
NVIDIA Open Data Distribution
Service (Linux)

DA-09299-001 | February 28, 2019
NVIDIA CONFIDENTIAL | Prepared and provided under NDA

User Guide

Open Data Distribution Service DA_08204-001 | ii

TABLE OF CONTENTS

Using Open Data Distribution Service.. 3
Installing OpenDDS...
Installing OpenDDS... 4

Using Sample Applications.. 6
Running the complex_idl_example Test App.. 6
Complex IDL with Security... 7

Complex IDL with Static Discovery.. 9
Use Cases... 10
Single VM/Intra-SoC Use Cases... 10

Inter-VM and Inter-SoC Use Cases..10
Static Discovery in Inter-VM/Inter-SoC..11

Building Standalone Binaries.. 12
Data Types/IDL...12
Discovery Model... 14
Transport Model... 14
Transport Model... 14
Transport Selection Hierarchy.. 15
Programming Guidelines... 15

Writing a Publisher.. 16
Writing a Subscriber.. 17

Quality of Service for DDS Entities...17
OpenDDS QoS Policies.. 18

Recommended Policies for Use-cases..19
Recommended Policies for Use-cases... 19

Guidelines on integration with other Build Systems.. 20
Migrating to Other DDS Implementation.. 20

Specification Compatibility...20
Design Effort for Migration to Different DDS Implementation..20
Coding Effort..21
Interoperability Issues...21
Shim Layer.. 22
References...22

Third-Party Licenses.. 23
OpenDDS License..23

Legal Information... 25

NVIDIA CONFIDENTIAL
3 | DA_08204-001 Open Data Distribution Service

Using Open Data Distribution Service

Data Distribution Service (DDS) is networking middleware for data exchanges using the publish-subscribe
paern for real time distributed applications. DDS ensures interoperability (across different vendors), portability
of applications, and high performance.

DDS enables publisher and subscriber nodes to:

• Send and receive messages

• Send and receive events and commands based on topics
Additionally, DDS handles:

• Addressing

• Marshaling and unmarshaling data

• Internal flow control

• Discovery of services
Applications can specify the Quality of Service (QoS) for discovery and runtime behavior.

OpenDDS is an open source, C++ implementation of the OMG Data Distribution Service specification. OpenDDS
is built on the ACE abstraction layer. DDS for DRIVE OS includes:

• OpenDDS and the dependent libraries and sample applications.

• Sample applications leverage DDS-based communication methods.
Applications that use DDS for communication services must:

• Include minimal design for the publish-subscribe model of DDS.

• Define the exchange data types using IDL.

• Identify the QoS needs.

• Invoke DDS portable APIs that are independent of DDS implementations.
For the supported OpenDDS versions, see the Release Notes.

Within OpenDDS, the following terminology is used and defined as follows:

CellHeading CellHeading

Domain Represents a global data space. Each domain is uniquely
identified by an integer domain ID. Domains are independent
from each other. For two DDS applications to communicate with
each other, they must join the same domain.

Domain Participant A domain participant is the entrypoint for an application to

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 4

interact within a particular domain. The domain participant is
a factory for many of the objects involved in writing or reading
data.

Topic A topic is the most basic description of data to be published
or subscribed to. Each topic describes a data stream in your
system. A topic is identified by its name, which is a string that
must be unique in the whole domain.

Publisher The publisher is responsible for taking the published data and
disseminating it to all relevant subscribers in the domain.

Subscriber The subscriber receives the data from the published data and
disseminates it to all relevant subscribers in the domain.

Data Writer Data writer objects are responsible for sending type-specific
data to one or more data readers. A data writer is created with
a topic, which gives a name to the data stream and associates
the data writer with a data type.

Data Reader Data reader objects are responsible for receiving type-specific
data sent by a data writer. Data writers and readers are
associated with a topic.

QoS Policies The entities of a domain have their own set of Quality of Service
policies that determine the behavior of the transfer of data
and the compatibility between data writers and readers. The
entities include:

• Domain participant

• Topic

• Publisher

• Subscriber

• Data writer

• Data reader

Sample A sample is a single data update received over DDS.

Interface Definition
Language (IDL)

The Interface definition language is used to specify the
interface between the client and the server so that the Remote
Procedure Call (RPC) mechanism can create the code stubs
required to call functions across the network.

Installing OpenDDS
The OpenDDS source and binary files are included as part of the DRIVE OS release package.

Use either the SDK Manager or manually extract in sequence the SDK RUN files.

For the branch and build number, see the Release Notes.

Once the package is installed, the directory structure is as follows:

<top>

├── drive-oss-src

NVIDIA CONFIDENTIAL
5 | DA_08204-001 Open Data Distribution Service

│ └── dds

│ ├── install

│ ├── install_static

│ ├── opendds

│ ├── samples

├── drive-t186ref-linux

├── bin-target

├── include

├── lib-target

├── targetfs

│ └── samples

Once the package is installed, the directory structure is as follows:

<top>

├── drive-oss-src

│ └── dds

│ ├── install

│ ├── install_static

│ ├── opendds

│ ├── samples

│ ├── tao

│ ├── xercesc

├── drive-t186ref-linux

├── bin-target

│ └── dds

├── include

│ └── dds

├── lib-target

│ └── dds

├── targetfs

│ └── samples

Where:

• <PDK_TOP> is the directory where you installed DRIVE OS software package.

• drive-oss-src/dds contains the sources for DDS and TAO.

• drive-oss-src/dds/install_static contains the static libraries for DDS and TAO.

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 6

• sample code.drive-t186ref-linux/targetfs/home/nvidia/drive-t186ref-
linux/samples/dds contains the pre-built samples using dynamic libraries.

• drive-t186ref-linux/targetfs/usr/lib contains the libraries on the target system.
These libraries are flashed at /usr/lib.

Using Sample Applications
The complex IDL structures application transmits ten messages from the publisher to the subscriber. The data
object transferred is a sample object detection metadata used in computer vision/imaging.

The pre-compiled binaries are available at:

<PDK-TOP>/drive-t186ref-linux/home/nvidia/drive-t186ref-linux/samples/dds

Standalone binaries are not packaged by default. To compile and package standalone binaries, see Building
Standalone Binaries.

Running the complex_idl_example Test App
The steps below apply for cross process mode. Create two different sessions for starting the publisher and
subscriber so that you can see the subscriber receiving and printing data.

The default configuration file uses RTPS and TCP. For more information, see Discovery Model and Transport
Model.

To run the complex_idl_example application

1. Set the environment for both sessions:

export DDS_ROOT=/home/nvidia/drive-t186ref-linux/samples/dds

export PATH=$DDS_ROOT:$PATH

2. Start the publisher and subscriber in different sessions:

• Publisher session:

compidl_publisher -DCPSConfigFile generic_config.ini

• Subscriber session:

compidl_subscriber -DCPSConfigFile generic_config.ini

The expected output contains:

• Four lines with vertices of rectangles

• Two transformation matrices are printed 10 times with different values in the subscriber session
Sample output is as follows:

Object Detection:

EnableBoundingBoxClipping = 1

NVIDIA CONFIDENTIAL
7 | DA_08204-001 Open Data Distribution Service

EnableFuseObjects = 1

MaxNumImages = 10

ROIs:

h: = 200 1100

w: = 300 2100

x: = 400 3100

y: = 500 4100

Transformations:

| 225 325 425 |

| 525 625 725 |

| 825 925 1025 |

| 250 350 450 |

| 550 650 750 |

| 850 950 1050 |

Complex IDL with Security
Security enabled tests undergo these processes:

• Authentication

• Access control

• Encryption

To run an application with security plugins enabled

1. Update the rtps_multicast.ini configuration file to enable security by adding the following
line in the common section:
DCPSSecurity=1

2. Set the environment variables for both sessions:
export DDS_ROOT=/home/nvidia/drive-t186ref-linux//samples/dds

export PATH=$DDS_ROOT:$PATH

Copy the libxerces-c.so and libxerces-c-3.2.so from <top>/drive-oss-src/dds/
xercesc/install/lib/ to the /usr/lib on target.

3. Create a directory for the publisher and subscriber certificate files on the target.

These files can be taken from the source PDK and renamed to the provided file name, then copied into the
publisher/subscriber folder. For example:

cd <top>/drive-oss-src/dds/opendds/tests

From To

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 8

security/certs/identity/test_participant_*_cert.pem cert.pem

security/certs/identity/test_participant_*_private_key.pem private_key.pem

security/certs/identity/identity_ca_cert.pem identity_ca_cert.pem

security/certs/permissions/permissions_ca_cert.pem permissions_ca_cert.pem

DCPS/Messenger/governance_signed.p7s governance_signed.p7s

DCPS/Messenger/permissions_*_signed.p7s permissions_signed.p7s

Replace * with different index numbers for publisher and subscriber. To exercise
authentication, access control, and encryptions, generate your own governance and
permissions signed files from the XML as desired.

4. Generate a governance_signed.p7s file based on the use-case by exercising options available
for the particular governance.xml.

Some of the options that can be used are:

<allow_unauthenticated_participants>false</allow_unauthenticated_participants>

<enable_join_access_control>true</enable_join_access_control>

<metadata_protection_kind>ENCRYPT</metadata_protection_kind>

<data_protection_kind>ENCRYPT</data_protection_kind>

5. Once you have the updated desired governance.xml, run the following command to generate the
corresponding signed file and place it in the respective publisher/subscriber directory:
penssl smime -sign -in <file.xml> -text -out <file_signed.p7s> -signer
<ca_cert.pem> -inkey <private_key.pem>

6. Update the system date using this format:
date MMDDhhmm [[CC]YY][.SS]

This is required since the licenses may not be valid for the default date set by the system.

7. Launch the application in the same way for cases without security from the newly created
publisher/subscriber directories.

The same output is expected as for non-security cases. However, additional logs are displayed for publisher
and subscriber:

(3371081|6) DEBUG: Spdp::attempt_authentication() - Attempting authentication
(sending request) for participant: 9ef3a9f4.7de6be54.a53f712e.000001c1(28b687be)

(3371081|1) WARNING: Could not find FQDN. Using "127.0.0.1" as fully qualified
hostname, please correct system configuration.

(3371081|3) RPCH 9ef3a9f4.7de6be54.a53f712e.000001c1(28b687be) = 12

(3371081|3) DWCH 9ef3a9f4.7de6be54.a53f712e.ff0202c3(301467ce) = 13

(3371081|3) DRCH 97bf6f66.343bdf69.08274081.ff0202c4(624ed7a4) = 3

(3371081|3) RPCH 9ef3a9f4.7de6be54.a53f712e.000001c1(28b687be) = 12

(3371081|3) DWCH 9ef3a9f4.7de6be54.a53f712e.ff0202c4(ae70f26d) = 2

(3371081|3) DRCH 97bf6f66.343bdf69.08274081.ff0202c3(fc2a4207) = 14

NVIDIA CONFIDENTIAL
9 | DA_08204-001 Open Data Distribution Service

Limitations while using security

• Only RTPS discovery is supported.

• Only rtps_udp transport is supported.

• Origin authentication is not supported.

• For the public key of CA, only 2048 bit RSA key and 256 Elliptic Curve Algo are supported.

• governance.xml only supports modification of the following fields:
allow_unauthenticated_participants
enable_join_access_control
enabled discovery_protection
enable_liveliness_protection
metadata_protection_kind
data_protection_kind

For further details, refer to:

hp://download.ociweb.com/OpenDDS/Using_DDS_Security_in_OpenDDS_3_13.pdf

Complex IDL with Static Discovery
Static discovery occurs when predefined endpoints with a predefined IP and port location are specified in the
configuration file.

The complex IDL example remains the same, with the same expected output. However, since there are code
changes required and a different configuration file is used, different binaries for the publisher and subscriber are
needed. The environment setup and compile steps are the same, but the way the applications are launched is as
follows:

• Publisher session:
static_publisher -DCPSConfigFile static_discovery.ini

• Subscriber session:
static_subscriber -DCPSConfigFile static_discovery.ini

Note: Static discovery supports rtps_udp as the mode of transport.

Start the subscriber first, before the publisher.

There is a known issue with the static discovery application. The data transfers successfully, but there is a 60
second timeout and the following message is displayed:

ERROR: Subscriber_static.cpp:146: main() - wait failed!

(1663031|1) WARNING: DataLink[101f4100]::~DataLink() - link still in use by 1
entities when deleted!

(1663031|1) ERROR: SubscriberImpl::~SubscriberImpl, 1 datareaders still exist.

http://download.ociweb.com/OpenDDS/Using_DDS_Security_in_OpenDDS_3_13.pdf

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 10

Use Cases
Use cases have been classified into three types:

• Intra-SoC or single VM

• Inter-VM

• Inter-SoC

OpenDDS supports three types of discoveries and five types of transports, which are changeable in the
generic_config.ini file.

For more information, see Discovery Model and Transport Model.

The default configuration file uses RTPS discovery and TCP transport. There are other configuration files in the
<PDK_TOP>/drive-t186ref-linux/targetfs/home/nvidia/drive-t186ref-linux/samples/dds
folder. These can be used instead of the current generic_config.ini. Note that the same config file must be
used for the publisher and the subscriber.

Single VM/Intra-SoC Use Cases
The following table lists out the configuration files in the package for single VM use cases, and what transport
mode and discovery mode they use.

Configuration File Discovery Mode Transport Mode

generic_config.ini (default) RTPS tcp

static_discovery.ini Static rtps_udp

shmem.ini RTPS shmem

rtps_multicast.ini RTPS rtps_udp

Inter-VM and Inter-SoC Use Cases
DDS can be used to transfer data from one VM to another in a multi-virtual machine environment. The
configuration of these use cases is similar to intra-VM use cases, except the two different sessions for publisher
and subscriber belong to different VMs or SoCs.

The transport and discovery mode limitation:

• RTPS discovery only works if multicast support is enabled.
The configuration file rtps_multicast.ini uses RTPS discovery and rtps_upd transport. Modify the
following line according to the interface where the Virtual Machine must connect to other Virtual Machines.

MulticastInterface=hvX

• Where X=0,1,2, depending on the VM’s bridge interface to the other VM.

NVIDIA CONFIDENTIAL
11 | DA_08204-001 Open Data Distribution Service

For inter-VM communication, the bridge interface hv0-hv1 is used between Linux and QNX.

To enable multicast support for RTPS discovery, you must modify the
tegra_t186ref_gnu_linux_defconfig file (extracted from oss_src.run) and change this line:

CONFIG_IP_MULTICAST=y

Now recompile the kernel. For the steps, see Building the Flashing Kernel. If you do not recompile, the DDS
application fails to launch with error: “unable to join multicast group”.

For an RTPS based discovery mechanism, participants discover each other using Simple Participant Discovery
Protocol (SPDP), which is based on multicast-UDP transport. The rtps_multicast.ini configuration file has
an InteropMulticastOverride field to override the default multicast address 239.255.0.1.

Ensure the kernel IP routing table has an entry against the specified multicast address or is handled using the
default gateway. If the multicast address is NOT provided, the DDS middleware reports the following error while
sending SDPDP related messages:

no route to host

The following provides an example for adding an entry in the kernel IP routing table for inter-VM:

#route add 239.255.0.0 netmask 255.255.0.0 hv1

To verify:

#route -n

The endpoint discovery can be triggered without multicast, where the following changes can be made in the
configuration file:

SedpMulticast=0

SedpLocalAddress=<Local ip:port>

Use the complex_idl_example test application. Follow the steps depending on which VM the publisher and
subscriber are started.

For the inter-SoC use case, use the rtps_multicast.ini configuration file and follow the steps for inter-VM
communication. Change the MulticastInterface according to the interfaces that connect.

In all inter-VM/inter-SoC use cases, the transport mode must be specified with a local address. The local address
must be an interface that can be pinged from the outside world, or at least from where the subscriber runs.

[transport/tcp1]

transport_type=tcp

local_address=IP:Port

Substitute this with IP and Port for VM/SoC where publisher/subscriber is run

Static Discovery in Inter-VM/Inter-SoC
Use the static_discovery.ini configuration file for static discovery use cases. Recompiling the kernel is
NOT required for static discovery. However, static_publisher and static_subscriber binaries must be
used. Change the IP addresses as per the Virtual Machines or SoCs. Make the changes as follows:

[transport/rudp] ## Reader Transport

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 12

transport_type=rtps_udp

use_multicast=0

local_address=IP:Port

Substitute this with IP and Port for VM/Tegra where subscriber is run

[transport/rtudp] ## Writer Transport

transport_type=rtps_udp

use_multicast=0

local_address=IP:Port

Substitute this with IP and Port for VM/Tegra where publisher is run

For inter-VM communication, the bridge interface hv0-hv1 is used between Linux and QNX.

• Linux fixed IP address is 192.168.2.2

• QNX fixed IP address is 192.168.2.1
For inter-SoC communication, external IPs are used instead.

Building Standalone Binaries
The pre-built binaries present in

<TOP>/drive-t186ref-linux/home/nvidia/drive-t186ref-linux/samples/dds

are built using dynamic libraries present in

<TOP>/drive-t186ref-linux/usr/lib

To compile standalone binaries:

8. Change directory to:
<TOP>/drive-oss-src/dds/samples/complex_idl_example/build_scripts

9. Run the build.sh script:
./build.sh static

10. Change directory to:
<TOP>/drive-oss-src/dds/samples/

11. Run the copy_samples.sh script:
./copy_samples.sh

Data Types/IDL
DDS applications send and receive messages that are strongly-typed. These types are defined by the application
developer in Interface Definition Language (IDL). For example:

struct Data {

NVIDIA CONFIDENTIAL
13 | DA_08204-001 Open Data Distribution Service

long message_counter;

string stock_name;

double price;

};

Since OpenDDS is capable of exchanging messages between processes created in different languages, a structure
must be defined that can be translated to all supported languages. For best practices, structures are defined in
separate files with the extension .idl. These IDL files are wrien in C++ style, but do not have the same syntax.
Since the file is created once, mismatch errors are avoided between publisher and subscriber defined data types.
The IDL file is then compiled with OpenDDS tools to create source files for both publishers and subscribers.

The OpenDDS IDL compiler is invoked using the opendds_idl executable, located in $DDS_ROOT. The IDL
compiler:

• Parses a single IDL file.

• Generates the serialization and key support code that OpenDDS requires to marshal and de-
marshal the types.

• Generates the type support code for the data readers and writers.
For each IDL file processed, such as xyz.idl, three files are generated:

• xyzTypeSupport.idl

• xyzTypeSupportImpl.h

• xyzTypeSupportImpl.cpp
Typically, opendds_idl is passed several options and the IDL file name as a parameter.

$DDS_ROOT/opendds_idl xyz.idl

For more details on options of opendds_idl, see the OpenDDS Developer Guide as provided in References.

The xyz.idl and xyzTypeSupport.idl are compiled by the TAO IDL compiler using the tao_idl
executable. These client stubs are generated:

xyzC.h

xyzC.inl

xyzC.cpp

xyzTypeSupportC.h

xyzTypeSupportC.inl

xyzTypeSupportC.cpp

These server skeletons are generated:

xyzS.h

xyzS.cpp

xyzTypeSupportS.h

xyzTypeSupportS.cpp

• Pure client applications require #include and link with client stubs.

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 14

• Pure server applications require #include and link with server skeletons.
tao_idl xyz.idl

tao_idl -I<top>/drive-oss-src/dds/opendds xyzTypeSupport.idl

For more details, see the TAO IDL User’s Guide as provided in References.

Discovery Model
OpenDDS provides three options for discovery:

• Information Repository: A centralized repository style that runs as a separate process allowing
publishers and subscribers to discover one another centrally.

• RTPS Discovery: A peer-to-peer style of discovery that uses the RTPS protocol to advertise
availability and location information.

• Static Discovery: A way of discovering which topic and endpoints, as well as QOS policies of all
entities, are defined in the configuration file.

Transport Model

Transport Model
Transport mechanisms in OpenDDS are pluggable because they can be replaced by another mechanism through
changes in a configuration .ini file. The transport framework is extensible to implement customized transports.

OpenDDS transport implementations include:

• tcp

• udp

• multicast

• shmem

• rtps_udp
Transport configurations can be specified for:

• Domain participants

• Publishers

• Subscribers

• Data writers

• Data readers
Each transport configuration consists of transport instances, which are pre-configured transport implementations
for a channel. The transport configuration and instances are managed in the transport registry, which is created
using programming APIs or configuration files.

NVIDIA CONFIDENTIAL
15 | DA_08204-001 Open Data Distribution Service

Transport Selection Hierarchy
Each data writer or reader follows a specific hierarchy in selecting a transport.

Programming Guidelines
Follow these guidelines for writing and compiling an IDL in Data Types/IDL.

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 16

Writing a Publisher
For best practices, follow these guidelines on writing a publisher. Using these guidelines avoids the use of
conditions and wait sets for a free-running publisher.

For more information about writing a publisher, see the OpenDDS Developer’s Guide as provided in References.

NVIDIA CONFIDENTIAL
17 | DA_08204-001 Open Data Distribution Service

Writing a Subscriber

For more information about writing a subscriber, see the OpenDDS Developer’s Guide as provided in References.

Quality of Service for DDS Entities
There are several Quality of Service policies available as a part of OpenDDS. Each specify a defined structure.
Different sets of policies are applicable to:

• Domain participant

• Topic

• Publisher

• Subscriber

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 18

• Data writer

• Data reader
If the QoS is changed, existing associations are removed if they are no longer compatible and new associations are
added if they become compatible.

OpenDDS QoS Policies
The OpenDDS QoS policies are as follows:

CellHeading CellHeading

LIVELINESS Determines whether participants are alive and reachable.
Implemented using heartbeat or direction assertion.

RELIABILITY Best effort vs. reliable.

• Reliable specifies the service attempts to deliver all
samples in its history.

• Best effort indicates it is acceptable to not retry
propagation of any samples.

HISTORY Determines the number of samples to retain until the consumer
acquires them.

DURABILITY Determines if the data writers must maintain samples after they
have been sent to subscribers.

DURABILITY SERVICE Controls the deletion of samples in the TRANSIENT or
PERSISTENT durability cache and provides a way to specify the
history and resource limit for the sample cache.

RESOURCE LIMITS Determines the amount of resources the service can consume to
meet the requested QoS.

PARTITION Creates a logical partition within a domain using a string name.

DEADLINE Allows the application to detect when data is not written or
read within a specified amount of time.

LIFESPAN Allows the application to specify when a sample expires.
Expired samples are NOT delivered to subscribers.

USER DATA Can be set to any sequence that can be used to attach
information to the created entity, such as security credentials
for authentication.

TOPIC DATA Can be set to attach additional information to the created
topic.

GROUP DATA Can be used to implement matching mechanisms similar to
those of the PARTITION policy, except the decision is based on
an application-defined policy.

TRANSPORT PRIORITY Considered a hint to the transport layer to indicate at what
priority to send messages. Higher values indicate a higher
priority.

LATENCY BUDGET Considered a hint to the transport layer to indicate the urgency
of samples being sent and is used only for monitoring purposes
at this time.

NVIDIA CONFIDENTIAL
19 | DA_08204-001 Open Data Distribution Service

ENTITY FACTORY Controls whether entities are automatically enabled when they
are created.

PRESENTATION Controls how changes to instances by publishers are presented
to data readers. It affects the relative ordering of these changes
and the scope of this ordering.

DESTINATION ORDER Controls the order in which samples within a given instance are
made available to a data reader.

WRITER DATA
LIFECYCLE

Controls the lifecycle of data instances managed by a data
writer.

READER DATA
LIFECYCLE

Controls the lifecycle of data instances managed by a data
reader.

TIME BASED FILTER Controls how often a data reader may be interested in changes
to values in a data instance.

OWNERSHIP Determines whether more than one data writer can write
samples for the same data-object instance.

OWNERSHIP STRENGTH Used in conjunction with the OWNERSHIP policy, when the
OWNERSHIP kind is set to EXCLUSIVE. The data writer with the
highest value of strength is considered the owner of the data-
object instance.

Recommended Policies for Use-cases

Recommended Policies for Use-cases
• Streaming Data

• Deadline

• Reliability

• Time based filter

• Durability

• History

• Transport priority

• Alarms/Events

• Reliability

• Durability

• Liveliness

• History

• Large Data

• Reliability

• Liveliness

• Transport priority

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 20

Guidelines on integration with other Build Systems
OpenDDS does not support IDL to C mapping, but C++ mappings are supported. The OpenDDS header files
expose RTTI functionality directly. If an application built by the NVIDIA build system includes these header files,
it can result in build errors.

To overcome build error problems

• Use a C wrapper or a C++ shim layer over the publisher/subscriber application.

• Use OpenDDS build flags while compiling the application.
The C / C++ wrapper can then be built using the regular tmake build.

Migrating to Other DDS Implementation
The following sections describe specification compatibility and provide interoperability notes.

Specification Compatibility
OpenDDS states compliance with these specifications:

• Version 1.4 of OMG Data Distribution Service (DDS) for Real-Time Systems specification
(formal/2015-04-10)

• Version 2.2 of the Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol
Specification (DDSI-RTPS) (formal/2014-09-01).

OpenDDS does NOT implement these specifications:

• DDS Security 1.1b (ptc/17-09-20)

• Extensible and Dynamic Topic Types for DDS Specification Version 1.2 (formal/17-08-01)

• Remote Procedure Calls over DDS Version 1.0 (formal/17-04-01)
Other DDS implementations may include these specifications, and cater to wider use cases than OpenDDS.

Interoperability between OpenDDS and commercially available DDS implementations is not affected, provided
that RTPS interoperability protocol is used for discovery.

Design Effort for Migration to Different DDS Implementation
• Type Representation: OpenDDS supports OMG IDL spec version 3.1 from the CORBA

specification. The latest IDL specification version is 4.2. Other DDS implementations may support a
higher IDL version. In addition, other DDS implementations support other languages to represent
types as specified in the DDS-XTYPES spec mentioned above, such as XML, XDR, etc., providing
flexibility to represent DDS topic type support in a more readable form.

If migration of type representation format is desired, the effort is proportional to the complexity and number
of IDL files migrated.

• Transport and Discovery Mechanisms: Commercial distributions support a superset of

NVIDIA CONFIDENTIAL
21 | DA_08204-001 Open Data Distribution Service

transport mechanisms that include mandated transports and discovery methods of DDS.
Consequently, applications using the recommended transport and discovery methods must work
as-is. If a custom transport mechanism is developed, re-implementation may be required. The
DCPSInfoRepodiscovery mechanism is specific to OpenDDS and must not be used if eventual
migration or interoperability is desired.

• Choosing QoS Policies: Since QoS policies are specification driven, no change is expected to
support these in other DDS implementations. Additional QoS policies may exist. For example,
TypeConsistencyEnforcementQosPolicy, DataRepresentationQoSPolicy, etc.

Coding Effort
• IDL Compiler: OpenDDS supports C++ and Java bindings for data objects, while commercial

versions may support more languages. Moreover, commercial versions may also have code
generators that write boilerplate code for publisher and subscriber and its build environment, over
and above compiling the IDL file. The generated publisher and subscriber code might look very
different from what NVIDIA writes for OpenDDS, because the class definitions differ. Since the
DDS specification platform independent model defines the APIs including the DDS entities, QoS
policies, listeners, etc., those remain the same.

• Publisher/Subscriber Code: Commercial versions may have a boilerplate publisher, subscriber
already wrien, and extension to that code for your application, if necessary. DDS users may,
however, choose not to use the boilerplate code and port your application manually, wherein code
refactoring might be required.

For example, transport/discovery parameters for OpenDDS can be given via the config file, which may look
very different than other distributions—or might not exist—and parameters are passed via the code itself.

Interoperability Issues
Due to a different interpretation of DDS specification by commercial DDS implementations, there may be
some interoperability issues. For example, interpretation of CDR. Interoperability demonstrations have been
successfully organized between commercial DDS implementations and OpenDDS using a common application,
so migration and interoperability is possible with minimal tuning.

Minimal design change and coding adaptation is required to migrate to a commercial version due to a well-
defined portable DDS specification.

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 22

Shim Layer

The complex_idl example has a shim layer wrien with the below mentioned directory structure. The application
specific definitions and declarations for a given idl have been abstracted into the respective Publisher.h and
Subscriber.h files.

All OpenDDS specific data types and function API calls are extracted into the common folder for NVIDIA’s
implementation. Based on the requirement, the commercial version can replace the existing open source
definitions.

This abstraction allows Publisher.c and Subscriber.c to be constant over various platforms and
implementations. The changes to Publisher.cpp and Subscriber.cpp are minimal based on the use case.

References
• DDS Specification Version 1.4

• RTPS Specification Version 2.2

• DDS Security Specification Version 1.1 Beta 1

• OpenDDS Developer’s Guide Version 3.12

• OpenDDS API Guide

• TAO IDL Compiler Users Guide

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDSI-RTPS/2.2
http://www.omg.org/spec/DDS-SECURITY/1.1/Beta1/PDF
http://download.objectcomputing.com/OpenDDS/OpenDDS-latest.pdf
http://download.opendds.org/doxygen/
http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/TAO/docs/compiler.html

NVIDIA CONFIDENTIAL
23 | DA_08204-001 Open Data Distribution Service

Third-Party Licenses
This topic provides license information about the third-party software libraries included in this NVIDIA product.

OpenDDS License
OpenDDS (Licensed Product) is protected by copyright, and is distributed under the following terms.

OpenDDS is an open source implementation of the Object Management Group (OMG) Data Distribution Service
(DDS), developed and copyrighted by Object Computing Incorporated (OCI). OpenDDS is both a multi-language
and multi-platform implementation. The OMG DDS specification is intended to be suitable for systems whose
requirements include real-time, high volume, robustness, failure tolerant data distribution utilizing a publish and
subscribe model.

Since OpenDDS is open source and free of licensing fees, you are free to use, modify, and distribute the source
code, as long as you include this copyright statement.

In particular, you can use OpenDDS to build proprietary software and are under no obligation to redistribute any
of your source code that is built using OpenDDS. Note however, that you may not do anything to the OpenDDS
code, such as copyrighting it yourself or claiming authorship of the OpenDDS code, that will prevent OpenDDS
from being distributed freely using an open source development model.

Warranty

LICENSED PRODUCT IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

Support

LICENSED PRODUCT IS PROVIDED WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE
PART OF OCI OR ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORRECTION,
MODIFICATION OR ENHANCEMENT.

Support may be available from OCI to users who have agreed to a support contract.

Liability

OCI OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY WITH RESPECT TO THE
INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY LICENSED PRODUCT OR ANY
PART THEREOF.

IN NO EVENT WILL OCI OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST
REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL DAMAGES, EVEN IF OCI
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

OpenDDS copyright OCI. St. Louis MO USA, 2005

ACE+TAO License

ACE(TM), TAO(TM), CIAO(TM), DAnCE>(TM), and CoSMIC(TM) (henceforth referred to as "DOC software") are
copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,

NVIDIA CONFIDENTIAL
Open Data Distribution Service DA_08204-001| 24

Irvine, and Vanderbilt University, Copyright (c) 1993-2018, all rights reserved. Since DOC software is open-
source, freely available software, you are free to use, modify, copy, and distribute--perpetually and irrevocably--
the DOC software source code and object code produced from the source, as well as copy and distribute modified
versions of this software. You must, however, include this copyright statement along with any code built using
DOC software that you release. No copyright statement needs to be provided if you just ship binary executables
of your software products.

You can use DOC software in commercial and/or binary software releases and are under no obligation to
redistribute any of your source code that is built using DOC software. Note, however, that you may not
misappropriate the DOC software code, such as copyrighting it yourself or claiming authorship of the DOC
software code, in a way that will prevent DOC software from being distributed freely using an open-source
development model. You needn't inform anyone that you're using DOC software in your software, though we
encourage you to let us know so we can promote your project in the DOC software success stories.

The ACE, TAO, CIAO, DAnCE, and CoSMIC web sites are maintained by the DOC Group at the Institute for
Software Integrated Systems (ISIS) and the Center for Distributed Object Computing of Washington University,
St. Louis for the development of open-source software as part of the open-source software community.
Submissions are provided by the submier ``as is'' with no warranties whatsoever, including any warranty of
merchantability, noninfringement of third party intellectual property, or fitness for any particular purpose. In no
event shall the submier be liable for any direct, indirect, special, exemplary, punitive, or consequential damages,
including without limitation, lost profits, even if advised of the possibility of such damages. Likewise, DOC
software is provided as is with no warranties of any kind, including the warranties of design, merchantability,
and fitness for a particular purpose, noninfringement, or arising from a course of dealing, usage or trade practice.
Washington University, UC Irvine, Vanderbilt University, their employees, and students shall have no liability
with respect to the infringement of copyrights, trade secrets or any patents by DOC software or any part thereof.
Moreover, in no event will Washington University, UC Irvine, or Vanderbilt University, their employees, or
students be liable for any lost revenue or profits or other special, indirect and consequential damages.

DOC software is provided with no support and without any obligation on the part of Washington University,
UC Irvine, Vanderbilt University, their employees, or students to assist in its use, correction, modification,
or enhancement. A number of companies around the world provide commercial support for DOC software,
however. DOC software is Y2K-compliant, as long as the underlying OS platform is Y2K-compliant. Likewise,
DOC software is compliant with the new US daylight savings rule passed by Congress as "The Energy Policy Act
of 2005," which established new daylight savings times (DST) rules for the United States that expand DST as of
March 2007. Since DOC software obtains time/date and calendaring information from operating systems users
will not be affected by the new DST rules as long as they upgrade their operating systems accordingly.

The names ACE(TM), TAO(TM), CIAO(TM), DAnCE(TM), CoSMIC(TM), Washington University, UC Irvine,
and Vanderbilt University, may not be used to endorse or promote products or services derived from this source
without express wrien permission from Washington University, UC Irvine, or Vanderbilt University. This license
grants no permission to call products or services derived from this source ACE(TM), TAO(TM), CIAO(TM),
DAnCE(TM), or CoSMIC(TM), nor does it grant permission for the name Washington University, UC Irvine, or
Vanderbilt University to appear in their names.

If you have any suggestions, additions, comments, or questions, please let me know.

Douglas C. Schmidt

NVIDIA CONFIDENTIAL
25 | DA_08204-001 Open Data Distribution Service

Legal Information

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND
SEPARATELY, ”MATERIALS”) ARE BEING PROVIDED ”AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE
WITH RESPECT TO THE MATERIALS, AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the
consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in
this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems without express written approval
of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, Jetson, NVIDIA DRIVE, Tegra, and TensorRT are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the respective companies with which
they are associated.

The Android robot is reproduced or modified from work created and shared by Google and is used according to terms described in the
Creative Commons 3.0 Attribution License.

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

ARM, AMBA, and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All
other brands or product names are the property of their respective holders. ”ARM” is used to represent ARM Holdings plc; its operating
company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM
Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

Copyright

© 2019 by NVIDIA Corporation. All rights reserved.

	Table of Contents
	Using Open Data Distribution Service
	Installing OpenDDS
	Installing OpenDDS

	Using Sample Applications
	Running the complex_idl_example Test App
	Complex IDL with Security

	Complex IDL with Static Discovery
	Use Cases
	Single VM/Intra-SoC Use Cases

	Inter-VM and Inter-SoC Use Cases
	Static Discovery in Inter-VM/Inter-SoC

	Building Standalone Binaries
	Data Types/IDL
	Discovery Model
	Transport Model
	Transport Model
	Transport Selection Hierarchy
	Programming Guidelines
	Writing a Publisher

	Writing a Subscriber

	Quality of Service for DDS Entities
	OpenDDS QoS Policies

	Recommended Policies for Use-cases
	Recommended Policies for Use-cases

	Guidelines on integration with other Build Systems
	Migrating to Other DDS Implementation
	Specification Compatibility
	Design Effort for Migration to Different DDS Implementation
	Coding Effort
	Interoperability Issues
	Shim Layer
	References

	Third-Party Licenses
	OpenDDS License

	Legal Information

