
P4 Runtime Controller

Table of contents

Introduction

p4runtime_sh Usage

P4 info

P4 Table

Working with P4 Table Entries

Working with Direct Counters

Working with Indirect Counters

P4 Actions

Packet IO

P4 Runtime Controller 1

Table of contents

Introduction

p4runtime_sh Usage

P4 info

P4 Table

Working with P4 Table Entries

Working with Direct Counters

Working with Indirect Counters

P4 Actions

Packet IO

P4 Runtime Controller 2

DPL applications are deployed to the NVIDIA® BlueField® networking platform (DPU or
SuperNIC) via the P4Runtime API.

Since DPL is derived from the P4-16 language, it is compatible with the P4Runtime
specification, enabling standard runtime interaction with the compiled DPL pipeline.

Introduction

The P4 Runtime shell (p4runtime_sh) is an open-source CLI tool that provides an
interface to the P4Runtime API. It is especially useful for:

Loading simple DPL programs

Testing match-action tables

Debugging pipeline behavior

The shell can be invoked using the launch script provided in the DPL Development
container.

p4runtime_sh Usage

The following are example commands for using the p4runtime_sh P4 Controller after
loading a program.

P4 info

Operation Command

Retrieves the content of p4info.txt of the currently loaded DPL
program

Info

For detailed instructions, refer to Loading DPL Applications.

p4inf

https://github.com/p4lang/p4runtime-shell
https://github.com/p4lang/p4runtime-shell
https://docs.nvidia.com/doca/sdk/Loading+DPL+Applications/index.html

P4 Runtime Controller 3

Operation Command

P4 Table

Operation Command

Lists all P4 tables

Displays information about a specific P4 table

Working with P4 Table Entries

Operation Command

Default Entry

Reads P4 table's default entry without counter's value

Reads P4 table's default entry with counter's value

o

tables

tables["<P4_TABLE_NAME>"]

te = table_entry["

<P4_TABLE_NAME>"]
te.is_default = True

te.read(lambda te:
print(te))

Note

te = table_entry["

<P4_TABLE_NAME>"]
te.is_default = True

P4 Runtime Controller 4

Operation Command

Modifies P4 table's default entry action

Regular Entries

Note: In the following examples, some commands require specifying the match key of
the desired regular P4 table key.
The syntax for specifying a match key varies according to the defined match method for
each key (per the DPL source code where the keys are defined on the P4 table).

Match
Method

Syntax for Specifying Match Key Value

exact

ternary

Supported only if a direct counter is
enabled on the P4 table.

te.counter_data.byt
e_count = 0

te.read(lambda te:
print(te))

Note
A default entry cannot be removed
or inserted. It can only be modified
to perform a different P4 action.

te = table_entry["

<P4_TABLE_NAME>"]
(action="

<P4_ACTION_NAME>")
te.is_default = True
Set value for all parameters
required by desired action.

te.action["<PARAMETER

NAME>"] = "<PARAMETER

VALUE>"

te.modify()

te.match["<MATCH_KEY_NAME>"] = "<MATCH_VALUE>"

te.match["<MATCH_KEY_NAME>"] = "<MATCH_VALUE>&&&<MASK_VALUE>"

te.priority = <PRIORITY VALUE>

P4 Runtime Controller 5

Operation Command

Match
Method

Syntax for Specifying Match Key Value

Note that mask is provided in the match line, separated by &&& . If mask is
not specified , a full match mask will be used.

lpm

Note that LPM prefix_len is provided in the match line, separated by / . If
LPM prefix_len is not specified , a prefix_len with full field bitwidth is used.

For simplicity, the following examples are written using exact match syntax.

Reading Entries

Reads a specific regular P4 table entry

te.match["<MATCH_KEY_NAME>"] = "<MATCH_VALUE>/<PREFIX_LENGTH_VALUE>"

te = table_entry["

<P4_TABLE_NAME>"]
try:
 pass

 # Comment out the next
line to disable reading
counters

te.counter_data.byt
e_count = 0

except Exception as
e:
 # Table does not have a
Direct Counter

 pass
Set value for all keys
required by the P4 table.

te.match["

<MATCH_KEY_NAME>"] = "
<MATCH_VALUE>"

P4 Runtime Controller 6

Operation Command

Reads all regular entries from a P4 table

te.read(lambda te:
print(te))

num = 1

def hndlr(te):
 global num
 print(f">> Entry

number {num}:")
 print(te)
 print("------------------------

----------------------------")
 num += 1

te = table_entry["

<P4_TABLE_NAME>"]
try:
 pass

 # Comment out the next
line to disable reading
counters

te.counter_data.byt
e_count = 0

except Exception as
e:
 # Table does not have a
Direct Counter

 pass

Read regular entries

te.is_default = False

P4 Runtime Controller 7

Operation Command

Reads all regular entries from all P4 tables in the P4
program

te.read(lambda te:
hndlr(te))

for tbl in tables:
 num = 1

 def hndlr(te):
 global num
 print(f">> Entry

number {num}:")
 print(te)
 print("---------------

-------------------------------------")
 num += 1

print(f"=================
{tbl.name}

=================")
 te =
table_entry[tbl.nam
e]
 try:
 pass

 # Comment out
the next line to disable reading
counters

te.counter_data.byt
e_count = 0

 except Exception
as e:
 # Table does not
have a Direct Counter

 pass

P4 Runtime Controller 8

Operation Command

Adding Entries

Adds a regular P4 table entry

Deleting Entries

Deletes a specific regular P4 table entry

 # Read regular entries

 te.is_default
= False

 te.read(lambda
te: hndlr(te))

te = table_entry["

<P4_TABLE_NAME>"]
(action="

<P4_ACTION_NAME>")
Set value for all keys
required by the P4 table.

te.match["

<MATCH_KEY_NAME>"] = "
<MATCH_VALUE>"
Set value for all parameters
required by desired action.

te.action["<PARAMETER

NAME>"] = "<PARAMETER
VALUE>"

te.insert()

te = table_entry["

<P4_TABLE_NAME>"]
Set value for all keys
required by the P4 table.

te.match["

<MATCH_KEY_NAME>"] = "
<MATCH_VALUE>"

P4 Runtime Controller 9

Operation Command

Deletes all regular entries from a P4 table

Working with Direct Counters

This allows w orking with Direct Counter directly without getting the whole Table Entry
info.

Operation Command

Lists all defined Direct Counters

Default Entry

Reads counter data of a default entry in a
Direct Counter

Clears counter data of a default entry in a
Direct Counter

te.delete()

te = table_entry["

<P4_TABLE_NAME>"]
te.read(lambda te:
te.delete())

direct_counters

DirectCounterEntry("

<P4_DIRECT_COUNTER_NAME>")
ce.table_entry.is_default
= True

ce.read((lambda ce:
print(ce)))

DirectCounterEntry("

<P4_DIRECT_COUNTER_NAME>")

P4 Runtime Controller 10

Operation Command

Regular Entries

Reads counter data of a a specific P4 table
entry in a Direct Counter

Reads all counter data of specific Direct
Counter

Clears counter data of a a specific P4 table
entry in a Direct Counter

ce.table_entry.is_default
= True

ce.packet_count = 0

ce.modify()

ce = DirectCounterEntry("

<P4_DIRECT_COUNTER_NAME>")
Set value for all keys required by the P4
table.

ce.table_entry.match["

<MATCH_KEY_NAME>"] = "
<MATCH_VALUE>"

ce.read((lambda ce:
print(ce)))

Info
This will also read the
default entry counter
data.

ce = DirectCounterEntry("

<P4_DIRECT_COUNTER_NAME>")
ce.read((lambda ce:
print(ce)))

ce = DirectCounterEntry("

<P4_DIRECT_COUNTER_NAME>")
Set value for all keys required by the P4
table.

ce.table_entry.match["

<MATCH_KEY_NAME>"] = "

P4 Runtime Controller 11

Operation Command

Clears all counter data of specific Direct
Counter

Clears all direct counters from all table

Working with Indirect Counters

Operation Command

Lists all defined Indirect Counters

Shows info about a specific Indirect
Counter

<MATCH_VALUE>"

ce.packet_count = 0

ce.modify()

Note
This also clears the
default entry counter
data.

ce = DirectCounterEntry("

<P4_DIRECT_COUNTER_NAME>")
ce.packet_count = 0

ce.modify()

for dc in direct_counters:
 ce =
DirectCounterEntry(dc.name)
 ce.packet_count = 0

 ce.modify()

counters

counter_entry["

<P4_INDIRECT_COUNTER_NAME>"]

P4 Runtime Controller 12

Operation Command

Reads a specific value from a specific
indirect counter

Reads all values from a specific indirect
counter

Clears a specific value from a specific
indirect counter

Clears all values from a specific indirect
counter

P4 Actions

ce = counter_entry["

<P4_INDIRECT_COUNTER_NAME>"]
ce.index = <COUNTER_CELL_INDEX>
ce.read((lambda ce: print(ce)))

ce = counter_entry["

<P4_INDIRECT_COUNTER_NAME>"]
ce.read((lambda ce: print(ce)))

ce = counter_entry["

<P4_INDIRECT_COUNTER_NAME>"]
ce.index = <COUNTER_CELL_INDEX>
ce.byte_count = 0

ce.packet_count = 0

ce.modify()

ce = counter_entry["

<P4_INDIRECT_COUNTER_NAME>"]
ce.byte_count = 0

ce.packet_count = 0

ce.modify()

P4 Runtime Controller 13

Operation Command

Lists all defined P4 actions

Shows info about a specific P4 actions

Packet IO

To use packet IO, it must be enabled in the P4 program source code.

Operation Command

Packet In – For receiving packets sent from the DPL Runtime daemon to the P4
Controller (according to defined rules in the DPL program)

Captures packets for 10
second, then displays them

Capturs packets for 10
second, then displays them
parsed as well as their
metadata info

This example command uses the impacket package for
parsing the packets, so make sure that it is installed on
your system prior to running the p4runtime_sh P4
Controller:

Then, from the p4runtime_sh P4 Controller, run:

actions

Info
This includes its parameters' names
and sizes.

actions["

<P4_ACTION_NAME>"]

packet_in.sniff(lambda m: print(m),
timeout=10)

pip install impacket

P4 Runtime Controller 14

Operation Command

Packet Out – For sending a packet from the p4runtime_sh P4 Controller to the DPL
Runtime daemon (which will process it according to defined rules in the DPL program)

Syntax of sending a packet

from impacket.ImpactDecoder import *

for msg in packet_in.sniff(timeout=10):
 print("--")
 print(msg)

print("+++

++++++++++++")
 print("Raw packet (hex):\n")
 print(msg.packet.payload.hex())

print("+++

++++++++++++")
 print("Parsed packet:\n")

print(EthDecoder().decode(msg.packet.payloa
d))

print("+++

++++++++++++")
 print("Metadata:\n")
 for md in msg.packet.metadata:
 val = int.from_bytes(md.value, "big")
 print("metadata ID (", md.metadata_id, "):

", hex(val))

my_pkt = b'<PACKET_BYTE_STRING_MESSAGE_GOES_HERE>'

P4 Runtime Controller 15

Operation Command

Repeat the
<METADATA_NAME>="METADATA_VALUE_GOES_HERE"

parameter for each defined metadata in the P4 program.

Example of building and
sending a packet

Using scapy tool, build the desired packet:

Then send it using the p4runtime_sh P4 Controller:

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code,
or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations

packet_out(payload=my_pkt,
<METADATA_NAME>="METADATA_VALUE_GOES_HERE").sen
d()

>>> p = Ether(src='00:11:11:11:11:11',
dst='00:22:22:22:22:22') / IP(src="1.1.1.1",
dst="2.2.2.2")
>>> print(p.build())
b'\x00"""""\x00\x11\x11\x11\x11\x11\x08\x00E\x00\x00\x14\x00\x
01\x00\x00@\x00t\xe4\x01\x01\x01\x01\x02\x02\x02\x02'

>>>

my_pkt =
b'\x00"""""\x00\x11\x11\x11\x11\x11\x08\x00E\x00\x00\x14\x00\x
01\x00\x00@\x00t\xe4\x01\x01\x01\x01\x02\x02\x02\x02'

packet_out(payload=my_pkt,
controller_metadata="0x123").send()

P4 Runtime Controller 16

are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any specified use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and fit for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2025, NVIDIA. PDF Generated on 04/24/2025

	Introduction
	p4runtime_sh Usage
	P4 info
	P4 Table
	Working with P4 Table Entries
	Working with Direct Counters
	Working with Indirect Counters
	P4 Actions
	Packet IO

