided for internal use and user information. The
user should not use these macros.

status = flexio_version_set(FLEXIO_VER(24, 4, 0));
if (status == FLEXIO_STATUS_FAILED)
{

return ERROR;
}

flexio_version_set(FLEXIO_VER_USED);

DPA Development 34

for the host and FLEXIO_DEV_LAST_SUPPORTED_VERSION for the DPA device. If

FLEXIO_VER_USED equals FLEXIO_LAST_SUPPORTED_VERSION , then the compiler will
issue a warning. This is a sign for the user to start transitioning to a newer version. This
way the user has time at least until the next version to modify their code to comply with
the older version. If FLEXIO_VER_USED is lower than

FLEXIO_LAST_SUPPORTED_VERSION , then the compiler will issue errors. This is a sign
for the user to immediately transition to a newer version. T he same behavior for the DPA
device.

Application Debugging

Because application execution is divided between the host side and the DPA processor
services, debugging may be somewhat challenging, especially since the DPA side does not
have a terminal allowing the use of the C stdio library printf services.

Using DPA GDB

See DOCA DPA GDB Server Tool for information.

Using Device Messaging Stream API

Another logging (messaging) option is to use Flex IO SDK infrastructure to send strings or
formatted text in general, from the DPA side to the host side console or file. The host
side's flexio.h file provides the flexio_msg_stream_create API function for
initializing the required infrastructures to support this. Once initialized, the DPA side must
have the thread context, which can be obtained by calling
flexio_dev_get_thread_ctx . flexio_dev_msg can then be called to write a string

generated on the DPA side to the stream created (using its ID) on the host side, where it is
directed to the console or a file, according to user configuration in the creation stage.

It is important to call flexio_msg_stream_destroy when exiting the DPU application
to ensure proper clean-up of the print mechanism resources.

Device messages use an internal QP for communication between the DPA and the DPU.
When running over an InfiniBand fabric, the user must ensure that the subnet is well-
configured, and that the relevant device's port is in active state.

https://docs.nvidia.com/doca/sdk/DOCA+DPA+GDB+Server+Tool/index.html

DPA Development 35

Message Stream Functionality

The user can create as many streams as they see fit, up to a maximum of
FLEXIO_MSG_DEV_MAX_STREAMS_AMOUNT as defined in flexio.h .

Every stream has its own messaging level which serves as a filter where messages with a
level below that of the stream are filtered out.

The first stream created is the default_stream gets stream ID 0, and it is created with

messaging level FLEXIO_MSG_DEV_INFO by default.

The stream ID defined by FLEXIO_MSG_DEV_BROADCAST_STREAM serves as a broadcast
stream which means it messagaes all open streams (with the proper messaging level).

A stream can be configured with a synchronization mode attribute according to the
following options:

sync – displays the messages as soon as they are sent from the device to the host
side using the verb SEND.

async – uses the verb RDMA write. When the programmer calls the stream's flush
functionality, all the messages in the buffer are displayed (unless there was a
wraparound due to the size of messages being bigger than the size allocated for
them). In this synchronization mode, the flush should be called at the end of the run.

batch – uses RDMA write and RDMA write with immediate. It works similarly to the
async mode, except the fact each batch size of messages is being flushed and
therefore displayed automatically in every batch. The purpose is to allow the host to
use fewer resources for device messaging.

Device Messaging Assumptions

Device messaging uses RPC calls to create, modify, and destroy streams. By default, these
RPC calls run with affinity none , which requires at least one available EU on the default
group. If the user wants to set the management affinity of a stream to a different option
(any affinity option is supported, including forcing none , which is the default behavior)

they should specify this in the stream attributes using the mgmt_affinity field.

DPA Development 36

Printf Support

Only limited functionality is implemented for printf. Not all libc printf is supported.

Please consult the following list for supported modifiers:

Formats – %c , %s , %d , %ld , %u , %lu , %i , %li , %x , %hx , %hxx , %lx , %X ,

%lX , %lo , %p , %%

Flags – . , * , - , + , #

General supported modifiers:

"0" padding

Min/max characters in string

General unsupported modifiers:

Floating point modifiers – %e , %E , %f , %lf , %LF

Octal modifier %o is partially supported

Precision modifiers

Core Dump

If the DPA process encounters a fatal error, the user can create a core dump file to review
the application's status at that point using a GDB app.

Creating a core dump file can be done after the process has crashed (as indicated by the
flexio_err_status API) and before the process is destroyed by calling the

flexio_coredump_create API.

Recommendations for opening DPA core dump file using GDB:

Use the gdb-multiarch application

The Program parameter for GDB should be the device-side ELF file

DPA Development 37

Use the dpacc-extract tool (provided with the DPACC package) to extract
the device-side ELF file from the application's ELF file

Experimental Flex IO APIs

Flex IO APIs are now marked as experimental which requires adjustment of users' build
definitions as follows:

For host-side projects, users must add the compilation flag
-DFLEXIO_ALLOW_EXPERIMENTAL_API to their projects. For example:

If using meson, add the command
add_project_arguments('-DFLEXIO_ALLOW_EXPERIMENTAL_API',
language: 'c', native: true)

If using a makefile, add -DFLEXIO_ALLOW_EXPERIMENTAL_API to the
compiler flags

For device-side projects, add the following when launching the DPACC application:

Add -DFLEXIO_ALLOW_EXPERIMENTAL_API to the --hostcc_args flag

Add -DFLEXIO_DEV_ALLOW_EXPERIMENTAL_API to the

--devicecc_options flag

The absence of these macros would result in compilation warnings or errors if the
-Werror flag is used.

Note

If the host-side project uses the pkg-config mechanism for working
with libflexio, such as
dependency('libflexio', required: true) for

meson.build or

CFLAGS := $(shell pkg-config --cflags 'libflexio') for

DPA Development 38

Flex IO Samples

This section describes samples based on the Flex IO SDK. These samples illustrate how to
use the Flex IO API to configure and execute code on the DPA.

Running Flex IO Sample

The Flex IO SDK samples serve as a reference for building and running Flex IO-based DPA
applications. They provide a collection of out-of-the-box working DPA applications that
encompass the basic functionality of the Flex IO SDK.

Documentation

Refer to DOCA Installation Guide for Linux for details on how to install BlueField-
related software

Refer to DOCA Troubleshooting for any issue you may encounter with the
installation, compilation, or execution of DOCA samples

Minimal Requirements

The user must have the following installed:

DOCA DPACC package

a makefile, there is no need to add the compilation flag as this is done
automatically.

Note

An example of adding these flags to launch DPACC can be found in
the doca_build_dpacc.sh script in the flexio-samples
package.

https://docs.nvidia.com/doca/sdk/DOCA+Installation+Guide+for+Linux/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Troubleshooting/index.html

DPA Development 39

DOCA RDMA package

pkg-config package

Python3 package

Gcc with version 7.0 or higher

Meson package with version 0.53.0 or higher

Ninja package

DOCA Flex IO SDK

Sample Structure

Each sample is situated in its own directory and is accompanied by a corresponding
description in README files. Every sample comprises two applications:

The first, located in the device directory, is designed for DPA

The second, found in the host directory, is intended for execution on the DPU or
host in a Linux OS environment

Additionally, there is a common directory housing libraries for the examples. These

libraries are further categorized into device and host directories to facilitate linking
with similar applications. Beyond containing functions and macros, these libraries also
serve as illustrative examples for how to use them.

The list of the samples:

flexio_rpc – sample demonstrating how to run RPC functions from DPA

packet_processor – sample demonstrating how to process a package

Building the Samples

cd /opt/mellanox/fleio/samples/

DPA Development 40

Flex IO samples support building for multiple hardware models. Users can specify one or
more hardware models to include in the build using the --cpu flag.

To build Flex IO samples for specific hardware models, use the following example
commands:

This process generates builds optimized for the requested hardware models.

Samples

flexio_rpc

This sample application executes Flex IO with a remote process call.

The device program calculates the sum of 2 input parameters, prints the result, and
copies the result back to the host application.

This sample demonstrates how applications are built (DPA and host), how to create
processes and message streams, how to open the IBV device, and how to use RPC from
the host to DPA function.

Compilation

The output path:

./build.sh --check-compatibility --rebuild

cd /opt/mellanox/fleio/samples/
./build.sh --check-compatibility --rebuild --cpu bf3,cx8

cd /opt/mellanox/flexio/samples/
./build.sh --check-compatibility --rebuild

DPA Development 41

Usage

Where:

mlx5_device – IBV device with DPA

arg1 – first numeric argument

arg2 – second numeric argument

Example:

flexio_packet_process

This example demonstrates packet processing handling.

/opt/mellanox/flexio/samples/build/flexio_rpc/host/flexio_rpc

<sample_root>/build/flexio_rpc/host/flexio_rpc <mlx5_device>
<arg1> <arg2>

$/opt/mellanox/flexio/samples/build/flexio_rpc/host/flexio_rpc
mlx5_0 44 55

Welcome to 'Flex IO RPC' sample
Registered on device mlx5_0
/ 2/Calculate: 44 + 55 = 99

Result: 99

Flex IO RPC sample is done

DPA Development 42

The device application implements a handler for flexio_pp_dev that receives packets
from the network, swaps MAC addresses, inserts some text into the packet, and sends it
back.

This allows the user to send UDP packets (with a packet length of 65 bytes) and check the
content of returned packets. Additionally, the console displays the execution of packet
processing, printing each new packet index. Device messaging operates in synchronous
mode (i.e., each message from the device received by the host is output immediately).

This sample illustrates how applications work with libraries (DPA and host), how to create
SQ, RQ, CQ, memory keys, and doorbell rings, how to create and use DPA memory buffers,
how to use UAR, and how to create and run event handlers.

Compilation

The output path:

Usage

Where:

mlx5_device – name of IB device with DPA

--nic-mode – optional parameter indicating that the application is run from the
host. If the application is run from DPU, then the parameter should not be used.

cd /opt/mellanox/flexio/samples/
./build.sh --check-compatibility --rebuild

/opt/mellanox/flexio/samples/build/packet_processor/host/flexio_pac

<sample_root>/build/packet_processor/host/flexio_packet_processor
<mlx5_device>

DPA Development 43

For example

The application must run with root privileges.

Debug

When running the application, the output will display a debug token. This token can be
used to connect to the DPA GDB server for debugging purposes.

See DOCA DPA GDB Server Tool for instructions on using DPA GDB.

Running with Traffic

Run host-side sample:

Use another machine connected to the setup running the application. Bring the interface
used as packet generator up:

$sudo /build/packet_processor/host/flexio_packet_processor mlx5_0

$sudo build/packet_processor/host/flexio_packet_processor mlx5_0
Welcome to 'Flex IO SDK packet processing' sample app.
Use the token >>> 0x790478344927513b <<< for debugging

$ cd <sample_root>
$ sudo ./build/packet_processor/host/flexio_packet_processor
mlx5_0

https://docs.nvidia.com/doca/sdk/DOCA+DPA+GDB+Server+Tool/index.html

DPA Development 44

Use scapy to run traffic to the device the application is running on:

$ sudo ifconfig my_interface up

$ python

>>> from scapy.all import *
>>> from scapy.layers.inet import IP, UDP, Ether

>>> sendp(Ether(src="02:42:7e:7f:eb:02",
dst='52:54:00:79:db:d3')/IP()/UDP()/Raw(load="===============12345678"),
iface="my_interface")

Note

Source MAC must be same as above as the application defines a
steering rule for it. Destination MAC can be anything.

Note

The load should be kept the same as above, as the application looks
for this pattern and changes it during processing.

Note

DPA Development 45

The packets can be viewed using tcpdump :

Example output

Interface name should be changed to the interfaced used for traffic
generation.

$ sudo tcpdump -i my_interface -en host 127.0.0.1 -X

Example output:
11:53:51.422075 02:42:7e:7f:eb:02 > 52:54:00:12:34:56, ethertype IPv4
(0x0800), length 65: 127.0.0.1.domain > 127.0.0.1.domain: 15677 op7+%
[b2&3=0x3d3d] [15677a] [15677q] [15677n] [15677au][|domain]
 0x0000: 4500 0033 0001 0000 4011 7cb7 7f00 0001
E..3....@.|.....
 0x0010: 7f00 0001 0035 0035 001f 42c6 3d3d 3d3d
.....5.5..B.==== <-- Original data
 0x0020: 3d3d 3d3d 3d3d 3d3d 3d3d 3d31 3233 3435
===========12345

 0x0030: 3637 38 678

11:53:51.700038 52:54:00:12:34:56 > 02:42:7e:7f:eb:02, ethertype IPv4
(0x0800), length 65: 127.0.0.1.domain > 127.0.0.1.domain: 26144 op8+%
[b2&3=0x4576] [29728a] [25966q] [25701n] [28015au][|domain]
 0x0000: 4500 0033 0001 0000 4011 7cb7 7f00 0001
E..3....@.|.....
 0x0010: 7f00 0001 0035 0035 001f 42c6 6620 4576
.....5.5..B.f.Ev <-- Modified data
 0x0020: 656e 7420 6465 6d6f 2a2a 2a2a 2a2a 2a2a
ent.demo********
 0x0030: 2a2a 2a ***

DPA Development 46

Flex IO SDK Packages

The Flex IO SDK contains the following packages:

flexio-sdk – this package contains Flex IO SDK header and library files for both
the host and device sides. The library files for the device side are divided by chip
type (i.e., some are for NVIDIA® BlueField®-3, while others are for NVIDIA®
ConnectX®-8).

flexio-samples – this package contains Flex IO samples for both the host and
device sides

dpa-gdbserver – this package contains Flex IO binary files for both the host and
device sides and is used as a gdbserver to debug DPA applications

DPA Application Authentication

DPA Application Authentication is supported at beta level for BlueField-3.

DPA Application Authentication is currently only supported with statically linked libraries.
Dynamically linked libraries are currently not supported.

This section provides instructions for developing, signing, and using authenticated
BlueField-3 data-path accelerator (DPA) applications. It includes information on:

Principles of root of trust and structures supporting it

Device ownership transfer/claiming flow (i.e., how the user should configure the
device so that it will authenticate the DPA applications coming from the user)

Crypto signing flow and ELF file structure and tools supporting it

Root of Trust Principles

Signing of 3rd Party DPA App Code

DPA Development 47

NVIDIA® BlueField®-3 introduces the ability for customers/device owners to sign
applications running on the DPA with their private key and have it authenticated by a
device-embedded certificate chain. This provides the benefit of ensuring that only code
permitted by the customer can run on the DPA. The customer can be any party writing
code intended to run on the DPA (e.g., a cloud service provider, OEM, etc).

The following figure illustrates the signature of customer code. This signature will allow
NVIDIA firmware to authenticate the source of the application's code.

Example of Customer DPA Code Signed by Customer for Authentication

The high-level scheme is as follows (see figure "Loading of Customer Keys and CA
Certificates and Provision of DPA Firmware to BlueField-3 Device"):

The numbers of these steps correspond to the numbers indicated in the figure below.

DPA Development 48

1. Customer provides NVIDIA Enterprise Support the public key for device ownership.

2. NVIDIA signs the customer's public key and sends it back to the customer.

3. Customer uploads the NVIDIA-signed public key to the device, enabling "Transfer of
Ownership" to the customer (from NVIDIA).

4. Using the private key corresponding to the public key uploaded to the device, the
customer can now enable DPA authentication and load the root certificate used for
authentication of DPA App code.

5. DPA app code crypto-signed by the customer serves to authenticate the source of
the app code.

The public key used to authenticate the DPA app is provided as part of the
certificate chain (leaf certificate), together with the DPA firmware image.

6. App code and the owner signature serves to authorize the app execution by the
NVIDIA firmware (similar to NVIDIA own signature).

Loading of Customer Keys and CA Certificates and Provision of DPA Firmware to
BlueField-3 Device

The following sections provide more details about this high-level process.

DPA Development 49

Verification of Authenticity of DPA App Code

Authentication of application firmware code before authorization to execute shall consist
of validation of the customer certificate chain and customer signature using the
customer's public key.

Public Keys (Infrastructure, Delivery, and Verification)

For the purposes of the authentication verification of the application firmware, the public
key must be securely provided to the hardware. To do so, a secure Management
Component Control (MCC) Flow shall be used. Using this, the content of the downloaded
certificate is enveloped in an MCC Download Container and signed by NVIDIA Private Key.

The following is an example of how to use the MCC flow describes in detail the
procedures, tools and structures supporting this (Section "Loading of CSP CA Certificates
and Keys and Provisioning of DPA Firmware to Device" describes the high-level flow for
this).

The following command burns the certificate container:

Two use cases are possible:

The DPA application is developed internally in NVIDIA, and the authentication is
based on internal NVIDIA keys and signing infrastructure

The DPA application is developed by a customer, and the authentication is based on
the customer certificate chain

In either case, the customer must download the relevant CA certificate to the device.

ROT Certificate Chain

flint -d <mst device> -i <signed-certificate-container> burn

https://docs.ndis.nvidia.com/Root%20CA%20Containers/DPA%20Root%20CA.html

DPA Development 50

This figure illustrates the build of the certificate chain used for validation of DPA app
images. The leaf certificate of these chains is used to validate the DPA application
supplied by the customer (with ROT from customer CA). The NVIDIA certificate chain for
validation of DPA applications (built internally in NVIDIA) is structured in a very similar way.
OEMDpaCert CA is the root CA which can be used by the customer to span their
certificate chain up to the customer leaf certificate which is used for validating the
signature of the application's image. Similarly, NVDADpaCert CA is the root CA used
internally in NVIDIA to build the DPA certificate chain for validation of NVIDIA DPA apps.

Customer private keys must be kept secure and are the sole responsibility of the
customer to maintain. It is recommended to have a set of keys ready and usable by
customer for redundancy purposes.The whole customer certificate chain, including root
CA and leaf, must not exceed 4 certificates.

The NVDA_CACert_DPA and OEM_CACert_DPA certificates are self-signed and trusted
because they are loaded by the secure MCC flow and authenticated by the firmware.

The customer certificate chain beyond OEM_CACert_DPA is delivered with the DPA
image, including the leaf certificate that is used for validating the cryptographic signature
of the DPA firmware (see table "ELF Crypto Data Section Fields Description").

For more details on the certificates and their location in the flash, contact NVIDIA
Enterprise Support to obtain the Flash Application Note. The rest of the certificate chain

DPA Development 51

used for the DPA firmware authentication includes:

For NVIDIA-signed images (e.g., figure "ROT Certificate Chain"): NVDA DPA root
certificate (NVDA_CACert_DPA can be downloaded here)

For customer-signed images (e.g., figure "ROT Certificate Chain"): Customer CA
certificate, customer product, and customer leaf certificates

In both cases (NVIDIA internal and customer-signed) these parts of the certificate chain
are attached to the DPA firmware image.

Loading of CSP CA Certificates and Keys and Provisioning of DPA Firmware to Device

The figure "Loading of Customer Keys and CA Certificates and Provision of DPA Firmware
to BlueField-3 Device" shows, at high-level, the procedures for loading user public keys to
the device, signing and loading of customer certificates MCC container, and downloading
the DPA firmware images.

For clarity, the hierarchy of ROT validation is as follows:

1. Customer public key to be used for customer TLVs and CACert_DPA certificate

validation, PK_TLV (i.e., NV_LC_NV_PUBLIC_KEY):

1. For a device whose DPA authentication ability the customer wishes to enable
for the first time, the customer must get it signed and authenticated by
NVIDIA keys by reaching out to NVIDIA Enterprise Support. The complete flow
is described in "Device Ownership Claiming Flow".

2. After PK_TLV is loaded, it can be updated by authenticating the update using

either the same PK_TLV . The complete flow is described in "Device Ownership
Claiming Flow".

3. Authentication of TLV for enabling/disabling DPA authentication is also
validated by the PK_TLV . The complete flow is described in section "DPA
Authentication Enablement".

2. Loading of CA certificate (CACert_DPA) to be used for DPA code validation. It is

authenticated using the same PK_TLV .

The complete flow is described in "Uploading DPA Root CA Certificate".

https://docs.ndis.nvidia.com/Root%20CA%20Containers/DPA%20Root%20CA.html

DPA Development 52

3. The public key in the leaf of the certificate chain anchored by CACert_DPA is used
for authentication of the DPA firmware Image.

The structure of the ELF file containing the DPA app and the certificate chain is
described in "ELF File Structure".

A scalable and reliable infrastructure is required to support many users. The customer
must also have an infrastructure to support their own code signing process according to
their organization's security policy. Both matters are out of the scope of this document.

Device Ownership Claiming Flow

NVIDIA networking devices allow the user of the device to customize the configurations,
and in some cases change the behavior of the device. This set of available customizations
is controlled by higher level NVIDIA configurations that come either as part of the device
firmware or as a separate update file. To allow customers/device owners to change the set
of available configurations and allowed behaviors, each device can have a device owner
who is allowed to change the default behaviors and configurations of the device, and to
change what configurations are exposed to the user.

The items controlled by the customer/device owner are:

Device configurations: The customer/device owner can change the default value of
any configuration available to users. They can also prevent users from changing the
value.

Trusted root certificates: The customer/device owner can control what root
certificates the device trusts. These certificates control various behaviors (e.g., what
3rd party code the BlueField DPA accepts).

Note

Trying to utilize the DPA signing flow in a firmware version prior to
DOCA 2.2.0 is not supported.

DPA Development 53

After the device has the public key of the owner, whenever an NVconfig file is signed with
this key, one of two things must be true:

The nv_file_id field in the NVconfig file must have the parameter

keep_same_priority as True ; or

The NVconfig file must contain the public key itself (so the public key is rewritten to
the device)

Otherwise, the public key is removed from the device, and as such will not accept files
signed by the matching private key.

Detailed Ownership Claiming Flow

1. Customer generates a private-public key pair, and a UUID for the key pair.

1. Generating UUID for the key pair:

Example output:

2. Generating an RSA key pair:

Example output:

uuidgen -t

77dd4ef0-c633-11ed-9e20-001dd8b744ff

openssl genrsa -out OEM.77dd4ef0-c633-11ed-9e20-
001dd8b744ff.pem 4096

Generating RSA private key, 2048 bit long modulus
...........+++

DPA Development 54

3. Extracting the public key file from the RSA key pair:

Output:

The public key should look similar to the following:

..............+++
e is 65537 (0x10001)

openssl rsa -in OEM.77dd4ef0-c633-11ed-9e20-
001dd8b744ff.pem -out OEM.77dd4ef0-c633-11ed-9e20-
001dd8b744ff.public -pubout -outform PEM

writing RSA key

-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAxfijde+27A3pQ7
mtpyuHO1JY9AUeKaHUXkWRiopL9Puswx1KcGfWJSNzlEPZRevTHraYlLQC
W9NBE/qIwS2n7kiFwCCvZK6FKUUqZAuMJTpfuNtv9o4C4v0ZiX4TQqWDND
hPf3QLRiJ/ux4G6uHIFwENSwagershuKD0RI6BaZ1g9S9IxdXcD0vTdEuD
CwEs/3xnksNRLUM+TiPEZoc5MoEoKyJv4GFbGttabhDCt5sr9RqAqTNUSD
XoQBQQpqRgYd3lQ31Fhh3G9GjtoAcUQ6l0Gct3DXKFTAADV3Lyo1vjFNrO
pjDKzNmZAsxyIZI0buc24TCgj1yPyFboJtpnHmltyxfm9e+EJsdSIpRiX8
aIzNj08VswULwbKow5Gu5FFpE/uXDE3cXjLOUNnKihszFv4qkqsQjKaK4G
jfiEwsDKwS+cuWd9ihnyLrIWF23+OX0S5xjFXDJE8UthOD+3j3gGmP3kze
Qvh3ITPRsqQltaiYh+CivqaCHC0voIMOP1ilAEZ/rW85pi6LA8EsudNMG2
SznBzZI/OxMk4qKx9nGgjaP2YjmcPw2Ffc9zZcwl57ThEOhlyS6w3E9xwB
gMuOIWsu1FK3lIGxMSCUZQsCAwEAAQ==
-----END PUBLIC KEY-----

DPA Development 55

2. Customer provides NVIDIA Enterprise Support the public key for device ownership
with its UUID.

3. NVIDIA generates a signed NVconfig file with this public key and sends it to the
customer. This key may only be applied to devices that do not have a device
ownership key installed yet.

4. Customer uses mlxconfig to install the OEM key on the needed devices.

To check if the upload process has been successful, the customer can use mlxconfig
to query the device and check if the new public key has been applied. The relevant
parameters to query are LC_NV_PUB_KEY_EXP , LC_NV_PUB_KEY_UUID , and

LC_NV_PUB_KEY_0_255 .

Example of query command and expected response:

Uploading DPA Root CA Certificate

After uploading a device ownership public key to the device, the owner can upload DPA
root CA certificates to the device. There can be multiple DPA root CA certificates on the
device at the same time.

If the owner wants to upload authenticated DPA apps developed by NVIDIA, they must
upload the NVIDIA DPA root CA certificate found here.

If the owner wants to sign their own DPA apps, they must create another public-private
key pair (in addition to the device ownership key pair), create a certificate containing the
DPA root CA public key, and create a container with this certificate using mlxdpa .

To upload a signed container with a DPA root CA certificate to the device, mlxdpa must
be used. This can be done both for either NVIDIA or customer-created certificates.

mlxconfig -d /dev/mst/<dev> apply oem_public_key_nvconfig.bin

mlxconfig -d <dev>-e q LC_NV_PUB_KEY_0_255

https://docs.ndis.nvidia.com/Root%20CA%20Containers/DPA%20Root%20CA.html

DPA Development 56

Generating DPA Root CA Certificate

1. Create a DER encoded certificate containing the public key used to validate DPA
apps.

1. Generating a certificate and a new key pair:

Output:

2. Create a container for the certificate and sign it with the device ownership private
key.

1. To create and add a container:

openssl req -x509 -newkey rsa:4096 -keyout OEM-DPA-root-
CA-key.pem -outform der -out OEM-DPA-root-CA-cert.crt -
sha256 -nodes -subj
"/C=XX/ST=OEMStateName/L=OEMCityName/O=OEMCompanyName/OU=O
-days 3650

Note

Both SHA256 and SHA512 are supported in cert. Only a
RSA 4096 key is supported. The size of each certificate in
DER format must be less than 1792 bytes.

Generating a 4096 bit RSA private key
......++
......................++
writing new private key to 'OEM-DPA-root-CA-key.pem'

DPA Development 57

Output example:

2. To sign a container:

Manually Signing Container

If the server holding the private key cannot run mlxdpa , it is possible to manually sign
the certificate container and add the signature to the container. In that case, the
following process should be followed:

1. Generate unsigned cert container:

mlxdpa --cert_container_type add -c <cert.der> -o <path
to output> --life_cycle_priority <Nvidia/OEM/User>
create_cert_container

Certificate container created successfully!

mlxdpa --cert_container <path to container> -p <key
file> --keypair_uuid <uuid> --cert_uuid <uuid> --
life_cycle_priority <Nvidia/OEM/User> -o <path-to-
output> sign_cert_container

Certificate container signed successfully!

mlxdpa --cert_container_type add -c <.DER-formatted-
certificate> -o <unsigned-container-path> --keypair_uuid
<uuid> --cert_uuid <uuid> --life_cycle_priority OEM
create_cert_container

DPA Development 58

2. Generate signature field header:

3. Generate signature of container (in whatever way, this is an example only):

4. Concatenate unsigned container, signature header, and signature into one file:

Uploading Certificates

Upload each signed container containing the desired certificates for the device.

Output example:

echo "90 01 02 0C 10 00 00 00 00 00 00 00" | xxd -r -p -
<signature-header-path>

openssl dgst -sha512 -sign <private-key-pem-file> -out
<container-signature-path> <unsigned-container-path>

cat <unsigned-container-path> <signature-header-path>
<container-signature-path> > <signed-container-path>

flint -d <dev> -i <signed-container> -y b

-I- Downloading FW ...
FSMST_INITIALIZE - OK
Writing DIGITAL_CACERT_REMOVAL component - OK

DPA Development 59

Removing Certificates

To remove root CA certificates from the device, the user must apply a certificate removal
container signed by the device ownership private key.

There are two ways to remove certificates, either removing all certificates, or removing all
installed certificates:

Removing all root CA certificates from the device:

1. Generate a signed container to remove all certificates.

1. Created certificate container:

Output example:

2. Sign certificate container:

-I- Component FW burn finished successfully.

mlxdpa --cert_container_type remove --
remove_all_certs -o <path-to-container> --
life_cycle_priority <Nvidia/OEM/User>
create_cert_container

Certificate container created successfully!

mlxdpa --cert_container <path-to-container> -p <key-
file> --keypair_uuid <uuid> --life_cycle_priority
<Nvidia/OEM/User> -o <path-to-signed-container>
sign_cert_container

DPA Development 60

Output example:

2. Apply the container to the device.

Output example:

Removing specific root CA certificates according to their UUID:

1. Generate a signed container to remove certificate based on UUID.

1. Create the container.

Output example:

Certificate container signed successfully!

flint -d <dev> -i <signed-container> -y b

-I- Downloading FW ...
FSMST_INITIALIZE - OK
Writing DIGITAL_CACERT_REMOVAL component - OK
-I- Component FW burn finished successfully.

mlxdpa --cert_container_type remove --cert_uuid
<uuid> -o <path-to-container> --life_cycle_priority
<Nvidia/OEM/User> create_cert_container

Certificate container created successfully!

DPA Development 61

2. Sign the container:

Output example:

2. Apply the container to the device:

Output:

DPA Authentication Enablement

After the device has a device ownership key and DPA root CA certificates installed, the
owner of the device can enable DPA authentication. To do this, they must create an
NVconfig file, sign it with the device ownership private key, and upload the NVconfig to
the device.

mlxdpa --cert_container <path-to-container> -p <key-
file> --keypair_uuid <uuid> --cert_uuid <uuid> --
life_cycle_priority <Nvidia/OEM/User> -o <path to
output> sign_cert_container

Certificate container signed successfully!

flint -d <dev> -i <signed container> -y b

-I- Downloading FW ...
FSMST_INITIALIZE - OK
Writing DIGITAL_CACERT_REMOVAL component - OK
-I- Component FW burn finished successfully.

DPA Development 62

Generating NVconfig Enabling DPA Authentication

1. Create XML with TLVs to enable DPA authentication.

1. Get list of available TLVs for this device:

Output:

Example part of the generated text file:

2. Edit the text file to contain the following TLVs:

mlxconfig -d /dev/mst/<dev> gen_tlvs_file
enable_dpa_auth.txt

Saving output...
Done!

file_applicable_to 0
file_comment 0
file_signature 0
file_dbg_fw_token_id 0
file_cs_token_id 0
file_btc_token_id 0
file_mac_addr_list 0
file_public_key 0
file_signature_4096_a 0
file_signature_4096_b 0
…

file_applicable_to 1

DPA Development 63

3. Convert the .txt file to XML format with another mlxconfig command:

Output:

The generated .xml file:

nv_file_id_vendor 1
nv_dpa_auth 1

mlxconfig -a gen_xml_template enable_dpa_auth.txt
enable_dpa_auth.xml

Saving output...
Done!

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://www.mellanox.com/config">
<file_applicable_to ovr_en='1' rd_en='1' writer_id='0'>
 <psid></psid>
 <psid_branch></psid_branch>
 </file_applicable_to>

<nv_file_id_vendor ovr_en='1' rd_en='1' writer_id='0'>

 <!-- Legal Values: False/True -->
 <disable_override></disable_override>

 <!-- Legal Values: False/True -->
 <keep_same_priority></keep_same_priority>

 <!-- Legal Values: False/True -->

DPA Development 64

4. Edit the XML file and add the information for each of the TLVs, as seen in the
following example XML file:

 <per_tlv_priority></per_tlv_priority>

 <!-- Legal Values: False/True -->
 <erase_lower_priority></erase_lower_priority>
 <file_version></file_version>
 <day></day>
 <month></month>
 <year></year>
 <seconds></seconds>
 <minutes></minutes>
 <hour></hour>

</nv_file_id_vendor>

<nv_dpa_auth ovr_en='1' rd_en='1' writer_id='0'>
 <!-- Legal Values: False/True -->
 <dpa_auth_en></dpa_auth_en>

</nv_dpa_auth>
</config>

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://www.mellanox.com/config">

<file_applicable_to ovr_en='0' rd_en='1' writer_id='0'>
 <psid>TODO</psid>
 <psid_branch>TODO</psid_branch>
</file_applicable_to>

<nv_file_id_vendor ovr_en='0' rd_en='1' writer_id='0'>
 <disable_override>False</disable_override>

DPA Development 65

2. Convert XML file to binary NVconfig file and sign it using mlxconfig :

 <keep_same_priority>True</keep_same_priority>
 <per_tlv_priority>False</per_tlv_priority>
 <erase_lower_priority>False</erase_lower_priority>
 <file_version>TODO</file_version>
 <day>TODO</day>
 <month>TODO</month>
 <year>TODO</year>
 <seconds>TODO</seconds>
 <minutes>TODO</minutes>
 <hour>TODO</hour>
</nv_file_id_vendor>

<nv_dpa_auth ovr_en='0' rd_en='1' writer_id='0'>
 <dpa_auth_en>True</dpa_auth_en>
</nv_dpa_auth>
</config>

Note

In nv_file_id_vendor , keep_same_priority must

be True to avoid removing the ownership public key from
the device. More information they can be found in section
"Device Ownership Claiming Flow".

Note

The ovr_en should be set to 0. This can ignore user

priority changing nv_dpa_auth .

DPA Development 66

Output of create_conf command:

3. Upload NVconfig file to device by writing the file to the device:

Output:

4. Verify that the device has DPA authentication enabled by reading the status of DPA
authentication from the device:

Output:

mlxconfig -p OEM.77dd4ef0-c633-11ed-9e20-001dd8b744ff.pem -u
77dd4ef0-c633-11ed-9e20-001dd8b744ff create_conf
enable_dpa_auth.xml enable_dpa_auth.bin

Saving output...
Done!

mlxconfig -d /dev/mst/<dev> apply enable_dpa_auth.bin

Saving output...
Done!

mlxconfig -d /dev/mst/<dev> -e q DPA_AUTHENTICATION

Device #1:

DPA Development 67

The DPU's factory default setting is configured with dpa_auth_en=0 (i.e., DPA
applications can run without authentication). To prevent configuration change by any
user, it is strongly recommended for the customer to generate and install NVconfig
with dpa_auth_en=0/1 , according to their preferences, with ovr_en=0 .

Manually Signing NVconfig File

If the server holding the private key cannot run mlxconfig, it is possible to manually sign
the binary NVconfig file and add the signature to the file. In this case, the following
process should be followed instead of step 2:

1. Generate unsigned NVconfig bin file from the XML file:

2. Generate random UUID for signature:

3. Generate signature of NVconfig bin file (in whatever way, this is an example only):

Device type: BlueField3
…
…
Configurations: Default
Current Next Boot
 RO DPA_AUTHENTICATION True(1)
True(1) True(1)

mlxconfig create_conf <xml-nvconfig-path> <unsigned-nvconfig-
path>

uuidgen -r | xxd -r -p - <signature-uuid-path>

openssl dgst -sha512 -sign <private-key-pem-file> -out

DPA Development 68

4. Split the signature into two parts:

5. Add signing key UUID:

Use the signing key UUID, which must have a length of exactly 16 bytes, in a format
like aa9c8c2f-8b29-4e92-9b76-2429447620e0 .

6. Generate headers for signature struct:

7. Concatenate everything:

<nvconfig-signature-path> <unsigned-nvconfig-path>

head -c 256 <nvconfig-signature-path> > <signature-part-1-
path> && tail -c 256 <nvconfig-signature-path> > <signature-
part-2-path>

echo "<signing-key-UUID>" | xxd -r -p - <signing-key-uuid-
path>

echo "03 00 01 20 06 00 00 0B 00 00 00 00" | xxd -r -p -
<signature-1-header-path>
echo "03 00 01 20 06 00 00 0C 00 00 00 00" | xxd -r -p -
<signature-2-header-path>

cat <unsigned-nvconfig-path> <signature-1-header-path>
<signature-uuid-path> <signing-key-uuid-path> <signature-
part-1-path> <signature-2-header-path> <signature-uuid-path>

DPA Development 69

Device Ownership Transfer

The device owner may change the device ownership key to change the owner of the
device or to remove the owner altogether.

First Installation

To install the first OEM_PUBLIC_KEY on the device, the user must upload an NVCONFIG

file signed by NVIDIA. This file would contain the 3 FILE _OEM_PUBLIC_KEY TLVs of the
current user.

Removing Device Ownership Key

Before removing the device ownership key completely, it is recommended that the device
owner reverts any changes made to the device since it is not possible to undo them after
the key is removed. Mainly, the root CA certificates installed by the owner should be
removed.

1. To remove device ownership key completely, follow the steps in section "Generating
NVconfig Enabling DPA Authentication" to create an XML file with TLVs.

2. Edit the XML file to contain the following TLVs:

<signing-key-uuid-path> <signature-part-2-path> > <signed-
nvconfig-path>

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://www.mellanox.com/config">

<file_applicable_to ovr_en='0' rd_en='1' writer_id='0'>
 <psid> MT_0000000911</psid>
 <psid_branch> </psid_branch>
</file_applicable_to>

DPA Development 70

The TLVs in this file are the only TLVs that will have OEM priority after this file is
applied, and as the device ownership key will no longer be on the device, the OEM will
no longer be able to change the TLVs. To have OEM priority TLVs on the device after
removing the device ownership key, add to this XML any TLV that must stay as
default on the device.

3. Convert the XML file to a binary NVconfig TLV file signed by the device ownership
key as described in section "Generating NVconfig Enabling DPA Authentication".

4. Apply the NVconfig file to the device as described in section "Generating NVconfig
Enabling DPA Authentication".

Changing Device Ownership Key

To transfer ownership of the device to another entity, the previous owner can change the
device ownership public key to the public key of the new owner.

To do this, they can use an NVconfig file, and include in it the following TLVs:

<nv_file_id_vendor ovr_en='0' rd_en='1' writer_id='0'>
 <disable_override>False</disable_override>
 <keep_same_priority>False</keep_same_priority>
 <per_tlv_priority>False</per_tlv_priority>
 <erase_lower_priority>False</erase_lower_priority>
 <file_version>0</file_version>
 <day>17</day>
 <month>7</month>
 <year>7e7</year>
 <seconds>1</seconds>
 <minutes>e</minutes>
 <hour>15</hour>
</nv_file_id_vendor>
</config>

<nv_ls_nv_public_key_0 ovr_en='0' rd_en='1' writer_id='0'>

DPA Development 71

 <public_key_exp>65537</public_key_exp>
 <keypair_uuid>77dd4ef0-c633-11ed-9e20-
001dd8b744ff</keypair_uuid>
</nv_ls_nv_public_key_0>

<nv_ls_nv_public_key_1 ovr_en='0' rd_en='1' writer_id='0'>
 <key>
 c5:f8:a3:75:ef:b6:ec:0d:e9:43:b3:28:66:79:
 66:9a:da:72:b8:73:b5:25:8f:40:51:e2:9a:1d:45:
 e4:59:18:a8:a4:bf:4f:ba:cc:31:d4:a7:06:7d:62:
 52:37:39:44:3d:94:5e:bd:31:eb:69:89:4b:40:2a:
 ee:e2:87:eb:5b:d3:41:13:fa:88:c1:2d:a7:ee:48:
 85:c0:20:af:64:ae:85:29:45:2a:64:0b:8c:25:3a:
 5f:b8:db:6f:f6:8e:02:e2:fd:19:89:7e:13:42:a5:
 83:34:3f:21:cb:ed:4b:84:f7:f7:40:b4:62:27:fb:
 b1:e0:6e:ae:1c:81:70:10:d4:b0:6a:07:ab:b2:1b:
 8a:0f:44:48:e8:16:99:d6:0f:52:f4:8c:5d:5d:c0:
 f4:bd:37:44:b8:33:ea:43:49:b8:0b:01:2c:ff:7c:
 67:92:c3:51:2d:43:3e:4e:23:c4:66:87:39:32:81:
 28:2b:22:6f:e0:61:5b:1a:db:5a:6e:10:c2:b7:9b:
 2b:f5:1a:80:a9:33:54:48:32:3d:07:48:eb:5e:84:
 01:41:0a:6a:46:06:1d:de:54:37:d4:58:61:dc:6f:
 46:8e:da:00:71:44:3a:97:41:9c:b7:70:d7:28:54:
 c0:00:35:77:2f:2a:35:be:31:4d:ac:e2:94:85:d8:
 53:a6:
 </key>
</nv_ls_nv_public_key_1>

<nv_ls_nv_public_key_2 ovr_en='0' rd_en='1' writer_id='0'>
 <key>
 30:ca:cc:d9:99:02:cc:72:21:92:34:6e:e7:
 36:e1:30:a0:8f:5c:8f:c8:56:e8:26:da:67:1e:69:
 6d:cb:17:e6:f5:ef:84:26:c7:52:22:94:62:5f:c6:
 13:5b:09:0d:68:8c:cd:8f:4f:15:b3:05:0b:c1:b2:
 a8:c3:91:ae:e4:51:69:13:fb:97:0c:4d:dc:5e:32:
 ce:50:d9:ca:8a:1b:33:16:fe:2a:92:ab:10:8c:a6:

DPA Development 72

If the transfer is internal, the owner should set
keep_same_priority=True in nv_file_id_vendor TLV and only include the 3

nv_ls_nv_public_key_* TLVs, file_applicable_to and nv_file_id_vendor
TLVs in the NVconfig file.

If the transfer is to another OEM/CSP, the owner should clean the device (similarly to
removing the device ownership key) and set keep_same_priority=False in

nv_file_id_vendor TLV.

ELF File Structure

For maximal firmware code reuse, the format of the DPA image loaded from driver should
be the same as for the file loaded from flash. As for files loaded from the host, ELF is the
default file format. This is chosen as the format for the DPA image, both for flash and for
files loaded from the host.

The following figure shows, schematically, a generic ELF file structure.

 8a:e0:6b:33:5e:07:be:8d:f8:84:c2:c0:ca:c1:2f:
 9c:b9:67:7d:8a:19:f2:2e:b2:16:17:6d:fe:39:7d:
 12:e7:18:c5:5c:32:44:f1:4b:61:38:3f:b7:8f:78:
 06:98:fd:e4:cd:ed:48:cf:66:0f:42:f8:77:21:33:
 d1:b2:a4:25:b5:a8:98:87:e0:a2:be:a6:82:1c:2d:
 2f:a0:83:0e:3f:58:a5:00:46:7f:ad:6f:39:a6:2e:
 8b:03:c1:2c:b9:d3:4c:1b:61:0b:ad:4c:a5:4b:39:
 c1:cd:92:3f:3b:13:24:e2:a2:b1:f6:71:a0:8d:a3:
 f6:62:39:9c:3f:0d:85:7d:cf:73:65:cc:25:e7:b4:
 e1:10:e8:65:c9:2e:b0:dc:4f:71:c0:1b:d9:20:d2:
 de:80:cb:8e:21:6b:2e:d4:52:b7:94:81:b1:31:20:
 94:65:0b
 </key>
</nv_ls_nv_public_key_2>

DPA Development 73

To support DPA Code authentication additional information needs to be presented to
firmware. This info must include:

Cryptographic signature of the DPA code

Customer certificate chain including a Leaf Certificate with the public key to be used
for signature validation (as described in section "Public Keys (Infrastructure, Delivery,
and Verification)")

ELF File Structure Schematic

Crypto Signing Flow

The host ELF includes parts which run on the host, and those that run on DPA. DPA code
files are incorporated in the "big" host ELF as binaries. Each host file may include several
DPA applications.

When it is required to sign the DPA applications, the following steps need to be
performed by the MFT Signing Tool (also see figure "Crypto Signing Flow"):

1. Using ELF manipulation library APIs of DPACC, extract Apps List Table

1. Input – host ELF

2. Output – apps list data table to include:

https://docs.nvidia.com/networking/display/mftv4260/mlxdpa+%E2%80%93+dpa+applications+sign+tool

DPA Development 74

1. DPA app index

2. DPA app name

3. Offset in host ELF

4. Size of app

5. Name of corresponding crypto data section

For each DPA application (from i=1 to i=N, N- number of DPA apps in the
host ELF) run steps 2 and 3.

2. Fill hash list table:

Input: Dpa_App_i

Output: Hash list table

3. Sign the crypto data:

Input: {Metadata, Hash List Table}, key handle (e.g., UUID from leaf of the
Certificate Chain)

Output: Crypto_Data "Blob", including: Metadata, Hash List Table, Crypto
Signature, Certificate Chain

4. Add crypto data section to host ELF:

Inputs: Host ELF, crypto data section name to use

Output: File name of host ELF with signature added

The structures used in the flow (hash list table, metadata, etc.) are described in sections
"ELF Crypto Data Section Content" and "Hash List Table Layout".

Signing the crypto data may be done using a signing server or a locally stored key.

Crypto Signing Flow

DPA Development 75

ELF Cryptographic Data Section

This figure shows, schematically, the layout of the cryptographic data section, and the
following subsections provide details about the ELF section header and the rest of the
structures.

ELF Cryptographic Data Section Layout

DPA Development 76

Crypto Data ELF Section Header

Defined according to the ELF section header format.

ELF Section Header

Name
Off
set

Ra
ng
e

Description

sh_nam
e

0x0 4B
&("Cryptographic Data Section DPA App X")
An offset to a string (in the .shstrtab section of ELF) which
represents the name of this section

sh_typ
e

0x4 4B
0x70000666
SHT_CRYPTODATA – the section is proprietary and holds crypto

information defined in this document

sh_fla
gs

0X
8

8B 0 – no flags

sh_add
r

0x1
0

8B
Virtual address of the section in memory, for sections that are
loaded

sh_off
set

0x1
8

8B Offset of the section in the file image

sh_siz
e

0x2
0

8B
Size in bytes of the section in the file image. Depends on the
content (e.g., presence and type of public key certificate chain and
signature).

sh_lin
k

0x2
8

4B 0 – =SHN_UNDEF , no link information

sh_inf
o

0x2
C

4B 0 – no extra information about the section

sh_add
ralign

0x3
0

8B
Contains the required alignment of the section. This field must be
a power of two.

sh_ent
size

0x3
8

8B

0

0x4
0

End of section header (size)

ELF Crypto Data Section Content

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format#File_layout

DPA Development 77

ELF Crypto Data Section Fields Description

Name Offset Range Description

metadata_ver
sion

0x0 15:0
Version metadata structure format.
Initial version is 0.

Reserved (
DPA_fw_ty
pe

)

0x4 15:8 Reserved

Reserved 0x8 31:0 Reserved

Reserved 0xC 31:0 Reserved. Shall be set to all zeros.

Reserved 0x10 16B Reserved. Shall be set to all zeros.

Reserved 0x20 4 bytes Reserved. Shall be set to all zeros.

Reserved 0x24 24B Reserved. Shall be set to all zeros.

signature_typ
e

0x3c 15:0

Signature Type. Only relevant for
signed firmware:

0, 1 – Reserved
2 – RSA_ SHA_512
>3 – Reserved

Hash List
Table

0x40
HashTabl
eLength

Crypto
Signature

0x40 +
HashTableLength

Signatur
e_Lengt
h

Signature_Length depends on the
signature_type.

Certificate_C
hain

0x40 +
HashTableLength +
Signature_Length

CrtChain
_Length

Structure given the table under
section "Certificate Chain Layout".

Padding
FF-padding to align the full size of the
data to multiples of DWords (DWs)

The full length of the ELF crypto data section shall be a multiple of DWs (due to firmware
legacy implementation). Thus, the MFT (as part of the flow described in figure "Crypto
Signing Flow") shall add FF-padding for this structure to align to multiple of DW.

DPA Development 78

Hash List Table Layout

This table specifies the hash table layout (proposal).

The table contains two parts:

The 1st part corresponds to the segments of the ELF file, as referenced by the
Program Header Table of the EFL file

The 2nd part corresponds to the sections of the ELF file, as referenced by the
Section Header Table

The hash algorithm to be used is SHA-256.

Hash List Table Layout (Proposal)

Name Offset
Ran
ge

Description

Hash Table Magic Pattern 0x0
8
byte
s

ASCII "HASHLIST' string:
0x0: 31:24 – "H", 23:16 – "A", 15:8
– "S", 7:0 – "H"
0x4: 31:24 – "L", 23:16 – "I", 15:8
– "S", 7:0 – "T"

Number of Entries – Segments 0x8 7:0
Number of entries in Hashes
Segments part, N_Segments.

Reserved 0x8 31:8 Reserved

Number of Entries – Sections 0xc 7:0
Number of entries in Hashes
Sections part, N_Sections.
Minimum – 0

Reserved 0xc 31:8 Reserved

Reserved 0x10
16
byte
s

Reserved

DPA Application ELF Hash 0x20
32
byte
s

Hash of the full ELF App file

ELF Header Hash 0x40
32
byte
s

Hash of the ELF Header

DPA Development 79

Name Offset
Ran
ge

Description

Program Header Hash 0x60
32
byte
s

Hash of the program header

Hash of 1st Segment referenced
in the Program Header Table

0x80
32
byte
s

Hash of 1st segment referenced
in the Program Header Table

Hash of 2nd Segment referenced
in the Program Header Table

0xA0
32
byte
s

Hash of 2nd Segment
referenced in the Program
Header Table

…… …… ….. ……

Hash of N_Segments (last)
Segment referenced in the
Program Header Table

0x60 +
N_Segment
s*0x20

32
byte
s

Hash of 2nd segment
referenced in the Program
Header Table

Section Header Table Hash
0x80 +
N_Segment
s*0x20

32
byte
s

Hash of the Section Header
Table

Hash of 1st Section referenced in
the Section Header Table

+ 0x20
32
byte
s

Hash of 1st section referenced
in the Section Header Table

Hash of 2nd Section referenced in
the Section Header Table

+ 0x20
32
byte
s

Hash of 2nd section referenced
in the Section Header Table

…… …… ….. ……

Hash of N_Sections (last) Section
referenced in the Section Header
Table

+ 0x20
32
byte
s

Hash of N_Sections (last)
section referenced in the
Section Header Table

The 32-bytes hash fields of different sections/segments in the previous table shall follow
Big-Endian convention, as illustrated here:

Hash Fields (Big Endian) Bytes Alignment

DPA Development 80

Certificate Chain Layout

The following table specifies the certificate chain layout. The leaf (the last certificate) of
the chain is used as the public key for authentication of the DPA code. This structure is
aligned with the certificate chain layout as defined in the Flash Application Note.

Certificate Chain Layout

Name
Offse
t

Ra
ng
e

Description

Type 0x0 3:0 Chain type. Shall be set to 1. 3rd party code authentication
certificate chain.

Count 0x0 7:4 Number of certificates in this chain

Lengt
h

0x0
23:
8

Total length of the certificate chain, in bytes, including all fields in
this table

Reser
ved

0x4
31:
0

31:0 – Reserved

CRC 0x8
15:
0

The CRC of the header, for header integrity check, covering DWs in
0x0, 0x4

Certifi
cates

0xC-
0x100
0

One or more ASN.1 DER-encoded X509v3 certificates. The ASN.1
DER encoding of each individual certificate can be analyzed to
determine its length.
The certificates shall be listed in hierarchical order, with the leaf
certificate being the last on the list.

DPA Development 81

Known Limitations

Supported Devices

BlueField-3 based DPUs

ConnectX-8 based NICs

Supported Host OS

Windows is not supported

Supported SDKs

DOCA Flex IO at GA level

DOCA DPA at beta level

Toolchain

DPA image-signing and signature-verification are not currently supported

Flex IO

When flexio_dev_outbox_config_uar_extension API is called with a

device_id parameter different than PF/ECPF ID (i.e., move to SF/VF outbox) and

the APIs flexio_dev_yield() , flexio_dev_print() , or

flexio_dev_msg() are called, then when either of those 3 APIs return, the user
cannot work with the SF/VF queues.

Flex IO SDK tracer might suffer from data loss and ordering issues when working
under high load (multithread/high rate).

DPA Development 82

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code,
or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any specified use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and fit for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2025, NVIDIA. PDF Generated on 05/05/2025

	Overview
	DOCA Libs and Drivers
	Programming Model
	Compiler
	Flex IO SDK
	Prerequisites
	Architecture
	API
	Resource Management
	Example
	DPA Memory Management
	Allocating NIC Queues for Use by DPA
	Memory Allocation Best Practices
	DPA Window
	DPA Event Handler
	Default Window/Outbox
	Execution Unit Management
	Version API and Backward Compatibility
	Version API Toolkit
	Compile-time
	Runtime
	End of Backward Compatibility
	Application Debugging
	Using DPA GDB
	Using Device Messaging Stream API
	Core Dump
	Experimental Flex IO APIs
	Flex IO Samples
	Running Flex IO Sample
	Samples
	Flex IO SDK Packages

	DOCA DPA
	Memory Model
	DPA-specific Operations

	Flex IO SDK
	DPA Application Authentication
	Root of Trust Principles
	Signing of 3rd Party DPA App Code
	Verification of Authenticity of DPA App Code
	Device Ownership Claiming Flow
	Uploading DPA Root CA Certificate
	DPA Authentication Enablement
	Device Ownership Transfer
	ELF File Structure
	Crypto Signing Flow
	ELF Cryptographic Data Section

	Known Limitations
	Supported Devices
	Supported Host OS
	Supported SDKs
	Toolchain
	Flex IO

