
The OpenGL ES® Shading Language

Language Version: 3.20
Document Revision: 12
246 JuneAugust 2015

Editor: Robert J. Simpson, Qualcomm

OpenGL GLSL editor: John Kessenich, LunarG
GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost

1

Copyright (c) 2013-2015 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group,
Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed,
broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos
Group. You may use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the receipt or possession of
this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of
Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided
that NO CHARGE is made for the specification and the latest available update of the specification for any
version of the API is used whenever possible. Such distributed specification may be reformatted AS
LONG AS the contents of the specification are not changed in any way. The specification may be
incorporated into a product that is sold as long as such product includes significant independent work
developed by the seller. A link to the current version of this specification on the Khronos Group website
should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this specification, including, without limitation, any implied warranties of merchantability or
fitness for a particular purpose or non-°© infringement of any intellectual property. Khronos Group ‐
makes no, and expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no circumstances will the
Khronos Group, or any of its Promoters, Contributors or Members or their respective partners, officers,
directors, employees, agents, or representatives be liable for any damages, whether direct, indirect, special
or consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with
these materials.

Khronos, Vulkan, SYCL, SPIR, WebGL, EGL, COLLADA, StreamInput, OpenVX, OpenKCam, glTF,
OpenKODE, OpenVG, OpenWF, OpenSL ES, OpenMAX, OpenMAX AL, OpenMAX IL and
OpenMAX DL are trademarks and WebCL is a certification mark of the Khronos Group Inc. OpenCL is a
trademark of Apple Inc. and OpenGL and OpenML are registered trademarks and the OpenGL ES and
OpenGL SC logos are trademarks of Silicon Graphics International used under license by Khronos. All
other product names, trademarks, and/or company names are used solely for identification and belong to
their respective owners.

2

Table of Contents
1 Introduction...9

1.1 Changes...9
1.1.1 Changed from GLSL ES 3.2 revision 1...9
1.1.2 Changes from GLSL ES 3.1 revision 4...9
1.1.3 Changes from GLSL ES 3.1 revision 3...10
1.1.4 Changes from GLSL ES 3.1 revision 2...10
1.1.5 Changes from GLSL ES 3.1 revision 1...10
1.1.6 Changes from GLSL ES 3.0:...11

1.2 Overview...11
1.3 Error Handling...11
1.4 Typographical Conventions..13
1.5 Compatibility...13

2 Overview of OpenGL ES Shading..15
2.1 Vertex Processor...15
2.2 Tessellation Control Processor..15
2.3 Tessellation Evaluation Processor...16
2.4 Geometry Processor..16
2.5 Fragment Processor...16
2.6 Compute Processor..16

3 Basics..18
3.1 Character Set...18
3.2 Source Strings...18
3.3 Version Declaration...19
3.4 Preprocessor..20
3.5 Comments...24
3.6 Tokens...25
3.7 Keywords...25
3.8 Identifiers..27
3.9 Definitions...28

3.9.1 Static Use...28
3.9.2 Uniform and Non-Uniform Control Flow...28
3.9.3 Dynamically Uniform Expressions..29

3.10 Logical Phases of Compilation...29
4 Variables and Types..31

4.1 Basic Types...31
4.1.1 Void...34
4.1.2 Booleans..34
4.1.3 Integers..35
4.1.4 Floats...36
4.1.5 Vectors...38

3

4.1.6 Matrices...38
4.1.7 Opaque Types..38

4.1.7.1 Samplers..39
4.1.7.2 Images..39
4.1.7.3 Atomic Counters..39

4.1.8 Structures...40
4.1.9 Arrays..41

4.2 Scoping..44
4.2.1 Definition of Terms...44
4.2.2 Types of Scope..44
4.2.3 Redeclaring Names..46
4.2.4 Global Scope...48
4.2.5 Shared Globals...48

4.3 Storage Qualifiers..48
4.3.1 Default Storage Qualifier...49
4.3.2 Constant Qualifier...49
4.3.3 Constant Expressions..50
4.3.4 Input Variables..50
4.3.5 Uniform Variables...53
4.3.6 Output Variables..54
4.3.7 Buffer Variables..56
4.3.8 Shared Variables..57
4.3.9 Interface Blocks...58

4.4 Layout Qualifiers...63
4.4.1 Input Layout Qualifiers..65

4.4.1.1 Tessellation Evaluation Inputs...67
4.4.1.2 Geometry Shader Inputs...69
4.4.1.3 Fragment Shader Inputs...70
4.4.1.4 Compute Shader Inputs..71

4.4.2 Output Layout Qualifiers...71
4.4.2.1 Tessellation Control Outputs...73
4.4.2.2 Geometry Outputs..73
4.4.2.3 Fragment Outputs..74

4.4.3 Uniform Variable Layout Qualifiers..76
4.4.4 Uniform and Shader Storage Block Layout Qualifiers..76
4.4.5 Opaque Uniform Layout Qualifiers...79
4.4.6 Atomic Counter Layout Qualifiers..80
4.4.7 Format Layout Qualifiers..81

4.5 Interpolation Qualifiers...82
4.6 Parameter Qualifiers..83
4.7 Precision and Precision Qualifiers..83

4.7.1 Range and Precision..83

4

4.7.2 Conversion between precisions...85
4.7.3 Precision Qualifiers...86
4.7.4 Default Precision Qualifiers..87
4.7.5 Available Precision Qualifiers...89

4.8 Variance and the Invariant Qualifier...90
4.8.1 The Invariant Qualifier..90
4.8.2 Invariance Within a Shader...91
4.8.3 Invariance of Constant Expressions..92
4.8.4 Invariance of Undefined Values..92

4.9 The Precise Qualifier...93
4.10 Memory Access Qualifiers..95
4.11 Order of Qualification...98
4.12 Empty Declarations...98

5 Operators and Expressions..99
5.1 Operators...99
5.2 Array Operations...100
5.3 Function Calls...100
5.4 Constructors..100

5.4.1 Conversion and Scalar Constructors...100
5.4.2 Vector and Matrix Constructors..101
5.4.3 Structure Constructors...103
5.4.4 Array Constructors..104

5.5 Vector Components...104
5.6 Matrix Components...106
5.7 Structure and Array Operations...106
5.8 Assignments..107
5.9 Expressions...108
5.10 Vector and Matrix Operations...111
5.11 Evaluation of Expressions...112

6 Statements and Structure...113
6.1 Function Definitions..114

6.1.1 Function Calling Conventions...116
6.2 Selection..117
6.3 Iteration...118
6.4 Jumps...119

7 Built-in Variables..121
7.1 Built-in Language Variables..121

7.1.1 Vertex Shader Special Variables...121
7.1.2 Tessellation Control Shader Special Variables...122

7.1.2.1 Tessellation Control Input Variables...122
7.1.2.2 Tessellation Control Output Variables..122

7.1.3 Tessellation Evaluation Shader Special Variables..122

5

7.1.3.1 Tessellation Evaluation Input Variables..123
7.1.3.2 Tessellation Evaluation Output Variables...123

7.1.4 Geometry Shader Special Variables..123
7.1.4.1 Geometry Shader Input Variables..124
7.1.4.2 Geometry Shader Output Variables...124

7.1.5 Fragment Shader Special Variables...125
7.1.6 Compute Shader Special Variables...128

7.2 Built-In Constants...129
7.3 Built-In Uniform State..131
7.4 Redeclaring Built-in Blocks..132

8 Built-in Functions...133
8.1 Angle and Trigonometry Functions...135
8.2 Exponential Functions...136
8.3 Common Functions...137
8.4 Floating-Point Pack and Unpack Functions..142
8.5 Geometric Functions...145
8.6 Matrix Functions...147
8.7 Vector Relational Functions..148
8.8 Integer Functions...149
8.9 Texture Functions..151

8.9.1 Texture Query Functions...152
8.9.2 Texel Lookup Functions..153
8.9.3 Texture Gather Functions..159

8.10 Atomic-Counter Functions..161
8.11 Atomic Memory Functions...162
8.12 Image Functions..163
8.13 Geometry Shader Functions..167
8.14 Fragment Processing Functions...167

8.14.1 Interpolation Functions..169
8.15 Shader Invocation Control Functions..170
8.16 Shader Memory Control Functions...171

9 Shader Interface Matching..174
9.1 Input Output Matching by Name in Linked Programs..174
9.2 Matching of Qualifiers..175

9.2.1 Linked Shaders..176
9.2.2 Separable Programs...177

10 Shading Language Grammar...178
11 Errors...191

11.1 Preprocessor Errors...191
11.2 Lexer/Parser Errors..191
11.3 Semantic Errors...191
11.4 Linker..193

6

12 Counting of Inputs and Outputs..195
13 Issues...198

13.1 Compatibility with OpenGL ES 2.0..198
13.2 Convergence with OpenGL...198
13.3 Numeric Precision...198
13.4 Floating Point Representation and Functionality..199
13.5 Precision Qualifiers...200
13.6 Function and Variable Name Spaces...203
13.7 Local Function Declarations and Function Hiding...204
13.8 Overloading main()...204
13.9 Error Reporting...204
13.10 Structure Declarations...204
13.11 Embedded Structure Definitions...205
13.12 Redefining Built-in Functions...205
13.13 Global Scope...206
13.14 Constant Expressions..206
13.15 Varying Linkage..206
13.16 gl_Position...207
13.17 Preprocessor..207
13.18 Character set..208
13.19 Line Continuation..209
13.20 Phases of Compilation...209
13.21 Maximum Number of Varyings..209
13.22 Array Declarations..211
13.23 Invariance..211
13.24 Invariance Within a shader..213
13.25 While-loop Declarations...214
13.26 Cross Linking Between Shaders..214
13.27 Visibility of Declarations..214
13.28 Language Version..215
13.29 Samplers..215
13.30 Dynamic Indexing...215
13.31 Maximum Number of Texture Units...216
13.32 On-target Error Reporting...216
13.33 Rounding of Integer Division..216
13.34 Undefined Return Values..216
13.35 Precisions of Operations..217
13.36 Compiler Transforms..218
13.37 Expansion of Function-like Macros in the Preprocessor..218
13.38 Should Extension Macros be Globally Defined?..218
13.39 Minimum Requirements..219
13.40 Packing Functions...219

7

13.41 Boolean logical vector operations...219
13.42 Range Checking of literals..220
13.43 Sequence operator and constant expressions..220
13.44 Version Directive..221
13.45 Use of Unsigned Integers..221
13.46 Vertex Attribute Aliasing..222
13.47 Does a vertex input Y collide with a fragment uniform Y?..223
13.48 Counting Rules for Flat and Smooth Varyings...224
13.49 Array of Arrays: Ordering of Indices..224
13.50 Precision of Evaluation of Compile-time Expressions...225
13.51 Matching of Memory Qualifiers in Function Parameters..226

14 Acknowledgments...228
15 Normative References...230

8

1 Introduction

1 Introduction

This document specifies only version 3.2 of the OpenGL ES Shading Language. It requires
__VERSION__ to substitute 320, and requires #version to accept only 3120 es. If #version is declared
with a smaller number, the language accepted is a previous version of the shading language, which will be
supported depending on the version and type of context in the OpenGL ES API. See the OpenGL ES
Graphics System Specification, Version 3.2, for details on what language versions are supported.

All OpenGL ES Graphics System Specification references in this specification are to version 3.2

1.1 Changes
This specification is derived from GLSL ES 3.1 revision 4.

1.1.1 Changed from GLSL ES 3.2 revision 1

• Signed zeros must be supported

1.1.2 Changes from GLSL ES 3.1 revision 4

• Added the following extensions:

◦ KHR_blend_equation_advanced

◦ OES_sample_variables

◦ OES_shader_image_atomic

◦ OES_shader_multisample_interpolation

◦ OES_texture_storage_multisample_2d_array

◦ OES_geometry_shader

◦ OES_gpu_shader5

◦ OES_primitive_bounding_box

◦ OES_shader_io_blocks

◦ OES_tessellation_shader

◦ OES_texture_buffer

◦ OES_texture_cube_map_array

◦ KHR_robustness

◦ KHR_robustness

9

https://www.opengl.org/registry/specs/KHR/robustness.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_cube_map_array.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_buffer.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_shader_io_blocks.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_primitive_bounding_box.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_gpu_shader5.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_geometry_shader.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_storage_multisample_2d_array.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_shader_multisample_interpolation.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_shader_image_atomic.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_sample_variables.txt
https://www.opengl.org/registry/specs/KHR/blend_equation_advanced.txt

1 Introduction

1.1.3 Changes from GLSL ES 3.1 revision 3

• Added section on the memory and execution modeling

• Clarified that barrier() does not order memory transactions

• Added GL_FRAGMENT_PRECISION_HIGH macro

• Matching of memory access qualifiers when calling a function

• Matching rules for anonymous blocks

• Opaque uniforms and uniform block members are not initialized to 0

• Matching rules for qualifiers in shader interfaces

• Precision of evaluation of constant expressions

• Clarified input/output counting rules for separable programs

• Removed memory qualifiers from formal parameters in built-in functions

• Clarified that atomic_uint cannot be used inside a structure

1.1.4 Changes from GLSL ES 3.1 revision 2

• Source character set is now UTF-8

• Built-in functions with an out parameter are not constant expressions

• Accessing packed uniform or shader storage buffer from multiple shader stages is an error

• Use of double underscore in macro names

• ldexp. frexp behavior for boundary conditions

• Invariant pragma allowed in fragment shaders

• Usage of interface-qualifiers

• Clarified that GLSL ES 3.1 shaders cannot be linked with shaders declaring a previous version

• Atomic counters must be highp

• Fragment outputs cannot be or contain array of arrays

• Array of arrays syntax extended

• glMaxFragmentAtomicCounterBuffers changed to '0'

1.1.5 Changes from GLSL ES 3.1 revision 1

• Updated 'Logical Phases of Compilation'

• Assignment to runtime-sized arrays disallowed.

• Replaced glMaxCombinedImageUnitsAndFragmentOutputs with
gl_MaxCombinedShaderOutputResources

• Atomic functions: memory parameters are qualified with coherent

10

1 Introduction

• Lexing and parsing errors must be reported at compile-time

• Removed Image atomics

1.1.6 Changes from GLSL ES 3.0:

Removed:

• (None)

Added:

• Compute shaders

• Shader storage buffer objects

• Arrays of arrays

• Atomic counters

• Images

• Separate program objects (also known as separate shader objects)

• Explicit uniform locations

• Texture gather

• Bitfield operations

• Integer mix function

1.2 Overview
This document describes The OpenGL ES Shading Language, version 3.20

Independent compilation units written in this language are called shaders. A program is a set of shaders
that are compiled and linked together. The aim of this document is to thoroughly specify the
programming language. The OpenGL ES Graphics System Specification will specify the OpenGL ES
entry points used to manipulate and communicate with programs and shaders.

1.3 Error Handling
Compilers, in general, accept programs that are ill-formed, due to the impossibility of detecting all ill-
formed programs. Portability is only ensured for well-formed programs, which this specification
describes. Compilers are encouraged to detect ill-formed programs and issue diagnostic messages, but are
not required to do so for all cases. The compilation process is implementation-dependent but is generally
split into a number of stages, each of which occurs at one of the following times:

• A call to glCompileShader

• A call to glLinkProgram

• A draw call or a call to glValidateProgram

The implementation should report errors as early a possible but in any case must satisfy the following:

11

1 Introduction

• All lexical, grammatical and semantic errors must have been detected following a call to
glLinkProgram

• Errors due to mismatch between the shaders (link errors) must have been detected following a
call to glLinkProgram

• Errors due to exceeding resource limits must have been detected following any draw call or a call
to glValidateProgram

• A call to glValidateProgram must report all errors associated with a program object given the
current GL state.

Where the specification uses the terms required, must/must not, does/does not, disallowed or not
supported, the compiler or linker is required to detect and report any violations. Similarly when a
condition or situation is an error, it must be reported. Use of any feature marked as reserved is an error.
Where the specification uses the terms should/should not or undefined behavior there is no such
requirement but compilers are encouraged to report possible violations.

A distinction is made between undefined behavior and an undefined value (or result). Undefined
behavior includes system instability and/or termination of the application. It is expected that systems will
be designed to handle these cases gracefully but specification of this is outside the scope of OpenGL ES.

If a value or result is undefined, the system may behave as if the value or result had been assigned a
random value. For example, an undefined gl_Position may cause a triangle to be drawn with a random
size and position. The value may not be consistent. For example an undefined boolean value may cause
both sub-statements in an if-then-else statement to be executed (see section 4.8.4 “Invariance of
Undefined Values”). The implementation may also detect the generation and/or use of undefined values
and behave accordingly (for example causing a trap). Undefined values must not by themselves cause
system instability. However undefined values may lead to other more serious conditions such as infinite
loops or out of bounds array accesses.

Implementations may not in general support functionality beyond the mandated parts of the specification
without use of the relevant extension. The only exceptions are:

1. If a feature is marked as optional.

2. Where a maximum value is stated (e.g. the maximum number of vertex outputs), the
implementation may support a higher value than that specified.

Where the implementation supports more than the mandated specification, off-target compilers are
encouraged to issue warnings if these features are used.

The compilation process is split between the compiler and linker. The allocation of tasks between the
compiler and linker is implementation dependent. Consequently there are many errors which may be
detected either at compile or link time, depending on the implementation.

12

1 Introduction

1.4 Typographical Conventions
Italic, bold, and font choices have been used in this specification primarily to improve readability. Code
fragments use a fixed width font. Identifiers embedded in text are italicized. Keywords embedded in text
are bold. Operators are called by their name, followed by their symbol in bold in parentheses. The
clarifying grammar fragments in the text use bold for literals and italics for non-terminals. The official
grammar in section 9 “Shading Language Grammar” uses all capitals for terminals and lower case for
non-terminals.

1.5 Compatibility
The OpenGL ES 3.2 API is designed to work with GLSL ES v1.00, GLSL ES 3.00, GLSL ES 3.10 and
GLSL ES 3.20. In general a shader written for versions prior to OpenGL ES 3.2 should work without
modification in OpenGL ES 3.2.

When porting applications from an earlier to later version of the API, the following points should be
noted:

• Not all language constructs present in earlier versions of the language are available in later
versions e.g. attribute and varying qualifiers are present in v1.00 but not v3.00. However, the
functionality of GLSL ES 3.20 is a super-set of GLSL ES 3.10.

• Some features of later versions of the API require language features that are not present in earlier
version of the language.

• It is an error to link shaders if they are written in different versions of the language.

• The OpenGL ES 2.0 and 3.0 APIs do not support shaders written in GLSL ES 3.2.

• Using GLSL ES 1.00 shaders within OpenGL ES 3.x may extend the resources available beyond
the minima specified in GLSL ES 1.0. Shaders which make use of this will not necessarily run
on an OpenGL ES 2.0 implementation: Similarly for GLSL ES 3.00 shaders running within
OpenGL ES 3.2.

Uniforms

The number of uniforms specified by gl_MaxVertexUniformVectors and returned by the
corresponding API query is the same for GLSL ES versions 1.00 and 3.x when used as part of
OpenGL ES 3.2.

Varyings, vertex outputs and fragment inputs

These are specified differently in the two versions of the language and may be different. For
GLSL ES 1.00, the maximum number of varyings is specified by gl_MaxVaryingVectors. For
GLSL ES 3.00 and GLSL ES 3.10, the maximum number of vertex outputs and fragment inputs
is independently specified by gl_MaxVertexOutputVectors and gl_MaxFragmentInputVectors.

In GLSL ES 1.00, only varyings which are statically used in both the vertex and fragment
shaders are counted. This applies when GLSL ES 1.00 is used in OpenGL ES 3.2.

Multiple Render Targets

13

1 Introduction

Although gl_FragData is declared as an array in GLSL ES 1.00, multiple render targets are not
supported in OpenGL ES 2.0 and are therefore not available when using GLSL ES 1.00 in
OpenGL ES 3.x.

• Support of line continuation and support of UTF-8 characters within comments is optional in
GLSL ES 1.00 when used with the OpenGL ES 2.0 API. However, support is mandated for both
of these when a GLSL ES 1.00 shader is used with the OpenGL ES 3.x APIs.

14

2 Overview of OpenGL ES Shading

The OpenGL ES Shading Language is actually several closely related languages. These languages are
used to create shaders for each of the programmable processors contained in the OpenGL ES processing
pipeline. Currently, these processors are the vertex, tessellation control, tessellation evaluation, geometry
and fragment and compute processors.

Compilation units for these processors are referred to as shaders and the processors themselves are also
referred to as shader stages. Only one shader can be run on a processor at any one time; there is no
support for linking multiple compilation units together for a single shader stage. One or more shaders are
linked together to form a single program. and each program contains shader executables for one or more
consecutive shader stages.

Unless otherwise noted in this paper, a language feature applies to all languages, and common usage will
refer to these languages as a single language. The specific languages will be referred to by the name of
the processor they target: vertex, tessellation control, tessellation evaluation, geometry or fragment or
compute.

Most OpenGL ES state is not tracked or made available to shaders. Typically, user-defined variables will
be used for communicating between different stages of the OpenGL ES pipeline. However, a small
amount of state is still tracked and automatically made available to shaders, and there are a few built-in
variables for interfaces between different stages of the OpenGL ES pipeline.

2.1 Vertex Processor
The vertex processor is a programmable unit that operates on incoming vertices and their associated data.
Compilation units written in the OpenGL ES Shading Language to run on this processor are called vertex
shaders.

The vertex processor operates on one vertex at a time. It does not replace graphics operations that require
knowledge of several vertices at a time.

2.2 Tessellation Control Processor
The tessellation control processor is a programmable unit that operates on a patch of incoming vertices
and their associated data, emitting a new output patch. Compilation units written in the OpenGL ES
Shading Language to run on this processor are called tessellation control shaders.

The tessellation control processor is invoked for each each vertex of the output patch. Each invocation can
read the attributes of any vertex in the input or output patches, but can only write per-vertex attributes for
the corresponding output patch vertex. The shader invocations collectively produce a set of per-patch
attributes for the output patch.

After all tessellation control shader invocations have completed, the output vertices and per-patch
attributes are assembled to form a patch to be used by subsequent pipeline stages.

15

2 Overview of OpenGL ES Shading

Tessellation control shader invocations run mostly independently, with undefined relative execution order.
However, the built-in function barrier() can be used to control execution order by synchronizing
invocations, effectively dividing tessellation control shader execution into a set of phases. Tessellation
control shaders will get undefined results if one invocation reads a per-vertex or per-patch attribute
written by another invocation at any point during the same phase, or if two invocations attempt to write
different values to the same per-patch output in a single phase.

2.3 Tessellation Evaluation Processor
The tessellation evaluation processor is a programmable unit that evaluates the position and other
attributes of a vertex generated by the tessellation primitive generator, using a patch of incoming vertices
and their associated data. Compilation units written in the OpenGL ES Shading Language to run on this
processor are called tessellation evaluation shaders.

Each invocation of the tessellation evaluation executable computes the position and attributes of a single
vertex generated by the tessellation primitive generator. The executable can read the attributes of any
vertex in the input patch, plus the tessellation coordinate, which is the relative location of the vertex in the
primitive being tessellated. The executable writes the position and other attributes of the vertex.

2.4 Geometry Processor
The geometry processor is a programmable unit that operates on data for incoming vertices for a primitive
assembled after vertex processing and outputs a sequence of vertices forming output primitives.
Compilation units written in the OpenGL ES Shading Language to run on this processor are called
geometry shaders.

A single invocation of the geometry shader executable on the geometry processor will operate on a
declared input primitive with a fixed number of vertices. This single invocation can emit a variable
number of vertices that are assembled into primitives of a declared output primitive type and passed to
subsequent pipeline stages.

2.5 Fragment Processor
The fragment processor is a programmable unit that operates on fragment values and their associated
data. Compilation units written in the OpenGL ES Shading Language to run on this processor are called
fragment shaders.

A fragment shader cannot change a fragment's (x, y) position. Access to neighboring fragments is not
allowed. The values computed by the fragment shader are ultimately used to update framebuffer memory
or texture memory, depending on the current OpenGL ES state and the OpenGL ES command that caused
the fragments to be generated.

2.6 Compute Processor
The compute processor is a programmable unit that operates independently from the other shader
processors. Compilation units written in the OpenGL ES Shading Language to run on this processor are
called compute shaders.

16

2 Overview of OpenGL ES Shading

A compute shader has access to many of the same resources as fragment and other shader processors, such
as textures, buffers, image variables, atomic counters, and so on. It does not have any predefined inputs
nor any fixed-function outputs. It is not part of the graphics pipeline and its visible side effects are
through actions on images, storage buffers, and atomic counters.

A compute shader operates on a group of work items called a work group.

A work group is a collection of shader invocations that execute the same code, potentially in parallel. An
invocation within a work group may share data with other members of the same work group through
shared variables and issue memory and control flow barriers to synchronize with other members of the
same work group.

17

3 Basics

3.1 Character Set

The source character set used for the OpenGL ES shading languages is Unicode in the UTF-8 encoding
scheme. Invalid UTF-8 characters are ignored. After preprocessing, only the following characters are
allowed in the resulting stream of GLSL tokens:

The letters a-z, A-Z, and the underscore (_).

The numbers 0-9.

The symbols period (.), plus (+), dash (-), slash (/), asterisk (*), percent (%), angled brackets (< and
>), square brackets ([and]), parentheses ((and)), braces ({ and }), caret (^), vertical bar (|),
ampersand (&), tilde (~), equals (=), exclamation point (!), colon (:), semicolon (;), comma (,), and
question mark (?).

The number sign (#) for preprocessor use.

Backslash ('\'), used to indicate line continuation when immediately preceding a new-line.

White space: the space character, horizontal tab, vertical tab, form feed, carriage-return, and line-
feed.

There are no digraphs or trigraphs. There are no escape sequences or other uses of the backslash beyond
use as the line-continuation character.

Lines are relevant for compiler diagnostic messages and the preprocessor. They are terminated by
carriage-return or line-feed. If both are used together, it will count as only a single line termination. For
the remainder of this document, any of these combinations is simply referred to as a new-line. Lines may
be of arbitrary length.

In general, the language’s use of this character set is case sensitive.

There are no character or string data types, so no quoting characters are included.

There is no end-of-file character.

3.2 Source Strings
The source for a single shader is an array of strings of characters from the character set. A single shader
is made from the concatenation of these strings. Each string can contain multiple lines, separated by new-
lines. No new-lines need be present in a string; a single line can be formed from multiple strings. No
new-lines or other characters are inserted by the implementation when it concatenates the strings to form a
single shader.

18

3 Basics

Diagnostic messages returned from compiling a shader must identify both the line number within a string
and which source string the message applies to. Source strings are counted sequentially with the first
string being string 0. Line numbers are one more than the number of new-lines that have been processed,
including counting the new lines that will be removed by the line-continuation character (\).

Lines separated by the line-continuation character preceding a new line are concatenated together before
either comment processing or preprocessing. This means that no white space is substituted for the line-
continuation character. That is, a single token could be formed by the concatenation by taking the
characters at the end of one line concatenating them with the characters at the beginning of the next line.

float f\
oo;
// forms a single line equivalent to “float foo;”
// (assuming '\' is the last character before the new line and “oo” are
// the first two characters of the next line)

3.3 Version Declaration
Shaders must declare the version of the language they are written to. The version is specified in the first
line of a shader by a character string:

#version number es

where number must be a version of the language, following the same convention as __VERSION__ above.
The directive “#version 320 es” is required in any shader that uses version 3.20 of the language. Any
number representing a version of the language a compiler does not support will cause an error to be
generated. Version 1.00 of the language does not require shaders to include this directive, and shaders
that do not include a #version directive will be treated as targeting version 1.00.

Shaders declaring version 3.20 of the shading language cannot be linked with shaders declaring a previous
version.

The #version directive must be present in the first line of a shader and must be followed by a newline. It
may contain optional white-space as specified below but no other characters are allowed. The directive is
only permitted in the first line of a shader.

Processing of the #version directive occurs before all other preprocessing, including line concatenation
and comment processing.

 version-declaration:
 whitespaceopt POUND whitespaceopt VERSION whitespace number whitespace ES whitespaceopt

Tokens:

 POUND #
 VERSION version
 ES es

19

3 Basics

3.4 Preprocessor
There is a preprocessor that processes the source strings as part of the compilation process.

The complete list of preprocessor directives is as follows.

#
#define
#undef

#if
#ifdef
#ifndef
#else
#elif
#endif

#error
#pragma

#extension

#line

The following operator is also available:

defined

Note that the version directive is not considered to be a preprocessor directive and so is not listed here.

Each number sign (#) can be preceded in its line only by spaces or horizontal tabs. It may also be
followed by spaces and horizontal tabs, preceding the directive. Each directive is terminated by a new-
line. Preprocessing does not change the number or relative location of new-lines in a source string.

The number sign (#) on a line by itself is ignored. Any directive not listed above will cause an error.

#define and #undef functionality are defined as is standard for C++ preprocessors for macro definitions
both with and without macro parameters.

The following predefined macros are available:

__LINE__
__FILE__
__VERSION__
GL_ES

__LINE__ will substitute a decimal integer constant that is one more than the number of preceding new-
lines in the current source string.

__FILE__ will substitute a decimal integer constant that says which source string number is currently
being processed.

20

3 Basics

__VERSION__ will substitute a decimal integer reflecting the version number of the OpenGL ES shading
language. The version of the shading language described in this document will have __VERSION__
substitute the decimal integer 3120.

GL_ES will be defined and set to 1. This is not true for the non-ES OpenGL Shading Language, so it can
be used to do a compile time test to determine if a shader is running on an ES system.

By convention, all macro names containing two consecutive underscores (__) are reserved for use by
underlying software layers. Defining such a name in a shader does not itself result in an error, but may
result in unintended behaviors that stem from having multiple definitions of the same name. All macro
names prefixed with “GL_” (“GL” followed by a single underscore) are also reserved, and defining such a
name results in a compile-time error.

It is an error to undefine or to redefine a built-in (pre-defined) macro name.

The maximum length of a macro name is 1024 characters. It is an error to declare a name with a length
greater than this.

#if, #ifdef, #ifndef, #else, #elif, and #endif are defined to operate as for C++ except for the following:

• Expressions following #if and #elif are restricted to expressions operating on literal integer
constants, plus identifiers consumed by the defined operator.

• Undefined identifiers not consumed by the defined operator do not default to '0'. Use of such
identifiers causes an error.

• Character constants are not supported.

As in C++, a macro name defined with an empty replacement list does not default to '0' when used in a
preprocessor expression.

The operators available are as follows:

Precedence Operator class Operators Associativity

 1 (highest) parenthetical grouping () NA

2 unary defined
+ - ~ !

Right to Left

3 multiplicative * / % Left to Right

4 additive + - Left to Right

5 bit-wise shift << >> Left to Right

6 relational < > <= >= Left to Right

7 equality == != Left to Right

8 bit-wise and & Left to Right

9 bit-wise exclusive or ^ Left to Right

10 bit-wise inclusive or | Left to Right

11 logical and && Left to Right

12 (lowest) logical inclusive or | | Left to Right

21

3 Basics

The defined operator can be used in either of the following ways:

defined identifier
defined (identifier)

 There are no number sign based operators (e.g. no # or #@), no ## operator, nor is there a sizeof
operator.

The semantics of applying operators in the preprocessor match those standard in the C++ preprocessor
with the following exceptions:

• The 2nd operand in a logical and ('&&') operation is evaluated if and only if the 1st operand
evaluates to non-zero.

• The 2nd operand in a logical or ('||') operation is evaluated if and only if the 1st operand evaluates
to zero.

If an operand is not evaluated, the presence of undefined identifiers in the operand will not cause an error.

Preprocessor expressions will be evaluated at compile time.

#error will cause the implementation to put a diagnostic message into the shader object’s information log
(see section 7.12 “Shader, Program and Program Pipeline Queries” in the OpenGL ES Graphics System
Specification for how to access a shader object’s information log). The message will be the tokens
following the #error directive, up to the first new-line. The implementation must treat the presence of a
#error directive as a compile-time error.

#pragma allows implementation dependent compiler control. Tokens following #pragma are not subject
to preprocessor macro expansion. If an implementation does not recognize the tokens following
#pragma, then it will ignore that pragma. The following pragmas are defined as part of the language.

#pragma STDGL

The STDGL pragma is used to reserve pragmas for use by this and future revisions of the language. No
implementation may use a pragma whose first token is STDGL.

#pragma optimize(on)
#pragma optimize(off)

can be used to turn off optimizations as an aid in developing and debugging shaders. It can only be used
outside function definitions. By default, optimization is turned on for all shaders. The debug pragma

#pragma debug(on)
#pragma debug(off)

can be used to enable compiling and annotating a shader with debug information, so that it can be used
with a debugger. It can only be used outside function definitions. By default, debug is turned off.

The scope as well as the effect of the optimize and debug pragmas is implementation-dependent except
that their use must not generate an error.

22

3 Basics

By default, compilers of this language must issue compile time syntactic, grammatical, and semantic
errors for shaders that do not conform to this specification. Any extended behavior must first be enabled.
Directives to control the behavior of the compiler with respect to extensions are declared with the
#extension directive

#extension extension_name : behavior
#extension all : behavior

where extension_name is the name of an extension. Extension names are not documented in this
specification. The token all means the behavior applies to all extensions supported by the compiler. The
behavior can be one of the following:

behavior Effect

require Behave as specified by the extension extension_name.

Give an error on the #extension if the extension extension_name is not
supported, or if all is specified.

enable Behave as specified by the extension extension_name.

Warn on the #extension if the extension extension_name is not supported.

Give an error on the #extension if all is specified.

warn Behave as specified by the extension extension_name, except issue warnings
on any detectable use of that extension, unless such use is supported by other
enabled or required extensions.

If all is specified, then warn on all detectable uses of any extension used.

Warn on the #extension if the extension extension_name is not supported.

disable Behave (including issuing errors and warnings) as if the extension
extension_name is not part of the language definition.

If all is specified, then behavior must revert back to that of the non-extended
core version of the language being compiled to.

Warn on the #extension if the extension extension_name is not supported.

The extension directive is a simple, low-level mechanism to set the behavior for each extension. It does
not define policies such as which combinations are appropriate, those must be defined elsewhere. Order
of directives matters in setting the behavior for each extension: Directives that occur later override those
seen earlier. The all variant sets the behavior for all extensions, overriding all previously issued
extension directives, but only for the behaviors warn and disable.

23

3 Basics

The initial state of the compiler is as if the directive

#extension all : disable

was issued, telling the compiler that all error and warning reporting must be done according to this
specification, ignoring any extensions.

Each extension can define its allowed granularity of scope. If nothing is said, the granularity is a shader
(that is, a single compilation unit), and the extension directives must occur before any non-preprocessor
tokens. If necessary, the linker can enforce granularities larger than a single compilation unit, in which
case each involved shader will have to contain the necessary extension directive.

Macro expansion is not done on lines containing #extension and #version directives.

For each extension there is an associated macro. The macro is always defined in an implementation that
supports the extension. This allows the following construct to be used:

#ifdef OES_extension_name
#extension OES_extension_name : enable
// code that requires the extension

#else
// alternative code

#endif

#line must have, after macro substitution, one of the following forms:

#line line
#line line source-string-number

where line and source-string-number are constant integral expressions. After processing this directive
(including its new-line), the implementation will behave as if it is compiling at line number line and
source string number source-string-number. Subsequent source strings will be numbered sequentially,
until another #line directive overrides that numbering.

If during macro expansion a preprocessor directive is encountered, the results are undefined; the compiler
may or may not report an error in such cases.

3.5 Comments
Comments are delimited by /* and */, or by // and a newline. '//' style comments include the initial '//'
marker and continue up to, but not including, the terminating newline. '/*...*/' comments include both the
start and end marker. The begin comment delimiters (/* or //) are not recognized as comment delimiters
inside of a comment, hence comments cannot be nested. Comments are treated syntactically as a single
space.

24

3 Basics

3.6 Tokens

The language is a sequence of tokens. A token can be

token:
keyword
identifier
integer-constant
floating-constant
operator
; { }

3.7 Keywords
The following are the keywords in the language, and cannot be used for any other purpose than that
defined by this document:

 const uniform buffer shared

 coherent volatile restrict readonly writeonly

 atomic_uint

 layout

 centroid flat smooth

 patch sample

 precise

 break continue do for while switch case default

 if else

 in out inout

 float int void bool true false

 invariant

 discard return

 mat2 mat3 mat4

 mat2x2 mat2x3 mat2x4

 mat3x2 mat3x3 mat3x4

 mat4x2 mat4x3 mat4x4

 vec2 vec3 vec4 ivec2 ivec3 ivec4 bvec2 bvec3 bvec4

 uint uvec2 uvec3 uvec4

25

3 Basics

 lowp mediump highp precision

 sampler2D sampler3D samplerCube

 sampler2DShadow samplerCubeShadow

 sampler2DArray

 sampler2DArrayShadow

 isampler2D isampler3D isamplerCube

 isampler2DArray

 usampler2D usampler3D usamplerCube

 usampler2DArray

 sampler2DMS isampler2DMS usampler2DMS

 samplerBuffer isamplerBuffer usamplerBuffer

 imageBuffer iimageBuffer uimageBuffer

 imageCubeArray iimageCubeArray uimageCubeArray

 samplerCubeArray isamplerCubeArray usamplerCubeArray

 samplerCubeArrayShadow

 sampler2DMSArray isampler2DMSArray usampler2DMSArray

 image2DArray iimage2DArray uimage2DArray

 image2D iimage2D uimage2D

 image3D iimage3D uimage3D

 imageCube iimageCube uimageCube

 struct

The following are the keywords reserved for future use. Using them will result in an error:

 attribute varying

 resource

 noperspective

 subroutine

 common partition active

 asm

26

3 Basics

 class union enum typedef template this

 goto

 inline noinline public static extern external interface

 long short double half fixed unsigned superp

 input output

 hvec2 hvec3 hvec4 dvec2 dvec3 dvec4 fvec2 fvec3 fvec4

 sampler3DRect

 filter

 image1D

 iimage1D

 uimage1D

 image1DArray

 iimage1DArray uimage1DArray

 sampler1D sampler1DShadow sampler1DArray sampler1DArrayShadow

 isampler1D isampler1DArray usampler1D usampler1DArray

 sampler2DRect sampler2DRectShadow isampler2DRect usampler2DRect

 sizeof cast

 namespace using

 dmat2 dmat3 dmat4

 dmat2x2 dmat2x3 dmat2x4

 dmat3x2 dmat3x3 dmat3x4

 dmat4x2 dmat4x3 dmat4x4

 image2DRect iimage2DRect uimage2DRect

 image2DMS iimage2DMS uimage2DMS

 image2DMSArray iimage2DMSArray uimage2DMSArray

In addition, all identifiers containing two consecutive underscores (__) are reserved for use by underlying
software layers. Defining such a name in a shader does not itself result in an error, but may result in
unintended behaviors that stem from having multiple definitions of the same name.

3.8 Identifiers
Identifiers are used for variable names, function names, structure names, and field selectors (field
selectors select components of vectors and matrices similar to structure fields, as discussed in section 5.5
“Vector Components” and section 5.6 “Matrix Components”). Identifiers have the form

27

3 Basics

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

Identifiers starting with “gl_” are reserved for use by OpenGL ES, and in general, may not be declared in
a shader as either a variable or a function; this results in an error. However, as noted in the specification,
there are certain cases where previously declared variables can be redeclared, and predeclared “gl_”
names are allowed to be redeclared in a shader only for these specific purposes.

The maximum length of an identifier is 1024 characters. It is an error if the length exceeds this value.

3.9 Definitions
Some language rules described below depend on the following definitions.

3.9.1 Static Use

A shader contains a static use of a variable x if, after preprocessing, the shader contains a statement that
would read or write x (or part of x), whether or not run-time flow of control will cause that statement to be
executed. Such a variable is referred to as being statically used.

3.9.2 Uniform and Non-Uniform Control Flow

When executing statements in a fragment shader, control flow starts as uniform control flow; all fragments
enter the same control path into main(). Control flow becomes non-uniform when different fragments
take different paths through control-flow statements (selection, iteration, and jumps). Control flow
subsequently returns to being uniform after such divergent sub-statements or skipped code completes,
until the next time different control paths are taken.

28

3 Basics

For example:

main()
{
 float a = ...;// this is uniform control flow
 if (a < b) { // this expression is true for some fragments, not all
 ...; // non-uniform control flow
 } else {
 ...; // non-uniform control flow
 }
 ...; // uniform control flow again
}

Other examples of non-uniform control flow can occur within switch statements and after conditional
breaks, continues, early returns, and after fragment discards, when the condition is true for some
fragments but not others. Loop iterations that only some fragments execute are also non-uniform control
flow.

This is similarly defined for other shader stages, based on the per-instance data items they process.

3.9.3 Dynamically Uniform Expressions

A fragment-shader expression is dynamically uniform if all fragments evaluating it get the same resulting
value. When loops are involved, this refers to the expression's value for the same loop iteration. When
functions are involved, this refers to calls from the same call point.

This is similarly defined for other shader stages, based on the per-instance data they process.

Note that constant expressions are trivially dynamically uniform. It follows that typical loop counters
based on these are also dynamically uniform.

3.10 Logical Phases of Compilation
The compilation process is based on a subset of the C++ standard (see section 15: Normative References).
The compilation units for the shader processors are processed separately before optionally being linked
together in the final stage of compilation. The logical phases of compilation are:

1. Source strings are input as byte sequences. The value 'zero' is interpreted as a terminator.

2. Source strings are concatenated to form a single input. Zero bytes are discarded but all other
values are retained.

3. Each string is interpreted according to the UTF-8 standard, with the exception that all invalid
byte sequences are retained in their original form for subsequent processing.

4. Each {carriage-return, line-feed} and {line-feed, carriage return} sequence is replaced by a
single newline. All remaining carriage-return and line-feed characters are then each replaced by
a newline.

29

3 Basics

5. Line numbering for each character, which is equal to the number of preceding newlines plus one,
is noted. Note this can only be subsequently changed by the #line directive and is not affected by
the removal of newlines in phase 6 of compilation.

6. Wherever a backslash ('\') occurs immediately before a newline, both are deleted. Note that no
whitespace is substituted, thereby allowing a single preprocessing token to span a newline. This
operation is not recursive; any new {backslash newline} sequences generated are not removed.

7. All comments are replaced with a single space. All (non-zero) characters and invalid UTF-8 byte
sequences are allowed within comments. '//' style comments include the initial '//' marker and
continue up to, but not including, the terminating newline. '/*...*/' comments include both the
start and end marker.

8. The source string is converted into a sequence of preprocessing tokens. These tokens include
preprocessing numbers, identifiers and preprocessing operations. The line number associated
with each token is copied from the line number of the first character of the token.

9. The preprocessor is run. Directives are executed and macro expansion is performed.

10. White space and newlines are discarded.

11. Preprocessing tokens are converted into tokens.

12. The syntax is analyzed according to the GLSL ES grammar.

13. The result is checked according to the semantic rules of the language.

14. Optionally, the shaders are linked together to form one or more programs or separable programs.
When a pair of shaders from consecutive stages are linked into the same program, any outputs
and corresponding inputs not used in both shaders may be discarded.

15. The binary is generated.

30

4 Variables and Types

All variables and functions must be declared before being used. Variable and function names are
identifiers.

There are no default types. All variable and function declarations must have a declared type, and
optionally qualifiers. A variable is declared by specifying its type followed by one or more names
separated by commas. In many cases, a variable can be initialized as part of its declaration by using the
assignment operator (=). The grammar near the end of this document provides a full reference for the
syntax of declaring variables.

User-defined types may be defined using struct to aggregate a list of existing types into a single name.

The OpenGL ES Shading Language is type safe. There are no implicit conversions between types.

4.1 Basic Types
Definition:

A basic type is a type defined by a keyword in the language.

The OpenGL ES Shading Language supports the following basic data types, grouped as follows.

Transparent types

Type Meaning

void for functions that do not return a value

bool a conditional type, taking on values of true or false

int a signed integer

uint an unsigned integer

float a single floating-point scalar

vec2 a two-component floating-point vector

vec3 a three-component floating-point vector

vec4 a four-component floating-point vector

bvec2 a two-component Boolean vector

bvec3 a three-component Boolean vector

bvec4 a four-component Boolean vector

ivec2 a two-component signed integer vector

ivec3 a three-component signed integer vector

ivec4 a four-component signed integer vector

31

4 Variables and Types

Type Meaning

uvec2 a two-component unsigned integer vector

uvec3 a three-component unsigned integer vector

uvec4 a four-component unsigned integer vector

mat2 a 2×2 floating-point matrix

mat3 a 3×3 floating-point matrix

mat4 a 4×4 floating-point matrix

mat2x2 same as a mat2

mat2x3 a floating-point matrix with 2 columns and 3 rows

mat2x4 a floating-point matrix with 2 columns and 4 rows

mat3x2 a floating-point matrix with 3 columns and 2 rows

mat3x3 same as a mat3

mat3x4 a floating-point matrix with 3 columns and 4 rows

mat4x2 a floating-point matrix with 4 columns and 2 rows

mat4x3 a floating-point matrix with 4 columns and 3 rows

mat4x4 same as a mat4

Floating Point Opaque Types

Type Meaning

sampler2D

image2D

a handle for accessing a 2D texture/image

sampler3D

image3D

a handle for accessing a 3D texture/image

samplerCube

imageCube

a handle for accessing a cube mapped texture/image

samplerCubeShadow a handle for accessing a cube map depth texture with comparison

sampler2DShadow a handle for accessing a 2D depth texture with comparison

sampler2DArray

image2DArray

a handle for accessing a 2D array texture/image

sampler2DArrayShadow a handle for accessing a 2D array depth texture with comparison

sampler2DMS a handle for accessing a 2D multisample texture

samplerBuffer

imageBuffer

a handle for accessing a buffer texture/image

32

4 Variables and Types

Type Meaning

samplerCubeArray

imageCubeArray

a handle for accessing a cube map array texture/image

samplerCubeArrayShadow a handle for accessing a cube map array depth texture with
comparison

sampler2DMSArray handle for accessing a 2D multisample array texture

Signed Integer Opaque Types

Type Meaning

isampler2D

iimage2D

a handle for accessing an integer 2D texture/image

isampler3D

iimage3D

a handle for accessing an integer 3D texture/image

isamplerCube

iimageCube

a handle for accessing an integer cube mapped texture/image

isampler2DArray

iimage2DArray

a handle for accessing an integer 2D array texture/image

isampler2DMS a handle for accessing an integer 2D multisample texture

isamplerBuffer

iimageBuffer

a handle for accessing an integer buffer texture/image

isamplerCubeArray

iimageCubeArray

a handle for accessing an integer cube map array texture/image

isampler2DMSArray handle for accessing an integer 2D multisample array texture

33

4 Variables and Types

Unsigned Integer Opaque Types

Type Meaning

usampler2D

uimage2D

a handle for accessing an unsigned integer 2D texture/image

usampler3D

uimage3D

a handle for accessing an unsigned integer 3D texture/image

usamplerCube

uimageCube

a handle for accessing an unsigned integer cube mapped
texture/image

usampler2DArray

uimage2DArray

a handle for accessing an unsigned integer 2D array texture/image

atomic_uint a handle for accessing an unsigned atomic counter

usampler2DMS a handle for accessing an unsigned integer 2D multisample
texture

usamplerBuffer

uimageBuffer

a handle for accessing an unsigned integer buffer texture/image

usamplerCubeArray

uimageCubeArray

a handle for accessing an unsigned integer cube map array
texture/image

usampler2DMSArray handle for accessing an unsigned integer 2D multisample array
texture/image

In addition, a shader can aggregate these using arrays and structures to build more complex types.

There are no pointer types.

4.1.1 Void

Functions that do not return a value must be declared as void. There is no default function return type.
The keyword void cannot be used in any other declarations (except for empty formal or actual parameter
lists).

4.1.2 Booleans

Definition:

A boolean type is any boolean scalar or vector type.

To make conditional execution of code easier to express, the type bool is supported. There is no
expectation that hardware directly supports variables of this type. It is a genuine Boolean type, holding
only one of two values meaning either true or false. Two keywords true and false can be used as literal
Boolean constants. Booleans are declared and optionally initialized as in the follow example:

34

4 Variables and Types

bool success; // declare “success” to be a Boolean
bool done = false; // declare and initialize “done”

The right side of the assignment operator (=) must be an expression whose type is bool.

Expressions used for conditional jumps (if, for, ?:, while, do-while) must evaluate to the type bool.

4.1.3 Integers

Definitions:

An integral type is any signed or unsigned, scalar or vector integer type. It excludes arrays and
structures.

A scalar integral type is a scalar signed or unsigned integer type:

A vector integral types is a vector of signed or unsigned integers:

Signed and unsigned integer variables are fully supported. In this document, the term integer is meant to
generally include both signed and unsigned integers. Highp unsigned integers have exactly 32 bits of
precision. Highp signed integers use 32 bits, including a sign bit, in two's complement form. Mediump
and lowp integers have implementation-defined numbers of bits. Operations resulting in overflow or
underflow will not cause any exception, nor will they saturate, rather they will “wrap” to yield the low-
order n bits of the result where n is the size in bits of the integer.

See section 4.7.1 “Range and Precision” for details.

Integers are declared and optionally initialized with integer expressions, as in the following example:

int i, j = 42; // default integer literal type is int
uint k = 3u; // “u” establishes the type as uint

Literal integer constants can be expressed in decimal (base 10), octal (base 8), or hexadecimal (base 16)
as follows.

integer-constant:
decimal-constant integer-suffixopt

octal-constant integer-suffixopt

hexadecimal-constant integer-suffixopt

integer-suffix: one of
u U

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

35

4 Variables and Types

hexadecimal-constant:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

digit:
0
nonzero-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit : one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

No white space is allowed between the digits of an integer constant, including after the leading 0 or after
the leading 0x or 0X of a constant, or before the suffix u or U. When the suffix u or U is present, the
literal has type uint, otherwise the type is int. A leading unary minus sign (-) is interpreted as an
arithmetic unary negation, not as part of the constant.

It is an error to provide a literal integer whose value would be too large to store in a highp uint variable.
Note that this only applies to literals; no error checking is performed on the result of a constant
expression.

Examples

1 // signed integer, value 1

1u // unsigned integer, value 1

-1 // unary minus applied to signed integer.
 // result is a signed integer, value -1

-1u // unary minus applies to unsigned integer
 // result is an unsigned integer, value 0xffffffff

0xffffffff // signed integer, value -1

0xffffffffu // unsigned integer, value 0xffffffff

0xffffffff0 // error: values of signed integer is too large

4.1.4 Floats

Definition:

36

4 Variables and Types

A floating point type is any floating point scalar, vector or matrix type. It excludes arrays and
structures.

Floats are available for use in a variety of scalar calculations. Floating-point variables are defined as in
the following example:

float a, b = 1.5;

As an input value to one of the processing units, a floating-point variable is expected to match the IEEE
754 single precision floating-point definition for precision and dynamic range. Highp floating-point
variables within a shader are encoded according to the IEEE 754 specification for single-precision
floating-point values (logically, not necessarily physically). While encodings are logically IEEE 754,
operations (addition, multiplication, etc.) are not necessarily performed as required by IEEE 754. See
section 4.7.1 “Range and Precision” for more details on precision and usage of NaNs (Not a Number) and
Infs (positive or negative infinities).

Floating-point constants are defined as follows.

floating-constant:
fractional-constant exponent-part

opt
floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequence . digit-sequence
digit-sequence .
. digit-sequence

exponent-part:
e sign

opt
 digit-sequence

E sign
opt

 digit-sequence

sign: one of
+ –

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f F

A decimal point (.) is not needed if the exponent part is present. No white space may appear anywhere
within a floating-point constant, including before a suffix. A leading unary minus sign (-) is interpreted as
a unary operator and is not part of the floating-point constant.

There is no limit on the number of digits in any digit-sequence. If the value of the floating point number
is too large (small) to be stored as a single precision value, it is converted to positive (negative) infinity.
A value with a magnitude too small to be represented as a mantissa and exponent is converted to zero.
Implementations may also convert subnormal (denormalized) numbers to zero.

37

4 Variables and Types

4.1.5 Vectors

The OpenGL ES Shading Language includes data types for generic 2-, 3-, and 4-component vectors of
floating-point values, integers, and Booleans. Floating-point vector variables can be used to store colors,
normals, positions, texture coordinates, texture lookup results and the like. Boolean vectors can be used
for component-wise comparisons of numeric vectors. Some examples of vector declarations are:

vec2 texcoord1, texcoord2;
vec3 position;
vec4 myRGBA;
ivec2 textureLookup;
bvec3 less;

Initialization of vectors can be done with constructors. See section 5.4.2 (“Vector and Matrix
Constructors”).

4.1.6 Matrices

The OpenGL ES Shading Language has built-in types for 2×2, 2×3, 2×4, 3×2, 3×3, 3×4, 4×2, 4×3, and
4×4 matrices of floating-point numbers. The first number in the type is the number of columns, the
second is the number of rows. Example matrix declarations:

mat2 mat2D;
mat3 optMatrix;
mat4 view, projection;
mat4x4 view; // an alternate way of declaring a mat4
mat3x2 m; // a matrix with 3 columns and 2 rows

Initialization of matrix values is done with constructors (described in section 5.4.2 “Vector and Matrix
Constructors”) in column-major order.

mat2 is an alias for mat2x2, not a distinct type. Similarly for mat3 and mat4. The following is legal:

mat2 a;
mat2x2 b = a;

4.1.7 Opaque Types

Definition:

An opaque type is a type where the internal structure of the type is hidden from the language.

The opaque types, as listed in the following sections, declare variables that are effectively opaque handles
to other objects. These objects are accessed through built-in functions, not through direct reading or
writing of the declared variable. They can only be declared as function parameters or in uniform-
qualified variables (see section 4.3.5 “Uniform Variables”). The only opaque types that take memory
qualifiers are the image types. Except for array indexing, structure member selection, and parentheses,
opaque variables are not allowed to be operands in expressions; such use results in a compile-time error.

When aggregated into arrays within a shader, opaque types can only be indexed with a dynamically
uniform integral expression (see section 3.9.3) unless otherwise noted; otherwise, results are undefined.

38

4 Variables and Types

Opaque variables cannot be treated as l-values; hence cannot be used as out or inout function parameters,
nor can they be assigned into. Any such use results in a compile-time error. However, they can be passed
as in parameters with matching types and memory qualifiers. They cannot be declared with an initializer.

Because a single opaque type declaration effectively declares two objects, the opaque handle itself and the
object it is a handle to, there is room for both a storage qualifier and a memory qualifier. The storage
qualifier will qualify the opaque handle, while the memory qualifier will qualify the object it is a handle
to.

4.1.7.1 Samplers

Sampler types (e.g., sampler2D) are opaque types, declared and behaving as described above for opaque
types.

Sampler variables are handles to two- and three- dimensional textures, cube maps, depth textures
(shadowing), etc., as enumerated in the basic types tables. There are distinct sampler types for each
texture target, and for each of float, integer, and unsigned integer data types. Texture accesses are done
through built-in texture functions (described in section 8.9 “Texture Functions”) and samplers are used to
specify which texture to access and how it is to be filtered.

4.1.7.2 Images

Image types are opaque types, declared and behaving as described above for opaque types. They can be
further qualified with memory qualifiers. When aggregated into arrays within a shader, images can only
be indexed with a constant integral expression.

Image variables are handles to two- or three-dimensional images corresponding to all or a portion of a
single level of a texture image bound to an image unit. There are distinct image variable types for each
texture target, and for each of float, integer, and unsigned integer data types. Image accesses should use
an image type that matches the target of the texture whose level is bound to the image unit, or for non-
layered bindings of 3D or array images should use the image type that matches the dimensionality of the
layer of the image (i.e. a layer of 3D, 2DArray, Cube or CubeArray should use image2D). If the image
target type does not match the bound image in this manner, if the data type does not match the bound
image, or if the format layout qualifier does not match the image unit format as described in Section 8.22
“Texture Image Loads and Stores” of the OpenGL ES Specification, the results of image accesses are
undefined but cannot include program termination.

Image variables are used in the image load, store and atomic functions described in section 8.12 (“Image
Functions”) to specify an image to access.

4.1.7.3 Atomic Counters

Atomic Counter types (e.g. atomic_uint) are opaque handles to counters, declared and behaving as
described above for opaque types. The variables they declare specify which counter to access when using
the built-in atomic counter functions as described in section 8.10 (“Atomic-Counter Functions”). They
are bound to buffers as described in section 4.4.6 (“Atomic Counter Layout Qualifiers”).

Atomic counters aggregated into arrays within a shader can only be indexed with dynamically uniform
integral expressions, otherwise results are undefined.

39

4 Variables and Types

The default precision of all atomic types is highp. It is an error to declare an atomic type with a different
precision or to specify the default precision for an atomic type to be lowp or mediump.

4.1.8 Structures

User-defined types can be created by aggregating other types into a structure using the struct keyword.
For example,

struct light {
 float intensity;
 vec3 position;
} lightVar;

In this example, light becomes the name of the new type, and lightVar becomes a variable of type light.
To declare variables of the new type, use its name (without the keyword struct).

light lightVar2;

More formally, structures are declared as follows. However, the definitive grammar is as given in section
9 (“Shading Language Grammar”).

struct-definition:
qualifier

opt
 struct name

opt
 { member-list } declarators

opt
 ;

member-list:
member-declaration;
member-declaration member-list;

member-declaration:
basic-type declarators;

where name becomes the user-defined type, and can be used to declare variables to be of this new type.
The name shares the same name space as other variables, types, and functions. All previously visible
variables, types, constructors, or functions with that name are hidden. The optional qualifier only applies
to any declarators, and is not part of the type being defined for name.

Structures must have at least one member declaration. Member declarators may contain precision
qualifiers, but may not contain any other qualifiers. Bit fields are not supported. Member types must be
already defined (there are no forward references). Member declarations cannot contain initializers.
Member declarators can contain arrays. Such arrays must have a size specified, and the size must be a
constant integral expression that's greater than zero (see section 4.3.3 “Constant Expressions”). Each
level of structure has its own name space for names given in member declarators; such names need only
be unique within that name space.

40

4 Variables and Types

Anonymous structures are not supported. Embedded structure definitions are not supported.

struct S { float f; }; // Allowed: S is defined as a structure.

struct T {
S; // Error: anonymous structures disallowed
struct { ... }; // Error: embedded structures disallowed
S s; // Allowed: nested structure with a name.

};

Structures can be initialized at declaration time using constructors, as discussed in section 5.4.3
(“Structure Constructors”).

Any restrictions on the usage of a type or qualifier also apply to a structure that contains that type or
qualifier. This applies recursively.

Structures can contain variables of any type except:

• atomic_uint (since there is no mechanism to specify the location)

4.1.9 Arrays

Variables of the same type can be aggregated into arrays by declaring a name followed by brackets ([])
enclosing an optional size. When present, the array size must be a constant integral expression (see
section 4.3.3 “Constant Expressions”) greater than zero. The type of the size parameter can be a signed or
unsigned integer and the choice of type does not affect the type of the resulting array. Arrays only have a
single dimension (a single number within “[]”), however, arrays of arrays can be declared. Any type can
be formed into an array.

Arrays are sized either at compile-time or at run-time. To size an array at compile-time, either the size
must be specified within the brackets as above or must be inferred from the type of the initializer.

If an array is declared as the last member of a shader storage block and the size is not specified at
compile-time, it is sized at run-time. In all other cases, arrays are sized only at compile-time. An array
declaration sized at compile-time which leaves the size of the array unspecified is an error.

For compile-time sized arrays, it is illegal to index an array with a constant integral expression greater
than or equal to the declared size or with a negative constant expression. Arrays declared as formal
parameters in a function declaration must also specify a size. Undefined behavior results from indexing
an array with a non-constant expression that’s greater than or equal to the array’s size or less than 0. If
robust buffer access is enabled (see section 10.3.5 “Robust Buffer Access” of the OpenGL ES 3.2 API
Specification), such indexing must not result in abnormal program termination. The results are still
undefined, but implementations are encouraged to produce zero values for such accesses.

Some examples are:

41

4 Variables and Types

float frequencies[3];
uniform vec4 lightPosition[4u];
const int numLights = 2;
light lights[numLights];

vec4 a[3][2];
a.length() // this is 3
a[x].length() // this is 2

// a shader storage block, introduced in section 4.3.7 “Buffer Variables”
buffer b {
 float u[]; // an error
 vec4 v[]; // okay, v will be sized at run-time
} name[3]; // when the block is arrayed, all u will be the same size,
 // but not necessarily all v, if sized dynamically

When the length method will return a compile-time constant, the expression in brackets (x above) will be
evaluated and subject to the rules required for array indices, but the array will not be dereferenced. Thus,
behavior is well defined even if the run-time value of the expression is out of bounds.

An array type can be formed by specifying a non-array type (type_specifier_nonarray) followed by an
array_specifier.

float[5]

Note that the construct type [size] does not always result in an array of length size of type type:

float[2][3] // an array of size [2] of array of size [3] of float,
 // not size [3] of float[2]

This type can be used anywhere any other type can be used, including as the return value from a function

float[5] foo() { }

as a constructor of an array:

float[5](3.4, 4.2, 5.0, 5.2, 1.1)

as an unnamed parameter:

void foo(float[5])

and as an alternate way of declaring a variable or function parameter:

float[5] a;

An array type can also be formed without specifying a size if the definition includes an initializer:

42

4 Variables and Types

float x[] = float[2] (1.0, 2.0); // declares an array of size 2
float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3

float a[5];
float b[] = a;

Note that the initializer itself does not need to be a constant expression but the length of the initializer will
be a constant expression.

Arrays can have initializers formed from array constructors:

float a[5] = float[5](3.4, 4.2, 5.0, 5.2, 1.1);
float a[5] = float[](3.4, 4.2, 5.0, 5.2, 1.1); // same thing

An array of arrays can be declared as

vec4 a[3][2]; // size-3 array of size-2 array of vec4

which declares a one-dimensional array of size 3 of one-dimensional arrays of size 2 of vec4s. The
following declarations do the same thing:

vec4[2] a[3]; // size-3 array of size-2 array of vec4
vec4[3][2] a; // size-3 array of size-2 array of vec4

When in transparent memory (like in a uniform block), the layout is that the 'inner' (right-most in
declaration) dimensions iterate faster than the outer dimensions. That is, for the above, the order in
memory would be:

low address...a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]...high address

The last member of a shader storage block (section 4.3.7 “Buffer Variables”), may be declared without
specifying a size. For such arrays, the effective array size is inferred at run-time from the size of the data
store backing the shader storage block. Such runtime-sized arrays may be indexed with general integer
expressions, but may not be passed as an argument to a function or indexed with a negative constant
expression.

struct S { float f; };

buffer ShaderStorageBlock1
{
 vec4 a[]; // illegal
 vec4 b[]; // legal, runtime-sized arrays are last member
};

buffer ShaderStorageBlock2
{
 vec4 a[4]; // legal, size declared
 S b[]; // legal, runtime-sized arrays are allowed,
 // including arrays of structures
};

43

4 Variables and Types

However, it is a compile-time error to assign to a runtime-sized array. Assignments to individual elements
of the array is allowed.

Arrays have a fixed number of elements. This can be obtained by using the length method:

float a[5];
a.length(); // returns 5

The return value is a signed integral expression. For compile-time sized arrays, the value returned by the
length method is a constant expression. For run-time sized arrays , the value returned will not be constant
expression and will be determined at run time based on the size of the buffer object providing storage for
the block.

The precision is determined using the same rules as for other cases where there is no intrinsic precision.
See section 4.7.3 (“Precision Qualifiers”).

Any restrictions on the usage of a type also apply to arrays of that type. This applies recursively.

4.2 Scoping
The scope of a declaration determines where the declaration is visible. GLSL ES uses a system of
statically nested scopes. This allows names to be redefined within a shader.

4.2.1 Definition of Terms

The term scope refers to a specified region of the program where names are guaranteed to be visible. For
example, a compound_statement_with_scope ('{' statement statement ... '}') defines a scope.

A nested scope is a scope defined within an outer scope.

The terms 'same scope' and 'current scope' are equivalent to the term 'scope' but used to emphasize that
nested scopes are excluded.

The scope of a declaration is the region or regions of the program where that declaration is visible.

A name space defines where names may be defined. Within a single name space, a name has at most one
entry, specifying it to be one of: structure, variable, or function.

In general, each scope has an associated name space. However, in certain cases e.g. for uniforms,
multiple scopes share the same name space. In these cases, conflicting declarations are an error, even
though the name is only visible in the scopes where it is declared.

4.2.2 Types of Scope

The scope of a variable is determined by where it is declared. If it is declared outside all function
definitions, it has global scope, which starts from where it is declared and persists to the end of the shader
it is declared in. If it is declared in a while test or a for statement, then it is scoped to the end of the
following sub-statement (specified as statement-no-new-scope in the grammar). Otherwise, if it is
declared as a statement within a compound statement, it is scoped to the end of that compound statement.
If it is declared as a parameter in a function definition, it is scoped until the end of that function definition.
A function's parameter declarations and body together form a single scope.

44

4 Variables and Types

int f(/* nested scope begins here */ int k)
{
 int k = k + 3; // redeclaration error of the name k
 ...
}

int f(int k)
{
 {
 int k = k + 3; // 2nd k is parameter, initializing nested first k
 int m = k // use of new k, which is hiding the parameter
 }
}

For both for and while loops, the sub-statement itself does not introduce a new scope for variable names,
so the following has a redeclaration compile-time error:

for (/* nested scope begins here */ int i = 0; i < 10; i++)
{
 int i; // redeclaration error
}

The body of a do-while loop introduces a new scope lasting only between the do and while (not including
the while test expression), whether or not the body is simple or compound:

int i = 17;
do
 int i = 4; // okay, in nested scope
while (i == 0); // i is 17, scoped outside the do-while body

The statement following a switch (…) forms a nested scope.

Representing the if construct as:

if if-expression then if-statement else else-statement,

a variable declared in the if-statement is scoped to the end of the if-statement. A variable declared in the
else-statement is scoped to the end of the else-statement. This applies both when these statements are
simple statements and when they are compound statements. The if-expression does not allow new
variables to be declared, hence does not form a new scope.

45

4 Variables and Types

Within a declaration, the scope of a name starts immediately after the initializer if present or immediately
after the name being declared if not. Several examples:

int x = 1;
{

int x = 2,/* 2nd x visible here */ y = x; // y is initialized to 2
int z = z; // error if z not previously defined.

}
{

int x = x; // x is initialized to '1'
}

A structure name declaration is visible at the end of the struct_specifier in which it was declared:

struct S
{

int x;
};

{
S S = S(0); // 'S' is only visible as a struct and constructor
S; // 'S' is now visible as a variable

}

int x = x; // Error if x has not been previously defined.

4.2.3 Redeclaring Names

All variable names, structure type names, and function names in a given scope share the same name space.
Function names can be redeclared in the same scope, with the same or different parameters, without error.
Otherwise, within a shader, a declared name cannot be redeclared in the same scope; doing so results in a
redeclaration error. If a nested scope redeclares a name used in an outer scope, it hides all existing uses of
that name. There is no way to access the hidden name or make it unhidden, without exiting the scope that
hid it.

Names of built-in functions cannot be redeclared as functions. Therefore overloading or redefining built-
in functions is an error.

46

4 Variables and Types

A declaration is considered to be a statement that adds a name or signature to the symbol table. A
definition is a statement that fully defines that name or signature. E.g.

int f(); // declaration;
int f() {return 0;} // declaration and definition
int x; // declaration and definition
int a[4]; // array declaration and definition
struct S {int x;}; // structure declaration and definition

The determination of equivalence of two declarations depends on the type of declaration. For functions,
the whole function signature must be considered (see section 6.1 Function Definitions). For variables
(including arrays) and structures only the names must match.

Within each scope, a name may be declared either as a variable declaration or as function declarations or
as a structure.

Examples of combinations that are allowed:

1.

void f(int) {...}
void f(float) {...} // function overloading allowed

2.

void f(int); // 1st declaration (allowed)
void f(int); // repeated declaration (allowed)
void f(int) {...} // single definition (allowed)

Examples of combinations that are disallowed:

1.

void f(int) {...}
void f(int) {...} // Error: repeated definition

2.

void f(int);
struct f {int x;}; // Error: type 'f' conflicts with function 'f'

3.

struct f {int x;};
int f; // Error: conflicts with the type 'f'

4.

int a[3];
int a[3]; // Error: repeated array definition

5.

int x;
int x; // Error: repeated variable definition

47

4 Variables and Types

4.2.4 Global Scope

The built-in functions are scoped in the global scope users declare global variables in. That is, a shader's
global scope, available for user-defined functions and global variables, is the same as the scope containing
the built-in functions. Function declarations (prototypes) cannot occur inside of functions; they must be at
global scope. Hence it is not possible to hide a name with a function.

4.2.5 Shared Globals

Shared globals are variables that can be accessed by multiple compilation units. In GLSL ES the only
shared globals are uniforms. Vertex shader outputs are not considered to be shared globals since they
must pass through the rasterization stage before they are used as input by the fragment shader.

Shared globals share the same name space, and must be declared with the same type and precision. They
will share the same storage. Shared global arrays must have the same base type and the same explicit size.
Scalars must have exactly the same precision, type name and type definition. Structures must have the
same name, sequence of type names, and type definitions, and field names to be considered the same type.
This rule applies recursively for nested or embedded types.

4.3 Storage Qualifiers
Variable declarations may have one storage qualifier specified in front of the type. These are summarized
as

Qualifier Meaning

< none: default > local read/write memory, or an input parameter to a function

const a compile-time constant

in linkage into a shader from a previous stage, variable is copied in

out linkage out of a shader to a subsequent stage, variable is copied out

uniform value does not change across the primitive being processed, uniforms
form the linkage between a shader, OpenGL ES, and the application

buffer value is stored in a buffer object, and can be read or written both by
shader invocations and the OpenGL ES API

shared compute shader only; variable storage is shared across all work items in a
local work group

Some input and output qualified variables can be qualified with at most one additional auxiliary storage
qualifier:

48

4 Variables and Types

Auxiliary Storage
Qualifier

Meaning

centroid centroid-based interpolation

sample per-sample interpolation

patch per-tessellation-patch attributes

Local variables can only use the const storage qualifier.

Note that function parameters can use const, in, and out qualifiers, but as parameter qualifiers.
Parameter qualifiers are discussed in section 6.1.1 (“Function Calling Conventions”). Function return
types and structure fields do not use storage qualifiers.

Data types for communication from one run of a shader executable to its next run (to communicate
between fragments or between vertices) do not exist. This would prevent parallel execution of the same
shader executable on multiple vertices or fragments.

In declarations of global variables with no storage qualifier or with a const qualifier, any initializer must
be a constant expression. Declarations of global variables with other storage qualifiers may not contain
initializers. Global variables without storage qualifiers that are not initialized in their declaration or by
the application will not be initialized by OpenGL ES, but rather will enter main() with undefined values.

4.3.1 Default Storage Qualifier

If no qualifier is present on a global variable, then the variable has no linkage to the application or shaders
running on other pipeline stages. For either global or local unqualified variables, the declaration will
appear to allocate memory associated with the processor it targets. This variable will provide read/write
access to this allocated memory.

4.3.2 Constant Qualifier

Named compile-time constants can be declared using the const qualifier. Any variables qualified as
constant are read-only variables for that shader. Declaring variables as constant allows more descriptive
shaders than using hard-wired numerical constants. The const qualifier can be used with any of the non-
void transparent basic data types as well as structures and arrays of these. It is an error to write to a const
variable outside of its declaration, so they must be initialized when declared. For example,

const vec3 zAxis = vec3 (0.0, 0.0, 1.0);

Structure fields may not be qualified with const. Structure variables can be declared as const, and
initialized with a structure constructor.

Initializers for const declarations must be constant expressions, as defined in section 4.3.3 (“Constant
Expressions”).

49

4 Variables and Types

4.3.3 Constant Expressions

A constant expression is one of

• a literal value (e.g. 5 or true)

• a global or local variable qualified as const (i.e., not including function parameters)

• an expression formed by an operator on operands that are all constant expressions, including getting an
element of a constant array, or a field of a constant structure, or components of a constant vector.
However, the sequence operator (,) and the assignment operators (=, +=, ...) are not included in the
operators that can create a constant expression.

• the length() method on a compile-time sized array, whether or not the object itself is constant.

• a constructor whose arguments are all constant expressions

• a built-in function call whose arguments are all constant expressions, with the exception of the texture
lookup functions. This rule excludes functions with a void return or functions that have an out
parameter. The built-in functions dFdx, dFdy, and fwidth must return 0 when evaluated inside an
initializer with an argument that is a constant expression.

Function calls to user-defined functions (non-built-in functions) cannot be used to form constant
expressions.

Scalar, vector, matrix, array and structure variables are constant expressions if qualified as const. Opaque
types cannot be constant expressions.

A constant integral expression is a constant expression that evaluates to a scalar signed or unsigned
integer.

Constant expressions will be evaluated in an invariant way so as to create the same value in multiple
shaders when the same constant expressions appear in those shaders. See section 4.8.1 (“The Invariant
Qualifier”) for more details on how to create invariant expressions and section 4.7.3 (“Precision
Qualifiers”) for detail on how expressions are evaluated.

4.3.4 Input Variables

Shader input variables are declared with the in storage qualifier. They form the input interface between
previous stages of the OpenGL ES pipeline and the declaring shader. Input variables must be declared at
global scope. Values from the previous pipeline stage are copied into input variables at the beginning of
shader execution. Variables declared as in may not be written to during shader execution. Only the input
variables that are actually read need to be written by the previous stage; it is allowed to have superfluous
declarations of input variables.

See section 7 (“Built-in Variables”) for a list of the built-in input names.

Vertex shader input variables (or attributes) receive per-vertex data. It is an error to use auxiliary storage
or interpolation qualifiers in a vertex shader input. The values copied in are established by the OpenGL
ES API or through the use of the layout identifier location.

It is a compile-time error to declare a vertex shader input with, or that contains, any of the following
types:

50

4 Variables and Types

• A boolean type

• An opaque type

• An array

• A structure

Example declarations in a vertex shader:

in vec4 position;
in vec3 normal;

It is expected that graphics hardware will have a small number of fixed vector locations for passing vertex
inputs. Therefore, the OpenGL ES Shading language defines each non-matrix input variable as taking up
one such vector location. There is an implementation dependent limit on the number of locations that can
be used, and if this is exceeded it will cause a link error. (Declared input variables that are not statically
used do not count against this limit.) A scalar input counts the same amount against this limit as a vec4, so
applications may want to consider packing groups of four unrelated float inputs together into a vector to
better utilize the capabilities of the underlying hardware. A matrix input will use up multiple locations.
The number of locations used will equal the number of columns in the matrix.

Tessellation control, evaluation, and geometry shader input variables get the per-vertex values written out
by output variables of the same names in the previous active shader stage. For these inputs, centroid and
interpolation qualifiers are allowed, but have no effect. Since tessellation control, tessellation evaluation,
and geometry shaders operate on a set of vertices, each input variable (or input block, see interface blocks
below) needs to be declared as an array. For example,

in float foo[]; // geometry shader input for vertex “out float foo”

Each element of such an array corresponds to one vertex of the primitive being processed. Each array can
optionally have a size declared. For geometry shaders, the array size will be set by, (or if provided must
be consistent with) the input layout declaration(s) establishing the type of input primitive, as described
later in section 4.4.1 (“Input Layout Qualifiers”).

Some inputs and outputs are arrayed, meaning that for an interface between two shader stages either the
input or output declaration requires an extra level of array indexing for the declarations to match. For
example, with the interface between a vertex shader and a geometry shader, vertex shader output variables
and geometry shader input variables of the same name must have matching types, except that the
geometry shader will have one more array dimension than the vertex shader, to allow for vertex indexing.
If such an arrayed interface variable is not declared with the necessary additional input or output array
dimension, a link-time error will result. Geometry shader inputs, tessellation control shader inputs and
outputs, and tessellation evaluation inputs all have an additional level of arrayness relative to other shader
inputs and outputs.

For non-arrayed interfaces (meaning array dimensionally stays the same between stages), it is a link-time
error if the input variable is not declared with the same type, including array dimensionality, as the
matching output variable.

The link-time type-matching rules apply to all declared input and output variables, whether or not they are
used.

51

4 Variables and Types

Additionally, tessellation evaluation shaders support per-patch input variables declared with the patch and
in qualifiers. Per-patch input variables are filled with the values of per-patch output variables written by
the tessellation control shader. Per-patch inputs may be declared as one-dimensional arrays, but are not
indexed by vertex number. Applying the patch qualifier to inputs can only be done in tessellation
evaluation shaders. As with other input variables, per-patch inputs must be declared using the same type
and qualification as per-patch outputs from the previous (tessellation control) shader stage. It is a
compile-time error to use patch with inputs in any other stage.

It is a compile-time error to declare a tessellation control, tessellation evaluation or geometry shader input
with, or that contains, any of the following types:

• A boolean type

• An opaque type

• An array, except for

• per-vertex variables in the tessellation control, tessellation evaluation and geometry shaders

• per-sample variables in the fragment shader

• A structure

Fragment shader inputs get per-fragment values, typically interpolated from a previous stage's outputs.

It is a compile-time error to declare a fragment shader input with, or that contains, any of the following
types:

• A boolean type

• An opaque type

• An array of arrays

• An array of structures

• A structure containing an array

• A structure containing a structure

Fragment shader inputs that are, or contain, integer types must be qualified with the interpolation qualifier
flat.

Fragment inputs are declared as in the following examples:

in vec3 normal;
centroid in vec2 TexCoord;
flat in vec3 myColor;

52

4 Variables and Types

The fragment shader inputs form an interface with the last active shader in the vertex processing pipeline.
For this interface, the last active shader stage output variables and fragment shader input variables of the
same name must match in type and qualification, with a few exceptions: The storage qualifiers must, of
course, differ (one is in and one is out). Also, auxiliary qualification (e.g. centroid) may differ. When
auxiliary qualifiers do not match, those provided in the fragment shader supersede those provided in
previous stages. If any such qualifiers are completely missing in the fragment shaders, then the default is
used, rather than any qualifiers that may have been declared in previous stages. That is, what matters is
what is declared in the fragment shaders, not what is declared in shaders in previous stages.

When an interface between shader stages is formed using shaders from two separate program objects, it is
not possible to detect mismatches between inputs and outputs when the programs are linked. When there
are mismatches between inputs and outputs on such interfaces, attempting to use the two programs in the
same program pipeline will result in program pipeline validation failures, as described in section 7.4.1
(“Shader Interface Matching”) of the OpenGL ES 3.2 Specification.

Shaders can ensure matches across such interfaces either by using input and output layout qualifiers
(sections 4.4.1 “Input Layout Qualifiers” and 4.4.2 “Output Layout Qualifiers”) or by using identical input
and output declarations of blocks or variables. Complete rules for interface matching are found in section
7.4.1 “Shader Interface Matching” of the OpenGL ES 3.2 Graphics System Specification.

Compute shaders do not permit user-defined input variables and do not form a formal interface with any
other shader stage. See section 7.1.6 (“Compute Shader Special Variables”) for a description of built-in
compute shader input variables. All other input to a compute shader is retrieved explicitly through image
loads, texture fetches, loads from uniforms or uniform buffers, or other user supplied code.

4.3.5 Uniform Variables

The uniform qualifier is used to declare global variables whose values are the same across the entire
primitive being processed. All uniform variables are read-only. Except for variables declared within a
uniform block, all uniform variables are initialized to 0 at link time and may be updated through the API.

Example declarations are:

uniform vec4 lightPosition;

The uniform qualifier can be used with any of the basic data types, or when declaring a variable whose
type is a structure, or an array of any of these.

There is an implementation dependent limit on the amount of storage for uniforms that can be used for
each type of shader and if this is exceeded it will cause a compile-time or link-time error. Uniform
variables that are declared but not statically used do not count against this limit. The number of user-
defined uniform variables and the number of built-in uniform variables that are used within a shader are
added together to determine whether available uniform storage has been exceeded.

Uniforms in shaders all share a single global name space when linked into a program or separable
program. Hence, the types, precisions and any location specifiers of all declared uniform variables with
the same name must match across shaders that are linked into a single program. However it is not
required to repeat the location specifier in all the linked shaders. While this single uniform name space is
cross stage, a uniform variable name's scope is per stage: If a uniform variable name is declared in one
stage (e.g., a vertex shader) but not in another (e.g., a fragment shader), then that name is still available in
the other stage for a different use.

53

4 Variables and Types

A compile or link error is generated if any of the explicitly given or compiler generated uniform locations
is greater than the implementation-defined maximum number of uniform locations minus one.

Unlike locations for inputs and outputs, uniform locations are logical values, not register locations, and
there is no concept of overlap. For example:

layout (location = 2) uniform mat4 x;
layout (location = 3) uniform mat4 y; // No overlap with x

layout(location = 2) in mat4 x;
layout(location = 3) in mat4 y; // Error, locations conflict with x

4.3.6 Output Variables

Shader output variables are declared with the out storage qualifier. They form the output interface
between the declaring shader and the subsequent stages of the OpenGL ES pipeline. Output variables
must be declared at global scope. During shader execution they will behave as normal unqualified global
variables. Their values are copied out to the subsequent pipeline stage on shader exit. Only output
variables that are read by the subsequent pipeline stage need to be written; it is allowed to have
superfluous declarations of output variables.

There is not an inout storage qualifier for declaring a single variable name as both input and output to a
shader. Also, a variable cannot be declared with both the in and the out qualifiers, this will result in an
error. Output variables must be declared with different names than input variables, where the names
include the instance name of any enclosing block.

Vertex, tessellation evaluation and geometry output variables output per-vertex data. and are declared
using the out storage qualifier. Applying patch to an output can only be done in a tessellation control
shader. It is a compile-time error to use patch on outputs in any other stage.

It is a compile-time error to declare a vertex, tessellation evaluation, tessellation control or geometry
shader output with, or that contains, any of the following types:

• A boolean type

• An opaque type

• An array of arrays

• An array of structures (except for redeclaring the built-in gl_PerVertex structure)

• A structure containing an array

• A structure containing a structure

Vertex shader outputs that are, or contain, integer types must be qualified with the interpolation qualifier
flat.

Individual outputs are declared as in the following examples:

54

4 Variables and Types

out vec3 normal;
centroid out vec2 TexCoord;
invariant centroid out vec4 Color;
flat out vec3 myColor;
sample out vec4 perSampleColor;

These can also appear in interface blocks, as described in section 4.3.9 (“Interface Blocks”). Interface
blocks allow simpler addition of arrays to the interface from vertex to geometry shader. They also allow a
fragment shader to have the same input interface as a geometry shader for a given vertex shader.

Tessellation control shader output variables are used to output per-vertex and per-patch data. Per-vertex
output variables are arrayed (see arrayed under section 4.3.4 “Input Variables”) and declared using the
out qualifier without the patch qualifier. Per-patch output variables are declared using the patch and out
qualifiers.

Since tessellation control shaders produce an arrayed primitive comprising multiple vertices, each per-
vertex output variable (or output block, see interface blocks below) needs to be declared as an array. For
example,

out float foo[]; // feeds next stage input “in float foo[]”

Each element of such an array corresponds to one vertex of the primitive being produced. Each array can
optionally have a size declared. The array size will be set by (or if provided must be consistent with) the
output layout declaration(s) establishing the number of vertices in the output patch, as described later in
section 4.4.2.1 (“Tessellation Control Outputs”).

Each tessellation control shader invocation has a corresponding output patch vertex, and may assign
values to per-vertex outputs only if they belong to that corresponding vertex. If a per-vertex output
variable is used as an l-value, it is a compile-time or link-time error if the expression indicating the vertex
index is not the identifier gl_InvocationID.
The order of execution of a tessellation control shader invocation relative to the other invocations for the
same input patch is undefined unless the built-in function barrier() is used. This provides some control
over relative execution order. When a shader invocation calls barrier(), its execution pauses until all
other invocations have reached the same point of execution. Output variable assignments performed by
any invocation executed prior to calling barrier() will be visible to any other invocation after the call to
barrier() returns.

Because tessellation control shader invocations execute in undefined order between barriers, the values of
per-vertex or per-patch output variables will sometimes be undefined. Consider the beginning and end of
shader execution and each call to barrier() as synchronization points. The value of an output variable
will be undefined in any of the three following cases:

1. At the beginning of execution.

2. At each synchronization point, unless

• the value was well-defined after the previous synchronization point and was not written by
any invocation since, or

• the value was written by exactly one shader invocation since the previous synchronization
point, or

55

4 Variables and Types

• the value was written by multiple shader invocations since the previous synchronization
point, and the last write performed by all such invocations wrote the same value.

3. When read by a shader invocation, if

• the value was undefined at the previous synchronization point and has not been writen by the
same shader invocation since, or

• the output variable is written to by any other shader invocation between the previous and
next synchronization points, even if that assignment occurs in code following the read.

Fragment outputs output per-fragment data and are declared using the out storage qualifier. It is an error
to use auxiliary storage or interpolation qualifiers in a fragment shader output declaration. It is a compile-
time error to declare a fragment shader output with, or that contains, any of the following types :

• A boolean type

• An opaque type

• A matrix

• A structure

• An array of arrays

Fragment shader outputs declared as arrays may only be indexed by a constant integral expression.

Fragment outputs are declared as in the following examples:

out vec4 FragmentColor;
out uint Luminosity;

Compute shaders have no built-in output variables, do not support user-defined output variables and do
not form a formal interface with any other shader stage. All outputs from a compute shader take the form
of the side effects such as image stores and operations on atomic counters.

4.3.7 Buffer Variables

The buffer qualifier is used to declare global variables whose values are stored in the data store of a
buffer object bound through the OpenGL ES API. Buffer variables can be read and written, with the
underlying storage shared among all active shader invocations. Buffer variable memory reads and writes
within a single shader invocation are processed in order. However, the order of reads and writes
performed in one invocation relative to those performed by another invocation is largely undefined.
Buffer variables may be qualified with memory access qualifiers affecting how the underlying memory is
accessed, as described in 4.10 (“Memory Access Qualifiers”).

The buffer qualifier can be used with any type except:

• An opaque type

56

4 Variables and Types

Buffer variables may only be declared inside interface blocks (section 4.3.9 “Interface Blocks”), which
are then referred to as shader storage blocks1. It is a compile-time error to declare buffer variables at
global scope (outside a block). Buffer variables cannot have initializers.

// use buffer to create a buffer block (shader storage block)
buffer BufferName { // externally visible name of buffer
 int count; // typed, shared memory...
 ... // ...
 vec4 v[]; // last element may be an array that is not sized
 // until after link time (dynamically sized)
} Name; // name of block within the shader

There are implementation-dependent limits on the number of the shader storage blocks used for each type
of shader, the combined number of shader storage blocks used for a program, and the amount of storage
required by each individual shader storage block. If any of these limits are exceeded, it will cause a
compile-time or link-time error.

If multiple shaders are linked together, then they will share a single global buffer variable name space.
Hence, the types of declared buffer variables with the same name must match across all shaders that are
linked into a single program.

Precision qualifiers for such variables need not match.

4.3.8 Shared Variables

The shared qualifier is used to declare variables that have storage shared between all work items in a
compute shader local work group. Variables declared as shared may only be used in compute shaders
(see section 2.6 “Compute Processor”). Shared variables are implicitly coherent (see section 4.10
“Memory Access Qualifiers”).

Variables declared as shared may not have initializers and their contents are undefined at the beginning
of shader execution. Any data written to shared variables will be visible to other work items (executing
the same shader) within the same local work group.

In the absence of synchronization, the order of reads and writes to the same shared variable by different
invocations of a shader is not defined.

In order to achieve ordering with respect to reads and writes to shared variables, a combination of control
flow and memory barriers must be employed using the barrier() and memoryBarrier() functions (see
section 8.15 “Shader Invocation Control Functions”).

There is a limit to the total size of all variables declared as shared in a single program. This limit,
expressed in units of basic machine units may be determined by using the OpenGL API to query the value
of MAX_COMPUTE_SHARED_MEMORY_SIZE.

1 The terms shader storage buffer (object), and shader storage block are often used interchangeably. The former
generally refers to the underlying storage whereas the latter refers only to the interface definition in the shader.
Similarly for uniform buffer objects and uniform blocks.

57

4 Variables and Types

4.3.9 Interface Blocks

Input, output, uniform and buffer variable declarations can be grouped into named interface blocks to
provide coarser granularity backing than is achievable with individual declarations. They can have an
optional instance name, used in the shader to reference their members. An output block of one
programmable stage is backed by a corresponding input block in the following programmable stage. A
uniform block is backed by the application with a buffer object. A block of buffer variables, called a
shader storage block, is also backed by the application with a buffer object. It is a compile-time error to
have an input block in a vertex shader or an output block in a fragment shader.

An interface block is started by an in, out, uniform or buffer keyword, followed by a block name,
followed by an open curly brace ({) as follows:

interface-block:
layout-qualifieropt interface-storage-qualifier block-name { member-list } instance-nameopt ;

layout-qualifier:
layout (layout-qualifier-id-list)

layout-qualifier-id-list:
layout-qualifier-id
layout-qualifier-id , layout-qualifier-id-list

interface-storage-qualifier:
in
out
patch in // Note: qualifiers can be in any order
patch out
uniform
buffer

member-list:
member-declaration
member-declaration member-list

member-declaration:
layout-qualifieropt qualifiersopt type declarators ; // Note: qualifiers can be in any order

instance-name:
identifier
identifier [constant-integral-expression]

Each of the above elements is discussed below, with the exception of layout qualifiers (layout-qualifier),
which are defined in the next section.

First, an example,

58

4 Variables and Types

uniform Transform {
 mat4 ModelViewMatrix;
 mat4 ModelViewProjectionMatrix;
 uniform mat3 NormalMatrix; // allowed restatement of qualifier
 float Deformation;
};

The above establishes a uniform block named “Transform” with four uniforms grouped inside it.

Types and declarators are the same as for other input, output, uniform and buffer variable declarations
outside blocks, with these exceptions:

• Opaque types are not allowed

• Structure definitions cannot be nested inside a block

• Arrays of arrays of blocks are not allowed

If no optional qualifier is used in a member-declaration, the qualification of the member includes all in,
out, patch, uniform, or buffer as determined by interface-qualifier. If optional qualifiers are used, they
can include interpolation qualifiers, auxiliary storage qualifiers, and storage qualifiers and they must
declare an input, output, or uniform member consistent with the interface qualifier of the block: Input
variables, output variables, uniform variables, and buffer members can only be in in blocks, out blocks,
uniform blocks, and shader storage blocks, respectively.

Repeating the in, out, uniform or buffer interface qualifier for a member's storage qualifier is optional.
For example,

uniform Transform
{
 uniform mat4 model_view; // legal, uniform inside a uniform block.
 mat4 projection; // legal, 'uniform' inherited from block.
 in bool transform_flag; // illegal, conflicting storage qualifiers
};

A shader interface is defined to be one of these:

• All the uniform variables and uniform blocks declared in a program. This spans all compilation
units linked together within one program.

• All shader storage blocks.

• The boundary between adjacent programmable pipeline stages: This spans all the outputs
declared in the first stage and all the inputs declared in the second stage. Note that for the
purposes of this definition, the fragment shader and the preceding shader are considered to have
a shared boundary even though in practice, all values passed to the fragment shader first pass
through the rasterizer and interpolator.

59

4 Variables and Types

The block name (block-name) is used to match across shader interfaces: an output block of one pipeline
stage will be matched to an input block with the same name in the subsequent pipeline stage. For uniform
or shader storage blocks, the application uses the block name to identify the block. Block names have no
other use within a shader beyond interface matching; it is an error to use a block name at global scope for
anything other than as a block name (e.g., use of a block name for a global variable name or function
name is currently reserved). It is a compile-time error to use the same block name for more than one
block declaration in the same shader interface (as defined above) within one shader, even if the block
contents are identical.

Matched block names within a shader interface (as defined above) must match in terms of having the
same number of declarations with the same sequence of types, precisions and the same sequence of
member names, as well as having the same member-wise layout qualification (see next section).
Furthermore, if a matching block is declared as an array, then the array sizes must also match (or
follow array matching rules for the shader interface between consecutive shader stages). A block name is
allowed to have different definitions in different shader interfaces within the same shader, allowing, for
example, an input block and output block to have the same name..

60

4 Variables and Types

If an instance name (instance-name) is not used, the names declared inside the block are scoped at the
global level and accessed as if they were declared outside the block. If an instance name (instance-name)
is used, then it puts all the members inside a scope within its own name space, accessed with the field
selector (.) operator (analogously to structures). For example,

uniform Transform_1
{
 mat4 modelview;
};

uniform Transform_2
{
 mat4 projection;
} transform_2;

mat4 modelview; // illegal as modelview already defined at this scope
mat4 projection; // legal as projection and transform_2.projection are
 // distinct.
in Light
{
 vec4 LightPos;
 vec3 LightColor;
};

in ColoredTexture
{
 vec4 Color;
 vec2 TexCoord;
} Material; // instance name

vec3 Color; // different Color than Material.Color
vec4 LightPos; // illegal, already defined
...
... = LightPos; // accessing LightPos
... = Material.Color; // accessing Color in ColoredTexture block

Matched uniform or shader storage block names (but not input or output block names) must also either all
be lacking an instance name or all having an instance name, thereby putting their members at the same
scoping level. When instance names are present on matched block names, it is allowed for the instance
names to differ; they need not match for the blocks to match.

Outside the shading language (i.e., in the API), members are similarly identified except the block name is
always used in place of the instance name (API accesses are to interfaces, not to shaders). If there is no
instance name, then the API does not use the block name to access a member, just the member name. For
example:

61

4 Variables and Types

uniform Transform_1
{
 mat4 modelview; // API will use “modelview”
};

uniform Transform_2
{
 mat4 projection; // API will use “Transform_2.projection”
} transform_2;

Within a shader interface, all declarations of the same global name must be for the same object and must
match in type and in whether they declare a variable or member of a block with no instance name. The
API also needs this name to uniquely identify an object in the shader interface. It is a link-time error if
any particular shader interface contains

• two different blocks, each having no instance name, and each having a member of the same
name

or

• a variable outside a block, and a block with no instance name, where the variable has the same
name as a member in the block.

For blocks declared as arrays, the array index must also be included when accessing members, as in this
example

uniform Transform { // API uses “Transform[2]” to refer to instance 2
 mat4 ModelViewMatrix;
 mat4 ModelViewProjectionMatrix;
 float Deformation;
} transforms[4];
...
... = transforms[2].ModelViewMatrix; // shader access of instance 2
// API uses “Transform.ModelViewMatrix” to query an offset or other query

For uniform or shader storage blocks declared as an array, each individual array element corresponds to a
separate buffer object bind range, backing one instance of the block. As the array size indicates the
number of buffer objects needed, uniform and shader storage block array declarations must specify an
array size. All indices used to index a shader storage block array must be constant integral expressions.
A uniform block array can only be indexed with a dynamically uniform integral expression, otherwise
results are undefined.

When using OpenGL ES API entry points to identify the name of an individual block in an array of
blocks, the name string may include an array index (e.g., Transform[2]). When using OpenGL ES API
entry points to refer to offsets or other characteristics of a block member, an array index must not be
specified (e.g., Transform.ModelViewMatrix). See section 7.3.1 (“Program Interfaces”) in the OpenGL
ES 3.2 specification for details.

62

4 Variables and Types

Tessellation control, tessellation evaluation and geometry shader input blocks must be declared as arrays
and follow the array declaration and linking rules for all shader inputs for the respective stages. All other
input and output block arrays must specify an array size.

There are implementation-dependent limits on the number of uniform blocks and the number of shader
storage blocks that can be used per stage. If either limit is exceeded, it will cause a link error.

4.4 Layout Qualifiers
Layout qualifiers can appear in several forms of declaration. They can appear as part of an interface
block definition or block member, as shown in the grammar in the previous section. They can also appear
with just an interface-qualifier to establish layouts of other declarations made with that qualifier:

layout-qualifier interface-qualifier ;

Or, they can appear with an individual variable declared with an interface qualifier:

layout-qualifier interface-qualifier declaration ;

Declarations of layouts can only be made at global scope, and only where indicated in the following
subsections; their details are specific to what the interface qualifier is, and are discussed individually.

Interface qualifiers are a subset of storage qualifiers:

interface-qualifier:
uniform
buffer
in
out

As shown in the previous section, layout-qualifier expands to:

layout-qualifier :
layout (layout-qualifier-id-list)

layout-qualifier-id-list :
layout-qualifier-id
layout-qualifier-id , layout-qualifier-id-list

layout-qualifier-id:
layout-qualifier-name
layout-qualifier-name = layout-qualifier-value
shared

The tokens in any layout-qualifier-id-list are identifiers, not keywords and they have their own name
space. Generally, they can be listed in any order. Order-dependent meanings exist only if explicitly
called out below. As for other identifiers, they are case sensitive.

The set of allowed layout qualifiers depends on the shader, the interface and the variable type as specified
in the following sections. For example, a sampler in the default uniform block in a fragment shader can
have location and binding layout qualifiers but no others. Invalid use of layout qualifiers is an error.

The following table summarizes the use of layout qualifiers. It shows for each one what kinds of
declarations it may be applied to. These are all discussed in detail in the following sections.

63

4 Variables and Types

Layout Qualifier Qualifier
Only

Individual
Variable

Block Block
Member

Allowed interfaces

shared
packed
std140
std430

X X

uniform/buffer
row_major
column_major

X X X

binding = opaque
types only

X

offset = atomic_uint
only

location = X uniform/buffer

location =
X X X

all in/out, except for
compute

triangles
quads
isolines

X tessellation evaluation in

equal_spacing
fractional_even_spacing
fractional_odd_spacing

X tessellation evaluation in

cw
ccw

X tessellation evaluation in

point_mode X tessellation evaluation in

points X geometry in/out

points
lines
lines_adjacency
triangles
triangles_adjacency

X geometry in

invocations = X geometry in

early_fragment_tests X fragment in

local_size_x =
local_size_y =
local_size_z =

X
compute in

vertices = X tessellation control out

64

4 Variables and Types

Layout Qualifier Qualifier
Only

Individual
Variable

Block Block
Member

Allowed interfaces

[points]
line_strip
triangle_strip

X geometry out

max_vertices = X geometry out

rgba32f
rgba16f
r32f
rgba8
rgba8_snorm

rgba32i
rgba16i
rgba8i
r32i

rgba32ui
rgba16ui
rgba8ui
r32ui

image types
only

uniform

blend_support_multiply
blend_support_screen
blend_support_overlay
blend_support_darken
blend_support_lighten
blend_support_colordodge
blend_support_colorburn
blend_support_hardlight
blend_support_softlight
blend_support_difference
blend_support_exclusion
blend_support_hsl_hue
blend_support_hsl_saturation
blend_support_hsl_color
blend_support_hsl_luminosity
blend_support_all_equations

X X fragment out

4.4.1 Input Layout Qualifiers

All shaders except compute shaders allow input layout qualifiers on input variable declarations. The
layout qualifier identifier for shader inputs is:

65

4 Variables and Types

layout-qualifier-id:
location = integer-constant

Only one argument is accepted. For example,

layout(location = 3) in vec4 normal;

will establish that the shader input normal is copied in from vector location number 3. For vertex shader
inputs, the location specifies the number of the vertex attribute from which input values are taken. For
inputs of all other shader types, the location specifies a vector number that can be used to match against
outputs from a previous shader stage, even if that shader is in a different program object.

The following language describes how many locations are consumed by a given type. However, geometry
shader inputs, tessellation control shader inputs and outputs, and tessellation evaluation inputs all have an
additional level of arrayness relative to other shader inputs and outputs. This outer array level is removed
from the type before considering how many locations the type consumes.

If a shader input is any scalar or vector type, it will consume a single location.

If the declared input (after potentially removing an outer array level as just described above) is an array of
size n and each of the elements takes m locations, it will be assigned m * n consecutive locations starting
with the location specified. For example,

layout (location = 6) in vec4 colors[3];

will establish that the shader input colors is assigned to vector location numbers 6, 7, and 8.

If the declared input is an n x m matrix, it will be assigned multiple locations starting with the location
specified. The number of locations assigned for each matrix will be the same as for an n-element array of
m-component vectors. For example,

layout (location = 9) in mat4 transforms[2];

will establish that shader input transforms is assigned to vector locations 9-16, with transforms[0] being
assigned to locations 9-12, and transforms[1] being assigned to locations 13-16.

If the declared input is a structure or block, its members will be assigned consecutive locations in their
order of declaration, with the first member assigned the location provided in the layout qualifier. For a
structure, this process applies to the entire structure. It is a compile-time error to use a location qualifier
on a member of a structure. For a block, this process applies to the entire block, or until the first member
is reached that has a location layout qualifier.

When a block member is declared with a location qualifier, its location comes from that qualifier: The
member's location qualifier overrides the block-level declaration. Subsequent members are again assigned
consecutive locations, based on the newest location, until the next member declared with a location
qualifier. The values used for locations do not have to be declared in increasing order.

If a block has no block-level location layout qualifier, it is required that either all or none of its members
have a location layout qualifier, or a compile-time error results.

66

4 Variables and Types

The locations consumed by block and structure members are determined by applying the rules above
recursively as though the structure member were declared as an input variable of the same type. For
example:

 layout(location = 3) in struct S
 {
 vec3 a; // gets location 3
 mat2 b; // gets locations 4 and 5
 vec4 c[2]; // gets locations 6 and 7
 layout (location = 8) vec2 A; // ERROR, can't use on struct member
 } s;

 layout(location = 4) in block
 {
 vec4 d; // gets location 4
 vec4 e; // gets location 5
 layout(location = 7) vec4 f; // gets location 7
 vec4 g; // gets location 8
 layout (location = 1) vec4 h; // gets location 1
 vec4 i; // gets location 2
 vec4 j; // gets location 3
 vec4 k; // ERROR, location 4 already used
 };

The number of input locations available to a shader is limited. For vertex shaders, the limit is the
advertised number of vertex attributes. For all other shaders, the limit is implementation-dependent and
must be no less than one fourth of the advertised maximum input component count.

A program will fail to link if any attached shader uses a location greater than or equal to the number of
supported locations, unless device-dependent optimizations are able to make the program fit within
available hardware resources.

A program will fail to link if explicit location assignments leave the linker unable to find space for other
variables without explicit assignments. For the purposes of determining if a non-vertex input matches an
output from a previous shader stage, the location layout qualifier (if any) must match.

If a vertex shader input variable with no location assigned in the shader text has a location specified
through the OpenGL ES API, the API-assigned location will be used. Otherwise, such variables will be
assigned a location by the linker. See section 11.1.1 “Vertex Attributes” of the OpenGL ES 3.2 Graphics
System Specification for more details.

It is an error if more than one input or element of a matrix input is bound to the same location.

4.4.1.1 Tessellation Evaluation Inputs

Additional input layout qualifier identifiers allowed for tessellation evaluation shaders are described
below.

67

4 Variables and Types

layout-qualifier-id:
primitive_mode
vertex_spacing
ordering
point_mode

The primitive-mode is used to specify a tessellation primitive mode to be used by the tessellation primitive
generator.

primitive-mode:
triangles
quads
isolines

If present, the primitive-mode specifies that the tessellation primitive generator should subdivide a triangle
into smaller triangles, a quad into triangles, or a quad into a collection of lines, respectively.

A second group of layout identifiers, vertex spacing, is used to specify the spacing used by the tessellation
primitive generator when subdividing an edge.

vertex-spacing:
equal_spacing
fractional_even_spacing
fractional_odd_spacing

equal_spacing specifies that edges should be divided into a collection of equal-sized segments;

fractional_even_spacing specifies that edges should be divided into an even number of equal-length
segments plus two additional shorter “fractional” segments; or

fractional_odd_spacing specifies that edges should be divided into an odd number of equal-length
segments plus two additional shorter “fractional” segments.

A third group of layout identifiers, ordering, specifies whether the tessellation primitive generator
produces triangles in clockwise or counter-clockwise order, according to the coordinate system depicted
in the OpenGL ES Specification.

ordering:
cw
ccw

The identifiers cw and ccw indicate clockwise and counter-clockwise triangles, respectively. If the
tessellation primitive generator does not produce triangles, the order is ignored.

Finally, point mode indicates that the tessellation primitive generator should produce one point for each
distinct vertex in the subdivided primitive, rather than generating lines or triangles.

point-mode:
point_mode

68

4 Variables and Types

Any or all of these identifiers may be specified one or more times in a single input layout declaration. The
tessellation evaluation shader object in a program must declare a primitive mode in its input layout.
Declaring vertex spacing, ordering or point mode identifiers is optional. If spacing or vertex order
declarations are omitted, the tessellation primitive generator will use equal spacing or counter-clockwise
vertex ordering, respectively. If a point mode declaration is omitted, the tessellation primitive generator
will produce lines or triangles according to the primitive mode.

4.4.1.2 Geometry Shader Inputs

Additional layout qualifier identifiers for geometry shader inputs include primitive identifiers and an
invocation count identifier:

layout-qualifier-id
points
lines
lines_adjacency
triangles
triangles_adjacency
invocations = integer-constant

The identifiers points, lines, lines_adjacency, triangles, and triangles_adjacency are used to specify the
type of input primitive accepted by the geometry shader, and only one of these is accepted. The geometry
shader must declare this input primitive layout.

The identifier invocations is used to specify the number of times the geometry shader executable is
invoked for each input primitive received. Invocation count declarations are optional. If no invocation
count is declared in the geometry shader, it will be run once for each input primitive. If an invocation
count is declared, all such declarations must specify the same count. If a shader specifies an invocation
count greater than the implementation-dependent maximum, it will fail to compile.

For example,

layout(triangles, invocations = 6) in;

will establish that all inputs to the geometry shader are triangles and that the geometry shader executable
is run six times for each triangle processed.

All geometry shader input unsized array declarations will be sized by an earlier input primitive layout
qualifier, when present, as per the following table.

Layout Size of Input Arrays

points 1

lines 2

lines_adjacency 4

triangles 3

triangles_adjacency 6

69

4 Variables and Types

The intrinsically declared input array gl_in[] will also be sized by any input primitive-layout declaration.
Hence, the expression

gl_in.length()

will return the value from the table above.

An input can be declared without an array size if there is a previous layout which specifies the size. For
built-in inputs (e.g. gl_in[]), a layout must be declared before any use.

It is a compile-time error if a layout declaration's array size (from the table above) does not match all the
explicit array sizes specified in declarations of an input variables in the same shader. The following
includes examples of compile-time errors:

// code sequence within one shader...
in vec4 Color2[2]; // legal, size is 2
in vec4 Color3[3]; // illegal, input sizes are inconsistent
layout(lines) in; // legal for Color2, input size is 2, matching Color2
in vec4 Color4[3]; // illegal, contradicts layout of lines
layout(lines) in; // legal, matches other layout() declaration
layout(triangles) in; // illegal, does not match earlier layout()
 // declaration

It is a link-time error if not all provided sizes (sized input arrays and layout size) match in the geometry
shader of a program.

4.4.1.3 Fragment Shader Inputs

Fragment shaders can have an input layout for redeclaring the built-in variable gl_FragCoord:

in vec4 gl_FragCoord; // redeclaration that changes nothing is allowed

The built-in gl_FragCoord is only predeclared in fragment shaders, so redeclaring it in any other shader
language results in a compile-time error.

Fragment shaders also allow the following layout qualifier on in only (not with variable declarations):

layout-qualifier-id:
early_fragment_tests

to request that fragment tests be performed before fragment shader execution, as described in Section 13.6
(“Early Fragment Tests”) of the OpenGL ES Specification.

For example,

layout(early_fragment_tests) in;

Specifying this will make per-fragment tests be performed before fragment shader execution. In addition
it is an error to statically write to gl_FragDepth in the fragment shader. If this is not declared, per-
fragment tests will be performed after fragment shader execution.

70

4 Variables and Types

4.4.1.4 Compute Shader Inputs

There are no layout location qualifiers for compute shader inputs.

Layout qualifier identifiers for compute shader inputs are the work-group size qualifiers:

layout-qualifier-id:
local_size_x = integer-constant
local_size_y = integer-constant
local_size_z = integer-constant

The local_size_x, local_size_y, and local_size_z qualifiers are used to declare a fixed local group size by
the compute shader in the first, second, and third dimension, respectively. The default size in each
dimension is 1.

For example, the following declaration in a compute shader

layout (local_size_x = 32, local_size_y = 32) in;

is used to declare a two-dimensional compute shader with a local size of 32 X 32 elements, which is
equivalent to a three-dimensional compute shader where the third dimension has size one.

As another example, the declaration

layout (local_size_x = 8) in;

effectively specifies that a one-dimensional compute shader is being compiled, and its size is 8 elements.

If the fixed local group size of the shader in any dimension is greater than the maximum size supported by
the implementation for that dimension, a compile-time error results. Also, if such a layout qualifier is
declared more than once in the same shader, all those declarations must set the same set of local work-
group sizes and set them to the same values; otherwise a compile-time error results.

Furthermore, if a program object contains a compute shader, that shader must contain an input layout
qualifier specifying a fixed local group size for the program, or a link-time error will occur.

4.4.2 Output Layout Qualifiers

Some output layout qualifiers apply to all shader stages and some apply only to specific stages. The latter
are discussed in separate sections below.

As with input layout qualifiers, all shaders except compute shaders allow location layout qualifiers on
output variable declarations, output block declarations, and output block member declarations.

The layout qualifier identifier for shader outputs is:

layout-qualifier-id:
location = integer-constant

The usage and rules for applying the location qualifier to blocks and structures are exactly as described in
section 4.4.1 (“Input Layout Qualifiers”).

71

4 Variables and Types

The qualifier may appear at most once within a declaration. For example, in a fragment shader,

layout(location = 3) out vec4 color;

will establish that the fragment shader output color is copied out to draw buffer 3.

For fragment shader outputs, the location specifies the color output number receiving the values of the
output. For outputs of all other shader stages, the location specifies a vector number that can be used to
match against inputs in a subsequent shader stage, even if that shader is in a different program object.

Declared outputs of scalar or vector type consume a single location.

If the declared output is an array, it will be assigned consecutive locations starting with the location
specified. For example, in a fragment shader,

layout(location = 2) out vec4 colors[3];

will establish that colors is copied out to locations (i.e. draw buffers) 2, 3, and 4.

If the declared output is an n x m matrix, it will be assigned multiple locations starting with the location
specified. The number of locations assigned will be the same as for an n-element array of m-component
vectors.

If the declared output is a structure, its members will be assigned consecutive locations in the order of
declaration, with the first member assigned the location specified for the structure. The number of
locations consumed by a structure member is determined by applying the rules above recursively as
though the structure member were declared as an output variable of the same type.

Location layout qualifiers may be used on output variables declared as structures, but it is a compile-time
error to use them on individual members. Location layout qualifiers may be used on output blocks and
output block members.

The number of output locations available to a shader is limited. For fragment shaders, the limit is the
advertised number of draw buffers.

For all other shaders, the limit is implementation-dependent and must be no less than one fourth of the
advertised maximum output component count (compute shaders have no outputs.) A program will fail to
link if any attached shader uses a location greater than or equal to the number of supported locations,
unless device-dependent optimizations are able to make the program fit within available hardware
resources.

Compile-time errors may also be given if at compile time it is known the link will fail. A negative output
location will result in an error.

A program will fail to link if any of the following occur:

• any two fragment shader output variables are assigned to the same location

• if any two output variables from the same vertex, tessellation or geometry shader stage are
assigned to the same location.

For all shader types, a program will fail to link if explicit location assignments leave the linker unable to
find space for other variables without explicit assignments.

72

4 Variables and Types

If an output variable has no location assigned in the shader text, it will be assigned a location by the
linker. See section 3.9.2 “Shader Execution” of the OpenGL ES Specification for more details.

For the purposes of determining if a non-fragment output matches an input from a subsequent shader
stage, the location layout qualifier (if any) must match.

4.4.2.1 Tessellation Control Outputs

Tessellation control shaders allow output layout qualifiers only on the interface qualifier out, not on an
output block, block member, or variable declaration. The output layout qualifier identifiers allowed for
tessellation control shaders are:

layout-qualifier-id
vertices = integer-constant

The identifier vertices specifies the number of vertices in the output patch produced by the tessellation
control shader, which also specifies the number of times the tessellation control shader is invoked. It is a
compile- or link-time error for the output vertex count to be less than or equal to zero, or greater than the
implementation-dependent maximum patch size.

The intrinsically declared tessellation control output array gl_out[] will also be sized by any output layout
declaration. Hence, the expression

gl_out.length()

will return the output patch vertex count specified in a previous output layout qualifier. For outputs
declared without an array size, including intrinsically declared outputs (i.e., gl_out), a layout must be
declared before any use of the method length() or other array use that requires its size to be known.

It is a compile-time error if the output patch vertex count specified in an output layout qualifier does not
match the array size specified in any output variable declaration in the same shader.

All tessellation control shader layout declarations in a program must specify the same output patch vertex
count. There must be at least one layout qualifier specifying an output patch vertex count in any program
containing a tessellation control shader.

4.4.2.2 Geometry Outputs

Geometry shaders can have two additional types of output layout identifiers: an output primitive type and
a maximum output vertex count. The primitive type and vertex count identifiers are allowed only on the
interface qualifier out, not on an output block, block member, or variable declaration.

The layout qualifier identifiers for geometry shader outputs are

layout-qualifier-id
points
line_strip
triangle_strip
max_vertices = integer-constant

73

4 Variables and Types

The primitive type identifiers points, line_strip, and triangle_strip are used to specify the type of output
primitive produced by the geometry shader, and only one of these is accepted. The geometry shader object
in a program must declare an output primitive type, and all geometry shader output primitive type
declarations in a program must declare the same primitive type.

The vertex count identifier max_vertices is used to specify the maximum number of vertices the shader
will ever emit in a single invocation. The geometry shader object in a program must declare a maximum
output vertex count, and all geometry shader output vertex count declarations in a program must declare
the same count.

In this example,

layout(triangle_strip, max_vertices = 60) out; // order does not matter
layout(max_vertices = 60) out; // redeclaration okay
layout(triangle_strip) out; // redeclaration okay
layout(points) out; // error, contradicts triangle_strip
layout(max_vertices = 30) out; // error, contradicts 60

all outputs from the geometry shader are triangles and at most 60 vertices will be emitted by the shader. It
is an error for the maximum number of vertices to be greater than gl_MaxGeometryOutputVertices.

All geometry shader output layout declarations in a program must declare the same layout and same value
for max_vertices. If geometry shaders are in a program, there must be at least one geometry output layout
declaration somewhere in that program.

4.4.2.3 Fragment Outputs

Fragment shaders can have an output layout for redeclaring the built-in variable gl_FragDepth:

out float gl_FragDepth; // redeclaration that changes nothing is allowed

The built-in gl_FragDepth is only predeclared in fragment shaders, so redeclaring it in any other shader
language results in an error.

If there is only a single output, the location does not need to be specified, in which case it defaults to zero.
This applies for all output types, including arrays. For example,

out vec4 my_FragColor; // must be the only output declaration

will establish that the fragment shader output my_FragColor is copied out to draw buffer 0. Likewise,

out vec4 my_FragData[4]; // must be the only output declaration

will establish that the fragment shader outputs my_FragData[0] to my_FragData[3] is copied out to
draw buffers 0 through 3 respectively.

If there is more than one fragment output, the location must be specified for all outputs. It is an error if
any of the following occur:

• The location of any fragment output or element of a fragment array output, is greater or equal to
the value of MAX_DRAW_BUFFERS.

74

4 Variables and Types

• More than one fragment output or element of a fragment array output is bound to the same
location.

 See section 11.1.3 “Shader Execution” of the OpenGL ES 3.2 Graphics System Specification for more
details.

Fragment shaders additionally support the following layout qualifiers, specifying a set of advanced blend
equations supported when the fragment shader is used. These layout qualifiers are only permitted on the
interface qualifier out, and use the identifiers specified in the “Layout Qualifier” column of the table
below.

If a layout qualifier in the table below is specified in the fragment shader, the fragment shader may be
used with the corresponding advanced blend equation in the “Blend Equation(s) Supported” column.
Additionally, the special qualifier blend_support_all_equations indicates that the shader may be used
with any advanced blending equation supported by the OpenGL ES Specification. It is not an error to
specify more than one of these identifiers in any fragment shader. Specifying more than one qualifier or
blend_support_all_equations means that the fragment shader may be used with multiple advanced blend
equations. Additionally, it is not an error to specify any single one of these layout qualifiers more than
once.

Layout Qualifier Blend Equations(s) Supported

blend_support_multiply MULTIPLY

blend_support_screen SCREEN

blend_support_overlay OVERLAY

blend_support_darken DARKEN

blend_support_lighten LIGHTEN

blend_support_colordodge COLORDODGE

blend_support_colorburn COLORBURN

blend_support_hardlight HARDLIGHT

blend_support_softlight SOFTLIGHT

blend_support_difference DIFFERENCE

blend_support_exclusion EXCLUSION

blend_support_hsl_hue HSL_HUE

blend_support_hsl_saturation HSL_SATURATION

blend_support_hsl_color HSL_COLOR

blend_support_hsl_luminosity HSL_LUMINOSITY

blend_support_all_equations all blend equations

75

4 Variables and Types

4.4.3 Uniform Variable Layout Qualifiers

The following layout qualifier can be used for all default-block uniform variables but not for variables in
uniform or shader storage blocks. The layout qualifier identifier for uniform variables is:

layout-qualifier-id:
location = integer-constant

The location specifies the location by which the OpenGL ES API can reference the uniform and update its
value. Individual elements of a uniform array are assigned consecutive locations with the first element
taking location location. No two default-block uniform variables in the program can have the same
location, even if they are unused, otherwise a compiler or linker error will be generated. Valid locations
for default-block uniform variable locations are in the range of 0 to the implementation-defined maximum
number of uniform locations minus one.

Locations can be assigned to default-block uniform arrays and structures. The first inner-most scalar,
vector or matrix member or element takes the specified location and the compiler assigns the next inner-
most member or element the next incremental location value. Each subsequent inner-most member or
element gets incremental locations for the entire structure or array. This rule applies to nested structures
and arrays and gives each inner-most scalar, vector, or matrix member a unique location. When the linker
generates locations for uniforms without an explicit location, it assumes for all uniforms with an explicit
location all their array elements and structure members are used and the linker will not generate a
conflicting location, even if that element or member is deemed unused.

4.4.4 Uniform and Shader Storage Block Layout Qualifiers

Layout qualifiers can be used for uniform and shader storage blocks, but not for non-block uniform
declarations. The layout qualifier identifiers for uniform and shader storage blocks are:

layout-qualifier-id:
shared
packed
std140
std430
row_major
column_major
binding = integer-constant

None of these have any semantic effect at all on the usage of the variables being declared; they only
describe how data is laid out in memory. For example, matrix semantics are always column-based, as
described in the rest of this specification, no matter what layout qualifiers are being used.

Uniform and shader storage block layout qualifiers can be declared for global scope, on a single uniform
or shader storage block, or on a single block member declaration.

Default layouts are established at global scope for uniform blocks as:

layout(layout-qualifier-id-list) uniform;

and for shader storage blocks as:

76

4 Variables and Types

layout(layout-qualifier-id-list) buffer;

When this is done, the previous default qualification is first inherited and then overridden as per the
override rules listed below for each qualifier listed in the declaration. The result becomes the new default
qualification scoped to subsequent uniform or shader storage block definitions.

The initial state of compilation is as if the following were declared:

layout(shared, column_major) uniform;
layout(shared, column_major) buffer;

Uniform and shader storage blocks can be declared with optional layout qualifiers, and so can their
individual member declarations. Such block layout qualification is scoped only to the content of the
block. As with global layout declarations, block layout qualification first inherits from the current default
qualification and then overrides it. Similarly, individual member layout qualification is scoped just to the
member declaration, and inherits from and overrides the block's qualification.

The shared qualifier overrides only the std140, std430 and packed qualifiers; other qualifiers are
inherited. The compiler/linker will ensure that multiple programs and programmable stages containing
this definition will share the same memory layout for this block, as long as they also matched in their
row_major and/or column_major qualifications. This allows use of the same buffer to back the same
block definition across different programs.

The packed qualifier overrides only std140, std430 and shared; other qualifiers are inherited. When
packed is used, no shareable layout is guaranteed. The compiler and linker can optimize memory use
based on what variables actively get used and on other criteria. Offsets must be queried, as there is no
other way of guaranteeing where (and which) variables reside within the block.

It is a link-time error to access the same packed uniform or shader storage block in multiple stages within
a program. Attempts to access the same packed uniform or shader storage block across programs can
result in conflicting member offsets and in undefined values being read. However, implementations may
aid application management of packed blocks by using canonical layouts for packed blocks.

The std140 and std430 qualifiers override only the packed, shared, std140 and std430 qualifiers; other
qualifiers are inherited. The std430 qualifier is supported only for shader storage blocks; a shader using
the std430 qualifier on a uniform block will fail to compile.

The layout is explicitly determined by this, as described in section 7.6.2.2 “Standard Uniform Block
Layout” of the OpenGL ES Graphics System Specification. Hence, as in shared above, the resulting
layout is shareable across programs.

Layout qualifiers on member declarations cannot use the shared, packed, std140, or std430 qualifiers.
These can only be used at global scope or on a block declaration.

The row_major and column_major qualifiers affect the layout of only matrices, including all matrices
contained in structures and arrays they are applied to, to all depths of nesting. These qualifiers can be
applied to other types, but will have no effect.

The row_major qualifier overrides only the column_major qualifier; other qualifiers are inherited.
Elements within a matrix row will be contiguous in memory.

77

4 Variables and Types

The column_major qualifier overrides only the row_major qualifier; other qualifiers are inherited.
Elements within a matrix column will be contiguous in memory.

The binding qualifier specifies the binding point corresponding to the uniform or shader storage block,
which will be used to obtain the values of the member variables of the block. It is a compile-time error to
specify the binding qualifier for the global scope or for block member declarations. Any uniform or
shader storage block declared without a binding qualifier is initially assigned to block binding point zero.
After a program is linked, the binding points used for uniform (but not shader storage) blocks declared
with or without a binding qualifier can be updated by the OpenGL ES API.

If the binding qualifier is used with a uniform block or shader storage block instanced as an array, the first
element of the array takes the specified block binding and each subsequent element takes the next
consecutive binding point.

If the binding point for any uniform or shader storage block instance is less than zero, or greater than or
equal to the implementation-dependent corresponding maximum number of buffer bindings, a compile-
time error will occur. When the binding qualifier is used with a uniform or shader storage block instanced
as an array of size N, all elements of the array from binding through binding + N – 1 must be within this
range.

When multiple arguments are listed in a layout declaration, the effect will be the same as if they were
declared one at a time, in order from left to right, each in turn inheriting from and overriding the result
from the previous qualification.

78

4 Variables and Types

For example

layout(row_major, column_major)

results in the qualification being column_major. Other examples:

layout(shared, row_major) uniform; // default is now shared and row_major

layout(std140) uniform Transform { // layout of this block is std140
 mat4 M1; // row_major
 layout(column_major) mat4 M2; // column major
 mat3 N1; // row_major
};

uniform T2 { // layout of this block is shared
 ...
};

layout(column_major) uniform T3 { // shared and column_major
 mat4 M3; // column_major
 layout(row_major) mat4 m4; // row major
 mat3 N2; // column_major
};

4.4.5 Opaque Uniform Layout Qualifiers

Uniform layout qualifiers can be used to bind opaque uniform variables to specific buffers or units.
Samplers can be bound to texture image units, images can be bound to image units, and atomic counters
can be bound to buffers.

Sampler, image and atomic counter types take the uniform layout qualifier identifier for binding:

layout-qualifier-id:
binding = integer-constant

The identifier binding specifies which unit will be bound. Any uniform sampler, image or atomic counter
variable declared without a binding qualifier is initially bound to unit zero. After a program is linked, the
unit referenced by a sampler uniform variable declared with or without a binding qualifier can be updated
by the OpenGL ES API.

If the binding qualifiier is used with an array, the first element of the array takes the specified unit and
each subsequent element takes the next consecutive unit.

If the binding is less than zero, or greater than or equal to the implementation-dependent maximum
supported number of units, a compile-time error will occur. When the binding qualifier is used with an
array of size N, all elements of the array from binding through binding + N - 1 must be within this range.

A link-time error will result if two shaders in a program specify different integer-constant bindings for the
same opaque-uniform name. However, it is not an error to specify a binding on some but not all
declarations for the same name, as shown in the examples below.

79

4 Variables and Types

// in one shader...
layout(binding=3) uniform sampler2D s; // s bound to unit 3

// in another shader...
uniform sampler2D s; // okay, s still bound at 3

// in another shader...
layout(binding=4) uniform sampler2D s; // ERROR: contradictory bindings

4.4.6 Atomic Counter Layout Qualifiers

Atomic counter layout qualifiers can be used on atomic counter declarations. The atomic counter
qualifiers are

layout-qualifier-id:
binding = integer-constant
offset = integer-constant

For example,

layout (binding = 2, offset = 4) uniform atomic_uint a;

will establish that the opaque handle to the atomic counter a will be bound to atomic counter buffer
binding point 2 at an offset of 4 basic machine units into that buffer. The default offset for binding point 2
will be post incremented by 4 (the size of an atomic counter).

A subsequent atomic counter declaration will inherit the previous (post incremented) offset. For example,
a subsequent declaration of

layout (binding = 2) uniform atomic_uint bar;

will establish that the atomic counter bar has a binding to buffer binding point 2 at an offset of 8 basic
machine units into that buffer. The offset for binding point 2 will again be post-incremented by 4 (the size
of an atomic counter).

When multiple variables are listed in a layout declaration, the effect will be the same as if they were
declared one at a time, in order from left to right.

Binding points are not inherited, only offsets. Each binding point tracks its own current default offset for
inheritance of subsequent variables using the same binding. The initial state of compilation is that all
binding points have an offset of 0. The offset can be set per binding point at global scope (without
declaring a variable). For example,

layout (binding = 2, offset = 4) uniform atomic_uint;

Establishes that the next atomic_uint declaration for binding point 2 will inherit offset 4 (but does not
establish a default binding):

layout (binding = 2) uniform atomic_uint bar; // offset is 4
layout (offset = 8) uniform atomic_uint bar; // error, no default binding

Atomic counters may share the same binding point, but if a binding is shared, their offsets must be either
explicitly or implicitly (from inheritance) unique and non overlapping.

80

4 Variables and Types

Example valid uniform declarations, assuming top of shader:

layout (binding=3, offset=4) uniform atomic_uint a; // offset = 4
layout (binding=2) uniform atomic_uint b; // offset = 0
layout (binding=3) uniform atomic_uint c; // offset = 8
layout (binding=2) uniform atomic_uint d; // offset = 4

Example of an invalid uniform declaration:

layout (offset=4) … // error, must include binding
layout (binding=1, offset=0) … a; // okay
layout (binding=2, offset=0) … b; // okay
layout (binding=1, offset=0) … c; // error, offsets must not be shared
 // between a and c
layout (binding=1, offset=2) … d; // error, overlaps offset 0 of a

It is a compile-time error to bind an atomic counter with a binding value greater than or equal to
gl_MaxAtomicCounterBindings.

4.4.7 Format Layout Qualifiers

Format layout qualifiers can be used on image variable declarations (those declared with a basic type
having “image” in its keyword). The format layout qualifier identifiers for image variable declarations
are:

layout-qualifier-id:
float-image-format-qualifier
int-image-format-qualifier
uint-image-format-qualifier
binding = integer-constant

float-image-format-qualifier:
rgba32f
rgba16f
r32f
rgba8
rgba8_snorm

int-image-format-qualifier:
rgba32i
rgba16i
rgba8i
r32i

uint-image-format-qualifier:
rgba32ui
rgba16ui
rgba8ui
r32ui

81

4 Variables and Types

A format layout qualifier specifies the image format associated with a declared image variable. Only one
format qualifier may be specified for any image variable declaration. For image variables with floating-
point component types (image*), signed integer component types (iimage*), or unsigned integer
component types (uimage*), the format qualifier used must match the float-image-format-qualifier, int-
image-format-qualifier, or uint-image-format-qualifier grammar rules, respectively. It is an error to
declare an image variable where the format qualifier does not match the image variable type.

The binding qualifier was described in section 4.4.5 “Opaque Uniform Layout Qualifiers”.

Any image variable must specify a format layout qualifier.

4.5 Interpolation Qualifiers
Inputs and outputs that could be interpolated can be further qualified by at most one of the following
interpolation qualifiers:

Qualifier Meaning

smooth perspective correct interpolation

flat no interpolation

The presence of and type of interpolation is controlled by the above interpolation qualifiers as well as the
auxiliary storage qualifiers centroid and sample. When no interpolation qualifier is present, smooth
interpolation is used. It is a compile-time error to use more than one interpolation qualifier. The auxiliary
storage qualifier patch is not used for interpolation; it is a compile-time error to use interpolation
qualifiers with patch.

A variable qualified as flat will not be interpolated. Instead, it will have the same value for every
fragment within a primitive. This value will come from a single provoking vertex, as described by the
OpenGL ES Graphics System Specification. A variable qualified as flat may also be qualified as
centroid or sample, which will mean the same thing as qualifying it only as flat.

A variable qualified as smooth will be interpolated in a perspective-correct manner over the primitive
being rendered. Interpolation in a perspective correct manner is specified in equations 13.4 in the
OpenGL ES 3.2 Graphics System Specification, section 13.4.1 “Line Segments” and equation 13.7,
section 13.5.1 “Polygon Interpolation”.

When single-sampling, or for fragment shader input variables qualified with neither centroid nor sample,
the value is interpolated to the pixel's center and a single value may be assigned to each sample within the
pixel, to the extent permitted by the OpenGL ES Specification.

82

4 Variables and Types

When multi-sampling, centroid and sample may be used to control the location and frequency of the
sampling of the qualified fragment shader input. If a fragment shader input is qualified with centroid, a
single value may be assigned to that variable for all samples in the pixel, but that value must be
interpolated at a location that lies in both the pixel and in the primitive being rendered, including any of
the pixel's samples covered by the primitive. Because the location at which the variable is interpolated
may be different in neighboring pixels, and derivatives may be computed by computing differences in
neighboring pixels, derivatives of centroid-sampled inputs may be less accurate than those for non-
centroid interpolated variables. If a fragment shader input is qualified with sample, a separate value must
be assigned to that variable for each covered sample in the pixel, and that value must be sampled at the
location of the individual sample.

4.6 Parameter Qualifiers
Parameters can have these qualifiers:

Qualifier Meaning

< none: default > same is in

in for function parameters passed into a function

out for function parameters passed back out of a function, but not initialized
for use when passed in

inout for function parameters passed both into and out of a function

Parameter qualifiers are discussed in more detail in section 6.1.1 “Function Calling Conventions”.

4.7 Precision and Precision Qualifiers

4.7.1 Range and Precision

The precision of highp floating-point variables is defined by the IEEE 754 standard for 32-bit floating-
point numbers. This includes support for NaNs (Not a Number) and Infs (positive or negative infinities).

The following rules apply to highp operations: Signed Iinfinities and zeros are generated as dictated by
IEEE, but subject to the precisions allowed in the following table. and subject to allowing positive and
negative zeros to be interchanged. However, dividing a non-zero by 0 results in the appropriately signed
IEEE Inf: If both positive and negative zeros are implemented, the correctly signed Inf will be generated,
otherwise positive Inf is generated. Any subnormal (denormalized) value input into a shader or
potentially generated by any operation in a shader can be flushed to 0. The rounding mode cannot be set
and is undefined. NaNs are not required to be generated. Support for signaling NaNs is not required and
exceptions are never raised. Operations andincluding built-in functions that operate on a NaN are not
required to return a NaN as the result. However if NaNs are generated, isnan() shouldmust return the
correct value.

Precisions are expressed in terms of maximum relative error in units of ULP (units in the last place),
unless otherwise noted.

83

4 Variables and Types

For single precision operations, precisions are required as follows:

Operation Precision

a + b, a – b, a * b Correctly rounded.

<, <=, ==, >, >= Correct result.

a / b, 1.0 / b 2.5 ULP for |b| in the range [2-126, 2126].

a * b + c Correctly rounded single operation or sequence of
two correctly rounded operations.

fma() Inherited from a * b + c

pow(x, y) Inherited from exp2 (x * log2 (y)).

exp (x), exp2 (x) (3 + 2 * |x|) ULP.

log (), log2 () 3 ULP outside the range [0.5, 2.0].

Absolute error < 2-21 inside the range [0.5, 2.0].

sqrt () Inherited from 1.0 / inversesqrt().

inversesqrt () 2 ULP.

explicit
conversions between types

Correctly rounded.

The rounding mode is not defined but must not affect the result by more than 1 ULP.

Built-in functions defined in the specification with an equation built from the above operations inherit the
above errors. These include, for example, the geometric functions, the common functions, and many of
the matrix functions. Built-in functions not listed above and not defined as equations of the above have
undefined precision. These include, for example, the trigonometric functions and determinant.

Storage requirements are declared through use of precision qualifiers. The precision of operations must
preserve the storage precisions of the variables involved.

highp floating point values are stored in IEEE 754 single precision floating point format. Mediump and
lowp floating point values have minimum range and precision requirements as detailed below and have
maximum range and precision as defined by IEEE 754.

All integral types are assumed to be implemented as integers and so may not be emulated by floating point
values. Highp signed integers are represented as twos-complement 32-bit signed integers. Highp
unsigned integers are represented as unsigned 32-bit integers. Mediump integers (signed and unsigned)
must be represented as an integer with between 16 and 32 bits inclusive. Lowp integers (signed and
unsigned) must be represented as an integer with between 9 and 32 bits inclusive.

84

4 Variables and Types

The required ranges and precisions for precision qualifiers are:

Qualifier Floating
Point Range

Floating Point
Magnitude

Range

Floating Point
Precision

Integer
Range

Signed Unsigned

highp Subset of
IEEE-754

(−2128 , 2128
)

Subset of IEEE-
754

0.0,[2−126 ,2128
)

Subset of IEEE
754

relative:

2−24

[−231 , 231
−1] [0 ,232

−1]

mediump
(minimum

requirements)
(−214 , 214

) (2−14 ,214
)

Relative:

2−10

[−215 , 215
−1] [0 ,216

−1]

lowp
(minimum

requirements)

(−2, 2) (2−8 ,2)
Absolute:

2−8

[−28 , 28
−1] [0 , 29

−1]

Relative precision is defined as the worst case (i.e. largest) ratio of the smallest step in relation to the
value for all non-zero values:

It is therefore twice the maximum rounding error when converting from a real number.

In addition, the range and precision of a mediump floating point value must be the same as or greater than
the range and precision of a lowp floating point value. The range and precision of a highp floating point
value must be the same as or greater than the range and precision of a mediump floating point value.

The range of a mediump integer value must be the same as or greater than the range of a lowp integer
value. The range of a highp integer value must be the same as or greater than the range of a mediump
integer value.

Within the above specification, an implementation is allowed to vary the representation of numeric values,
both within a shader and between different shaders. If necessary, this variance can be controlled using the
invariance qualifier.

The actual ranges and precisions provided by an implementation can be queried through the API. See the
OpenGL ES 3.2 specification for details on how to do this.

4.7.2 Conversion between precisions

Within the same type, conversion from a lower to a higher precision must be exact. When converting
from a higher precision to a lower precision, if the value is representable by the implementation of the
target precision, the conversion must also be exact. If the value is not representable, the behavior is
dependent on the type:

85

Precisionrelative=∣∣v1−v2∣min

v1
∣
max

v1 , v2≠0, v1≠v2

4 Variables and Types

• For signed and unsigned integers, the value is truncated; bits in positions not present in the target
precision are set to zero. (Positions start at zero and the least significant bit is considered to be
position zero for this purpose.)

• For floating point values, the value should either clamp to +INF or -INF, or to the maximum or
minimum value that the implementation supports. While this behavior is implementation
dependent, it should be consistent for a given implementation.

4.7.3 Precision Qualifiers

Any floating point, integer, opaque type declaration can have the type preceded by one of these precision
qualifiers:

Qualifier Meaning

highp The variable satisfies the minimum requirements for highp described above.
Highp variables have the maximum range and precision available but may
cause operations to run more slowly on some implementations.

mediump The variable satisfies the minimum requirements for mediump described
above. Mediump variables may typically be used to store high dynamic
range colors and low precision geometry.

lowp The variable satisfies the minimum requirements for lowp described above.
Lowp variables may typically be used to store 8-bit color values.

For example:

lowp float color;
out mediump vec2 P;
lowp ivec2 foo(lowp mat3);
highp mat4 m;

Literal constants do not have precision qualifiers. Neither do Boolean variables. Neither do constructors.

For this paragraph, “operation” includes operators, built-in functions, and constructors, and “operand”
includes function arguments and constructor arguments. The precision used to internally evaluate an
operation, and the precision qualification subsequently associated with any resulting intermediate values,
must be at least as high as the highest precision qualification of the operands consumed by the operation.

In cases where operands do not have a precision qualifier, the precision qualification will come from the
other operands. If no operands have a precision qualifier, then the precision qualifications of the operands
of the next consuming operation in the expression will be used. This rule can be applied recursively until
a precision qualified operand is found. If necessary, it will also include the precision qualification of l-
values for assignments, of the declared variable for initializers, of formal parameters for function call
arguments, or of function return types for function return values. If the precision cannot be determined by
this method e.g. if an entire expression is composed only of operands with no precision qualifier, and the
result is not assigned or passed as an argument, then it is evaluated at the default precision of the type or
greater. When this occurs in the fragment shader, the default precision must be defined.

86

4 Variables and Types

For example, consider the statements:

uniform highp float h1;
highp float h2 = 2.3 * 4.7; // operation and result are highp precision
mediump float m;
m = 3.7 * h1 * h2; // all operations are highp precision
h2 = m * h1; // operation is highp precision
m = h2 – h1; // operation is highp precision
h2 = m + m; // addition and result at mediump precision
void f(highp float p);
f(3.3); // 3.3 will be passed in at highp precision

Precision qualifiers, as with other qualifiers, do not affect the basic type of the variable. In particular,
there are no constructors for precision conversions; constructors only convert types. Similarly, precision
qualifiers, as with other qualifiers, do not contribute to function overloading based on parameter types.
As discussed in section 6.1.1 (“Function Calling Conventions”), function input and output is done through
copies, and therefore qualifiers do not have to match.

Precision qualifiers for outputs in one shader matched to inputs in another shader need not match when
both shaders are linked into the same program. When both shaders are in separate programs, mismatched
precision qualifiers will result in a program interface mismatch that will result in program pipeline
validation failures, as described in section 7.4.1 (“Shader Interface Matching”) of the OpenGL ES 3.2
Specification.

The precision of a variable is determined when the variable is declared and cannot be subsequently
changed.

Where the precision of a constant integral or constant floating point expression is not specified, evaluation
is performed at highp. This rule does not affect the precision qualification of the expression.

The evaluation of constant expressions must be invariant and will usually be performed at compile time.

4.7.4 Default Precision Qualifiers

The precision statement

precision precision-qualifier type;

can be used to establish a default precision qualifier. The type field can be either int, float or any of the
opaque types and the precision-qualifier can be lowp, mediump, or highp. Any other types or qualifiers
will result in an error. If type is float, the directive applies to non-precision-qualified floating point type
(scalar, vector, and matrix) declarations. If type is int, the directive applies to all non-precision-qualified
integral type (scalar, vector, signed, and unsigned) declarations. This includes global variable
declarations, function return declarations, function parameter declarations, and local variable declarations.

Non-precision qualified declarations will use the precision qualifier specified in the most recent precision
statement that is still in scope. The precision statement has the same scoping rules as variable
declarations. If it is declared inside a compound statement, its effect stops at the end of the innermost
statement it was declared in. Precision statements in nested scopes override precision statements in outer
scopes. Multiple precision statements for the same basic type can appear inside the same scope, with later
statements overriding earlier statements within that scope.

87

4 Variables and Types

All languages except for the fragment language have the following predeclared globally scoped default
precision statements:

precision highp float;
precision highp int;

precision lowp sampler2D;
precision lowp samplerCube;

precision highp atomic_uint;

The fragment language has the following predeclared globally scoped default precision statements:

precision mediump int;

precision lowp sampler2D;
precision lowp samplerCube;

precision highp atomic_uint;

The fragment language has no default precision qualifier for floating point types. Hence for float, floating
point vector and matrix variable declarations, either the declaration must include a precision qualifier or
the default float precision must have been previously declared. Similarly, there is no default precision
qualifier for any of the image types, or any of the following sampler types in any of the languages:

88

4 Variables and Types

sampler3D
samplerCubeShadow
sampler2DShadow
sampler2DArray
sampler2DArrayShadow
sampler2DMS
samplerBuffer
samplerCubeArray
samplerCubeArrayShadow
imageCubeArray

isampler2D
isampler3D
isamplerCube
isampler2DArray
isampler2DMS
isamplerBuffer
isamplerCubeArray
iimageCubeArray

usampler2D
usampler3D
usamplerCube
usampler2DArray
usampler2DMS
usamplerBuffer
usamplerCubeArray
uimageCubeArray

image2D
image3D
imageCube
image2DArray
iimage2D
iimage3D
iimageCube
iimage2DArray
uimage2D
uimage3D
uimageCube
uimage2DArray
imageBuffer
iimageBuffer
uimageBuffer

4.7.5 Available Precision Qualifiers

The built-in macro GL_FRAGMENT_PRECISION_HIGH is defined to one in GLSL ES 3.2 to indicate
that highp precision is always in the fragment language

89

4 Variables and Types

#define GL_FRAGMENT_PRECISION_HIGH 1

This macro is available in all languages except compute.

4.8 Variance and the Invariant Qualifier
In this section, variance refers to the possibility of getting different values from the same expression in
different programs. For example, consider the situation where two vertex shaders, in different programs,
each set gl_Position with the same expression, and the input values into that expression are the same when
both shaders run. It is possible, due to independent compilation of the two shaders, that the values
assigned to gl_Position are not exactly the same when the two shaders run. In this example, this can cause
problems with alignment of geometry in a multi-pass algorithm.

In general, such variance between shaders is allowed. When such variance does not exist for a particular
output variable, that variable is said to be invariant.

4.8.1 The Invariant Qualifier

To ensure that a particular output variable is invariant, it is necessary to use the invariant qualifier. It can
either be used to qualify a previously declared variable as being invariant

invariant gl_Position; // make built-in gl_Position be invariant

out vec3 Color;
invariant Color; // make existing Color be invariant

invariant Color_2; // error: Color_2 has not been declared

or as part of a declaration when a variable is declared

invariant centroid out vec3 Color;

Only variables output from a shader can be candidates for invariance. This includes user-defined output
variables and the built-in output variables. As only outputs can be declared as invariant, an invariant
output from one shader stage will still match an input of a subsequent stage without the input being
declared as invariant.

The invariant keyword can be followed by a comma separated list of previously declared identifiers. All
uses of invariant must be at the global scope, and before any use of the variables being declared as
invariant.

To guarantee invariance of a particular output variable across two programs, the following must also be
true:

• The output variable is declared as invariant in both programs.

• The same values must be input to all shader input variables consumed by expressions and control
flow contributing to the value assigned to the output variable.

• The texture formats, texel values, and texture filtering are set the same way for any texture
function calls contributing to the value of the output variable.

90

4 Variables and Types

• All input values are all operated on in the same way. All operations in the consuming
expressions and any intermediate expressions must be the same, with the same order of operands
and same associativity, to give the same order of evaluation. Intermediate variables and
functions must be declared as the same type with the same explicit or implicit precision qualifiers
and the same constant qualifiers. Any control flow affecting the output value must be the same,
and any expressions consumed to determine this control flow must also follow these invariance
rules.

• All the data flow and control flow leading to setting the invariant output variable reside in a
single compilation unit.

Essentially, all the data flow and control flow leading to an invariant output must match.

Initially, by default, all output variables are allowed to be variant. To force all output variables to be
invariant, use the pragma

#pragma STDGL invariant(all)

before all declarations in a shader. If this pragma is used after the declaration of any variables or
functions, then the set of outputs that behave as invariant is undefined.

Generally, invariance is ensured at the cost of flexibility in optimization, so performance can be degraded
by use of invariance. Hence, use of this pragma is intended as a debug aid, to avoid individually declaring
all output variables as invariant.

4.8.2 Invariance Within a Shader

When a value is stored in a variable, it is usually assumed it will remain constant unless explicitly
changed. However, during the process of optimization, it is possible that the compiler may choose to
recompute a value rather than store it in a register. Since the precision of operations is not completely
specified (e.g. a low precision operation may be done at medium or high precision), it would be possible
for the recomputed value to be different from the original value.

Values are allowed to be variant within a shader. To prevent this, the invariant qualifier or invariant
pragma must be used.

Within a shader, there is no invariance for values generated by different non-constant expressions, even if
those expressions are identical.

Example 1:

precision mediump;
vec4 col;
vec2 a = ...
...
col = texture(tex, a); // a has a value a1
...
col = texture(tex, a); // a has a value a2 where possibly a1 ≠ a2

To enforce invariance in this example use:

91

4 Variables and Types

#pragma STDGL invariant(all)

Example 2:

vec2 m = ...;
vec2 n = ...;
vec2 a = m + n;
vec2 b = m + n; // a and b are not guaranteed to be exactly equal

There is no mechanism to enforce invariance between a and b.

4.8.3 Invariance of Constant Expressions

Invariance must be guaranteed for constant expressions. A particular constant expression must evaluate to
the same result if it appears again in the same shader or a different shader. This includes the same
expression appearing in two shaders of the same language or shaders of two different languages.

Constant expressions must evaluate to the same result when operated on as already described above for
invariant variables. Constant expressions are not invariant with respect to equivalent non-constant
expressions, even when the invariant qualifier or pragma is used.

4.8.4 Invariance of Undefined Values

Undefined values are not invariant nor can they be made invariant by use of the invariant qualifier or
pragma. In some implementations, undefined values may cause unexpected behavior if they are used in
control-flow expressions e.g. in the following case, one, both or neither functions may be executed and
this may not be consistent over multiple invocations of the shader:

int x; // undefined value
if (x == 1)
{
 f(); // Undefined whether f() is executed
}
if (x == 2)
{
 g(); // Undefined whether g() is executed.
}

Note that an undefined value is a value that has not been specified. A value that has been specified but
has a potentially large error due to, for example, lack of precision in an expression, is not undefined and
so can be made invariant.

92

4 Variables and Types

4.9 The Precise Qualifier
As stated in section 5.11 (“Evaluation of Expressions”), the compiler may transform expressions even if
this changes the resulting value. Furthermore, these transforms do not need to be applied consistently so
that apparently similar expressions may generate different results. The invariant qualifier may be used to
guarantee that identical expressions produce the same result (see section 4.8) but there are some
algorithms which require that non-identical but mathematically equivalent expressions also generate
exactly the same result. The precise qualifier ensures that operations are (effectively) performed in their
stated order and with operator consistency.

The key computation that needs to be made consistent appears when tessellating, where intermediate
points for subdivision are synthesized in different directions, yet need to yield the same result, as shown in
the diagram below:

The order of evaluation is determined by operator precedence and parenthesis, as described in section 5.1
(“Operators”). Operator consistency means for each particular operator, for example the multiply
operator (*), its operation is always computed with the same precision. Specifically, values computed by
compiler-generated code must adhere to the following identities:

1. a + b = b + a

2. a * b = b * a

3. a * b + c * d = b * a + c* d = d * c + b * a = <any other mathematically valid combination>

While the following are prevented:

4. a + (b + c) is not allowed to become (a + b) + c

5. a * (b * c) is not allowed to become (a * b) * c

6. a * b + c is not allowed to become a single operation fma(a, b, c)

93

Subdivision
points need to
land on the same
location to
prevent cracking

Corner points start
with the same values

Corner points start
with the same values

Opposing
directions of
edge walking
for subdivision

4 Variables and Types

Where a, b, c, and d, are scalars or vectors, not matrices. (Matrix multiplication generally does not
commute.) It is the shader writer's responsibility to express the computation in terms of these rules and
the compiler's responsibility to follow these rules. See the description of gl_TessCoord for the rules the
tessellation stages are responsible for following, which in conjunction with the above allow avoiding
cracking when subdividing.

For example,

precise out vec4 position;

declares that operations used to produce the value of position must be performed in exactly the order
specified in the source code and with all operators being treated consistently. As with the invariant
qualifier (section 4.8.1 “The Invariant Qualifier”), the precise qualifier may be used to qualify a built-in or
previously declared user-defined variable as being precise:

out vec3 Color;
precise Color; // make existing Color be precise

This qualifier will affect the evaluation of an r-value in a particular function if and only if the result is
eventually consumed in the same function by an l-value qualified as precise. Any other expressions within
a function are not affected, including return values and output parameters not declared as precise but that
are eventually consumed outside the function by an variable qualified as precise.

Some examples of the use of precise:

in vec4 a, b, c, d;
precise out vec4 v;

float func(float e, float f, float g, float h)
{
 return (e*f) + (g*h); // no constraint on order or
 // operator consistency
}

94

4 Variables and Types

float func2(float e, float f, float g, float h)
{
 precise float result = (e*f) + (g*h); // ensures same precision for
 // the two multiplies
 return result;
}

float func3(float i, float j, precise out float k)
{
 k = i * i + j; // precise, due to <k> declaration
}

void main()
{
 vec3 r = vec3(a * b); // precise, used to compute v.xyz
 vec3 s = vec3(c * d); // precise, used to compute v.xyz
 v.xyz = r + s; // precise
 v.w = (a.w * b.w) + (c.w * d.w); // precise
 v.x = func(a.x, b.x, c.x, d.x); // values computed in func()
 // are NOT precise
 v.x = func2(a.x, b.x, c.x, d.x); // precise!
 func3(a.x * b.x, c.x * d.x, v.x); // precise!
}

For the purposes of determining if an output from one shader stage matches an input of the next stage, the
precise qualifier need not match between the input and the output.

All constant expressions are evaluated as if precise was present, whether or not it is present. However, as
described in section 4.3.3 (“Constant Expressions”), there is no requirement that a compile-time constant
expression evaluates to the same value as a corresponding non-constant expression.

4.10 Memory Access Qualifiers
Shader storage blocks, variables declared within shader storage blocks and variables declared as image
types (the basic opaque types with “image” in their keyword), can be further qualified with one or more of
the following memory qualifiers:

95

4 Variables and Types

Qualifier Meaning

coherent memory variable where reads and writes are coherent with reads and
writes from other shader invocations

volatile memory variable whose underlying value may be changed at any point
during shader execution by some source other than the current shader
invocation

restrict memory variable where use of that variable is the only way to read
and write the underlying memory in the relevant shader stage

readonly memory variable that can be used to read the underlying memory, but
cannot be used to write the underlying memory

writeonly memory variable that can be used to write the underlying memory, but
cannot be used to read the underlying memory

Memory accesses to image variables declared using the coherent qualifier are performed coherently with
accesses to the same location from other shader invocations.

As described in section 7.11.1 “Shader Memory Access Ordering” of the OpenGL ES Specification,
shader memory reads and writes complete in a largely undefined order. The built-in function
memoryBarrier() can be used if needed to guarantee the completion and relative ordering of memory
accesses performed by a single shader invocation.

When accessing memory using variables not declared as coherent, the memory accessed by a shader may
be cached by the implementation to service future accesses to the same address. Memory stores may be
cached in such a way that the values written may not be visible to other shader invocations accessing the
same memory. The implementation may cache the values fetched by memory reads and return the same
values to any shader invocation accessing the same memory, even if the underlying memory has been
modified since the first memory read. While variables not declared as coherent may not be useful for
communicating between shader invocations, using non-coherent accesses may result in higher
performance.

Memory accesses to image variables declared using the volatile storage qualifier must treat the underlying
memory as though it could be read or written at any point during shader execution by some source other
than the executing shader invocation. When a volatile variable is read, its value must be re-fetched from
the underlying memory, even if the shader invocation performing the read had previously fetched its value
from the same memory. When a volatile variable is written, its value must be written to the underlying
memory, even if the compiler can conclusively determine that its value will be overwritten by a
subsequent write. Since the external source reading or writing a volatile variable may be another shader
invocation, variables declared as volatile are automatically treated as coherent.

96

4 Variables and Types

Memory accesses to image variables declared using the restrict storage qualifier may be compiled
assuming that the variable used to perform the memory access is the only way to access the underlying
memory using the shader stage in question. This allows the compiler to coalesce or reorder loads and
stores using restrict-qualified image variables in ways that wouldn't be permitted for image variables not
so qualified, because the compiler can assume that the underlying image won't be read or written by other
code. Applications are responsible for ensuring that image memory referenced by variables qualified with
restrict will not be referenced using other variables in the same scope; otherwise, accesses to restrict-
qualified variables will have undefined results.

Memory accesses to image variables declared using the readonly qualifier may only read the underlying
memory, which is treated as read-only memory and cannot be written to. It is an error to pass an image
variable qualified with readonly to imageStore() or other built-in functions that modify image memory.

Memory accesses to image variables declared using the writeonly qualifier may only write the underlying
memory; the underlying memory cannot be read. It is an error to pass an image variable qualified with
writeonly to imageLoad() or other built-in functions that read image memory. A variable could be
qualified as both readonly and writeonly, disallowing both read and write, but still be passed to
imageSize() to have the size queried.

Except for image variables qualified with the format qualifiers r32f, r32i, and r32ui, image variables must
specify either memory qualifier readonly or the memory qualifier writeonly.

The memory qualifiers coherent, volatile, restrict, readonly, and writeonly may be used in the
declaration of buffer variables (i.e., members of shader storage blocks). When a buffer variable is
declared with a memory qualifier, the behavior specified for memory accesses involving image variables
described above applies identically to memory accesses involving that buffer variable. It is a compile-
time error to assign to a buffer variable qualified with readonly or to read from a buffer variable qualified
with writeonly.

Additionally, memory qualifiers may also be used in the declaration of shader storage blocks. When a
block declaration is qualified with a memory qualifier, it is as if all of its members were declared with the
same memory qualifier. For example, the block declaration

coherent buffer Block {
 readonly vec4 member1;
 vec4 member2;
};

is equivalent to

buffer Block {
 coherent readonly vec4 member1;
 coherent vec4 member2;
};

Memory qualifiers are only supported in the declarations of image variables, buffer variables, and shader
storage blocks; it is an error to use such qualifiers in any other declarations.

97

4 Variables and Types

When calling user-defined functions, variables qualified with coherent, volatile, readonly, or writeonly
may not be passed to functions whose formal parameters lack such qualifiers. (See section 6.1 “Function
Definitions” for more detail on function calling.) It is legal to have any additional memory qualifiers on a
formal parameter, but only restrict can be taken away from a calling argument, by a formal parameter that
lacks the restrict qualifier.

When a built-in function is called, the code generated is to be based on the actual qualification of the
calling argument, not on the list of memory qualifiers specified on the formal parameter in the prototype.
For example, if a calling argument is not coherent but a formal parameter of a built-in function is
coherent, the code generated for the built-in function will be for the original non-coherent memory
qualification.

vec4 funcA(layout(rgba32f) image2D restrict a) { ... }
vec4 funcB(layout(rgba32f) image2D a) { ... }
layout(rgba32f) uniform image2D img1;
layout(rgba32f) coherent uniform image2D img2;

funcA(img1); // OK, adding "restrict" is allowed
funcB(img2); // illegal, stripping "coherent" is not allowed

Layout qualifiers cannot be used on formal function parameters, but they are not included in parameter
matching.

Note that the use of const in an image variable declaration is qualifying the const-ness of variable being
declared, not the image it refers to: The qualifier readonly qualifies the image memory (as accessed
through that variable) while const qualifiers the variable itself.

4.11 Order of Qualification
When multiple qualifiers are present in a declaration, they may appear in any order, but they must all
appear before the type. The layout qualifier is the only qualifier that can appear more than once. Further,
a declaration can have at most one storage qualifier, at most one auxiliary storage qualifier, and at most
one interpolation qualifier. Multiple memory qualifiers can be used. Any violation of these rules will
cause a compile-time error.

4.12 Empty Declarations
Empty declarations are allowed. E.g.

int; // No effect
struct S {int x;}; // Defines a struct S

The combinations of qualifiers that cause compile-time or link-time errors are the same whether or not the
declaration is empty e.g.

invariant in float x; // Error. An input cannot be invariant.
invariant in float; // Error even though no variable is declared.

98

5 Operators and Expressions

5.1 Operators
The OpenGL ES Shading Language has the following operators.

Precedence Operator Class Operators Associativity

 1 (highest) parenthetical grouping () NA

2

array subscript
function call and constructor structure
field or method selector, swizzler
post fix increment and decrement

[]
()
.
++ --

Left to Right

3
prefix increment and decrement
unary

++ --
+ - ~ !

Right to Left

4 multiplicative * / % Left to Right

5 additive + - Left to Right

6 bit-wise shift << >> Left to Right

7 relational < > <= >= Left to Right

8 equality == != Left to Right

9 bit-wise and & Left to Right

10 bit-wise exclusive or ^ Left to Right

11 bit-wise inclusive or | Left to Right

12 logical and && Left to Right

13 logical exclusive or ^^ Left to Right

14 logical inclusive or | | Left to Right

15 selection ? : Right to Left

16

Assignment
arithmetic assignments

=
+= -=
*= /=
%= <<= >>=
&= ^= |=

Right to Left

17 (lowest) sequence , Left to Right

There is no address-of operator nor a dereference operator. There is no typecast operator; constructors
are used instead.

99

5 Operators and Expressions

5.2 Array Operations
These are now described in section 5.7 (“Structure and Array Operations”).

5.3 Function Calls
If a function returns a value, then a call to that function may be used as an expression, whose type will be
the type that was used to declare or define the function.

Function definitions and calling conventions are discussed in section 6.1 (“Function Definitions”).

5.4 Constructors
Constructors use the function call syntax, where the function name is a type, and the call makes an object
of that type. Constructors are used the same way in both initializers and expressions. (See section 9
“Shading Language Grammar” for details.) The parameters are used to initialize the constructed value.
Constructors can be used to request a data type conversion to change from one scalar type to another
scalar type, or to build larger types out of smaller types, or to reduce a larger type to a smaller type.

In general, constructors are not built-in functions with predetermined prototypes. For arrays and
structures, there must be exactly one argument in the constructor for each element or field. For the other
types, the arguments must provide a sufficient number of components to perform the initialization, and it
is an error to include so many arguments that they cannot all be used. Detailed rules follow. The
prototypes actually listed below are merely a subset of examples.

5.4.1 Conversion and Scalar Constructors

Converting between scalar types is done as the following prototypes indicate:

int(bool) // converts a Boolean value to an int
int(float) // converts a float value to an int
float(bool) // converts a Boolean value to a float
float(int) // converts a signed integer value to a float
bool(float) // converts a float value to a Boolean
bool(int) // converts a signed integer value to a Boolean
uint(bool) // converts a Boolean value to an unsigned integer
uint(float) // converts a float value to an unsigned integer
uint(int) // converts a signed integer value to an unsigned integer
int(uint) // converts an unsigned integer to a signed integer
bool(uint) // converts an unsigned integer value to a Boolean value
float(uint) // converts an unsigned integer value to a float value

When constructors are used to convert a float to an int or uint, the fractional part of the floating-point
value is dropped. It is undefined to convert a negative floating point value to an uint.

When a constructor is used to convert an int, uint, or a float to a bool, 0 and 0.0 are converted to false,
and non-zero values are converted to true. When a constructor is used to convert a bool to an int, uint,
or float, false is converted to 0 or 0.0, and true is converted to 1 or 1.0.

100

5 Operators and Expressions

The constructor int(uint) preserves the bit pattern in the argument, which will change the argument's
value if its sign bit is set. The constructor uint(int) preserves the bit pattern in the argument, which will
change its value if it is negative.

Identity constructors, like float(float) are also legal, but of little use.

Scalar constructors with non-scalar parameters can be used to take the first element from a non-scalar.
For example, the constructor float(vec3) will select the first component of the vec3 parameter.

5.4.2 Vector and Matrix Constructors

Constructors can be used to create vectors or matrices from a set of scalars, vectors, or matrices. This
includes the ability to shorten vectors.

If there is a single scalar parameter to a vector constructor, it is used to initialize all components of the
constructed vector to that scalar’s value. If there is a single scalar parameter to a matrix constructor, it is
used to initialize all the components on the matrix’s diagonal, with the remaining components initialized
to 0.0.

If a vector is constructed from multiple scalars, one or more vectors, or one or more matrices, or a mixture
of these, the vector's components will be constructed in order from the components of the arguments. The
arguments will be consumed left to right, and each argument will have all its components consumed, in
order, before any components from the next argument are consumed. Similarly for constructing a matrix
from multiple scalars or vectors, or a mixture of these. Matrix components will be constructed and
consumed in column major order. In these cases, there must be enough components provided in the
arguments to provide an initializer for every component in the constructed value. It is an error to provide
extra arguments beyond this last used argument.

If a matrix is constructed from a matrix, then each component (column i, row j) in the result that has a
corresponding component (column i, row j) in the argument will be initialized from there. All other
components will be initialized to the identity matrix. If a matrix argument is given to a matrix constructor,
it is an error to have any other arguments.

If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic type of the
object being constructed, the scalar construction rules (above) are used to convert the parameters.

101

5 Operators and Expressions

Some useful vector constructors are as follows:

vec3(float) // initializes each component of the vec3 with the float
vec4(ivec4) // makes a vec4 with component-wise conversion
vec4(mat2) // the vec4 is column 0 followed by column 1

vec2(float, float) // initializes a vec2 with 2 floats
ivec3(int, int, int) // initializes an ivec3 with 3 ints
bvec4(int, int, float, float) // uses 4 Boolean conversions

vec2(vec3) // drops the third component of a vec3
vec3(vec4) // drops the fourth component of a vec4

vec3(vec2, float) // vec3.x = vec2.x, vec3.y = vec2.y, vec3.z = float
vec3(float, vec2) // vec3.x = float, vec3.y = vec2.x, vec3.z = vec2.y
vec4(vec3, float)
vec4(float, vec3)
vec4(vec2, vec2)

Some examples of these are:

vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 rgba = vec4(1.0); // sets each component to 1.0
vec3 rgb = vec3(color); // drop the 4th component

To initialize the diagonal of a matrix with all other elements set to zero:

mat2(float)
mat3(float)
mat4(float)

That is, result[i][j] is set to the float argument for all i = j and set to 0 for all i≠ j.

102

5 Operators and Expressions

To initialize a matrix by specifying vectors or scalars, the components are assigned to the matrix elements
in column-major order.

mat2(vec2, vec2); // one column per argument
mat3(vec3, vec3, vec3); // one column per argument
mat4(vec4, vec4, vec4, vec4); // one column per argument
mat3x2(vec2, vec2, vec2); // one column per argument

mat2(float, float, // first column
 float, float); // second column

mat3(float, float, float, // first column
 float, float, float, // second column
 float, float, float); // third column

mat4(float, float, float, float, // first column
 float, float, float, float, // second column
 float, float, float, float, // third column
 float, float, float, float); // fourth column

mat2x3(vec2, float, // first column
 vec2, float); // second column

A wide range of other possibilities exist, to construct a matrix from vectors and scalars, as long as enough
components are present to initialize the matrix. To construct a matrix from a matrix:

mat3x3(mat4x4); // takes the upper-left 3x3 of the mat4x4
mat2x3(mat4x2); // takes the upper-left 2x2 of the mat4x4, last row is 0,0
mat4x4(mat3x3); // puts the mat3x3 in the upper-left, sets the lower right
 // component to 1, and the rest to 0

5.4.3 Structure Constructors

Once a structure is defined, and its type is given a name, a constructor is available with the same name to
construct instances of that structure. For example:

struct light {
 float intensity;
 vec3 position;
};

light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

The arguments to the constructor will be used to set the structure's fields, in order, using one argument per
field. Each argument must be the same type as the field it sets.

Structure constructors can be used as initializers or in expressions.

103

5 Operators and Expressions

5.4.4 Array Constructors

Array types can also be used as constructor names, which can then be used in expressions or initializers.
For example,

const float c[3] = float[3](5.0, 7.2, 1.1);
const float d[3] = float[](5.0, 7.2, 1.1);

float g;
...
float a[5] = float[5](g, 1, g, 2.3, g);
float b[3];

b = float[3](g, g + 1.0, g + 2.0);

vec4 a[][] = vec4[][](vec4[2](vec4(0.0), vec4(1.0)),
 vec4[2](vec4(0.0), vec4(1.0)),
 vec4[2](vec4(0.0), vec4(1.0)))

float a[][] = float[][](float[] (1.0, 2.0), float[](3.0, 4.0));
float m[2][1];
m = float[][](float[](1.0), float[](2.0));

There must be exactly the same number of arguments as the size of the array being constructed. The
arguments are assigned in order, starting at element 0, to the elements of the constructed array. Each
argument must be the same type as the element type of the array.

5.5 Vector Components

The names of the components of a vector are denoted by a single letter. As a notational convenience,
several letters are associated with each component based on common usage of position, color or texture
coordinate vectors. The individual components of a vector can be selected by following the variable name
with period (.) and then the component name.

The component names supported are:

{x, y, z, w} Useful when accessing vectors that represent points or normals

{r, g, b, a} Useful when accessing vectors that represent colors

{s, t, p, q} Useful when accessing vectors that represent texture coordinates

The component names x, r, and s are, for example, synonyms for the same (first) component in a vector.

Note that the third component of the texture coordinate set, r in OpenGL ES, has been renamed p so as to
avoid the confusion with r (for red) in a color.

Accessing components beyond those declared for the vector type is an error so, for example:

104

5 Operators and Expressions

vec2 pos;
pos.x // is legal
pos.z // is illegal

The component selection syntax allows multiple components to be selected by appending their names
(from the same name set) after the period (.).

vec4 v4;
v4.rgba; // is a vec4 and the same as just using v4,
v4.rgb; // is a vec3,
v4.b; // is a float,
v4.xy; // is a vec2,
v4.xgba; // is illegal - the component names do not come from
 // the same set.

No more than 4 components can be selected.

vec4 v4;
v4.xyzw; // is a vec4
v4.xyzwxy; // is illegal since it has 6 components
(v4.xyzwxy).xy; // is illegal since the intermediate value has 6 components

vec2 v2;
v2.xyxy; // is legal. It evaluates to a vec4.

The order of the components can be different to swizzle them, or replicated:

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vec4 swiz= pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)

This notation is more concise than the constructor syntax. To form an r-value, it can be applied to any
expression that results in a vector r-value.

The component group notation can occur on the left hand side of an expression.

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0); // illegal - 'x' used twice
pos.xy = vec3(1.0, 2.0, 3.0); // illegal - mismatch between vec2 and vec3

To form an l-value, swizzling must be applied to an l-value of vector type, contain no duplicate
components, and it results in an l-value of scalar or vector type, depending on number of components
specified.

105

5 Operators and Expressions

Array subscripting syntax can also be applied to vectors to provide numeric indexing. So in

vec4 pos;

pos[2] refers to the third element of pos and is equivalent to pos.z. This allows variable indexing into a
vector, as well as a generic way of accessing components. Any integer expression can be used as the
subscript. The first component is at index zero. Reading from or writing to a vector using a constant
integral expression with a value that is negative or greater than or equal to the size of the vector is illegal.
When indexing with non-constant expressions, behavior is undefined if the index is negative, or greater
than or equal to the size of the vector.

Note that scalars are not considered to be single-component vectors and therefore the use of component
selection operators on scalars is illegal.

5.6 Matrix Components
The components of a matrix can be accessed using array subscripting syntax. Applying a single subscript
to a matrix treats the matrix as an array of column vectors, and selects a single column, whose type is a
vector of the same size as the (column size of the) matrix. The leftmost column is column 0. A second
subscript would then operate on the resulting vector, as defined earlier for vectors. Hence, two subscripts
select a column and then a row.

mat4 m;
m[1] = vec4(2.0); // sets the second column to all 2.0
m[0][0] = 1.0; // sets the upper left element to 1.0
m[2][3] = 2.0; // sets the 4th element of the third column to 2.0

Behavior is undefined when accessing a component outside the bounds of a matrix with a non-constant
expression. It is an error to access a matrix with a constant expression that is outside the bounds of the
matrix.

5.7 Structure and Array Operations
The fields of a structure and the length method of an array are selected using the period (.).

In total, only the following operators are allowed to operate on arrays and structures as whole entities:

 field or method selector .

equality == !=

assignment =

indexing (arrays only) []

The equality operators and assignment operator are only allowed if the two operands are same size and
type. Array types must be compile-time sized. Structure types must be of the same declared structure.
When using the equality operators, two structures are equal if and only if all the fields are component-wise
equal, and two arrays are equal if and only if all the elements are element-wise equal.

106

5 Operators and Expressions

Array elements are accessed using the array subscript operator ([]). An example of accessing an array
element is

diffuseColor += lightIntensity[3] * NdotL;

Array indices start at zero. Array elements are accessed using an expression whose type is int or uint.

Arrays can also be accessed with the method operator (.) and the length method to query the size of the
array:

lightIntensity.length() // return the size of the array

5.8 Assignments
Assignments of values to variable names are done with the assignment operator (=):

lvalue-expression = rvalue-expression

The lvalue-expression evaluates to an l-value. The assignment operator stores the value of rvalue-
expression into the l-value and returns an r-value with the type and precision of lvalue-expression. The
lvalue-expression and rvalue-expression must have the same type. Any type-conversions must be
specified explicitly via constructors. L-values must be writable. Variables that are built-in types, entire
structures or arrays, structure fields, l-values with the field selector (.) applied to select components or
swizzles without repeated fields, l-values within parentheses, and l-values dereferenced with the array
subscript operator ([]) are all l-values. Other binary or unary expressions, function names, swizzles with
repeated fields, and constants cannot be l-values. The ternary operator (?:) is also not allowed as an l-
value.

Expressions on the left of an assignment are evaluated before expressions on the right of the assignment.

The other assignment operators are

• add into (+=)

• subtract from (-=)

• multiply into (*=)

• divide into (/=)

• modulus into (%=)

• left shift by (<<=)

• right shift by (>>=)

• and into (&=)

• inclusive-or into (|=)

• exclusive-or into (^=)

107

5 Operators and Expressions

where the general expression

 lvalue-expression op= expression

is equivalent to

 lvalue = lvalue op expression

where lvalue is the value returned by lvalue-expression, op is as described below, and the lvalue-
expression and expression must satisfy the semantic requirements of both op and equals (=).

Reading a variable before writing (or initializing) it is legal, however the value is undefined.

5.9 Expressions
Expressions in the shading language are built from the following:

• Constants of type bool, int, uint, float, all vector types, and all matrix types.

• Constructors of all types.

• Variable names of all types.

• An array name with the length method applied.

• Subscripted arrays.

• Function calls that return values.

• Component field selectors and array subscript results.

• Parenthesized expression. Any expression can be parenthesized. Parentheses can be used to
group operations. Operations within parentheses are done before operations across parentheses.

• The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/) operate on
integer and floating-point scalars, vectors, and matrices. If the operands are integral types, they
must both be signed or both be unsigned. All arithmetic binary operators result in the same
fundamental type (signed integer, unsigned integer, or floating-point) as the operands they
operate on. The following cases are valid

• The two operands are scalars. In this case the operation is applied, resulting in a scalar.

• One operand is a scalar, and the other is a vector or matrix. In this case, the scalar operation is
applied independently to each component of the vector or matrix, resulting in the same size
vector or matrix.

• The two operands are vectors of the same size. In this case, the operation is done component-
wise resulting in the same size vector.

• The operator is add (+), subtract (-), or divide (/), and the operands are matrices with the same
number of rows and the same number of columns. In this case, the operation is done component-
wise resulting in the same size matrix.

108

5 Operators and Expressions

• The operator is multiply (*), where both operands are matrices or one operand is a vector and the
other a matrix. A right vector operand is treated as a column vector and a left vector operand as
a row vector. In all these cases, it is required that the number of columns of the left operand is
equal to the number of rows of the right operand. Then, the multiply (*) operation does a linear
algebraic multiply, yielding an object that has the same number of rows as the left operand and
the same number of columns as the right operand. Section 5.10 (“Vector and Matrix
Operations”) explains in more detail how vectors and matrices are operated on.

All other cases are illegal.

Dividing by zero does not cause an exception but does result in an unspecified value. Use the
built-in functions dot, cross, matrixCompMult, and outerProduct, to get, respectively, vector
dot product, vector cross product, matrix component-wise multiplication, and the matrix product
of a column vector times a row vector.

• The operator modulus (%) operates on signed or unsigned integers or integer vectors. The
operand types must both be signed or both be unsigned. The operands cannot be vectors of
differing size. If one operand is a scalar and the other vector, then the scalar is applied
component-wise to the vector, resulting in the same type as the vector. If both are vectors of the
same size, the result is computed component-wise. The resulting value is undefined for any
component computed with a second operand that is zero, while results for other components with
non-zero second operands remain defined. If both operands are non-negative, then the remainder
is non-negative. Results are undefined if one or both operands are negative. The operator
modulus (%) is not defined for any other data types (non-integral types).

• The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and ++)
operate on integer or floating-point values (including vectors and matrices). All unary operators
work component-wise on their operands. These result with the same type they operated on. For
post- and pre-increment and decrement, the expression must be one that could be assigned to (an
l-value). Pre-increment and pre-decrement add or subtract 1 or 1.0 to the contents of the
expression they operate on, and the value of the pre-increment or pre-decrement expression is the
resulting value of that modification. Post-increment and post-decrement expressions add or
subtract 1 or 1.0 to the contents of the expression they operate on, but the resulting expression
has the expression’s value before the post-increment or post-decrement was executed.

• The relational operators greater than (>), less than (<), greater than or equal (>=), and less than
or equal (<=) operate only on scalar integer and scalar floating-point expressions. The result is
scalar Boolean. The types of the operands must match. To do component-wise relational
comparisons on vectors, use the built-in functions lessThan, lessThanEqual, greaterThan, and
greaterThanEqual.

• The equality operators equal (==), and not equal (!=) operate on all types except opaque types.
They result in a scalar Boolean. The types of the operands must match. For vectors, matrices,
structures, and arrays, all components, fields, or elements of one operand must equal the
corresponding components, fields, or elements in the other operand for the operands to be
considered equal. To get a vector of component-wise equality results for vectors, use the built-in
functions equal and notEqual.

109

5 Operators and Expressions

• The logical binary operators and (&&), or (| |), and exclusive or (^^) operate only on two
Boolean expressions and result in a Boolean expression. And (&&) will only evaluate the right
hand operand if the left hand operand evaluated to true. Or (| |) will only evaluate the right
hand operand if the left hand operand evaluated to false. Exclusive or (^^) will always evaluate
both operands.

• The logical unary operator not (!). It operates only on a Boolean expression and results in a
Boolean expression. To operate on a vector, use the built-in function not.

• The sequence (,) operator that operates on expressions by returning the type and value of the
right-most expression in a comma separated list of expressions. All expressions are evaluated, in
order, from left to right.

• The ternary selection operator (?:). It operates on three expressions (exp1 ? exp2 : exp3). This
operator evaluates the first expression, which must result in a scalar Boolean. If the result is true,
it selects to evaluate the second expression, otherwise it selects to evaluate the third expression.
Only one of the second and third expressions is evaluated. The second and third expressions can
be any type, as long their types match. This resulting matching type is the type of the entire
expression.

• The one's complement operator (~). The operand must be of type signed or unsigned integer or
integer vector, and the result is the one's complement of its operand; each bit of each component
is complemented, including any sign bits.

• The shift operators (<<) and (>>). For both operators, the operands must be signed or unsigned
integers or integer vectors. One operand can be signed while the other is unsigned. In all cases,
the resulting type will be the same type as the left operand. If the first operand is a scalar, the
second operand has to be a scalar as well. If the first operand is a vector, the second operand
must be a scalar or a vector with the same size as the first operand, and the result is computed
component-wise. The result is undefined if the right operand is negative, or greater than or equal
to the number of bits in the left expression's base type. The value of E1 << E2 is E1 (interpreted
as a bit pattern) left-shifted by E2 bits. The value of E1 >> E2 is E1 right-shifted by E2 bit
positions. If E1 is a signed integer, the right-shift will extend the sign bit. If E1 is an unsigned
integer, the right-shift will zero-extend.

• The bitwise operators and (&), exclusive-or (^), and inclusive-or (|). The operands must be of
type signed or unsigned integers or integer vectors. The operands cannot be vectors of differing
size. If one operand is a scalar and the other a vector, the scalar is applied component-wise to
the vector, resulting in the same type as the vector. The fundamental types of the operands
(signed or unsigned) must match, and will be the resulting fundamental type. For and (&), the
result is the bitwise-and function of the operands. For exclusive-or (^), the result is the bitwise
exclusive-or function of the operands. For inclusive-or (|), the result is the bitwise inclusive-or
function of the operands.

For a complete specification of the syntax of expressions, see section 9 “Shading Language Grammar”.

110

5 Operators and Expressions

5.10 Vector and Matrix Operations
With a few exceptions, operations are component-wise. Usually, when an operator operates on a vector or
matrix, it is operating independently on each component of the vector or matrix, in a component-wise
fashion. For example,

vec3 v, u;
float f;

v = u + f;

will be equivalent to

v.x = u.x + f;
v.y = u.y + f;
v.z = u.z + f;

And

vec3 v, u, w;
w = v + u;

will be equivalent to

w.x = v.x + u.x;
w.y = v.y + u.y;
w.z = v.z + u.z;

and likewise for most operators and all integer and floating point vector and matrix types. The exceptions
are matrix multiplied by vector, vector multiplied by matrix, and matrix multiplied by matrix. These do
not operate component-wise, but rather perform the correct linear algebraic multiply.

vec3 v, u;
mat3 m;

u = v * m;

is equivalent to

u.x = dot(v, m[0]); // m[0] is the left column of m
u.y = dot(v, m[1]); // dot(a,b) is the inner (dot) product of a and b
u.z = dot(v, m[2]);

And

u = m * v;

is equivalent to

u.x = m[0].x * v.x + m[1].x * v.y + m[2].x * v.z;
u.y = m[0].y * v.x + m[1].y * v.y + m[2].y * v.z;
u.z = m[0].z * v.x + m[1].z * v.y + m[2].z * v.z;

111

5 Operators and Expressions

And

mat3 m, n, r;

r = m * n;

is equivalent to

r[0].x = m[0].x * n[0].x + m[1].x * n[0].y + m[2].x * n[0].z;
r[1].x = m[0].x * n[1].x + m[1].x * n[1].y + m[2].x * n[1].z;
r[2].x = m[0].x * n[2].x + m[1].x * n[2].y + m[2].x * n[2].z;

r[0].y = m[0].y * n[0].x + m[1].y * n[0].y + m[2].y * n[0].z;
r[1].y = m[0].y * n[1].x + m[1].y * n[1].y + m[2].y * n[1].z;
r[2].y = m[0].y * n[2].x + m[1].y * n[2].y + m[2].y * n[2].z;

r[0].z = m[0].z * n[0].x + m[1].z * n[0].y + m[2].z * n[0].z;
r[1].z = m[0].z * n[1].x + m[1].z * n[1].y + m[2].z * n[1].z;
r[2].z = m[0].z * n[2].x + m[1].z * n[2].y + m[2].z * n[2].z;

and similarly for other sizes of vectors and matrices.

5.11 Evaluation of Expressions
The C++ standard requires that expressions must be evaluated in the order specified by the precedence of
operations and may only be regrouped if the result is the same or where the result is undefined. No other
transforms may be applied that affect the result of an operation. GLSL ES relaxes these requirements for
scalar operations in the following ways:

• Addition and multiplication are assumed to be associative.

• Multiplication is assumed to be distributive over addition. Therefore expressions may be
expanded and re-factored.

• Floating point division may be replaced by reciprocal and multiplication.

• Multiplication may be replaced by repeated addition.

• Within the constraints of invariance (where applicable), the precision used may vary.

These rules also apply to the built-in functions.

112

6 Statements and Structure

The fundamental building blocks of the OpenGL ES Shading Language are:

• statements and declarations

• function definitions

• selection (if-else and switch-case-default)

• iteration (for, while, and do-while)

• jumps (discard, return, break, and continue)

The overall structure of a shader is as follows

translation-unit:
global-declaration
translation-unit global-declaration

global-declaration:
function-definition
declaration

That is, a shader is a sequence of declarations and function bodies. Function bodies are defined as

function-definition:
function-prototype { statement-list }

statement-list:
statement
statement-list statement

statement:
compound-statement
simple-statement

Curly braces are used to group sequences of statements into compound statements.

compound-statement:
{ statement-list }

113

6 Statements and Structure

simple-statement:
declaration-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Simple declaration, expression, and jump statements end in a semi-colon.

This above is slightly simplified, and the complete grammar specified in section 9 “Shading Language
Grammar” should be used as the definitive specification.

Declarations and expressions have already been discussed.

6.1 Function Definitions
As indicated by the grammar above, a valid shader is a sequence of global declarations and function
definitions. A function is declared as the following example shows:

// prototype
returnType functionName (type0 arg0, type1 arg1, ..., typen argn);

and a function is defined like

// definition
returnType functionName (type0 arg0, type1 arg1, ..., typen argn)
{
 // do some computation
 return returnValue;
}

where returnType must be present and cannot be void, or:

void functionName (type0 arg0, type1 arg1, ..., typen argn)
{
 // do some computation
 return; // optional
}

Each of the typeN must include a type and can optionally include a parameter qualifier and/or const.

A function is called by using its name followed by a list of arguments in parentheses.

Arrays are allowed as arguments and as the return type. In both cases, the array must be compile-time
sized. An array is passed or returned by using just its name, without brackets, and the size of the array
must match the size specified in the function's declaration.

Structures are also allowed as argument types. The return type can also be a structure.

See section 9 “Shading Language Grammar” for the definitive reference on the syntax to declare and
define functions.

All functions must be either declared with a prototype or defined with a body before they are called. For
example:

114

6 Statements and Structure

float myfunc (float f, // f is an input parameter
 out float g); // g is an output parameter

Functions that return no value must be declared as void. A void function can only use return without a
return argument, even if the return argument has void type. Return statements only accept values:

void func1() { }
void func2() { return func1(); } // illegal return statement

Only a precision qualifier is allowed on the return type of a function. Formal parameters can have
parameter, precision and memory qualifiers, but no other qualifiers.

Functions that accept no input arguments need not use void in the argument list because prototypes (or
definitions) are required and therefore there is no ambiguity when an empty argument list “()” is declared.
The idiom “(void)” as a parameter list is provided for convenience.

Function names can be overloaded. The same function name can be used for multiple functions, as long
as the parameter types differ. If a function name is declared twice with the same parameter types, then the
return types and all qualifiers must also match, and it is the same function being declared. When function
calls are resolved, an exact type match for all the arguments is required.

For example,

vec4 f(in vec4 x, out vec4 y);
vec4 f(in vec4 x, out ivec4 y); // allowed, different argument type
int f(in vec4 x, out ivec4 y); // error, only return type differs
vec4 f(in vec4 x, in ivec4 y); // error, only qualifier differs
int f(const in vec4 x, out ivec4 y); // error, only qualifier differs

Calling the first two functions above with the following argument types yields

f(vec4, vec4) // exact match of vec4 f(in vec4 x, out vec4 y)
f(vec4, ivec4) // exact match of vec4 f(in vec4 x, out ivec4 y)
f(ivec4, vec4) // error, no exact match.
f(ivec4, ivec4) // error, no exact match.

User-defined functions can have multiple declarations, but only one definition.

A shader cannot redefine or overload built-in functions.

The function main is used as the entry point to a shader executable. All shaders must define a function
named main. This function takes no arguments, returns no value, and must be declared as type void:

void main()
{
 ...
}

The function main can contain uses of return. See section 6.4 (“Jumps”) for more details.

It is an error to declare or define a function main with any other parameters or return type.

115

6 Statements and Structure

6.1.1 Function Calling Conventions

Functions are called by value-return. This means input arguments are copied into the function at call time,
and output arguments are copied back to the caller before function exit. Because the function works with
local copies of parameters, there are no issues regarding aliasing of variables within a function. To
control what parameters are copied in and/or out through a function definition or declaration:

• The keyword in is used as a qualifier to denote a parameter is to be copied in, but not copied out.

• The keyword out is used as a qualifier to denote a parameter is to be copied out, but not copied
in. This should be used whenever possible to avoid unnecessarily copying parameters in.

• The keyword inout is used as a qualifier to denote the parameter is to be both copied in and
copied out.

• A function parameter declared with no such qualifier means the same thing as specifying in.

All arguments are evaluated at call time, exactly once, in order, from left to right. Evaluation of an in
parameter results in a value that is copied to the formal parameter. Evaluation of an out parameter results
in an l-value that is used to copy out a value when the function returns. Evaluation of an inout parameter
results in both a value and an l-value; the value is copied to the formal parameter at call time and the l-
value is used to copy out a value when the function returns.

The order in which output parameters are copied back to the caller is undefined.

In a function, writing to an input-only parameter is allowed. Only the function’s copy is modified. This
can be prevented by declaring a parameter with the const qualifier.

When calling a function, expressions that do not evaluate to l-values cannot be passed to parameters
declared as out or inout.

The return type can be any basic type, array type, structure name, or structure definition. Only precision
qualifiers are allowed on the return type of a function.

The syntax for function prototypes can be informally expressed as:

function_prototype:
[type_qualifier] type_specifier IDENTIFIER
 LEFT_PAREN parameter_declaration, parameter_declaration, … , RIGHT_PAREN

parameter_declaration:
[type_qualifier] type_specifier [IDENTIFIER [array_specifier]]

type_qualifier:
single_type_qualifier, single_type_qualifier, ...

The qualifiers allowed on formal parameters are:

empty

in

116

6 Statements and Structure

out

inout

const

memory-qualifier

precision-qualifier

However, the const qualifier cannot be used with out or inout. The above is used for function
declarations (i.e., prototypes) and for function definitions. Hence, function definitions can have unnamed
arguments.

Static, and hence dynamic recursion, are not allowed. Static recursion is present if the static function call
graph of the program contains cycles. Dynamic recursion occurs if at any time control flow has entered
but not exited a single function more than once.

6.2 Selection
Conditional control flow in the shading language is done by either if, if-else, or switch statements:

selection-statement:
if (bool-expression) statement
if (bool-expression) statement else statement
switch (init-expression) { switch-statement-listopt

 }

Where switch-statement-list is a nested scope containing a list of zero or more switch-statement and other
statements defined by the language, where switch-statement adds some forms of labels. That is

switch-statement-list:
switch-statement
switch-statement-list switch-statement

switch-statement:
case constant-expression :
default :
statement

If an if-expression evaluates to true, then the first statement is executed. If it evaluates to false and there
is an else part then the second statement is executed.

Any expression whose type evaluates to a Boolean can be used as the conditional expression bool-
expression. Vector types are not accepted as the expression to if.

Conditionals can be nested.

117

6 Statements and Structure

The type of init-expression in a switch statement must be a scalar integer. If a case label has a constant-
expression of equal value, then execution will continue after that label. Otherwise, if there is a default
label, execution will continue after that label. Otherwise, execution skips the rest of the switch statement.
It is an error to have more than one default or a replicated constant-expression. A break statement not
nested in a loop or other switch statement (either not nested or nested only in if or if-else statements) will
also skip the rest of the switch statement. Fall through labels are allowed. No statements are allowed in a
switch statement before the first case statement.

The type of init-expression must match the type of the case labels within each switch statement. Either
signed integers or unsigned integers are allowed but there is no implicit type conversion between the two.

No case or default labels can be nested inside otherstatements or compound statements within their
corresponding switch.

6.3 Iteration
For, while, and do loops are allowed as follows:

for (init-expression; condition-expression; loop-expression)
 sub-statement

while (condition-expression)
 sub-statement

do
 statement
while (condition-expression)

See section 9 (“Shading Language Grammar”) for the definitive specification of loops.

The for loop first evaluates the init-expression, then the condition-expression. If the condition-
expression evaluates to true, then the body of the loop is executed. After the body is executed, a for loop
will then evaluate the loop-expression, and then loop back to evaluate the condition-expression, repeating
until the condition-expression evaluates to false. The loop is then exited, skipping its body and skipping
its loop-expression. Variables modified by the loop-expression maintain their value after the loop is
exited, provided they are still in scope. Variables declared in init-expression or condition-expression are
only in scope until the end of the sub-statement of the for loop.

The while loop first evaluates the condition-expression. If true, then the body is executed. This is then
repeated, until the condition-expression evaluates to false, exiting the loop and skipping its body.
Variables declared in the condition-expression are only in scope until the end of the sub-statement of the
while loop.

For both for and while loops, the sub-statement does not introduce a new scope for variable names, so the
following has a redeclaration error:

118

6 Statements and Structure

for (int i = 0; i < 10; i++)
{
 int i; // redeclaration error
}

The do-while loop first executes the body, then executes the condition-expression. This is repeated until
condition-expression evaluates to false, and then the loop is exited.

Expressions for condition-expression must evaluate to a Boolean.

Both the condition-expression and the init-expression can declare and initialize a variable, except in the
do-while loop, which cannot declare a variable in its condition-expression. The variable’s scope lasts
only until the end of the sub-statement that forms the body of the loop.

Loops can be nested.

Non-terminating loops are allowed. The consequences of very long or non-terminating loops are platform
dependent.

6.4 Jumps
These are the jumps:

jump_statement:
continue;
break;
return;
return expression;
discard; // in the fragment shader language only

There is no “goto” or other non-structured flow of control.

The continue jump is used only in loops. It skips the remainder of the body of the innermost loop of
which it is inside. For while and do-while loops, this jump is to the next evaluation of the loop
condition-expression from which the loop continues as previously defined. For for loops, the jump is to
the loop-expression, followed by the condition-expression.

The break jump can also be used only in loops and switch statements. It is simply an immediate exit of
the inner-most loop or switch statements containing the break. No further execution of condition-
expression, loop-expression, or switch-statement is done.

The discard keyword is only allowed within fragment shaders. It can be used within a fragment shader to
abandon the operation on the current fragment. This keyword causes the fragment to be discarded and no
updates to the framebuffer will occur. Any prior writes to other buffers such as shader storage buffers are
unaffected. Control flow exits the shader, and subsequent implicit or explicit derivatives are undefined
when this control flow is non-uniform (meaning different fragments within the primitive take different
control paths). It would typically be used within a conditional statement, for example:

if (intensity < 0.0)
 discard;

119

6 Statements and Structure

A fragment shader may test a fragment’s alpha value and discard the fragment based on that test.
However, it should be noted that coverage testing occurs after the fragment shader runs, and the coverage
test can change the alpha value.

The return jump causes immediate exit of the current function. If it has expression then that is the return
value for the function.

The function main can use return. This simply causes main to exit in the same way as when the end of
the function had been reached. It does not imply a use of discard in a fragment shader. Using return in
main before defining outputs will have the same behavior as reaching the end of main before defining
outputs.

120

7 Built-in Variables

7.1 Built-in Language Variables
Some OpenGL ES operations occur in fixed functionality and need to provide values to or receive values
from shader executables. Shaders communicate with fixed-function OpenGL ES pipeline stages, and
optionally with other shader executables, through the use of built-in input and output variables.

7.1.1 Vertex Shader Special Variables

The built-in vertex shader variables are intrinsically declared as follows:

in highp int gl_VertexID;
in highp int gl_InstanceID;

out gl_PerVertex
{
 out highp vec4 gl_Position;
 out highp float gl_PointSize;
};

Unless otherwise noted elsewhere, these variables are only available in the vertex language as declared
above.

The variable gl_Position is intended for writing the homogeneous vertex position. It can be written at any
time during shader execution. This value will be used by primitive assembly, clipping, culling, and other
fixed functionality operations, if present, that operate on primitives after vertex processing has occurred.
Its value is undefined after the vertex processing stage if the vertex shader executable does not write
gl_Position.

The variable gl_PointSize is intended for a shader to write the size of the point to be rasterized. It is
measured in pixels. If gl_PointSize is not written to, its value is undefined in subsequent pipe stages.

The variable gl_VertexID is a vertex shader input variable that holds an integer index for the vertex, as
defined under “Shader Inputs” in section 11.1.3 “Shader Execution” in the OpenGL ES Graphics System
Specification. While the variable gl_VertexID is always present, its value is not always defined.

The variable gl_InstanceID is a vertex shader input variable that holds the instance number of the current
primitive in an instanced draw call (see “Shader Inputs” in section 11.1.3 “Shader Execution” in the
OpenGL ES 3.2 Graphics System Specification). If the current primitive does not come from an instanced
draw call, the value of gl_InstanceID is zero.

121

7 Built-in Variables

7.1.2 Tessellation Control Shader Special Variables

In the tessellation control shader, built-in variables are intrinsically declared as:

in gl_PerVertex
{
 highp vec4 gl_Position;
} gl_in[gl_MaxPatchVertices];

in highp int gl_PatchVerticesIn;
in highp int gl_PrimitiveID;
in highp int gl_InvocationID;

out gl_PerVertex
{
 highp vec4 gl_Position;
} gl_out[];

patch out highp float gl_TessLevelOuter[4];
patch out highp float gl_TessLevelInner[2];
patch out highp vec4 gl_BoundingBox[2];

7.1.2.1 Tessellation Control Input Variables

gl_Position contains the output written in the previous shader stage to gl_Position.

gl_PatchVerticesIn contains the number of vertices in the input patch being processed by the shader. A
single shader can read patches of differing sizes, so the value of gl_PatchVerticesIn may differ between
patches.

gl_PrimitiveID contains the number of primitives processed by the shader since the current set of
rendering primitives was started.

gl_InvocationID contains the number of the output patch vertex assigned to the tessellation control shader
invocation. It is assigned integer values in the range [0, N-1], where N is the number of output patch
vertices per primitive.

7.1.2.2 Tessellation Control Output Variables

gl_Position is used in the same fashion as the corresponding output variable in the vertex shader.

The values written to gl_TessLevelOuter and gl_TessLevelInner are assigned to the corresponding outer
and inner tessellation levels of the output patch. They are used by the tessellation primitive generator to
control primitive tessellation, and may be read by tessellation evaluation shaders.

7.1.3 Tessellation Evaluation Shader Special Variables

In the tessellation evaluation language, built-in variables are intrinsically declared as:

122

7 Built-in Variables

in gl_PerVertex
{
 highp vec4 gl_Position;
} gl_in[gl_MaxPatchVertices];

in highp int gl_PatchVerticesIn;
in highp int gl_PrimitiveID;
in highp vec3 gl_TessCoord;
patch in highp float gl_TessLevelOuter[4];
patch in highp float gl_TessLevelInner[2];

out gl_PerVertex
{
 highp vec4 gl_Position;
};

7.1.3.1 Tessellation Evaluation Input Variables

gl_Position contains the output written in the previous shader stage to gl_Position.

gl_PatchVerticesIn and gl_PrimitiveID are defined in the same fashion as the corresponding input
variables in the tessellation control shader.

gl_TessCoord specifies a three-component (u,v,w) vector identifying the position of the vertex being
processed by the shader relative to the primitive being tessellated. Its values will obey the properties

gl_TessCoord.x == 1.0 - (1.0 - gl_TessCoord.x) // two operations performed
gl_TessCoord.y == 1.0 - (1.0 - gl_TessCoord.y) // two operations performed
gl_TessCoord.z == 1.0 - (1.0 - gl_TessCoord.z) // two operations performed

gl_TessLevelOuter and gl_TessLevelInner are filled with the corresponding output variables written by
the active tessellation control shader.

7.1.3.2 Tessellation Evaluation Output Variables

gl_Position is used in the same fashion as the corresponding output variable in the vertex shader.

7.1.4 Geometry Shader Special Variables

In the geometry language, the built-in variables are intrinsically declared as:

123

7 Built-in Variables

in gl_PerVertex
{
 highp vec4 gl_Position;
} gl_in[];

in highp int gl_PrimitiveIDIn;
in highp int gl_InvocationID;

out gl_PerVertex
{
 highp vec4 gl_Position;
};

out highp int gl_PrimitiveID;
out highp int gl_Layer;

7.1.4.1 Geometry Shader Input Variables

gl_Position contains the output written in the previous shader stage to gl_Position.

gl_PrimitiveIDIn contains the number of primitives processed by the shader since the current set of
rendering primitives was started.

gl_InvocationID contains the invocation number assigned to the geometry shader invocation. It is
assigned integer values in the range [0, N-1], where N is the number of geometry shader invocations per
primitive.

7.1.4.2 Geometry Shader Output Variables

gl_Position is used in the same fashion as the corresponding output variable in the vertex shader. Its value
is undefined after geometry processing if the shader calls EmitVertex() without having written
gl_Position since the last EmitVertex(), or does not write it at all.

gl_PrimitiveID is filled with a single integer that serves as a primitive identifier to the fragment shader.
This is then available to fragment shaders, which will select the written primitive ID from the provoking
vertex of the primitive being shaded. If a fragment shader using gl_PrimitiveID is active and a geometry
shader is also active, the geometry shader must write to gl_PrimitiveID or the fragment shader input
gl_PrimitiveID is undefined. See section 11.3.4.4 “Geometry Shader Outputs” of the OpenGL ES
Specification for more information.

gl_Layer is used to select a specific layer (or face and layer of a cube map) of a multi-layer framebuffer
attachment. The actual layer used will come from one of the vertices in the primitive being shaded.
Which vertex the layer comes from is determined as discussed in section 11.3.4.4 of the OpenGL ES
Specification but may be undefined, so it is best to write the same layer value for all vertices of a
primitive. If a shader statically assigns a value to gl_Layer, layered rendering mode is enabled. See
section 11.3.4.4 “Geometry Shader Outputs” and section 9.8 “Layered Framebuffers” of the OpenGL ES
Specification for more information. If a shader statically assigns a value to gl_Layer, and there is an
execution path through the shader that does not set gl_Layer, then the value of gl_Layer is undefined for
executions of the shader that take that path.

124

7 Built-in Variables

gl_Layer takes on a special value when used with an array of cube map textures. Instead of only referring
to the layer, it is used to select a cube map face and a layer. Setting gl_Layer to the value (layer*6+face)
will render to the face face of the cube defined in layer layer. The face values are defined in table 8.25 of
the OpenGL ES Specification.

For example, to render to the positive y cube map face located in the 5th layer of the cube map array,
gl_Layer should be set to 5*6 + 2.

Face Value Resulting Target

0 TEXTURE_CUBE_MAP_POSITIVE_X

1 TEXTURE_CUBE_MAP_NEGATIVE_X

2 TEXTURE_CUBE_MAP_POSITIVE_Y

3 TEXTURE_CUBE_MAP_NEGATIVE_Y

4 TEXTURE_CUBE_MAP_POSITIVE_Z

5 TEXTURE_CUBE_MAP_NEGATIVE_

7.1.5 Fragment Shader Special Variables

The built-in special variables that are accessible from a fragment shader are intrinsically declared as
follows:

in highp vec4 gl_FragCoord;
in bool gl_FrontFacing;
out highp float gl_FragDepth;
in mediump vec2 gl_PointCoord;
in bool gl_HelperInvocation;
in highp int gl_PrimitiveID;
in highp int gl_Layer;
in lowp int gl_SampleID;
in mediump vec2 gl_SamplePosition;
in highp int gl_SampleMaskIn[(gl_MaxSamples+31)/32];
out highp int gl_SampleMask[(gl_MaxSamples+31)/32];

Except as noted below, they behave as other input and output variables.

The output of the fragment shader executable is processed by the fixed function operations at the back end
of the OpenGL ES pipeline.

The fixed functionality computed depth for a fragment may be obtained by reading gl_FragCoord.z,
described below.

125

7 Built-in Variables

Writing to gl_FragDepth will establish the depth value for the fragment being processed. If depth
buffering is enabled, and no shader writes gl_FragDepth, then the fixed function value for depth will be
used as the fragment’s depth value. If a shader statically assigns a value to gl_FragDepth, and there is an
execution path through the shader that does not set gl_FragDepth, then the value of the fragment’s depth
may be undefined for executions of the shader that take that path. That is, if the set of linked fragment
shaders statically contain a write to gl_FragDepth, then it is responsible for always writing it.

If a shader executes the discard keyword, the fragment is discarded, and the values of any user-defined
fragment outputs, become irrelevant.

The variable gl_FragCoord is available as an input variable from within fragment shaders and it holds the
window relative coordinates (x, y, z, 1/w) values for the fragment. If multi-sampling, this value can be for
any location within the pixel, or one of the fragment samples. The use of centroid does not further
restrict this value to be inside the current primitive. This value is the result of the fixed functionality that
interpolates primitives after vertex processing to generate fragments. The z component is the depth value
that would be used for the fragment’s depth if no shader contained any writes to gl_FragDepth. This is
useful for invariance if a shader conditionally computes gl_FragDepth but otherwise wants the fixed
functionality fragment depth.

Fragment shaders have access to the input built-in variable gl_FrontFacing, whose value is true if the
fragment belongs to a front-facing primitive. One use of this is to emulate two-sided lighting by selecting
one of two colors calculated by a vertex or geometry shader.

The values in gl_PointCoord are two-dimensional coordinates indicating where within a point primitive
the current fragment is located, when point sprites are enabled. They range from 0.0 to 1.0 across the
point. If the current primitive is not a point, or if point sprites are not enabled, then the values read from
gl_PointCoord are undefined.

The value gl_HelperInvocation is true if the fragment shader invocation is considered a “helper”
invocation and is false otherwise. A helper invocation is a fragment shader invocation that is created
solely for the purposes of evaluating derivatives for the built-in functions texture() (section 8.9 “Texture
Functions”), dFdx(), dFdy(), and fwidth() for other non-helper fragment shader invocations.

Fragment shader helper invocations execute the same shader code as non-helper invocations, but will not
have side effects that modify the framebuffer or other shader-accessible memory. In particular:

• Fragments corresponding to helper invocations are discarded when shader execution is complete,
without updating the framebuffer.

• Stores to image and buffer variables performed by helper invocations have no effect on the
underlying image or buffer memory.

• Atomic operations to image, buffer, or atomic counter variables performed by helper invocations
have no effect on the underlying image or buffer memory. The values returned by such atomic
operations are undefined.

Helper invocations may be generated for pixels not covered by a primitive being rendered. While
fragment shader inputs qualified with centroid are normally required to be sampled in the intersection of
the pixel and the primitive, the requirement is ignored for such pixels since there is no intersection
between the pixel and primitive.

126

7 Built-in Variables

Helper invocations may also be generated for fragments that are covered by a primitive being rendered
when the fragment is killed by early fragment tests (using the early_fragment_tests qualifier) or where
the implementation is able to determine that executing the fragment shader would have no effect other
than assisting in computing derivatives for other fragment shader invocations.

The set of helper invocations generated when processing any set of primitives is implementation-
dependent.

The input variable gl_PrimitiveID is filled with the value written to the gl_PrimitiveID geometry shader
output, if a geometry shader is present. Otherwise, it is filled with the number of primitives processed by
the shader since the current set of rendering primitives was started.

The input variable gl_Layer is filled with the value written to the gl_Layer geometry shader output, if a
geometry shader is present. If the geometry stage does not dynamically assign a value to gl_Layer, the
value of gl_Layer in the fragment stage will be undefined. If the geometry stage makes no static
assignment to gl_Layer, the input value in the fragment stage will be zero. Otherwise, the fragment stage
will read the same value written by the geometry stage, even if that value is out of range. If a fragment
shader contains a static access to gl_Layer, it will count against the implementation defined limit for the
maximum number of inputs to the fragment stage.

The input variable gl_SampleID is filled with the sample number of the sample currently being processed.
This variable is in the range 0 to gl_NumSamples-1, where gl_NumSamples is the total number of samples
in the framebuffer, or one if rendering to a non-multisample framebuffer. Any static use of gl_SampleID
in a fragment shader causes the entire shader to be executed per-sample.

The input variable gl_SamplePosition contains the position of the current sample within the multi-sample
draw buffer. The x and y components of gl_SamplePosition contain the sub-pixel coordinate of the
current sample and will have values in the range 0.0 to 1.0. Any static use of this variable in a fragment
shader causes the entire shader to be executed per-sample.

For the both the input array gl_SampleMaskIn[] and the output array gl_SampleMask[], bit B of mask M
(gl_SampleMaskIn[M] or gl_SampleMask[M]) corresponds to sample 32*M+B. These arrays have
ceil(gl_MaxSamples/32) elements, where gl_MaxSamples is the maximum number of color samples
supported by the implementation.

The input variable gl_SampleMaskIn indicates the set of samples covered by the primitive generating the
fragment during multisample rasterization. It has a sample bit set if and only if the sample is considered
covered for this fragment shader invocation. The output array gl_SampleMask[] sets the sample mask for
the fragment being processed. Coverage for the current fragment will be the logical AND of the coverage
mask and the output gl_SampleMask. If the fragment shader statically assigns a value to gl_SampleMask,
the sample mask will be undefined for any array elements of any fragment shader invocations that fails to
assign a value. If a shader does not statically assign a value to gl_SampleMask, the sample mask has no
effect on the processing of a fragment.

127

7 Built-in Variables

7.1.6 Compute Shader Special Variables

In the compute language, the built-in variables are declared as follows:

// work group dimensions
in uvec3 gl_NumWorkGroups;
const uvec3 gl_WorkGroupSize;

// work group and invocation IDs
in uvec3 gl_WorkGroupID;
in uvec3 gl_LocalInvocationID;

// derived variables
in uvec3 gl_GlobalInvocationID;
in uint gl_LocalInvocationIndex;

The built-in variable gl_NumWorkGroups is a compute-shader input variable containing the total number
of global work items in each dimension of the work group that will execute the compute shader. Its
content is equal to the values specified in the num_groups_x, num_groups_y, and num_groups_z
parameters passed to the DispatchCompute API entry point.

The built-in constant gl_WorkGroupSize is a compute-shader constant containing the local work-group
size of the shader. The size of the work group in the X, Y, and Z dimensions is stored in the x, y, and z
components. The constants values in gl_WorkGroupSize will match those specified in the required
local_size_x, local_size_y, and local_size_z layout qualifiers for the current shader. This is a constant so
that it can be used to size arrays of memory that can be shared within the local work group. It is a
compile-time error to use gl_WorkGroupSize in a shader that does not declare a fixed local group size, or
before that shader has declared a fixed local group size, using local_size_x, local_size_y, and
local_size_z. When a size is given for some of these identifiers, but not all, the corresponding
gl_WorkGroupSize will have a size of 1.

The built-in variable gl_WorkGroupID is a compute-shader input variable containing the three-
dimensional index of the global work group that the current invocation is executing in. The possible
values range across the parameters passed into DispatchCompute, i.e., from (0, 0, 0) to
(gl_NumWorkGroups.x - 1, gl_NumWorkGroups.y - 1, gl_NumWorkGroups.z -1).

The built-in variable gl_LocalInvocationID is a compute-shader input variable containing the t-
dimensional index of the local work group within the global work group that the current invocation is
executing in. The possible values for this variable range across the local work group size, i.e., (0,0,0) to
(gl_WorkGroupSize.x - 1, gl_WorkGroupSize.y - 1, gl_WorkGroupSize.z - 1).

The built-in variable gl_GlobalInvocationID is a compute shader input variable containing the global
index of the current work item. This value uniquely identifies this invocation from all other invocations
across all local and global work groups initiated by the current DispatchCompute call. This is computed
as:

gl_GlobalInvocationID =
 gl_WorkGroupID * gl_WorkGroupSize + gl_LocalInvocationID;

128

7 Built-in Variables

The built-in variable gl_LocalInvocationIndex is a compute shader input variable that contains the one-
dimensional representation of the gl_LocalInvocationID. This is useful for uniquely identifying a unique
region of shared memory within the local work group for this invocation to use. This is computed as:

gl_LocalInvocationIndex =
 gl_LocalInvocationID.z * gl_WorkGroupSize.x * gl_WorkGroupSize.y +
 gl_LocalInvocationID.y * gl_WorkGroupSize.x +
 gl_LocalInvocationID.x;

7.2 Built-In Constants
The following built-in constants are provided to all shaders. The actual values used are implementation
dependent, but must be at least the value shown.

//
// Implementation dependent constants. The example values below
// are the minimum values allowed for these maximums.
//

const mediump int gl_MaxVertexAttribs = 16;
const mediump int gl_MaxVertexUniformVectors = 256;

129

7 Built-in Variables

const mediump int gl_MaxVertexOutputVectors = 16;

const mediump int gl_MaxTessControlInputComponents = 12864;
const mediump int gl_MaxTessControlOutputComponents = 12864;
const mediump int gl_MaxTessControlTextureImageUnits = 16;
const mediump int gl_MaxTessControlUniformComponents = 1024;
const mediump int gl_MaxTessControlTotalOutputComponents = 4096;

const mediump int gl_MaxTessControlImageUniforms = 0;
const mediump int gl_MaxTessEvaluationImageUniforms = 0;
const mediump int gl_MaxTessControlAtomicCounters = 0;
const mediump int gl_MaxTessEvaluationAtomicCounters = 0;
const mediump int gl_MaxTessControlAtomicCounterBuffers = 0;
const mediump int gl_MaxTessEvaluationAtomicCounterBuffers = 0;

const mediump int gl_MaxTessEvaluationInputComponents = 12864;
const mediump int gl_MaxTessEvaluationOutputComponents = 12864;
const mediump int gl_MaxTessEvaluationTextureImageUnits = 16;
const mediump int gl_MaxTessEvaluationUniformComponents = 1024;

const mediump int gl_MaxTessPatchComponents = 120;

const mediump int gl_MaxPatchVertices = 32;
const mediump int gl_MaxTessGenLevel = 64;

const mediump int gl_MaxGeometryInputComponents = 64;
const mediump int gl_MaxGeometryOutputComponents = 12864;
const mediump int gl_MaxGeometryImageUniforms = 0;
const mediump int gl_MaxGeometryTextureImageUnits = 16;
const mediump int gl_MaxGeometryOutputVertices = 256;
const mediump int gl_MaxGeometryTotalOutputComponents = 1024;
const mediump int gl_MaxGeometryUniformComponents = 1024;
const mediump int gl_MaxGeometryAtomicCounters = 0;
const mediump int gl_MaxGeometryAtomicCounterBuffers = 0;

const mediump int gl_MaxFragmentInputVectors = 15;
const mediump int gl_MaxFragmentUniformVectors = 224;
const mediump int gl_MaxDrawBuffers = 4;

const mediump int gl_MaxVertexTextureImageUnits = 16;
const mediump int gl_MaxCombinedTextureImageUnits = 96;
const mediump int gl_MaxTextureImageUnits = 16;

130

7 Built-in Variables

const mediump int gl_MinProgramTexelOffset = -8;
const mediump int gl_MaxProgramTexelOffset = 7;

const mediump int gl_MaxImageUnits = 4;
const mediump int gl_MaxVertexImageUniforms = 0;
const mediump int gl_MaxFragmentImageUniforms = 0;

const mediump int gl_MaxSamples = 4;

const mediump int gl_MaxComputeImageUniforms = 4;
const mediump int gl_MaxCombinedImageUniforms = 4;

const mediump int gl_MaxCombinedShaderOutputResources = 4;

const highp ivec3 gl_MaxComputeWorkGroupCount = ivec3(65535, 65535, 65535);
const highp ivec3 gl_MaxComputeWorkGroupSize = ivec3(128, 128, 64);
const mediump int gl_MaxComputeUniformComponents = 512;
const mediump int gl_MaxComputeTextureImageUnits = 16;

const mediump int gl_MaxComputeAtomicCounters = 8;
const mediump int gl_MaxComputeAtomicCounterBuffers = 1;

const mediump int gl_MaxVertexAtomicCounters = 0;
const mediump int gl_MaxFragmentAtomicCounters = 0;
const mediump int gl_MaxCombinedAtomicCounters = 8;
const mediump int gl_MaxAtomicCounterBindings = 1;

const mediump int gl_MaxFragmentAtomicCounterBuffers = 0;
const mediump int gl_MaxVertexAtomicCounterBuffers = 0;
const mediump int gl_MaxCombinedAtomicCounterBuffers = 1;
const mediump int gl_MaxAtomicCounterBufferSize = 32;

7.3 Built-In Uniform State
As an aid to accessing OpenGL ES processing state, the following uniform variables are built into the
OpenGL ES Shading Language.

131

7 Built-in Variables

//
// Depth range in window coordinates,
// section 12.5.1 “Controlling the Viewport” in the
// OpenGL ES Graphics System Specification.
//
struct gl_DepthRangeParameters {
 highp float near; // n
 highp float far; // f
 highp float diff; // f - n
};
uniform gl_DepthRangeParameters gl_DepthRange;

uniform lowp int gl_NumSamples;

7.4 Redeclaring Built-in Blocks
The gl_PerVertex block can be redeclared in a shader to explicitly indicate what subset of the members
will be used. This is necessary to establish the interface between multiple programs. If the gl_PerVertex
block is not redefined in a given program, the intrinsically declared definition of that block is used for the
program interface.

For example:

out gl_PerVertex
{
 highp vec4 gl_Position; // will use gl_Position
 highp vec4 t; // error, only gl_PerVertex members allowed
}; // no other members of gl_PerVertex will be used

This establishes the output interface the shader will use with the subsequent pipeline stage. It must be a
subset of the built-in members of gl_PerVertex. Such a redeclaration can also add the invariant qualifier
and interpolation qualifiers.

Other layout qualifiers, like location, cannot be added to such a redeclaration, unless specifically stated.

If a built-in interface block is redeclared, it must appear in the shader before any use of any member
included in the built-in declaration, or a compile-time error will result. It is also a compile-time error to
redeclare the block more than once or to redeclare a built-in block and then use a member from that built-
in block that was not included in the redeclaration. Also, if a built-in interface block is redeclared, no
member of the built-in declaration can be redeclared outside the block redeclaration. If multiple shaders
using members of a built-in block belonging to the same interface are linked together in the same
program, they must all redeclare the built-in block in the same way, as described in section 4.3.9
(“Interface Blocks”) for interface block matching, or a link-time error will result. It will also be a link-
time error if some shaders in a program redeclare a specific built-in interface block while another shader
in that program does not redeclare that interface block yet still uses a member of that interface block. If a
built-in block interface is formed across shaders in different programs, the shaders must all redeclare the
built-in block in the same way (as described for a single program), or the values passed along the interface
are undefined.

132

8 Built-in Functions

The OpenGL ES Shading Language defines an assortment of built-in convenience functions for scalar and
vector operations. Many of these built-in functions can be used in more than one type of shader, but some
are intended to provide a direct mapping to hardware and so are available only for a specific type of
shader.

The built-in functions basically fall into three categories:

• They expose some necessary hardware functionality in a convenient way such as accessing a
texture map. There is no way in the language for these functions to be emulated by a shader.

• They represent a trivial operation (clamp, mix, etc.) that is very simple for the user to write, but
they are very common and may have direct hardware support. It is a very hard problem for the
compiler to map expressions to complex assembler instructions.

• They represent an operation graphics hardware is likely to accelerate at some point. The
trigonometry functions fall into this category.

Many of the functions are similar to the same named ones in common C libraries, but they support vector
input as well as the more traditional scalar input.

Applications should be encouraged to use the built-in functions rather than do the equivalent computations
in their own shader code since the built-in functions are assumed to be optimal (e.g., perhaps supported
directly in hardware).

When the built-in functions are specified below, where the input arguments (and corresponding output)
can be float, vec2, vec3, or vec4, genFType is used as the argument. Where the input arguments (and
corresponding output) can be int, ivec2, ivec3, or ivec4, genIType is used as the argument. Where the
input arguments (and corresponding output) can be uint, uvec2, uvec3, or uvec4, genUType is used as the
argument. Where the input arguments (or corresponding output) can be bool, bvec2, bvec3, or bvec4,
genBType is used as the argument. For any specific use of a function, the actual types substituted for
genFType, genIType, genUType, or genBType have to have the same number of components for all
arguments and for the return type. Similarly for mat, which can be any matrix basic type.

The precision of built-in functions is dependent on the function and arguments. There are three
categories:

• Some functions have predefined precisions. The precision is specified by the function signature
e.g.

Floating-point pack and unpack functions

imageSize and textureSize Functions

Atomic operation functions

• For the texture sampling, image load and image store functions, the precision of the return type
matches the precision of the sampler type:

133

8 Built-in Functions

uniform lowp sampler2D sampler;
highp vec2 coord;
...
lowp vec4 col = texture (sampler, coord); // texture() returns lowp

• For other built-in functions, a call will return a precision qualification matching the highest
precision qualification of the call's input arguments. See Section 4.7.3 “Precision Qualifiers” for
more detail.

The built-in functions are assumed to be implemented according to the equations specified in the
following sections. The precision at which the calculations are performed follows the general rules for
precision of operations as specified in section 4.7.3 “Precision Qualifiers”.

Example:

If the input vector is lowp, the entire calculation is performed at lowp. For some inputs, this will cause the
calculation to overflow, even when the correct result is within the range of lowp.

134

normalize(
x
y
z)=

1

√ x2+ y2+z 2(
x
y
z)

8 Built-in Functions

8.1 Angle and Trigonometry Functions
Function parameters specified as angle are assumed to be in units of radians. In no case will any of these
functions result in a divide by zero error. If the divisor of a ratio is 0, then results will be undefined.

These all operate component-wise. The description is per component.

Syntax Description

genFType radians (genFType degrees) Converts degrees to radians, i.e.,
π

180
⋅degrees

genFType degrees (genFType radians) Converts radians to degrees, i.e., 180
π ⋅radians

genFType sin (genFType angle) The standard trigonometric sine function.

genFType cos (genFType angle) The standard trigonometric cosine function.

genFType tan (genFType angle) The standard trigonometric tangent.

genFType asin (genFType x) Arc sine. Returns an angle whose sine is x. The range

of values returned by this function is [−

2
,

2]
Results are undefined if ∣x∣1.

genFType acos (genFType x) Arc cosine. Returns an angle whose cosine is x. The
range of values returned by this function is [0, p].
Results are undefined if ∣x∣1.

genFType atan (genFType y, genFType x) Arc tangent. Returns an angle whose tangent is y/x. The
signs of x and y are used to determine what quadrant the
angle is in. The range of values returned by this
function is [−π , π]. Results are undefined if x and y
are both 0.

genFType atan (genFType y_over_x) Arc tangent. Returns an angle whose tangent is
y_over_x. The range of values returned by this function

is [−
π
2

, π
2].

135

8 Built-in Functions

Syntax Description

genFType sinh (genFType x) Returns the hyperbolic sine function
e x

−e−x

2

genFType cosh (genFType x) Returns the hyperbolic cosine function
e x

e−x

2

genFType tanh (genFType x) Returns the hyperbolic tangent function
sinh x

cosh x

genFType asinh (genFType x) Arc hyperbolic sine; returns the inverse of sinh.

genFType acosh (genFType x) Arc hyperbolic cosine; returns the non-negative inverse
of cosh. Results are undefined if x < 1.

genFType atanh (genFType x) Arc hyperbolic tangent; returns the inverse of tanh.
Results are undefined if ∣x∣≥1.

8.2 Exponential Functions
These all operate component-wise. The description is per component.

Syntax Description

genFType pow (genFType x, genFType y) Returns x raised to the y power, i.e., x y

Results are undefined if x<0.

Results are undefined if x=0 and y≤0.

genFType exp (genFType x) Returns the natural exponentiation of x, i.e., ex.

genFType log (genFType x) Returns the natural logarithm of x, i.e., returns the value
y which satisfies the equation x = ey.

Results are undefined if x≤0.

genFType exp2 (genFType x) Returns 2 raised to the x power, i.e., 2 x

genFType log2 (genFType x) Returns the base 2 logarithm of x, i.e., returns the value
y which satisfies the equation x=2 y

Results are undefined if x≤0.

136

8 Built-in Functions

Syntax Description

genFType sqrt (genFType x) Returns √ x

Results are undefined if x<0.

genFType inversesqrt (genFType x)
Returns

1

√ x

Results are undefined if x≤0.

8.3 Common Functions
These all operate component-wise. The description is per component.

Syntax Description

genFType abs (genFType x)
genIType abs (genIType x)

Returns x if x≥0, otherwise it returns –x.

genFType sign (genFType x)
genIType sign (genIType x)

Returns 1.0 if x>0, , 0.0 if x=0 or –1.0 if
x<0.

genFType floor (genFType x) Returns a value equal to the nearest integer that is less
than or equal to x.

genFType trunc (genFType x) Returns a value equal to the nearest integer to x whose
absolute value is not larger than the absolute value of x.

genFType round (genFType x) Returns a value equal to the nearest integer to x. The
fraction 0.5 will round in a direction chosen by the
implementation, presumably the direction that is fastest.
This includes the possibility that round(x) returns the
same value as roundEven(x) for all values of x.

genFType roundEven (genFType x) Returns a value equal to the nearest integer to x. A
fractional part of 0.5 will round toward the nearest even
integer. (Both 3.5 and 4.5 for x will return 4.0.)

genFType ceil (genFType x) Returns a value equal to the nearest integer that is
greater than or equal to x.

genFType fract (genFType x) Returns x – floor (x).

137

8 Built-in Functions

Syntax Description

genFType mod (genFType x, float y)
genFType mod (genFType x, genFType y)

Modulus. Returns x – y * floor (x/y).

genFType modf (genFType x, out genFType
i)

Returns the fractional part of x and sets i to the integer
part (as a whole number floating point value). Both the
return value and the output parameter will have the same
sign as x.

genFType min (genFType x, genFType y)
genFType min (genFType x, float y)
genIType min (genIType x, genIType y)
genIType min (genIType x, int y)
genUType min (genUType x, genUType y)
genUType min (genUType x, uint y)

Returns y if y<x , otherwise it returns x.

genFType max (genFType x, genFType y)
genFType max (genFType x, float y)
genIType max (genIType x, genIType y)
genIType max (genIType x, int y)
genUType max (genUType x, genUType y)
genUType max (genUType x, uint y)

Returns y if x< y , otherwise it returns x.

genFType clamp (genFType x,
 genFType minVal,
 genFType maxVal)
genFType clamp (genFType x,
 float minVal,
 float maxVal)
genIType clamp (genIType x,
 genIType minVal,
 genIType maxVal)
genIType clamp (genIType x,
 int minVal,
 int maxVal)
genUType clamp (genUType x,
 genUType minVal,
 genUType maxVal)
genUType clamp (genUType x,
 uint minVal,
 uint maxVal)

Returns min (max (x, minVal), maxVal).

Results are undefined if minVal>maxVal.

138

8 Built-in Functions

Syntax Description

genFType mix (genFType x,
 genFType y,
 genFType a)
genFType mix (genFType x,
 genFType y,
 float a)

Returns the linear blend of x and y, i.e.,
x⋅1−a y⋅a

genFType mix (genFType x,
 genFType y,
 genBType a)

genIType mix (genIType x,
 genIType y,
 genBType a)

genUType mix (genUType x,
 genUType y,
 genBType a)

genBType mix (genBType x,
 genBType y,
 genBType a)

Selects which vector each returned component comes
from. For a component of a that is false, the
corresponding component of x is returned. For a
component of a that is true, the corresponding
component of y is returned. Components of x and y that
are not selected are allowed to be invalid floating point
values and will have no effect on the results. Thus, this
provides different functionality than

 genFType mix(genFType x, genFType y,
genFType(a))

where a is a Boolean vector.

genFType step (genFType edge, genFType x)
genFType step (float edge, genFType x)

Returns 0.0 if x<edge , otherwise it returns 1.0.

genFType smoothstep (genFType edge0,
 genFType edge1,
 genFType x)
genFType smoothstep (float edge0,
 float edge1,
 genFType x)

Returns 0.0 if x≤edge0 and 1.0 if x≥edge1 and
performs smooth Hermite interpolation between 0 and 1
when edge0<x<edge1. This is useful in cases
where you would want a threshold function with a
smooth transition. This is equivalent to:

 genFType t;
 t = clamp ((x – edge0)/ (edge1 – edge0),
 0, 1);
 return t * t * (3 – 2 * t);

Results are undefined if edge0≥edge1.

genBType isnan (genFType x) Returns true if x holds a NaN. Returns false otherwise.

genBType isinf (genFType x) Returns true if x holds a positive infinity or negative
infinity. Returns false otherwise.

139

8 Built-in Functions

Syntax Description

genIType floatBitsToInt (genFType value)
genUType floatBitsToUint (genFType
value)

Returns a signed or unsigned highp integer value
representing the encoding of a floating-point value. For
highp floating point, the value's bit level representation
is preserved. For mediump and lowp, the value is first
converted to highp floating point and the encoding of
that value is returned.

genFType intBitsToFloat (genIType value)
genFType uintBitsToFloat (genUType
value)

Returns a highp floating-point value corresponding to a
signed or unsigned integer encoding of a floating-point
value. If an inf or NaN is passed in, it will not signal,
and the resulting floating point value is unspecified.
Otherwise, the bit-level representation is preserved. For
lowp and mediump, the value is first converted to the
corresponding signed or unsigned highp integer and then
reinterpreted as a highp floating point value as before.

GenType fma (genType a, genType b,
genType c)

Computes and returns a * b + c

In uses where the return value is eventually consumed by
a variable declared as precise:

• fma() is considered a single operation,
whereas the expression a*b + c consumed by
a variable declared precise is considered two
operations.

• The precision of fma() can differ from the
precision of the expression a*b + c.

• fma() will be computed with the same
precision as any other fma() consumed by a
precise variable, giving invariant results for
the same input values of a, b, and c.

Otherwise, in the absence of precise consumption, there
are no special constraints on the number of operations or
difference in precision between fma() and the expression
a*b + c.

140

8 Built-in Functions

Syntax Description

highp genFType frexp(highp genFType x,
out highp genIType exp);

The function frexp() splits each single-precision floating-
point number in x into a binary significand, a floating-
point number in the range [0.5, 1.0), and an integral
exponent of two, such that:

x=significand⋅2exponent

The significand is returned by the function; the exponent
is returned in the parameter exp. For a floating-point
value of zero, the significand and exponent are both
zero. If an implementation supports signed zero, an
input value of minus zero should return a significand of
minus zero. For a floating-point value that is an infinity
or is not a number, the results of frexp() are undefined.
If the input x is a vector, this operation is performed in a
component-wise manner; the value returned by the
function and the value written to exp are vectors with the
same number of components as x.

highp genFType ldexp(highp genFType x, in
highp genIType exp);

The function ldexp() builds a single-precision floating-
point number from each significand component in x and
the corresponding integral exponent of two in exp,
returning:

x=significand⋅2exponent

If exponent is greater than +128, the value returned is
undefined. If exponent is less than -126, the value
returned may be flushed to zero. Additionally, splitting
the value into a significand and exponent using frexp()
and then reconstructing a floating-point value using
ldexp() should yield the original input for zero and all
finite non-subnormal values.
If the input x is a vector, this operation is performed in a
component-wise manner; the value passed in exp and
returned by the function are vectors with the same
number of components as x.

141

8 Built-in Functions

8.4 Floating-Point Pack and Unpack Functions
These functions do not operate component-wise, rather as described in each case.

Syntax Description

highp uint packSnorm2x16 (vec2 v) First, converts each component of the normalized
floating-point value v into 16-bit integer values. Then,
the results are packed into the returned 32-bit unsigned
integer.
The conversion for component c of v to fixed point is
done as follows:

fixed point value = round(clamp(c, -1, +1) *
32767.0)

The first component of the vector will be written to the
least significant bits of the output; the last component
will be written to the most significant bits.

highp vec2 unpackSnorm2x16 (highp uint
p)

First, unpacks a single 32-bit unsigned integer p into a
pair of 16-bit signed integers. Then, each component is
converted to a normalized floating-point value to
generate the returned two-component vector.

The conversion for unpacked fixed-point value f to
floating point is done as follows:

floating point value = clamp(f / 32767.0, -1,+1)

The first component of the returned vector will be
extracted from the least significant bits of the input; the
last component will be extracted from the most
significant bits.

highp uint packUnorm2x16 (vec2 v) First, converts each component of the normalized
floating-point value v into 16-bit integer values. Then,
the results are packed into the returned 32-bit unsigned
integer.

The conversion for component c of v to fixed point is
done as follows:

fixed point value = round(clamp(c, 0, +1) *
65535.0)

The first component of the vector will be written to the
least significant bits of the output; the last component
will be written to the most significant bits.

142

8 Built-in Functions

Syntax Description

highp vec2 unpackUnorm2x16 (highp uint
p)

First, unpacks a single 32-bit unsigned integer p into a
pair of 16-bit unsigned integers. Then, each component
is converted to a normalized floating-point value to
generate the returned two-component vector.

The conversion for unpacked fixed-point value f to
floating point is done as follows:

floating point value = f / 65535.0

The first component of the returned vector will be
extracted from the least significant bits of the input; the
last component will be extracted from the most
significant bits.

highp uint packHalf2x16 (mediump vec2 v) Returns an unsigned integer obtained by converting the
components of a two-component floating-point vector to
the 16-bit floating-point representation found in the
OpenGL ES Specification, and then packing these two
16-bit integers into a 32-bit unsigned integer.

The first vector component specifies the 16 least-
significant bits of the result; the second component
specifies the 16 most-significant bits.

mediump vec2 unpackHalf2x16 (highp uint
v)

Returns a two-component floating-point vector with
components obtained by unpacking a 32-bit unsigned
integer into a pair of 16-bit values, interpreting those
values as 16-bit floating-point numbers according to the
OpenGL ES Specification, and converting them to 32-bit
floating-point values.

The first component of the vector is obtained from the
16 least-significant bits of v; the second component is
obtained from the 16 most-significant bits of v.

143

8 Built-in Functions

Syntax Description

highp uint packUnorm4x8(mediump vec4 v) First convert each component of four-component vector
of normalized floating-point values into 8-bit unsigned
integer values.

fixed-value = round(clamp(floating-value, 0, 1)*255.0

Then, the results are packed into the returned 32-bit
unsigned integer. The first component of the vector will
be written to the least significant bits of the output; the
last component will be written to the most significant
bits.

highp uint packSnorm4x8(mediump vec4 v); First convert each component of four-component vector
of normalized floating-point values into signed 8-bit
integer values.

fixed-value = round(clamp(floating-value, -1, 1)*127.0

Then, the results are packed into the returned 32-bit
unsigned integer. The first component of the vector will
be written to the least significant bits of the output; the
last component will be written to the most significant
bits.

mediump vec4 unpackUnorm4x8(highp uint
v)

First unpack a single 32-bit unsigned integer into four 8-
bit unsigned integers. Then, each component is
converted to a normalized floating-point value to
generate the returned four-component vector.

float-value = fixed-value / 255.0

The first component of the vector will be extracted from
the least significant bits of the input; the last component
will be extracted from the most significant bits.

144

8 Built-in Functions

Syntax Description

mediump vec4 unpackSnorm4x8(highp uint
v);

First unpack a single 32-bit unsigned integer into four 8-
bit signed integers. Then, each component is converted
to a normalized floating-point value to generate the
returned four-component vector.

float-value = clamp(fixed-value / 127.0, -1, 1)

The first component of the vector will be extracted from
the least significant bits of the input; the last component
will be extracted from the most significant bits.

8.5 Geometric Functions
These operate on vectors as vectors, not component-wise.

Syntax Description

float length (genFType x) Returns the length of vector x, i.e.,

 x[0]
2
x [1]

2
...

float distance (genFType p0, genFType p1) Returns the distance between p0 and p1, i.e.,
length (p0 – p1)

float dot (genFType x, genFType y) Returns the dot product of x and y, i.e.,
x [0]⋅y [0]+x [1]⋅y [1]+ ...

vec3 cross (vec3 x, vec3 y) Returns the cross product of x and y, i.e.,

[
x [1]⋅y [2]−y [1]⋅x [2]
x[2]⋅y [0]−y [2]⋅x[0]
x [0]⋅y [1]−y [0]⋅x [1]]

genFType normalize (genFType x) Returns a vector in the same direction as x but with a

length of 1 i.e.
x

length (x)

genFType faceforward(genFType N,
 genFType I,
 genFType Nref)

If dot(Nref, I) < 0 return N, otherwise return –N.

145

8 Built-in Functions

Syntax Description

genFType reflect (genFType I, genFType N) For the incident vector I and surface orientation N,
returns the reflection direction:

I – 2 * dot(N, I) * N
N must already be normalized in order to achieve the
desired result.

genFType refract(genFType I, genFType N,
 float eta)

For the incident vector I and surface normal N, and the
ratio of indices of refraction eta, return the refraction
vector. The result is computed by

k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
if (k < 0.0)
 return genFType(0.0)
else
 return eta * I - (eta * dot(N, I) + sqrt(k)) * N

The input parameters for the incident vector I and the
surface normal N must already be normalized to get the
desired results.

146

8 Built-in Functions

8.6 Matrix Functions

Syntax Description

mat matrixCompMult (mat x, mat y) Multiply matrix x by matrix y component-wise, i.e.,
result[i][j] is the scalar product of x[i][j] and y[i][j].

Note: to get linear algebraic matrix multiplication, use
the multiply operator (*).

mat2 outerProduct(vec2 c, vec2 r)
mat3 outerProduct(vec3 c, vec3 r)
mat4 outerProduct(vec4 c, vec4 r)

mat2x3 outerProduct(vec3 c, vec2 r)
mat3x2 outerProduct(vec2 c, vec3 r)

mat2x4 outerProduct(vec4 c, vec2 r)
mat4x2 outerProduct(vec2 c, vec4 r)

mat3x4 outerProduct(vec4 c, vec3 r)
mat4x3 outerProduct(vec3 c, vec4 r)

Treats the first parameter c as a column vector (matrix
with one column) and the second parameter r as a row
vector (matrix with one row) and does a linear algebraic
matrix multiply c * r, yielding a matrix whose number of
rows is the number of components in c and whose
number of columns is the number of components in r.

mat2 transpose(mat2 m)
mat3 transpose(mat3 m)
mat4 transpose(mat4 m)

mat2x3 transpose(mat3x2 m)
mat3x2 transpose(mat2x3 m)

mat2x4 transpose(mat4x2 m)
mat4x2 transpose(mat2x4 m)

mat3x4 transpose(mat4x3 m)
mat4x3 transpose(mat3x4 m)

Returns a matrix that is the transpose of m. The input
matrix m is not modified.

float determinant(mat2 m)
float determinant(mat3 m)
float determinant(mat4 m)

Returns the determinant of m.

mat2 inverse(mat2 m)
mat3 inverse(mat3 m)
mat4 inverse(mat4 m)

Returns a matrix that is the inverse of m. The input
matrix m is not modified. The values in the returned
matrix are undefined if m is singular or poorly-
conditioned (nearly singular).

147

8 Built-in Functions

8.7 Vector Relational Functions
Relational and equality operators (<, <=, >, >=, ==, !=) are defined to produce scalar Boolean results. For
vector results, use the following built-in functions. Below, “bvec” is a placeholder for one of bvec2,
bvec3, or bvec4, “ivec” is a placeholder for one of ivec2, ivec3, or ivec4, “uvec” is a placeholder for
uvec2, uvec3, or uvec4, and “vec” is a placeholder for vec2, vec3, or vec4. In all cases, the sizes of the
input and return vectors for any particular call must match.

Syntax Description

bvec lessThan(vec x, vec y)
bvec lessThan(ivec x, ivec y)
bvec lessThan(uvec x, uvec y)

Returns the component-wise compare of x < y.

bvec lessThanEqual(vec x, vec y)
bvec lessThanEqual(ivec x, ivec y)
bvec lessThanEqual(uvec x, uvec y)

Returns the component-wise compare of x <= y.

bvec greaterThan(vec x, vec y)
bvec greaterThan(ivec x, ivec y)
bvec greaterThan(uvec x, uvec y)

Returns the component-wise compare of x > y.

bvec greaterThanEqual(vec x, vec y)
bvec greaterThanEqual(ivec x, ivec y)
bvec greaterThanEqual(uvec x, uvec y)

Returns the component-wise compare of x >= y.

bvec equal(vec x, vec y)
bvec equal(ivec x, ivec y)
bvec equal(uvec x, uvec y)
bvec equal(bvec x, bvec y)

Returns the component-wise compare of x == y.

bvec notEqual(vec x, vec y)
bvec notEqual(ivec x, ivec y)
bvec notEqual(uvec x, uvec y)
bvec notEqual(bvec x, bvec y)

Returns the component-wise compare of x != y.

bool any(bvec x) Returns true if any component of x is true.

bool all(bvec x) Returns true only if all components of x are true.

bvec not(bvec x) Returns the component-wise logical complement of x.

148

8 Built-in Functions

8.8 Integer Functions

Syntax Description

genIType bitfieldExtract(genIType value,
int offset, int bits);

genUType bitfieldExtract(genUType value,
int offset, int bits);

Extracts bits offset through offset+bits-1 from each
component in value, returning them in the least
significant bits of corresponding component of the result.
For unsigned data types, the most significant bits of the
result will be set to zero. For signed data types, the most
significant bits will be set to the value of bit offset+base-
1. If bits is zero, the result will be zero. The result will
be undefined if offset or bits is negative, or if the sum of
offset and bits is greater than the number of bits used to
store the operand. Note that for vector versions of
bitfieldExtract(), a single pair of offset and bits values
is shared for all components.

The precision qualification of the value returned from
bitfieldExtract() matches the precision qualification of
the call's input argument “value”.

genIType bitfieldInsert(genIType base,
genIType insert, int offset, int bits);

genUType bitfieldInsert(genUType base,
genUType insert, int offset, int bits);

Inserts the bits least significant bits of each component
of insert into the corresponding component of base. The
result will have bits numbered offset through offset+bits-
1 taken from bits 0 through bits-1 of insert, and all other
bits taken directly from the corresponding bits of base.
If bits is zero, the result will simply be base. The result
will be undefined if offset or bits is negative, or if the
sum of offset and bits is greater than the number of bits
used to store the operand. Note that for vector versions
of bitfieldInsert(), a single pair of offset and bits values
is shared for all components.

The precision qualification of the value returned from
bitfieldInsert matches the highest precision
qualification of the call's input arguments “base” and
“insert”.

highp genIType bitfieldReverse(highp
genIType value);

highp genUType bitfieldReverse(highp
genUType value);

Reverses the bits of value. The bit numbered n of the
result will be taken from bit (bits-1)-n of value, where
bits is the total number of bits used to represent value.

lowp genIType bitCount(genIType value);

lowp genIType bitCount(genUType value);

Returns the number of one bits in the binary
representation of value.

149

8 Built-in Functions

Syntax Description

lowp genIType findLSB(genIType value);
lowp genIType findLSB(genUType value);

Returns the bit number of the least significant one bit in
the binary representation of value. If value is zero, -1
will be returned.

lowp genIType findMSB(highp genIType
value);
lowp genIType findMSB(highp genUType
value);

Returns the bit number of the most significant bit in the
binary representation of value. For positive integers, the
result will be the bit number of the most significant one
bit. For negative integers, the result will be the bit
number of the most significant zero bit. For a value of
zero or negative one, -1 will be returned.

highp genUType uaddCarry(highp
genUType x, highp genUType y, out lowp
genUType carry);

Adds 32-bit unsigned integers or vectors x and y,
returning the sum modulo 2^32. The value carry is set
to zero if the sum was less than 2^32, or one otherwise.

highp genUType usubBorrow(highp
genUType x, highp genUType y, out lowp
genUType borrow);

Subtracts the 32-bit unsigned integer or vector y from x,
returning the difference if non-negative or 2^32 plus the
difference, otherwise. The value borrow is set to zero if
x >= y, or one otherwise.

void umulExtended(highp genUType x,
highp genUType y, out highp genUType msb,
out highp genUType lsb);

void imulExtended(highp genIType x, highp
genIType y, out highp genIType msb, out
highp genIType lsb);

 Multiply 32-bit unsigned or signed integers or vectors x
and y, producing a 64-bit result. The 32 least significant
bits are returned in lsb; the 32 most significant bits are
returned in msb.

150

8 Built-in Functions

8.9 Texture Functions
Texture lookup functions are available in all shading stages. However, level of detail is implicitly
computed only for fragment shaders. Other shaders operate as though the base level of detail were
computed as zero. The functions in the table below provide access to textures through samplers, as set up
through the OpenGL ES API. Texture properties such as size, pixel format, number of dimensions,
filtering method, number of mip-map levels, depth comparison, and so on are also defined by OpenGL ES
API calls. Such properties are taken into account as the texture is accessed via the built-in functions
defined below.

Texture data can be stored by the GL as floating point, unsigned normalized integer, unsigned integer or
signed integer data. This is determined by the type of the internal format of the texture. Texture lookups
on unsigned normalized integer and floating point data return floating point values in the range [0, 1].

Texture lookup functions are provided that can return their result as floating point, unsigned integer or
signed integer, depending on the sampler type passed to the lookup function. Care must be taken to use
the right sampler type for texture access. The following table lists the supported combinations of sampler
types and texture internal formats. Blank entries are unsupported. Doing a texture lookup will return
undefined values for unsupported combinations.

Internal Texture Format
Floating Point
Sampler Types

Signed Integer
Sampler Types

Unsigned Integer
Sampler Types

Floating point Supported

Normalized Integer Supported

Signed Integer Supported

Unsigned Integer Supported

If an integer sampler type is used, the result of a texture lookup is an ivec4. If an unsigned integer
sampler type is used, the result of a texture lookup is a uvec4. If a floating point sampler type is used, the
result of a texture lookup is a vec4.

In the prototypes below, the “g” in the return type “gvec4” is used as a placeholder for nothing, “i”, or “u”
making a return type of vec4, ivec4, or uvec4. In these cases, the sampler argument type also starts with
“g”, indicating the same substitution done on the return type; it is either a floating point, signed integer, or
unsigned integer sampler, matching the basic type of the return type, as described above.

For shadow forms (the sampler parameter is a shadow-type), a depth comparison lookup on the depth
texture bound to sampler is done as described in section 8.19 “Texture Comparison Modes” of the
OpenGL ES Graphics System Specification. See the table below for which component specifies Dref. The
texture bound to sampler must be a depth texture, or results are undefined. If a non-shadow texture call is
made to a sampler that represents a depth texture with depth comparisons turned on, then results are
undefined. If a shadow texture call is made to a sampler that represents a depth texture with depth
comparisons turned off, then results are undefined. If a shadow texture call is made to a sampler that does
not represent a depth texture, then results are undefined.

151

8 Built-in Functions

In all functions below, the bias parameter is optional for fragment shaders. The bias parameter is not
accepted in any other stage. For a fragment shader, if bias is present, it is added to the implicit level of
detail prior to performing the texture access operation. No bias or lod parameters for multi-sample
textures or texture buffers are supported because mipmaps are not allowed for these types of textures.

The implicit level of detail is selected as follows: For a texture that is not mip-mapped, the texture is used
directly. If it is mip-mapped and running in a fragment shader, the LOD computed by the implementation
is used to do the texture lookup. If it is mip-mapped and running in a non fragment shader, then the base
texture is used.

Some texture functions (non-“Lod” and non-“Grad” versions) may require implicit derivatives. Implicit
derivatives are undefined within non-uniform control flow and for vertex texture fetches.

For Cube forms, the direction of P is used to select which face to do a 2-dimensional texture lookup in, as
described in section 8.12 “Cube Map Texture Selection” in the OpenGL ES Graphics System
Specification.

For Array forms, the array layer used will be

max 0,min d −1, floorlayer0.5

where d is the depth of the texture array and layer comes from the component indicated in the tables
below.

8.9.1 Texture Query Functions

152

8 Built-in Functions

Syntax Description

highp ivec2 textureSize (gsampler2D sampler, int lod)
highp ivec3 textureSize (gsampler3D sampler, int lod)
highp ivec2 textureSize (gsamplerCube sampler, int lod)
highp ivec2 textureSize (gsampler2DMS sampler)
highp ivec3 textureSize (gsampler2DArray sampler, int lod)

highp ivec2 textureSize (samplerCubeShadow sampler, int lod)

highp ivec2 textureSize (sampler2DShadow sampler, int lod)

highp ivec3 textureSize (sampler2DArrayShadow sampler, int lod)

highp int textureSize (gsamplerBuffer sampler)

highp ivec3 textureSize (gsamplerCubeArray sampler, int lod)

highp ivec3 textureSize (gsamplerCubeArrayShadow sampler, int lod)

highp ivec3 textureSize (gsampler2DMSArray sampler)

Returns the dimensions of
level lod for the texture bound
to sampler, as described in
section 11.1.3.4 “Texture
Queries” of the OpenGL ES
3.2 Graphics System
Specification.

The components in the return
value are filled in, in order,
with the width, height, depth of
the texture.

For the array forms, the last
component of the return value
is the number of layers in the
texture array.

8.9.2 Texel Lookup Functions

153

8 Built-in Functions

Syntax Description

gvec4 texture (gsampler2D sampler, vec2 P [, float bias])
gvec4 texture (gsampler3D sampler, vec3 P [, float bias])
gvec4 texture (gsamplerCube sampler, vec3 P [, float bias])
gvec4 texture (gsampler2DArray sampler, vec3 P [, float bias])

float texture (sampler2DShadow sampler, vec3 P [, float bias])

float texture (samplerCubeShadow sampler, vec4 P [, float bias])

float texture (sampler2DArrayShadow sampler, vec4 P)

gvec4 texture (gsamplerCubeArray sampler, vec4 P [, float bias])

float texture (samplerCubeArrayShadow sampler, vec4 P,
 float compare)

Use the texture coordinate P to
do a texture lookup in the
texture currently bound to
sampler.

For shadow forms: When
compare is present, it is used
as Dref and the array layer
comes from the last component
of P. When compare is not
present, the last component of
P is used as Dref and the array
layer comes from the second to
last component of P.

For array forms, the array layer
comes from the last component
of P in the non-shadow forms,
and the second to last
component of P in the shadow
forms.

gvec4 textureProj (gsampler2D sampler, vec3 P [, float bias])
gvec4 textureProj (gsampler2D sampler, vec4 P [, float bias])
gvec4 textureProj (gsampler3D sampler, vec4 P [, float bias])

float textureProj (sampler2DShadow sampler, vec4 P [, float bias])

Do a texture lookup with
projection. The texture
coordinates consumed from P,
not including the last
component of P, are divided
by the last component of P to
form projected coordinates P'.
The resulting third component
of P' in the shadow forms is
used as Dref. The third
component of P is ignored
when sampler has type
gsampler2D and P has type
vec4. After these values are
computed, texture lookup
proceeds as in texture.

154

8 Built-in Functions

Syntax Description

gvec4 textureLod (gsampler2D sampler, vec2 P, float lod)
gvec4 textureLod (gsampler3D sampler, vec3 P, float lod)
gvec4 textureLod (gsamplerCube sampler, vec3 P, float lod)
gvec4 textureLod (gsampler2DArray sampler, vec3 P, float lod)

float textureLod (sampler2DShadow sampler, vec3 P, float lod)

gvec4 textureLod (gsamplerCubeArray sampler, vec4 P, float lod)

Do a texture lookup as in
texture but with explicit LOD;
lod specifies λbase and sets the
partial derivatives as follows.
(See section 8.13 “Texture
Minification” in the OpenGL
ES 3.2 Graphics System
Specification.)

∂u
∂x

= 0
∂v
∂x

= 0
∂w
∂x

= 0

∂u
∂ y

= 0
∂v
∂y

= 0
∂w
∂ y

= 0

gvec4 textureOffset (gsampler2D sampler, vec2 P,
 ivec2 offset [, float bias])

gvec4 textureOffset (gsampler3D sampler, vec3 P,
 ivec3 offset [, float bias])

float textureOffset (sampler2DShadow sampler, vec3 P,
 ivec2 offset [, float bias])

gvec4 textureOffset (gsampler2DArray sampler, vec3 P,
 ivec2 offset [, float bias])

Do a texture lookup as in
texture but with offset added
to the (u,v,w) texel coordinates
before looking up each texel.
The offset value must be a
constant expression. A limited
range of offset values are
supported; the minimum and
maximum offset values are
implementation-dependent and
given by
MIN_PROGRAM_TEXEL_OFFSET and
MAX_PROGRAM_TEXEL_OFFSET,
respectively.

Note that offset does not apply
to the layer coordinate for
texture arrays. This is
explained in detail in section
8.13 “Texture Minification” of
the OpenGL ES Graphics
System Specification, where
offset is (δu ,δv ,δw). Note
that texel offsets are also not
supported for cube maps.

155

8 Built-in Functions

Syntax Description

gvec4 texelFetch (gsampler2D sampler, ivec2 P, int lod)
gvec4 texelFetch (gsampler3D sampler, ivec3 P, int lod)

gvec4 texelFetch (gsampler2DArray sampler, ivec3 P, int lod)
gvec4 texelFetch (gsampler2DMS sampler, ivec2 P, int sample)

gvec4 texelFetch (gsamplerBuffer sampler, int P)

Use integer texture coordinate
P to lookup a single texel from
sampler. The array layer
comes from the last component
of P for the array forms. The
level-of-detail lod is as
described in section 11.1.3.2
“Texel Fetches” of the
OpenGL ES 3.2 Graphics
System Specification.

gvec4 texelFetch (gsampler2DMSArray sampler, ivec3 P, int sample) Use integer texture coordinate
P to lookup a single sample
sample on the texture bound to
sampler as described in section
2.11.9.3 of the OpenGL ES
specification “Multisample
Texel Fetches”.

gvec4 texelFetchOffset (gsampler2D sampler, ivec2 P, int lod,
 ivec2 offset)

gvec4 texelFetchOffset (gsampler3D sampler, ivec3 P, int lod,
 ivec3 offset)

gvec4 texelFetchOffset (gsampler2DArray sampler, ivec3 P, int lod,
 ivec2 offset)

Fetch a single texel as in
texelFetch offset by offset as
described in textureOffset.

gvec4 textureProjOffset (gsampler2D sampler, vec3 P,
 ivec2 offset [, float bias])
gvec4 textureProjOffset (gsampler2D sampler, vec4 P,
 ivec2 offset [, float bias])
gvec4 textureProjOffset (gsampler3D sampler, vec4 P,
 ivec3 offset [, float bias])

float textureProjOffset (sampler2DShadow sampler, vec4 P,
 ivec2 offset [, float bias])

Do a projective texture lookup
as described in textureProj
offset by offset as described in
textureOffset.

156

8 Built-in Functions

Syntax Description

gvec4 textureLodOffset (gsampler2D sampler, vec2 P,
 float lod, ivec2 offset)
gvec4 textureLodOffset (gsampler3D sampler, vec3 P,
 float lod, ivec3 offset)
gvec4 textureLodOffset (gsampler2DArray sampler, vec3 P,
 float lod, ivec2 offset)

float textureLodOffset (sampler2DShadow sampler, vec3 P,
 float lod, ivec2 offset)

Do an offset texture lookup
with explicit LOD. See
textureLod and
textureOffset.

gvec4 textureProjLod (gsampler2D sampler, vec3 P, float lod)
gvec4 textureProjLod (gsampler2D sampler, vec4 P, float lod)
gvec4 textureProjLod (gsampler3D sampler, vec4 P, float lod)

float textureProjLod (sampler2DShadow sampler, vec4 P, float lod)

Do a projective texture lookup
with explicit LOD. See
textureProj and textureLod.

gvec4 textureProjLodOffset (gsampler2D sampler, vec3 P,
 float lod, ivec2 offset)
gvec4 textureProjLodOffset (gsampler2D sampler, vec4 P,
 float lod, ivec2 offset)
gvec4 textureProjLodOffset (gsampler3D sampler, vec4 P,
 float lod, ivec3 offset)

float textureProjLodOffset (sampler2DShadow sampler, vec4 P,
 float lod, ivec2 offset)

Do an offset projective texture
lookup with explicit LOD. See
textureProj, textureLod, and
textureOffset.

157

8 Built-in Functions

Syntax Description

gvec4 textureGrad (gsampler2D sampler, vec2 P,
 vec2 dPdx, vec2 dPdy)
gvec4 textureGrad (gsampler3D sampler, vec3 P,
 vec3 dPdx, vec3 dPdy)
gvec4 textureGrad (gsamplerCube sampler, vec3 P,
 vec3 dPdx, vec3 dPdy)
gvec4 textureGrad (gsampler2DArray sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)

float textureGrad (sampler2DShadow sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)

float textureGrad (samplerCubeShadow sampler, vec4 P,
 vec3 dPdx, vec3 dPdy)

float textureGrad (sampler2DArrayShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)
gvec4 textureGrad (gsamplerCubeArray sampler, vec4 P,
 vec3 dPdx, vec3 dPdy);

Do a texture lookup as in
texture but with explicit
gradients. The partial
derivatives of P are with
respect to window x and
window y. Set

∂s
∂x

=
∂P.s
∂x

∂s
∂ y

=
∂P.s
∂ y

∂t
∂x

=
∂P.t
∂x

∂t
∂ y

=
∂P.t
∂ y

∂r
∂x

=
∂P.p
∂x

(cube)

∂r
∂ y

=
∂P.p
∂ y

(cube)

For the cube version, the
partial derivatives of P are
assumed to be in the
coordinate system used before
texture coordinates are
projected onto the appropriate
cube face.

gvec4 textureGradOffset (gsampler2D sampler, vec2 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureGradOffset (gsampler3D sampler, vec3 P,
 vec3 dPdx, vec3 dPdy, ivec3 offset)

gvec4 textureGradOffset (gsampler2DArray sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

float textureGradOffset (sampler2DShadow sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

float textureGradOffset (sampler2DArrayShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup with both
explicit gradient and offset, as
described in textureGrad and
textureOffset.

158

8 Built-in Functions

Syntax Description

gvec4 textureProjGrad (gsampler2D sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)

gvec4 textureProjGrad (gsampler2D sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)

gvec4 textureProjGrad (gsampler3D sampler, vec4 P,
 vec3 dPdx, vec3 dPdy)

float textureProjGrad (sampler2DShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)

Do a texture lookup both
projectively, as described in
textureProj, and with explicit
gradient as described in
textureGrad. The partial
derivatives dPdx and dPdy are
assumed to be already
projected.

gvec4 textureProjGradOffset (gsampler2D sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureProjGradOffset (gsampler2D sampler, vec4 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureProjGradOffset (gsampler3D sampler, vec4 P,
 vec3 dPdx, vec3 dPdy, ivec3 offset)

float textureProjGradOffset (sampler2DShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup
projectively and with explicit
gradient as described in
textureProjGrad, as well as
with offset, as described in
textureOffset.

8.9.3 Texture Gather Functions

The texture gather functions take components of a single floating-point vector operand as a texture
coordinate, determine a set of four texels to sample from the base level of detail of the specified texture
image, and return one component from each texel in a four-component result vector.

When performing a texture gather operation, the minification and magnification filters are ignored, and
the rules for LINEAR filtering in the OpenGL ES Specification are applied to the base level of the texture
image to identify the four texels i0j1, i1j1, i1j0, and i0j0. The texels are then converted to texture base colors
(Rs, Gs, Bs, As) according to table 8.11 in section 8.5 “Texture Image Specification” of the OpenGL ES
specification, followed by application of the texture swizzle as described section 14.2.1 “Texture Access”
of the OpenGL ES Graphics System Specification. A four-component vector is assembled by taking the
selected component from each of the post-swizzled texture source colors in the order (i0j1, i1j1, i1j0, i0j0).

The selected component is identified by the optional comp argument, where the values zero, one, two, and
three identify the Rs, Gs, Bs, or As component, respectively. If comp is omitted, it is treated as
identifying the Rs component.

Incomplete textures (section 8.16 “Texture Completeness” of the OpenGL ES specification) return a
texture source color of (0,0,0,1) for all four source texels.

159

8 Built-in Functions

For texture gather functions using a shadow sampler type, each of the four texel lookups perform a depth
comparison against the depth reference value passed in (refZ), and returns the result of that comparison in
the appropriate component of the result vector.

As with other texture lookup functions, the results of a texture gather are undefined for shadow samplers if
the texture referenced is not a depth texture or has depth comparisons disabled; or for non-shadow
samplers if the texture referenced is a depth texture with depth comparisons enabled.

The textureGatherOffset built-in functions from the OpenGL ES Shading Language return a vector
derived from sampling four texels in the image array of level level_base. For each of the four texel offsets
specified by the offsets argument, the rules for the LINEAR minification filter are applied to identify a
2x2 texel footprint, from which the single texel Ti0j0 is selected. A four-component vector is then
assembled by taking a single component from each of the four Ti0j0 texels in the same manner as for the
textureGather function.

Syntax Description

gvec4 textureGather (gsampler2D sampler,
vec2 P[, int comp])

gvec4 textureGather (gsampler2DArray sampler,
vec3 P [, int comp])

gvec4 textureGather (gsamplerCube sampler,
vec3 P [, int comp])

vec4 textureGather (sampler2DShadow sampler,
vec2 P, float refZ)

vec4 textureGather (sampler2DArrayShadow sampler,
vec3 P, float refZ)

vec4 textureGather (samplerCubeShadow sampler,
vec3 P, float refZ)

gvec4 textureGather (gsamplerCubeArray sampler,
 vec4 P [, int comp])
vec4 textureGather (samplerCubeArrayShadow sampler,
 vec4 P, float refZ)

Returns the value

vec4(Sample_i0_j1(P, base).comp,
 Sample_i1_j1(P, base).comp,
 Sample_i1_j0(P, base).comp,
 Sample_i0_j0(P, base).comp)

If specified, the value of comp must be a
constant integer expression with a value of
0, 1, 2, or 3, identifying the x, y, z, or w
post-swizzled component of the four-
component vector lookup result for each
texel, respectively. If comp is not specified,
it is treated as 0, selecting the x component
of each texel to generate the result.

160

8 Built-in Functions

Syntax Description

gvec4 textureGatherOffset (
gsampler2D sampler,
vec2 P, ivec2 offset
[, int comp])

gvec4 textureGatherOffset (
gsampler2DArray sampler,
vec3 P, ivec2 offset
[, int comp])

vec4 textureGatherOffset (
sampler2DShadow sampler,
vec2 P, float refZ, ivec2 offset)

vec4 textureGatherOffset (
sampler2DArrayShadow sampler,
vec3 P, float refZ, ivec2 offset)

Perform a texture gather operation as in
textureGather offset by offset as described
in textureOffset except that the offset can
be variable (non-constant) and the
implementation-dependent minimum and
maximum offset values are given by
MIN_PROGRAM_TEXTURE_GATHER_
OFFSET and
MAX_PROGRAM_TEXTURE_GATHER
_OFFSET respectively.

gvec4 textureGatherOffsets (
gsampler2D sampler,
vec2 P, ivec2 offsets[4]
[, int comp])

gvec4 textureGatherOffsets (
gsampler2DArray sampler,
vec3 P, ivec2 offsets[4]
[, int comp])

vec4 textureGatherOffsets (
sampler2DShadow sampler,
vec2 P, float refZ, ivec2 offsets[4])

vec4 textureGatherOffsets (
sampler2DArrayShadow sampler,
vec3 P, float refZ, ivec2 offsets[4])

Operate identically to textureGatherOffset
except that offsets is used to determine the
location of the four texels to sample. Each
of the four texels is obtained by applying
the corresponding offset in offsets as a (u,v)
coordinate offset to P, identifying the four-
texel linear footprint, and then selecting
texel (i0,j0) of that footprint. The specified
values in offsets must be constant integral
expressions.

8.10 Atomic-Counter Functions
The atomic-counter operations in this section operate atomically with respect to each other. They are
atomic for any single counter, meaning any of these operations on a specific counter in one shader
instantiation will be indivisible by any of these operations on the same counter from another shader
instantiation. There is no guarantee that these operations are atomic with respect to other forms of access
to the counter or that they are serialized when applied to separate counters. Such cases would require
additional use of fences, barriers, or other forms of synchronization, if atomicity or serialization is desired.

161

8 Built-in Functions

The value returned by an atomic-counter function is the value of an atomic counter, which may be

• returned and incremented in an atomic operation, or

• decremented and returned in an atomic operation, or

• simply returned.

The underlying counter is a 32-bit unsigned integer. Increments and decrements at the limit of the range
will wrap to [0, 232-1].

Syntax Description

uint atomicCounterIncrement (atomic_uint c) Atomically
1. increments the counter for c, and
2. returns its value prior to the increment

operation.
These two steps are done atomically with respect to
the atomic counter functions in this table.

uint atomicCounterDecrement (atomic_uint c) Atomically
1. decrements the counter for c, and
2. returns the value resulting from the

decrement operation.
These two steps are done atomically with respect to
the atomic counter functions in this table.

uint atomicCounter (atomic_uint c) Returns the counter value for c.

8.11 Atomic Memory Functions
Atomic memory functions perform atomic operations on an individual signed or unsigned integer stored in
buffer-object or shared-variable storage. All of the atomic memory operations read a value from memory,
compute a new value using one of the operations described below, write the new value to memory, and
return the original value read. The contents of the memory being updated by the atomic operation are
guaranteed not to be modified by any other assignment or atomic memory function in any shader
invocation between the time the original value is read and the time the new value is written.

Atomic memory functions are supported only for a limited set of variables. A shader will fail to compile
if the value passed to the mem argument of an atomic memory function does not correspond to a buffer or
shared variable. It is acceptable to pass an element of an array or a single component of a vector to the
mem argument of an atomic memory function, as long as the underlying array or vector is a buffer or
shared variable.

162

8 Built-in Functions

All the built-in functions in this section accept arguments with combinations of restrict, coherent, and
volatile memory qualification, despite not having them listed in the prototypes. The atomic operation will
operate as required by the calling argument's memory qualification, not by the built-in function's formal
parameter memory qualification.

Syntax Description

uint atomicAdd (inout uint mem, uint data)
int atomicAdd (inout int mem, int data)

Computes a new value by adding the value of data to
the contents mem.

uint atomicMin (inout uint mem, uint data)
int atomicMin (inout int mem, int data)

Computes a new value by taking the minimum of the
value of data and the contents of mem.

uint atomicMax (inout uint mem, uint data)
int atomicMax (inout int mem, int data)

Computes a new value by taking the maximum of the
value of data and the contents of mem.

uint atomicAnd (inout uint mem, uint data)
int atomicAnd (inout int mem, int data)

Computes a new value by performing a bit-wise
AND of the value of data and the contents of mem.

uint atomicOr (inout uint mem, uint data)
int atomicOr (inout int mem, int data)

Computes a new value by performing a bit-wise OR
of the value of data and the contents of mem.

uint atomicXor (inout uint mem, uint data)
int atomicXor (inout int mem, int data)

Computes a new value by performing a bit-wise
EXCLUSIVE OR of the value of data and the
contents of mem.

uint atomicExchange (inout uint mem, uint data)
int atomicExchange (inout int mem, int data)

Computes a new value by simply copying the value
of data.

uint atomicCompSwap (inout uint mem,
 uint compare, uint data)
int atomicCompSwap (inout int mem,
 int compare, int data)

Compares the value of compare and the contents of
mem. If the values are equal, the new value is given
by data; otherwise, it is taken from the original
contents of mem.

8.12 Image Functions
Variables using one of the image basic types may be used by the built-in shader image memory functions
defined in this section to read and write individual texels of a texture. Each image variable references an
image unit, which has a texture image attached.

When image memory functions below access memory, an individual texel in the image is identified using
an (i), (i, j), or (i, j, k) coordinate corresponding to the values of P. The coordinates are used to select an
individual texel in the manner described in section 8.22 “Texture Image Loads and Stores” of the OpenGL
ES specification.

163

8 Built-in Functions

Loads and stores support float, integer, and unsigned integer types. The data types below starting
“gimage” serve as placeholders meaning types starting either “image”, “iimage”, or “uimage” in the same
way as gvec or gsampler in earlier sections.

The IMAGE_PARAMS in the prototypes below is a placeholder representing 18 separate functions, each
for a different type of image variable. The IMAGE_PARAMS placeholder is replaced by one of the
following parameter lists:

gimage2D image, ivec2 P

gimage3D image, ivec3 P

gimageCube image, ivec3 P

gimage2DArray image, ivec3 P

gimageBuffer image, int P

gimageCubeArray image, ivec3 P

where each of the lines represents one of three different image variable types, and image, P specify the
individual texel to operate on. The method for identifying the individual texel operated on from image, P,
and the method for reading and writing the texel are specified in section 8.22 “Texture Image Loads and
Stores” of the OpenGL ES specification.

The atomic functions perform operations on individual texels or samples of an image variable. Atomic
memory operations read a value from the selected texel, compute a new value using one of the operations
described below, write the new value to the selected texel, and return the original value read. The
contents of the texel being updated by the atomic operation are guaranteed not to be updated by any other
image store or atomic function between the time the original value is read and the time the new value is
written.

Atomic memory operations are supported on only a subset of all image variable types; image must be
either:

• a signed integer image variable (type starts “iimage”) and a format qualifier of r32i, used with a
data argument of type int, or

• an unsigned integer image variable (type starts “uimage”) and a format qualifier of r32ui, used
with a data argument of type uint, or

• a float image variable (type starts “image”) and a format qualifier of r32f, used with a data
argument of type float (imageAtomicExchange only).

All the built-in functions in this section accept arguments with combinations of restrict, coherent, and
volatile memory qualification, despite not having them listed in the prototypes. The image operation will
operate as required by the calling argument's memory qualification, not by the built-in function's formal
parameter memory qualification.

164

8 Built-in Functions

Syntax Description

highp ivec2 imageSize (readonly writeonly
 gimage2D image)
highp ivec3 imageSize (readonly writeonly
 gimage3D image)
highp ivec2 imageSize (readonly writeonly
 gimageCube image)
highp ivec3 imageSize (readonly writeonly
 gimage2DArray image)
highp int imageSize (readonly writeonly
 gimageBuffer image)
highp ivec3 imageSize (readonly writeonly
 gimageCubeArray image)

Returns the dimensions of the image or images
bound to image. For arrayed images, the last
component of the return value will hold the size of
the array. Cube images only return the dimensions
of one face.

Note: The qualification readonly writeonly accepts
a variable qualified with readonly, writeonly, both,
or neither. It means the formal argument will be
used for neither reading nor writing to the underlying
memory.

highp gvec4 imageLoad (readonly
IMAGE_PARAMS)

Loads the texel at the coordinate P from the image
unit image (in IMAGE_PARAMS). When image, P
identify a valid texel, the bits used to represent the
selected texel in memory are converted to a vec4,
ivec4, or uvec4 in the manner described in section
8.22 “Texture Image Loads and Stores” of the
OpenGL ES Specification and returned.

void imageStore (writeonly IMAGE_PARAMS,
 gvec4 data)

Stores data into the texel at the coordinate P from
the image specified by image. When image and P
identify a valid texel, the bits used to represent data
are converted to the format of the image unit in the
manner described in section 8.22 “Texture Image
Loads and Stores” of the OpenGL ES Specification
and stored to the specified texel.

highp uint
imageAtomicAdd (IMAGE_PARAMS, uint
 data);

highp int
imageAtomicAdd (IMAGE_PARAMS, int data);

Computes a new value by adding the value of data to
the contents of the selected texel.

highp uint
imageAtomicMin (IMAGE_PARAMS,
 uint data);

highp int
imageAtomicMin (IMAGE_PARAMS,
 int data);

Computes a new value by taking the minimum of the
value of data and the contents of the selected texel.

165

8 Built-in Functions

Syntax Description

highp uint
imageAtomicMax (IMAGE_PARAMS,
 uint data);

highp int
imageAtomicMax (IMAGE_PARAMS,
 int data);

Computes a new value by taking the maximum of the
value of data and the contents of the selected texel.

highp uint
imageAtomicAnd (IMAGE_PARAMS,
 uint data);

highp int
imageAtomicAnd (IMAGE_PARAMS,
 int data);

Computes a new value by performing a bitwise AND
of the value of data and the contents of the selected
texel

highp uint
imageAtomicOr (IMAGE_PARAMS,
 uint data);

highp int
imageAtomicOr (IMAGE_PARAMS,
 int data);

Computes a new value by performing a bitwise OR
of the value of data and the contents of the selected
texel

highp uint
imageAtomicXor (IMAGE_PARAMS,
 uint data);

highp int
imageAtomicXor (IMAGE_PARAMS,
 int data);

Computes a new value by performing a bitwise
EXCLUSIVE OR of the value of data and the
contents of the selected texel

highp uint
imageAtomicExchange (IMAGE_PARAMS,
 uint data);

highp int
imageAtomicExchange (IMAGE_PARAMS,
 int data);
highp float
imageAtomicExchange (IMAGE_PARAMS,
 int float);

Computes a new value by simply copying the value
of data.

highp uint
imageAtomicCompSwap (IMAGE_PARAMS,
 uint data);

highp int
imageAtomicCompSwap (IMAGE_PARAMS,
 int data);

Compares the value of compare and the contents of
the selected texel. If the values are equal, the new
value is given by data; otherwise, it is taken from the
original value loaded from the texel.

166

8 Built-in Functions

8.13 Geometry Shader Functions
These functions are only available in geometry shaders. They are described in more depth following the
table.

Syntax Description

void EmitVertex() Emits the current values of output variables to the
current output primitive. On return from this call, the
values of output variables are undefined.

void EndPrimitive() Completes the current output primitive and starts a
new one. No vertex is emitted.

The function EmitVertex() specifies that a vertex is completed. A vertex is added to the current output
primitive using the current values of all built-in and user-defined output variables. The values of all output
variables are undefined after a call to EmitVertex(). If a geometry shader invocation has emitted more
vertices than permitted by the output layout qualifier max_vertices, the results of calling EmitVertex() are
undefined.

The function EndPrimitive() specifies that the current output primitive is completed and a new output
primitive (of the same type) will be started by any subsequent EmitVertex(). This function does not emit a
vertex. If the output layout is declared to be points, calling EndPrimitive() is optional.

A geometry shader starts with an output primitive containing no vertices. When a geometry shader
terminates, the current output primitive is automatically completed. It is not necessary to call
EndPrimitive() if the geometry shader writes only a single primitive.

8.14 Fragment Processing Functions
Fragment processing functions are only available in fragment shaders.

Derivatives may be computationally expensive and/or numerically unstable. Therefore, an OpenGL ES
implementation may approximate the true derivatives by using a fast but not entirely accurate derivative
computation. Derivatives are undefined within non-uniform control flow.

The expected behavior of a derivative is specified using forward/backward differencing.

Forward differencing:

 F xdx −F x ~ dFdx x⋅dx 1a

 dFdx x~
F xdx −F x

dx
1b

Backward differencing:

 F x−dx −F x ~−dFdx x⋅dx 2a

 dFdx x~
F x−F x−dx

dx
2b

167

8 Built-in Functions

With single-sample rasterization, dx <= 1.0 in equations 1b and 2b. For multi-sample rasterization, dx <
2.0 in equations 1b and 2b.

dFdy is approximated similarly, with y replacing x.

An OpenGL ES implementation may use the above or other methods to perform the calculation, subject to
the following conditions:

1. The method may use piecewise linear approximations. Such linear approximations imply that
higher order derivatives, dFdx(dFdx(x)) and above, are undefined.

2. The method may assume that the function evaluated is continuous. Therefore derivatives within
the body of a non-uniform conditional are undefined.

3. The method may differ per fragment, subject to the constraint that the method may vary by
window coordinates, not screen coordinates. The invariance requirement described in section
13.2 “Invariance” of the OpenGL ES Graphics System Specification, is relaxed for derivative
calculations, because the method may be a function of fragment location.

Other properties that are desirable, but not required, are:

1. Functions should be evaluated within the interior of a primitive (interpolated, not extrapolated).

2. Functions for dFdx should be evaluated while holding y constant. Functions for dFdy should be
evaluated while holding x constant. However, mixed higher order derivatives, like
dFdx(dFdy(y)) and dFdy(dFdx(x)) are undefined.

3. Derivatives of constant arguments should be 0.

In some implementations, varying degrees of derivative accuracy may be obtained by providing GL hints
(section 18.1 “Hints” of the OpenGL ES 3.0 Graphics System Specification), allowing a user to make an
image quality versus speed trade off.

168

8 Built-in Functions

Syntax Description

genFType dFdx (genFType p) Returns the derivative in x using local differencing for
the input argument p.

genFType dFdy (genFType p) Returns the derivative in y using local differencing for
the input argument p.

These two functions are commonly used to estimate the
filter width used to anti-alias procedural textures. We
are assuming that the expression is being evaluated in
parallel on a SIMD array so that at any given point in
time the value of the function is known at the grid points
represented by the SIMD array. Local differencing
between SIMD array elements can therefore be used to
derive dFdx, dFdy, etc.

genFType fwidth (genFType p) Returns the sum of the absolute derivative in x and y
using local differencing for the input argument p, i.e.,
abs (dFdx (p)) + abs (dFdy (p));

8.14.1 Interpolation Functions

Built-in interpolation functions are available to compute an interpolated value of a fragment shader input
variable at a shader-specified (x,y) location. A separate (x,y) location may be used for each invocation of
the built-in function, and those locations may differ from the default (x,y) location used to produce the
default value of the input. For the interpolateAt* functions, the call will return a precision qualification
matching the precision of the interpolant argument to the function call.

For all of the interpolation functions, interpolant must be an input variable or an element of an input
variable declared as an array. Component selection operators (e.g., .xy) may not be used when specifying
interpolant. If interpolant is declared with a flat qualifier, the interpolated value will have the same value
everywhere for a single primitive, so the location used for the interpolation has no effect and the functions
just return that same value. If interpolant is declared with the centroid qualifier, the value returned by
interpolateAtSample() and interpolateAtOffset() will be evaluated at the specified location, ignoring the
location normally used with the centroid qualifier.

169

8 Built-in Functions

Syntax Description

float interpolateAtCentroid (float interpolant)

vec2 interpolateAtCentroid (vec2 interpolant)

vec3 interpolateAtCentroid (vec3 interpolant)

vec4 interpolateAtCentroid (vec4 interpolant)

Returns the value of the input interpolant sampled at a
location inside the both the pixel and the primitive
being processed. The value obtained would be the
same value assigned to the input variable if declared
with the centroid qualifier.

float interpolateAtSample (float interpolant,
 int sample)
vec2 interpolateAtSample (vec2 interpolant,
 int sample)
vec3 interpolateAtSample (vec3 interpolant,
 int sample)
vec4 interpolateAtSample (vec4 interpolant,
 int sample)

Returns the value of the input interpolant variable at
the location of the sample numbered sample. If
multisample buffers are not available, the input
varying will be evaluated at the center of the pixel. If
sample sample does not exist, the position used to
interpolate the input varying is undefined.

float interpolateAtOffset (float interpolant,

 vec2 offset)

vec2 interpolateAtOffset (vec2 interpolant,

 vec2 offset)

vec3 interpolateAtOffset (vec3 interpolant,

 vec2 offset)

vec4 interpolateAtOffset (vec4 interpolant,

 vec2 offset);

Returns the value of the input interpolant variable
sampled at an offset from the center of the pixel
specified by offset. The two floating-point
components of offset give the offset in pixels in the x
and y directions, respectively.

An offset of (0,0) identifies the center of the pixel.
The range and granularity of offsets supported by this
function is implementation-dependent.

8.15 Shader Invocation Control Functions
The shader invocation control function is only available in tessellation control and compute shaders. It is
used to control the relative execution order of multiple shader invocations used to process a local work
group (in the case of compute shaders), which are otherwise executed with an undefined order.

Syntax Description

void barrier () For any given static instance of barrier(), all tessellation control shader
invocations for a single input patch, or all compute shader invocations
for a single work group must enter it before any will continue beyond it.

The function barrier() provides a partially defined order of execution between shader invocations. For
tessellation control shaders but not compute shaders, it also defines an order of memory operations.

170

8 Built-in Functions

For tessellation control shaders, the barrier ensures that values written by one invocation prior to a given
static instance of barrier() can be safely read by other invocations after their call to the same static
instance barrier(). Because invocations may execute in an undefined order between these barrier calls, the
values of a per-vertex or per-patch output variable for tessellation control shaders, or the values of shared
variables for compute shaders will be undefined in a number of cases enumerated in section 4.3.6
(“Output Variables”) for tessellation control shaders and section 4.3.8 (“Shared Variables”) for compute
shaders.

For tessellation control shaders, the barrier() function may only be placed inside the function main() of the
shader and may not be called within any control flow. Barriers are also disallowed after a return statement
in the function main(). Any such misplaced barriers result in a compile-time error.

For compute shaders, a barrier only affects control flow and does not by itself synchronize memory
accesses. In particular, it does not ensure that values written by one invocation prior to a given static
instance of barrier() can be safely read by other invocations after their call to the same static instance of
barrier(). To achieve this requires the use of both barrier() and a memory barrier. Because invocations
may execute in an undefined order between these barrier calls, the values of shared variables for compute
shaders will be undefined in a number of cases enumerated in Section 4.3.8 “Shared Variables” (for
compute shaders).

For compute shaders, the barrier() function may be placed within control flow, but that control flow must
be uniform control flow. That is, all the controlling expressions that lead to execution of the barrier must
be dynamically uniform expressions. This ensures that if any shader invocation enters a conditional
statement, then all invocations will enter it. While compilers are encouraged to give warnings if they can
detect this might not happen, compilers cannot completely determine this. Hence, it is the author's
responsibility to ensure barrier() only exists inside uniform control flow. Otherwise, some shader
invocations will stall indefinitely, waiting for a barrier that is never reached by other invocations.

8.16 Shader Memory Control Functions
Within a single shader invocation, the visibility and order of writes made by that invocation are well-
defined. However, the relative order of reads and writes to a single shared memory address from multiple
separate shader invocations is largely undefined. Additionally, the order of accesses to multiple memory
addresses performed by a single shader invocation, as observed by other shader invocations, is also
undefined.

The following built-in functions can be used to control the ordering of reads and writes:

171

8 Built-in Functions

Syntax Description

void memoryBarrier () Control the ordering of all memory transactions issued
by a single shader invocation.

void memoryBarrierAtomicCounter () Control the ordering of accesses to atomic counter
variables issued by a single shader invocation.

void memoryBarrierBuffer () Control the ordering of memory transactions to buffer
variables issued within a single shader invocation.

void memoryBarrierImage () Control the ordering of memory transactions to images
issued within a single shader invocation.

void memoryBarrierShared () Control the ordering of memory transactions to shared
variables issued within a single shader invocation, as
viewed by other invocations in the same work group.
Only available in compute shaders.

void groupMemoryBarrier () Control the ordering of all memory transactions issued
within a single shader invocation, as viewed by other
invocations in the same work group. Only available in
compute shaders.

The memory barrier built-in functions can be used to order reads and writes to variables stored in memory
accessible to other shader invocations. When called, these functions will wait until prior memory
transactions reach a point where they cannot be passed by subsequent transactions, as observed by other
shader invocations and then return with no other effect. The built-in functions
memoryBarrierAtomicCounter(), memoryBarrierBuffer(), memoryBarrierImage(), and
memoryBarrierShared() wait for the completion of accesses to atomic counter, buffer, image, and
shared variables, respectively. The built-in functions memoryBarrier() and groupMemoryBarrier()
wait for the completion of accesses to all of the above variable types. The functions
memoryBarrierShared() and groupMemoryBarrier() are available only in compute shaders; the other
functions are available in all shader types.

When these functions return, any memory stores performed using coherent variables prior to the call will
be visible to any future coherent access to the same memory performed by any other shader invocation. In
particular, the values written this way in one shader stage are guaranteed to be visible to coherent memory
accesses performed by shader invocations in subsequent stages when those invocations were triggered by
the execution of the original shader invocation (e.g., fragment shader invocations for a primitive resulting
from a particular vertex or geometry shader invocation).

172

8 Built-in Functions

Additionally, memory barrier functions order stores performed by the calling invocation, as observed by
other shader invocations. Without memory barriers, if one shader invocation performs two stores to
coherent variables, a second shader invocation might see the values written by the second store prior to
seeing those written by the first. However, if the first shader invocation calls a memory barrier function
between the two stores, selected other shader invocations will never see the results of the second store
before seeing those of the first. When using the function groupMemoryBarrier(), this ordering
guarantee applies only to other shader invocations in the same compute shader work group; all other
memory barrier functions provide the guarantee to all other shader invocations. No memory barrier is
required to guarantee the order of memory stores as observed by the invocation performing the stores; an
invocation reading from a variable that it previously wrote will always see the most recently written value
unless another shader invocation also wrote to the same memory.

173

9 Shader Interface Matching

As described in chapter 7 of the OpenGL ES specification, shaders may be linked together to form a
program object before being bound to the pipeline or may be linked and bound individually as separable
program objects1.

Within a program object or a separable program object, qualifiers for matching variables must
themselves match according to the rules specified in this section. There are also matching rules for
qualifiers of matching variables between separable program objects but only for variables across an
input/output boundary between shader stages. For other shader interface variables such as uniforms, each
program object or separable program object has its own name space and so the same name can refer to
multiple independent variables. Consequently, there are no matching rules for qualifiers in these cases.

9.1 Input Output Matching by Name in Linked Programs
When linking shaders, the type of declared vertex outputs and fragment inputs with the same name must
match, otherwise the link command will fail. Only those fragment inputs statically used (i.e. read) in the
fragment shader must be declared as outputs in the vertex shader; declaring superfluous vertex shader
outputs is permissible.

The following table summarizes the rules for matching shader outputs to shader inputs in consecutive
stages when shaders are linked together.

Treatment of Mismatched
Input Variables

Consuming Shader (input variables)

No declaration Declared but
no static use

Declared
and static use

Generating
Shader

(output variables)

No declaration Allowed Allowed error

Declares;
no static use

Allowed Allowed Allowed
(values are
undefined)

Declares
and static use

Allowed Allowed Allowed
(values are
potentially
undefined)

See section 3.9.1 for the definition of static use.

1 These were previously known as separate shader objects (SSOs) but the mechanism has been extended to
support future versions of the specification that have more than two shader stages. It allows a subset of the
shaders to be linked together.

174

9 Shader Interface Matching

The precision of a vertex output does not need to match the precision of the corresponding fragment input.
The minimum precision at which vertex outputs are interpolated is the minimum of the vertex output
precision and the fragment input precision, with the exception that for highp, implementations do not have
to support full IEEE 754 precision.

The precision of values exported to a transform feedback buffer is the precision of the outputs of the
vertex shader. However, they are converted to highp format before being written.

9.2 Matching of Qualifiers
The following tables summarize the requirements for matching of qualifiers. It applies whenever there are
two or more matching variables in a shader interface.

Notes:

1. Yes means the qualifiers must match.

2. No means the qualifiers do not need to match.

3. Consistent means qualifiers may be missing from a subset of declarations but they cannot conflict

4. The rules apply to all declared variables, irrespective of whether they are statically used, with
the exception of inputs and outputs when shaders are linked (see section 9.1 “Input Output
Matching by Name in Linked Programs”)

5. Errors are generated for any conflicts.

175

9 Shader Interface Matching

9.2.1 Linked Shaders

Qualifier
Class

Qualifier in/out Default
Uniforms

uniform
Block

buffer
Block

Storage1

in
out

uniform
N/A N/A N/A N/A

Auxiliary

centroid
sample

No N/A N/A N/A

patch Yes N/A N/A N/A

Layout

location Yes2 Consistent N/A N/A

Block layout N/A N/A Yes Yes

binding N/A Yes Yes Yes

offset N/A Yes N/A N/A

format N/A Yes N/A N/A

Interpolation
smooth

flat
Yes N/A N/A N/A

Precision
lowp

mediump
highp

No Yes
No

TBD Yes?

No
TBD
Yes?

Variance
invariant
precise

No N/A N/A N/A

Memory all N/A Yes Yes Yes

1 Storage qualifiers determine when variables match rather than being required to match for matching variables.
Note also that each shader interface has a separate name space so for example, it is possible to use the same
name for a vertex output and fragment uniform.

2 If present, the location qualifier determines the matching of inputs and outputs. See section 7.4.1. (“Shader
interface Matching”) of the OpenGL ES 3.1 specification for details.

176

9 Shader Interface Matching

9.2.2 Separable Programs

Qualifier Class Qualifier in/out

Storage
in

out
uniform

N/A

Auxiliary

centroid
sample

No

patch Yes

Layout

location Yes

Block layout N/A

binding N/A

offset N/A

format N/A

Interpolation
smooth

flat
Yes

Precision
lowp

mediump
highp

Yes

Variance
invariant
precise

No

Memory all N/A

177

10 Shading Language Grammar

10 Shading Language Grammar

The grammar is fed from the output of lexical analysis. The tokens returned from lexical analysis are

VOID
BOOL FLOAT INT UINT
BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 UVEC2 UVEC3 UVEC4 VEC2 VEC3 VEC4
MAT2 MAT3 MAT4
MAT2X2 MAT2X3 MAT2X4
MAT3X2 MAT3X3 MAT3X4
MAT4X2 MAT4X3 MAT4X4
STRUCT

ATOMIC_UINT
SAMPLER2D SAMPLER3D SAMPLERCUBE SAMPLER2DARRAY
SAMPLER2DSHADOW SAMPLERCUBESHADOW SAMPLER2DARRAYSHADOW
ISAMPLER2D ISAMPLER3D ISAMPLERCUBE ISAMPLER2DARRAY
USAMPLER2D USAMPLER3D USAMPLERCUBE USAMPLER2DARRAY

SAMPLER2DMS ISAMPLER2DMS USAMPLER2DMS
SAMPLER2DMSARRAY ISAMPLER2DMSARRAY USAMPLER2DMSARRAY
SAMPLERBUFFER ISAMPLERBUFFER USAMPLERBUFFER
SAMPLER2DMSARRAY ISAMPLER2DMSARRAY USAMPLER2DMSARRAY
SAMPLERCUBEARRAY ISAMPLERCUBEARRAY USAMPLERCUBEARRAY
SAMPLERCUBEARRAYSHADOW

IMAGE2D IIMAGE2D UIMAGE2D
IMAGE3D IIMAGE3D UIMAGE3D
IMAGECUBE IIMAGECUBE UIMAGECUBE
IMAGE2DARRAY IIMAGE2DARRAY UIMAGE2DARRAY
IMAGEBUFFER IIMAGEBUFFER UIMAGEBUFFER
UIMAGECUBEARRAY IMAGECUBEARRAY IIMAGECUBEARRAY

INVARIANT
HIGH_PRECISION MEDIUM_PRECISION LOW_PRECISION PRECISION
IN OUT INOUT
CONST UNIFORM BUFFER SHARED
COHERENT VOLATILE RESTRICT READONLY WRITEONLY
FLAT SMOOTH CENTROID

LAYOUT

PATCH SAMPLE

WHILE BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN SWITCH CASE DEFAULT

178

10 Shading Language Grammar

IDENTIFIER TYPE_NAME FLOATCONSTANT INTCONSTANT UINTCONSTANT BOOLCONSTANT
FIELD_SELECTION
LEFT_OP RIGHT_OP
INC_OP DEC_OP LE_OP GE_OP EQ_OP NE_OP
AND_OP OR_OP XOR_OP MUL_ASSIGN DIV_ASSIGN ADD_ASSIGN
MOD_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN XOR_ASSIGN OR_ASSIGN
SUB_ASSIGN

LEFT_PAREN RIGHT_PAREN LEFT_BRACKET RIGHT_BRACKET LEFT_BRACE RIGHT_BRACE DOT
COMMA COLON EQUAL SEMICOLON BANG DASH TILDE PLUS STAR SLASH PERCENT
LEFT_ANGLE RIGHT_ANGLE VERTICAL_BAR CARET AMPERSAND QUESTION

179

10 Shading Language Grammar

The following describes the grammar for the OpenGL ES Shading Language in terms of the above tokens.

variable_identifier:
IDENTIFIER

primary_expression:
variable_identifier
INTCONSTANT
UINTCONSTANT
FLOATCONSTANT
BOOLCONSTANT
LEFT_PAREN expression RIGHT_PAREN

postfix_expression:
primary_expression
postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET
function_call
postfix_expression DOT FIELD_SELECTION
postfix_expression INC_OP
postfix_expression DEC_OP

// FIELD_SELECTION includes fields in structures, component selection for vectors

// and the 'length' identifier for the length() method

integer_expression:
expression

function_call:
function_call_or_method

function_call_or_method:
function_call_generic

function_call_generic:
function_call_header_with_parameters RIGHT_PAREN
function_call_header_no_parameters RIGHT_PAREN

function_call_header_no_parameters:
function_call_header VOID
function_call_header

function_call_header_with_parameters:
function_call_header assignment_expression
function_call_header_with_parameters COMMA assignment_expression

function_call_header:
function_identifier LEFT_PAREN

180

10 Shading Language Grammar

// Grammar Note: Constructors look like functions, but lexical analysis recognized most of them as
// keywords. They are now recognized through “type_specifier”.

// Methods (.length) and identifiers are recognized through postfix_expression.

function_identifier:
type_specifier
postfix_expression

unary_expression:
postfix_expression
INC_OP unary_expression
DEC_OP unary_expression
unary_operator unary_expression

// Grammar Note: No traditional style type casts.

unary_operator:
PLUS
DASH
BANG
TILDE

// Grammar Note: No '*' or '&' unary ops. Pointers are not supported.

multiplicative_expression:
unary_expression
multiplicative_expression STAR unary_expression
multiplicative_expression SLASH unary_expression
multiplicative_expression PERCENT unary_expression

additive_expression:
multiplicative_expression
additive_expression PLUS multiplicative_expression
additive_expression DASH multiplicative_expression

shift_expression:
additive_expression
shift_expression LEFT_OP additive_expression
shift_expression RIGHT_OP additive_expression

relational_expression:
shift_expression
relational_expression LEFT_ANGLE shift_expression
relational_expression RIGHT_ANGLE shift_expression
relational_expression LE_OP shift_expression
relational_expression GE_OP shift_expression

181

10 Shading Language Grammar

equality_expression:
relational_expression
equality_expression EQ_OP relational_expression
equality_expression NE_OP relational_expression

and_expression:
equality_expression
and_expression AMPERSAND equality_expression

exclusive_or_expression:
and_expression
exclusive_or_expression CARET and_expression

inclusive_or_expression:
exclusive_or_expression
inclusive_or_expression VERTICAL_BAR exclusive_or_expression

logical_and_expression:
inclusive_or_expression
logical_and_expression AND_OP inclusive_or_expression

logical_xor_expression:
logical_and_expression
logical_xor_expression XOR_OP logical_and_expression

logical_or_expression:
logical_xor_expression
logical_or_expression OR_OP logical_xor_expression

conditional_expression:
logical_or_expression
logical_or_expression QUESTION expression COLON assignment_expression

assignment_expression:
conditional_expression
unary_expression assignment_operator assignment_expression

assignment_operator:
EQUAL
MUL_ASSIGN
DIV_ASSIGN
MOD_ASSIGN
ADD_ASSIGN
SUB_ASSIGN
LEFT_ASSIGN
RIGHT_ASSIGN
AND_ASSIGN
XOR_ASSIGN
OR_ASSIGN

182

10 Shading Language Grammar

expression:
assignment_expression
expression COMMA assignment_expression

constant_expression:
conditional_expression

declaration:
function_prototype SEMICOLON
init_declarator_list SEMICOLON
PRECISION precision_qualifier type_specifier SEMICOLON
type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
 SEMICOLON
type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
 IDENTIFIER SEMICOLON
type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
 IDENTIFIER array_specifier SEMICOLON
type_qualifier SEMICOLON
type_qualifier IDENTIFIER SEMICOLON // e.g. to qualify an existing variable as invariant
type_qualifier IDENTIFIER identifier_list SEMICOLON

identifier_list:
COMMA IDENTIFIER
identifier_list COMMA IDENTIFIER

function_prototype:
function_declarator RIGHT_PAREN

function_declarator:
function_header
function_header_with_parameters

function_header_with_parameters:
function_header parameter_declaration
function_header_with_parameters COMMA parameter_declaration

function_header:
fully_specified_type IDENTIFIER LEFT_PAREN

parameter_declarator:
type_specifier IDENTIFIER
type_specifier IDENTIFIER array_specifier

parameter_declaration:
type_qualifier parameter_declarator
parameter_declarator
type_qualifier parameter_type_specifier
parameter_type_specifier

parameter_type_specifier:
type_specifier

183

10 Shading Language Grammar

init_declarator_list:
single_declaration
init_declarator_list COMMA IDENTIFIER
init_declarator_list COMMA IDENTIFIER array_specifier
init_declarator_list COMMA IDENTIFIER array_specifier EQUAL initializer
init_declarator_list COMMA IDENTIFIER EQUAL initializer

single_declaration:
fully_specified_type
fully_specified_type IDENTIFIER
fully_specified_type IDENTIFIER array_specifier
fully_specified_type IDENTIFIER array_specifier EQUAL initializer
fully_specified_type IDENTIFIER EQUAL initializer

// Grammar Note: No 'enum', or 'typedef'.

fully_specified_type:
type_specifier
type_qualifier type_specifier

invariant_qualifier:
INVARIANT

interpolation_qualifier:
SMOOTH
FLAT

layout_qualifier:
LAYOUT LEFT_PAREN layout_qualifier_id_list RIGHT_PAREN

layout_qualifier_id_list:
layout_qualifier_id
layout_qualifier_id_list COMMA layout_qualifier_id

layout_qualifier_id:
IDENTIFIER
IDENTIFIER EQUAL INTCONSTANT
IDENTIFIER EQUAL UINTCONSTANT
SHARED

precise_qualifier:
PRECISE

type_qualifier:
single_type_qualifier
type_qualifier single_type_qualifier

184

10 Shading Language Grammar

single_type_qualifier:
storage_qualifier
layout_qualifier
precision_qualifier
interpolation_qualifier
invariant_qualifier
precise_qualifier

storage_qualifier:
CONST
IN
OUT
INOUT
CENTROID
PATCH
SAMPLE
UNIFORM
BUFFER
SHARED
COHERENT
VOLATILE
RESTRICT
READONLY
WRITEONLY

type_specifier:
type_specifier_nonarray
type_specifier_nonarray array_specifier

array_specifier:
LEFT_BRACKET RIGHT_BRACKET
LEFT_BRACKET constant_expression RIGHT_BRACKET
array_specifier LEFT_BRACKET RIGHT_BRACKET
array_specifier LEFT_BRACKET constant_expression RIGHT_BRACKET

185

10 Shading Language Grammar

type_specifier_nonarray:
VOID
FLOAT
INT
UINT
BOOL
VEC2
VEC3
VEC4
BVEC2
BVEC3
BVEC4
IVEC2
IVEC3
IVEC4
UVEC2
UVEC3
UVEC4
MAT2
MAT3
MAT4
MAT2X2
MAT2X3
MAT2X4
MAT3X2
MAT3X3
MAT3X4
MAT4X2
MAT4X3
MAT4X4
ATOMIC_UINT
SAMPLER2D
SAMPLER3D
SAMPLERCUBE
SAMPLER2DSHADOW
SAMPLERCUBESHADOW
SAMPLER2DARRAY
SAMPLER2DARRAYSHADOW
SAMPLERBUFFER
SAMPLER2DMSARRAY
SAMPLERCUBEARRAY
SAMPLERCUBEARRAYSHADOW
ISAMPLER2D
ISAMPLER3D
ISAMPLERCUBE
ISAMPLER2DARRAY
ISAMPLERBUFFER

186

10 Shading Language Grammar

ISAMPLER2DMSARRAY
ISAMPLERCUBEARRAY
USAMPLER2D
USAMPLER3D
USAMPLERCUBE
USAMPLER2DARRAY
SAMPLER2DMS
ISAMPLER2DMS
USAMPLER2DMS
SAMPLER2DMSARRAY
ISAMPLER2DMSARRAY
USAMPLER2DMSARRAY
IMAGE2D
IIMAGE2D
UIMAGE2D
IMAGE3D
IIMAGE3D
UIMAGE3D
IMAGECUBE
IIMAGECUBE
UIMAGECUBE
IMAGE2DARRAY
IIMAGE2DARRAY
UIMAGE2DARRAY
IMAGEBUFFER
IIMAGEBUFFER
UIMAGEBUFFER
UIMAGECUBEARRAY
IMAGECUBEARRAY
IIMAGECUBEARRAY
struct_specifier
TYPE_NAME

precision_qualifier:
HIGH_PRECISION
MEDIUM_PRECISION
LOW_PRECISION

struct_specifier:
STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE

struct_declaration_list:
struct_declaration
struct_declaration_list struct_declaration

struct_declaration:
type_specifier struct_declarator_list SEMICOLON
type_qualifier type_specifier struct_declarator_list SEMICOLON

187

10 Shading Language Grammar

struct_declarator_list:
struct_declarator
struct_declarator_list COMMA struct_declarator

struct_declarator:
IDENTIFIER
IDENTIFIER array_specifier

initializer:
assignment_expression

declaration_statement:
declaration

statement:
compound_statement_with_scope
simple_statement

statement_no_new_scope:
compound_statement_no_new_scope
simple_statement

statement_with_scope:
compound_statement_no_new_scope
simple_statement

// Grammar Note: labeled statements for SWITCH only; 'goto' is not supported.

simple_statement:
declaration_statement
expression_statement
selection_statement
switch_statement
case_label
iteration_statement
jump_statement

compound_statement_with_scope:
LEFT_BRACE RIGHT_BRACE
LEFT_BRACE statement_list RIGHT_BRACE

compound_statement_no_new_scope:
LEFT_BRACE RIGHT_BRACE
LEFT_BRACE statement_list RIGHT_BRACE

statement_list:
statement
statement_list statement

188

10 Shading Language Grammar

expression_statement:
SEMICOLON
expression SEMICOLON

selection_statement:
IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement

selection_rest_statement:
statement_with_scope ELSE statement_with_scope
statement_with_scope

condition:
expression
fully_specified_type IDENTIFIER EQUAL initializer

switch_statement:
SWITCH LEFT_PAREN expression RIGHT_PAREN LEFT_BRACE switch_statement_list
 RIGHT_BRACE

switch_statement_list:
/* nothing */
statement_list

case_label:
CASE expression COLON
DEFAULT COLON

iteration_statement:
WHILE LEFT_PAREN condition RIGHT_PAREN statement_no_new_scope
DO statement_with_scope WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON
FOR LEFT_PAREN for_init_statement for_rest_statement RIGHT_PAREN
 statement_no_new_scope

for_init_statement:
expression_statement
declaration_statement

conditionopt:
condition
/* empty */

for_rest_statement:
conditionopt SEMICOLON
conditionopt SEMICOLON expression

jump_statement:
CONTINUE SEMICOLON
BREAK SEMICOLON
RETURN SEMICOLON
RETURN expression SEMICOLON
DISCARD SEMICOLON // Fragment shader only.

189

10 Shading Language Grammar

// Grammar Note: No 'goto'. Gotos are not supported.

translation_unit:
external_declaration
translation_unit external_declaration

external_declaration:
function_definition
declaration

function_definition:
function_prototype compound_statement_no_new_scope

In general the above grammar describes a super set of the GLSL ES language. Certain constructs that are
valid purely in terms of the grammar are disallowed by statements elsewhere in this specification.

Rules specifying the scoping are present only to assist the understanding of scoping and they do not affect
the language accepted by the grammar. If required, the grammar can be simplified by making the
following substitutions:

• Replace compound_statement_with_scope and compound_statement_no_new_scope with a new
rule compound_statement

• Replace statement_with_scope and statement_no_new_scope with the existing rule statement.

190

11 Errors

11 Errors

This section lists errors that must be detected by the compiler or linker.

Lexical errors, including all those found during pre-processing, all grammatical errors and all semantic
errors must be reported at compile-time. Errors due to mismatches between stages must be reported at
link-time, All other errors, including exceeding resource limits must be reported either at compile-time or
link-time.

The error string returned is implementation-dependent.

11.1 Preprocessor Errors
P0001: Preprocessor syntax error

P0002: #error

P0003: #extension if a required extension extension_name is not supported, or if all is specified.

P0005: Invalid #version construct

P0006: #line has wrong parameters

P0007: Language version not supported

P0008: Use of undefined macro

P0009: Macro name too long

11.2 Lexer/Parser Errors
Grammatical errors occurs whenever the grammar rules are not followed. They are not listed individually
here.

G0001: Syntax error

The parser also detects the following errors:

G0002: Undefined identifier.

G0003: Use of reserved keywords

G0004: Identifier too long

G0005: Integer constant too long

11.3 Semantic Errors
S0001: Type mismatch in expression e.g. 1 + 1.0

S0002: Array parameter must be an integer

191

11 Errors

S0003: Conditional jump parameter (if, for, while, do-while) must be a boolean

S0004: Operator not supported for operand types (e.g. mat4 * vec3)

S0005: ?: parameter must be a boolean

S0006: 2nd and 3rd parameters of ?: must have the same type

S0007: Wrong arguments for constructor

S0008: Argument unused in constructor

S0009: Too few arguments for constructor

S0011: Arguments in wrong order for structure constructor

S0012: Expression must be a constant expression

S0013: Initializer for constant variable must be a constant expression

S0015: Expression must be a constant integral expression

S0017: Array size must be greater than zero

S0018: Array size not defined (except for the last element of a shader storage buffer object)

S0020: Indexing an array with a constant integral expression greater than its declared size

S0021: Indexing an array with a negative constant integral expression

S0022: Redefinition of variable in same scope

S0023: Redefinition of function in same scope

S0024: Redefinition of name in same scope (e.g. declaring a function with the same name as a struct)

S0025: Field selectors must be from the same set (cannot mix xyzw with rgba)

S0026: Illegal field selector (e.g. using .z with a vec2)

S0027: Target of assignment is not an l-value

S0028: Precision used with type other than int, float or sampler type

S0029: Declaring a main function with the wrong signature or return type

S0031: const variable does not have initializer

S0032: Use of a type without a precision qualifier where the default precision is not defined

S0033: Expression that does not have an intrinsic precision where the default precision is not defined

192

11 Errors

S0034: Variable cannot be declared invariant

S0035: All uses of invariant must be at the global scope

S0037: L-value contains duplicate components (e.g. v.xx = q;)

S0038: Function declared with a return value but return statement has no argument

S0039: Function declared void but return statement has an argument

S0040: Function declared with a return value but not all paths return a value

S0042: Return type of function definition must match return type of function declaration.

S0043: Parameter qualifiers of function definition must match parameter qualifiers of function
declaration.

S0045: Declaring an input inside a function

S0046: Declaring a uniform inside a function

S0047: Declaring an output inside a function

S0048: Illegal data type for vertex output or fragment input

S0049: Illegal data type for vertex input (can only use float, floating-point vectors, matrices, signed and
unsigned integers and integer vectors)

S0050: Initializer for input

S0051: Initializer for output

S0052: Initializer for uniform

S0053: Static recursion present

S0054: Overloading built-in functions not allowed.

S0055: Vertex output with integral type must be declared as flat

S0056: Fragment input with integral type must be declared as flat

S0057: init-expression in switch statement must be a scalar integer

S0058: Illegal data type for fragment output

S0059: Invalid layout qualifier

S0060: Invalid use of layout qualifier (e.g. use of binding on a non-opaque type)

11.4 Linker
L0001: Global variables must have the same type (including the same names for structure and field
names and the same size for arrays) and precision.

193

11 Errors

L0003: Too many vertex input values

L0004: Too many vertex output values

L0005: Too many uniform values

L0006: Too many fragment output values

L0007: Fragment shader uses an input where there is no corresponding vertex output

L0008: Type mismatch between vertex output and fragment input

L0009: Missing main function for shader

194

12 Counting of Inputs and Outputs

12 Counting of Inputs and Outputs

This section applies to vertex shader outputs and fragment shader inputs.

GLSL ES 3.2 specifies the storage available for vertex shader outputs and fragment shader inputs in terms
of an array of 4-vectors. The assumption is that variables will be packed into these arrays without wasting
space. This places significant burden on implementations since optimal packing is computationally
intensive. Implementations may have more internal resources than exposed to the application and so
avoid the need to perform packing but this is also considered an expensive solution.

GLSL ES 3.2 therefore relaxes the requirements for packing by specifying a simpler algorithm that may
be used. This algorithm specifies a minimum requirement for when a set of variables must be supported
by an implementation. The implementation is allowed to support more than the minimum and so may use
a more efficient algorithm and/or may support more registers than the virtual target machine.

Vertex outputs and fragment inputs are counted separately. If statically used in the fragment shader, the
built-in special variables (gl_FragCoord, gl_FrontFacing and gl_PointCoord) are included when
calculating the storage requirements of fragment inputs.

If the vertex and fragment shaders are linked together, inputs and outputs are only counted if they are
statically used within the shader. If the vertex and fragment shaders are each compiled into a separable
program, all declared inputs and outputs are counted.1

For the algorithm used, failing resource allocation for a variable must result in an error.

The resource allocation of variables must succeed for all cases where the following packing algorithm
succeeds:

• The target architecture consists of a grid of registers, 16 rows by 4 columns for vertex output and
fragment input variables. Each register can contain a scalar value, i.e. a float, int or uint.

• Variables with an explicit location are allocated first. When attempting to allocate a location for
other variables, if there is a conflict, the search moves to the next available free location.

• Structures are assumed to be flattened. Each data member is treated as if it were at global scope.

• Variables are packed into the registers one at a time so that they each occupy a contiguous sub-
rectangle. No splitting of variables is permitted.

• The orientation of variables is fixed. Vectors always occupy registers in a single row. Elements
of an array must be in different rows. E.g. vec4 will always occupy one row; float[16] will
occupy one column. Since it is not permitted to split a variable, large arrays e.g. float[32] will
always fail with this algorithm.

1 GLSL ES 3.1 does not require the implementation to remove vertex outputs which are not statically used in the
fragment shader.

195

12 Counting of Inputs and Outputs

• Non-square matrices of type matCxR consume the same space as a square matrix of type matN
where N is the greater of C and R. Variables of type mat2 occupies 2 complete rows. These
rules allow implementations more flexibility in how variables are stored.
Other variables consume only the minimum space required.

• Arrays of size N are assumed to take N times the size of the base type.

• Variables are packed in the following order:

1. mat4 and arrays of mat4.

2. mat2 and arrays of mat2 (since they occupy full rows)

3. vec4 and arrays of vec4

4. mat3 and arrays of mat3

5. vec3 and arrays of vec3

6. vec2 and arrays of vec2

7. Scalar types and arrays of scalar types

• For each of the above types, the arrays are processed in order of size, largest first. Arrays of size
1 and the base type are considered equivalent. The first type to be packed will be mat4[4],
mat4[3], mat[2] followed by mat4, mat2[4]...mat2[2], mat2, vec4[8], ve4[7],...vec4[1], vec4,
mat3[2], mat3 and so on. The last variables to be packed will be float (and float[1]).

• For 2,3 and 4 component variables packing is started using the 1st column of the 1st row.
Variables are then allocated to successive rows, aligning them to the 1st column.

• For 2 component variables, when there are no spare rows, the strategy is switched to using the
highest numbered row and the lowest numbered column where the variable will fit. (In practice,
this means they will be aligned to the x or z component.) Packing of any further 3 or 4
component variables will fail at this point.

• 1 component variables (e.g. floats and arrays of floats) have their own packing rule. They are
packed in order of size, largest first. Each variable is placed in the column that leaves the least
amount of space in the column and aligned to the lowest available rows within that column.
During this phase of packing, space will be available in up to 4 columns. The space within each
column is always contiguous in the case where no variables have explicit locations.

• For each type, variables with the 'smooth' property are packed first, followed by variables with
the 'flat' property.

• Each row can contain either values with the 'smooth' property or the 'flat' property but not both. If
this situation is encountered during allocation, the algorithm skips the component location and
continues with the next available location. These skipped locations may be used for other values
later in the allocation process.

• There is no backtracking. Once a value is assigned a location, it cannot be changed, even if such
a change is required for a successful allocation.

196

12 Counting of Inputs and Outputs

Example: pack the following types:

out vec4 a; // top left
out mat3 b; // align to left, lowest numbered rows
out mat2x3 c; // same size as mat3, align to left
out vec2 d[6]; // align to left, lowest numbered rows
out vec2 e[4]; // Cannot align to left so align to z column, highest

// numbered rows
out vec2 f; // Align to left, lowest numbered rows.
out float g[3] // Column with minimum space
out float h[2]; // Column with minimum space (choice of 3, any

// can be used)
out float i; // Column with minimum space

In this example, the variables happen to be listed in the order in which they are packed. Packing is
independent of the order of declaration.

x y z w

0 a a a a

1 b b b

2 b b b

3 b b b

4 c c c

5 c c c

6 c c c

7 d d g

8 d d g

9 d d g

10 d d

11 d d

12 d d e e

13 f f e e

14 h i e e

15 h e e

Some types e.g. mat4[8] will be too large to fit. These always fail with this algorithm.

197

13 Issues

13 Issues

13.1 Compatibility with OpenGL ES 2.0
How should OpenGL ES 3.0 support shaders written for OpenGL ES 2.0?

Option 1: Retain all GLSL ES 1.0 constructs in the new language.

Option 2: Allow GLSL ES 1.0 shaders to run in the OpenGL ES 3.0 API.

RESOLUTION: Option 2. This minimizes the complexity of the language with only a small increase in
system complexity. It also leaves open the option of deprecating the old language in future versions of the
API.

13.2 Convergence with OpenGL
How much should GLSL ES be influenced by the GLSL specification?

OpenGL ES 3.0 is principally targeted at mobile devices such as smartphones and tablets. As such, it is
expected that the major use-cases will include gaming and user-interfaces. It is to be expected that
content will be ported to and from desktop devices.

RESOLUTION: In the absence of any other requirements, GLSL ES 3.1 should follow GLSL 4.x The
main exceptions to this are:

• The specification should adhere to the principle that functionality should not be duplicated.

• Functionality specific to mobile devices (such as reduced precision) can be added.

• Improvements found in later versions of GLSL can be considered for inclusion.

13.3 Numeric Precision
Should the Open GL ES 2.0 precision requirements be increased?

Most current implementations support a subset of IEEE 754 32-bit floating point. Many implementations
also support reduced precision.

RESOLUTIONS:

• highp float should be specified as a subset of IEEE 754 floating point.

• highp int should be exactly 32 bits.

• lowp and mediump should be retained. Mediump to have increased precision.

Should there be a defined format for mediump?

Option: Yes, this would increase portability and encourage the use of mediump on mobile devices.

198

13 Issues

Option: No, this would be expensive to implement on devices that do not natively support it.

RESOLUTION: No. The specification should allow efficient implementation of mediump float on 16-bit
floating point hardware but must also be implementable on devices which only natively support 32-bit
floating point.

Should the fragment shader have a default precision?

Vertex shaders have a default high precision because lower precisions are not sufficient for the majority of
graphics applications. However, many fragment shader operations do not benefit from high precision and
developers should be encouraged to use lower precision where possible as this may increases performance
or reduce power consumption. In particular, blend operations normally only require low precision and
many texture address calculations can be performed at medium precision.

However OpenGL ES may also be used in higher performance devices where the benefit is limited.
Therefore there appears to be no single precision that would be applicable to all situations.

RESOLUTION: No, there will be no default precision for fragment shaders.

13.4 Floating Point Representation and Functionality
Should IEEE 754 representation be mandated?

The internal format used by an implementation might not be visible to an application so it is meaningless
to specify this. Certain functionality IEEE 754 must be present though.

RESOLUTION: In general, highp float must behave as if it is in IEEE 754 format.

Which features should be mandated?

Most of the IEEE 754 is relatively inexpensive to implement given that 32-bit floating point is a
requirement. However some implementations do not implement signed zeros, rounding modes and NaNs
because of hardware cost. In addition, there are certain compiler optimizations that the IEEE 745
specification prohibits.

RESOLUTION: Mandate support of signed infinities. Support of signed zeros, NaNs.

Should the support of NaNs be consistent?

Should the specification allow either full IEEE NaN support or no support but nothing in between?

RESOLUTION: No, implementations may have partial support and there is no guarantee of consistency.
The only requirement is that isnan() must return false if NaNs are not supported.

Should subnormal numbers (also known as 'denorms') be supported?

RESOLUTION: No, subnormal numbers maybe flushed to zero at any time.

199

13 Issues

How should the rounding mode be specified?

Most current implementations support round-to-nearest. Some but not all also support round-to-nearest-
even.

RESOLUTION: Within the accuracy specification, the rounding mode should be undefined.

Should there be general invariance rules for numeric formats and operations?

The GLSL ES specification allows the implementation a degree of flexibility. Consequently the results of
a computation may be different on different implementations. However, it is not stated whether a single
implementation is allowed to vary the results of a given computation, either in different shaders or
different parts of the same shader. OpenGL has a general invariance rule that prevents the results of a
computation varying if no state (including the choice of shader) is unchanged.

RESOLUTION: Operations and formats are in general considered to be variant.

13.5 Precision Qualifiers
Should the precisions be specified as float16, float32 etc.? This would help portability. It implies
different types rather than hints. It will require all implementations to use the same or similar algorithms
and reduces the scope for innovation.

RESOLUTION: No, the precision should not specify a format. Standardized arithmetic is not (yet) a
requirement for graphics.

Do integers have precision qualifiers? OpenGL ES 3.0 hardware is expected to have native integer
support and some implementations may have reduced precision available.

RESOLUTION: Yes, integers have precision qualifiers.

How should wrapping behavior of integers be defined? If an application relies on wrapping on one
implementation this may cause portability problems.

Option: The standard should specify either wrapping or clamping. This allows for maximum
implementation flexibility.

Option: Mandate wrapping. There is a trend towards more complex shaders and developers will expect
integers to behave as in C++.

RESOLUTION: Mandate wrapping.

Are precision qualifiers available in the vertex shader?

RESOLUTION: Yes. Reduced precision may be available in the vertex shader in some implementations
and it keeps the languages consistent.

200

13 Issues

Should different precisions create different types and e.g. require explicit conversion between them?

Option1: No, they are just hints. But hinting high precision is meaningless if the implementation can
ignore it.

Option 2: Yes they are different types. But this introduces complexity.

RESOLUTION: The precision qualifier can significantly affect behavior in many implementations.
highp means 32-bit IEEE 743 floating point is used but mediump means that at least medium precision is
used (and similarly for lowp) so precision qualifiers are more than just hints. As far as the language is
concerned it doesn't affect the behavior so they can either be considered as hints or as different types with
implicit type conversion. In any case, implementations are free to calculate everything at high precision.

Should precisions be considered when resolving function calls?

RESOLUTION: No, they should be considered more as hints. Function declarations cannot be
overloaded based on precision.

How should precisions be propagated in an expression?

Option 1: Only consider the inputs to an operation. For operands that have no defined precision,
determination of precision starts at the leaf nodes of the expression tree and proceeds to the root until the
precision is found. If necessary this includes the l-value in an assignment. Constant expressions must be
invariant and it is expected that they will be evaluated at compile time. Therefore they must be evaluated
at the highest precision (either lowp or highp) supported by the target, or above.

Option 2: Always take the target of the expression into account. The compiler should be able to work out
how to avoid losing precision.

RESOLUTION: Option 1. This makes it easier for the developer to specify which precisions are used in
a complex expression.

What if there is no precision in an expression?

Option 1: Leave this as undefined.

Option 2: Use the default precision.

RESOLUTION: Use the default precision. It is an error if this is not defined (in the fragment shader).

Do precision qualifiers for uniforms need to match?

Option 1: Yes.

Uniforms are defined to behave as if they are using the same storage in the vertex and fragment processors
and may be implemented this way.

If uniforms are used in both the vertex and fragment shaders, developers should be warned if the
precisions are different. Conversion of precision should never be implicit.

201

13 Issues

Option 2: No.

Uniforms may be used by both shaders but the same precision may not be available in both so there is a
justification for allowing them to be different.

Using the same uniform in the vertex and fragment shaders will always require the precision to be
specified in the vertex shader (since the default precision is highp). This is an unnecessary burden on
developers.

RESOLUTION: Yes, precision qualifiers for uniforms must match.

Do precision qualifiers for vertex outputs and the corresponding fragment inputs (previously known as
'varyings') need to match?

Option 1: Yes. Varyings are written by the vertex shader and read by the fragment shader so there are no
situations where the precision needs to be different.

Option 2: No, the vertex outputs written by the vertex shader should not be considered to be the same
variables as those read by the fragment shader (there can be no shared storage). Hence they can be
specified to have different precisions.

RESOLUTION Precision qualifiers for vertex outputs and fragment inputs do not need to match.

lowp int

lowp float has a range of +/- 2.0 but lowp int has a range of +/- 256. This becomes problematic if
conversion form lowp float to lowp int is required. Direct conversion i.e. lowp int = int(lowp float)
loses almost all the precision and multiplying before conversion e.g. lowp int = int(lowp float * 256)
causes an overflow and hence an undefined result. The only way to maintain precision is to first convert
to mediump float.

Option 1: Keep this behavior. Accept that conversion of lowp float to low int loses precision and is
therefore not useful.

Options 2: Make lowp int consistent with mediump and highp int by setting its range to +/- 1

Options 3: Redefine the conversion of lowp float to lowp int to include an 8-bit left shift. The
conversion of lowp int to lowp float then contains an 8-bit right shift.

Option 4: Option 1 but add built-in functions to shift-convert between the two formats.

Option 5: Redefine the lowp float to be a true floating point format. It would then be equivalent to a
floating point value with a 10 bit mantissa and a 3 bit unsigned exponent.

RESOLUTION: Option 1 Conversion will lose most of the precision.

Precision of built-in texture functions.

202

13 Issues

Most built-in functions take a single parameter and it is sensible for the precision of the return value to be
the same as the precision of the parameter. The texture functions take sampler and coordinate parameters.
The return value should be completely independent of the precision of the coordinates. How should the
precision of the return value be specified?

RESOLUTION: Allow sampler types to take a precision qualifier. The return value of the texture
functions have the same precision as the precision of the sampler parameter.

What should the default precision of sampler types be?

Option 1: lowp. This will be faster on some implementations. In general, OpenGL ES should default to
fast operation rather than precise operation. It is usually easier to detect and correct a functional error
than a performance issue.

Option 2: lowp for textures that are expected to contain color values. highp for textures that are expected
to contain other values e.g. depth.

Option 2: No default precision. Although this requires that the precision be specified in every shader, it
will force the developer to consider the requirements.

RESOLUTION: The default precision of all sampler types present in GLSL ES 1.0 should also be lowp
in GLSL ES 3.0. New sampler types in GLSL ES 3.0 should have no default precision.

13.6 Function and Variable Name Spaces
Do variables and functions share the same name space? GLSL ES doesn't support function pointers so the
grammar can always be used to distinguish cases. However this is a departure from C++.

RESOLUTION: Functions and variables share the same name space.

Should redeclarations of the same names be permitted within the same scope? This would be compatible
with C. There are several cases e.g.:

1. Redeclaring a function. A function prototype is a declaration but not a definition. A function
definition is both a declaration and a definition. Consequently a function prototype and a
function definition (of the same function) within the same scope qualifies as redeclaration.

2. Declaring a name as a function and then redeclaring it as a structure.

3. Declaring a name as a variable and then redeclaring it as a structure.

Disallowing multiple function declarations (including allowing a separate function prototype and function
definition) would prevent static recursion by design. However it imposes constraints on the structure of
shaders.

GLSL ES 1.00 allows a single function definition plus a single optional function declaration.

RESOLUTION: Multiple definitions are disallowed. Multiple function declarations (function
prototypes) are allowed. This is in line with C++.

203

13 Issues

13.7 Local Function Declarations and Function Hiding
Should local functions hide all functions of the same same?

This is considered useful if local function declarations are allowed. However, the only use for local
function declarations in GLSL ES is to unhide functions that have been hidden by variable or structure
declarations. This is not a compelling reason to include them.

RESOLUTION: Disallow local function declarations.

13.8 Overloading main()
Should it be possible for the user to overload the main() function?

RESOLUTION: No. The main function cannot be overloaded.

13.9 Error Reporting
In general which errors must be reported by the compiler?

Some errors are easy to detect. All grammar errors and type matching errors will normally be detected as
part of the normal compilation process. Other semantic errors will require specific code in the compiler.
The bulk of the work in a compiler occurs after parsing so adding some error detection should not
increase the total cost of compilation significantly. However, it is expected that development systems will
have sophisticated error and warning reporting and it is not necessary to repeat this process for on-target
compilers.

RESOLUTION: All grammar, type mismatch and other specific semantic errors as listed in this
specification must be reported. Reporting of other errors or warnings is optional.

Should compilers report if maxima are exceeded, even if the implementation supports them? This could
aid portability.

RESOLUTION: No, high-end implementations may quite legitimately go beyond the specification in
these areas and mandating the use of the extension mechanism would cause needless complexity.
Development systems should issue portability warnings.

Should static recursion be detected?

RESOLUTION: Yes, the compiler will normally generate the necessary control flow graph so detection
is easy.

13.10 Structure Declarations
Should structures with the same name and same member variables be considered as the same type?

RESOLUTION: No, follow the C++ rules. Variables only have the same type if they have been declared
with the same type and not if they have been declared with different types that have the same name. This
does not apply to linking (for uniforms and varyings) which has its own rules.

204

13 Issues

Should structure declarations be allowed in function parameters?

RESOLUTION: No, following the previous resolution it would be impossible to call such a function
because it would be impossible to declare a variable with the same structure type.

13.11 Embedded Structure Definitions
Should embedded structure definitions be allowed?

e.g.

struct S
{
 struct T
 {
 int a;
 } t;
 int b:
};

In order to access the constructor, the structure name would have to be scoped at the same level as the
outer level structure. This is inconsistent.

Option 1: Disallow embedded structure definitions.

Option 2: Allow embedded structure definitions but accept that the constructor is not accessible.

Option 3: Scope embedded structure names at the same level as the outermost scope name.

RESOLUTION: Remove embedded structure definitions.

13.12 Redefining Built-in Functions
Should it be possible to redefine or overload built-in functions?

There may be some applications where it is useful to redefine the built-in functions but the language does
not include the required functionality for all cases. Built-in functions are likely to be efficiently mapped
to the hardware. User-defined functions may not be as efficient but may be able to offer greater precision
(e.g. for the trig functions). The application may then want access to both the original and new function.
Some user-defined functions would benefit from access to the original function. Once the new function
has been declared, the original function is hidden so both these use cases are impossible with the current
specification.

Option 1: Allow both redefinition and overloading of built-in functions.

Option 2: Disallow redefinition of built-in functions. Allow them to be overloaded. This may be useful
where it is required to extend the functionality of a built-in function. However it creates a subtle
incompatibility with the desktop:

205

13 Issues

int sin(int x) {return x;}
void main()
{
 float a = sin(1.0); // legal in GLSL ES, not legal in desktop GLSL.
}

It is also a potential source of backwards-incompatibility if a future version of the language introduces
new overloads.

Option 3: Remove the ability to redefine or overload functions.

RESOLUTION: Disallow both overloading and redefining built-in functions. There is no compelling use
case.

13.13 Global Scope
How should the scoping levels for user-defined and built-in names be defined?

GLSL ES 1.00 and most versions of GLSL have a global scope for user-defined functions and variables
and a distinct 'outer' scope where the built-in functions reside. This is different from C++. Since GLSL
ES 3.00 does not allow the redefinition of built-in functions, a single global scope is sufficient.

RESOLUTION: A single global scope will be used for user-defined and built-in names.

13.14 Constant Expressions
Should user and built-in functions be allowed in constant expressions? e.g.

const float a = sin(1.0);

The compiler must be able to evaluate all possible constant expressions as they can potentially be used to
size arrays and functions resolution is dependent on array size. Compile-time evaluation of built-in
functions is expensive in terms of code size. The complexity of compile-time evaluation of user-defined
functions is potentially unbounded.

RESOLUTION: Allow built-in functions to be included in constant expressions. Redefinition of built-in
functions is prohibited. User-defined functions are not allowed in constant expressions.

13.15 Varying Linkage
In the vertex shader, a particular varying may be either 1) not declared, 2) declared but not written, 3)
declared and written but not in all possible paths or 4) declared and written in all paths. Likewise a
varying in a fragment shader may be either a) not declared, b) declared but not read, c) declared and read
in some paths or d) declared and read in all paths. Which of these 16 combinations should generate an
error?

The compiler should not attempt to discover if a varying is read or written in all possible paths. This is
considered too complex for OpenGL ES.

206

13 Issues

The same vertex shader may be paired with different fragment shaders. These fragment shaders may use a
subset of the available input varyings. This behavior should be supported without causing errors.
Therefore if the vertex shader writes to a varying that the fragment shader doesn't declare or declared but
doesn't read then this is not an error.

If the vertex shader declares but doesn't write to a varying and the fragment shader declares and reads it, is
this an error?

RESOLUTION: No.

RESOLUTION: The only error case is when a varying is declared and read by the fragment shader but is
not declared in the vertex shader.

13.16 gl_Position
Is it an error if the vertex shader doesn't write to gl_Position? Whether a shader writes to gl_Position
cannot always be determined e.g. if there is dependence on an attribute.

Option 1: No it is not an error. The behavior is undefined in this case. Development systems should
issue a warning in this case but the on-target compiler should not have to detect this.

Option 2: It is an error if the vertex shader does not statically write to gl_Position

Option 3: It is an error if there is any static path through the shader where gl_Position is not written.

RESOLUTION: No error (option 1). The nature of the undefined behavior must be specified.

13.17 Preprocessor
Is the preprocessor necessary?

Arguments for removing or simplifying the preprocessor:

• The preprocessor is moderately complex to implement. In particular, function-like macros may
have arbitrary complexity and require significant resources to compile.

• The C++ standard does not fully specify the preprocessor. In particular, the situations where
preprocessor tokens are subject to macro expansion are not fully defined. Neither is the effect of
macro definitions encountered during macro expansion.

• Over-use of the preprocessor is a common source of programming errors because there is limited
compile-time checking.

Arguments for retaining the preprocessor:

• The extension mechanism relies on the preprocessor so this would need to be replaced.

• The #define, #ifdef, #ifndef, #elsif and #endif constructs are commonly used for managing
different versions and for include guards.

• There is no template mechanism in GLSL ES so macros are often used instead.

GLSL ES 1.00 removed token pasting and other functionality.

207

13 Issues

RESOLUTION: Keep the basic preprocessor as defined in the GLSL ES 1.00 specification.

13.18 Character set
GLSL ES 1.00 only allowed a subset of the ascii character set to be used in shaders. That included names
and comments. The written languages of many countries include other characters or use a completely
different character set. This makes it difficult or impossible to write comments in those languages.

Where should the new characters be allowed? It would be possible to decide independently for comments,
identifiers and macros. For macros, they could be allowed as part of macro definitions but prohibited in
the final output of macro expansion.

RESOLUTION: The new characters are only allowed inside comments.

Which character set should be used to define the new characters.

UTF-8 has the advantage that it is backwards-compatible with ASCII. All ASCII characters are valid
UTF-8 single-byte characters and UTF-8 multi-byte characters all have the highest bit set to '1' in each
byte. The disadvantage is that UTF-8 is variable length.

RESOLUTION: UTF-8

How should the extended character set be specified?

Options include full UTF-8 or by explicitly listing the allowed characters.

RESOLUTION: Full UTF-8

Should the compiler check for the presence of invalid UTF-8 byte sequences?

Since any multi-byte characters will only occur within comments and so not required further processing, it
would be inexpensive to check for valid UTF-8 characters. Conversely, there appears to be no advantage
to doing so. The issue of validity is only of concern to text editors.

RESOLUTION: The compiler must not check for invalid UTF-8 characters. Bytes '0' and newline
characters will be interpreted as such wherever they occur.

How does the #version directive interact with the use of UTF-8 in comments?

Following C++, the 'phases of translation' specification defines comment processing to be performed
before macro directives are processed. However UTF-8 is legal in GLSL ES 3.00, identified by #version
300 but not in GLSL ES 1.00, identified by #version 100 (or by absence of a #version directive).
Therefore the #version behavior in GLSL ES 1.00 would require compilation to be dependent on a
directive occurring later in the shader source.

Option: The shader is processed in 2 passes. The first determines the shader version and the second
performs compilation as before.

208

13 Issues

Option: Replace the current version directive mechanism with a byte or character sequence that must
always occur at the start of the shader. This is similar to other standards that have multiple versions e.g.
HTTP.

Option: Make UTF-8 characters an optional feature of GLSL ES 1.00

RESOLUTION: Replace the version directive in GLSL ES 1.0 with a character sequence that must
always occur at the start of the shader.

13.19 Line Continuation
Should the line continuation character '\' be included in the specification?

Line continuation was deliberately excluded from previous versions of GLSL and GLSL ES in order to
discourage excessive use of the preprocessor. However, function-like macros are commonly used because
there is no 'template' mechanism, which would allow functions to be parametrized by a type. Long macro
definitions are therefore not uncommon and the line-continuation character may aid readability.

Given that shader source is stored in a list of character strings, the newline character can be omitted and
this has the same effect as a newline followed by a line-continuation.

RESOLUTION: Include line-continuation.

How does this interact with #version?

RESOLUTION: Same issue as with UTF-8in general. Line-continuation to be made optional in GLSL ES
1.00

13.20 Phases of Compilation
Should the preprocessor run as the very first stage of compilation or after conversion to preprocessor
tokens as with C/C++?

The cases where the result is different are not common.

#define e +1
int n = 1e;

According to the c++ standard, '1e' should be converted to a preprocessor token which then fails
conversion to a number. If the preprocessor is run first, '1e' is expanded to '1+1' which is then parsed
successfully.

RESOLUTION: Follow c++ rules.

13.21 Maximum Number of Varyings
How should gl_MaxVaryingFloats be defined? Originally this was specified as 32 floats but currently
some desktop implementations fail to implement this correctly. Many implementations use 8 vec4
registers and it is difficult to split varyings across multiple registers without losing performance.

209

13 Issues

Option 1: Specify the maximum as 8 4-vectors. It is then up to the application to pack varyings. Other
languages require the packing to be done by the application. Developers have not reported this as a
problem.

Option 2: Specify the maximum according to a packing rule. The developer may use a non-optimal
packing so it is better to do this in the driver. Requiring the application to pack varyings is problematic
when shaders are automatically generated. It is easier for the driver to implement this.

RESOLUTION: The maximum will be specified according to a packing rule.

Should attributes and uniforms follow this rule?

RESOLUTION: Attributes should not follow this rule. They will be continued to be specified as vec4s.

RESOLUTION: Uniforms should not follow this rule for GLSL ES 3.00. Implementations are expected
to virtualize such resources.

Should the built-in special variables (gl_FragCoord, gl_FrontFacing, gl_PointCoord) be included in this
packing algorithm? Built-in special variables are implemented in a variety of ways. Some
implementations keep them in separate hardware, some do not.

RESOLUTION: Any built-in special variables that are statically used in the shader should be included in
the packing algorithm.

Should gl_FragCoord be included in the packing algorithm? The x and y components will always be
required for rasterization. The z and w components will often be required.

RESOLUTION: gl_FragCoord is included in the count of varyings.

How should mat2 varyings be packed?

Option 1: Pack them as 2x2.

Option 2: Pack them as 4 columns x 1 row. This is usually more efficient for an implementation.

Option 3: Allocate a 4 column x 2 row space. This is inefficient but allows flexibility in how
implementations map them to registers.

Option 4: As above but pack 2 mat2 varyings into each 4 column x 2 row block. Any unpaired mat2
takes a whole 4x2 block.

RESOLUTION: Option 3

Should mat3 take 3 whole rows?

This would again allow flexibility in implementation but it wastes space that could be used for floats or
float arrays.

210

13 Issues

RESOLUTION: No, mat3 should take a 3x3 block.

Should vec3 take a whole row?

RESOLUTION: No.

Should gl_MaxVertexUniformsComponents be changed (from desktop GLSL) to reflect the packing
rules?

RESOLUTION: Rename gl_MaxVertexUniformComponents to gl_MaxVertexUniformVectors. Rename
gl_MaxFragmentUniformComponents to gl_MaxFragmentUniformVectors.

13.22 Array Declarations
Unsized array declarations.

Desktop GLSL allows arrays to be declared without a size and these can then be accessed with constant
integral expressions. The size never needs to be declared. This was to support gl_Texcoord e.g.

varying vec4 gl_TexCoord[];
...
gl_FragColor = texture (tex, gl_TexCoord[0].xy);

This allows gl_TexCoord to be used without having to declare the number of texture units.

gl_TexCoord is part of the fixed functionality so unsized arrays should be removed for GLSL ES

RESOLUTION: Remove unsized array declarations.

Which forms of array declarations should be permitted?

 float a[5];
 ...
 float b[] = a; // b is explicitly size 5

or

 float a[] = float[] (1.0, 2.0, 3.0);

RESOLUTION: All above constructs are valid. However, any declaration that leaves the size undefined
is disallowed as this would add complexity and there are no use-cases.

13.23 Invariance
How should invariance between shaders be handled?

Version 1.10 of desktop GLSL uses ftransform() to guarantee that gl_Position can be guaranteed to be
calculated the same way in different vertex shaders. This relies on the fixed function that has been
removed from ES. It is also very restrictive in that it only allows vertex transforms based on matrices. It
does not apply to other values such as those used to generate texture coordinates.

211

13 Issues

Option 1: Specify all operations to be invariant. No, this is too restrictive. Optimum use of resources
becomes impossible for some implementations.

Option 2: Add an invariance qualifier to functions that require invariance. No, this does not work as the
inputs to the functions and operations performed on the outputs may not be invariant.

Option 3: Add an invariance qualifier to all variables (including shader outputs).

RESOLUTION: Add an invariance qualifier to variables but permit its use only for outputs from the
vertex and fragment shaders. Add a global invariance option for use when complete invariance is
required.

Should the invariance qualifier be permitted on parameters to texture functions?

Many algorithms rely on two or more textures being exactly aligned, either within a single invocation of a
shader or using multi-pass techniques. This could be guaranteed by using the invariant qualifier on
variables that are used as parameters to the texture function.

Using the global invariance pragma also guarantees alignment of the textures. It is not clear whether
allowing finer control of invariance is useful in practice. Compilers may revert to global invariance and
there may be other specific cases that need to be considered.

RESOLUTION: Use of a variable as a parameter to a texture function does not imply that it may be
qualified as invariant.

Do invariance qualifiers for declarations in the vertex and fragment shaders need to match?

Option 1: Only allow invariance declarations on outputs. If a vertex shader output is declared as
invariant, it implies that the corresponding input to the fragment shader is also invariant.

Option 2: Specify that they must match.

RESOLUTION: Only allow invariant declarations on outputs.

Should this rule apply if the varying is declared but not used?

RESOLUTION: Yes, this rule applies for declarations, independent of usage.

How does this rule apply to the built-in special variables?

Option 1: It should be the same as for varyings. But gl_Position is used internally by the rasterizer as
well as for gl_FragCoord so there may be cases where rasterization is required to be invariant but
gl_FragCoord is not.

Option 2: gl_FragCoord and gl_PointCoord can be qualified as invariance if and only if gl_Position and
gl_PointSize are qualified invariant, respectively.

RESOLUTION: Option 1.

Can undefined values be made invariant?

212

13 Issues

If a type is implemented by a larger native type and due to lack of initialization, a variable of that type has
an illegal value, it is possible for variant behavior to occur.

For example suppose a boolean is represented by a 32-bit integer with 'false' represented as 0 and 'true'
represented as '1'. If the compiler uses both an 'equals 0' and an 'equals 1' test, the following may occur:

 bool b; // The implementation sets this to an illegal value e.g. 3

 if (b) // implementation tests 'b == 1' which is false
 {
 f();
 }
 else // implementation tests 'b == 0' which is also false
 {
 g();
 }

Neither f() nor g() are executed which is unexpected behavior. Such cases could be made invariant but
would for example require the compiler to initialize undefined values which is a performance cost.

RESOLUTION: Undefined values cannot be made invariant. These shaders are malformed and therefore
have undefined behavior.

13.24 Invariance Within a shader
How should invariance within a shader be specified?

Compilers may decide to recalculate a value rather than store it in a register (rematerialization). The new
value may not be exactly the same as the original value.

Option 1: Prohibit this behavior.

Option 2: Use the invariance qualifier on variables to control this. This is consistent with the desktop.

RESOLUTION: Values with in a shader are in variant be default. The invariance qualifier or pragma
may be used to make them invariant.

Should constant expressions be invariant? In the following example, it is not defined whether the literal
expression should always evaluate to the same value.

precision mediump int;
precision mediump float;
const int size = int(ceil(4.0/3.0 – 0.333333));
int a[size];
for (int i=0; i<int(ceil(4.0/3.0 – 0.333333)); i++) {a [i] = i;}

213

13 Issues

Implementations must usually be able to evaluate constant expressions at compile time since they can be
used to declare the size of arrays. Hardware may compute a less accurate value compared with maths
libraries available in C. It would however be expected that functions such as sine and cosine return
similar results whether or not they are part of a constant expression. This suggests that the
implementation might want to evaluate these functions only on the hardware. However, there are no
situations, even with global invariance, where compile time evaluation and runtime evaluation must match
exactly.

RESOLUTION: Yes, constant expressions must be invariant.

13.25 While-loop Declarations
What is the purpose of allowing variable declarations in a while statement?

while (bool b = f()) {...}

Boolean b will always be true until the point where it is destroyed. It is useful in C++ since integers are
implicitly converted to booleans.

RESOLUTION: Keep this behavior. Will be required if implicit type conversion is added to a future
version.

A similar issue exists in for-loops. The grammar allows constructs such as

for(;bool x = a < b;) ;

13.26 Cross Linking Between Shaders
Should it be permissible for a fragment shader to call a function defined in a vertex shader or vice versa?

RESOLUTION: No, there is no need for this behavior.

13.27 Visibility of Declarations
At what point should a declaration take effect?

int x=1;
{
 int x=2, y=x; // case A
 int z=z; // case B
}

Option 1: The name should be visible immediately after the identifier. Both cases above are legal. In
case A, y is initialized to the value 2. This is consistent with c++. For case B, the use case is to initialize
a variable to point to itself e.g. void* p = &p; This is not relevant to GLSL ES.

Option 2: The name should be visible after the initializer (if present), otherwise immediately after the
identifier. In case A, y is initialized to 2. Case B is an error (assuming no prior declaration of z).

Option 3: The name should be visible after the declaration. In case A, y is initialized to 1. Case B is an
error if z is has no prior declaration.

214

13 Issues

RESOLUTION: Option 2. Declarations are visible after the initializer if present, otherwise after the
identifier.

13.28 Language Version
What version number should the language have? This version of the language is based on version 3.30 of
the desktop GLSL. However it includes a number of features that are in version 4.20 but not 3.30. The
previous version of GLSL ES was version 1.00 so this version could be called version 2.00.

RESOLUTION: Follow the desktop GLSL convention so that the language version matches the API
version. Hence this version will be called 3.00

13.29 Samplers
Should samplers be allowed as l-values? The specification already allows an equivalent behavior:

Current specification:

uniform sampler2D sampler[8];
int index = f(...);
vec4 tex = texture(sampler[index], xy); // allowed

Using assignment of sampler types:

uniform sampler2D s;
s = g(...);
vec4 tex = texture(s, xy); // not allowed

RESOLUTION: Dynamic indexing of sampler arrays is now prohibited by the specification. Restrict
indexing of sampler arrays to constant integral expressions.

13.30 Dynamic Indexing
For GLSL ES 1.00, support of dynamic indexing of arrays, vectors and matrices was not mandated
because it was not directly supported by some implementations. Software solutions (via program
transforms) exist for a subset of cases but lead to poor performance. Should support for dynamic indexing
be mandated for GLSL ES 3.00?

RESOLUTION: Mandate support for dynamic indexing of arrays except for sampler arrays, fragment
output arrays and uniform block arrays.

Should support for dynamic indexing of vectors and matrices be mandated in GLSL ES 3.00?

RESOLUTION: Yes.

Indexing of arrays of samplers by constant-index-expressions is supported in GLSL ES 1.00. A constant-
index-expression is an expression formed from constant-expressions and certain loop indices, defined for
a subset of loop constructs. Should this functionality be included in GLSL ES 3.020?

215

13 Issues

RESOLUTION: No. Arrays of samplers may only be indexed by constant-integral-expressions.Arrays of
all opaque types can now be accessed with dynamically uniform expressions.

13.31 Maximum Number of Texture Units
The minimum number of texture units that must be supported in the fragment shader is currently 2 as
defined by gl_MaxTextureImageUnits = 8. Is this too low for GLSL ES 3.0?

Option 1: Yes, the number of texturing units is the limiting factor for fragment shaders. The number of
texture units was increased from 1 to 2 going from OpenGL ES 1.0 to OpenGL ES 1.1 and increased to 8
for OpenGL ES 2.0

RESOLUTION: Increase to 16

13.32 On-target Error Reporting
Should compilers be required to report any errors at compile time or can errors be deferred until link
time?

RESOLUTION: If a program cannot be compiled, on-target compilers are only required to report that an
error has occurred. This error may be reported at compile time or link time or both. Development
systems must generate grammar errors at compile time.

13.33 Rounding of Integer Division
Should the rounding mode be specified for integer division?

The rounding mode for division is related to the definition of the remainder operator. The important
relation in most languages (but not relevant in this version of GLSL ES) is:

(a / b) * b + a % b = a (a and b are integers)

Usually the remainder operator is defined to have the same sign as the dividend which implies that divide
must round towards zero. (Note that the modulo function is not the same as the remainder function.
Modulo is defined to have the same sign as the divisor).

The remainder operator was not part of GLSL ES 1.00, so it was not necessary to specify the rounding
mode. In GLSL ES 3.00, the remainder operator is included but the results are undefined if either or both
operands are negative.

RESOLUTION: The rounding mode is undefined for this version of the specification.

13.34 Undefined Return Values
If a function is declared with a non-void return type, any return statements within the definition must
specify a return expression with a type matching the return type. However if the function returns without
executing a return statement the behavior is undefined. Should the compiler attempt to check for these
cases and report them as an error?

216

13 Issues

Example:

int f()
{
 // no return statement
}

...

int a = f();

Option 1: An undefined value is returned to the caller. No error is generated. This is what most c++
compilers do in practice (although the c++ standard actually specifies 'undefined behavior').

Option 2: There must be a return statement at the end of all function definitions that return a value.

No, this requires statements to be added that may be impossible to execute.

Option 3: A return statement at the end of a function definition is required only if it is possible for
execution to reaches the end of the function:

E.g.

int f(bool b)
{
 if (b)
 return 1;
 else
 return 0;
 // No error. The execution can never reach the end of the function so
 // the implicit return statement is never executed.
}

This becomes impossible to determine in the presence of loops.

Option 4: All finite static paths through a function definition must end with a return statement. A static
path is a path that could potentially be taken if each branch in the code could be controlled independently.

RESOLUTION: Option 1: The function returns an undefined value.

13.35 Precisions of Operations
Should the precision of operations such as add and multiply be defined?

These are not defined by the C++ standard but it is generally assumed that C++ implementations will use
IEEE 754 arithmetic. This is not true for GPUs which generally support only a subset of IEEE 754. In
addition, many operations such as the transcendental functions are considered too expensive to implement
with more than 10 significant bits of precision. Division is commonly implemented by reciprocal and
multiplication.

RESOLUTION: Include a table of precisions for operations.

217

13 Issues

13.36 Compiler Transforms
What compiler transforms should be allowed?

C++ prohibits compiler transforms of expressions that alter the final result. (Note that C++ allows higher
precisions than specified to be used but this is a different issue.) GPUs commonly make use of such
transforms, for example when mapping sequential code to vector-based architectures.

RESOLUTION: A specified set of transforms (in addition to those permitted by C++) are allowed.

13.37 Expansion of Function-like Macros in the Preprocessor
When expanding macros, each macro can only be applied once to the original token or any token
generated from that token. To implement this, the expansion of function-like macros requires a list of
applied macros for each token to be maintained. This is a large overhead.

RESOLUTION: Follow the C++ specification.

What should the behavior be if a directive is encountered during expansion of function-like macros?

This is currently specified as undefined in C++ although several compilers implement the expected
behavior.

RESOLUTION: Leave as undefined behavior.

13.38 Should Extension Macros be Globally Defined?
For each extension there is an associated macro that the shader can use to determine if an extension is
available on a given implementation. Should this macro be defined globally or should it be defined when
the extension is (successfully) enabled?

Both alternatives are usable since attempting to enable an unimplemented extension only results in a
warning.

Option 1: Globally defined

#ifdef GL_OES_<extension-name>
 #extension GL_OES_<extension-name> : enable
 ...
#endif

Option 2: Defined as part of #extension

#extension GL_OES_<extension-name> : enable // warning if not available
#ifdef GL_OES_<extension-name>
 ...
#endif

RESOLUTION: The macros are defined globally. There should be a warning-free path for all legal cases.

218

13 Issues

13.39 Minimum Requirements
GLSL ES 1.00 specified a set of minimum requirements that effectively made parts of the specification
optional. The purpose was to enable low cost implementations while allowing higher performance
devices to expose features without recourse to extensions. That flexibility came at the cost of portability.
Should the minimum requirements section be included as part of GLSL ES 3.00?

RESOLUTION: No, except for the section on counting of varyings.

13.40 Packing Functions
These functions are used to pack and unpack a 32-bit bit-vector into various types.

Should the conversions be based on the precision (lowp, mediump, highp)? e.g.

highp uint packFloat2x16(mediump vec2 v);

RESOLUTION: No. Since mediump can be implemented using more than 16 bits, packing and then
unpacking a mediump value might result in a different value on some platforms but not on others.

Should conversion to and from 8-bit types be supported?

RESOLUTION: No. It is not clear which low precision types to support. e.g. lowp is nominally 10 bit.

Which variant of snorm should be used?

Option 1: The range is [-32768, +32767]. Zero is not representable. Uses all the available values.
Sometimes known as the 'attribute snorm format'.

Option 2: The range is [-32767, +32767]. Zero is representable. Does not use all the available values.
Sometimes known as the 'texture snorm format'.

RESOLUTION: Option 2. It is important that zero is representable. Option 1 is simpler to implement but
this is not considered significant for current hardware. The API specification will be amended to use this
format for all snorm to float and float to snorm conversions.

13.41 Boolean logical vector operations
The logical binary operators and (&&), or (| |), and exclusive or (^^) operate only on two boolean
expressions and result in a boolean expression. Should they be extended to operate on boolean vectors?

The 2nd operand is conditionally evaluated for these operators.

 bvec4 f();
 bvec4 g();

 f() && g(); // g() gets 'run' for some components but not others.
 // This isn't well defined.

RESOLUTION: No, these should not be part of the language.

219

13 Issues

13.42 Range Checking of literals
Should an error be generated if a literal integer is outside the range of a 32-bit integer?

This can be easily checked by the compiler. However, there is a complication because the literal does not
include the minus sign for negative constants. Signed integers can be distinguished from unsigned
integers by the 'u' suffix but the value 0x8000000 is only valid if preceded by a unary minus.

Option: Check only that the numeric part of a literal integer (signed or unsigned) is representable by 32
bits.

Option: Include any preceding unary minus and check that the literal is within the range of a signed or
unsigned integer as appropriate.

Option: Extend the checking to any constant integral expression.

RESOLUTION: It is an error to have a literal unsigned integer outside the range of a 32-bit integer.

Should this apply to floating-point numbers?

The GLSL spec allows an arbitrary number of digits before the decimal point. It therefore possible for a
float literal to have an arbitrarily large number of characters but still be representable e.g.

1<1 million zeros>.0e-1000000

1. Parsing constraints. Should the number of characters in each field be limited in some way?

1. Should the mantissa be limited to e.g. 16 characters?

2. Should the unsigned part of the mantissa be required to fit into a 32 bit integer?

2. Range checks.

1. If the value is larger than 3.40282347e38, should it be required to return INF? Or return
an error?

RESOLUTION: No limit on the number of characters in the mantissa or exponent in a float literal.

RESOLUTION: Values larger than representable in a float 32 must return INF (+ or - as appropriate).
Values with a magnitude too small to be representable in a float 32 must return zero.

13.43 Sequence operator and constant expressions
Should the following construct be allowed?

float a[2,3];

The expression within the brackets uses the sequence operator (',') and returns the integer 3 so the
construct is declaring a single-dimensional array of size 3. In some languages, the construct declares a
two-dimensional array. It would be preferable to make this construct illegal to avoid confusion.

220

13 Issues

One possibility is to change the definition of the sequence operator so that it does not return a constant-
expression and hence cannot be used to declare an array size.

RESOLUTION: The result of a sequence operator is not a constant-expression.

13.44 Version Directive
The version directive in GLSL ES 1.00 has been found to be unsuitable in cases where certain features of
the language specification are changed. The existing mechanism relies on a preprocessor directive but,
following the order of operations specified by the 'phases of translation' section in the C++ specification,
it is difficult or perhaps impossible to change features of the language that are processed before such
directives are invoked. Such features include the introduction of the line-continuation character ('\') and
the extension of the character set.

There are several options for an improved version mechanism. All specify the version in the first line of
the shader and require that the version directive is followed by a newline.

Option 1: Add a byte sequence to the start of the shader. This would allow any change to be made to the
language, including changing the character set. This mechanism is often used in file formats for images.

Option 2: Add a character string sequence to the start of the shader. Define it to appear to be a
preprocessor directive e.g.

#version 300 es

Option 3: As option 2 but allow some flexibility in the format so that extra white-space would still be
allowed.

Option 4: As option 2 but use a distinctive non-preprocessor format e.g.

version-300-es

Option 5: As option 4 but include the characters 'glsl' to aid identification e.g.

glsl-version-300-es

RESOLUTION: Option 3. The version directive is a string, present as the only non-white-space in the
first line of the shader. It is very unlikely that the character set will be changed in an incompatible way
from UTF-8 in the future. Option 3 is the closest in appearance to the current mechanism.

13.45 Use of Unsigned Integers
Should functions that can only return a positive value e.g. textureSize() and the length() method, return
signed or unsigned values?

Option 1: Unsigned integer. This allows for some degree of compile-time checking. For example it
would be impossible to accidentally access an array element with a negative index in a typical
initialization loop such as:

221

13 Issues

float a[5];
for (unit i=0u; i<a.length (); i++)
 a[i] = 0.0;

Option 2: Signed integer. This allows greater flexibility in calculating array indices without the need for
type conversions e.g.

float a[SIZE];
...
int index = a.length() - 3; // Library code. SIZE may not be known when
 // this code is written
if (index >= 0) // would not work with an unsigned integer
 f(a[index]);

RESOLUTION: Option 2. The principle is that integers that represent values and hence may form part of
arithmetic expressions should always be signed, even if it is known that they will always be positive.
Values that represent bit vectors should always be unsigned.

The extra checking made available by the use of unsigned integers for values known to be positive is
minimal. It would be preferable to include a range mechanism in a future version of the language.

13.46 Vertex Attribute Aliasing
Vertex inputs (attributes) can be assigned a location in 3 ways:

• By the location qualifier in the shader

• By the API (BindAttribLocation)

• Automatically by the linker (default if the location is not specified explicitly)

These methods may be mixed e.g. some locations may be defined by the shader and others automatically
by the linker.

Option 1: Disallow aliasing. The linker would be required to detect and report any aliasing.

Option 2: Permit aliasing.

Issue: How do inputs with different types alias?

Option 2a: Type conversion is performed

Option 2b: A 'reinterpret cast' is used i.e. the bit pattern is unchanged.

Issue: This is well-defined for highp values but lowp integers, lowp
floats and mediump floats have undefined bit representations.

Option 3: Leave undefined. Implementations may choose to detect errors, may convert them according to
any of the above methods or may generate arbitrary values.

222

13 Issues

There are some valid uses for aliasing. An 'uber shader' (i.e. a large shader that consists of multiple
selectable smaller shaders) might have too many vertex inputs if they all have unique locations but could
map two or more inputs to the same location is if it known that they will not be used within the same
shader invocation. However, this technique appears not to be widely used. Furthermore, it risks
applications making use of undefined type conversions that may work in some implementations but not
others.

RESOLUTION: Aliasing is disallowed and the linker must report an error.

Issue: Under which conditions are two inputs with conflicting locations considered to be aliased?

Option 1: Declared but not referenced.

Option 2: Declared and statically used.

Option 3: Declared and not removed by compiler optimization.

In general, the behavior of GLSL ES should not depend on compiler optimizations which might be
implementation-dependent. Name matching rules in most languages, including C++ from which GLSL
ES is derived, are based on declarations rather than use.

RESOLUTION: The existence of aliasing is determined by declarations present after preprocessing.

13.47 Does a vertex input Y collide with a fragment uniform Y?
If a vertex shader declares

in vec3 y;

and a fragment shader declares

uniform float y;

Should this be a link error?

The original intention was that uniforms could be shared across shader stages. Hence there is a single
name space for uniforms and uniforms with the same name but in different shaders must have the same
type and precision. However, a single name space does not imply a single scope and it is the scope that
defines where a name is visible. In the above example, the uniform name 'y' is in the uniform name space
and in the global scope of the fragment shader but is not in scope in the vertex shader. The vertex input 'y'
exists in the vertex global name space and the vertex global scope.

If the vertex shader had declared a uniform 'y' with type 'vec3', that would be an error.

Within shaders, there is a one-to-one correspondence between (regions of) scopes and name spaces.
However, when uniforms are declared, they are conceptually inserted into two name spaces: the global
name space of the shader and a separate program-level uniform name space. This does not apply to
shader input names which are only inserted into the global scope of the shader. Consequently, there is no
conflict between a uniform name declared in the fragment shader and an input name declared in the vertex
shader.

RESOLUTION: There is no collision and hence no error in this case.

223

13 Issues

13.48 Counting Rules for Flat and Smooth Varyings
Should the algorithm assume flat and smooth varyings can be packed into the same vec4 register?

RESOLUTION: No. Some implementations disallow this.

Does the algorithm need to specify the order of packing of flat and smooth varyings of the same type?

RESOLUTION: Yes. If flat and smooth varyinigs are interleaved, there is less chance that a subsequent
array can be packed without violating the resolution above. Therefore, to make the algorithm
deterministic, the order should be specified.

13.49 Array of Arrays: Ordering of Indices
Consider an array of size 2 of an array of size 3 of float. C++ and GLSL ES both allow the following
syntax:

float x[2][3]; // x is an array of size 2 of array of size 3 of float

However, GLSL ES also allows an alternative syntax:

float [m][n] x;

What should the order be in this case?

Option 1:

float[3][2] x; // Array of size 2 of array of size 3 of float

Each dimension of the size is next to the type which it is sizing. The '[3]' is applied to float. Essentially
the whole declaration is read in reverse: A float within an array of size 3 within an array of size 2 defines
x. The declaration is associative so that it is equivalent to (float[3])[2]. This would also allow a future
typedef construct:

typedef float[3] float3;
float3[2] x; // equivalent to float[3][2] x;

Note that this causes a contradiction when defining an anonymous formal parameter. The following
should mean the same but they don't:

void f (float /* p */ [3][2]); // anonymous formal parameter
 // array of size 3 of array of size 2
void f (float [3][2] /* p */); // anonymous parameter of type float[3][2]
 // i.e. array of size 2 of array of size 3

One of these forms would have to be removed from the language if this option is chosen.

Option 2:

float[2][3] x; // Array of size 2 of array of size 3 of float

The order of the indices is always the same and is read left to right. This is consistent with the C++
syntax:

224

13 Issues

float (*x)[3] = new float[2][3];

Option 3:

Replace the current postfix array types with a prefix notation:

[2][3]float x; // Array of size 2 of array of size 3 of float

The type specifier is similar to the syntax in other languages where declarations take the form:

var-name is array size-or-range of base-type

Also note that if the elements in the declaration are 'rotated', the syntax is consistent with C++:

[2][3]float x;
 [3]float x[2];
 float x[2][3];

This notation can therefore be classed as 'prefix' (with respect to the type), as opposed to the GLSL
'postfix' notation which has the dimensions following the type.

Option 4:

Disallow sizes in the non-C++ style syntax for the cases where the ordering is ambiguous.

float a[2][3]; // Allowed. Standard C++-style syntax
float[3] b; // Allowed. No ambiguity and ensures backwards compatibility
float[][] d = a;// Allowed. Dimensions are defined by 'a'.

float[2][3] c; // Disallowed
float[2][] d = <initializer>; // Disallowed

Anonymous formal parameters must use the C++-style notation:

void f (float /* p */ [2][3]);

When returning an array of arrays, the size must be deduced from return statements within the function. It
is an error if there is no such return statement.

Resolution: Option 2

Note that for all the options above, the arrangement of parameters in the initializer is the same. The
following is always an array of size 2 of array of size 3 of float:

float[][] (float[] (1.0, 2.0, 3.0), float[] (4.0, 5.0, 6.0));

13.50 Precision of Evaluation of Compile-time Expressions
Should compile-time and run-time expressions be evaluated at the same precision? Can this be extended
to allow expressions to be invariant, independent of whether they are evaluated at compile-time or run-
time?

225

13 Issues

The precision at which compile-time expressions are evaluated has always been stated to be highp.
Originally highp was specified in terms of a minimum set of requirements so the compiler could evaluate
these expressions at single or double precision or any other precision greater or equal to the highp
minima. The definition of highp was subsequently changed to be a subset of IEEE 754.

As currently specified, the run-time precision is not full IEEE so compile-time and run-time evaluation of
the same expression cannot be guaranteed to be exact. However, it is still desirable to minimize
differences where possible.

Option 1: Mandate that compile-time evaluation must be done at the same precision as run-time
evaluation.

This is rejected due to the complexity of emulating hardware (since it is not full IEEE 754).

Option 2: Mandate that compile time evaluation must be done using IEEE single precision.

Standard 'C' libraries are frequently used to implement built-in functions such as transcendentals. Usually
these libraries are implemented with double precision.

13.51 Matching of Memory Qualifiers in Function Parameters
Should an exact match of memory access qualifiers be enforced when calling a function?

The qualifiers coherent, volatile, readonly and writeonly subset the allowed behavior when applied to a
variable. Therefore adding these qualifiers when calling a function cannot produce unexpected behavior.
Conversely, removing them should not be allowed. For example, removing the coherent property from a
variable declared with coherent would allow an implementation to perform out of order accesses or even
omit accesses altogether. Since there would be no defined ordering, it would be possible for a write to
complete a long time after the write was executed. The variable could therefore not be considered
coherent at any time after the function is called.

The restrict qualifier adds to the allowable behavior by permitting (but not requiring) compiler
optimizations that assume the underlying storage is not modified via another variable. It could therefore
be considered dangerous to add the restrict qualifier when calling a function, especially since the
qualification is not visible in the calling code. However, the aliasing is under the control of the developer
and there are potential use cases e.g.

void copy(restrict image2D from, restrict image2D to);
// Function definition assumes that 'from' and 'to' do not alias.

image2D a;
image2D b; // Never aliases with a
image2D c; // Could alias either a or b, so neither can be declared restrict
copy(a,b); // This will behave correctly. Should it be legal?

Resolution: Allow restrict to be added or removed when calling a function.

Should the built-in function prototypes have parameters qualified with memory access qualifiers such as
restrict or coherent?

226

13 Issues

Option 1: Yes and each function has one signature. There is no attempt to overload each function based
on the qualifiers. This minimizes the number of functions the compiler needs to implement but either
removes some use cases or removes some possible optimizations.

Option 2: Yes but there are multiple overloads for each function. This would make built-ins a special case
since functions cannot normally be overloaded based on qualifiers.

Option 3: No. The compiler is able to specialize each function based on the qualification of the actual
parameters. This is consistent with the way precision qualifiers are handled.

Resolution: No. The built-in functions are effectively overloaded with all combinations of qualifiers.

227

14 Acknowledgments

14 Acknowledgments

This specification is based on the work of those who contributed to the OpenGL ES 3.0 Language
Specification, the OpenGL ES 2.0 Language Specification, and the following contributors to this version:

Acorn Pooley, NVIDIA

Alberto Moreira, Qualcomm

Aleksandra Krstic, Qualcomm

Alon Or-bach, Nokia &
Samsung

Andrzej Kacprowski, Intel

Arzhange Safdarzadeh, Intel

Aske Simon Christensen, ARM

Avi Shapira, Graphic Remedy

Barthold Lichtenbelt, NVIDIA

Ben Bowman, Imagination
Technologies

Ben Brierton, Broadcom

Benj Lipchak, Apple

Benson Tao, Vivante

Bill Licea-Kane, Qualcomm

Brent Insko, Intel

Brian Murray, Freescale

Bruce Merry, ARM

Carlos Santa, TI

Cass Everitt, Epic Games &
NVIDIA

Cemil Azizoglu, TI

Chang-Hyo Yu, Samsung

Chris Dodd, NVIDIA

Chris Knox, NVIDIA

Chris Tserng, TI

Clay Montgomery, TI

Daniel Kartch, NVIDIA

Daniel Koch, Transgaming&
NVIDIA

Daoxiang Gong, Imagination
Technologies

Dave Shreiner, ARM

David Garcia, AMD

David Jarmon, Vivante

Derek Cornish, Epic Games

Dominick Witczak, Mobica

Eben Upton, Broadcom

Ed Plowman, ARM

Eisaku Ohbuchi, DMP

Elan Lennard, ARM

Erik Faye-Lund, ARM

Graham Connor, Imagination
Technologies

Graham Sellers, AMD

Greg Roth, NVIDIA

Guillaume Portier, Hi
Corporation

Guofang Jiao, Qualcomm

Hans-Martin Will, Vincent

Hwanyong Lee, Huone

I-Gene Leong, NVIDIA

Ian Romanick, Intel

Ian South-Dickinson, NVIDIA

Ilan Aelion-Exch, Samsung

Inkyun Lee, Huone

Jacob Strm, Ericsson

James Adams, Broadcom

James Jones, Imagination
Technologies

James McCombe, Imagination
Technologies

Jamie Gennis, Google

Jan-Harald Fredriksen, ARM

Jani Vaisanen, Nokia

Jarkko Kemppainen, Symbio

Jeff Bolz, NVIDIA

Jeff Leger, Qualcomm

Jeff Vigil, Qualcomm

Jeremy Sandmel, Apple

Jeremy Thorne, Broadcom

Jim Hauxwell, Broadcom

Jinsung Kim, Huone

Jiyoung Yoon, Huone

228

14 Acknowledgments

John Kessenich, LunarG

Jon Kennedy, 3DLabs

Jon Leech, Khronos

Jonathan Putsman, Imagination
Technologies

Joohoon Lee, Samsung

JoukoKylmäoja, Symbio

Jrn Nystad, ARM

Jussi Rasanen, NVIDIA

Kalle Raita, drawElements

Kari Pulli, Nokia

Keith Whitwell, VMware

Kent Miller, Netlogic
Microsystems

Kimmo Nikkanen, Nokia

Konsta Karsisto, Nokia

Krzysztof Kaminski, Intel

Larry Seiler, Intel

Lars Remes, Symbio

Lee Thomason, Adobe

Lefan Zhong, Vivante

Marcus Lorentzon, Ericsson

Mark Butler, Imagination
Technologies

Mark Callow, Hi Corporation

Mark Cresswell, Broadcom

Mark Snyder, Alt Software

Mark Young, AMD

Mathieu Robart, STM

Matt Netsch, Qualcomm

Matt Russo, Matrox

Maurice Ribble, Qualcomm

Max Kazakov, DMP

Mika Pesonen, Nokia

Mike Cai, Vivante

Mike Weiblen, Zebra Imaging
& Qualcomm

Mila Smith, AMD

Nakhoon Baek, Kyungpook
Univeristy

Nate Huang, NVIDIA

Neil Trevett, NVIDIA

Nelson Kidd, Intel

Nick Haemel, NVIDIA

Nick Penwarden, Epic Games

Niklas Smedberg, Epic Games

Nizar Romdan, ARM

Oliver Wohlmuth , Fujitsu

Pat Brown, NVIDIA

Paul Ruggieri, Qualcomm

Per Wennersten, Ericsson

Petri Talala, Symbio

Phil Huxley, ZiiLabs

Philip Hatcher, Freescale &
Intel

Piers Daniell, NVIDIA

Pyry Haulos, drawElements

Piotr Tomaszewski, Ericsson

Piotr Uminski, Intel

Rami Mayer, Samsung

Rauli Laatikainen, RightWare

Rob Barris, NVIDIA

Rob Simpson, Qualcomm

Roj Langhi, Vivante

Rune Holm, ARM

Sami Kyostila, Nokia

Sean Ellis, ARM

Shereef Shehata, TI

Sila Kayo, Nokia

Slawomir Cygan, Intel

Slawomir Grajewski, Intel

Steve Hill, STM & Broadcom

Steven Olney, DMP

Suman Sharma, Intel

Tapani Palli, Nokia

Teemu Laakso, Symbio

Tero Karras, NVIDIA

Timo Suoranta, Imagination
Technologies & Broadcom

Tom Cooksey, ARM

Tom McReynolds, NVIDIA

Tom Olson, TI & ARM

Tomi Aarnio, Nokia

Tommy Asano, Takumi

Wes Bang, Nokia

Yanjun Zhang, Vivante

229

14 Acknowledgments

15 Normative References

1. The OpenGL® ES Graphics System Version 3.10

2. The OpenGL® ES Shading Language Versions 1.00, 3.00

3. The OpenGL® Graphics System: A Specification (Versions 3.3 – 4.2)

4. International Standard ISO/IEC 14882:1998(E). Programming Languages – C++

5. International Standard ISO/IEC 646:1991. Information technology - ISO 7-bit coded character
set for information interchange

6. The Unicode Standard Version 6.0 – Core Specification

7. IEEE 754-2008. IEEE Standard for Floating-Point Arithmetic

230

	1 Introduction
	1.1 Changes
	1.1.1 Changed from GLSL ES 3.2 revision 1
	1.1.2 Changes from GLSL ES 3.1 revision 4
	1.1.3 Changes from GLSL ES 3.1 revision 3
	1.1.4 Changes from GLSL ES 3.1 revision 2
	1.1.5 Changes from GLSL ES 3.1 revision 1
	1.1.6 Changes from GLSL ES 3.0:

	1.2 Overview
	1.3 Error Handling
	1.4 Typographical Conventions
	1.5 Compatibility

	2 Overview of OpenGL ES Shading
	2.1 Vertex Processor
	2.2 Tessellation Control Processor
	2.3 Tessellation Evaluation Processor
	2.4 Geometry Processor
	2.5 Fragment Processor
	2.6 Compute Processor

	3 Basics
	3.1 Character Set
	3.2 Source Strings
	3.3 Version Declaration
	3.4 Preprocessor
	3.5 Comments
	3.6 Tokens
	3.7 Keywords
	3.8 Identifiers
	3.9 Definitions
	3.9.1 Static Use
	3.9.2 Uniform and Non-Uniform Control Flow
	3.9.3 Dynamically Uniform Expressions

	3.10 Logical Phases of Compilation

	4 Variables and Types
	4.1 Basic Types
	4.1.1 Void
	4.1.2 Booleans
	4.1.3 Integers
	4.1.4 Floats
	4.1.5 Vectors
	4.1.6 Matrices
	4.1.7 Opaque Types
	4.1.7.1 Samplers
	4.1.7.2 Images
	4.1.7.3 Atomic Counters

	4.1.8 Structures
	4.1.9 Arrays

	4.2 Scoping
	4.2.1 Definition of Terms
	4.2.2 Types of Scope
	4.2.3 Redeclaring Names
	4.2.4 Global Scope
	4.2.5 Shared Globals

	4.3 Storage Qualifiers
	4.3.1 Default Storage Qualifier
	4.3.2 Constant Qualifier
	4.3.3 Constant Expressions
	4.3.4 Input Variables
	4.3.5 Uniform Variables
	4.3.6 Output Variables
	4.3.7 Buffer Variables
	4.3.8 Shared Variables
	4.3.9 Interface Blocks

	4.4 Layout Qualifiers
	4.4.1 Input Layout Qualifiers
	4.4.1.1 Tessellation Evaluation Inputs
	4.4.1.2 Geometry Shader Inputs
	4.4.1.3 Fragment Shader Inputs
	4.4.1.4 Compute Shader Inputs

	4.4.2 Output Layout Qualifiers
	4.4.2.1 Tessellation Control Outputs
	4.4.2.2 Geometry Outputs
	4.4.2.3 Fragment Outputs

	4.4.3 Uniform Variable Layout Qualifiers
	4.4.4 Uniform and Shader Storage Block Layout Qualifiers
	4.4.5 Opaque Uniform Layout Qualifiers
	4.4.6 Atomic Counter Layout Qualifiers
	4.4.7 Format Layout Qualifiers

	4.5 Interpolation Qualifiers
	4.6 Parameter Qualifiers
	4.7 Precision and Precision Qualifiers
	4.7.1 Range and Precision
	4.7.2 Conversion between precisions
	4.7.3 Precision Qualifiers
	4.7.4 Default Precision Qualifiers
	4.7.5 Available Precision Qualifiers

	4.8 Variance and the Invariant Qualifier
	4.8.1 The Invariant Qualifier
	4.8.2 Invariance Within a Shader
	4.8.3 Invariance of Constant Expressions
	4.8.4 Invariance of Undefined Values

	4.9 The Precise Qualifier
	4.10 Memory Access Qualifiers
	4.11 Order of Qualification
	4.12 Empty Declarations

	5 Operators and Expressions
	5.1 Operators
	5.2 Array Operations
	5.3 Function Calls
	5.4 Constructors
	5.4.1 Conversion and Scalar Constructors
	5.4.2 Vector and Matrix Constructors
	5.4.3 Structure Constructors
	5.4.4 Array Constructors

	5.5 Vector Components
	5.6 Matrix Components
	5.7 Structure and Array Operations
	5.8 Assignments
	5.9 Expressions
	5.10 Vector and Matrix Operations
	5.11 Evaluation of Expressions

	6 Statements and Structure
	6.1 Function Definitions
	6.1.1 Function Calling Conventions

	6.2 Selection
	6.3 Iteration
	6.4 Jumps

	7 Built-in Variables
	7.1 Built-in Language Variables
	7.1.1 Vertex Shader Special Variables
	7.1.2 Tessellation Control Shader Special Variables
	7.1.2.1 Tessellation Control Input Variables
	7.1.2.2 Tessellation Control Output Variables

	7.1.3 Tessellation Evaluation Shader Special Variables
	7.1.3.1 Tessellation Evaluation Input Variables
	7.1.3.2 Tessellation Evaluation Output Variables

	7.1.4 Geometry Shader Special Variables
	7.1.4.1 Geometry Shader Input Variables
	7.1.4.2 Geometry Shader Output Variables

	7.1.5 Fragment Shader Special Variables
	7.1.6 Compute Shader Special Variables

	7.2 Built-In Constants
	7.3 Built-In Uniform State
	7.4 Redeclaring Built-in Blocks

	8 Built-in Functions
	8.1 Angle and Trigonometry Functions
	8.2 Exponential Functions
	8.3 Common Functions
	8.4 Floating-Point Pack and Unpack Functions
	8.5 Geometric Functions
	8.6 Matrix Functions
	8.7 Vector Relational Functions
	8.8 Integer Functions
	8.9 Texture Functions
	8.9.1 Texture Query Functions
	8.9.2 Texel Lookup Functions
	8.9.3 Texture Gather Functions

	8.10 Atomic-Counter Functions
	8.11 Atomic Memory Functions
	8.12 Image Functions
	8.13 Geometry Shader Functions
	8.14 Fragment Processing Functions
	8.14.1 Interpolation Functions

	8.15 Shader Invocation Control Functions
	8.16 Shader Memory Control Functions

	9 Shader Interface Matching
	9.1 Input Output Matching by Name in Linked Programs
	9.2 Matching of Qualifiers
	9.2.1 Linked Shaders
	9.2.2 Separable Programs

	10 Shading Language Grammar
	11 Errors
	11.1 Preprocessor Errors
	11.2 Lexer/Parser Errors
	11.3 Semantic Errors
	11.4 Linker

	12 Counting of Inputs and Outputs
	13 Issues
	13.1 Compatibility with OpenGL ES 2.0
	13.2 Convergence with OpenGL
	13.3 Numeric Precision
	13.4 Floating Point Representation and Functionality
	13.5 Precision Qualifiers
	13.6 Function and Variable Name Spaces
	13.7 Local Function Declarations and Function Hiding
	13.8 Overloading main()
	13.9 Error Reporting
	13.10 Structure Declarations
	13.11 Embedded Structure Definitions
	13.12 Redefining Built-in Functions
	13.13 Global Scope
	13.14 Constant Expressions
	13.15 Varying Linkage
	13.16 gl_Position
	13.17 Preprocessor
	13.18 Character set
	13.19 Line Continuation
	13.20 Phases of Compilation
	13.21 Maximum Number of Varyings
	13.22 Array Declarations
	13.23 Invariance
	13.24 Invariance Within a shader
	13.25 While-loop Declarations
	13.26 Cross Linking Between Shaders
	13.27 Visibility of Declarations
	13.28 Language Version
	13.29 Samplers
	13.30 Dynamic Indexing
	13.31 Maximum Number of Texture Units
	13.32 On-target Error Reporting
	13.33 Rounding of Integer Division
	13.34 Undefined Return Values
	13.35 Precisions of Operations
	13.36 Compiler Transforms
	13.37 Expansion of Function-like Macros in the Preprocessor
	13.38 Should Extension Macros be Globally Defined?
	13.39 Minimum Requirements
	13.40 Packing Functions
	13.41 Boolean logical vector operations
	13.42 Range Checking of literals
	13.43 Sequence operator and constant expressions
	13.44 Version Directive
	13.45 Use of Unsigned Integers
	13.46 Vertex Attribute Aliasing
	13.47 Does a vertex input Y collide with a fragment uniform Y?
	13.48 Counting Rules for Flat and Smooth Varyings
	13.49 Array of Arrays: Ordering of Indices
	13.50 Precision of Evaluation of Compile-time Expressions
	13.51 Matching of Memory Qualifiers in Function Parameters

	14 Acknowledgments
	15 Normative References

