
NVIDIA DOCA PCC Application Guide

Table of contents

Introduction

System Design

Application Architecture

DOCA Libraries

Dependencies

Running the Application

Installation

Prerequisites

Application Execution

Command Line Flags

Troubleshooting

Recompiling the Application

Recompiling All Applications

Recompiling PCC Application Only

Troubleshooting

Application Code Flow

Port Programmable Congestion Control Register

Usage

Internal Default Algorithm

Counters

References

NVIDIA DOCA PCC Application Guide 1

Table of contents

Introduction

System Design

Application Architecture

DOCA Libraries

Dependencies

Running the Application

Installation

Prerequisites

Application Execution

Command Line Flags

Troubleshooting

Recompiling the Application

Recompiling All Applications

Recompiling PCC Application Only

Troubleshooting

Application Code Flow

Port Programmable Congestion Control Register

Usage

Internal Default Algorithm

Counters

References

NVIDIA DOCA PCC Application Guide 2

This document provides a DOCA PCC implementation on top of NVIDIA® BlueField® DPU.

Introduction

Programmable Congestion Control (PCC) allows users to design and implement their own
congestion control (CC) algorithm, giving them the flexibility to work out an optimal
solution to handle congestion in their clusters. On BlueField-3, PCC is provided as a
component of DOCA.

The application leverages the DOCA PCC API to provide users the flexibility to manage
allocation of DPA resources according to their requirements.

Typical DOCA application includes App running on host/Arm and App running on DPA.
Developers are advised to use the host/Arm application with minimal changes and focus
on developing their algorithm and integrating it into the DPA application.

System Design

DOCA PCC application consists of two parts:

Host/Arm app is the control plane. It is responsible for allocating all resources and
handover to the DPA app initially, then destroying everything when the DPA app

https://docs.nvidia.com/doca/archive/2-5-3/DOCA+PCC/index.html

NVIDIA DOCA PCC Application Guide 3

finishes its operation. The host app must always be alive to stay in control while the
device app is working.

Device/DPA app is the data plane. It is mainly for CC event handler. When the first
thread is activated, DPA App initialization is done in the DOCA PCC library by calling
the algorithm initialization function implemented by the user in the app. Moreover,
the user algorithm execution function is called when a CC event arrives. The user
algorithm takes event data as input and performs a calculation using per-flow
context and replies with updated rate value and a flag to sent RTT request.

The host/Arm application sends command to NIC firmware when allocating or destroying
resources. CC events are generated by NIC hardware automatically when sending data or
receiving ACK/NACK/CNP/RTT packets, then the device application handles these events
by calling the user algorithm. After the DPA application replies to hardware, handling of
current event is done and the next event can arrive.

Application Architecture

The main content of the reference DOCA PCC application files are the following:

host/pcc.c – entry point to entire application

host/pcc_core.c – host functions to initialize and destroy the PCC application
resources, parsers for PCC command line parameters

/opt/mellanox/doca/applications/pcc/src
├── host
│ ├── pcc.c
│ ├── pcc_core.c
│ └── pcc_core.h
└── device
 ├── algo
 │ ├── rtt_template.h
 │ ├── rtt_template_algo_params.h
 │ ├── rtt_template_ctxt.h
 │ └── rtt_template.c
 └── pcc_dev_main.c

NVIDIA DOCA PCC Application Guide 4

device/pcc_dev_main.c – callbacks for user CC algorithm initialization, user CC
algorithm calculation, algorithm parameter change notification

device/algo/* – user CC algorithm reference template. Put user algorithm code
here.

DOCA Libraries

This application leverages the following DOCA library:

DOCA PCC

Refer to its respective programming guide for more information.

Dependencies

NVIDIA BlueField-3 DPU is required

Firmware 32.38.1000 and higher

MFT 4.25 and higher

Running the Application

Installation

Refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

Prerequisites

Enable USER_PROGRAMMABLE_CC in mlxconfig :

mlxconfig -y -d /dev/mst/mt41692_pciconf0 set
USER_PROGRAMMABLE_CC=1

https://docs.nvidia.com/doca/archive/2-5-3/DOCA+PCC/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Installation+Guide+for+Linux/index.html

NVIDIA DOCA PCC Application Guide 5

R eset firmware or power cycle the host to apply the configuration change.

Application Execution

The PCC application is provided in both source and binary forms. The binary is located
under /opt/mellanox/doca/applications/pcc/bin/doca_pcc .

1. Application usage instructions:

Note

Make sure to perform graceful shutdown before power cycling the
host.

Usage: doca_pcc [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version
information
 -l, --log-level Set the (numeric) log level for
the program <10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING,
50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level
for the program <10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING,
50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an
input json file

Program Flags:
 -d, --device <IB device names> IB device name that
supports PCC (mandatory).

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

NVIDIA DOCA PCC Application Guide 6

2. CLI example for running the application on the BlueField or the host:

 -w, --wait-time <PCC wait time> The duration of the
DOCA PCC wait (optional), can provide negative values which
means infinity. If not provided then -1 will be chosen.
 -p, --pcc-threads <pcc-threads-list> A list of the PCC
threads numbers to be chosen for the DOCA PCC context to run
on (optional). Must be provided as a string, such that the
number are separated by a space.

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

/opt/mellanox/doca/applications/pcc/bin/doca_pcc
-h

Info

For additional information, refer to section "Command Line
Flags".

/opt/mellanox/doca/applications/pcc/bin/doca_pcc -d mlx5_0

Note

NVIDIA DOCA PCC Application Guide 7

3. The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

Command Line Flags

Flag
Typ
e

Sh
ort
Fla
g

Long
Flag/J
SON
Key

Description JSON Content

Gen
eral
flag
s

h
hel
p

Prints a help synopsis N/A

The IB device identifier (mlx5_0) should match the identifier of
the desired IB device.

doca_pcc --json [json_file]

cd /opt/mellanox/doca/applications/pcc/bin
./doca_pcc --json ./pcc_params.json

Note

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment.

NVIDIA DOCA PCC Application Guide 8

Flag
Typ
e

Sh
ort
Fla
g

Long
Flag/J
SON
Key

Description JSON Content

v
ver
sio
n

Prints program version
information

N/A

l

log
-
lev
el

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

N/A

N/
A

sdk
-
log
-
lev
el

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50

N/A

Info
The
applicati
on uses a
unique
logging
impleme
ntation
that
makes
use of
DOCA's
logging
levels.

NVIDIA DOCA PCC Application Guide 9

Flag
Typ
e

Sh
ort
Fla
g

Long
Flag/J
SON
Key

Description JSON Content

DEBUG=60
TRACE=70

j jso
n

Parse all command flags from an
input JSON file

N/A

Pro
gra
m
flag
s

d
dev
ice

IB device name that supports PCC

w

wai
t-
tim
e

(Optional) In seconds, the duration
of the DOCA PCC wait. Negative
values mean infinity.

p

pcc
-
thr
ead
s

(Optional) A list of the PCC EU
indexes to be chosen for the
DOCA PCC event handler threads
to run on. Must be provided as a
string, such that the numbers are
separated by a space.
The placement of the PCC threads
per core can be controlled using
the EU indexes. Utilizing a large
number of EUs, while limiting the
number of threads per core, gives
the best event handling rate and
lowest event latency.
The last EU is used for
communication with the NIC while
all others are for data path CC
event handling.

"device": ""

"wait-time": -1

"pcc-threads":
"176 177 178 179 180 181 1
82 183
184 185 186 187 192 193 19
4 195 196 197 198 199
200 201 202 203 208 209 21
0 211 212 213 214 215
216 217 218 219 224 225 22
6 227 228 229 230 231
232 233 234 235 240"

Info

NVIDIA DOCA PCC Application Guide 10

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications.

Recompiling the Application

In addition to providing the application in binary form, the installation also includes all of
the application sources and compilation instructions so as to allow modifying the sources
and recompiling the application. For more information about the applications, as well as
development and compilation tips, refer to the DOCA Applications page.

The sources of the application can be found under the
/opt/mellanox/doca/applications/pcc/src directory.

Recompiling All Applications

The applications are all defined under a single meson project, so the default compilation
recompiles all the DOCA applications.

To build all the applications together, run:

Refer to DOCA Arg Parser for more information regarding the
supported flags and execution modes.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html
https://docs.nvidia.com/doca/archive/2-5-3/DOCA+Applications/index.html
https://docs.nvidia.com/doca/archive/2-5-3/DOCA+Arg+Parser/index.html

NVIDIA DOCA PCC Application Guide 11

Recompiling PCC Application Only

To directly build only the PCC application:

Alternatively, one can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

1. Edit the following flags in
/opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_pcc to true

2. Run the following compilation commands :

doca_pcc is created under /tmp/build/pcc/src/ .

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_pcc=true
ninja -C /tmp/build

Info

doca_pcc is created under /tmp/build/pcc/src/ .

cd /opt/mellanox/doca/applications/
meson /tmp/build

NVIDIA DOCA PCC Application Guide 12

Troubleshooting

Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application.

Application Code Flow

This section lists the application's configuration flow, explaining the different DOCA
function calls and wrappers.

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register PCC application parameters.

3. Parse the arguments.

ninja -C /tmp/build

Info

doca_pcc is created under /tmp/build/pcc/src/ .

doca_argp_init();

register_pcc_params();

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

NVIDIA DOCA PCC Application Guide 13

1. Parse DOCA flags.

2. Parse DOCA PCC parameters.

2. PCC initialization.

1. Open DOCA device that supports PCC.

2. Create DOCA PCC context.

3. Configure affinity of threads handling CC events.

3. Start DOCA PCC.

1. Create PCC process and other resources.

2. Trigger initialization of PCC on device.

3. Register the PCC in the NIC hardware so CC events can be generated and an
event handler can be triggered.

4. Process state monitor loop.

1. Get the state of the process:

doca_argp_start();

pcc_init();

doca_pcc_start();

doca_pcc_get_process_state();
doca_pcc_wait();

NVIDIA DOCA PCC Application Guide 14

State Description

DOCA_PCC_PS_ACTIVE
= 0

The process handles CC events (only one process
is active at a given time)

DOCA_PCC_PS_STANDB
Y = 1

The process is in standby mode (another process is
already ACTIVE)

DOCA_PCC_PS_DEACTI
VATED = 2

The process has been deactivated by NIC firmware
and should be destroyed

DOCA_PCC_PS_ERROR
= 3

The process is in error state and should be
destroyed

2. Wait on process events from the device.

5. PCC destroy.

1. Destroy PCC resources. The process stops handling PCC events.

2. Close DOCA device.

6. Arg parser destroy.

Port Programmable Congestion Control Register

The Port Programmable Congestion Control (PPCC) register allows the user to configure
and read PCC algorithms and their parameters/counters.

It supports the following functionalities:

Enabling different algorithms on different ports

Querying information of both algorithms and tunable parameters/counters

doca_pcc_destroy();

doca_argp_destroy()

NVIDIA DOCA PCC Application Guide 15

Changing algorithm parameters without compiling and reburning user image

Querying or clearing programmable counters

Usage

The PPCC register can be accessed using a string similar to the following:

Where you must:

Set the cmd_type and the indexes

Give values for algo_slot , algo_param_index

Keep local_port=1 , pnat=0 , lp_msb=0

Keep doca_pcc application running

cmd
_typ
e

Descriptio
n

Me
tho
d

Index
Input (in --
set)

Output

0x
0

Get
algorithm
info

Get

algo_
slot

N/A

Value – 32-bit algo_num or 0 if
no algo is available at this index
Text – algorithm description
sl_bitmask_support –

indicates whether the device
supports sl_bitmask logic

0x
1

Enable
algorithm

Set sl_bitmas
k

N/A

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op
"cmd_type=0" --reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"
sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --set "cmd_type=1" --
reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

NVIDIA DOCA PCC Application Guide 16

cmd
_typ
e

Descriptio
n

Me
tho
d

Index
Input (in --
set)

Output

trace_en
counter_e
n

0x
2

Disable
algorithm

Set N/A N/A

0x
3

Get
algorithm
enabling
status

Get N/A

Value:
0 – disabled
1 – enabled

sl_bitmask – this field allows
to apply to specific SLs based on
the bitmask
sl_bitmask_support –

indicates whether the device
supports sl_bitmask logic

0x
4

Get
number of
parameter
s

Get N/A Value – num of params of algo

0x
5

Get
parameter
informatio
n

Get

algo_
slot
algo_
param
_inde
x

N/A

param_value1 – default value
of param
param_value2 – min value of

param
param_value3 – max value of

param
prm –

0: read-only
1: read-write
2: read-only but may be
cleared using the "get and
clear" command

0x
6

Get
parameter
value

Get N/A Value – param value

NVIDIA DOCA PCC Application Guide 17

cmd
_typ
e

Descriptio
n

Me
tho
d

Index
Input (in --
set)

Output

0x
7

Get and
clear
parameter

Get N/A Value – param value

0x
8

Set
parameter
value

Set
Parameter
value

N/A

0x
A

Bulk get
parameter
s

Get

algo_
slot

N/A

text_length – param num x 4
bytes
text[0]…text[n] – param

values

0x
B

Bulk set
parameter
s

Set

text_leng
th

- param num
x 4
text[0]…
text[n]

- param
values

N/A

0x
C

Bulk get
counters

Get N/A

text_length – counter num x
4 bytes
text[0]…text[n] – counter

values

0x
D

Bulk get
and clear
counters

Get N/A

text_length – counter num x
4 bytes
text[0]…text[n] – counter

values

0x
E

Get
number of
counters

Get N/A Value – num of counters of algo

NVIDIA DOCA PCC Application Guide 18

cmd
_typ
e

Descriptio
n

Me
tho
d

Index
Input (in --
set)

Output

0x
F

Get
counter
informatio
n

Get

algo_
slot
algo_
param
_inde
x

N/A

param_value3 – max value of
parameter
prm –

0: read-only
1: read-write
2: read-only but may be
cleared via "get & clear"
command

0x
10

Get
algorithm
info array

Get N/A N/A

text_length – algo slot
initialized x 4 bytes
text[0]…text[n] – 32-bit

algo_num or 0 if no algorithm is
available at this slot index

Internal Default Algorithm

The internal default algorithm is used when enhanced connection establishment (ECE)
negotiation fails. It is mainly used for backward compatibility and can be disabled using
"force mode". Otherwise, users may change doca_pcc_dev_user_algo() in the device
app to run a specific algorithm without considering the algorithm negotiation.

The force mode command is per port:

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=2"
--reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=15,algo_param_index=0"

sudo mlxreg -d /dev/mst/mt41692_pciconf0.1 -y --get --op "cmd_type=2"
--reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=15,algo_param_index=0"

NVIDIA DOCA PCC Application Guide 19

Counters

Counters are shared on the port and are only enabled on one algo_slot per port. The
following command enables the counters while enabling the algorithm according to the
algo_slot :

After counters are enabled on the algo_slot , they can be queried using cmd_type
0xC or 0xD.

References

/opt/mellanox/doca/applications/pcc/src

/opt/mellanox/doca/applications/pcc/bin/pcc_params.json

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code,
or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --set
"cmd_type=1,counter_en=1" --reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=12"
--reg_name PPCC --indexes "local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=13"
--reg_name PPCC --indexes "local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

NVIDIA DOCA PCC Application Guide 20

warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any specified use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and fit for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2024, NVIDIA. PDF Generated on 01/15/2025

	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Dependencies
	Running the Application
	Installation
	Prerequisites
	Application Execution
	Command Line Flags
	Troubleshooting

	Recompiling the Application
	Recompiling All Applications
	Recompiling PCC Application Only
	Troubleshooting

	Application Code Flow
	Port Programmable Congestion Control Register
	Usage
	Internal Default Algorithm
	Counters

	References

