
DriveWorks

PR-08397-5.0
NVIDIA CONFIDENTIAL | Prepared and provided under NDA

0.6 Development Guide

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| ii

TABLE OF CONTENTS

About This Guide... 5

Basic Hardware Requirements..6

Getting Started..7
Installing DriveWorks.. 7

Installing DriveWorks on the DRIVE PX Platform.. 7
Installing DriveWorks on the Linux Host...7

Building the Samples.. 8

DriveWorks Introduction...9

Sensor Abstraction Layer.. 10
Supported Sensors..10
Sensor Abstraction Layer Basics.. 11

Sensor Querying..11
Sensor Life Cycle.. 13
Sensor Data Consumption... 14

Sensor Data Timestamping..14
Sensor Sharing... 15
Point Grey Sensors... 15
Sensor Timeout.. 16
Integrating with Custom Sensors...17

Radar and Lidar Decoder Plugins... 17
Other Sensors... 18

Integrating with a Custom Board...18

Recording and Replaying Sensors...20
Recording Sensors.. 20
Replaying Sensors...20

Image Pipeline.. 21
Image Data Structures..21
Image Streamers.. 21
Format Converters.. 23

DriveWorks Conventions... 25

Coordinate Systems.. 25
Car Coordinate System.. 25
Image and Camera Coordinate Systems... 25
Radar coordinate system... 26
LIDAR Coordinate System..26
IMU Coordinate System... 26
GPS and HD Maps Coordinate Systems.. 27

Modules..28
Image Processing Modules.. 28

Camera Color Correction..28
Video Rectification...29
Image Signal Processor (ISP).. 31

Maps Module.. 32
Data Format... 32
Connections.. 33
Attributes.. 33
Map Initialization...33
Local Data Update.. 34
Serialization...34
Map Query..35
Result Buffers... 35
Query functions...35

Map Tracker... 36
Lane Tree...37
Lane Tree Helper Functions...38

Local Space Lane Divider Line Segments..38
Local Cartesian Coordinate System...39
Filtering.. 39
Local Space Feature Line Segments... 40
Compute Bounds...40
Compute Bearing.. 41
Compute Local To ENU..41
Transform Polylines... 41
Transform Point...41
Interpolation Between Polylines... 41
Neighbor Lanes... 43
Stitching of Lane Geometry... 43
Distance Calculations...44

Vehicle Module... 44
Rig Module... 44
Rig Configuration.. 44
Camera Rig...45
Calibration...45
Egomotion.. 46
VehicleIO.. 47
Sensor Fusion... 48
Occupancy Grid...48

ICP Module...52
Lidar Accumulator Module... 53

Initialization.. 53
Lidar Sweep..54
Lidar Image.. 54
Lidar Sweep Angle Setting...55
Lidar Scan Distance Setting... 55

Vision Processing Modules...56
2D Tracker Module.. 56
Pyramid.. 56
Feature Tracker... 57
Feature Lists... 57
Putting It All Together...57
2D Scaling Tracker Module.. 58
Scaling Feature Tracker... 58
Scaling Feature Lists... 59
Putting It All Together...59

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| iv

Box Tracker Module...60
Initialization.. 60
Process... 61
Structure from Motion (SFM)... 62
Triangulation... 62
Pose Refinement... 63
Feature Prediction... 63
Putting It All Together...64
Stereo Module...64
Stereo Rectifier... 65
Disparity Computation... 65

Deep Neural Network Modules.. 65
DNN Module... 66
Initialization.. 66
Data Conditioner Module... 68
Initialization.. 68
Data Preparation... 69
Object Modules... 70
Object Detector...71
Object Clustering...75
Object Tracker...77
DriveNet... 80
Lane Detection..81

Tools...83
Recording Tools.. 83

Recording Tool Library...83
Command Line Recording Tool...86
Running the Tool...86
Command-Line Options..86
GUI-Based Recording Tool... 87

Replayer Tool..87
Troubleshooting...87
DriveWorks Cannot Create Sensors.. 87

TensorRT Optimization Tool... 88

Data Acquisition.. 89
Overview.. 89

Supported Sensors.. 89
Supported Interfaces... 89

Acquiring Data..90
Step 1: Verify the Sensors Are Collecting Data... 91
Step 2: Configure the Device to Acquire Data.. 91
Step 3: Start the Recording Application and Acquire the Data..92

Examples..92
Prerequisites... 92
Camera Sensor Data Acquisition.. 92
Recording from a Single Camera Sensor...92
Recording from Three Camera Sensors.. 95
Recording from Six Cameras..97
Recording at a Framerate Other Than 30 FPS.. 98
GPS Data Acquisition...99
Lidar Data Acquisition..101
Determining the Lidar IP Address and Port...102
Acquiring Data from a Lidar Sensor... 103
Multiple Sensor Data Acquisition.. 105

Sensor Data Quality.. 107

Frequently Asked Questions..109

Legal Information..110

Open Source and Third-Party Software Licenses....................................111

About This Guide

NVIDIA CONFIDENTIAL
5 | PR-08803-R29 DriveWorks Development Guide

About This Guide
Welcome to the development guide for NVIDIA® DriveWorks. This guide provides instructional material for
developing applications based on DriveWorks samples and API. For reference material, see the DriveWorks API
Reference.

Basic Hardware Requirements

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 6

Basic Hardware Requirements
The DriveWorks SDK is distributed as a compressed file (DEB) and has specific hardware and software
dependencies.

Platform Prerequisites

On the hardware side, you will need one of the following:

• PC (x86 architecture) with a NVIDIA GPU (Maxwell based GPU minimum, Pascal based GPU recommended)
and/or

• NVIDIA DRIVE™ PX 2 with the latest SDK flashed in the system.

Host System Prerequisites

• Linux Desktop or Linux x86/x64 Only

These are the basic prerequisites for Linux. For the version information for each software component, see the
Release Notes.

• Ubuntu Linux 16.04 or 14.04 (out of the box installation)

• GCC >= 4.8.X && GCC <= 4.9.x

• cmake version >= 3.3

Note: By default, Ubuntu 14.04 installs cmake version 2.8. If you are
using that Ubuntu version, you must upgrade cmake to 3.3 or later.

• NVIDIA® CUDA® Toolkit 9.0

You may also need to install (using apt-get install) the following packages:

• libx11-dev

• libxrandr-dev

• libxcursor-dev

• libxxf86vm-dev

• libxinerama-dev

• libxi-dev

• libglu1-mesa-dev

• libglew-dev

Installing DriveWorks on the Linux Host

NVIDIA CONFIDENTIAL
7 | PR-08803-R29 DriveWorks Development Guide

Getting Started

Installing DriveWorks
NVIDIA DriveInstall automatically installs on the target and host systems the following items:

• NVIDIA DRIVE ™ 5.0 SDK

• CUDA Toolkit

• cuDNN

• DriveWorks

• Libraries upon which the above items depend

If you have successfully run DriveInstall, you can skip this section.

For guidance on manually installing DriveWorks on the host or target system, see the README file located
adjacent to the installation files.

Installing DriveWorks on the DRIVE PX Platform

To install the DriveWorks package on the DRIVE PX platform

1. On the Linux system, navigate to:

/root/apt-repos/binary-DWx

2. On the platform, enter:

$ sudo dpkg -i driveworks-v0.6.<release_info>-drive-t186ref-5.0.5.0.deb

This installs DriveWorks into the following folder, which is the main installation folder on the target.

/usr/local/driveworks-0.6/

Installing DriveWorks on the Linux Host

To install DriveWorks on the Linux host

1. Copy the following file to your Linux system:

driveworks-v0.6.<release_info>-linux-amd64-ubuntu1404.deb

2. Enter:

$ sudo dpkg -i driveworks-v0.6.<release_info>-linux-amd64-ubuntu1404.deb

This installs DriveWorks into the following folder, which is the main installation folder on the target.

/usr/local/driveworks-0.6/

Building the Samples

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 8

Building the Samples
The samples installed with DriveWorks are already compiled; however, if you customize samples, you will
need to cross-compile them on your Linux host system. For more information, see “DriveWorks Samples” in
DriveWorks SDK Reference.

DriveWorks Introduction

NVIDIA CONFIDENTIAL
9 | PR-08803-R29 DriveWorks Development Guide

DriveWorks Introduction
DriveWorks is designed to achieve the full throughput limits of the computer. This requires careful architecture of
the end-to-end software pipeline

• Efficiently utilize the many processors inside Tegra

• Optimize data communication formats between engines

• Minimize data copies (zero copy exchange of buffers)

• Create and utilize the most efficient algorithms

• Optimize implementations

DriveWorks is an API and SDK for Autonomous Driving:

• SDK, Runtime, Tools, Reference Applications, Library Modules

• Run-time Pipeline Framework

• Modules and framework to create computational pipelines from Sensors through Perception

The DriveWorks design philosophy is modular, optimized, and flexible.

Supported Sensors

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 10

Sensor Abstraction Layer
DriveWorks SDK provides a sensor abstraction layer that supports easy capturing of data from various sources,
and it has been designed with the following goals in mind:

• Provide a common and simple unified interface to the sensors

• Provide both HW sensor abstraction as well as virtual sensors (for replay)

• Provide raw sensor serialization (for recording)

• Deal with platform and SW particularities

• API/Processor Conversion/transfer: CUDA, GL, NvMedia, CPU

• Make use of the additional SoC engines: H264 encoder/decoders, VIC, etc.

• Current paradigm is non-blocking functions and blocking with timeout

• Defined by EGL, CUDA and NvMedia paradigms and capabilities

• Goal is event-driven and non-blocking data-flow model to be light-weight and efficiently:

• Schedule work ahead to hide latencies on triggering work for all our HW engines.

• Minimize your use of threads to increase runtime determinism of the system.

Supported Sensors
The following list shows the sensors that DriveWorks supports. For the most up-to-date information on
supported sensors, see the Release Notes.

• GMSL Cameras (NVIDIA DRIVE™ platform only)

• Omnivision OV10635

• Omnivision OV10640

• Sekonix AR0231 (RGGB, RCCB sensors)

• USB Camera

• Any Video4Linux supported devices

• PointGrey USB Cameras

• Chameleon CM3-U3-31S4C-CS (Color sensor)

• Chameleon CM3-U3-50S5M-CS (Mono sensor)

• Grasshopper GS3-U3-50S5C-C (Color sensor)

• Stereo Camera

• ZED

• CAN Bus

• SocketCAN

• Aurix Easy CAN

• GPS

• Any NMEA-compatible sensor using a serial UART

Sensor Querying

NVIDIA CONFIDENTIAL
11 | PR-08803-R29 DriveWorks Development Guide

• Xsens MTi-G-700 (serial based NMEA protocol + USB proprietary)

• Garmin 18x

• NovAtel dGPU

• Lidar

• Quanergy M8

• IBEO Lux

• Velodyne (VPL16, HDL32E, HDL 64-S3)

• Radar

• Continental ARS430

• Delphi_ESR_2.5

• IMU

• Xsens MTi-G-700 (serial based NMEA Protocol + USB proprietary)

Sensor Abstraction Layer Basics

Sensor Querying
DriveWorks context allows querying all the supported sensors for each HW platform as well as the parameters
available to configure them. Please note that the query returns supported sensors by DriveWorks and not if a
particular sensor is actually physically aached to the platform. Sensors are specified using a factory paern such
as:

sensor_type.mode param1=value1,param2=value2,...

where sensor_type.mode specifies the protocol and the following specifies the various parameters:

param1=value1,param2=value2,...

For example, the code snipped below lists all sensors supported on the NVIDIA DRIVE platform and Linux host
system. It also lists the parameters for each sensor.

DW_PLATFORM_OS_V4L
 dwPlatformOS currentPlatform;
 dwPlatformOS platform[] = {DW_PLATFORM_OS_LINUX, DW_PLATFORM_OS_V4L};
 CHECK_DW_ERROR(dwSAL_getPlatform(¤tPlatform, hal));
 // get information about available sensors on each platform
 for (size_t i = 0; i < sizeof(platform) / sizeof(dwPlatformOS); i++) {
 const char *name = nullptr;
 CHECK_DW_ERROR(dwSAL_getPlatformInfo(&name, platform[i], hal));
 std::cout << "Platform: " << name;
 if (platform[tformOS currentPlatform;
 dwPlatformOS platform[] = {DW_PLATFORM_OS_LINUX, DW_PLATFORM_OS_V4L};
 CHECK_DW_ERROR(dwSAL_getPlatform(¤tPlatform, hal));
 // get information about available sensors on each platform
 for (size_t i = 0; i < sizeof(platform) / sizeof(dwPlatformOS); i++) {
 const char *name = nullptr;
 CHECK_DW_ERROR(dwSAL_getPlatformInfo(&name, platform[i], hal));

Sensor Querying

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 12

 std::cout << "Platform: " << name;
 if (platform[i] == currentPlatform)
 std::cout << " - CURRENT";
 std::cout << ": " << std::endl;
 uint32_t numSensors = 0;
 CHECK_DW_ERROR(dwSAL_getNumSensors(&numSensors, platform[i], hal));
 for (uint32_t j = 0; j < numSensors; j++) {
 const char *protocol = "";
 const char *params = "";
 CHECK_DW_ERROR(dwSAL_getSensorProtocol(&protocol, j, platform[i], hal));

In the above code:

• CHECK_DW_ERROR is a macro that throws an exception if an error occurs and

• DW_PLATFORM_OS_V4L is the NVIDIA DRIVE platform.

With the output being:

Platform: OS_LINUX:
 Sensor [0] : can.socket ? device=can0
 Sensor [1] : can.virtual ? file=/path/to/file.can
 Sensor [2] : camera.virtual ? video=filepath.h264[,timestamp=file.txt]
 Sensor [3] : camera.cpu ? device=0
 Sensor [4] : gps.uart ? device=/dev/ttyXXX[,
 baud={1200,2400,4800,9600,19200,38400,57600,115200}
 [,format=nmea0183]]
 Sensor [5] : gps.virtual ? file=filepath.gps
 Sensor [6] : imu.uart ? device=
 /dev/ttyXXX[, baud={1200,2400,4800,9600,19200,38400,57600,115200}
 [,format=xsens_nmea]]
 Sensor [7] : imu.xsens ? frequency=100[,format=xsens_binary]]
 Sensor [8] : imu.virtual ? file=filepath.txt
 Sensor [9] : lidar.virtual ? file=filepath.bin
 Sensor [10] : lidar.socket ? ip=X.X.X.X,port=XXXX,
 device={QUAN_M81A, IBEO_LUX, VELO_VPL16, VELO_HDL32E, VELO_HDL64E},
 scan-frequency=XX.X
Platform: OS_DRIVE_V4L:
 Sensor [0] : can.socket ? device=can0
 Sensor [1] : can.aurix ? ip=10.0.0.1,bus={a,b,c,d,e,f}[,aport=50000,bport=60395]
 Sensor [2] : can.virtual ? file=/path/to/file.can
 Sensor [3] : camera.gmsl ? csi_port={ab,cd,ef},camera-count={1,2,3,4},
 camera-type={ov10635,c-ov10640-b1,ar0231,ar0231-rccb,ar0231-rccb-ssc,
 ar0231-rccb-bae,ar0231-rccb-ss3322,ar0231-rccb-ss3323},
 output-format={yuv,raw},output-image-attributes=0,slave=0
 Sensor [4] : camera.virtual ? video=
 filepath.h264[,timestamp=file.txt,start=0,length=-1]
 Sensor [5] : camera.cpu ? device=0
 Sensor [6] : gps.uart ? device=/dev/ttyXXX[,baud=
 {1200,2400,4800,9600,19200,38400,57600,115200}[,format=nmea0183]]
 Sensor [7] : gps.virtual ? file=filepath.gps
 Sensor [8] : imu.uart ? device=
 /dev/ttyXXX[,baud={1200,2400,4800,9600,19200,38400,57600,115200}
 [,format=xsens_nmea]]
 Sensor [9] : imu.xsens ? frequency=100[,format=xsens_binary]
 Sensor [10] : imu.virtual ? file=filepath.txt
 Sensor [11] : lidar.virtual ? file=filepath.bin

Sensor Life Cycle

NVIDIA CONFIDENTIAL
13 | PR-08803-R29 DriveWorks Development Guide

 Sensor [12] : lidar.socket ? ip=X.X.X.X,
 port=XXXX,device={QUAN_M81A, IBEO_LUX, VELO_VPL16, VELO_HDL32E, VELO_HDL64E},
 scan-frequency=XX.X

Sensor Life Cycle
Before you use any sensor in DriveWorks, you must create an instance of the sensor, then use a start-stop
mechanism to collect data and finally release the sensor so all resources are freed.

The following functions support the life cycle shown above:

• dwSAL_createSensor is the function call that prepares the sensor for data delivery. This includes power
up, establish connection, open channels, allocates FIFOs, etc... This function is expected to have a significant
cost and should only be used during initialization. Sensor type and parameters are determined by using the
above protocol and parameter strings.

• dwSensor_start is a low latency call that starts the capturing of sensor data.

• dwSensor_stop is a low latency call that will stop capturing data and will drain any data not consumed in
preparation for the next start call.

• dwSAL_releaseSensor is a function call used to stop the sensor, disconnect it from DriveWorks SAL and
release any allocated resources. It is expected to be high latency and should only be called at application
termination.

Here is an example of initialization of a virtual camera for video replay and its release

// Initialize DriveWorks
dwInitialize(&sdk, DW_VERSION, &sdkParams);
// create SAL module of the SDK
dwSAL_initialize(&sal, sdk);
// create virtual camera interface
dwSensor cameraSensor = DW_NULL_HANDLE;
{
 dwSensorParams params;
 std::string parameterString = "file=/tmp/test.h264";
 params.protocol = "camera.virtual";
 dwStatus result = dwSAL_createSensor(&cameraSensor, params, sal);
 if (result != DW_SUCCESS) {
 std::cerr << "Cannot create camera.virtual?"
 << params.parameters << std::endl;
 exit(1);
 }
}
…
// release create SAL module of the SDK
dwSAL_releaseSensor(&cameraSensor);
// Release DriveWorks
dwRelease(&sdk);

Sensor Data Timestamping

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 14

Sensor Data Consumption
Once the sensor has started, it is possible to consume the data being acquired by using generic accessors or
specialized accessors.

Generic accessors are used mainly for serialization purposes as they provide raw sensor data. The
available function calls are dwSensor_readRawData to get access to the data memory pointers and
dwSensor_returnRawData to return the pointers back to the sensor abstraction layer.

To access processed data one needs to use specialized function calls that will provide the data formaed
appropriately depending on the sensor type:

Image sensors (cameras and virtual cameras)

The dwSensorCamera_readFrame function returns a handle to the last frame that the camera
captured. A frame might contain a RAW or YUV frame. The dwSensorCamera_getImageCUDA or
dwSensorCamera_getImageCPU functions extract the specified image type from the actual frame.

• dwSensorCamera_readFrame(…) followed by dwSensorCamera_getImageCUDA(…)

• dwSensorCamera_readFrame(…) followed by dwSensorCamera_getImageCPU(…)

• dwSensorCamera_returnFrame(…)

To start capturing the camera sensor at the framerate specified in the sensor properties, call dwSensor_start.
To get the sensor properties, call dwSensorCamera_getSensorProperties.

A CSI frame drop occurs when sequential calls to dwSensorCamera_readFrame exceed the frame capture
frequency.

Lidar sensors

• dwSensorLidar_readPacket(…)

• dwSensorLidar_returnPacket(…)

CAN, GPS, IMU sensors, and Radar,

These sensors do not have a return function because the messages are copied.

• dwSensorCAN_readMessage(…)

• dwSensorGPS_readFrame(…)

• dwSensorIMU_readFrame(...)

• dwSensorRadar_readPacket(…)

Sensor Data Timestamping
One of the critical aspects of data acquisition on systems with multiple sensors for real-time processing is to
obtain accurate timestamping of the data. DriveWorks relies on the system time source of Tegra, in particular,
the CLOCK_MONOTONIC time source. This time source adjusted to the UNIX epoch time is used internally to
timestamp all sensors and events, and the application can get the current time via the function:

dwStatus dwContext_getCurrentTime(dwTime_t *time, dwContextHandle_t ctx);

Point Grey Sensors

NVIDIA CONFIDENTIAL
15 | PR-08803-R29 DriveWorks Development Guide

Timestamps within the same context are guaranteed to be in sync. One thing to note is that this time source is
relative to UNIX epoch time on Unix based platforms. Any NTP/PTP time corrections will influence this clock.

DriveWorks computes timestamps for each sensor when data arrives to Tegra, so sensor data returned always has
a timestamp associated with it. In particular:

• GMSL Cameras: timestamping is done by the kernel driver triggered by the HW when full frame has been
wrien into memory.

• SocketCAN: timestamping occurs by the kernel driver when the full message is captured from the HW by
the driver. When HW timestamping is used, timestamping is performed at the HW level, by the TegraCAN
hardware. The HW counters are synced to the SW clock.

• AurixCAN: messages through this interface are timestamped by the Aurix safety OS. gPTP must be running
and Aurix+Tegra clock must be synced to make CAN messages timestamped by Aurix be in sync with
DriveWorks timestamps.

• Serial port sensors (GPS): timestamping occurs when packets arrive to DriveWorks, at the SW level.

• Xsens IMU/GPS proprietary mode: clock of the Xsens devices are synchronized to DriveWorks clock, making
timestamps to be in sync with DriveWorks timestamps.

• Lidar: Lidar generated point clouds provide a DriveWorks timestamp (taken when the Ethernet packet was
read), the sensor provided timestamp at start of capturing the packet, and the duration of the packet capture.
If the particular sensor does not provide timestamps, both host and sensor timestamps are identical.

Sensor Sharing
DriveWorks API supports sharing of the same HW sensor by multiple DriveWorks abstractions. For example,
same GPS sensor can be created twice from the same hardware implementation (e.g. Xsens device or serial
connection). Each DriveWorks sensor will have its own internal FIFO to keep the data ready for consumption.
Sensor data of the shared sensors will be equal and can be matched by equal timestamps if required. The sample
sample_gps_logger shows, in particular, how two sensors can be created from the same HW GPS sensor. For
more information, see “GPS Location Logger Sample” in DriveWorks SDK Reference.

Point Grey Sensors
The following are prerequisites and information helpful in geing started with supported PointGrey USB
cameras:

• Download the appropriate version of FlyCapture2 SDK from:

hps://www.ptgrey.com/support/

Point Grey provides the following versions:

• arm64 for Ubuntu 16.04

• arm64 for Ubuntu 14.04

• Linux Ubuntu 16.04

• Linux Ubuntu 14.04

• Extract the package and perform the following steps:

cd flycapture.<version>_<architecture>

https://www.ptgrey.com/support/downloads

Sensor Timeout

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 16

sudo sh flycap2-conf

cd lib

sudo cp flycapture* /usr/lib/

cd C

sudo cp * /usr/lib

These commands configure the udev and copy the required shared library files to /usr/lib.

• Add the following lines to /etc/sysctl.conf:

• net.core.rmem_default = 1048576

• net.core.rmem_max = 10485760

• net.core.wmem_default = 1048576

• net.core.wmem_max = 10485760

• net.core.netdev_max_backlog = 30000

• net.ipv4.ipfrag_high_thresh = 8388608

• net.ipv6.conf.all.disable_ipv6 = 1

• vm.dirty_background_ratio = 5

• vm.dirty_ratio = 80

This maximizes network and USB performance. These are persistent changes and are preserved between reboots.

• On every boot, the following must be executed:

sudo -s

echo 1000 > /sys/module/usbcore/parameters/usbfs_memory_mb

• Supported families and output formats: Currently only Chameleon and Grasshopper families of PointGrey
cameras are supported. Given below is the list of verified cameras along with their sensor and output
information:

• CM3-U3-31S4C-CS: Color sensor; outputs is RGB.

• CM3-U3-50S5M-CS: Mono sensor, output is grayscale.

• GS3-U3-50S5C-C: Color sensor; output is RGB.

• USB 3.0 port seings: PointGrey USB cameras must be connected to Intel USB 3.0 controllers only. Connecting
to any other USB port results in undefined behavior.

• USB 3.0 connector cable: Only PointGrey USB 3.0 connector cables must be used.

• Output image dimensions: Currently fixed to the largest supported image dimensions.

Sensor Timeout
The camera samples call the dwSensorCamera_readFrame function with a standard timeout value. If one of
those samples fails with a DW_TIME_OUT status, you should increase the timeout value to be suitable for your
camera.

Radar and Lidar Decoder Plugins

NVIDIA CONFIDENTIAL
17 | PR-08803-R29 DriveWorks Development Guide

Integrating with Custom Sensors

Radar and Lidar Decoder Plugins
The DriveWorks sensor abstraction layer (SAL) implements radar and Lidar sensor functionality into two
modular layers:

• Implementation—not pluggable. DriveWorks provides implementations for the supported sensor interfaces
(e.g., Ethernet Radar).

• Device-specific decoder—handles parsing and interpretation of raw data.

To support customer radar and Lidar devices, DriveWorks provides plug-in interfaces for custom radar and Lidar
decoders. The following diagram illustrates this architecture. The socket interface is for real data, and the virtual
interface is for data recorded with the socket interface.

In the above illustration, functions such as initialize() correspond to the header functions _dwStatus
_dwRadarDecoder_initialize() or _dwLidarDecoder_initialize(). The underscore (_) in the
declaration names identify items that you must implement. DriveWorks uses the information in the JSON file to
determine how to interact with your implementation.

The decoder header files for the radar and Lidar plugins are found at:

dw/sensors/plugins/radar/RadarDecoder.h

dw/sensors/plugins/lidar/LidarDecoder.h

For information about the plugin declarations, see DriveWorks SDK Reference.

You must implement the interfaces outlined in the header files below, and compile their plugin as a shared object
file (.so).

Integrating with a Custom Board

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 18

After compiling your custom plugin, you must represent the Lidar/radar in a JSON file such as recorder-
config.json or recorder-qt-config.json.

• Radar socket

"protocol": "radar.socket"
"params": "ip=X.X.X.X,
 port=XXXX,device=CUSTOM,
 decoder=<path_to_the_decode.so>",

• Lidar socket

"protocol": "lidar.socket"
"params": "device=CUSTOM,ip=X.X.X.X,
 port=XXXX,decoder=<path_to_the_decode.so>",

• Radar virtual

"protocol": "radar.virtual"
"params": "device=CUSTOM,
 decoder=<path_to_the_decode.so>",

• Lidar virtual

"protocol": "lidar.virtual"
"params": "device=CUSTOM,
 decoder=<path_to_the_decode.so>",

For information on the following, see Data Acquisition in this guide:

• Recording radar or Lidar data

• Consuming recorded radar or Lidar data

Limitations

The plugin interfaces currently support the following protocols:

• radar.socket

• radar.virtual (for files recorded with this decoder)

• lidar.socket

• lidar.virtual (for files recorded with this decoder)

Other Sensors
DriveWorks does not constrain the integration of any sensors. Any third-party sensor can be used in the
DriveWorks modules, if their output is mapped to the sensor data API representation, such as: dwCANMessage,
dwGPSFrame, dwIMUFrame, dwLidarDecodedPacket, dwImageCUDA, dwImageGL, dwImageCPU, and
dwImageNvMedia. Use dwContext_getCurrentTime to time-stamp individual sensors.

Integrating with a Custom Board

Note: This feature is beta.

Integrating with a Custom Board

NVIDIA CONFIDENTIAL
19 | PR-08803-R29 DriveWorks Development Guide

The camera.gmsl sensor creator supports an additional parameter that you can use to specify a custom board. You
describe the board with a JSON file that you pass with a statement such as custom-board-json=/path/to/
custom.json. For example:

dwSensor cameraSensor = DW_NULL_HANDLE;
{
 dwSensorParams params;
 params.protocol = "camera.gmsl";
 params.parameters = "camera-type=ar0231-rccb, \
 custom-board-json=/path/to/custom_board.json";
 dwStatus result = dwSAL_createSensor(&cameraSensor, params, sal);
}

The JSON file contains definitions for the ExtImgDev structs to overwrite the hardcoded one in DriveWorks.
If you use the API, you must create camera.gmsl sensor with a correct camera-type that best matches your
camera, for example ar0231-rccb-ss3322, however the JSON file can overwrite default seings. A JSON file
for ar0231-rccb-ss3322 on DRIVE PX 2-TegraA looks like this:

{
 "ExtImgDevParam" : {
 "moduleName" : "ref_max9286_96705_ar0231rccbss3322",
 "resolution" : "1920x1208",
 "inputFormat" : "raw12",
 "interface" : "csi-ab",
 "i2cDevice" : 7,
 "desAddr" : 72,
 "brdcstSerAddr" : 64,
 "serAddr" : [0, 0, 0, 0],
 "brdcstSensorAddr" : 16,
 "sensorAddr" : [0, 0, 0, 0],
 "slave" : false,
 "enableEmbLines" : true,
 "reqFrameRate" : 30
 }
}

Replaying Sensors

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 20

Recording and Replaying Sensors

Recording Sensors
See Data Acquisition in this guide.

Replaying Sensors
To replay sensor data from the DriveWorks recording, users can use the same APIs introduced above for creating
a sensor object as virtual sensor for replaying. In general, the change is in:

dwSensorParams params

of sensor creation. Change the protocol part to the corresponding sensorType.virtual and the parameters
part to file locations. Each sensor type’s API definition has more details.

With the correct sensor parameter seing for recorded data as virtual sensor, call:

dwSAL_createSensor() and dwSensor_start()

to create and start the sensor object. Then, the following usage is the same as real-time sensors:

dwSensorType_readFrame()

Call the correct sensor APIs to get data frames with timestamps at recording time. Also, some sensor types
require:

dwSensorType_returnFrame()

for returning the data frame to sensor object, for reusing the allocation memory.

To easily replay sensor data:

1. Try the default compiled samples with predefined sensor input data

2. Change the input parameter of the samples to the data you want to replay. The data should be collected by
the recording tools in DriveWorks. (Each sensor sample has a detailed README for usage and explanation)

3. Read the sample codes for how to use DriveWorks APIs to replay data as virtual sensors. Read the API
definition of each sensor type for details

4. Start to use DriveWorks APIs in the targeted application and platforms

Image Streamers

NVIDIA CONFIDENTIAL
21 | PR-08803-R29 DriveWorks Development Guide

Image Pipeline

Image Data Structures
Images are represented in DriveWorks with specialized structs, one for each supported API. The supported APIs
are CPU, CUDA, OpenGL, and NvMedia. There are properties that are common to the images of all API types
and some that are specific to an API.

The dwImageProperties structure summarizes properties common to all images. It contains this information:

• Type of the image, for example DW_IMAGE_CPU.

• Width and height.

• Pixel format which describes the format in which the image data is represented. For example, for an image
with red, green, blue, and alpha channels, the format is DW_IMAGE_RGBA.

• Pixel type which describes the type of each pixel. For example, for an 8-bit unsigned integer, the type is
DW_TYPE_UINT8.

The timestamp property is a common property for all images. The timestamp specifies the point in time when the
Tegra processor captured the image.

Note: Due to technical limitations of the NVIDIA DRIVE PX 2 platform, the
point in time when the Tegra processor captures the image may be
slightly later than the time when the camera takes the picture.

Storage in Memory

Images can be stored in memory in various formats. One dimension of this variation is interleaved vs planar
storage for multi-channel images. For pitch-linear data storage, interleaved vs planar is defined by a combination
of the image pixel format and the planeCount. For example, an interleaved RGB image has planeCount set to 1.
A YUV420, which is typically represented planar, has planeCount set to 3.

Another dimension of memory representation that only applies for CUDA images only is that of pitch-linear vs
block-linear memory. dwImageCUDA has an additional field layout that specifies what memory representation
is used. Depending on the layout, either array[] for block-linear or dptr[] for pitch-linear memory holds the
data.

Format Conversion and Image Streaming

DriveWorks provides a dwImageFormatConvert module that can be used to convert the format of an image
from one type to another, e.g. from YUV to RGB. Another module that is useful are the dwImageStreamer
functions that bridge API as well as thread and process boundaries.

Image Streamers
Image streamers are means to transform images from one API to another and/or from one process to another.
The supported APIs are CPU, CUDA, OpenGL and NvMedia. The implementation of the image streamer uses
mechanisms that allow mapping rather than copying to optimize latency and performance. This is achieved for

Image Streamers

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 22

example through EGL streams. Further, the image streamer is designed to recycle data. That means images are
allocated once at application init time and are recycled to improve both safety as well as performance.

Image streamers are setup for exactly one pair of input and output APIs as well as image formats (see
dwImageStreamer_initialize). If streamers for multiple types or APIs are needed multiple streamers must
be initialized.

Once a streamer has been created it is ready to take input and provide output. The flow is adapted from that
of EGL streams. In particular, the producer provides one or multiple input images and posts them via the
dwImageStreamer_postAPI functions. Once the image has been posted the producer must not access the
image until it is returned. See further details later in this section.

The consumer can check for posted images via the dwImageStreamer_receiveAPI function. This function
has a timeout argument which allows for the consumer to use this function to synchronize in a block or non-
blocking way (e.g. timeout of few microseconds) with the producer. Once the consumer is done working
with the image, it must return the image back to the producer to be recycled. This is achieved by the function
dwImageStreamer_returnReceivedAPI.

Finally, the producer does check for returned frames from the consumer by the
dwImageStreamer_waitPostedAPI. This function again has a timeout argument to control blocking or non-
blocking data flow. Once the image is returned from the image streamer to the producer, the producer can recycle
the image, e.g. write new image information into it and post it again to the consumer.

Note: By default, EGL processors always keep one frame available for the
consumer. This means that the producer does not get the first image
posted back directly after the consumer returned it. The first image is
available via the waitPosted API, only after a second image has been
posted by the producer.

Image streamers are thread-safe and can be used in a multi-threaded and multi-process environment.

[Producer]
imagePool pool;
while(running) {
 // Check for returned images
 Image returnedImage;
 if(dwImageStreamer_waitPosted(&returnedImage, 50 (usecs)) == DW_STATUS_OK) {
 put returnedImage back into pool;
 }
 // Post new image
 get image from pool;
 fill image with content;
 dwImageStreamer_postAPI(image)
}
[Consumer]
while(running) {
 // Check for new images
 Image* image;
 If(dwImageStreamer_receiveAPI(&image, 100000 (usecs) != DW_STATUS_OK)
 {
 // No new data available
 continue;
 }
 // Consume and return
 consume image;

Format Converters

NVIDIA CONFIDENTIAL
23 | PR-08803-R29 DriveWorks Development Guide

 dwImageStreamer_returnReceivedAPI(image)
}

Table of Supported Image Streamer Inputs and Outputs

From (column)
\ To (row)

CPU GL CUDA NvMedia

CPU - X* X* X

GL X* - X X

CUDA X X* - X

NvMedia X X X X
(Ideal for cross
processing)

Note

* Supported on iGPU only.

Table of Streamable Image Formats and Types (DW_IMAGE_X and DW_TYPE_X)

From (column)
\ To (row)

CPU GL CUDA NvMedia

CPU - RGBA, R, UINT8 ALL RGBA, R,
YUV420 p/s,
YUV422 p/s,
RAW, UINT8,
UINT16

GL RGBA, UINT8 - RGBA, UINT8 RGBA, UINT8

CUDA ALL RGBA, UINT8 ALL RGBA,
YUV420 p/s,
YUV422 p/s,
UINT8

NvMedia RGBA,
YUV420 p/s,
YUV422 p/s,
UINT8

RGBA,
UINT8

RGBA,
YUV420 p/s,
YUV422 p/s,
UINT8

RGBA,
YUV420 p/p,
YUV422 p/p,
RAW, UINT8,
UINT16

Format Converters
A format converter copies an image with certain properties to an image with different ones. The typical use case
is to convert a YUV image as captured by the cameras into an RGBA image for display with OpenGL. Note that

Format Converters

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 24

they do not convert the API type of an image but only the pixel format, type, and layout. For details see the table
below.

Currently the image converter has an implementation in CUDA and NvMedia. CUDA is available on all
platforms and utilizes the GPU to do the conversion. See below table for detail of the currently supported
conversions. On the Drive PX platform additionally an NvMedia version is available. Through NvMedia a
dedicated HW block on the Tegra processor, the VIC engine, is used to perform the conversion. For the list of the
supported conversions check the NvMedia documentation for NvMedia2DBlit that is shipped with the SDK.

Table for supported formats of the CUDA format converter

Specifics From To

- any property and layout same property and layout
(simple copy)

any property layout
DW_IMAGE_CUDA_PITCH

layout
DW_IMAGE_CUDA_BLOCK

any property layout
DW_IMAGE_CUDA_BLOCK

layout
DW_IMAGE_CUDA_PITCH

type uint8, input
planeCount 2/3

DW_IMAGE_YUV420 DW_IMAGE_RGBA

type uint8, output
planeCount 3

DW_IMAGE_RGBA DW_IMAGE_YUV420

type uint8, input
planeCount 2/3, output
planeCount 1/3

input type uint8, output
type float16, input
planeCount ⅔, output
planeCount 3

DW_IMAGE_YUV420 DW_IMAGE_RGB

type uint8, input
planeCount 1/3, output
planeCount 3

DW_IMAGE_RGB DW_IMAGE_YUV420

any type, input planeCount
1/3

DW_IMAGE_RGB DW_IMAGE_RGBA

any type, output
planeCount 1/3

DW_IMAGE_RGBA DW_IMAGE_RGB

input type float16, output
type uint8 (tone mapping)

DW_IMAGE_RGBA DW_IMAGE_RGBA

input planeCount 2, output
planeCount 3

DW_IMAGE_YUV420 DW_IMAGE_YUV420

type uint8 DW_IMAGE_RGBA DW_IMAGE_R

Image and Camera Coordinate Systems

NVIDIA CONFIDENTIAL
25 | PR-08803-R29 DriveWorks Development Guide

DriveWorks Conventions
In this section describe all the standards and conventions followed

Coordinate Systems
The car and each sensor have right-handed coordinate systems aached to them. The following sections describe
the conventions for each coordinate system.

Car Coordinate System
The origin of the car coordinate system, also called the rig coordinate system, is under the center of the rear axle
and on the ground (at calibration time). The x-axis points forward, to the front of the car. The y-axis points to the
left of the car and the z-axis points up.

Car Coordinate System

Image and Camera Coordinate Systems
The image coordinate system describes the position of points in the image space; and the camera coordinate
system describes the corresponding point in 3D space. The intrinsics of the camera are used to transform a point
between the two coordinate systems

The image coordinate system originates at the top-left of the image. The u- and v-axes, in pixel units, are aligned
with the way pixels are stored in memory.

The camera coordinate system has its origin at the optical center of the camera. The x-axis points to the right
of the image plane and the y-axis points to the boom of the image plane. The z-axis points forward, along the
optical axis. The x- and y-axes point in the same direction as the image u- and v-axes, respectively. The camera
coordinate axes are in metric units.

IMU Coordinate System

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 26

Image and Camera Coordinate Systems

Radar coordinate system
The radar coordinate system is centered at the radar's geometric center and the system axis follow the AUTOSAR
and ISO-8855 standard. The x-axis points forward, to the front of the car. The y-axis points to the left of the car
and the z-axis points up.

LIDAR Coordinate System
The LIDAR manufacturer defines the LIDAR coordinate system.

IMU Coordinate System
The x-axis points forward, to the front of the car. The y-axis points to the left of the car, and the z-axis points up.
The origin is located inside the case of the sensor, at the accelerometer.

IMU Coordinate System

GPS and HD Maps Coordinate Systems

NVIDIA CONFIDENTIAL
27 | PR-08803-R29 DriveWorks Development Guide

GPS and HD Maps Coordinate Systems
GPS sensors and HD maps usually describe positions in WGS84 coordinates (latitude, longitude, height).

To represent points on the earth surface in a Cartesian coordinate system, ENU (east-north-up) coordinates can be
used. The origin is defined at an arbitrary point on the Earth surface. x, y and z axes defined the tangent plane at
that origin point, such that (x,y,z) corresponds to (east, north, up).

The DriveWorks maps module provides helper functions to transform into local Cartesian coordinates.

WGS84 (λ,φ) and ENU Coordinate Systems

Camera Color Correction

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 28

Modules
This section introduces the NVIDIA® DriveWorks modules, including details on how they work and how they
must be used.

Image Processing Modules

Camera Color Correction
There are multiple cameras in the system and their captured images are likely to have different color tendencies.
The color correction module uses one camera as a master camera and adjusts the remaining images according to
the master camera's statistical data. The color matching method assumes that ground areas of each camera have
similar color distributions.

The workflow of color correction module is:

1. Create the handle with rig.xml file containing camera's calibration data, so that the module can extract
ground area from each camera's view.

dwRigConfigurationHandle_t rigConfig = DW_NULL_HANDLE;

dwRigConfiguration_initializeFromFile(&rigConfig, sdk, "rig.xml");

dwColorCorrectHandle_t cc = DW_NULL_HANDLE;

dwColorCorrectParameters ccParams{};

Video Rectification

NVIDIA CONFIDENTIAL
29 | PR-08803-R29 DriveWorks Development Guide

ccParams.cameraWidth = g_imageWidth;

ccParams.cameraHeight = g_imageHeight;

dwColorCorrect_initializeFromRig(&cc, sdk, rigConfig, &ccParams);

2. Send master camera's image to the handle to gather its statistic data

dwColorCorrect_setReferenceCameraView(frameCUDAyuv, cameraIdx, cc);

3. Send the rest camera's images to the handle, it will calculate their statistic data and match them to the master
one.

dwColorCorrect_correctByReferenceView(frameCUDAyuv, cameraIdx, 0.8f, cc);

The third argument factor in the following controls how much the master camera will affect the current
view. 1.f means 100% dependency on the master camera's color distribution; 0.f means no correction and use
current camera's own color. Default value is 0.8f.

dwColorCorrect_correctByReferenceView(dwImageCUDA* pImage, uint32_t curCameraIdx, \
 float32_t factor, dwColorCorrectHandle_t obj)

The input image must be YUV420 dwImageCUDA, which is the default camera image format on a non-
NVIDIA DRIVE™ system. You can use dwImageStreamer to convert dwImageNvMedia from NVIDIA
DRIVE to dwImageCUDA easily.

Test sample can be run directly by ./sample_color_correction, the other arguments include:

--video1

--video2

--video3

--video4 The 4 video inputs

--rigFile Rig file contains camera calibration data to extract ground area

--ref Master camera index

--factor Correction factor, 0 means no correction, 1 mean full correction

For more information on this sample, see DriveWorks SDK Reference.

Video Rectification

The video rectification sample illustrates how to use the rectification module to remove fisheye distortion from
a video (undistortion). The main purpose of the module is to convert an image acquired with an input camera
model by projecting it into an output camera module. In the sample the input camera model is an OmniCam with
lense distortion, projected into a pinhole camera with no lense distortion.

Video Rectification

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 30

The sample reads frames from a video input recorded from an omnicamera and calibration from the `rig.xml` file.
It then performs rectification and displays both the original and rectified video side-by-side.

./sample_rectifier

To play a custom video and with a corresponding rig calibration file, the options `--video` and `--rig` can be used:

./sample_rectifier --video=<video file.h264> --rig=<rig.xml>

To use a rectifier object (dwRectifierHandle_t), initialize the sample with the input and output camera
models as dwCalibratedCameraHandle_t to dwRectifier_initialize(). Then, given an input image,
which is a pointer to dwImageCUDA, the function dwRectifier_warp() returns a pointer to outputImage and
dwImageCUDA.

In the sample, the input camera model is created by the RigConfiguration object, by calling
dwCameraRig_initializeFromConfig(). On the other hand, the output camera model must be created as
a pinhole camera (in order to remove fisheye) with no distortion. In the following example, the focal length was
chosen manually for best result at ¼ of the image resolution.

dwPinholeCameraConfig cameraConf = {}

cameraConf.distortion[0] = 0.f;

cameraConf.distortion[1] = 0.f;

cameraConf.distortion[2] = 0.f;

cameraConf.focalX = FOC_X;

cameraConf.focalY = FOC_Y;

cameraConf.u0 = static_cast<float32_t>(gCameraWidth/2);

cameraConf.v0 = static_cast<float32_t>(gCameraHeight/2);

cameraConf.width = gCameraWidth;

cameraConf.height = gCameraHeight;

To remove lense distortion from an image acquired with a pinhole camera, the rectifier must project from Pinhole
to Pinhole with no distortion. In that case, the intrinsics of the camera must be known.

It is also possible to set an homography transformation by calling dwRectifier_setHomography().

Image Signal Processor (ISP)

NVIDIA CONFIDENTIAL
31 | PR-08803-R29 DriveWorks Development Guide

Image Signal Processor (ISP)
The software ISP converts RAW images from a specific camera into images with linear response curve.

Note: The above picture is from DriveWorks 0.2.1. Beginning with version
0.3, DriveWorks has improved adaptive tone mapping.

The output format can be:

• Bayer paern image,

• Demosaiced image,

• Tone-mapped image, or

• All the above.

Bayer image means a linear response image that has the same position varying color filter as the camera physical
sensor. The demosaiced image is the converted Bayer image result, where each pixel has all color channels
available (Red, Clear, and Blue), either via interpolation or downsampling. The tonemapped image finally scales
the range of intensity value to produce a regular RedGreenBlue image. For optimization purposes, if only a
subregion of the image is of interest, demosaicing can be run on that sub-region only.

Data Format

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 32

The state of the software ISP pipeline controls the demosaic output. Use the following methods to control the
pipeline state:

• dwSoftISP_setDemosaicMethod

• dwSoftISP_setDemosaicROI

Note: The Bayer image is always the full resolution and not affected by the
demosaic state.

Currently, the pipeline only supports RAW images from the ar0231 RCCB/RCCC cameras.

Maps Module
The maps module provides an API to access HD maps data from different backends.

DriveWorks currently supports:

• HERE maps

• Cache file

• Download with HERE maps connection parameters

• TomTom XML file

Data Format
The backend specific map data is translated into a common DriveWorks format. The main data structs holding the
map data are

• Road Segments

• Lanes

• Lane Dividers

• Features

The basic elements are the Road Segments, all data can be accessed through them. A Road Segment represents
a piece of road, containing several Lanes, Lane Dividers, and Features. Element geometries are represented as
polylines of points in WGS84 coordinates. For Lanes, a polyline represents the centerline of the Lane. For Lane
Dividers and Features, the geometry describes the shape of the object, for example a polyline modelling the
painted marking on the road.

Features are a generic representation of objects encountered along the road, e.g. traffic signs, traffic lights, etc. A
feature is described by its type and geometry.

Lane Dividers are grouped into Lane Divider Groups. Although usually there is only a single Lane Divider at
a lane boundary, there are cases where lanes are separated with multiple dividers, for example a painted lane
marking and a physical barrier.

A Lane has pointers to two Lane Divider Groups, representing the lane boundaries on both sides of the Lane. The
Lane Divider Groups are part of the Road Segment, two neighboring Lanes may point to the same Lane Divider
Group.

Map Initialization

NVIDIA CONFIDENTIAL
33 | PR-08803-R29 DriveWorks Development Guide

Connections
Road Segments and Lanes have connections to their predecessors and successors along the road, represented by
the dwMapsRoadSegmentConnection and dwMapsLaneConnection structs. Connections can be on two sides
of the element. previous connections are at the beginning of the geometry polylines, whereas next connections
connect at the end. It is possible that connected elements have opposite geometry directions, meaning for a next
connection, the end of a polyline connects to the end of the connected polyline (and similarly on the start side
for previous connections). A sameDirection Boolean in the Connection struct stores the directions of
connected elements relative to each other. A connection is represented by the ID of the connected element, and, if
available, a pointer to it. If the connected element is currently not in memory, the pointer is a nullptr.

• Lanes, Lane Dividers, Lane Divider Groups, and Features also have pointers to their parent structs, as shown
below:

• dwMapsLane -> dwMapsRoadSegment

• dwMapsLaneDivider -> dwMapsLaneDividerGroup

• dwMapsLaneDividerGroup -> dwMapsRoadSegment

• dwMapsFeature -> dwMapsRoadSegment

Attributes
Road Segments, Lanes, Lane Dividers, and Features store various aributes to describe their type and properties.

Main Data Structure Type and Properties

Road Segment Type (bridge, tunnel, etc.)

Lane Type (shoulder, car pool, etc.)
Driving direction, relative to the geometry polyline

Lane Divider Type (dashed, solid, etc.)
Material
Color

Feature Type (traffic sign, traffic light, etc.)

Road Segments are defined such that aributes within a Road Segment do not change. If an aribute of an
element (Road Segment, Lane, or Lane Divider) changes along the road, a new Road Segment is created.

Map Initialization
There is an initialize function for each supported backend:

dwMaps_initializeHERE

dwMaps_initializeTomTom

The initializer reads existing map caches or xml files, translates the data into the internal DriveWorks format, and
loads it into the system memory. The initializer returns a map handle that can be used to access the data through
the query functions of the maps module.

The data buffers must be pre-allocated to a sufficient size at initialization. The number of expected Road Segments

Serialization

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 34

defines the size of the buffers and must be estimated. The Road Segments are either created during initialization
or they are created during the dwMaps_update call. As a result, the number of created Road Segments depends
on:

• Content of the loaded data files and

• Size and content of the bounds during the update call.

There is also an initialize function to read serialized map data in DriveWorks format from file:

• dwMaps_initialize

Local Data Update
It is possible to update local cache files with map data of a map region defined by a bounding box of longitude
and latitude coordinates:

dwStatus dwMaps_update(dwMapsBounds bounds, \

 dwBool download, \

 dwMapHandle_t mapHandle);

Currently only the HERE maps backend implements this function. If the download Boolean is set, and HERE
maps connection parameters are provided during initialization, this function will download HERE maps data
from the HERE servers and updates the local HERE maps cache file (named HDMapCache.db by default).
If ‘download’ is false, the current local HERE maps cache file is used to update the DriveWorks map data in
memory.

For the given bounds, the map data of the backend is translated to the DriveWorks format. A binary DriveWorks
map cache file with the translated data can be stored using the serialization API. This binary file can be used at
the next DriveWorks initialization time and will allow efficient loading of the data into memory.

Serialization
With the following methods, the map data in the Maps module can be serialized to and deserialized from a file in
binary or xml format:

dwStatus dwMaps_serialize(
 const char *filename,
 dwMapsSerializationFormat format,
 dwConstMapHandle_t mapHandle);

dwStatus dwMaps_deserialize(
 const char *filename,
 dwMapHandle_t mapHandle);

To avoid dynamic memory allocations, the buffer sizes in the existing map handle do not change at
deserialization. If the data from the file does not fit, only part of it is deserialized and an error is logged.

It is also possible to directly initialize a map handle from a DriveWorks data file:

dwStatus dwMaps_initialize(
 dwMapHandle_t *mapHandle,
 const char *filename,

Query functions

NVIDIA CONFIDENTIAL
35 | PR-08803-R29 DriveWorks Development Guide

 dwContextHandle_t contextHandle)

In that case, the internal buffers are sized to exactly fit the data from the file.

Map Query

Result Buffers

Maps module functions that return an array of elements write the returned elements into a fixed size buffer that is
passed in as an argument. There are Buffer structs for various map elements:

dwMapsGeoPointBuffer

dwMapsPointBuffer

dwMapsPolyline3fBuffer

dwMapsLineBuffer

dwMapsLaneDividerLineBuffer

dwMapsFeatureBuffer

dwMapsLaneDividerBuffer

dwMapsRoadSegmentBuffer

A Buffer struct must be initialized before being passed to the function:

• buffer: pointer to the fixed size array

• maxSize: size of the fixed size array

• size: current number of valid elements in the array

Query functions

Road Segments

Road Segments provide access to all the map data.

The getRoadSegments function returns all Road Segments that overlap with a bounding box of longitude and
latitude coordinates.

dwStatus dwMaps_getRoadSegments(
 dwMapsRoadSegmentBuffer *roadSegments,
 const dwMapsBounds *bounds,
 dwConstMapHandle_t mapHandle);

For convenience, there are a few more specific query functions:

getLaneDividers

getFeatures

Lane Dividers

dwStatus dwMaps_getLaneDividers(

Map Tracker

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 36

 dwMapsLaneDividerBuffer *laneDividers,
 uint32_t typeFilter,
 const dwMapsBounds *bounds,
 dwConstMapHandle_t mapHandle);

getLaneDividers returns all Lane Dividers that overlap with a bounding box of longitude and latitude
coordinates, filtered by their type. A logical combination of type flags can be used to specify which Lane Dividers
are returned.

Features

dwStatus dwMaps_getFeatures(dwMapsFeatureBuffer *features,
 uint32_t typeFilter,
 const dwMapsBounds *bounds,
 dwConstMapHandle_t mapHandle);

getFeatures works the same way as getLaneDividers.

Closest Lane

dwStatus dwMaps_getClosestLane(const dwMapsLane **closestLane,
 dwMapsGeoPoint *closestPoint,
 const dwMapsGeoPoint *p,
 dwBool onlyDrivable,
 dwBool ignoreHeight,
 dwConstMapHandle_t mapHandle);

getClosestLane returns the closest Lane, and the closest point on it, to a given query point p. When the
onlyDrivable flag is set to true, non-drivable lanes are not considered. ignoreHeight can be set if the height
of the input point is unknown or inaccurate. In that case, the distances are compared, after projecting all points to
height 0.

Note that the maps module also provides a map tracker that allows a robust selection of the current lane when
driving along a road. It also incorporates orientation and logical connections and thus can give a beer result than
just picking the closest lane.

Map Tracker
The Map Tracker tracks a trajectory on the map and selects the lane that corresponds to the current pose of
a trajectory. The current lane is updated based on position, orientation, and time. It is chosen from a list of
candidate lanes that are reachable from the lane selected in the previous update of the Tracker. Considering
connectivity helps to avoid erroneously selecting crossing or nearby lanes that are not actually reachable from the
previous position. If there is no previous update or if the result is bad (further away than 10 meters), the search
is extended to all nearby lanes ignoring connectivity. This extended search is used only for the first frame or for
recovery in case of a tracking error.

The Map Tracker is initialized with an existing Map Handle:

dwStatus dwMapTracker_initialize(
 dwMapTrackerHandle_t *mapTrackerHandle,
 dwConstMapHandle_t map);

The current lane is being tracked by subsequently updating the Tracker with the current position, orientation, and
time. Orientation is represented as a rotation matrix that transforms from local coordinates (forward-left-up) into

Lane Tree

NVIDIA CONFIDENTIAL
37 | PR-08803-R29 DriveWorks Development Guide

East-North-Up (ENU) coordinate system. For more information, see GPS and HD Maps Coordinate Systems in
this guide.

dwStatus dwMapTracker_updateCurrentPose(
 const dwMapsGeoPoint *position,
 const float64_t *localToENURotation33,
 dwTime_t timestamp,
 dwBool ignoreHeight,
 dwBool reset,
 dwMapTrackerHandle_t mapTrackerHandle);

If the height at the current position is not known or inaccurate, set ignoreHeight to True.

The tracker can be reset manually, thus discarding the tracking result of the previous update. To obtain the result
of the update, call:

dwStatus dwMapTracker_getCurrentLane(
 const dwMapsLane **currentLane,
 dwConstMapTrackerHandle_t mapTrackerHandle);

To identify the candidate lanes among which the current lane has been selected, call:

dwStatus dwMapTracker_getCurrentCandidateLanes(
 dwMapsLaneBuffer *lanes,
 dwConstMapTrackerHandle_t mapTrackerHandle);

Lane Tree
The Lane Tree module represents how the road continues from a given lane. The root of the Lane Tree is the
current lane. The children of a tree node are its direct successor lanes at the end of the current Road Segment.
Optionally, the successors of neighbor lanes that are reachable through a lane change are child nodes. This
capability supports exploration of reachable lanes starting at a given lane, up to a given limit, either with or
without lane changes. The limit can be either distance or driving time.

To create a Lane Tree

1. Initialize a Lane Tree Handle with an existing Map Handle as input:

dwStatus dwMapsLaneTree_initialize(
 dwMapsLaneTreeHandle_t *laneTreeHandle,
 uint32_t maxLaneCount,
 dwConstMapHandle_t map);

The caller must estimate maxLaneCount. It is the maximum number of dwMapsLane objects that can be
stored in the tree. The function uses it to pre-allocate the buffers used during the tree creation.

2. Use the Lane to create the tree:

dwStatus dwMapsLaneTree_create(const dwMapsLane *lane,
 float32_t limit, dwMapsLaneTreeLimit limitType,
 dwBool doLaneChanges, dwMapsLaneTreeHandle_t laneTree);

Local Space Lane Divider Line Segments

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 38

To obtain the Lane tree result

There are three different ways to access the result:

• To access the tree structure through the root node, call:

dwStatus dwMapsLaneTree_get(
 dwMapsLaneTreeNode **root,
 dwMapsLaneTreeNodeBuffer *laneTreeNodes,
 dwConstMapsLaneTreeHandle_t laneTree);

• To get a list of all lanes in the tree, call the following:

dwStatus dwMapsLaneTree_getLaneCount(
 uint32_t *laneCount,
 dwConstMapsLaneTreeHandle_t laneTree);

Followed by:

dwStatus dwMapsLaneTree_getLanes(dwMapsLaneBuffer *laneBuffer,
 dwConstMapsLaneTreeHandle_t laneTree);

• To get a sorted list of lanes from the root lane to each leaf of the Lane Tree, call:

dwStatus dwMapsLaneTree_getLeafCount(uint32_t *leafCount,
 dwConstMapsLaneTreeHandle_t laneTree);

Followed by:

dwStatus dwMapsLaneTree_getLaneListToLeaf(
 dwMapsLaneBuffer *laneBuffer,
 uint32_t leafIndex,
 dwConstMapsLaneTreeHandle_t laneTree);

There is a helper function to stitch the geometry of connected lanes into one single polyline, see
dwMaps_stitchLaneGeometry in the chapter below.

Lane Tree Helper Functions

Local Space Lane Divider Line Segments

dwStatus dwMaps_transformLaneDividersToLocalLines(
 dwMapsLaneDividerLineBuffer *lineSegments,
 const dwMapsLaneDividerBuffer *laneDividers,
 const dwMapsGeoPoint *localOrigin,
 const float64_t *localToENURotation33,
 const dwMapsLocalBounds *bounds,
 const dwVector3f *directionFilterVector,
 float32_t directionFilterAngleRadian,
 dwBool ignoreLaneDirection);

This helper function combines a few things to transform and filter the lane divider geometry. It does the
following:

Filtering

NVIDIA CONFIDENTIAL
39 | PR-08803-R29 DriveWorks Development Guide

• Transforms from WGS84 coordinates into in a user-defined local Cartesian coordinate space.

• Transforms the polylines into a list of line segments.

• Filters the line segments by a bounding box defined in local space.

• Filters the line segments by direction.

Local Cartesian Coordinate System
The local coordinate system is defined by:

• Point in WGS84 coordinates

• Rotation matrix

The point defines the origin of the east-north-up (ENU) coordinate system on the tangent plane of the Earth
spheroid. The basis vectors of the ENU space are:

(1,0,0) = east

(0,1,0) = north

(0,0,1) = up

The rotation matrix transforms from the local coordinate system into the ENU space. It defines the user local
space of the returned coordinates. The basis vectors of the user local space can be interpreted as:

(1,0,0) = forward

(0,1,0) = left

(0,0,1) = up

This means that if the rotation matrix is an identity matrix, the local space is facing east.

There is also a helper function dwMaps_computeLocalToENU that creates the rotation matrix from a single
bearing value.

Filtering
The direction filtering allows to discard all line segments that do not point into a desired direction. For example,
providing a direction filter vector of (0,1,0) with an angle of 0.25*Pi will only return line segments that have an
angle of less than 45 degrees compared to the viewing direction. This can be used to filter out bridges that cross
the current Road Segment horizontally, as shown in the following images

Compute Bounds

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 40

Local Space Feature Line Segments

dwStatus dwMaps_transformRoadFeaturesToLocalSpace(
 dwMapsPolyline3fBuffer *localPolylines,
 dwMapsPointBuffer *pointBuffer,
 const dwMapsFeatureBuffer *features,
 const dwMapsGeoPoint *localOrigin,
 const float64_t *localToENURotation33,
 const dwMapsLocalBounds *localBounds);

This function has the same functionality as dwMaps_transformLaneDividersToLocalLines, but for
features instead of lane dividers.

Compute Bounds

dwStatus dwMaps_computeBounds(dwMapsBounds *bounds,
 const dwMapsGeoPoint *p,
 float32_t radiusMeter);

The query functions require a bounding box in WGS84 coordinates to define the area of interest. The size of the
longitude/latitude box for a given radius in meters varies with latitude, so it is not obvious how big the WGS84
bounding box must be to cover a desired radius in meters. The computeBounds function does this calculation. It
returns the bounds that fully contain a given circle on the earth surface.

[Image source: hp://janmatuschek.de/LatitudeLongitudeBoundingCoordinates]

http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates

Interpolation Between Polylines

NVIDIA CONFIDENTIAL
41 | PR-08803-R29 DriveWorks Development Guide

Compute Bearing

There is a helper function to compute the bearing (clock-wise angle from north) from a current and a target
position:

dwStatus dwMaps_computeBearing(float64_t *bearingRadian,
 const dwMapsGeoPoint *position,
 const dwMapsGeoPoint *headingPoint);

Compute Local To ENU

dwStatus dwMaps_computeLocalToENU(
 dwMatrix3d *localToENURotation33,
 float32_t bearingRadian);

The coordinate space in the functions that transform into local space is defined by a position and a rotation matrix
that transforms from local coordinate space into the ENU coordinate system. computeLocalToENU is a helper
function that creates the rotation matrix from a bearing angle. It is a clockwise rotation around the z-axis by
bearing angle.

Transform Polylines

dwStatus dwMaps_transformPolylines(
 dwMapsPointBuffer *transformedPoints,
 const dwMapsGeoPolyline *polylines,
 uint32_t polylineCount,
 const dwMapsGeoPoint *localOrigin,
 const float64_t *localToENURotation33);

All map data polylines are defined in WGS84 coordinates by longitude angle, latitude angle and height above
the earth spheroid surface. transformPolylines transforms an array of WGS84 coordinate polylines into a
Cartesian local space, the same way it is done for the getLaneDividerLinesLocal query, however it just
returns the polylines in local space (as opposed to returning filtered line segments).

Transform Point

dwStatus dwMaps_transformPoint(dwVector3f *transformedPoint,
 const dwMapsGeoPoint *point,
 const dwMapsGeoPoint *localOrigin,
 const float64_t *localToENURotation33);

The transformPoint function does the same as transformPolylines, but for a single point only.

Interpolation Between Polylines
Interpolation between two Polylines

dwStatus dwMaps_interpolatePolylines(uint32_t *srcStartIndex,
 uint32_t *targetEndIndex,
 dwMapsGeoPointBuffer *interpolatedPoints,
 const dwMapsGeoPoint *srcPoints,
 uint32_t srcPointCount,

Interpolation Between Polylines

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 42

 const dwMapsGeoPoint *targetPoints,
 uint32_t targetPointCount,
 float32_t start,
 float32_t end,
 float32_t stepSize,
 float32_t (*interpolationFn)(float32_t, void*),
 void *interpolationFnContext);

This helper function provides interpolation between 2 polylines. It can be used to create a path that connects two
parallel polylines, for example to model a lane change.

Input are:

• the source polyline

• the target polyline

• the start of the interpolation (distance in meters from first source polyline point)

• the end of the interpolation (distance in meters from the first target polyline point)

• the step size to define where interpolation points are evaluated

• a function callback to define the interpolation curve (linear by default)

In the above example image, the interpolation function is:

1.0 - 0.5*(cos(d * Pi) + 1.0);

It maps the input parameter d, which goes from 0.0 to 1.0 and represents the distance from interpolation start to
interpolation target (horizontal distance in the example image), to the target range 0.0 to 1.0 that represents the
weight between source and target polyline.

Stitching of Lane Geometry

NVIDIA CONFIDENTIAL
43 | PR-08803-R29 DriveWorks Development Guide

Neighbor Lanes
Given a dwMapsLane, it is possible to figure out how many lanes are left and right on the current road segment.

To query the number of lanes on a side, call:

dwStatus dwMaps_getNeighborLaneCount(uint32_t *laneCount,
 uint32_t *laneCountAccessible,
 const dwMapsLane *lane, dwMapsSide side,
 dwBool sideRelativeToDrivingDirection);

There are two return values, the total number of lanes on that side, and the number accessible ones. Accessible
lanes are the ones that can be reached from the current lanes through a lane change, i.e. all lane dividers in
between can be legally crossed.

The side can be requested either relative to the polyline directions on the road segment, or relative to the driving
direction on the input lane (these directions are not necessarily the same).

A neighbor lane can be access by calling:

dwStatus dwMaps_getNeighborLane(const dwMapsLane **otherLane,
 const dwMapsLane *currentLane,
 dwMapsSide side, uint32_t offset,
 dwBool sideRelativeToDrivingDirection);

offset = 1 returns the directly adjacent lane, offset = 2 the next one, etc.

Stitching of Lane Geometry
Given a list of connected dwMapsLane objects, this helper functions stitches the requested geometry (lane center
line, left lane divider, right lane divider) into one connected polyline:

dwStatus dwMaps_stitchLaneGeometry(
 dwMapsGeoPointBuffer *polyline,
 const dwMapsLane *lanes, uint32_t laneCount,
 dwMapsLaneGeometry geometrySelection);

Rig Configuration

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 44

Distance Calculations
The length of a polyline of WGS84 points can be computed with the helper function

dwStatus dwMaps_computePolylineLength(float32_t *length,
 const dwMapsGeoPoint *points, uint32_t pointCount);

There is also a helper function that computes the Euclidean distance between two WGS84 points:

dwStatus dwMaps_computeDistance(float32_t *distance,
 const dwMapsGeoPoint *p1,
 const dwMapsGeoPoint *p2);

Vehicle Module

Rig Module

Rig Configuration

The car is considered a rig with several rigidly-aached sensors. The dimensions of the car and the positions of
these sensors relative to the car are important to DriveWorks accuracy. The rig characteristics are measured and
estimated by a calibration process.

The rig configuration module allows the reading and enumeration of these pre-calibrated properties. The module
obtains the rig configuration from an XML generated by the DriveWorks calibration tool. For more information,
see DriveWorks Calibration Tool Application Note in the doc/pdf/calibration folder of this release.

An example of the XML structure is given below.

Calibration

NVIDIA CONFIDENTIAL
45 | PR-08803-R29 DriveWorks Development Guide

<DRIVEWORKS ver="1.0">

 <VEHICLE>

 <PROPERTY Value="1.455" Name="Height"/>

 <PROPERTY Value="2.912" Name="Wheelbase"/>

 <PROPERTY Value="0.68" Name="Wheel diameter"/>

 ...

 </VEHICLE>

 <SENSORS>

 <CAMERA Name="Front" Type="gmsl">

 <PROPERTY Value="ocam" Name="Model"/>

 <PROPERTY Value="1280" Name="width" Hint="intrinsic"/>

 <PROPERTY Value="800" Name="height" Hint="intrinsic"/>

 <PROPERTY Value="657.93319" Name="cx" Hint="intrinsic"/>

 ...

 </CAMERA>

 ...

 </SENSORS>

</DRIVEWORKS>

DriveWorks recently added support for a similar JSON rig configuration format. A rig configuration
object (dwRigConfigurationHandle) can be initialized either from a file or directly from string (see
dwRigConfiguration_initializeFromFile). Once the rig configuration is loaded successfully, individual
properties can be queried about the rig and its sensors. Vehicle properties are represented by the dwVehicle
struct (see dwRigConfiguration_getVehicle). Generic sensor properties can be obtained through the
function dwRigConfiguration_getSensorXXX. Some sensors may have more specific properties, like the
calibrated camera model (for example see dwRigConfiguration_getPinholeCameraConfig).

Camera Rig

The SFM and Stereo modules use a camera-only rig (dwCameraRigHandle) that contains only
rigidly-aached calibrated cameras (dwCalibratedCameraHandle). This camera rig is a subset of
the generic rig. It can be initialized independently or directly from a generic rig configuration (see
dwCameraRig_initializeFromConfig).

The supported calibrated cameras are pinhole and OCam. Their calibration parameters are specified
with the dwPinholeCameraConfig and dwOCamCameraConfig structs respectively. The camera
models and its parameters are described in detail in DriveWorks SDK Reference. DriveWorks also offers the
dwCalibratedCamera_pixel2Ray and dwCalibratedCamera_ray2Pixel functions to transform a point
from image space to camera space and test the model.

Calibration
The calibration parameters for a sensor model have the following properties:

• Intrinsic (e.g., camera lens properties)

Egomotion

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 46

• Extrinsic (e.g., the pose relative to the rig)

Nominal values for these parameters are obtained by static calibration or from previous knowledge about sensor
characteristics and mounting positions. Exact parameters are crucial for any effective usage of the sensor's
measurements. However, nominal calibration parameters can vary over time, e.g. due to influences of the
environment like temperature changes or mechanical stress. This module addresses these transitional variations.

Self-calibration is the process of correcting the nominal calibration parameters based on up-to-date sensor
readings. This process compensates for transitional variations to enhance the availability of high quality
parameters at any time.

In DriveWorks, the Calibration module provides a common interface to perform self-calibration of different
sensor types. It is a lightweight service that is constantly running in the background to always provide the best
estimations for calibration parameters.

For a particular sensor, a sensor calibration routine is registered with the calibration engine
(dwCalibrationEngine) and then fed with recent sensor readings / processed data or detections. For instance,
a camera calibration is requested via dwCalibrationEngine_initializeCamera, and data is provided to
the calibration engine via dwCalibrationEngine_addLaneDetections. Internally, the calibration engine
analyses the provided data and estimates the corrected calibration parameters for the particular sensor. At any
time, the status of the calibration process (dwCalibrationEngine_getCalibrationStatus) and the latest
calibration parameters can be queried (e.g., via dwCalibrationEngine_getSensorToRigTransformation).

Egomotion
The Egomotion module tracks and predicts a vehicle's pose, on the basis of a motion model, given measurements
from multiple sensors. The motion model is selected at initialization time. During run-time, the module takes
measurements as input and internally updates the current estimation of the vehicle pose. The module can be
queried for vehicle motion between any two points in time.

The motion model is based on the Ackermann principle. The simplest model, selectable with
DW_EGOMOTION_ODOMETRY type, estimates the vehicle motion based on odometry information only.
Measurements like speed in meters per second and steering angle on the road must be passed to the module
to perform estimation. The model assumes a vehicle of given length with a fixed rear axle and steerable front
wheels, driving on a 2D plane. Predictions are done assuming constant steering angle and velocity during the
time delta.

To select IMU-based motion estimation is selected, specify DW_EGOMOTION_IMU_ODOMETRY as the type of the
motion model. In this mode, the module estimates the car motion and its orientation based on velocity, steering
angle, and IMU measurements, such as gyroscope and linear accelerometer. The change in position is estimated
with the same Ackerman principle as the simplified motion model. The orientation, however, is estimated using a
complementary filter that fuses gyroscope and linear accelerometer measurements.

The Egomotion module internally maintains a history of poses to allow a query of relative poses between any
two timestamps. The returned relative pose represents the relative motion of the vehicle, i.e. change of orientation
and change of translation, that the vehicle performed from timestamp A to timestamp B in the local flat Euclidean
space. If a timestamp is in the future, then a motion prediction is returned. This prediction allows the module to
make assumptions about how the vehicle will move, given the last known state of the sensors.

The following shows the sequence in a typical application using the Egomotion module:

1. Read out odometry from CAN sensors.

2. Pass odometry with dwEgomotion_addOdometry().

3. Read out gyroscope+linear accelerometer data.

VehicleIO

NVIDIA CONFIDENTIAL
47 | PR-08803-R29 DriveWorks Development Guide

4. Pass IMU frame with dwEgomotion_addIMUMeasurement().

5. Every X milliseconds (say every 20-ms), update the trajectory estimation with dwEgomotion_update().

6. At any point of time, query the relative motion of the vehicle between any two timestamps with
dwEgomotion_computeRelativeTransformation().

7. Repeat in the loop.

VehicleIO
The VehicleIO module interfaces with the vehicle, where one side can control vehicle actuation and provide
information regarding the current state of the vehicle. The module can actuate and read from the vehicle by using
the following types:

• DW_VEHICLEIO_DATASPEED specifies the use of a “Dataspeed” device as an intermediary protocol.

• DW_VEHICLEIO_GENERIC specifies any programmable interface device that translates the messages
provided by the application into a format understandable by the vehicle.

Initialization

The dwVehicleIO_initialize function creates a VehicleIO instance. That functions takes the following
parameters:

• VehicleIO handle: dwVehicleIOHandle_t

• Type of interface device: dwVehicleIOType (DW_VEHICLEIO_DATASPEED/DW_VEHICLEIO_GENERIC)

Note: DW_VEHICLEIO_GENERIC is not available in this release, but has been added as a placeholder, for the
next release.

• Handle to the vehicle: dwVehicle

Note: Before creating a VehicleIO instance, you must initialize the rig configuration module
using dwRigConfiguration_initialize() and then get the vehicle properties using
dwRigConfiguration_getVehicle(). For more information, see Rig Configuration in this guide.

• Context Handle : dwContextHandle_t

Driving Mode

The dwVehicleIO_setDrivingMode function sets the driving mode. This function consumes the
dwVehicleIODrivingMode enum as an argument, which is defined as

typedef enum dwVehicleIODrivingMode

{

/// Comfortable driving is expected (most conservative). Commands that leave

/// the comfort zone are treated as unsafe, which immediately leads to

/// VehicleIO being disabled.

DW_VEHICLEIO_DRIVING_LIMITED = 0x000,

/// Same as above, but unsafe commands are clamped to safe limits and

/// warnings are isssued. VehicleIO stays enabled.

Occupancy Grid

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 48

 DW_VEHICLEIO_DRIVING_LIMITED_ND = 0x100,

/// Safety checks suitable for collision avoidance logic (right now same as

/// NO_SAFETY below).

 DW_VEHICLEIO_DRIVING_COLLISION_AVOIDANCE = 0x200,

/// VehicleIO will bypass all safety checks.

 DW_VEHICLEIO_DRIVING_NO_SAFETY = 0x300

} dwVehicleIODrivingMode;

Vehicle State Information

The dwVehcileIO_consume function parses received CAN messages. The resulting parsed messages generate
certain reports, which can be gathered using the predefined callbacks.

The current vehicle state information can be retrieved with dwVehicleIO_getVehicleState, which returns
the vehicle state in the dwVehicleIOState format.

Sending Vehicle Commands

The dwVehicleIO_sendVehicleCommand function sends a command to the vehicle via VehicleIO. The
command is sent in the dwVehicleIOCommand format and is passed as one of the arguments. An additional
argument is passed as a handle to the underlying sensor that VehicleIO uses to pass this command.

Selecting Driver Overrides

Signals that the driver uses to override Vehicle control are configurable and can be selected using
dwVehicleIO_selectDriverOverrides. The driver can override vehicle control with any combination of
throle, steering, brake, and/or gear.

Running VehicleIO Sample

Test the application directly by running it with the following sample:

./sample_vehicleio

Alternatively, the sample application accepts custom inputs for the underlying sensor, rig and vehicleIO type:

./sample_vehicleio --driver=can.virtual --params=file=vehicleio/can.bin \
 --type=dataspeed

Sensor Fusion

Occupancy Grid

The occupancy grid module showcases a dense Bayesian occupancy grid given sensor input. Specifically, this
dense view provides probabilities of a grid cell being free. When creating an occupancy grid, there are two types
of input layers that can be added: point clouds and objects. In the initialization of each layer, a set of probabilities
is specified. For point clouds, these probabilities correspond to the actual probability of a grid cell being free at
the actual point, the probability that sensor origin is free space, and the probability of free space beyond the point.
Point clouds are inserted based on the assumption the data came from a range sensor. Therefore, the point clouds
are inserted by casting a ray from the sensor origin, to the point. For object lists, only the probability that a cell is

Occupancy Grid

NVIDIA CONFIDENTIAL
49 | PR-08803-R29 DriveWorks Development Guide

free at the object is specified. Additionally, each layer specifies the sensor to sensor rig transformation ensuring
the points inserted are oriented correctly in the grid.

Creating an occupancy grid is done with the dwOccupancyGrid_initialize function and passing
dwOccupancyGridParameters struct object as a parameter. The dwOccupancyGridParameters struct
contains information about the size and the render color of the occupancy grid.

typedef struct dwOccupancyGridParameters

{

 /// The dimensions of the grid in length, width, and

 /// height.

 float3_32_t gridDimensionsMeters;

 /// The minimum grid coordinates in length, width, and

 /// height.

 float3_32_t gridMinMeters;

 /// The size of each grid cell in the occupancy grid,

 /// in meters.

 float32_t cellSizeMeters;

 /// The render color for rendering to an FBO.

 float4_32_t renderColor;

 /// Specifies whether to translate only the new points

 /// that are inserted.

 dwBool isScrollingMap;

} dwOccupancyGridParameters;

The renderColor affects the output color of the occupancy grid in general. For example, if the renderColor is set
to red ({1.0f, 0.0f, 0.0f, 1.0f}), the probability that a cell is occupied will be based on that color. In other words,
completely free would be completely red, unknown would be dark red ({0.5f, 0.0f, 0.0f, 1.0f}) and completely
occupied would be black.

The occupancy grid can support up to OCCUPANCY_GRID_MAX_LAYER_COUNT, which is
currently set to 16. A layer can be added with one of two functions, depending on the desired layer
type: dwOccupancyGrid_addRangeSensorLayer for range sensor layers (point cloud input) or
dwOccupancyGrid_addObjectListLayer for object list layers (polygon input). Each function expects
initialization parameters for the layer:

typedef struct dwOccupancyGridRangeSensorParameters {

 /// The column-major orientation of the sensor for a given

 /// layer. This includes rotation and translation

 /// and will be used to apply to points

 /// on insertPointCloud.

 dwTransformation sensorToRigTransformation;

 /// The min valid distance in meters that this layer can

Occupancy Grid

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 50

 /// register.

 float32_t minValidDistanceMeters;

 /// The max valid distance in meters that this layer can

 /// register.

 float32_t maxValidDistanceMeters;

 /// The probability that a grid cell is free at the sensor

 /// origin.

 float32_t probabilityFreeAtSensorOrigin;

 /// The probability that a grid cell is free at the sensor

 /// max valid distance.

 float32_t probabilityFreeAtSensorMaxDistance;

 /// The probability that a grid cell is free given a grid

 /// point hit.

 float32_t probabilityFreeAtSensorHit;

 /// The probability that a grid cell is free beyond the

 /// sensor hit to the max distance.

 float32_t probabilityFreeBeyondSensorHit;

 /// The min threshold value per grid cell.

 float32_t minAccumulatedProbability;

 /// The max threshold value per grid cell.

 float32_t maxAccumulatedProbability;

 /// Sets whether or not the layer is cumulative. If false

 /// insert point cloud will

 /// always reset previously inserted point clouds.

 dwBool isCumulative;

 /// Sets the ray width

 float32_t rayWidth;

 /// Sets the hit width

 float32_t hitWidth;

} dwOccupancyGridRangeSensorParameters;

typedef struct dwOccupancyGridObjectListParameters {

 /// The column-major orientation of the objects for a

 /// given layer. This includes

 /// rotation and translation and will be used to apply

 /// to objects on insert objects.

 dwTransformation objectListToRigTransformation;

Occupancy Grid

NVIDIA CONFIDENTIAL
51 | PR-08803-R29 DriveWorks Development Guide

 /// The probability that a grid cell is free given a grid

 /// point hit.

 float32_t probabilityFreeAtObject;

 /// The min threshold value per grid cell.

 float32_t minAccumulatedProbability;

 /// The max threshold value per grid cell.

 float32_t maxAccumulatedProbability;

 /// Sets whether or not the layer is cumulative. If false

 /// insert point cloud will

 /// always reset previously inserted point clouds.

 dwBool isCumulative;

 /// Sets the object line width

 float32_t objectLineWidth;

} dwOccupancyGridObjectListParameters;

Object list layers are useful if you have input that should not be inserted to the occupancy grid based on ray
casting. This type of layer will insert the polygon lines without making assumptions about the free space in
between the sensor origin and the polygon.

To insert data into the occupancy grid, use dwOccupancyGrid_insertPointCloud or
dwOccupancyGrid_insertObjectList, depending on the layer type. The dwOccupancyGrid_update call
will update the grid with the current transformation matrix that is passed in as a parameter. Typically, this is the
world-to-rig matrix or the matrix that transforms world coordinates into rig coordinates.

Multiple layers rendered separately with dwOccupancyGrid_renderLayer or rendered combined with
dwOccupancyGrid render. When using the combined function, it will add all the layers together in the log-space
before rendering.

Occupancy Grid Sample

The occupancy grid sample application uses three sensors in combination: CAN data for the car position and
orientation, LiDAR for point cloud data, and camera for visualization. The sample allocates a grid and allows the
application to insert point clouds or object lists, which are polygons stored as a list of points, on a stationary-to-
moving vehicle. You can observe the point clouds or objects being accumulated, and as the vehicle moves, the
grid is updated according to the probabilities given in the initialization.

Running Occupancy Grid Sample

Test the application directly by running it:

./sample_occupancy_grid

Alternatively, the sample application accepts custom inputs for lidar, can, and camera data:

./sample_occupancy_grid --canFile=can.bin --dbcFile=can.dbc --lidarFile=lidar.bin \
 --videoFile=video.h264 --videoTimestampFile=video_time.txt --fps=30

ICP Module

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 52

The following is an explanation of each argument:

--canFile - The recorded can data

--dbcFile - DBC file for interpreting can

--lidarFile - The recorded lidar data

--videoFile - The recorded h264 video

--videoTimestampFile - The timestamp file associated with the videoFile

--fps - The speed at which the sample plays

All inputs are assumed to be in the same format that the DriveWorks recording tool uses when recording. The
videoFile must be h264 and must have an associated videoTimestampFile in order to be able to synchronize
with the other sensors properly. Additionally, the sensors must be recorded at the same time so that they can be
synchronized and played back together.

The expected output is a Bayesian occupancy grid with areas that are free colored white, areas that are not free
colored black, and everything unknown colored gray. The colors represent the probability of a cell being free.

ICP Module
ICP module provides an API to align 3D points from a pair of lidar spins via Point-Plane Iterative Closest Points
implementation. It’s usage is shown in sample_icp. This module assumes a small translation and rotation
between the two point clouds (relative to a prior pose provided), such as the lidar sweeps captured <2 meters
apart from a moving vehicle.

Terminology in the API

The two point clouds input to the the ICP module are named `Target` and `Source` point clouds respectively.
The output of the alignment is the transform that must be applied to Source points so that they align to the target
point cloud. As this module uses an iterative approach, a `Convergence` criteria is used to test if iterations need
to stop. `Cost` of the iteration is a measure of distance between point and their target planes (please refer to
literature on ICP process).

Restrictions on the input data

ICP Module place the following major restrictions on data input to the module:

• The number of points may not exceed 32767 points in either source or target clouds.

• There is a small rotation/translation relation between the two point clouds, e.g. a translation of no more than
2-meters converges to acceptable results.

• Lastly, the point cloud data input via a pointer is arranged in such a way that points in close proximity to one
another in 3D space are nearby in the laid out memory.

Iteration Stopping Criteria

Two criteria control the stopping point of the iteration in this module and consequently the total run time and the
accuracy of the results. These criteria are defined in terms of:

• Rotation (in radians) and translation (in meters) tolerances or

• Maximum number of iterations

When the difference between results of two iterative steps is smaller than the rotation/translation tolerances, the

Initialization

NVIDIA CONFIDENTIAL
53 | PR-08803-R29 DriveWorks Development Guide

control returns to the application. The process terminates after a set number of iterations are complete, which is
intended to produce a more uniform distribution of run times.

Alternatively, the application can provide a callback for the convergence test. This callback can compare two of
the latest transforms and return a value that indicates whether the iterative process should conclude.

Result Statistics

ICP Module provides some basic statistics about the last iteration performed. The statistics are a quantitative
indicator of the alignment between the point clouds.

typedef struct dwICPResultStats {

 uint32_t actualNumIterations;

 float32_t rmsCost;

 float32_t inlierFraction;

 uint32_t numCorrespondences;

}dwICPResultStats ;

• rmsCost is the main indicator of the alignment, giving the rms of the distance between points in source point
clouds to the planes in the target point clouds.

• inlierFraction indicates the fraction of points that were considered for the ICP process. When the
transform between two point clouds is small, this fractions tends to be large.

• numCorrespondences is the total number of point-to-plane correspondences used in in the optimization.

• actualNumIterations is the actual number of iterations used before terminating.

Initializing the algorithm

As mentioned, the target and source points are expected to have small transforms (< 1 meter, <10 degree)
separating them. However, in case larger transforms are present, prior-information about the relative transform
(e.g. from inertial / odometry based method) can be used to initialize the algorithm. This prior pose can be passed
into the ICP module via the dwICPIterationParams::initialSource2Target argument.

Lidar Accumulator Module
This module provides the API access to the partial/full 3D Lidar sweep and 360-degree Lidar images for
rotating beam Lidars. DriveWorks samples include sample_lidar_accumulator, which is described in
an adjacent README file. If you plan to manually accumulate the Lidar packets for a full sweep, see the
sample_lidar_replay sample.

Initialization
To initialize the module, call dwLidarAccumulator_initialize. This function consumes the following
arguments:

• dwContextHandle

• dwLidarProperties

• filterWinSize

Note that filterWinSize specifies the horizontal smoothing for the Lidar sweep to reduce the horizontal jier
inherent to the Lidar rotating units. It must be set to even number ranges from 1 to 2, 4 and 8. When set to values

Lidar Image

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 54

other than 1, the Lidar point whose 3D distance is the closest to the Lidar sensor is selected in the horizontal
window.

Lidar Sweep
In addition to accumulating Lidar packets, the Lidar Accumulator module also accesses the organized
Lidar point clouds. To add the Lidar packet to the accumulator, call dwLidarAccumulator_addPacket.
To access the organized 3D Lidar data, call dwLidarAccumulator_getSweep. The data struct
dwLidarAccumulatorBuffer includes the pointer to the organized Lidar coordinates and intensity values.

typedef struct {

 /// Total number of non-zero points

 uint32_t validCount;

 /// Total number of points in data

 uint32_t dataCount;

 /// Organized Lidar points in Cartesian coordinate XYZI

 /// It includes both zero and non-zero points.

 const dwVector4f *data;

 /// Host timestamps

 const dwTime_t *hostTimestamps;

 /// Sensor timestamps

 const dwTime_t *sensorTimestamps;

} dwLidarAccumulatorBuffer;

You can call dwLidarAccumulator_returnSweep when the operation on the organized Lidar point cloud is
done.

Lidar Image
Apart from organized Lidar point cloud, the module offers the access to 360-degree cylindrical Lidar image
whose pixel value can be either 3D radial distance, 2D radial distance or intensity value. You can specify one of
the following in the API dwLidarAccumulator_createImage.

DW_LIDAR_IMAGE_TYPE_3D_DISTANCE_IMAGE
DW_LIDAR_IMAGE_TYPE_2D_DISTANCE_IMAGE
DW_LIDAR_IMAGE_TYPE_INTENSITY_IMAGE

The image memory ownership resides on the application. Once the sweep is ready, API
dwLidarAccumulator_fillImage returns the 360-degree Lidar image. Sample Lidar images can be found below.

3D Distance Lidar Image

Lidar Scan Distance Setting

NVIDIA CONFIDENTIAL
55 | PR-08803-R29 DriveWorks Development Guide

Intensity Lidar Image

Lidar Sweep Angle Setting
By default, the module returns full 360-degree Lidar sweep. If you instead plan to accumulate Lidar sweep in a
particular angle range, use dwLidarAccumulator_setAngleSpan. This function allows you to specify the
starting and ending angle of the range.

In the figure below, the green color point cloud represents the sector Lidar sweep. The second boom image
corresponds to the 3D distance Lidar image.

Lidar Scan Distance Setting
Like the Lidar sweep angle seing, the Lidar Accumulator module provides
dwLidarAccumulator_setDistanceSpan to customize the range of distance in a 360-degree Lidar sweep. In

Pyramid

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 56

the figure below, the blue color point cloud specifies the Lidar data from a 5 to 20-meter distance, while the green
ones cover all the distances.

Vision Processing Modules

2D Tracker Module
The 2D Tracker module can detect and track feature points between frames recorded by one camera. The detector
is a Harris Corner detector and the tracker is a KLT tracker. To support the tracker, the module also provides a
Gaussian Pyramid implementation.

In addition to detection and tracking, the module can manage lists of 2D features. All functionality is
implemented as CUDA kernels and runs asynchronously on the GPU.

Pyramid

The input to the tracker are Gaussian Pyramids of single channel frames, e.g. the Y channel of an YUV image.
Memory for it is allocated during dwPyramid_initialize, which also specifies the number of levels. Each
level has the quarter resolution of the previous level, e.g. 1280x800, 640x400, 320x200 for a 3-level pyramid

Putting It All Together

NVIDIA CONFIDENTIAL
57 | PR-08803-R29 DriveWorks Development Guide

and camera resolution of 1280x800. Each created pyramid is meant to be reused and is updated via the
dwPyramid_build API.ad

Feature Tracker

The Feature Tracker has two functional pieces: the detector and the tracker. The user defines an upper bound on
the number of features during initialization. This defines the size of allocations inside the tracker module. The
runtime of the tracker can still vary per the actual number of features.

To track 2D feature points between two frames, dwFeatureTracker_trackFeaturesAsync takes as input
two pyramids and list of 2D feature points as well as predicted locations for those points. The prediction can be
the current position or can be computed by some motion model for the feature points. The output is the location
and status for each input point, e.g. if the feature could be tracked successfully or not.

Calling dwFeatureTracker_detectNewFeaturesAsync runs a Harris Corner implementation on the GPU
to detect new features and adds them to the end of the given list of feature points. For example, if the maximum
feature count is 2000 and the list has 1500 features, currently only up to 500 features will be added, starting from
index 1500 onwards. The decision if a new feature is added is dependent on proximity to features already in the
list as well as a threshold on the corner response function.

Feature Lists

Feature lists manage an ordered list of 2d feature points. Each feature point has a 2D location that is represented
as non-normalized floating point coordinates. Each feature also has a status flag indicating if whether has been
successfully tracked.

Besides storing the features and serving as I/O to the tracker, the feature list also comes with basic
housekeeping functionality. While the detector avoids creating new features close to existing features to avoid
congestion, the tracker does not check for converging features. To avoid feature congestion during tracking,
dwFeatureList_proximityFilterAsync ensures that only one feature remains in those areas.

To remove features from the list that have a status indicating that they were not successfully tracked the
combination of dwFeatureList_selectValid and dwFeatureList_compact can be used. The output is a
compacted feature list with only valid features as well as indices of location in the input list.

Putting It All Together

The following code snippet shows the general structure of a program that uses the 2D tracker to track features in
a single camera. See the sample_camera_tracker for a complete implementation.

dwFeatureTracker_initialize(...);

dwFeatureList_initialize(&list, ...);

dwFeatureList_initialize(&listClean, ...);

dwPyramid_initialize(&pyramid, ...);

dwPyramid_initialize(&pyramidOld, ...);

while(true)

{

 std::swap(pyramid, pyramidOld);

 // CODE: Get frame

 // CODE: Extract luminance channel

Scaling Feature Tracker

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 58

 dwPyramid_build(..., pyramid);

 dwFeatureTracker_trackFeatures(list, pyramidOld, pyramid, ...);

 // Discard unwanted features

 dwFeatureList_proximityFilter(list);

 dwFeatureList_selectValid(..., list);

 dwFeatureList_compact(listClean, list, ...)

 std::swap(list, listClean);

 dwFeatureTracker_detectNewFeatures(list, pyramid, ...);

}

dwPyramid_release(&pyramidOld, ...);

dwPyramid_release(&pyramid, ...);

dwFeatureList_release(&listClean, ...);

dwFeatureList_release(&list, ...);

dwFeatureTracker_release(...);

2D Scaling Tracker Module
The 2D Scaling Tracker module tracks scaling features between frames recorded by one camera. Scaling feature
contains both position and size information. A 2D bounding box is considered a scaling feature. The module
supports scaling features up to 128x128. For those features with larger size, it will use the center 128x128
subregion for prediction. The module only does tracking work, user need to do detection by the help of other DW
modules.

Besides tracking the module comes with functionality to manage lists of 2D scaling features. All functionality is
implemented as CUDA kernels and runs asynchronously on the GPU.

Scaling Feature Tracker

The user defines an upper bound on the number of scaling features during initialization. This defines the size
of allocations inside the scaling tracker module. The runtime of the scaling tracker can still vary per the actual
number of scaling features.

The tracker doesn’t do detections, it only removes the features failing to be tracked. If there are new features, user
must update scaling feature list themselves.

To track 2D scaling feature points between two frames

(Assume the scaling feature list is updated)

dwScalingFeatureTracker_trackAsync takes as input the target frame to be tracked and list of 2D scaling
feature points. The output is the location, the size, the scale change factor and status for each input scaling feature,
e.g. if the feature could be tracked successfully or not.

dwFeatureTracker_updateTemplateAsync takes as input the tracked scaling features and the new
template image to be tracked from. To track scaling features from Frame N-1 to Frame N, Frame N-1 is

Putting It All Together

NVIDIA CONFIDENTIAL
59 | PR-08803-R29 DriveWorks Development Guide

the template frame while Frame N is the target frame. dwScalingFeatureTracker_trackAsync and
dwScalingFeatureTracker_trackAsync must be called by pair to ensure template updating.

Scaling Feature Lists

Scaling Feature lists manage an ordered list of 2d scaling features. Each feature point has a 2D location, its 2D
size, and status flag indicating if the feature has been successfully tracked or not. It also provides the scale factor
to indicate the change of size and the template location/size information.

Besides storing the scaling features and serving as I/O to the tracker, the scaling feature list also comes with basic
housekeeping functionality. Although the scaling tracker supports feature size larger than 128x128 by selecting
the center part, it may lose precision slightly for large feature size. To avoid the too large scaling features,
dwScalingFeatureList_applySizeFilter will mark all features with size larger than the given value as
invalid.

To add new scaling features to the list, dwScalingFeatureList_addEmptyFeatures must be called so that
the new added features can be assigned with correct initial properties automatically. Input is the number of new
features to be added.

To remove scaling features from the list that have a status indicating that they were not successfully tracked the
combination of dwScalingFeatureList_selectValid and dwScalingFeatureList_compact can be
used. The output is a compacted scaling feature list with only valid features in the input list.

Putting It All Together

The following code snippet shows the general structure of a program that uses the 2D scaling
tracker to track scaling features in a single camera. For a complete implementation, see the
sample_camera_scaling_tracker.

dwScalingFeatureTracker_initialize(...);

dwScalingFeatureList_initialize(&list, ...);

while(true)

{

 // CODE: Get frame

 // CODE: Extract luminance channel

 // CODE: Update scaling feature list for new features

 dwScalingFeatureTracker_trackAsync(list, ...);

 dwScalingFeatureTracker_updateTemplateAsync(list, ...)

 // Discard unwanted features

 dwScalingFeatureList_applySizeFilter(list);

 dwFeatureList_selectValid(..., list);

 dwFeatureList_compact(listClean, list, ...)

 std::swap(list, listClean);

}

Initialization

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 60

dwScalingFeatureList_release(&list, ...);

dwScalingFeatureTracker_release(...);

Box Tracker Module
2D Box Tracker module tracks rigid objects for a limited duration. The tracker contains a rich set of configuration
parameters that address different tracking scenarios. To successfully track objects, you can modify parameters
with contextual information and apply additional constraints for their specific application setup.

Initialization

DriveWorks includes a sample pipeline demonstrating tracking of multiple cars across multiple video frames. The
following summarizes the sample’s initialization steps:

std::vector<dwBox2D> initBoxes;

dwBoxTracker2DHandle_t boxTracker;

// CODE: initialize the Box Tracker parameter

// CODE: initialize the Box Tracker

// CODE: allocate initBoxes

// CODE: fill initBoxes with detected bounding boxes

// Feed initBoxes to Box Tracker

dwBoxTracker2D_add(initBoxes.data(), initBoxes.size(), boxTracker);

Initializing the Box Tracking Parameters

The DriveWorks dwBoxTracker2D_initParams function initializes the Box Tracker parameter with
default values. You can revise the tracker parameters for their specific use case. For a definition of the
dwBoxTracker2DParams fields, see DriveWorks API Reference.

Initializing the Box Tracker

After you have customized the tracking parameters, you must call the dwBoxTracker2D_initialize function
to initialize the Box Tracker internal states and memory.

Initializing Initial 2D Object Locations

The Box Tracker module requires initial 2D object locations represented by 2D rectangles. You can feed detection
results to the Box Tracker.

Applying Clustering

DriveWorks provides two methods for applying clustering to reduce redundant/adjacent “raw” detection results:

• With dwBoxTracker2D_add, which is internal to the Box Tracker module

Process

NVIDIA CONFIDENTIAL
61 | PR-08803-R29 DriveWorks Development Guide

• With dwBoxTracker2D_addPreClustered, which applies clustering outside Box Tracker. This function
assumes you first cluster the bounding boxes and add it to Box Tracker afterwards.

• Manually specify the object locations to start with. For example:

int32_t x, y;

int32_t width, height;

dwBox2D userBox;

// CODE: specify top left of the bounding box (x, y)

// CODE: specify width and height of the bounding box (width, height)

userBox.x = x;

userBox.y = y;

userBox.width = width;

userBox.height = height;

dwBoxTracker2D_add(userBox, ...);

Process

Given the initial bounding boxes, the Box Tracker module computes and associates 2D image features in adjacent
image frames. The module uses such feature displacement to estimate the bounding box motion in the next frame.
In the figure below, blue, and black crosses represent the successfully tracked 2D image features from frame N to
frame N+1. Red cross failed to find association in frame N+1 is thus not used to update the red rectangle in frame
N+1. For more information, see 2D Tracker Module in this chapter.

To predict the bounding box locations in the current frame using the tracked 2D image features, call the
dwBoxTracker2D_track function. Tracking features in multiple frames could suffer from failure association
such that the tracked feature number decreases. To avoid such a degradation, the DriveWorks sample Box
Tracker application detects 2D image feature for each frame, after previous frame features are tracked. In this
way, there are new features available for the next frame to use. Once the 2D feature detection is complete,

Triangulation

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 62

Box Tracker updates each tracked bounding box with the detected 2D image features. The DriveWorks
dwBoxTracker2D_updateFeatures function offers the update mechanism.

The Box Tracker sample shows how to use dwBoxTracker2D_track and
dwBoxTracker2D_updateFeatures.

To obtain the tracked bounding boxes, call dwBoxTracker2D_get. That function returns information such as:

• List of 2D rectangles and tracking states, i.e. confidence

• Box ID

• Total number of tracked frames

• 2d feature locations used to predict the bounding boxes

Structure from Motion (SFM)
The Structure from Motion module reconstructs the 3D structure of the scene given a moving camera rig. This
is achieved by means of triangulation, e.g. geometric reasoning based on optics and multiple observations over
time. The assumption made is that of a static world with a moving observer, e.g. changes in observation are only
due to motion of the car and not of changes in the 3D position of the feature itself.

The structure is reconstructed as a point cloud and a series of rig poses, i.e. a 3D location for each tracked feature
and the rotations and translations of the camera rig with respect to a fixed world reference frame. The module
requires as inputs a list of tracked feature points and an initial estimate for the rig pose at each time instant. These
inputs can be generated by the 2D tracker and the Egomotion module respectively.

The reconstructor object (dwReconstructorHandle) provides three main functionalities: triangulating
3D points from 2D tracked features, refining the rig pose, and predicting the pixel locations of 3D points in
future frames (see dwReconstructor_triangulateFeatures, dwReconstructor_estimatePose, and
dwReconstructor_predictFeaturePosition).

Triangulation

Triangulating points is the first step of the algorithm. 2D features must be tracked over several frames until they
are observed with a wide-enough baseline to provide a stable triangulation. With the dwReconstructorConfig
structure, you specify a baseline suitable for your application.

Determining When the Baseline is Wide-Enough

SFM determines when there is a wide-enough baseline by waiting until several sequential frames are observed,
each of which has a wide-enough baseline to provide a stable triangulation. An additional reprojection check
ensures a reduced number of outliers.

A wide-enough baseline is not ensured for the entire rig (i.e. the minRigDistance parameter is not
currently used) but the baseline is ensured for each feature being triangulated when you use a combination of
minNewObservationAngleRad and minTriangulationEntries.

Rig distance is not a good measure for triangulation accuracy because far-away features require more
distance between observations than near features. The algorithm uses the angle between optical rays
as a measure instead. An observation is only added if the angle between the new observation and the
observations in the history is above the threshold (minNewObservationAngleRad). Moreover, a feature
is only triangulated once the number of observations is above a threshold (minTriangulationEntries).
Thus, the effective minimum observation angle before triangulation can be approximated by

Feature Prediction

NVIDIA CONFIDENTIAL
63 | PR-08803-R29 DriveWorks Development Guide

minTriangulationEntries*minNewObservationAngleRad. This ensures a good-enough baseline for
triangulation.

Updating History

The reconstructor object keeps a running history of the tracked features and where they have
been observed at different points in time. For every frame, you must update this history by calling
dwReconstructor_updateHistory. The algorithm calculates the observation baseline and only adds entries
to the history if they contribute information for triangulation.

Getting Triangulation Information

After updating the history, features can be triangulated by calling
dwReconstructor_triangulateFeatures. The triangulation uses the internal history accumulated
over the previous frames. Only features that have accumulated enough information are triangulated. Once a
feature is triangulated, if an entry in the history is detected as an outlier the status for that feature is marked
as DW_FEATURE_STATUS_INVALID. Triangulated points are returned as a 3D homogeneous point in world
coordinates, where the fourth element is zero if the triangulation is invalid.

Pose Refinement

The SFM module requires an initial pose estimate to perform triangulation. The camera rig pose is provided
as a dwTransformation, i.e. a 4x4 matrix composed of a 3D rotation and translation. The name of the pose
argument denotes the direction of the transformation. For example, a pose called rig2World can be used to
transform a point in rig coordinates to world coordinates:

where the points are in 3D homogeneous coordinates.

This pose is usually provided through odometry measurements (e.g. using the Egomotion module).
However, once enough features have been triangulated this initial pose estimate can be refined by calling
dwReconstructor_estimatePose. This function optimizes the pose by minimizing the reprojection error of
3D points with regards to the tracked features.

Feature Prediction

Most 2D trackers can greatly benefit from a good prediction of where a previously seen feature will be in the
current frame. The SFM module can predict the position of most features given an estimation of the camera
rig’s pose (see dwReconstructor_predictFeaturePosition). The module provides three types of feature
prediction according to how much is known about the feature.

• Triangulated points are directly reprojected onto the image using the estimated rig’s pose, the rig to camera
transformation, and the camera intrinsics.

• Features without triangulation that are below the horizon are temporarily assumed to lie on the ground plane
and predicted to move according to the corresponding plane-induced homography.

• Features without triangulation that are above the horizon are temporarily assumed to be very far away from
the car. Thus, only the relative rotation between the rig’s previous pose and its current pose is considered.
The features are predicted to move according to the corresponding 3D rotation-induced homography.

Stereo Module

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 64

Putting It All Together

The following code snippet shows the general structure of a program that uses the SFM module. See the
sample_sfm for a complete implementation of an SFM-enabled application.

dwReconstructor_initialize(...);

while(true)

{

 // CODE: Get frame

 // CODE: Estimate camera rig pose through odometry

 dwReconstructor_predictFeaturePosition(...);

 for each camera

 {

 // CODE: Build pyramid

 // CODE: Track features

 }

 dwReconstructor_estimatePose(...);

 dwReconstructor_updateHistory(...);

 for each camera

 {

 dwReconstructor_triangulateFeatures(...);

 }

 // CODE: Select features to discard

 dwReconstructor_compactFeatureHistory(...);

 dwReconstructor_compactWorldPoints(...);

}

dwReconstructor_release(...);

Stereo Module
The Stereo Module rectifies a pair of stereo images acquired from a calibrated stereo camera and computes a
disparity map. The module is agnostic of the device that acquired the images and can be used with DriveWorks if
the images are presented as two dwImageCUDA objects.

Deep Neural Network Modules

NVIDIA CONFIDENTIAL
65 | PR-08803-R29 DriveWorks Development Guide

Stereo Rectifier

The dwStereoRectifierHandle_t object requires a calibrated dwCameraRigHandle_t. The calibrated object
contains the intrinsics and extrinsics of the stereo camera pair, corresponding to Left and Right, with the Left
camera being the center of the rig in the extrinsics parameters. From this rig configuration, the Stereo module
extracts:

• Two dwCalibratedCameraHandle_t objects, each representing a calibrated pinhole camera. Together,
these objects represent the intrinsics.

• Two dwTransformation objects.

Together, these objects represent the extrinsics.

The data folder provides an example of a calibrated rig, as represented in dwCameraRigHandle_t. That
example was derived from the KITTI dataset calibration. Such calibration was, in turn, derived from OpenCV
stereo calibration.

Afterwards, dwStereoRectifier consumes two unrectified dwImageCUDA stereo pairs and outputs two
rectified dwImageCUDA pairs and the optimal ROI. This ROI includes an area inside the images that has only
valid pixels (no interpolated data). The sample_stereo_rectifier sample shows how to perform such
rectification on a KITTI video pair. In the sample, horizontal lines are rendered to show how the pixels in both
rectified images lay on the same horizontal line. Moreover, a call to dwStereoRectifier_getCropROI returns
a dwRect representing the ROI. In the sample, this is just used to render a green rectangle that shows where the
most valid region is found. The user, at that point, can use the dwRect and call dwImageCUDA_mapToROI to get
another dwImageCUDA that maps only to that ROI.

Disparity Computation

The stereo disparity algorithm consumes a pair of dwPyramidHandle_t objects built from a pair of rectified
dwImageCUDA objects. To initialize a dwStereoHandle_t object, only dwStereoParams is required.
Afterwards, during runtime, new pyramids must be built for the frame that came from the camera (or
from dwStereoRectifier in case the camera does not perform rectification implicitly). Afterwards, the
pyramids are given to dwStereo_computeDisparity. This function computes the disparity based on the
dwStereoParams that have been set. It is then possible to call the dwStereo_getDisparity function and
get the disparity map of the desired side (DW_STEREO_SIDE_LEFT or DW_STEREO_SIDE_RIGHT) and call the
dwStereo_getConfidence function, which works in the same way. The confidence contains 8-bit values,
where:

• 0 represents an Occlusion

• 1 represents an invalid disparity

• Other values represent a validity score where 255 is maximum and 2 is minimum

An occlusion is a region of the image that is visible in one stereo image but not on the other one. An invalid
disparity is found on a region that contains no information and whose value has no confidence. In the sample, it
is possible to highlight such areas. To obtain a real Occlusion in the confidence map, both disparity maps must be
computed. If only one is computed, then the occlusion can be roughly found among low confidence pixels in the
confidence map. Choosing to compute a disparity map with lower resolution than the input can greatly improve
the runtime and smoothness of the result, but it sacrifices precision around edges and range.

Deep Neural Network Modules
The DNNs are trained with AR0231-RCCB, but with a good training set, the DNNs must be independent of

Initialization

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 66

camera type. Given a big dataset for training, the tiny details that differentiate the cameras are averaged out as
noise.

DNN Module
The DNN module implements functionality to run inference using deep neural networks, which were generated
with an NVIDIA® TensorRT™ optimization tool.

Initialization

Initialize DNN module with TensorRT

There are two ways of initializing DNN module with TensorRT.

• Use the following function to provide the path to a serialized TensorRT model file generated with
TensorRT_optimization tool:

dwStatus dwDNN_initializeTensorRTFromFile(
 dwDNNHandle_t *network,
 dwContextHandle_t context,
 const char *modelFilename);

• Use the following function to provide a pointer to the memory block where the serialized TensorRT model is
stored.

dwStatus dwDNN_initializeTensorRTFromMemory(
 dwDNNHandle_t *network,
 dwContextHandle_t context,
 const char *modelContent,
 uint32_t modelContentSize)

Inference

dwDNN module offers two functions for running inference.

DNN models usually have one input and one output. For these kinds of models, the following function can be
used for simplicity:

DW_API_PUBLIC dwStatus dwDNN_inferSIO(
 float32_t *d_output,
 float32_t *d_input,
 dwDNNHandle_t network);

This function expects a pointer to linear device memory where the output of inference is stored, a pointer to
linear device memory where the input to DNN is stored and the corresponding dwDNN handle which contains the
network to run. Please note that output must be pre-allocated with the correct dimensions based on the neural
network model.

Input to DNN is expected to have NxCxHxW layout, where N stands for batches, C for channels, H for height and
W for width.

Moreover, dwDNN module provides a more generic function, with which it is possible to run networks with
multiple inputs and/or multiple outputs:

Initialization

NVIDIA CONFIDENTIAL
67 | PR-08803-R29 DriveWorks Development Guide

dwStatus dwDNN_infer(float32_t **d_output, float32_t **d_input, dwDNNHandle_t network);

This function expects an array of pointers to linear device memory blocks where the outputs of inference is
stored, an array of pointers where the inputs of inference are stored and the corresponding dwDNN handle which
contains the network to run.

In order to be sure that the inputs and outputs are given in the correct order, it is recommended to place the
input and output data in their corresponding arrays at the indices based on the names of the blobs as defined in
network description. The following functions return these indices:

dwStatus dwDNN_getInputIndex(uint16_t *blobIndex,
 const char *blobName,
 dwDNNHandle_t network);

dwStatus dwDNN_getOutputIndex(uint16_t *blobIndex,
 const char *blobName,
 dwDNNHandle_t network);

Furthermore, the following functions return the number of required inputs and outputs:

dwStatus dwDNN_getInputBlobCount(uint16_t *count, dwDNNHandle_t network);

dwStatus dwDNN_getOutputBlobCount(uint16_t *count, dwDNNHandle_t network);

In addition, dimensions of inputs and outputs are available via:

dwStatus dwDNN_getInputSize(dwBlobSize *blobSize,
 uint16_t blobIndex,
 dwDNNHandle_t network);

dwStatus dwDNN_getOutputSize(dwBlobSize *blobSize,
 uint16_t blobIndex,
 dwDNNHandle_t network);

DNN Metadata

Each DNN usually requires a specific pre-processing configuration, and it might, therefore, be necessary to
include this information together with the DNN.

DNN Metadata contains pre-processing information relevant to the loaded network. This is not a requirement,
but can be provided by the user together with the network by placing a certain json file in the same folder as the
network with an additional “.json” extension.

For example, if the network is in path “/home/dwUser/dwApp/data/myDetector.dnn”, DNN module will look for
“/home/dwUser/dwApp/data/myDetector.dnn.json” to load DNN Metadata from.

The json file must have the following format:

{

 "dataConditionerParams" : {

 "meanValue" : [0.0, 0.0, 0.0],
 "splitPlanes" : true,
 "pixelScaleCoefficient": 1.0,
 "ignoreAspectRatio" : false,
 "doPerPlaneMeanNormalization" : false

Initialization

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 68

 },
 "tonemapType" : "none",
 "__comment": "tonemapType can be one of {none, agtm}"

}

If the json file in question is not present in the same folder as the network, DNN Metadata is filled with default
values. The default parameters would look like this:

{

 "dataConditionerParams" : {

 "meanValue" : [0.0, 0.0, 0.0],
 "splitPlanes" : false,
 "pixelScaleCoefficient": 1.0,
 "ignoreAspectRatio" : false,
 "doPerPlaneMeanNormalization" : false

 },
 "tonemapType" : "none",
 "__comment": "tonemapType can be one of {none, agtm}"

}

Note that whether DNN Metadata is used is a decision in the application level. The Metadata can be acquired by
calling:

dwStatus dwDNN_getMetaData(dwDNNMetaData *metaData, dwDNNHandle_t network);

Data Conditioner Module
The Data Conditioner module shall be used in support of the DNN module in order to make the input data
format compatible with the network input format. This can be done on a batch of images having the same size
in parallel. In addition, the Data Conditioner module provides several pre-processing functionalities that can be
used to further modify the input images, e.g., pixel value scaling, mean image subtraction, etc.

Initialization

In order to initialize the Data Conditioner module, it is first required to initialize the Data Conditioner parameters

dwStatus dwDataConditioner_initParams(dwDataConditionerParams *dataConditionerParams);

dwDataConditionerParams permits to set the following parameters:

• float32_t meanValue[DW_MAX_IMAGE_PLANES]: mean value to be subtracted from each input image
pixel. Default is the 0-vector. This shall be used if the network has been trained with mean-centered data.

• dwImageCUDA *meanImage: mean image to be subtracted from each input image. meanImage is expected
to be float16 or float32. The pixel format is required to be R or RGBA with interleaved channels. The
dimensions of the mean image must meet the dimensions of the network input. Default is the null pointer.
This is an alternative to meanValue, if a specific mean image is to be subtracted. Note: if both meanValue and
meanImage are provided, both values are subtracted.

• dwBool splitPlanes: flag to indicate whether the image is in interleaved (false) or planar (true) format.
Default is false.

• float32_t scaleCoefficient: Scale pixel intensities. Default is 1.0. It shall be used if the network

Data Preparation

NVIDIA CONFIDENTIAL
69 | PR-08803-R29 DriveWorks Development Guide

has been trained with images whose pixel values has been scaled to a specified range, e.g., in [0, 1]. If
scaleCoefficient is 1.0, the output pixel intensities are always ranged between [0,255], regardless of the input
pixel intensity range.

• dwBool ignoreAspectRatio: Indicates whether aspect ratio must be ignored during scaling operation.
Default is false.

• dwBool doPerPlaneMeanNormalization: Indicates whether per-plane mean normalization must be
performed. If true, mean value is computed for each plane on the image and this value is subtracted from
pixel intensities of the corresponding plane.

Once the Data Conditioner parameters have been defined, the Data Conditioner object can be initialized with

dwStatus dwDataConditioner_initialize(dwDataConditionerHandle_t *obj,
const dwBlobSize *networkInputBlobSize,
const dwDataConditionerParams *dataConditionerParams,
cudaStream_t stream, dwContextHandle_t ctx);

The initialization requires only the network input blob size, which can be given through
networkInputBlobSize. The user shall modify the batchsize in networkInputBlobSize to allow for a batch
of images to be prepared in parallel.

Data Preparation

In order to actually perform the data preparation, i.e., to make the input data compatible with the network input
and to apply the desired transformations, the following function must be called before calling the inference
function of the DNN module

dwStatus dwDataConditioner_prepareData(float32_t *d_outputImage,
 const dwImageCUDA *const *inputImages,
 uint32_t numImages,
 const dwRect *roi,
 cudaTextureAddressMode addressMode,
 dwDataConditionerHandle_t obj)

inputImages contains pointers to the images of the batch that shall be prepared. The number of images in
inputImages is given through numImages and shall not exceed the (possibly modified) batch size of the
network. The roi parameter (region of interest) defines a specific region in all images to which the desired
transformations as well as network inference shall be applied. roi is identified by the coordinates of the top left
corner, and the width and the height of the rectangle. If full images are of interest, then the top left corner must be
set as (0,0), width and height according to the images at hand. The internal resizing of roi to match the network
input size is defined in such a way that no image content is lost, but undefined border values might be created.
addressMode shall be used to set the fill-up strategy for the undefined border values. Two modes are allowed
cudaAddressModeBorder and cudaAddressModeClamp.

In a nutshell, dwDataConditioner_prepareData crops and resizes the defined ROI from each input image in
order to match the network input size, applies the desired transformations, and returns the transformed image
batch in d_outputImage, which can be used as input to dwDNN_infer (see DNN Module Inference).

Finally, Data Conditioner transforms point coordinates, e.g., bounding box coordinates from the DNN inference,
from the network input coordinate frame back to the original image coordinate frame by calling the function:

dwStatus dwDataConditioner_outputPositionToInput(float32_t *outputX,
 float32_t *outputY,
 float32_t inputX,
 float32_t inputY,
 const dwRect *roi,

Object Modules

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 70

 dwDataConditionerHandle_t obj)

where the point to be transformed back is passed through inputX and inputY and is returned in outputX and
outputY. The same roi passed to dwDataConditioner_prepareData shall be used.

Object Modules
Object module brings several functionalities together to provide the possibility to build a generic pipeline for
detecting and tracking objects of several classes. Object module in DriveWorks consists of the following sub-
modules: dwObject, dwObjectDetector, dwObjectTracker, dwObjectClustering and dwDriveNet.
Each of these modules are explained below with example code snippets, and finally the integration of these
modules to build an object detection application is shown.

The following diagram shows the roles of the object sub-modules in the object detection pipeline:

Object Detector

NVIDIA CONFIDENTIAL
71 | PR-08803-R29 DriveWorks Development Guide

Object Detector

The Object Detector module implements functionality to load a detection network, apply transformations to
the input such that the input image has the correct form for the loaded network, run inference using the loaded
network and interpret output of the network to finally get the list of object proposals for the given image.

There are two ways to initialize an Object Detector module:

• Use a custom network or

• Use DriveNet.

Object Detector

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 72

Initialization with a Custom Network

In order to initialize Object Detector module, a DNN module must be initialized first with a TensorRT model.
Moreover, Object Detector module requires some parameters to be defined so as to allocate enough resources,
establish the pipeline for image preparation for the given DNN and to understand how to interpret the output of
the network.

There are two different sets of parameters to be defined for ObjectDetector module:

• One group of parameters can be categorized under Detector parameters that specify where in an image and
how to apply object detection.

• The other group is more relevant to the network’s output interpretation:

dwStatus dwObjectDetector_initialize(
 dwObjectDetectorHandle_t *obj,
 dwContextHandle_t ctx,
 dwDNNHandle_t dnn,
 const dwObjectDetectorDNNParams *dnnParams,
 const dwObjectDetectorParams *detectorParams)

dwObjectDetectorParams: Detector Parameters

Below are the parameters to be defined:

uint32_t maxNumImages

Object Detector can be run on multiple images either sequentially or in parallel based on the batch size of the
DNN. “maxNumImages” specifies the maximum number of images to be processed at one function call.

dwRect ROIs[DW_OBJECT_DETECTOR_MAX_IMAGES]

Region of interests (ROIs) determine which part of image must be fed as an input to the DNN. Therefore, a ROI
must be provided for each image.

dwTransformation2D transformations[DW_OBJECT_DETECTOR_MAX_IMAGES]

Regardless of what the ROI is, the bounding boxes coming out of the network are in the input image coordinate
system. If desired, however, the bounding boxes can be transformed into another coordinate system by providing
a 2D transformation matrix.

dwBool enableFuseObjects

This flag enables objects coming from all the images to be in the same list. If, for example, multiple images from
the same scene are to be processed, objects coming from different images can be transformed with corresponding
transformation matrices into a common object coordinate system and can be fused into a single list with this flag
set to DW_TRUE.

dwBool enableBoundingBoxClipping

This flag enables clipping of bounding boxes which are at borders of the image. By default, it is set to DW_TRUE.

dwObjectDetectorDNNParams: DNN parameters

float32_t boxScaleX1, boxScaleY1, boxScaleX2, boxScaleY2

Object Detector

NVIDIA CONFIDENTIAL
73 | PR-08803-R29 DriveWorks Development Guide

A 2D object detection network usually consists of two output blobs: a blob that stores coverages and a blob that
stores bounding boxes.

A coverage blob is a grid, and each cell in this grid contains a score telling how confident it is that it is part of an
object in question. Each cell in this grid corresponds to a region in the input image. The size of the region that a
cell refers to can be calculated as follows:

CellWidth = ImageWidth / GridWidth

CellHeight = ImageHeight / GridHeight

Hence, the center of a cell in the input image can be calculated as:

CellImageX = CellWidth * CellX

CellImageY = CellWidth * CellY

A bounding box blob is a grid having same width and height as the coverage blob with 4 channels for each object
class. The first two channels refer to x and y coordinates of the upper left corner, whereas the last two channels
refer to x and y coordinates of the lower right corner of the bounding box. The coordinates are usually estimated
with respect to the center of the cell. Therefore, to get the coordinates in the network's input image coordinate
system, the following transformations are to be applied:

UpperLeftX = CellImageX + Bbox[CellX, CellY][0]

UpperLeftY = CellImageY + Bbox[CellX, CellY][1]

LowerLeftX = CellImageX + Bbox[CellX, CellY][2]

LowerLeftY = CellImageY + Bbox[CellX, CellY][3]

In some cases, during training, the bounding box coordinates with respect to the center of cells are scaled by a
factor. Therefore, the more generic way of calculating the coordinates is as follows:

UpperLeftX = CellImageX + (Bbox[CellX, CellY][0] * boxScaleX1)

UpperLeftY = CellImageY + (Bbox[CellX, CellY][1] * boxScaleY1)

LowerLeftX = CellImageX + (Bbox[CellX, CellY][2] * boxScaleX2)

LowerLeftY = CellImageY + (Bbox[CellX, CellY][3] * boxScaleY2)

uint32_t maxProposalsPerClass

Maximum proposals per class can be set using this parameter. This allows the Object Detector module to pre-
allocate resources to account for the maximum number of proposals that must be interpreted from the output of
the network. Note that if this number is exceeded, the proposals are truncated at this number regardless of their
detection score.

const char *coverageBlobName

const char *boundingBoxBlobName

These strings help Object Detector module to find which output blob refers to coverage blob and which output
blob refers to bounding box blob.

const char *bottomVisBlobName;

const char *horizontalVisBlobName;

Object Detector

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 74

const char *orientationYawBlobName;

If the network is capable of predicting the orientation of an object, these blob names must determine which blobs
refer to which property.

• Boom Visibility Blob

This blob predicts the degree of visibility of the boom of an object. The value is 0.0 if the boom of the object
is completely occluded and 1.0 if the boom of the object is completely visible.

• Horizontal Visibility Blob

This blob predicts the degree of horizontal visibility of an object. The value is 0.0 if the object is completely
occluded from left or right side and 1.0 if the object is completely visible.

• Yaw Orientation Blob

This blob predicts the yaw orientation of an object. The value is in [-Π, Π] from lateral axis. For example:

• yaw orientation is 0 if object faces the same direction as the host car.

• yaw orientation is +-Πif object faces towards the camera.

• yaw orientation is Π/2if object faces the rights side.

dwBool enable2_5D

This flag enables prediction of object orientation and visibility. This requires the network to provide all the blobs
mentioned above.

float32_t coverageThreshold[DW_OBJECT_MAX_CLASSES]

For each class, it is possible to define a coverage threshold which is utilized to eliminate the object proposals that
have lower coverage score than the given threshold.

dwDataConditionerParams dataConditionerParams

Data conditioner parameters specify network specific transformations to be applied on each image before
inference. For more information, see Data Conditioner Module.

Initialization with DriveNet

Object Detector module can be initialized with the NVIDIA proprietary deep neural network to perform object
detection:

dwStatus dwObjectDetector_initializeFromDriveNet(

dwObjectDetectorHandle_t *obj, dwContextHandle_t ctx, dwDriveNetHandle_t drivenet, const dwObjectDetectorParams *detectorParams)

This kind of initialization requires dwDriveNet handle. Please see DriveNet Module for more details.

As opposed to initialization with a custom network, it requires only detector parameters as input. For more
information on dwObjectDetectorParams, see Initialization with a Custom Network in this section.

Inference - Object Detection

At first, the input image must be prepared for DNN and inference must be run on the given images. To achieve
this, call:

Object Clustering

NVIDIA CONFIDENTIAL
75 | PR-08803-R29 DriveWorks Development Guide

dwStatus dwObjectDetector_inferDeviceAsync(const dwImageCUDA *const *imageArray,
 uint32_t numImages,
 dwObjectDetectorHandle_t obj);

imageArray contains pointers to the images where the Object Detection will take place. The number of images in
the imageArray may not exceed the maximum number of images set during initialization.

This function is run on device. Run this function asynchronously if a cudaStream has been set using
dwObjectDetector_setCudaStream function.

After the inference has been accomplished, as mentioned earlier, Object Detector module interprets the output of
the network on host by the following function:

dwStatus dwObjectDetector_interpretHost(uint32_t numImages,
 dwObjectDetectorHandle_t obj);

numImages is the number of images that was provided during dwObjectDetector_inferDeviceAsync. This
function synchronizes the NVIDIA® CUDA® stream that the inference takes place in.

Once the interpretation is done, object proposals can be received for each class in each image using the following
function:

dwStatus dwObjectDetector_getDetectedObjects(dwObject *objectList,
 size_t *numObjects,
 uint32_t imageIdx,
 uint32_t classIdx,
 dwObjectDetectorHandle_t obj);

objectList must be allocated by the user with enough memory to store the maximum number of proposals.
This number can be obtained from dwObjectDetectorDNNParams::maxProposalsPerClass or
dwDriveNetDNNParams::maxProposalsPerClass provided at initialization.

Object Clustering

A single object might cause DNN to result in several object proposals around the same area. Although these
all refer to the same object, during the interpretation of DNN, this is not known. Object Clustering Module
implements the functionality to apply clustering of objects proposals based on their bounding boxes and user-
defined clustering parameters in order that only one bounding box assigned to a single object.

Initialization

Initialization of Object Clustering is achieved by the following function call:

dwStatus dwObjectClustering_initialize(dwObjectClusteringHandle_t *obj,
 dwContextHandle_t ctx,
 const dwObjectClusteringParams *clusteringParams)

The initialization of Object Clustering module requires the following clustering parameters to be defined.

float32_t epsilon;

Like in any clustering methods, in Object Clustering module, there are bounding boxes which are defined to be
“core” which represent the cluster. Epsilon is the maximum distance for a box to be considered an element of a
cluster to the core of that cluster.

Object Clustering

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 76

uint32_t minBoxes;

Defines the minimum number of boxes required to form a dense region. minBoxes and
minSumOfConfidences are checked conjunctively.

float32_t minSumOfConfidences

Defines the minimum sum of confidences required to form a dense region.
minBoxesandminSumOfConfidences are checked conjunctively.

uint32_t maxProposals;

This parameter defines the maximum number of proposals the Object Clustering module should expect as input
at once. This allows the module to pre-allocate resources at initialization time.

uint32_t maxClusters;

This parameter defines the maximum number of clusters the Object Clustering module should output. If the
number of clusters exceeds this parameters, regardless of the cluster’s confidence, the list is truncated to meet this
requirement.

dwObjectClusteringAlgorithm algorithm;

Currently, there is one sort of clustering algorithm available. DW_CLUSTERING_DBSCAN, as the name suggests,
applies DBSCAN clustering algorithm on the object proposals, where the distance between two objects is
computed as 1.0-“intersection over union” of their bounding boxes; i.e. smaller IOU is larger distance.

dwBool enableATHRFilter;

float32_t thresholdATHR;

Area-to-hit-ratio is used to filter out object clusters which are, based on thresholdATHR, unlikely to be
objects if enableATHRFilter is set to DW_TRUE.

Area-to-hit-ratio is computed with the following formula:

ATHR = sqrt(area(cluster.box)) / nClusterMembers

dwBool enable2_5D

This flag indicates whether 2.5D fields (Horizontal Visibility, Boom Visibility and Yaw Orientation) must be
taken into account during clustering.

float32_t minHeight

MinHeight is used to filter out clusters having less height than the indicated value.

Clustering

Object clustering is achieved by the following function call:

dwStatus dwObjectClustering_cluster(dwObject *clusters, size_t *numClusters,

Object Tracker

NVIDIA CONFIDENTIAL
77 | PR-08803-R29 DriveWorks Development Guide

 const dwObject *detections,
 size_t numDetections,
 dwObjectClusteringHandle_t obj);

The clusters argument points to an array of clusters which is allocated by the user having the size of
maxClusters elements. This array is filled up by the ObjectClustering module after the clustering is performed.
“numClusters” is set to the number of actual clusters as a result of clustering algorithm.

The detections argument points to an array of object proposals with size numDetections that are to be
clustered.

Object Tracker

The Object Tracker module implements the functionality to track features in a frame using 2D Tracker module
and using these features to track bounding boxes of the objects from one frame to another.

Initialization

The following function call initializes the Object Tracker module:

dwStatus dwObjectTracker_initialize(dwObjectTrackerHandle_t *obj,
 dwContextHandle_t ctx,
 const dwImageProperties *imageProperties,
 const dwObjectFeatureTrackerParams *featureTrackerParams,
 const dwObjectTrackerParams *objectTrackerParamsArray,
 uint32_t numClasses);

Initialization of Object Tracker module requires to set up a certain list of parameters which define the way the
features are generated and tracked, and how the bounding boxes are updated, whether they must be kept or lost.

dwObjectFeatureTrackerParams contain the feature generation and tracking parameters that are
already explained in 2D Tracker Module. Below are the explanations of the parameters contained in
dwObjectTrackerParams:

uint32_t maxFeatureCountPerBox

This parameter determines the maximum number of features to track for each bounding box. The rest of the
features inside that bounding box are ignored.

float32_t maxBoxImageScale

With this parameter, it is possible to eliminate objects that get too large throughout their lifetime. The objects that
have larger width or height than the maximum allowed are dropped. Maximum allowed width and height of the
object are:

maxWidth = maxBoxImageScale * imageWidth

maxHeight = maxBoxImageScale * imageHeight

float32_t minBoxImageScale

With this parameter, it is possible to eliminate objects that get too small throughout their lifetime. The objects that
have smaller width than the minimum allowed are dropped. Minimum allowed width of the object is:

minWidth = minBoxImageScale * imageWidth

Object Tracker

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 78

minHeight = minBoxImageScale * imageHeight

float32_t confRateDetect

During the lifetime of an object, if the object is detected again, the confidence of the object must be incremented.
How much the confidence of the new detection should affect the confidence of the object is determined by this
parameter in the following way:

conf = conf + conf_detection * confRateDetect

float32_t confRateTrackMax

float32_t confRateTrackMin

During the lifetime of an object, as the object is not being detected, it is becoming less certain that it is an actual
object of interest. To represent this situation, the confidence of the object is decreased each frame that the object is
not detected. The confidence update is as follows:

confRate = confRateTrackMin +

 (confRateTrackMax - confRateTrackMin) *

 (1.0 - sqrt(featureCount/maxFeatureCount))

conf = conf - confRate

Therefore, confRateTrack is expected to be a negative value.

float32_t confThreshDiscard

With this parameter, it is possible to eliminate objects that get too low in confidence during their lifetime. If the
confidence is lower than confThreshDiscard, the object is no longer tracked.

uint32_t maxNumObjects

This parameter defines the maximum number of objects the Object Tracker module should track. This allows the
module to pre-allocate resources at initialization time. If number of objects exceed this number, the object list is
truncated.

dwBool enablePriorityTracking

A single feature may belong to multiple bounding boxes. If enablePriorityTracking is set to DW_TRUE, however,
it is possible to assign a feature only once (i.e. to a single bounding box) and render it as used so that it is not
assigned to any other. The owner of the feature is the one with the lowest index in the object list given as input to
dwObjectTracker_boxTrackHost.

Therefore, it is user's responsibility to sort the object list such that the object with the highest priority has the
lowest index.

uint32_t numClasses

This parameter defines the number of classes of objects that are to be tracked by the Object Tracker module. The
objects belonging to different classes are tracked separately. This parameter allows the module to pre-allocate
resources at initialization time.

Tracking

In Object Tracker module, there are two possible ways to track the objects: either tracking based on features

Object Tracker

NVIDIA CONFIDENTIAL
79 | PR-08803-R29 DriveWorks Development Guide

that are detected and tracked within Object Tracker module or tracking based on features that are detected and
tracked outside this module.

If the features must be detected and tracked within Object Tracker module, then it is required to call the following
function on each frame before tracking bounding boxes:

dwStatus dwObjectTracker_featureTrackDeviceAsync(const dwImageCUDA *image,
 dwObjectTrackerHandle_t obj)

This function runs asynchronously on device.

The objects can then be tracked with the following function call:

dwStatus dwObjectTracker_boxTrackHost(dwObject *trackedDetections,
 size_t *numTrackedDetections,
 const dwObject *previousDetections,
 size_t numPreviousDetections,
 uint32_t classIdx,
 dwObjectTrackerHandle_t obj);

This function is provided with the objects from previous frame to get the tracked positions of the objects in the
current frame using the features tracked inside Object Tracking module.

If it is desired that the objects must be tracked based on external features, the following function can be utilized:

dwStatus dwObjectTracker_boxTrackHostExternalFeatures(dwObject *trackedDetections,
 size_t *numTrackedDetections,
 const dwObject *previousDetections,
 size_t numPreviousDetections,
 const dwFeatureListPointers *previousFeatures,
 const dwFeatureListPointers *currentFeatures,
 uint32_t classIdx,
 dwObjectTrackerHandle_t obj);

This function not only expects the list of objects from previous frame, but also list of features from previous frame
and current frame.

It is also required to provide classIdx so that the corresponding tracker parameters are used for the given set of
objects.

Merging

The objects list being tracked from the previous frame and the objects that are detected in the current frame need
to be merged so that the final list of objects for the current frame can be obtained. The merging takes place in such
a way that if a new detection refers to an object that has been tracked from the previous frame, this new detection
is merged into that object, and the object is then assumed to be “detected again”. If a new detection refers to a
completely new object, it is simply added to the list iff the maximum number of objects is not exceeded.

The merging is achieved by the following function call:

dwStatus dwObject_merge(dwObject *mergedObjects,
 size_t *numMergedObjects, size_t maxNumMergedObjects,
 const dwObject * const* objectLists,
 const size_t *numObjectsPerList,
 size_t numLists,
 float32_t thresholdIOU,

DriveNet

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 80

 float32_t maxMatchDistance,
 dwContextHandle_t ctx)

This function expects a list of object lists which will be merged into a single list mergedObjects.

In this scenario, one of the object lists will be the list of objects that has been tracked from the previous frame and
the other will be the list of objects that has just been detected. The decision whether a new detection refers to the
same object as one of the tracked objects is made based on the following two parameters:

float32_t thresholdIOU

If the intersection over union (IOU) value of two bounding boxes (e.g. tracked box and detected box) is higher
than this threshold, these two bounding boxes are assumed to refer to the same object.

float32_t maxMatchDistance

Maximum match distance around the closest tracked box to search for a candidate matching box. Distance here
is defined as 1 – IOU. Within this margin, the box with the longest track history is preferred and will be selected
as the candidate matching box. The candidate still must pass the thresholdIOU criteria to be considered a positive
match for the new box.

DriveNet

The DriveNet module is a DNN module that automatically loads NVIDIA proprietary deep neural network for
object detection, which is provided to Object Detector module. For more information on how to provide DriveNet
handle to Object Detector module, see Object Detector in this guide.

Initialization

DriveNet module not only creates a DriveNet handle, but also creates a list of Object Clustering handles that
are properly configured for this specific deep neural network. These handles must be used for clustering the
detections to get the best results.

Note that these handles are owned by the application and must be released by the application when they are not
needed anymore.

The following parameters are required to be defined at initialization:

uint32_t maxProposalsPerClass

Maximum number of proposals (i.e. detections before clustering) per class. This value can only be set at
initialization.

uint32_t maxClustersPerClass

Maximum number of clusters per class. This value can only be set at initialization.

dwDriveNetNetworkPrecision networkPrecision

This parameter determines at which precision DriveNet must be loaded. This parameter can affect the speed of
the network greatly.

DriveNet module can be initialized with the following function:

dwStatus dwDriveNet_initialize(

Lane Detection

NVIDIA CONFIDENTIAL
81 | PR-08803-R29 DriveWorks Development Guide

dwDriveNetHandle_t *drivenetHandle,
 dwObjectClusteringHandle_t **objectClusteringHandles,
 const dwDriveNetClass **objectClasses,
 uint32_t *numObjectClasses,
 dwContextHandle_t ctx,
 const dwDriveNetParams *drivenetParams)

DriveNet provides at initialization as outputs an Object Clustering handle per object class, number of object
classes that DriveNet can detect and the list of object classes that DriveNet can detect. The object classes are
returned as dwDriveNetClass. Upon desire, the classes can be obtained as string via dwDriveNet_getClassLabel.

DriveNet comes with meta data which contains preprocessing configuration for the network. ObjectDetector
module automatically reads this meta data information and configures DataConditioner accordingly. However,
tone mapping type required by DriveNet module can be obtained from this meta data to set up SoftISP
accordingly to get the best results.

Lane Detection

The lane detection module streams a H.264 video and detects lane markings on the road. The pipeline of this
module includes loading NVIDIA proprietary lane detection network called LaneNet, running inference using
the loaded network, post-processing the network output to get an array of lane marking objects, and finally
rendering the detected lane markings on the input frame.

The detected lane markings are visualized by polylines in different colors, which annotate their position relative
to the lane vehicle is driving in (ego-lane). Specifically, the defined position types include ego-lane left, ego-lane
right, left adjacent lane, and right adjacent lane. Note that, in current release, LaneNet is not trained to distinguish
different lane marking appearance types.

The module uses 60° Field of View (FOV) Sekonix Camera Module (SS3323) with an AR0231 RCCB sensor to
record videos. To use as an input to the sample, the recording is converted into a H.264 video in RCB color space.
Results have shown LaneNet also performs well on H.264 RGB videos.

Note: Lane detection sample directly resizes video frames to the network
input resolution. To get the best performance, it is suggested to use
videos with similar aspect ratio to the demo video (960×604). For
other details, please refer to the camera sensor section.

Initialization

A LaneNet based lane detection module is initialized with the following function call:

dwStatus dwLaneDetector_initializeLaneNet(dwLaneDetectorHandle_t

*obj,
 uint32_t frameWidth,
 uint32_t frameHeight,
 dwContextHandle_t ctx);

The initialization of lane detection module requires the designation of camera frame width and height.

Process

After successfully initialized a lane detection module, a camera frame is processed in 2 sequential steps: inference
and post-processing. The inference step pre-processes a camera frame per LaneNet input specs and runs per

Lane Detection

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 82

frame inference to compute the likelihood map of lane markings. This is performed asynchronously on GPU by
calling the dwLaneDetector_processDeviceAsync function.

To extract lane markings from the network output, call dwLaneDetector_interpretHost after
dwLaneDetector_processDeviceAsync. This function is run on CPU and post-processes input likelihood
map into individual lane markings defined by dwLaneMarking as sets of sorted image points. More specifically,
dwLaneDetector_interpretHost binarizes a likelihood map into clusters of lane markings, employs
several image processing steps to sample points from lane clusters, and assigns them with lane position types.
dwLaneDetector_getLaneDetections gets the per frame lane detection results in dwLaneDetection.

You can set LaneNet detection threshold by dwLaneDetectorLaneNet_setDetectionThreshold. Any
likelihood value above the threshold is considered a lane marking pixel. By default, the value is 0.3, which
provides the best accuracy based on NVidia's test data set. Reduce the threshold value if lane polylines flicker or
cover shorter distances but may subject to more false detections.

Currently, the lane detection module is optimized for 60° and 120° horizontal FOV cameras. By default, LaneNet
FOV is 60-degrees. You can set other FOV values with dwLaneDetectorLaneNet_setHorizontalFOV.

Recording Tool Library

NVIDIA CONFIDENTIAL
83 | PR-08803-R29 DriveWorks Development Guide

Tools
This section covers the tools provided with the DriveWorks release It is not a manual for each tool but some
introductions to what the tool does, etc.

Recording Tools
DriveWorks provides a command-line and GUI recording tool that save data to disk files. Both tools use an
underlying recording tool library. For practical help on recording data, see Data Acquisition in this guide.

Recording Tool Library
The recording library is capable to handling most supported DriveWorks sensors, excluding virtual sensors. For
identifying the list of supported sensors, see the Sensor Querying section of this Development Guide.

The DriveWorks recording tool library is configurable with a JSON file.

A sample JSON configuration file is given below, and explanations of some key fields is annotated inline.

The JSON file is wrien this way.

{

 "version": "0.8",

This is the version number of the config file. If this version number differs from the in-code version number, the
recorder will throw an exception.

 "path": ".",

This is where the recording tool stores captured data. Each time a new capture session is invoked, a new folder is
created at this path, with the time and location (if available) in the folder name.

"file-buffer-size": 2097152,

This is the size of the write buffer used in conjunction with the fwrite() API. The buffer size dictates how much
data is accumulated before being flushed to disk. It can be useful in tuning CPU usage during recording.

 "camera": {

 "separate-thread": true,

 "record-thread-priority": 0,

 "write-file-pattern": "video_*",

 "sensors": [

 {

 "protocol": "camera.gmsl",

 "params": "camera-type=ar0231-rccb,csi-port=ab,camera-count=4",

 "channel-names": [

Recording Tool Library

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 84

 "first",

 "second",

 "third",

 "fourth"

]

 }

]

 },

Each sensor group is set up identically. The following are important parameters common to every sensor type:

1. sensors - Multiple sensors are added by creating a new object in the sensors array section of each. Each sensor
is described by the DriveWorks protocol and parameters string. For more information, see Sensor Querying
in this guide.

2. separate-thread - Dictates whether a new thread will spawn for this sensor group. If false, this sensor group
will share a capture thread with other sensor groups.

3. record-thread-priority - Specifies the priority of the recording thread. The range of this value is [0, 20] and
directly corresponds to Linux nice values for thread scheduling.

4. write-file-paern - Indicates the prefix for the recorded files in this group. This string must end with an
asterisk, which is replaced by the channel number or channel-name of the sensor being recorded.

5. channel-names - Specifies the name to be given for this sensor. For sensors that control multiple sources (such
as camera), channel-names array can be specified. This will replace the * in the write-file-paern when the
file is saved to disk. If no channel-name is specified, the *in write-file-paern is replaced with the channel
number.

Apart from the common parameters above, camera sensors have additional specific parameters specified within
the DriveWorks parameter string:

1. output-format - specifies the output format of the recorded video file. Can be one of the following:

a. raw - RAW format

b. lraw - Lossless RAW format

c. h264 - H.264 encoded format

d. raw+h264 - RAW + H.264 encoded format

e. lraw+h264 - Lossless RAW + H.264 encoded format

2. frame-skip-count - allows one to record camera frames at a lower rate than default. For example, a value of
frame-skip-count=1 would record at 15fps if the camera hardware runs at 30fps.

3. required-framerate - for certain kinds of camera, e.g. ar0231-rccb, the camera framerate can be controlled by
required-framerate option. Valid values for now are 20, 30 and 36.

4. async-record - enables the camera to record asynchronously, on a separate thread than the camera was read
from.

 "can" : {

 "separate-thread": false,

 "write-file-pattern": "can_*.bin",

Recording Tool Library

NVIDIA CONFIDENTIAL
85 | PR-08803-R29 DriveWorks Development Guide

 "sensors" : [

 {

 "protocol": "can.socket",

 "params": "",

 "channel-name": "0"

 }

]

 },

"gps" : {

 "separate-thread": false,

 "write-file-pattern": "gps_*.txt",

 "sensors" : [

 {

 "protocol": "gps.uart",

 "params": "device=/dev/ttyACM0",

 "channel-name": "0"

 }

]

 },

"imu" : {

 "separate-thread": false,

 "write-file-pattern": "imu_*.bin",

 "sensors" : [

 {

 "protocol": "imu.xsens",

 "params": "device=X,frequency=100",

 "channel-name": "0"

 }

]

},

 "lidar" : {

 "separate-thread": false,

 "write-file-pattern": "lidar_*.bin",

 "sensors" : [

Command-Line Options

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 86

 {

 "protocol": "lidar.virtual",

 "params": "file=./lidar_sample.bin",

 "channel-name": "0"

 }

]

 }

"radar" : {

 "write-file-pattern": "radar_*",

 "sensors" : [

 {

 "protocol": "radar.virtual",

 "params": "file=./radar_sample.bin",

 "channel-name": "0"

 }

]

 }

The sensors above are described by the common parameters described earlier.

Command Line Recording Tool

Running the Tool

For guidance on preparing to run and running the GUI-based recording tool, see Data Acquisition in this guide.

Command-Line Options

The DriveWorks command line recording tool is configurable with a JSON file. Additionally, it can be started
offscreen for command-line only use with the

./recorder --offscreen=1

option.

By default, the JSON file that is read into the tool is recorder-config.json. This file is generated when the
tool is run. A different file can be specified with the

./recorder --config-file=<config-file-path>

command-line option.

DriveWorks Cannot Create Sensors

NVIDIA CONFIDENTIAL
87 | PR-08803-R29 DriveWorks Development Guide

For information about the JSON config file description, see Recording Tool Library in this guide.

Note: This tool creates output files that, per default, are put into the current working directory. Hence, write
permissions to the current working directory are necessary. For convenience, NVIDIA suggests adding the tools
folder to the binary search path of the system and to execute from your home directory.

GUI-Based Recording Tool
The GUI recording tool provides an interface that provides visual information about what is being recorded.

For information on using the interface and configuring distributed recording, see “DriveWorks Tools” in
DriveWorks SDK Reference.

For guidance on preparing to run and running the GUI-based recording tool, see Data Acquisition in this guide.

Replayer Tool
The replayer tool provides the following:

• Replays the sensor data captured by Recording Tool, with the same JSON file for sensor configuration

• Displays the data for the first channel in each sensor type

• Simple UI for quick sanity check on recorded data

For more information on this tool, see “DriveWorks Tools” in DriveWorks SDK Reference.

Troubleshooting

DriveWorks Cannot Create Sensors

Issue

Replayer errors such as the following may be the result of problems with the JSON file.

Driveworks exception thrown: DW_FAILURE: LidarVirtual: unable to open Lidar file

Cannot create lidar sensor: DW_FAILURE

Driveworks exception thrown: DW_SAL_CANNOT_CREATE_SENSOR: CANVirtual: cannot open file

Cannot create CAN sensor: DW_SAL_CANNOT_CREATE_SENSOR

To troubleshoot

• Ensure the JSON file is valid for the recorder.

• Ensure that, for each sensor, the JSON file contains at least one channel_names definition.

"channel-names": [

 "[<channelName>]"

]

TensorRT Optimization Tool

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 88

Where <channelName> is a value such as camera0. A comma (,) must separate "channel-names" from the
previous definition.

Replayer uses the "channel-names" definition to form a valid filename.

• If you also supply replayer with the --show-camera option, ensure that your JSON file "channel-names"
definition includes the specified camera channel.

Determine if one of the sensors is broken. You can do this by feeding each offline file to the corresponding
DriveWork sensor sample. If one of the files fails, you know there is a problem with the sensor.

TensorRT Optimization Tool
This tool enables optimization of a given Caffe model using TensorRT.

Run this tool by executing:

s./tensorRT_optimization

Required Arguments

The following arguments are required:

• --prototxt: Absolute path to a Caffe deploy file.

• --caffemodel: Absolute path to a Caffe model file that contain weights.

• --outputBlobs: Names of output blobs combined with a comma.

Optional Arguments

• --iterations: Number of iterations to run to measure speed

• --batchSize: Batchsize of the model to be generated

• --half2: The network runs in paired fp16 mode. NOTE: Requires platform to support native fp16.

• --inputBlobs: Names of input blobs combined with a comma

• --out: Name of the optimized model file

• --int8: Run in INT8 mode

• --calib: INT8 calibration file name

Note: This tool creates output files that, by default, are put into the current
working directory. Hence, write permissions to the current working
directory are necessary. For convenience, NVIDIA suggests that you:

• Include the tools folder in the binary search path of the system.

• Execute from your home directory.

For more information about INT8 calibration, see NVIDIA TensorRT documentation at

hps://developer.nvidia.com/tensorrt

https://developer.nvidia.com/tensorrt

Supported Interfaces

NVIDIA CONFIDENTIAL
89 | PR-08803-R29 DriveWorks Development Guide

Data Acquisition
The NVIDIA DRIVETM PX 2 device supports data acquisitions from multiple sensors and other NVIDIA DRIVE
PX 2 devices with other sensors. The data is then stored on a USB Drive or to another data storage device
connected through Ethernet. The data from each sensor is synchronized with data from other sensors by adding a
time stamp to the data.

The DriveWorks SDK contains sample applications to capture, synchronize, and play back the data captured from
the sensors. You can use these sample applications to test the data logging capabilities and then use the included
source code to create your own custom application.

Overview
The device acquires data from the connected sensors, processes the data, and then stores the data in a connected
storage device.

The following shows the data acquisition capabilities:

Each sensor acquires and transfers the data to one of the NVIDIA® Tegra® processors on the device. Depending
on sensor type, the data may first go through a post-processing step (ex. encoding for camera) prior to disk
serialization. It is important to ensure the storage device's bandwidth and capacity are sufficient for the sensor set.

Supported Sensors

For a list of the supported sensors, see Supported Sensors in this guide.

Supported Interfaces

The device supports the following interfaces:

Acquiring Data

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 90

Sensor Interfaces

• BroadR-Reach

• Controller Area Network (CAN)

• FlexRay

• General Purpose Input/Output (GPIO)

• Gigabit Ethernet (GbE)

• Gigabit Multimedia Serial Link (GMSL) Camera

• Local Interconnect Network (LIN)

Display and Cockpit Computer Interfaces

• FPDLink III

• GMSL

• HDMI

Development and Debug Interfaces

• 10 Gb and 1 Gb Ethernet

• HDMI

• Universal Serial Bus (USB 2 and USB 3)

For more information about flashing your device, see NVIDIA DRIVE 5.0 Linux PDK Development Guide.

Acquiring Data
The following are the steps to log data in the device.

Step 2: Configure the Device to Acquire Data

NVIDIA CONFIDENTIAL
91 | PR-08803-R29 DriveWorks Development Guide

• Step 1: Verify the Sensors Are Collecting Data

• Step 2: Configure the Device to Acquire Data

• Step 3: Start the Application and Acquire the Data

Prerequisites

Before you can use the DriveWorks sample recorder or DriveWorks sample sensor applications, you must install
DriveWorks on the NVIDIA DRIVE PX 2 platform. For more information, see Geing Started in this guide.

Step 1: Verify the Sensors Are Collecting Data
In this step, you will connect the sensor to the device and then verify that the sensor is collecting data.

Warning: Turn off the device before connecting or disconnecting a sensor.

You can determine whether the sensor is correctly connected and collecting data by starting the appropriate
sample application specified in the following table. The samples are on the target in:

/usr/local/driveworks/bin/

Sensor Sample Application

sample_camera_gmslCamera

sample_camera_multiple_gmsl

GPS sample_gps_logger

Lidar sample_lidar_replay

Radar sample_radar_replay

IMU sample_imu_logger

CAN sample_canbus_logger

For more information about these applications, see DriveWorks SDK Reference.

Step 2: Configure the Device to Acquire Data
After verifying that the sensors are collecting data, you can configure the device to collect and store the data. The
first time the recording tools run, they generate a JSON config file.

For recorder, the file is:

/driveworks/tools/recorder-config.json

For recorder-qt, the file is:

/driveworks/tools/recorder-qt-config.json

Recording from a Single Camera Sensor

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 92

Modify and save the configuration file with the configuration seings for the sensors connected to the device. For
more information, see Examples in this chapter.

Step 3: Start the Recording Application and Acquire the Data
After you modify the configuration file to collect and store the data, you can begin logging the data from the
sensors. You can use the command-line or GUI tool:

• tools/recorder

• tools/recorder-qt

Both tools collect the data from the sensors, synchronizes the data by adding time stamps, and saves the data to
the storage device.

Recording SocketCAN Data

If you are recording data from SocketCAN, you must start the recorder or recorder-qt tools with root
privileges. For example:

sudo tools/recorder-qt

The recorder tools use an IOCTL command to enable HW timestamping for the TegraCAN interface. Without the
sudo preface, the recorder tools raise an error.

Examples
This section shows how to log data from the connected sensors. The applications can check that the sensors can
collect data and saves the data to the Tegra System on Chip (SOC).

Prerequisites
To complete the procedures in this chapter, you must have the following:

• NVIDIA DRIVE PX 2 device flashed with an operating system.

• DriveWorks SDK installed on the device.

• Supported sensors.

Camera Sensor Data Acquisition
This section explains how to use the DriveWorks recorder to acquire data from one or more camera sensors.

Recording from a Single Camera Sensor

This procedure shows how to record data from a single (AR0231) camera sensor.

Recording from a Single Camera Sensor

NVIDIA CONFIDENTIAL
93 | PR-08803-R29 DriveWorks Development Guide

Diagram: One camera connects to ab

To record data from a single camera sensor

1. With the device powered off, connect the camera sensor to port A0 of a camera group.

Warning: Turn off the device before connecting or disconnecting a sensor.

2. Turn on the device and open a terminal window.

3. On the target, navigate to:

/usr/local/driveworks/bin/

4. Run the following command to verify that your camera sensor is correctly connected to the device:

If the camera type is c-ov10649-b1 and the CSI port is the default ab, execute:

./sample_camera_gmsl

Otherwise, execute:

./sample_camera_gmsl --camera-type=<camera_type>

Where <camera_type> is the camera sensor.

For example, if your camera sensor is AR0231-RCCB, run the following command:

./sample_camera_gmsl --camera-type=ar0231-rccb

Recording from a Single Camera Sensor

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 94

A window appears with video if the camera sensor is correctly connected to the device and the drivers are
running.

Close the window to stop the camera sensor application.

5. Go to the following location in the DriveWorks folder:

/driveworks/tools/

6. Run the following command to create the configuration file:

sudo ./recorder

A window appears with the following:

Press spacebar to begin recording.

Close the window to generate the configuration file. The following is the configuration file:

/driveworks/tools/recorder-config.json

7. Change the following section in the configuration file to log the data from the camera sensor.

"camera": {
"write-file-pattern":"video_*.h264",
"sensors":[
 {
"protocol": camera.gmsl
"params": "camera-type=ar0231-rccb,
 csi-port=ab,
 camera-count=1,
 async-record=1,
 fifo-size=12",
 "channel-names": [
 "first"
]
 }
]
}

The async-record and fifo-size parameter entries are optional.

8. Save the modified configuration file.

9. Run the following command to log the data from the camera sensor:

sudo ./recorder

A window appears with the following:

Press spacebar to begin recording.

Press the spacebar to start acquiring data from the camera sensor. The following message appears when you
start acquiring data.

Recording from Three Camera Sensors

NVIDIA CONFIDENTIAL
95 | PR-08803-R29 DriveWorks Development Guide

Press spacebar to stop recording.

Press the spacebar to stop acquiring data.

Warning: Stop acquiring data and then close the window. If you close the
window before you stop acquiring data, you will corrupt the
acquired data.

The sensor data is in the same folder as the recorder sample application.

Recording from Three Camera Sensors

This procedure demonstrates how to record data from four AR0231 camera sensors. The cameras connected to the
following ports:

Camera Group Port Name Camera Type Ports

A ab AR0231-RCCB Port 0
Port 1

B cd AR0231-RCCB Port 0

Diagram: Two cameras connect to ab and one to cd

Warning: Turn off the device before connecting or disconnecting a sensor.

Recording from Three Camera Sensors

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 96

To acquire data from three camera sensors

1. Turn on the device and open a terminal window.

2. On the target, navigate to:

/usr/local/driveworks/bin/

3. Run sample_camera_multiple_gmsl to verify that your camera sensor is correctly connected to the
device. The following command is for cameras connected at 0 and 1 on port-ab and 0 on port-cd:

./sample_camera_multiple_gmsl --type-ab=ar0231-rccb --type-cd=ar0231-rccb \

--selector-mask=00110001

Warning: Cameras must be connected to the port in ascending order (0, 1, 2,
3).

A window appears with video if the camera sensor is correctly connected to the device.

Close the window to stop the camera sensor application.

4. On the target, locate and edit:

/driveworks/tools/recorder-config.json

Modifications to this file require super-user privileges. Also, the JSON file is created when you first run the
DriveWorks sample recorder application.

5. Change the following section in the configuration file to log the data from the camera sensor.

"camera": {
 "separate-thread": true,
 "write-file-pattern": "video_*",
 "sensors": [
 {
 "protocol": "camera.gmsl",
 "params": "camera-type=ar0231-rccb,csi-port=ab,
 camera-count=2,
 camera-mask=0011,async-record=1,
 fifo-size=12",
 "channel-names": [
 "first",
 "second"
]
 },
 {
 "protocol": "camera.gmsl",
 "params": "camera-type=ar0231-rccb,
 csi-port=cd,
 camera-count=1,
 camera-mask=0001",
 "channel-names": [
 "third"
]
 }

Recording from Six Cameras

NVIDIA CONFIDENTIAL
97 | PR-08803-R29 DriveWorks Development Guide

]
}

Save the modified configuration file.

6. Run the following command to log the data from the camera sensor:

sudo ./recorder

A window appears with the following:

Press spacebar to begin recording.

Press the spacebar to start acquiring data from the camera sensor. The following message appears when you
start acquiring data.

Press spacebar to stop recording.

Press the spacebar to stop acquiring data.

Warning: Stop acquiring data and then close the window. If you close the
window before you stop acquiring data, you will corrupt the
acquired data.

The sensor data is in the same folder as the recorder sample application.

Recording from Six Cameras

This procedure demonstrates how to record data from six AR0231 camera sensors. The cameras connected to the
following ports:

Camera Group Port Name Camera Type Ports

A ab AR0231-RCCB Port 0
Port 1
Port 2
Port 3

B cd AR0231-RCCB Port 0
Port 2

To acquire data from six camera sensors

1. Follow steps 1-4 in Recording from Three Camera Sensors.

2. Change the following section in the configuration file to log the data from the camera sensor.

"camera": {
 "separate-thread": true,
 "write-file-pattern": "video_*",
 "sensors": [
 {

Recording at a Framerate Other Than 30 FPS

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 98

 "protocol": "camera.gmsl",
 "params": "camera-type=ar0231-rccb,
 csi-port=ab,
 camera-count=4,
 output-format=raw,
 async-record=1,
 fifo-size=12",
 "channel-names": [
 "first",
 "second",
 "third",
 "fourth"
]
 },
 {
 "protocol": "camera.gmsl",
 "params": "camera-type=ar0231-rccb,
 csi-port=cd,
 camera-count=2,
 output-format=raw,
 async-record=1,
 fifo-size=12",
 "channel-names": [
 "fifth",
 "sixth"
]
 }
]
}

3. Follow step 6 in Recording from Three Camera Sensors.

Recording at a Framerate Other Than 30 FPS

For certain kinds of camera, e.g., ar0231-rccb, the camera framerate can be controlled by the required-framerate
option.

To record camera frames at a rate other than the default 30 FPS, specify values for frame-record-count and
frame-skip-count in the parameters, as shown in the following table.

For example, a value of frame-skip-count=1 records at 15 FPS if the camera hardware runs at 30 FPS. Seing
record-frame-count=2 with frame-skip-count=1 records two (2) frames and skips 1, and then repeats.

Framerate JSON Parameter

15 FPS frame-record-count=1 frame-skip-count=1

10 FPS frame-record-count=1 frame-skip-count=1 required-framerate=
20

Applies to: ar0231-
rccb only
20 FPS on

required-framerate= 20

30 FPS No change needed. This is the default rate.

GPS Data Acquisition

NVIDIA CONFIDENTIAL
99 | PR-08803-R29 DriveWorks Development Guide

36 FPS required-framerate=36

For example, the following JSON configuration specifies a framerate of 36 FPS.

"camera": {
 "separate-thread": true,
 "write-file-pattern": "video_*",
 "sensors": [
 {
 "protocol": "camera.gmsl",
 "params": "camera-type=ar0231-rccb-ssc,
 csi-port=ab,
 camera-count=2,
 output-format=raw,required-framerate=36",
 "channel-names": [
 "first",
 "second"
]
 }
]
}

Where the values for params are concatenated into a single line:

GPS Data Acquisition
This section shows how to acquire data from a GPS sensor.

GPS Data Acquisition

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 100

To determine GPS settings for the JSON file

1. With the device powered off, connect the GPS sensor to the device per vendor documentation. For example,
Garmin connection instructions are on page 8 at:

http://static.garmin.com/pumac/GPS_18x_Tech_Specs.pdf

2. Determine on which serial port the device is enumerated:

dmesg | grep ttyUSB

3. Determine the baud rate at which the GPS device transmits data. This information can be obtained from
vendor documentation. For example, Garmin LVC GPS 18x uses 4800 baud.

4. Set the baud rate to the serial port. For example:

stty -F /dev/ttyUSB0 4800

5. Verify that GPS data is being received:

cat /dev/ttyUSB0 4800

6. Update the GPS seings in the JSON file with the serial port and baud rate.

To acquire data from a GPS sensor

1. With the device powered off, connect the GPS sensor to the device.

Warning: Turn off the device before connecting or disconnecting a sensor.

2. Turn on the device and open a terminal window.

3. On the target, locate and edit:

/driveworks/bin/

4. Run the following command to verify that your GPS sensor is correctly connected to the device:

./sample_gps_logger --driver=gps.uart --params=device=/dev/ttyUSB0,baud=4800

A window appears that displays the data acquired if the GPS sensor is correctly connected to the device and
the drivers are running.

Close the window to stop the camera sensor application.

5. Go to the following location in the DriveWorks folder:

/driveworks/tools/

6. Run the following command to create the configuration file:

sudo ./recorder

A window appears with the following:

Press spacebar to begin recording.

http://static.garmin.com/pumac/GPS_18x_Tech_Specs.pdf

Lidar Data Acquisition

NVIDIA CONFIDENTIAL
101 | PR-08803-R29 DriveWorks Development Guide

Close the window to generate the configuration file. The following is the configuration file:

/driveworks/tools/recorder-config.json

Modifications to this file require super-user privileges. Also, the JSON file is created when you first run the
DriveWorks sample recorder application.

7. Change the following section in the configuration file to log the data from the camera sensor. For following
example is for the Xsens GPS.

"gps" : {
 "write-file-pattern": "xsens_imu*",
 "sensors" : [
 {
 "protocol": "gps.uart",
 "params": "device=/dev/ttyUSB0,baud=115200",
 "channel-name": "0"
 }
]
},

Save the modified configuration file.

8. Run the following command to log the data from the camera sensor:

sudo ./recorder

A window appears with the following:

Press spacebar to begin recording.

Press the spacebar to start acquiring data from the camera sensor. The following message appears when you
start acquiring data.

Press spacebar to stop recording.

Press the spacebar to stop acquiring data.

Warning: Stop acquiring data and then close the window. If you close the
window before you stop acquiring data, you will corrupt the
acquired data.

The sensor data is in the same folder as the recorder sample application.

Lidar Data Acquisition
This section shows how to acquire data from a Lidar sensor.

Determining the Lidar IP Address and Port

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 102

Determining the Lidar IP Address and Port

To determine the IP address and port for a Quanergy LIDAR

1. Connect the Lidar Ethernet port to eth0 port of Tegra A.

2. Connect the Quanergy to a router switch and connect this router to Tegra A eth0. The IP of router will be in
range 192.168.x.x.

3. Find the IP address by running:

nmap -sn 192.168.1.0/25

If Quanergy is detected, you will see an IP address associated with Quanergy system.

4. To obtain the port number, consult the Quanergy technical specification.

The following is an example of recorder-config.json with a Quanergy LIDAR.

"lidar" : {
 "separate-thread": false,
 "write-file-pattern": "lidar_*",
 "sensors" : [
 {
 "protocol": "lidar.socket",
 "params": "device=QUAN_M81A,
 ip=192.168.1.8,
 port=4141,
 scan-frequency=10",
 "channel-name": "0"
 }
]

Acquiring Data from a Lidar Sensor

NVIDIA CONFIDENTIAL
103 | PR-08803-R29 DriveWorks Development Guide

}

To determine the IP address for a Velodyne LIDAR

1. Connect the LIDAR to the eth0 port of Tegra A.

2. Obtain the default IP address and port number from the Velodyne technical specification.

3. Set up the IP of eth0 with:

ifconfig eth0 <lidar_address>

By default, the Lidar IP address is 192.168.1.201.

Ensure this IP does not conflict with the AURIX, Tegra A, or Tegra B IPs.

The following is an example of recorder-config.json with a Velodyne 32 LIDAR.

"lidar" : {
 "separate-thread": false,
 "write-file-pattern": "lidar_*",
 "sensors" : [
 {
 "protocol": "lidar.socket",
 "params": "device=VELO_HDL32E,
 ip=192.168.1.201,
 port=2368,scan-frequency=10",
 "channel-name": "1"
 }
]
}

The value for params above is:

"device=VELO_HDL32E,ip=192.168.1.201,port=2368,scan-frequency=10"

For Velodyne 16, the device name is VELO_VLP16.

For Velodyne 64, the device is VELO_HDL64E.

Acquiring Data from a Lidar Sensor

After you obtain the Lidar IP address and port, you can obtain Lidar data.

To acquire data from a Lidar sensor

1. With the device powered off, connect the LIDAR sensor to the device.

Warning: Turn off the device before connecting or disconnecting a sensor.

2. Turn on the device and open a terminal window.

3. On the target, locate and edit:

/driveworks/bin/

Acquiring Data from a Lidar Sensor

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 104

4. Run the following command to verify that your LIDAR sensor is correctly connected to the device. For
example:

./sample_lidar_replay --device=VELO_HDL32E --ip=192.168.1.201 --port=2368 \
 --scan-frequency=10

A window appears that displays a point cloud if the LIDAR sensor is correctly connected to the device and
the drivers are running.

Close the window to stop the camera sensor application.

5. Go to the following location in the DriveWorks folder:

/driveworks/tools/

6. Run the following command to create the configuration file:

sudo ./recorder

A window appears with the following:

Press spacebar to begin recording.

Close the window to generate the configuration file. The following is the configuration file:

/driveworks/tools/recorder-config.json

Modifications to this file require super-user privileges. Also, the JSON file is created when you first run the
DriveWorks sample recorder application.

7. Change the following section in the configuration file to log the data from the camera sensor.

"lidar" : {
 "write-file-pattern": "lidar_*",
 "sensors" : [
 {
 "protocol": "lidar.socket",
 "params": "ip=<ip_address>,port=<port>,device=<device_name>,frequency=10",
 "channel-name": "0_front"
 }
]
}

Where:

• <ip_address>—is the IP address of the LIDAR sensor.

• <port>—is the port for the Lidar sensor.

Save the modified configuration file.

8. Run the following command to log the data from the camera sensor:

sudo ./recorder

Multiple Sensor Data Acquisition

NVIDIA CONFIDENTIAL
105 | PR-08803-R29 DriveWorks Development Guide

A window appears with the following:

Press spacebar to begin recording.

Press the spacebar to start acquiring data from the LIDAR sensor. The following message appears when you
start acquiring data.

Press spacebar to stop recording.

Press the spacebar to stop acquiring data.

Warning: Stop acquiring data and then close the window. If you close the
window before you stop acquiring data, you will corrupt the
acquired data.

The sensor data is in the same folder as the recorder sample application.

Multiple Sensor Data Acquisition
This section shows you how to acquire data from multiple sensors connected to the device. This section assumes
that you know how to verify that each sensor is working and that you have a configuration file.

Diagram: Two cameras connect to ab and one to cd, one GPS to USB, and the LIDAR to
Ethernet

Multiple Sensor Data Acquisition

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 106

To acquire data from multiple cameras, an HDL-32 LIDAR, and a GPS Sensors

This procedure shows you how to log the data from the following sensors:

• Three AR0321 camera sensors

• One HDL-32 LIDAR sensor

• One GPS Sensor

The cameras are connected to the following ports:

Camera Group Port Name Camera Type Ports

A ab AR0231-RCCB Port 0
Port 1

B cd AR0231-RCCB Port 0

Warning: Turn off the device before connecting or disconnecting a sensor.

1. Change the following sections in the configuration file to log the data from the sensors:

"camera": {
 "separate-thread": true,
 "write-file-pattern": "video_*",
 "sensors": [
 {
 "protocol": "camera.gmsl",
 "params": "camera-type=ar0231-rccb,csi-port=ab,camera-count=2,camera-mask=0011",
 "channel-names": [
 "first",
 "second"
]
 },
 {
 "protocol": "camera.gmsl",
 "params": "camera-type=ar0231-rccb,csi-port=cd,camera-count=1,camera-mask=0001",
 "channel-names": [
 "third"
]
 }
]
},
"gps" : {
 "write-file-pattern": "xsens_imu*",
 "sensors" : [
 {
 "protocol": "gps.uart",
 "params": "device=/dev/ttyUSB0,baud=115200",

Sensor Data Quality

NVIDIA CONFIDENTIAL
107 | PR-08803-R29 DriveWorks Development Guide

 "channel-name": "0"
 }
]
},
"lidar" : {
 "write-file-pattern": "lidar_*",
 "sensors" : [
 {
 "protocol": "lidar.socket",
 "params": "ip=<ip_address>,port=<port>,device=<device_name>,frequency=10",
 "channel-name": "0_front"
 }
]
}

Where

<ip_address>—is the IP address of the LIDAR sensor.

<port>—is the port for the LIDAR sensor

Save the modified configuration file.

2. Run the following command to log the data from the camera sensor:

sudo ./recorder

A window appears with the following:

Press spacebar to begin recording.

Press the spacebar to start acquiring data from the camera sensor. The following message appears when you
start acquiring data.

Press spacebar to stop recording.

Press the spacebar to stop acquiring data.

Warning: Stop acquiring data and then close the window. If you close the
window before you stop acquiring data, you will corrupt the
acquired data.

The sensor data is in the same folder as the recorder sample application.

Sensor Data Quality

To sanity-check the Lidar and Camera data

1. Use the recorder tool to capture Lidar and camera data on someone walking past.

2. Use the replayer tool on the captured data to verify that:

Sensor Data Quality

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 108

• Data from the different sensors are roughly in sync and

• Lidar data makes sense (i.e. the shape of the person walking past).

To sanity-check the Lidar data

• For Lidar, compare the Lidar plot coming from the PDK with the reference plots obtained from the Windows
machine or any other Linux x86 machine, at the same location.

To sanity-check GPS data

• If you are testing in a Lab, ensure the GPS produces the same coordinates over time. It should be roughly the
same because it is not moving.

To determine if a sensor is broken

• Feed each offline file to the corresponding DriveWork sensor sample. If one of the files fails, you know there
is a problem with the sensor.

• Read the documentation provided by the sensor manufacturer.

Frequently Asked Questions

NVIDIA CONFIDENTIAL
109 | PR-08803-R29 DriveWorks Development Guide

Frequently Asked Questions
Where can I get answers to my DriveWorks questions?

On the DRIVE Platforms forum, you can search through discussions on questions posed by the community. If you
can also ask your own questions. You must create an account before you can access this information.

hps://devtalk.nvidia.com/default/board/182/drive-platforms/

How to achieve the maximum USB 3.0 write throughput for data acquisition?

NVIDIA testing easily achieved USB3.0-SSD write speeds between 300- to 400- megabytes /second, depending on
the brand of the USB 3.0 SSD. NVIDIA has tested extensively with Samsung 850/750 Evo SSD with ext4 format.

For guidance on optimizing data storage to your USB disk, see Data Acquisition in this guide.

What are the networking settings needed for the best results for Lidar capture ?

For guidance on optimizing data storage to your USB disk, see Data Acquisition in this guide.

https://devtalk.nvidia.com/default/board/182/drive-platforms/

Legal Information

NVIDIA CONFIDENTIAL
DriveWorks Development Guide PR-08803-R29| 110

Legal Information
Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND
SEPARATELY, ”MATERIALS”) ARE BEING PROVIDED ”AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE
WITH RESPECT TO THE MATERIALS, AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the
consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in
this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems without express written approval
of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, Jetson, NVIDIA DRIVE, Tegra, and TensorRT are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the respective companies with which
they are associated.

The Android robot is reproduced or modified from work created and shared by Google and is used according to terms described in the
Creative Commons 3.0 Attribution License.

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

ARM, AMBA, and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All
other brands or product names are the property of their respective holders. ”ARM” is used to represent ARM Holdings plc; its operating
company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM
Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

Copyright

© 2017 by NVIDIA Corporation. All rights reserved.

Open Source and Third-Party Software Licenses

NVIDIA CONFIDENTIAL
111 | PR-08803-R29 DriveWorks Development Guide

Open Source and Third-Party Software Licenses
This NVIDIA product contains third party software that is being made available to you under their respective
open source software licenses. Some of those licenses also require specific legal information to be included in the
product. This chapter provides such information.

	Table of Contents
	About This Guide
	Basic Hardware Requirements
	Getting Started
	Installing DriveWorks
	Installing DriveWorks on the DRIVE PX Platform
	Installing DriveWorks on the Linux Host

	Building the Samples

	DriveWorks Introduction
	Sensor Abstraction Layer
	Supported Sensors
	Sensor Abstraction Layer Basics
	Sensor Querying
	Sensor Life Cycle
	Sensor Data Consumption

	Sensor Data Timestamping
	Sensor Sharing
	Point Grey Sensors
	Sensor Timeout
	Integrating with Custom Sensors
	Radar and Lidar Decoder Plugins
	Other Sensors

	Integrating with a Custom Board

	Recording and Replaying Sensors
	Recording Sensors
	Replaying Sensors

	Image Pipeline
	Image Data Structures
	Image Streamers
	Format Converters

	DriveWorks Conventions
	Coordinate Systems
	Car Coordinate System
	Image and Camera Coordinate Systems
	Radar coordinate system
	LIDAR Coordinate System
	IMU Coordinate System
	GPS and HD Maps Coordinate Systems

	Modules
	Image Processing Modules
	Camera Color Correction
	Video Rectification
	Image Signal Processor (ISP)

	Maps Module
	Data Format
	Connections
	Attributes
	Map Initialization
	Local Data Update
	Serialization
	Map Query
	Result Buffers
	Query functions

	Map Tracker
	Lane Tree
	Lane Tree Helper Functions
	Local Space Lane Divider Line Segments
	Local Cartesian Coordinate System
	Filtering
	Local Space Feature Line Segments
	Compute Bounds
	Compute Bearing
	Compute Local To ENU
	Transform Polylines
	Transform Point

	Interpolation Between Polylines
	Neighbor Lanes
	Stitching of Lane Geometry
	Distance Calculations

	Vehicle Module
	Rig Module
	Rig Configuration
	Camera Rig

	Calibration
	Egomotion
	VehicleIO
	Sensor Fusion
	Occupancy Grid

	ICP Module
	Lidar Accumulator Module
	Initialization
	Lidar Sweep
	Lidar Image
	Lidar Sweep Angle Setting
	Lidar Scan Distance Setting

	Vision Processing Modules
	2D Tracker Module
	Pyramid
	Feature Tracker
	Feature Lists
	Putting It All Together

	2D Scaling Tracker Module
	Scaling Feature Tracker
	Scaling Feature Lists
	Putting It All Together

	Box Tracker Module
	Initialization
	Process

	Structure from Motion (SFM)
	Triangulation
	Pose Refinement
	Feature Prediction
	Putting It All Together

	Stereo Module
	Stereo Rectifier
	Disparity Computation

	Deep Neural Network Modules
	DNN Module
	Initialization

	Data Conditioner Module
	Initialization
	Data Preparation

	Object Modules
	Object Detector
	Object Clustering
	Object Tracker
	DriveNet
	Lane Detection

	Tools
	Recording Tools
	Recording Tool Library
	Command Line Recording Tool
	Running the Tool
	Command-Line Options

	GUI-Based Recording Tool

	Replayer Tool
	Troubleshooting
	DriveWorks Cannot Create Sensors

	TensorRT Optimization Tool

	Data Acquisition
	Overview
	Supported Sensors
	Supported Interfaces

	Acquiring Data
	Step 1: Verify the Sensors Are Collecting Data
	Step 2: Configure the Device to Acquire Data
	Step 3: Start the Recording Application and Acquire the Data

	Examples
	Prerequisites
	Camera Sensor Data Acquisition
	Recording from a Single Camera Sensor
	Recording from Three Camera Sensors
	Recording from Six Cameras
	Recording at a Framerate Other Than 30 FPS

	GPS Data Acquisition
	Lidar Data Acquisition
	Determining the Lidar IP Address and Port
	Acquiring Data from a Lidar Sensor

	Multiple Sensor Data Acquisition

	Sensor Data Quality

	Frequently Asked Questions
	Legal Information
	Open Source and Third-Party Software Licenses

