
NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 1

Open Data Distribution Service on
Linux

PG_09270-002 | September 12, 2019
Advance Information | Subject to Change
NVIDIA CONFIDENTIAL | Prepared and Provided under NDA

User Guide

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 2

PG_09270-001

Table of Contents

Open Data Distribution Service on Linux .. 4
Installing OpenDDS ... 6

Using Sample Applications ... 7
Running the complex_idl_example Test App ... 7
Complex IDL with Security .. 8

Complex IDL with Static Discovery ... 10
Use Cases .. 11

Single VM/Intra-SoC Use Cases .. 12
Inter-VM and Inter-SoC Use Cases .. 12

Static Discovery in Inter-VM/Inter-SoC .. 13
Manually Compiling the Libraries .. 14
Data Types/IDL ... 15
Discovery Model .. 16
Transport Model .. 16

Transport Model ... 16
Transport Selection Hierarchy ... 17
Programming Guidelines .. 18

Writing an IDL File ... 19
Writing a Publisher ... 19

Writing a Subscriber ... 20
Quality of Service for DDS Entities ... 21

OpenDDS QoS Policies ... 21
Recommended Policies for Use-cases ... 22

Recommended Policies for Use-cases ... 22
Guidelines on integration with other Build Systems 23

Migrating to Other DDS Implementation ... 23
Specification Compatibility ... 23
Design Effort for Migration to Different DDS Implementation 24
Coding Effort .. 25
Interoperability Issues ... 25
Shim Layer .. 26
References .. 27

Third-Party Licenses ... 27
OpenDDS License ... 27

Warranty .. 28
Support .. 28
Liability ... 28
ACE and TAO License .. 28

NVIDIA CONFIDENTIAL PG_09270-001| 3

Xerces3 License ... 30

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 4

Open Data Distribution Service on Linux

Disclaimer: OpenDDS and other dependent modules (ACE/TAO, Xerces)
are OSS modules provided as-is. NVIDIA does not make any
security or safety warranties. DDS included in DRIVE OS is
not for production and may have secure vulnerabilities that
NVIDIA is not addressing. It is not intended for the Safety
use case.

Data Distribution Service (DDS) is networking middleware for data exchanges
using the publish-subscribe pattern for real time distributed applications. DDS
ensures interoperability (across different vendors), portability of applications,
and high performance.

DDS enables publisher and subscriber nodes to:

• Send and receive messages
• Send and receive events and commands based on topics

Additionally, DDS handles:

• Addressing
• Marshaling and unmarshaling data
• Internal flow control
• Discovery of services

Applications can specify the Quality of Service (QoS) for discovery and runtime
behavior.

OpenDDS is an open source, C++ implementation of the OMG Data Distribution
Service specification. OpenDDS is built on the ACE abstraction layer. DDS for
DRIVE OS includes:

• OpenDDS and the dependent libraries and sample applications.
• Sample applications leverage DDS-based communication methods.

Applications that use DDS for communication services must:

• Include minimal design for the publish-subscribe model of DDS.

NVIDIA CONFIDENTIAL PG_09270-001| 5

• Define the exchange data types using IDL.
• Identify the QoS needs.
• Invoke DDS portable APIs that are independent of DDS implementations.

For the supported OpenDDS versions, see the Release Notes.

Within OpenDDS, the following terminology is used and defined as follows:

Cell Heading Cell Heading
Domain Represents a global data space. Each domain is uniquely

identified by an integer domain ID. Domains are independent
from each other. For two DDS applications to communicate
with each other, they must join the same domain.

Domain Participant A domain participant is the entry point for an application to
interact within a particular domain. The domain participant is
a factory for many of the objects involved in writing or
reading data.

Topic A topic is the most basic description of data to be published or
subscribed to. Each topic describes a data stream in your
system. A topic is identified by its name, which is a string that
must be unique in the whole domain.

Publisher The publisher is responsible for taking the published data and
disseminating it to all relevant subscribers in the domain.

Subscriber The subscriber receives the data from the published data and
disseminates it to all relevant subscribers in the domain.

Data Writer Data writer objects are responsible for sending type-specific
data to one or more data readers. A data writer is created
with a topic, which gives a name to the data stream and
associates the data writer with a data type.

Data Reader Data reader objects are responsible for receiving type-specific
data sent by a data writer. Data writers and readers are
associated with a topic.

QoS Policies The entities of a domain have their own set of Quality of
Service policies that determine the behavior of the transfer of
data and the compatibility between data writers and readers.
The entities include:

• Domain participant
• Topic
• Publisher
• Subscriber
• Data writer
• Data reader

Sample A sample is a single data update received over DDS.

Interface Definition
Language (IDL)

The Interface definition language is used to specify the
interface between the client and the server so that the
Remote Procedure Call (RPC) mechanism can create the code
stubs required to call functions across the network.

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 6

Installing OpenDDS
The OpenDDS source and binary files are included as part of the DRIVE OS
release package.

Use either the SDK Manager or manually extract in sequence the SDK RUN files.

For the branch and build number, see the Release Notes.

Once the package is installed, the directory structure is as follows:

<top>
 ├── drive-oss-src
 │ └── dds
 │ ├── install
 │ ├── install_static
 │ ├── opendds
 │ ├── samples
 ├── drive-t186ref-linux
 ├── bin-target
 ├── include
 ├── lib-target
 ├── targetfs
 │ └── samples

Once the package is installed, the directory structure is as follows:

<top>
 ├── drive-oss-src
 │ └── dds
 │ ├── install
 │ ├── install_static
 │ ├── opendds
 │ ├── samples
 │ ├── tao
 │ ├── xercesc

 ├── drive-t186ref-linux
 ├── bin-target
 │ └── dds
 ├── include
 │ └── dds
 ├── lib-target
 │ └── dds
 ├── targetfs
 │ └── samples

Where:

• <top> is the directory where you installed DRIVE OS software package.

NVIDIA CONFIDENTIAL PG_09270-001| 7

• drive-oss-src/dds contains the sources for DDS, TAO, and sample
code.

• drive-oss-src/dds/install_static contains the static libraries
for DDS and TAO.

• sample code.drive-t186ref-
linux/targetfs/home/nvidia/drive-t186ref-
linux/samples/dds contains the pre-built samples using dynamic
libraries.

• drive-t186ref-linux/targetfs/usr/lib contains the libraries on
the target system. These libraries are flashed at /usr/lib.

Using Sample Applications
The complex IDL structures application transmits ten messages from the
publisher to the subscriber. The data object transferred is a sample object
detection metadata used in computer vision/imaging.

The pre-compiled binaries are available at:

<top>/drive-t186ref-linux/home/nvidia/drive-t186ref-
linux/samples/dds

Running the complex_idl_example Test App
The steps below apply for cross process mode. Create two different sessions for
starting the publisher and subscriber so that you can see the subscriber receiving
and printing data.

The default configuration file uses RTPS and TCP. For more information, see
Discovery Model and Transport Model.

To run the complex_idl_example application

1. Set the environment for both sessions:

export DDS_ROOT=/home/nvidia/drive-t186ref-linux/samples/dds
export PATH=$DDS_ROOT:$PATH

2. Start the publisher and subscriber in different sessions:

• Publisher session:

compidl_publisher -DCPSConfigFile generic_config.ini

• Subscriber session:

compidl_subscriber -DCPSConfigFile generic_config.ini

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 8

The expected output contains:

• Four lines with vertices of rectangles
• Two transformation matrices are printed 10 times with different values in the

subscriber session

Sample output is as follows:

Object Detection:
EnableBoundingBoxClipping = 1
EnableFuseObjects = 1
MaxNumImages = 10
 ROIs:
 h: = 200 1100
 w: = 300 2100
 x: = 400 3100
 y: = 500 4100
 Transformations:
 | 225 325 425 |
 | 525 625 725 |
 | 825 925 1025 |
 | 250 350 450 |
 | 550 650 750 |
 | 850 950 1050 |

Complex IDL with Security
Security enabled tests undergo these processes:

• Authentication
• Access control
• Encryption

To run an application with security plugins enabled

1. Update the rtps_multicast.ini configuration file to enable security by
adding the following line in the common section:
DCPSSecurity=1

2. Set the environment variables for both sessions:
export DDS_ROOT=/home/nvidia/drive-t186ref-linux//samples/dds
export PATH=$DDS_ROOT:$PATH

Copy the libxerces-c.so and libxerces-c-3.2.so from
<top>/drive-oss-src/dds/xercesc/install/lib/ to the /usr/lib
on target.

NVIDIA CONFIDENTIAL PG_09270-001| 9

3. Create a directory for the publisher and subscriber certificate files on the
target.

These files can be taken from the source PDK and renamed to the provided
file name, then copied into the publisher/subscriber folder. For example:

cd <top>/drive-oss-src/dds/opendds/tests

From To
security/certs/identity/test_participant_*_cert.pem cert.pem

security/certs/identity/test_participant_*_private_key.pem private_key.pem

security/certs/identity/identity_ca_cert.pem identity_ca_cert.pem

security/certs/permissions/permissions_ca_cert.pem permissions_ca_cert.pem

DCPS/Messenger/governance_signed.p7s governance_signed.p7s

DCPS/Messenger/permissions_*_signed.p7s permissions_signed.p7s

Replace * with different index numbers for publisher and subscriber. To exercise
authentication, access control, and encryptions, generate your own governance and
permissions signed files from the XML as desired.

4. Generate a governance_signed.p7s file based on the use-case by
exercising options available for the particular governance.xml.

Some of the options that can be used are:
<allow_unauthenticated_participants>false</allow_unauthenticat
ed_participants>
<enable_join_access_control>true</enable_join_access_control>
<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

5. Once you have the updated desired governance.xml, run the following
command to generate the corresponding signed file and place it in the
respective publisher/subscriber directory:
openssl smime -sign -in <file.xml> -text -out
<file_signed.p7s> -signer <ca_cert.pem> -inkey
<private_key.pem>

6. Update the system date using this format:
date MMDDhhmm [[CC]YY][.SS]

This is required since the licenses may not be valid for the default date set by
the system.

7. Launch the application in the same way for cases without security from the
newly created publisher/subscriber directories.

The same output is expected as for non-security cases. However, additional
logs are displayed for publisher and subscriber:

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 10

(3371081|6) DEBUG: Spdp::attempt_authentication() - Attempting
authentication (sending request) for participant:
9ef3a9f4.7de6be54.a53f712e.000001c1(28b687be)
(3371081|1) WARNING: Could not find FQDN. Using "127.0.0.1" as
fully qualified hostname, please correct system configuration.
(3371081|3) RPCH 9ef3a9f4.7de6be54.a53f712e.000001c1(28b687be)
= 12
(3371081|3) DWCH 9ef3a9f4.7de6be54.a53f712e.ff0202c3(301467ce)
= 13
(3371081|3) DRCH 97bf6f66.343bdf69.08274081.ff0202c4(624ed7a4)
= 3
(3371081|3) RPCH 9ef3a9f4.7de6be54.a53f712e.000001c1(28b687be)
= 12
(3371081|3) DWCH 9ef3a9f4.7de6be54.a53f712e.ff0202c4(ae70f26d)
= 2
(3371081|3) DRCH 97bf6f66.343bdf69.08274081.ff0202c3(fc2a4207)
= 14

Limitations while using security

• Only RTPS discovery is supported.
• Only rtps_udp transport is supported.
• Origin authentication is not supported.
• For the public key of CA, only 2048 bit RSA key and 256 Elliptic Curve Algo

are supported.
• governance.xml only supports modification of the following fields:

allow_unauthenticated_participants
enable_join_access_control
enabled discovery_protection
enable_liveliness_protection
metadata_protection_kind
data_protection_kind

For further details, refer to:

http://download.ociweb.com/OpenDDS/Using_DDS_Security_in_OpenDDS_3_1
3.pdf

Complex IDL with Static Discovery
Static discovery occurs when predefined endpoints with a predefined IP and
port location are specified in the configuration file.

The complex IDL example remains the same, with the same expected output.
However, since there are code changes required and a different configuration file
is used, different binaries for the publisher and subscriber are needed. The

http://download.ociweb.com/OpenDDS/Using_DDS_Security_in_OpenDDS_3_13.pdf
http://download.ociweb.com/OpenDDS/Using_DDS_Security_in_OpenDDS_3_13.pdf

NVIDIA CONFIDENTIAL PG_09270-001| 11

environment setup and compile steps are the same, but the way the applications
are launched is as follows:

• Publisher session:
static_publisher -DCPSConfigFile static_discovery.ini

• Subscriber session:
static_subscriber -DCPSConfigFile static_discovery.ini

Note: Static discovery supports rtps_udp as the mode of transport.

Start the subscriber first, before the publisher.

There is a known issue with the static discovery application. The data transfers
successfully, but there is a 60 second timeout and the following message is
displayed:

ERROR: Subscriber_static.cpp:146: main() - wait failed!
(1663031|1) WARNING: DataLink[101f4100]::~DataLink() - link
still in use by 1 entities when deleted!
(1663031|1) ERROR: SubscriberImpl::~SubscriberImpl, 1
datareaders still exist.

Use Cases
Use cases have been classified into three types:

• Intra-SoC or single VM
• Inter-VM
• Inter-SoC

OpenDDS supports three types of discoveries and five types of transports, which
are changeable in the generic_config.ini file.

For more information, see Discovery Model and Transport Model.

The default configuration file uses RTPS discovery and TCP transport. There are
other configuration files in the <top>/drive-t186ref-
linux/targetfs/home/nvidia/drive-t186ref-linux/samples/dds
folder. These can be used instead of the current generic_config.ini. Note
that the same config file must be used for the publisher and the subscriber.

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 12

Single VM/Intra-SoC Use Cases
The following table lists out the configuration files in the package for single VM
use cases, and what transport mode and discovery mode they use.

Configuration File Discovery Mode Transport Mode
generic_config.ini (default) RTPS tcp

static_discovery.ini Static rtps_udp

shmem.ini RTPS shmem

rtps_multicast.ini RTPS rtps_udp

Inter-VM and Inter-SoC Use Cases
DDS can be used to transfer data from one VM to another in a multi-virtual
machine environment. The configuration of these use cases is similar to intra-VM
use cases, except the two different sessions for publisher and subscriber belong
to different VMs or SoCs.

The transport and discovery mode limitation:

• RTPS discovery only works if multicast support is enabled.

The configuration file rtps_multicast.ini uses RTPS discovery and
rtps_upd transport. Modify the following line according to the interface where
the Virtual Machine must connect to other Virtual Machines.

MulticastInterface=hvX

• Where X=0,1,2, depending on the VM’s bridge interface to the other VM.

For inter-VM communication, the bridge interface hv0-hv1 is used between
Linux and QNX.

To enable multicast support for RTPS discovery, you must modify the
tegra_t186ref_gnu_linux_defconfig file (extracted from oss_src.run)
and change this line:

CONFIG_IP_MULTICAST=y

Now recompile the kernel. For the steps, see Building the Flashing Kernel. If you
do not recompile, the DDS application fails to launch with error: “unable to join
multicast group”.

NVIDIA CONFIDENTIAL PG_09270-001| 13

For an RTPS based discovery mechanism, participants discover each other using
Simple Participant Discovery Protocol (SPDP), which is based on multicast-UDP
transport. The rtps_multicast.ini configuration file has an
InteropMulticastOverride field to override the default multicast address
239.255.0.1.

Ensure the kernel IP routing table has an entry against the specified multicast
address or is handled using the default gateway. If the multicast address is NOT
provided, the DDS middleware reports the following error while sending SDPDP
related messages:

no route to host

The following provides an example for adding an entry in the kernel IP routing
table for inter-VM:

#route add 239.255.0.0 netmask 255.255.0.0 hv1

To verify:

#route -n

The endpoint discovery can be triggered without multicast, where the following
changes can be made in the configuration file:

SedpMulticast=0
SedpLocalAddress=<Local ip:port>

Use the complex_idl_example test application. Follow the steps depending
on which VM the publisher and subscriber are started.

For the inter-SoC use case, use the rtps_multicast.ini configuration file and
follow the steps for inter-VM communication. Change the
MulticastInterface according to the interfaces that connect.

In all inter-VM/inter-SoC use cases, the transport mode must be specified with a
local address. The local address must be an interface that can be pinged from the
outside world, or at least from where the subscriber runs.

[transport/tcp1]
transport_type=tcp
local_address=IP:Port
Substitute this with IP and Port for VM/SoC where
publisher/subscriber is run

Static Discovery in Inter-VM/Inter-SoC
Use the static_discovery.ini configuration file for static discovery use
cases. Recompiling the kernel is NOT required for static discovery. However,
static_publisher and static_subscriber binaries must be used. Change

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 14

the IP addresses as per the Virtual Machines or SoCs. Make the changes as
follows:

[transport/rudp] ## Reader Transport
transport_type=rtps_udp
use_multicast=0
local_address=IP:Port
Substitute this with IP and Port for VM/Tegra where
subscriber is run

[transport/rtudp] ## Writer Transport
transport_type=rtps_udp
use_multicast=0
local_address=IP:Port
Substitute this with IP and Port for VM/Tegra where
publisher is run

For inter-VM communication, the bridge interface hv0-hv1 is used between
Linux and QNX.

• Linux fixed IP address is 192.168.2.2
• QNX fixed IP address is 192.168.2.1

For inter-SoC communication, external IPs are used instead.

Manually Compiling the Libraries
Compiling the libraries is required if any non-default configure features are used,
if the toolchain is modified, or if any changes are made to the source or
application.

To manually compile the libraries

1. Initiate a build with these commands:
cd <top>/drive-oss-
src/dds/samples/complex_idl_example/build_scripts;
 ./build.sh clean
(Build the dynamic libraries)
 ./build.sh
(Build the standalone libraries)
 ./build.sh static

2. Once the build completes successfully, run the copy_samples script to copy
the libraries to the correct directories.
cd <top>/drive-oss-src/samples/; ./copy_samples.sh

3. Proceed to Flashing the SoC.

NVIDIA CONFIDENTIAL PG_09270-001| 15

Data Types/IDL
DDS applications send and receive messages that are strongly-typed. These types
are defined by the application developer in Interface Definition Language (IDL).
For example:

struct Data {
 long message_counter;
 string stock_name;
 double price;
};

Since OpenDDS is capable of exchanging messages between processes created in
different languages, a structure must be defined that can be translated to all
supported languages. For best practices, structures are defined in separate files
with the extension .idl. These IDL files are written in C++ style, but do not have
the same syntax. Since the file is created once, mismatch errors are avoided
between publisher and subscriber defined data types. The IDL file is then
compiled with OpenDDS tools to create source files for both publishers and
subscribers.

The OpenDDS IDL compiler is invoked using the opendds_idl executable. This
host side compilation requires the environment to have DDS_ROOT set as
<top>/drive-oss-src/dds/install/share/dds. The IDL compiler:

• Parses a single IDL file.
• Generates the serialization and key support code that OpenDDS requires to

marshal and de-marshal the types.
• Generates the type support code for the data readers and writers.

For each IDL file processed, such as xyz.idl, three files are generated:

• xyzTypeSupport.idl
• xyzTypeSupportImpl.h
• xyzTypeSupportImpl.cpp

Typically, opendds_idl is passed several options and the IDL file name as a
parameter.

opendds_idl xyz.idl

For more details on options of opendds_idl, see the OpenDDS Developer
Guide as provided in References.

The xyz.idl and xyzTypeSupport.idl are compiled by the TAO IDL
compiler using the tao_idl executable. These client stubs are generated:

xyzC.h
 xyzC.inl

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 16

 xyzC.cpp
xyzTypeSupportC.h
xyzTypeSupportC.inl
xyzTypeSupportC.cpp

These server skeletons are generated:

xyzS.h
xyzS.cpp
xyzTypeSupportS.h
xyzTypeSupportS.cpp

• Pure client applications require #include and link with client stubs.
• Pure server applications require #include and link with server skeletons.

tao_idl xyz.idl
tao_idl -I<top>/drive-oss-src/dds/install xyzTypeSupport.idl

For more details, see the TAO IDL User’s Guide as provided in References.

Discovery Model
OpenDDS provides three options for discovery:

• Information Repository: A centralized repository style that runs as a
separate process allowing publishers and subscribers to discover one another
centrally.

• RTPS Discovery: A peer-to-peer style of discovery that uses the RTPS
protocol to advertise availability and location information.

• Static Discovery: A way of discovering which topic and endpoints, as well as
QOS policies of all entities, are defined in the configuration file.

Transport Model

Transport Model
Transport mechanisms in OpenDDS are pluggable because they can be replaced
by another mechanism through changes in a configuration .ini file. The
transport framework is extensible to implement customized transports.

OpenDDS transport implementations include:

• tcp
• udp

NVIDIA CONFIDENTIAL PG_09270-001| 17

• multicast
• shmem
• rtps_udp

Transport configurations can be specified for:

• Domain participants
• Publishers
• Subscribers
• Data writers
• Data readers

Each transport configuration consists of transport instances, which are pre-
configured transport implementations for a channel. The transport configuration
and instances are managed in the transport registry, which is created using
programming APIs or configuration files.

Transport Selection Hierarchy
Each data writer or reader follows a specific hierarchy in selecting a transport.

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 18

Programming Guidelines
NVIDIA recommends that you utilize the source from drive-oss-src to configure
OpenDDS for generating the libraries based on the build requirements. Any
application written on top of the default libraries is expected to use the same
flags as the ones used in corresponding library builds.

NVIDIA CONFIDENTIAL PG_09270-001| 19

Writing an IDL File
Follow these guidelines for writing and compiling an IDL in the IDL Data Types
section.

Writing a Publisher
For best practices, follow these guidelines on writing a publisher. Using these
guidelines avoids the use of conditions and wait sets for a free-running
publisher.

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 20

For more information about writing a publisher, see the OpenDDS Developer’s
Guide as provided in References.

Writing a Subscriber

For more information about writing a subscriber, see the OpenDDS Developer’s
Guide as provided in References.

Note: The libraries packaged with DDS are generated with the
OPENDDS_SECURITY flag enabled. All user applications are
expected to be built with these flags enabled (whether the
security plugin features are exercised or not), or you must

NVIDIA CONFIDENTIAL PG_09270-001| 21

generate the libraries without these flags, using their configure
command on the packaged source.

 Quality of Service for DDS Entities
There are several Quality of Service policies available as a part of OpenDDS.
Each specify a defined structure. Different sets of policies are applicable to:

• Domain participant
• Topic
• Publisher
• Subscriber
• Data writer
• Data reader

If the QoS is changed, existing associations are removed if they are no longer
compatible and new associations are added if they become compatible.

OpenDDS QoS Policies
The OpenDDS QoS policies are as follows:

Cell Heading Cell Heading
LIVELINESS Determines whether participants are alive and reachable.

Implemented using heartbeat or direction assertion.

RELIABILITY Best effort vs. reliable.

• Reliable specifies the service attempts to deliver all
samples in its history.

• Best effort indicates it is acceptable to not retry
propagation of any samples.

HISTORY Determines the number of samples to retain until the
consumer acquires them.

DURABILITY Determines if the data writers must maintain samples after
they have been sent to subscribers.

DURABILITY SERVICE Controls the deletion of samples in the TRANSIENT or
PERSISTENT durability cache and provides a way to specify the
history and resource limit for the sample cache.

RESOURCE LIMITS Determines the amount of resources the service can consume
to meet the requested QoS.

PARTITION Creates a logical partition within a domain using a string
name.

DEADLINE Allows the application to detect when data is not written or
read within a specified amount of time.

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 22

LIFESPAN Allows the application to specify when a sample expires.
Expired samples are NOT delivered to subscribers.

USER DATA Can be set to any sequence that can be used to attach
information to the created entity, such as security credentials
for authentication.

TOPIC DATA Can be set to attach additional information to the created
topic.

GROUP DATA Can be used to implement matching mechanisms similar to
those of the PARTITION policy, except the decision is based on
an application-defined policy.

TRANSPORT PRIORITY Considered a hint to the transport layer to indicate at what
priority to send messages. Higher values indicate a higher
priority.

LATENCY BUDGET Considered a hint to the transport layer to indicate the
urgency of samples being sent and is used only for monitoring
purposes at this time.

ENTITY FACTORY Controls whether entities are automatically enabled when
they are created.

PRESENTATION Controls how changes to instances by publishers are presented
to data readers. It affects the relative ordering of these
changes and the scope of this ordering.

DESTINATION ORDER Controls the order in which samples within a given instance
are made available to a data reader.

WRITER DATA
LIFECYCLE

Controls the lifecycle of data instances managed by a data
writer.

READER DATA
LIFECYCLE

Controls the lifecycle of data instances managed by a data
reader.

TIME BASED FILTER Controls how often a data reader may be interested in
changes to values in a data instance.

OWNERSHIP Determines whether more than one data writer can write
samples for the same data-object instance.

OWNERSHIP
STRENGTH

Used in conjunction with the OWNERSHIP policy, when the
OWNERSHIP kind is set to EXCLUSIVE. The data writer with the
highest value of strength is considered the owner of the data-
object instance.

Recommended Policies for Use-cases

Recommended Policies for Use-cases
• Streaming Data

• Deadline

NVIDIA CONFIDENTIAL PG_09270-001| 23

• Reliability
• Time based filter
• Durability
• History
• Transport priority

• Alarms/Events

• Reliability
• Durability
• Liveliness
• History

• Large Data

• Reliability
• Liveliness
• Transport priority

Guidelines on integration with other Build Systems
OpenDDS does not support IDL to C mapping, but C++ mappings are supported.
The OpenDDS header files expose RTTI functionality directly. If an application
built by the NVIDIA build system includes these header files, it can result in
build errors.

To overcome build error problems

• Use a C wrapper or a C++ shim layer over the publisher/subscriber
application.

• Use OpenDDS build flags while compiling the application.

The C / C++ wrapper can then be built using the regular tmake build.

Migrating to Other DDS Implementation
The following sections describe specification compatibility and provide
interoperability notes.

Specification Compatibility
OpenDDS states compliance with these specifications:

• Version 1.4 of OMG Data Distribution Service (DDS) for Real-Time Systems
specification (formal/2015-04-10)

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 24

• Version 2.2 of the Real-time Publish-Subscribe Wire Protocol DDS
Interoperability Wire Protocol Specification (DDSI-RTPS) (formal/2014-09-
01).

OpenDDS does NOT implement these specifications:

• DDS Security 1.1b (ptc/17-09-20)
• Extensible and Dynamic Topic Types for DDS Specification Version 1.2

(formal/17-08-01)
• Remote Procedure Calls over DDS Version 1.0 (formal/17-04-01)

Other DDS implementations may include these specifications, and cater to wider
use cases than OpenDDS.

Interoperability between OpenDDS and commercially available DDS
implementations is not affected, provided that RTPS interoperability protocol is
used for discovery.

Design Effort for Migration to Different DDS Implementation
• Type Representation: OpenDDS supports OMG IDL spec version 3.1 from

the CORBA specification. The latest IDL specification version is 4.2. Other
DDS implementations may support a higher IDL version. In addition, other
DDS implementations support other languages to represent types as
specified in the DDS-XTYPES spec mentioned above, such as XML, XDR, etc.,
providing flexibility to represent DDS topic type support in a more readable
form.

If migration of type representation format is desired, the effort is
proportional to the complexity and number of IDL files migrated.

• Transport and Discovery Mechanisms: Commercial distributions support a
superset of transport mechanisms that include mandated transports and
discovery methods of DDS. Consequently, applications using the
recommended transport and discovery methods must work as-is. If a custom
transport mechanism is developed, re-implementation may be required. The
DCPSInfoRepodiscovery mechanism is specific to OpenDDS and must
not be used if eventual migration or interoperability is desired.

• Choosing QoS Policies: Since QoS policies are specification driven, no
change is expected to support these in other DDS implementations.
Additional QoS policies may exist. For example,
TypeConsistencyEnforcementQosPolicy,
DataRepresentationQoSPolicy, etc.

NVIDIA CONFIDENTIAL PG_09270-001| 25

Coding Effort
• IDL Compiler: OpenDDS supports C++ and Java bindings for data objects,

while commercial versions may support more languages. Moreover,
commercial versions may also have code generators that write boilerplate
code for publisher and subscriber and its build environment, over and above
compiling the IDL file. The generated publisher and subscriber code might
look very different from what NVIDIA writes for OpenDDS, because the
class definitions differ. Since the DDS specification platform independent
model defines the APIs including the DDS entities, QoS policies, listeners,
etc., those remain the same.

• Publisher/Subscriber Code: Commercial versions may have a boilerplate
publisher, subscriber already written, and extension to that code for your
application, if necessary. DDS users may, however, choose not to use the
boilerplate code and port your application manually, wherein code
refactoring might be required.

For example, transport/discovery parameters for OpenDDS can be given via
the config file, which may look very different than other distributions—or
might not exist—and parameters are passed via the code itself.

Interoperability Issues
Due to a different interpretation of DDS specification by commercial DDS
implementations, there may be some interoperability issues. For example,
interpretation of CDR. Interoperability demonstrations have been successfully
organized between commercial DDS implementations and OpenDDS using a
common application, so migration and interoperability is possible with minimal
tuning.

Minimal design change and coding adaptation is required to migrate to a
commercial version due to a well-defined portable DDS specification.

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 26

Shim Layer
The complex_idl example has a shim layer written with the below mentioned
directory structure. The application specific definitions and declarations for a
given idl have been abstracted into the respective Publisher.h and
Subscriber.h files.

All OpenDDS specific data types and function API calls are extracted into the

common folder for NVIDIA’s implementation. Based on the requirement, the
commercial version can replace the existing open source definitions.

This abstraction allows Publisher.c and Subscriber.c to be constant over
various platforms and implementations. The changes to Publisher.cpp and
Subscriber.cpp are minimal based on the use case.

Shim Layer Design for Application

NVIDIA CONFIDENTIAL PG_09270-001| 27

References
• DDS Specification Version 1.4
• RTPS Specification Version 2.2
• DDS Security Specification Version 1.1 Beta 1
• OpenDDS Developer’s Guide Version 3.13
• OpenDDS API Guide
• TAO IDL Compiler Users Guide

Third-Party Licenses

This topic provides license information about the third-party software libraries
included in this NVIDIA product.

OpenDDS License
OpenDDS (Licensed Product) is protected by copyright, and is distributed under
the following terms.

OpenDDS is an open source implementation of the Object Management Group
(OMG) Data Distribution Service (DDS), developed and copyrighted by Object
Computing Incorporated (OCI). OpenDDS is both a multi-language and multi-
platform implementation. The OMG DDS specification is intended to be suitable
for systems whose requirements include real-time, high volume, robustness,
failure tolerant data distribution utilizing a publish and subscribe model.

Since OpenDDS is open source and free of licensing fees, you are free to use,
modify, and distribute the source code, as long as you include this copyright
statement.

In particular, you can use OpenDDS to build proprietary software and are under
no obligation to redistribute any of your source code that is built using
OpenDDS. Note however, that you may not do anything to the OpenDDS code,
such as copyrighting it yourself or claiming authorship of the OpenDDS code,
that will prevent OpenDDS from being distributed freely using an open source
development model.

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDSI-RTPS/2.2
http://www.omg.org/spec/DDS-SECURITY/1.1/Beta1/PDF
http://download.objectcomputing.com/OpenDDS/OpenDDS-latest.pdf
http://download.opendds.org/doxygen/
http://www.dre.vanderbilt.edu/%7Eschmidt/DOC_ROOT/TAO/docs/compiler.html

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 28

Warranty
LICENSED PRODUCT IS PROVIDED AS IS WITH NO WARRANTIES OF ANY
KIND INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR
ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

Support
LICENSED PRODUCT IS PROVIDED WITH NO SUPPORT AND WITHOUT
ANY OBLIGATION ON THE PART OF OCI OR ANY OF ITS SUBSIDIARIES
OR AFFILIATES TO ASSIST IN ITS USE, CORRECTION, MODIFICATION OR
ENHANCEMENT.

Support may be available from OCI to users who have agreed to a support
contract.

Liability
OCI OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO
LIABILITY WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS,
TRADE SECRETS OR ANY PATENTS BY LICENSED PRODUCT OR ANY
PART THEREOF.

IN NO EVENT WILL OCI OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL,
INDIRECT AND CONSEQUENTIAL DAMAGES, EVEN IF OCI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

OpenDDS copyright OCI. St. Louis MO USA, 2005

ACE and TAO License
ACE(TM), TAO(TM), CIAO(TM), DAnCE>(TM), and CoSMIC(TM) (henceforth
referred to as "DOC software") are copyrighted by Douglas C. Schmidt and his
research group at Washington University, University of California, Irvine, and
Vanderbilt University, Copyright (c) 1993-2018, all rights reserved. Since DOC
software is open-source, freely available software, you are free to use, modify,
copy, and distribute--perpetually and irrevocably--the DOC software source
code and object code produced from the source, as well as copy and distribute
modified versions of this software. You must, however, include this copyright
statement along with any code built using DOC software that you release. No

NVIDIA CONFIDENTIAL PG_09270-001| 29

copyright statement needs to be provided if you just ship binary executables of
your software products.

You can use DOC software in commercial and/or binary software releases and
are under no obligation to redistribute any of your source code that is built using
DOC software. Note, however, that you may not misappropriate the DOC
software code, such as copyrighting it yourself or claiming authorship of the
DOC software code, in a way that will prevent DOC software from being
distributed freely using an open-source development model. You needn't inform
anyone that you're using DOC software in your software, though we encourage
you to let us know so we can promote your project in the DOC software success
stories.

The ACE, TAO, CIAO, DAnCE, and CoSMIC web sites are maintained by the
DOC Group at the Institute for Software Integrated Systems (ISIS) and the Center
for Distributed Object Computing of Washington University, St. Louis for the
development of open-source software as part of the open-source software
community. Submissions are provided by the submitter ``as is'' with no
warranties whatsoever, including any warranty of merchantability,
noninfringement of third party intellectual property, or fitness for any particular
purpose. In no event shall the submitter be liable for any direct, indirect, special,
exemplary, punitive, or consequential damages, including without limitation,
lost profits, even if advised of the possibility of such damages. Likewise, DOC
software is provided as is with no warranties of any kind, including the
warranties of design, merchantability, and fitness for a particular purpose,
noninfringement, or arising from a course of dealing, usage or trade practice.
Washington University, UC Irvine, Vanderbilt University, their employees, and
students shall have no liability with respect to the infringement of copyrights,
trade secrets or any patents by DOC software or any part thereof. Moreover, in
no event will Washington University, UC Irvine, or Vanderbilt University, their
employees, or students be liable for any lost revenue or profits or other special,
indirect and consequential damages.

DOC software is provided with no support and without any obligation on the
part of Washington University, UC Irvine, Vanderbilt University, their
employees, or students to assist in its use, correction, modification, or
enhancement. A number of companies around the world provide commercial
support for DOC software, however. DOC software is Y2K-compliant, as long as
the underlying OS platform is Y2K-compliant. Likewise, DOC software is
compliant with the new US daylight savings rule passed by Congress as "The
Energy Policy Act of 2005," which established new daylight savings times (DST)
rules for the United States that expand DST as of March 2007. Since DOC
software obtains time/date and calendaring information from operating systems

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 30

users will not be affected by the new DST rules as long as they upgrade their
operating systems accordingly.

The names ACE(TM), TAO(TM), CIAO(TM), DAnCE(TM), CoSMIC(TM),
Washington University, UC Irvine, and Vanderbilt University, may not be used
to endorse or promote products or services derived from this source without
express written permission from Washington University, UC Irvine, or
Vanderbilt University. This license grants no permission to call products or
services derived from this source ACE(TM), TAO(TM), CIAO(TM), DAnCE(TM),
or CoSMIC(TM), nor does it grant permission for the name Washington
University, UC Irvine, or Vanderbilt University to appear in their names.

If you have any suggestions, additions, comments, or questions, please let me
know.

Douglas C. Schmidt

Xerces3 License
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

NVIDIA CONFIDENTIAL PG_09270-001| 31

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 32

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

NVIDIA CONFIDENTIAL PG_09270-001| 33

(d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

NVIDIA CONFIDENTIAL
Open Data Distribution Service on Linux PG_09270-001| 34

 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

NVIDIA CONFIDENTIAL PG_09270-001| 35

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
 See the License for the specific language governing permissions and
 limitations under the License.

	Open Data Distribution Service on Linux
	Installing OpenDDS
	Using Sample Applications
	Running the complex_idl_example Test App
	To run the complex_idl_example application

	Complex IDL with Security
	To run an application with security plugins enabled
	Limitations while using security

	Complex IDL with Static Discovery
	Use Cases
	Single VM/Intra-SoC Use Cases

	Inter-VM and Inter-SoC Use Cases
	Static Discovery in Inter-VM/Inter-SoC

	Manually Compiling the Libraries
	To manually compile the libraries

	Data Types/IDL
	Discovery Model
	Transport Model
	Transport Model
	Transport Selection Hierarchy
	Programming Guidelines
	Writing an IDL File
	Writing a Publisher

	Writing a Subscriber

	Quality of Service for DDS Entities
	OpenDDS QoS Policies

	Recommended Policies for Use-cases
	Recommended Policies for Use-cases

	Guidelines on integration with other Build Systems
	To overcome build error problems
	Migrating to Other DDS Implementation
	Specification Compatibility
	Design Effort for Migration to Different DDS Implementation
	Coding Effort
	Interoperability Issues
	Shim Layer
	References

	Third-Party Licenses
	OpenDDS License
	Warranty
	Support
	Liability
	ACE and TAO License

	Xerces3 License

