
NSIGHT SYSTEMS USER GUIDE

v2020.5.1 | November 2020

User Manual

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | ii

TABLE OF CONTENTS

Chapter 1. Profiling Linux Targets from the GUI.. 1
1.1. Connecting to the Target Device...1
1.2. System-Wide Profiling Options..3

1.2.1. Linux x86_64... 3
1.2.2. Linux for Tegra.. 4

1.3. Target Sampling Options...4
Target Sampling Options for Workstation..5
Target Sampling Options for Embedded Linux.. 6

1.4. Hotkey Trace Start/Stop...6
1.5. Launching and Attaching to Processes.. 7

Chapter 2. Profiling Windows Targets from the GUI..9
Remoting to a Windows Based Machine.. 9
Hotkey Trace Start/Stop...9
Target Sampling Options on Windows..10
Symbol Locations.. 11

Chapter 3. Profiling Android Targets from the GUI..12
Configuring Your Android Device... 12
Application..13

Chapter 4. Profiling QNX Targets from the GUI.. 15
Chapter 5. Profiling from the CLI...16

5.1. Installing the CLI on Your Target... 16
5.2. Command Line Options...16

5.2.1. CLI Global Options...17
5.3. CLI Command Switches...17

5.3.1. CLI Profile Command Switch Options...19
5.3.2. CLI Start Command Switch Options...32
5.3.3. CLI Stop Command Switch Options... 37
5.3.4. CLI Cancel Command Switch Options...37
5.3.5. CLI Launch Command Switch Options.. 38
5.3.6. CLI Shutdown Command Switch Options... 47
5.3.7. CLI Export Command Switch Options...48
5.3.8. CLI Stats Switch Options..49
5.3.9. CLI Status Command Switch Options... 54
5.3.10. CLI Sessions Command Switch Subcommands..55

5.4. Example Single Command Lines.. 55
5.5. Example Interactive CLI Command Sequences... 56
5.6. Example Stats Command Sequences... 61
5.7. Example Output from --stats Option...63
5.8. Importing and Viewing Command Line Results Files...64
5.9. Using the CLI to Analyze MPI Codes... 66

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | iii

5.9.1. Tracing MPI API calls.. 66
5.9.2. Using the CLI to Profile Applications Launched with mpirun............................... 66

Chapter 6. Report Scripts...69
Report Scripts Shipped With Nsight Systems... 69

apigpusum[:base] -- CUDA API & GPU Summary (CUDA API + kernels + memory ops)........... 69
cudaapisum -- CUDA API Summary.. 70
cudaapitrace -- CUDA API Trace... 70
gpukernsum[:base] -- CUDA GPU Kernel Summary... 70
gpumemsizesum -- GPU Memory Operations Summary (by Size)................................... 71
gpumemtimesum -- GPU Memory Operations Summary (by Time)................................. 71
gpusum[:base] -- GPU Summary (kernels + memory operations)...................................72
gputrace -- CUDA GPU Trace...72
nvtxppsum -- NVTX Push/Pop Range Summary..73
openmpevtsum -- OpenMP Event Summary.. 73
osrtsum -- OS Runtime Summary.. 73

Report Formatters Shipped With Nsight Systems.. 74
Column... 74
Table.. 75
CSV..75
TSV.. 75
JSON.. 76
HDoc.. 76
HTable.. 76

Chapter 7. Migrating from NVIDIA nvprof... 77
Using the Nsight Systems CLI nvprof Command..77
CLI nvprof Command Switch Options.. 77
Next Steps.. 80

Chapter 8. Profiling in a Docker on Linux Devices..81
Chapter 9. Direct3D Trace..83

9.1. D3D11 API trace... 83
9.2. D3D12 API Trace... 83

Chapter 10. WDDM Queues... 87
Chapter 11. Vulkan API Trace..89

11.1. Vulkan Overview... 89
11.2. Pipeline Creation Feedback.. 90
11.3. Vulkan GPU Trace Notes.. 91

Chapter 12. Stutter Analysis... 92
12.1. FPS Overview... 92
12.2. Frame Health... 94
12.3. GPU Memory Utilization.. 94
12.4. Vertical Synchronization.. 95

Chapter 13. MPI API Trace..96
Chapter 14. OpenMP Trace... 98

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | iv

Chapter 15. OS Runtime Libraries Trace...100
15.1. Locking a Resource...101
15.2. Limitations...101
15.3. OS Runtime Libraries Trace Filters.. 102
15.4. OS Runtime Default Function List... 103

Chapter 16. NVTX Trace... 106
Chapter 17. CUDA Trace...109

17.1. CUDA GPU Memory Allocation Graph... 111
17.2. Unified Memory Transfer Trace.. 112
17.3. CUDA Default Function List for CLI... 114
17.4. cuDNN Function List for X86 CLI...116

Chapter 18. OpenACC Trace.. 118
Chapter 19. OpenGL Trace..120

19.1. OpenGL Trace Using Command Line...122
Chapter 20. Custom ETW Trace..124
Chapter 21. Debug Versions of ELF Files.. 126
Chapter 22. Reading Your Report in GUI...127

22.1. Generating a New Report... 127
22.2. Opening an Existing Report... 127
22.3. Sharing a Report File.. 127
22.4. Report Tab... 127
22.5. Analysis Summary View..128
22.6. Timeline View... 128

22.6.1. Timeline...128
22.6.2. Events View.. 129
22.6.3. Function Table Modes.. 129
22.6.4. Filter Dialog..132

22.7. Diagnostics Summary View..133
22.8. Symbol Resolution Logs View...133

Chapter 23. Broken Backtraces on Tegra.. 134
Chapter 24. Launch Processes in Stopped State... 136

24.1. LD_PRELOAD... 136
24.2. Launcher... 137

Chapter 25. Import NVTXT..139
Commands...140

Chapter 26. Visual Studio Integration.. 142
Chapter 27. Troubleshooting... 144

GUI Troubleshooting... 144
Android Targets...145
Symbol Resolution... 145
Verbose Logging on Linux Targets...146
Verbose Logging on Windows Targets...147
QNX Troubleshooting.. 147

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | v

Chapter 28. Other Resources...148
Feature Videos... 148
Blog Posts... 148
Training Seminars.. 148
Conference Presentations.. 149
For More Support.. 149

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | vi

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 1

Chapter 1.
PROFILING LINUX TARGETS FROM THE GUI

1.1. Connecting to the Target Device
Nsight Systems provides a simple interface to profile on localhost or manage multiple
connections to Linux or Windows based devices via SSH. The network connections
manager can be launched through the device selection dropdown:

On x86_64:

On Tegra:

Profiling Linux Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 2

The dialog has simple controls that allow adding, removing, and modifying connections:

Security notice: SSH is only used to establish the initial connection to a target device,
perform checks, and upload necessary files. The actual profiling commands and data
are transferred through a raw, unencrypted socket. Nsight Systems should not be used
in a network setup where attacker-in-the-middle attack is possible, or where untrusted
parties may have network access to the target device.

While connecting to the target device, you will be prompted to input the user's
password. Please note that if you choose to remember the password, it will be stored in
plain text in the configuration file on the host. Stored passwords are bound to the public
key fingerprint of the remote device.

The No authentication option is useful for devices configured for passwordless
login using root username. To enable such a configuration, edit the file /etc/ssh/
sshd_config on the target and specify the following option:
PermitRootLogin yes

Then set empty password using passwd and restart the SSH service with service ssh
restart.

Open ports: The Nsight Systems daemon requires port 22 and port 45555 to be open for
listening. You can confirm that these ports are open with the following command:
sudo firewall-cmd --list-ports --permanent
sudo firewall-cmd --reload

To open a port use the following command, skip --permanent option to open only for
this session:
sudo firewall-cmd --permanent --add-port 45555/tcp
sudo firewall-cmd --reload

Likewise, if you are running on a cloud system, you must open port 22 and port 45555
for ingress.

Kernel Version Number - To check for the version number of the kernel support of
Nsight Systems on a target device, run the following command on the remote device:
cat /proc/quadd/version

Profiling Linux Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 3

Minimal supported version is 1.82.

Additionally, presence of Netcat command (nc) is required on the target device. For
example, on Ubuntu this package can be installed using the following command:
sudo apt-get install netcat-openbsd

1.2. System-Wide Profiling Options

1.2.1. Linux x86_64
System-wide profiling is available on x86 for Linux targets only when run with root
privileges.

Ftrace Events Collection

Select Ftrace events

Choose which events you would like to collect.

GPU Context Switch Trace

Tracing of context switching on the GPU is enabled with driver r435.17 or higher.

Profiling Linux Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 4

Here is a screenshot showing three CUDA kernels running simultaneously in three
different CUDA contexts on a single GPU.

1.2.2. Linux for Tegra

Trace all processes – On compatible devices (with kernel module support version 1.107
or higher), this enables trace of all processes and threads in the system. Scheduler events
from all tasks will be recorded.

Collect PMU counters – This allows you to choose which PMU (Performance
Monitoring Unit) counters Nsight Systems will sample. Enable specific counters when
interested in correlating cache misses to functions in your application.

1.3. Target Sampling Options
Target sampling behavior is somewhat different for Nsight Systems Workstation Edition
and Nsight Systems Embedded Platforms Edition.

Profiling Linux Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 5

Target Sampling Options for Workstation

Three different backtrace collections options are available when sampling CPU
instruction pointers. Backtraces can be generated using Intel (c) Last Branch Record
(LBR) registers. LBR backtraces generate minimal overhead but the backtraces have
limited depth. Backtraces can also be generated using DWARF debug data. DWARF
backtraces incur more overhead than LBR backtraces but have much better depth.
Finally, backtraces can be generated using frame pointers. Frame pointer backtraces
incur medium overhead and have good depth but only resolve frames in the portions
of the application and its libraries (including 3rd party libraries) that were compiled
with frame pointers enabled. Normally, frame pointers are disabled by default during
compilation.

By default, Nsight Systems will use Intel(c) LBRs if available and fall back to using dwarf
unwind if they are not. Choose modes... will allow you to override the default.

Profiling Linux Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 6

The Include child processes switch controls whether API tracing is only for the
launched process, or for all existing and new child processes of the launched process. If
you are running your application through a script, for example a bash script, you need
to set this checkbox.

The Include child processes switch does not control sampling in this version of Nsight
Systems. The full process tree will be sampled regardless of this setting. This will be
fixed in a future version of the product.

Nsight Systems can sample one process tree. Sampling here means interrupting each
processor after a certain number of events and collecting an instruction pointer (IP)/
backtrace sample if the processor is executing the profilee.

When sampling the CPU on a workstation target, Nsight Systems traces thread
context switches and infers thread state as either Running or Blocked. Note that
Blocked in the timeline indicates the thread may be Blocked (Interruptible) or Blocked
(Uninterruptible). Blocked (Uninterruptible) often occurs when a thread has transitioned
into the kernel and cannot be interrupted by a signal. Sampling can be enhanced with
OS runtime libraries tracing; see OS Runtime Libraries Trace for more information.

Target Sampling Options for Embedded Linux

Currently Nsight Systems can only sample one process. Sampling here means that the
profilee will be stopped periodically, and backtraces of active threads will be recorded.

Most applications use stripped libraries. In this case, many symbols may stay
unresolved. If unstripped libraries exist, paths to them can be specified using the
Symbol locations... button. Symbol resolution happens on host, and therefore does not
affect performance of profiling on the target.

Additionally, debug versions of ELF files may be picked up from the target system. Refer
to Debug Versions of ELF Files for more information.

1.4. Hotkey Trace Start/Stop
Nsight Systems Workstation Edition can use hotkeys to control profiling. Press the
hotkey to start and/or stop a trace session from within the target application’s graphic
window. This is useful when tracing games and graphic applications that use fullscreen
display. In these scenarios switching to Nsight Systems' UI would unnecessarily
introduce the window manager's footprint into the trace. To enable the use of Hotkey
check the Hotkey checkbox in the project settings page:

Profiling Linux Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 7

The default hotkey is F12.

1.5. Launching and Attaching to Processes
Nsight Systems Embedded Platforms Edition can work with Linux-based devices in
three modes:

 1. Attaching to a process by name
 2. Attaching to a process by name, or launching a new process
 3. Attaching to a process by its PID

The purpose of the configuration here is to define which process the profiler will attach
to for sampling and tracing. Additionally, the profiler can launch a process prior to
attaching to it, ensuring that all environment variables are set correctly to successfully
collect trace information.

In Attach only mode, the process is selected by its name and command line arguments,
as visible using the ps tool.

In Attach or launch mode, the process is to first search as if in the Attach only mode,
but if it is not found, the process is launched using the same path and command line
arguments. If NVTX, CUDA, or other trace settings are selected, the process will be
automatically launched with appropriate environment variables.

Note that in some cases, the capabilities of Nsight Systems are not sufficient to correctly
launch the application; for example, if certain environment variables have to be
corrected. In this case, the application has to be started manually and Nsight Systems
should be used in Attach only mode.

The Edit arguments... link will open an editor window, where every command line
argument is edited on a separate line. This is convenient when arguments contain spaces
or quotes.

To properly populate the Search criteria field based on a currently running process on
the target system, use the Select a process button on the right, which has ellipsis as the
caption. The list of processes is automatically refreshed upon opening.

Profiling Linux Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 8

Attach by PID mode should be used to connect to a specific process.

To choose one of the currently running processes on the target system, use the Select a
process button on the right.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 9

Chapter 2.
PROFILING WINDOWS TARGETS FROM THE
GUI

Profiling on Windows devices is similar to the profiling on Linux devices. Please refer
to the Profiling Linux Targets from the GUI section for the detailed documentation and
connection information. The major differences on the platforms are listed below:

Remoting to a Windows Based Machine
To perform remote profiling to a target Windows based machines, install and configure
an OpenSSH Server on the target machine.

Hotkey Trace Start/Stop
Nsight Systems Workstation Edition can use hotkeys to control profiling. Press the
hotkey to start and/or stop a trace session from within the target application’s graphic
window. This is useful when tracing games and graphic applications that use fullscreen
display. In these scenarios switching to Nsight Systems' UI would unnecessarily
introduce the window manager's footprint into the trace. To enable the use of Hotkey
check the Hotkey checkbox in the project settings page:

The default hotkey is F12.

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

Profiling Windows Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 10

Changing the Default Hotkey Binding - A different hotkey binding can be configured
by setting the HotKeyIntValue configuration field in the config.ini file.

Set the decimal numeric identifier of the hotkey you would like to use for triggering
start/stop from the target app graphics window. The default value is 123 which
corresponds to 0x7B, or the F12 key.

Virtual key identifiers are detailed in MSDN's Virtual-Key Codes.

Note that you must convert the hexadecimal values detailed in this page to their decimal
counterpart before using them in the file. For example, to use the F1 key as a start/stop
trace hotkey, use the following settings in the config.ini file:
HotKeyIntValue=112

Target Sampling Options on Windows

Nsight Systems can sample one process tree. Sampling here means interrupting each
processor periodically. The sampling rate is defined in the project settings and is either
100Hz, 1KHz (default value), 2Khz, 4KHz, or 8KHz.

On Windows, Nsight Systems can collect thread activity of one process tree. Collecting
thread activity means that each thread context switch event is logged and (optionally) a
backtrace is collected at the point that the thread is scheduled back for execution. Thread
states are displayed on the timeline.

If it was collected, the thread backtrace is displayed when hovering over a region where
the thread execution is blocked.

https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes

Profiling Windows Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 11

Symbol Locations
Symbol resolution happens on host, and therefore does not affect performance of
profiling on the target.

Press the Symbol locations... button to open the Configure debug symbols location
dialog.

Use this dialog to specify:

‣ Paths of PDB files
‣ Symbols servers
‣ The location of the local symbol cache

To use a symbol server:

 1. Install Debugging Tools for Windows, a part of the Windows 10 SDK.
 2. Add the symbol server URL using the Add Server button.

Information about Microsoft's public symbol server, which enables getting Windows
operating system related debug symbols can be found here.

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/microsoft-public-symbols

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 12

Chapter 3.
PROFILING ANDROID TARGETS FROM THE
GUI

Profiling on Android devices is similar to the profiling on Linux devices. Please refer to
the Profiling Linux Targets from the GUI section for the detailed documentation. The
major differences on the platforms are listed below:

Configuring Your Android Device
To work with Nsight Systems, the target Android device should be configured for
USB debugging in the Developer options settings menu. Please refer to Android
development documentation to learn how to configure the device for USB debugging.

On the host, a compatible USB driver should be installed. Please refer to device
manufacturer's documentation to learn how to obtain and install the driver.

Connect your target device via a USB cable and power it on (or wake it up). Make sure
that you have the adb command available (it is part of Android SDK Platform Tools
package). Nsight Systems can only connect to devices that are marked as device in the
output of the adb devices command. Make sure you can enter the ADB shell of the
target device by running adb shell on the host.

Launch the Nsight Systems application. On the first launch, a new project called
Project 1 is created automatically.

Profiling Android Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 13

When connecting to the target device, Nsight Systems will validate it and install its
daemon into the following location on the device:
/data/local/tmp/com.nvidia.nsightsystems.tools/

Once the daemon and all required files are installed correctly, a green check mark will
appear and Device is ready text will be displayed:

Application
This section allows you to choose which application to profile. All information will be
collected about the main process of the selected application, except when the Trace all
processes checkbox is enabled.

For non-rooted Android devices, the list of applications only shows information about
debuggable applications. By default, applications that are being developed using the
Android SDK already contain the debuggable option in their manifests.

On rooted Android devices, profiling of all applications is allowed.

For convenience, the application list also shows the process identifiers (PID) of processes
correlated to the listed packages. To refresh this information, use the button in the upper
right corner of the list.

The two checkboxes below the application list are important to ensure that the correct
launch or attach behavior is configured.

Profiling Android Targets from the GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 14

Allow sending intent to launch the default activity, when unselected, forces the
profiler to attach to a running process. If no processes are found to correlate to the
specified application name, the profiling session fails to start with an error message.
When selected, Nsight Systems may launch the default intent of the selected application
to make sure it is running and appears on top of the screen on the target device.

In some applications, especially in early stages of development, common bugs related to
handling the lifecycle of activities can be found. In such cases, sending the default intent
may lead to undesired behavior or even crashes of the profilee. Leaving the checkbox
unselected ensures that the profiler does not affect the application.

Restart application if running is a convenient option in two cases:

 1. When profiling from the very beginning of the application is desired.
 2. When using some of the trace features described below. They require that a

special library is injected into the application in runtime, which happens when
the application is paused by the Android runtime's virtual machine just after
starting. In this case, enabling this option helps ensure that the application is always
restarted and the injection always happens, as opposed to potentially attaching to
the application's process without injection.

Collect NVTX trace. See NVTX Trace for more information.

Collect OpenGL trace. See OpenGL Trace for more information.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 15

Chapter 4.
PROFILING QNX TARGETS FROM THE GUI

Profiling on QNX devices is similar to the profiling on Linux devices. Please refer to the
Profiling Linux Targets from the GUI section for the detailed documentation. The major
differences on the platforms are listed below:

‣ Backtrace sampling is not supported. Instead backtraces are collected for long OS
runtime libraries calls. Please refer to the OS Runtime Libraries Trace section for the
detailed documentation.

‣ CUDA support is limited to CUDA 9.0+
‣ Filesystem on QNX device might be mounted read-only. In that case Nsight Systems

is not able to install target-side binaries, required to run the profiling session. Please
make sure that target filesystem is writable before connecting to QNX target. For
example, make sure the following command works:
echo XX > /xx && ls -l /xx

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 16

Chapter 5.
PROFILING FROM THE CLI

5.1. Installing the CLI on Your Target
The Nsight Systems CLI provides a simple interface to collect on a target without using
the GUI. The collected data can then be copied to any system and analyzed later.

The CLI is distributed in the Target directory of the standard Nsight Systems download
package. Users who want to install the CLI as a standalone tool can do so by copying
the files within the Target directory. If you want the CLI output file (.qdstrm) to be
auto-converted (to .qdrep) after the analysis is complete, you will need to copy the host
directory as well.

If you wish to run the CLI without root (recommended mode), you will want to install in
a directory where you have full access.

5.2. Command Line Options
The Nsight Systems command lines can have one of two forms:
nsys [global_option]

or
nsys [command_switch][optional command_switch_options][application] [optional
 application_options]

All command line options are case sensitive. For command switch options, when short
options are used, the parameters should follow the switch after a space; e.g. -s cpu.
When long options are used, the switch should be followed by an equal sign and then
the parameter(s); e.g. --sample=cpu.

For this version of Nsight Systems, you must launch a process from the command line
to begin analysis. If an instance of the requested process is already running when the
CLI command is issued, the collection will fail. The launched process will be terminated
when collection is complete unless the user specifies the --kill none option (details
below).

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 17

The Nsight Systems CLI supports concurrent analysis by using sessions. Each Nsight
Systems session is defined by a sequence of CLI commands that define one or more
collections (e.g. when and what data is collected). A session begins with either a start,
launch, or profile command. A session ends with a shutdown command, when a profile
command terminates, or, if requested, when all the process tree(s) launched in the
session exit. Multiple sessions can run concurrently on the same system.

A couple of notes about the use of paths in your command line.

‣ The Nsight Systems command line interface does not handle paths with spaces
properly. Please use paths without spaces

‣ If you run a command (like python X Y Z) from a directory where the command is
not located (like /home/mystuff), and the directory includes a sub-directory with
the same name as the command (like /home/mystuff/python), the command line
parser will interpret that as "/home/mystuff/python X Y Z". This will not work
because python, in this context, would reference the directory, not an executable.
Please either run from the command's home directory or use the full path to the
command.

5.2.1. CLI Global Options

Short Long Description

-h --help Help message providing
information about available
command switches and
their options.

-v --version Output Nsight Systems CLI
version information.

5.3. CLI Command Switches
The Nsight Systems command line interface can be used in two modes. You may launch
your application and begin analysis with options specified to the nsys profile
command. Alternatively, you can control the launch of an application and data collection
using interactive CLI commands.

Command Description

profile A fully formed profiling description
requiring and accepting no further input.
The command switch options used
(see below table) determine when the
collection starts, stops, what collectors are
used (e.g. API trace, IP sampling, etc.),
what processes are monitored, etc.

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 18

Command Description

start Start a collection in interactive mode. The
start command can be executed before or
after a launch command.

stop Stop a collection that was started in
interactive mode. When executed, all
active collections stop, the CLI process
terminates but the application continues
running.

cancel Cancels an existing collection started
in interactive mode. All data already
collected in the current collection is
discarded.

launch In interactive mode, launches an
application in an environment that
supports the requested options. The
launch command can be executed before
or after a start command.

shutdown Disconnects the CLI process from the
launched application and forces the CLI
process to exit. If a collection is pending or
active, it is cancelled

export Generates an export file from an
existing .qdrep file. For more information
about the exported formats see the /
documentation/nsys-exporter directory in
your Nsight Systems installation directory.

stats Post process existing Nsight Systems
result, either in .qdrep or SQLite format,
to generate statistical information. This
option is not available in the Windows CLI
in this release.

status Reports on the status of a CLI-based
collection or the suitability of the profiing
environment.

sessions Gives information about all sessions
running on the system.

nvprof Special option to help with transition
from legacy NVIDIA nvprof tool. Calling
nsys nvprof [options] will provide
the best available translation of nvprof
[options] See Migrating from NVIDIA
nvprof topic for details. No additional

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 19

Command Description

functionality of nsys will be available
when using this option. Note: Not
available on IBM Power targets.

5.3.1. CLI Profile Command Switch Options
After choosing the profile command switch, the following options are available.
Usage:
nsys [global-options] profile [options] <application> [application-arguments]

Short Long Possible
Parameters

Default Switch
Description

-t --trace cublas, cuda,
cudnn, nvtx,
opengl,
openacc,
openmp,
osrt, mpi,
vulkan, vulkan-
annotations,
opengl-
annotations,
dx11-
annotations,
dx12-
annotations,
none

cuda, opengl,
nvtx, osrt

Select the
API(s) to be
traced. The osrt
switch controls
the OS runtime
libraries tracing.
Multiple APIs
can be selected,
separated
by commas
only (no
spaces). Since
OpenACC,
cuDNN and
cuBLAS
APIs are
tightly linked
with CUDA,
selecting one of
those APIs will
automatically
enable CUDA
tracing. See
information
on --mpi-
impl option
below if mpi
is selected. If
the none option
is selected,
no APIs are
traced and no
other API can
be selected.
Note: cublas,

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 20

Short Long Possible
Parameters

Default Switch
Description

cudnn, opengl,
and vulkan are
not available
on IBM Power
target.

--mpi-impl openmpi,mpich openmpi When using
--trace=mpi
to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using. If you
are using a
different MPI
implementation,
see Tracing
MPI API calls
section below.
Calling --mpi-
impl without --
trace=mpi is not
supported.

-s --sample cpu, none cpu Select whether
or not to collect
CPU samples. If
none is selected,
sampling
is disabled.
Note: Thread
scheduling
information
will still be
collected unless
--cpuctxsw
switch is set to
none.

--cpuctxsw process-tree,
none

process-tree Trace OS thread
scheduling
activity. Select
'none' to
disable tracing

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 21

Short Long Possible
Parameters

Default Switch
Description

CPU context
switches.

--sampling-
period

integers
between
4000000 and
125000

1000000 The number
of CPU
Instructions
Retired events
counted
before a CPU
instruction
pointer (IP)
sample is
collected. If
configured, call
stacks may also
be collected.
The smaller
the sampling
period, the
higher the
sampling rate.
Note that
lower sampling
periods will
increase
overhead and
significantly
increase the size
of the result
file(s).

-b --backtrace fp,lbr,dwarf,none lbr Select the
backtrace
method to use
while sampling.
The option lbr
uses Intel(c)
Corporation's
Last Branch
Records,
available
only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option fp is

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 22

Short Long Possible
Parameters

Default Switch
Description

frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
dwarf uses
DWARF's CFI
(Call Frame
Information).

--command-file < filename > none Open a file
that contains
profile switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

-y --delay < seconds > 0 Collection
start delay in
seconds.

-d --duration < seconds > NA Collection
duration
in seconds,
duration must
be greater
than zero.
Note that the
profiler does
not detach from
the application,
it lives until
application
termination.

-e --env-var A=B NA Set
environment
variable(s) for
the application

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 23

Short Long Possible
Parameters

Default Switch
Description

process to
be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can
be specified as
A=B,C=D.

--osrt-threshold < nanoseconds > 1000 ns Set the
minimum
time that a
OS Runtime
event must
take before it
is collected.
Setting this
value too low
can cause high
application
overhead
and seriously
increase the size
of your results
file. Note: Not
available for
IBM Power
targets.

--osrt-backtrace-
depth

integrer 24 Set the
depth for the
backtraces
collected for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds 80000 Set the
duration, in
nanoseconds,
that all OS
runtime
libraries
calls must
execute before

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 24

Short Long Possible
Parameters

Default Switch
Description

backtraces are
collected.

--cudabacktrace all, none,
kernel, memory,
sync, other

none When tracing
CUDA APIs,
enable the
collection of
a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead
may occur.
Values may
be combined
using ','. Each
value except
'none' may be
appended with
a threshold
after ':'.
Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).
Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

--cuda-flush-
interval

milliseconds 0 Set the interval,
in milliseconds,
when buffered
CUDA data is

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 25

Short Long Possible
Parameters

Default Switch
Description

automatically
saved to
storage.
Immediately
before data
is saved to
storage, a
cudaDeviceSynchonize
call is inserted
into the
workflow
which
will cause
application
overhead. If
data is not
periodically
saved, nsys will
dynamically
allocate
memory as
needed to store
data during
collection. For
collections over
30 seconds
an interval of
10 seconds is
recommended.

--cuda-
memory-usage

true, false false Track the
GPU memory
usage by
CUDA kernels.
Applicable only
when CUDA
tracing is
enabled. Note:
This feature
may cause
significant
runtime
overhead.

-o --output < filename > report# Set report file
name. Any
%q{ENV_VAR}

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 26

Short Long Possible
Parameters

Default Switch
Description

pattern in the
filename will
be substituted
with the
value of the
environment
variable.
Any %h
pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the
filename will
be substituted
with the PID
of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.
{qdstrm,qdrep,sqlite}
in the working
directory.

--export sqlite, none none Create
additional
output file(s)
based on the
data collected.
Current
options are
sqlite or none.
WARNING: If
the collection
captures a large
amount of
data, creating
the database

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 27

Short Long Possible
Parameters

Default Switch
Description

file may take
several minutes
to complete.

--stats true, false false Generate
summary
statistics after
the collection.
WARNING:
When set to
true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

-f --force-
overwrite

true, false false If true,
overwrite all
existing result
files with same
output filename
(.qdstrm,.qdrep, .sqlite)

-w --show-output true, false true If true, send
target process’
stdout and
stderr streams
to the console.

-n --inherit-
environment

true, false true When true,
the current
environment
variables
and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only
the tool’s

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 28

Short Long Possible
Parameters

Default Switch
Description

environment
variables will
be specified for
the launched
process.

-x --stop-on-exit true, false true If true, stop
collecting
automatically
when the
launched
process has
exited or when
the duration
expires -
whichever
occurs first. If
false, duration
must be set and
the collection
stops only
when the
duration
expires. Nsight
Systems does
not officially
support runs
longer than 5
minutes.

--wait primary,all all If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

--trace-fork-
before-exec

true, false false If true, trace
any child
process after
fork and before
they call one

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 29

Short Long Possible
Parameters

Default Switch
Description

of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior
and might
cause your
application
to crash or
deadlock.

-c --capture-range none,
cudaProfilerApi,
nvtx

none When -c
cudaProfilerApi
(or nvtx) is
used, profiling
will start
only when
cudaProfilerStart
API is invoked
or the specified
NVTX range
(specified
using -p/--nvtx-
capture) is
started in the
application.

--stop-on-range-
end

true,false true Stop profiling
when the
capture
range ends.
Applicable only
when used
along with --
capture-range
option.

-p --nvtx-capture range@domain,range,range@ Specify NVTX
capture range.
See below
for details.
This option
is applicable
only when
used along

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 30

Short Long Possible
Parameters

Default Switch
Description

with --capture-
range=nvtx.

--hotkey-control true, false false If true, hotkey
{F12} can be
used to to
start or stop
collection. Note
that hotkey
won't take
effect in console
apps.

--ftrace Collect ftrace
events.
Argument
should list
events to collect
as: subsystem1/
event1,subsystem2/
event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not available
on IBM Power
targets.

--ftrace-keep-
user-config

Skip initial
ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

--vsync true, false false Collect vsync
events. If
collection of
vsync events
is enabled,
display/
display_scanline
ftrace events
will also be
captured.

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 31

Short Long Possible
Parameters

Default Switch
Description

--gpuctxsw true,false false Trace GPU
context
switches.
Note that this
requires driver
r435.17 or
later and root
permission.
Not available
on IBM Power
targets.

--kill none, sigkill,
sigterm, signal
number

sigterm Send signal
to the target
application's
process group.

--session-new [a-Z][0-9,a-
Z,spaces]

profile-<id>-
<application>

Name the
session
created by the
command.
Name must
start with an
alphabetical
character
followed by
printable
or space
characters. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 32

5.3.2. CLI Start Command Switch Options
After choosing the start command switch, the following options are available. Usage:
nsys [global-options] start [options]

Short Long Possible
Parameters

Default Switch
Description

-c --capture-range none,
cudaProfilerApi,
nvtx

none If set to
cudaProfilerApi,
profiling will
start on the
first call to
cudaProfilerStart.
Valid only with
CUDA tracing
enabled. If set
to nvtx the
profiling will
start when the
first NVTX
capture range
is started
(see below
for NVTX
capture range
definition).

-o --output < filename > report# Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the
value of the
environment
variable.
Any %h
pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the
filename will
be substituted
with the PID

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 33

Short Long Possible
Parameters

Default Switch
Description

of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.
{qdstrm,qdrep,sqlite}
in the working
directory.

--export sqlite, none none Create
additional
output file(s)
based on the
data collected.
Current
options are
sqlite or none.
WARNING: If
the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

--stats true, false false Generate
summary
statistics after
the collection.
WARNING:
When set to
true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 34

Short Long Possible
Parameters

Default Switch
Description

the database
file may take
several minutes
to complete.

-f --force-
overwrite

true, false false If true,
overwrite all
existing result
files with same
output filename
(.qdstrm,.qdrep, .sqlite)

-x --stop-on-exit true, false true If true, stop
collecting
automatically
when all
tracked
processes have
exited or when
stop command
is issued -
whichever
occurs first.
If false, stop
only on stop
command.
Note: When this
is true, stop
command is
optional. Nsight
Systems does
not officially
support runs
longer than 5
minutes.

--stop-on-range-
end

true, false true If true, stop
collecting when
the specified
capture range
ends. Valid only
when --capture-
range is set.

--ftrace Collect ftrace
events.
Argument
should list

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 35

Short Long Possible
Parameters

Default Switch
Description

events to collect
as: subsystem1/
event1,subsystem2/
event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not supported
on IBM Power
targets.

--ftrace-keep-
user-config

Skip initial
ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

--gpuctxsw true,false false Trace GPU
context
switches.
Note that this
requires driver
r435.17 or
later and root
permission.
Not supported
on IBM Power
targets.

--session session
identifier

none Start the
application in
the indicated
session.
The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
%q{ENV_VAR}
pattern will
be substituted

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 36

Short Long Possible
Parameters

Default Switch
Description

with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--session-new [a-Z][0-9,a-
Z,spaces]

[default] Start the
application in
a new session.
Name must
start with an
alphabetical
character
followed by
printable
or space
characters. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--vsync true, false false Collect vsync
events. If
collection of
vsync events
is enabled,
display/
display_scanline

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 37

Short Long Possible
Parameters

Default Switch
Description

ftrace events
will also be
captured.

5.3.3. CLI Stop Command Switch Options
After choosing the stop command switch, the following options are available. Usage:
nsys [global-options] stop [options]

Short Long Possible
Parameters

Default Switch
Description

--session session
identifier

none Stop the
indicated
session.
The option
argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

5.3.4. CLI Cancel Command Switch Options
After choosing the cancel command switch, the following options are available. Usage:
nsys [global-options] cancel [options]

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 38

Short Long Possible
Parameters

Default Switch
Description

--session session
identifier

none Cancel the
indicated
session.
The option
argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

5.3.5. CLI Launch Command Switch Options
After choosing the launch command switch, the following options are available. Usage:
nsys [global-options] launch [options] <application> [application-arguments]

Short Long Possible
Parameters

Default Switch
Description

-t --trace cublas, cuda,
cudnn, nvtx,
opengl,
openacc,
openmp,
osrt, mpi,
vulkan, vulkan-
annotations,
opengl-
annotations,
dx11-
annotations,

cuda, opengl,
nvtx, osrt

Select the
API(s) to be
traced. The osrt
switch controls
the OS runtime
libraries tracing.
Multiple APIs
can be selected,
separated
by commas
only (no
spaces). Since

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 39

Short Long Possible
Parameters

Default Switch
Description

dx12-
annotations,
none

OpenACC,
cuDNN and
cuBLAS
APIs are
tightly linked
with CUDA,
selecting one of
those APIs will
automatically
enable CUDA
tracing. See
information
on --mpi-
impl option
below if mpi
is selected. If
the none option
is selected,
no APIs are
traced and no
other API can
be selected.
Note: cublas,
cudnn, opengl,
and vulkan are
not available
on IBM Power
target.

--mpi-impl openmpi,mpich openmpi When using
--trace=mpi
to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using. If you
are using a
different MPI
implementation,
see Tracing
MPI API calls
section below.
Calling --mpi-
impl without --

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 40

Short Long Possible
Parameters

Default Switch
Description

trace=mpi is not
supported.

-s --sample cpu, none cpu Select whether
or not to collect
CPU samples. If
none is selected,
sampling
is disabled.
Note: Thread
scheduling
information
will still be
collected unless
--cpuctxsw
switch is set to
none.

--cpuctxsw process-tree,
none

process-tree Trace OS thread
scheduling
activity. Select
'none' to
disable tracing
CPU context
switches.

--sampling-
period

integers
between
4000000 and
125000

1000000 The number
of CPU
Instructions
Retired events
counted
before a CPU
instruction
pointer (IP)
sample is
collected. If
configured, call
stacks may also
be collected.
The smaller
the sampling
period, the
higher the
sampling rate.
Note that
lower sampling
periods will
increase

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 41

Short Long Possible
Parameters

Default Switch
Description

overhead and
significantly
increase the size
of the result
file(s).

-b --backtrace fp,lbr,dwarf,none lbr Select the
backtrace
method to use
while sampling.
The option lbr
uses Intel(c)
Corporation's
Last Branch
Records,
available
only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option fp is
frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
dwarf uses
DWARF's CFI
(Call Frame
Information).

--command-file < filename > none Open a file
that contains
launch switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 42

Short Long Possible
Parameters

Default Switch
Description

-e --env-var A=B NA Set
environment
variable(s) for
the application
process to
be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can
be specified as
A=B,C=D.

--osrt-threshold < nanoseconds > 1000 ns Set the
minimum
time that a
OS Runtime
event must
take before it
is collected.
Setting this
value too low
can cause high
application
overhead
and seriously
increase the size
of your results
file. Note: Not
available for
IBM Power
targets.

--osrt-backtrace-
depth

integrer 24 Set the
depth for the
backtraces
collected for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds 80000 Set the
duration, in
nanoseconds,
that all OS

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 43

Short Long Possible
Parameters

Default Switch
Description

runtime
libraries
calls must
execute before
backtraces are
collected.

--cudabacktrace all, none,
kernel, memory,
sync, other

none When tracing
CUDA APIs,
enable the
collection of
a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead
may occur.
Values may
be combined
using ','. Each
value except
'none' may be
appended with
a threshold
after ':'.
Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).
Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 44

Short Long Possible
Parameters

Default Switch
Description

--cuda-flush-
interval

milliseconds 0 Set the interval,
in milliseconds,
when buffered
CUDA data is
automatically
saved to
storage.
Immediately
before data
is saved to
storage, a
cudaDeviceSynchonize
call is inserted
into the
workflow
which
will cause
application
overhead. If
data is not
periodically
saved, nsys will
dynamically
allocate
memory as
needed to store
data during
collection. For
collections over
30 seconds
an interval of
10 seconds is
recommended.

--cuda-
memory-usage

true, false false Track the
GPU memory
usage by
CUDA kernels.
Applicable only
when CUDA
tracing is
enabled. Note:
This feature
may cause
significant

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 45

Short Long Possible
Parameters

Default Switch
Description

runtime
overhead.

-w --show-output true, false true If true, send
target process’
stdout and
stderr streams
to the console

-n --inherit-
environment

true, false true When true,
the current
environment
variables
and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only
the tool’s
environment
variables will
be specified for
the launched
process.

-p --nvtx-capture message@idomainnone Specify NVTX
capture range.
See below for
details.

--trace-fork-
before-exec

true, false false If true, trace
any child
process after
fork and before
they call one
of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior
and might
cause your
application

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 46

Short Long Possible
Parameters

Default Switch
Description

to crash or
deadlock.

--wait primary,all all If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

--session session
identifier

none Launch the
application in
the indicated
session.
The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--session-new [a-Z][0-9,a-
Z,spaces]

[default] Launch the
application in
a new session.

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 47

Short Long Possible
Parameters

Default Switch
Description

Name must
start with an
alphabetical
character
followed by
printable
or space
characters. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

5.3.6. CLI Shutdown Command Switch Options
After choosing the shutdown command switch, the following options are available.
Usage:
nsys [global-options] shutdown [options]

Short Long Possible
Parameters

Default Switch
Description

--kill none, sigkill,
sigterm, signal
number

sigterm Send signal
to the target
application's
process group.

--session session
identifier

none Shutdown
the indicated
session.
The option
argument must
represent a
valid session
name or ID
as reported

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 48

Short Long Possible
Parameters

Default Switch
Description

by nsys
sessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

5.3.7. CLI Export Command Switch Options
After choosing the export command switch, the following options are available. Usage:
nsys [global-options] export [options] [qdrep-file]

Short Long Possible
Parameters

Default Switch
Description

-o --output <filename> <inputfile.ext> Set the .output
filename.
The default
is the .qdrep
filename with
the extension
for the chosen
format.

-t --type sqlite, hdr, text,
json, info

sqlite Export format
type. HDF
format is
supported
only on x86_64
Linux and
Windows

-f --force-
overwrite

true, false false If true,
overwrite

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 49

Short Long Possible
Parameters

Default Switch
Description

existing result
file

-q --quiet true, false false If true, do
not display
progress bar

--separate-
strings

true,false false Output stored
strings and
thread names
separately, with
one value per
line. This affects
JSON and text
output only.

5.3.8. CLI Stats Switch Options
The nsys stats command generates a series of summary or trace reports. These
reports can be output to the console, or to individual files, or piped to external processes.
Reports can be rendered in a variety of different output formats, from human readable
columns of text, to formats more appropriate for data exchange, such as CSV. This
command is not available in the Windows CLI in this release.

Reports are generated from an SQLite export of a .qdrep file. If a .qdrep file is specified,
Nsight Systems will look for an accompanying SQLite file and use it. If no SQLite file
exists, one will be exported and created.

Individual reports are generated by calling out to scripts that read data from the SQLite
file and return their report data in CSV format. Nsight Systems ingests this data and
formats it as requested, then displays the data to the console, writes it to a file, or pipes
it to an external process. Adding new reports is as simple as writing a script that can
read the SQLite file and generate the required CSV output. See the shipped scripts as an
example. Both reports and formatters may take arguments to tweak their processing. For
details on shipped scripts and formatters, see Report Scripts topic.

Reports are processed using a three-tuple that consists of 1) the requested report (and
any arguments), 2) the presentation format (and any arguments), and 3) the output
(filename, console, or external process). The first report specified uses the first format
specified, and is presented via the first output specified. The second report uses the
second format for the second output, and so forth. If more reports are specified than
formats or outputs, the format and/or output list is expanded to match the number of
provided reports by repeating the last specified element of the list (or the default, if
nothing was specified).

nsys stats is a very powerful command and can handle complex argument structures,
please see the topic below on Example Stats Command Sequences.

After choosing the stats command switch, the following options are available. Usage:

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 50

nsys [global-options] stats [options] [input-file]

Short Long Possible
Parameters

Default Switch
Description

--help-reports <report_name>,
ALL, [none]

none With no
argument, give
a summary of
the available
summary and
trace reports. If
a report name
is given, a
more detailed
explanation of
the report is
displayed. If
ALL is given, a
more detailed
explanation of
all available
reports is
displayed.

--help-formats <format_name>,
ALL, [none]

none With no
argument, give
a summary of
the available
output formats.
If a format
name is given,
a more detailed
explanation of
that format is
displayed. If
ALL is given, a
more detailed
explanation of
all available
formats is
displayed.

--sqlite <file.sqlite> Specify the
SQLite export
filename. If this
file exists, it will
be used. If this
file doesn't exist
(or if --force-
export was

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 51

Short Long Possible
Parameters

Default Switch
Description

given) this file
will be created
from the
specified .qdrep
file before
report
processing. This
option cannot
be used if the
specified input
file is also an
SQLite file.

-r --report See link Specify the
report(s) to
generate,
including any
arguments. This
option may be
used multiple
times. Multiple
reports
may also be
specified using
a comma-
separated list
(<name[:args...]
[,name[:args...]...]>).
If no reports
are specified,
the following
will be used
as the default
report set:
cudaapisum,
gpukernsum,
gpumemtimesum,
gpumemsizesum,
osrtsum,
nvtxppsum,
openmpevtsum.
See Report
Scripts for
details about
existing built-in
scripts and how

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 52

Short Long Possible
Parameters

Default Switch
Description

to make your
own.

-f --format column, table,
csv, tsv, json,
hdoc, htable, .

Specify
the output
format of the
corresponding
report(s). The
special name
"." indicates the
default format
for the given
output. The
default format
for console
is column,
while files
and process
outputs default
to csv. This
option may be
used multiple
times. Multiple
formats
may also be
specified using
a comma-
separated list
(<name[:args...]
[,name[:args...]...]>).
See Report
Scripts for
options
available with
each format.

-o --output -, @<command>,
<basename>, .

- Specify
the output
mechanism
for the
corresponding
reports(s).
There are
three output
mechanisms:
print to console
(-), output

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 53

Short Long Possible
Parameters

Default Switch
Description

to command
(@<command>),
or output to file
(<basename>).
The option "."
can be used to
specify using
the default
basefile, which
is the basename
of the input file.
The filename
used will be
<basename>_<report&args>.<output_format>.

--report-dir Add a directory
to the path
used to find
report scripts.
This is usually
only needed
if you have
one or more
directories with
personal scripts.
This option
may be used
multiple times.
Each use adds
a new directory
to the end of the
path. The last
two entries in
the path will
always be the
current working
directory,
followed by
the directory
containing the
shipped nsys
reports.

--force-export true, false false Force a re-
export of
the SQLite
file from the

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 54

Short Long Possible
Parameters

Default Switch
Description

specified .qdrep
file, even if
an SQLite file
already exists.

--force-
overwrite

true, false false Overwrite any
existing report
file(s).

-q --quiet Only display
errors.

5.3.9. CLI Status Command Switch Options
After choosing the status command switch, the following options are available. Usage:
nsys [global-options] status [options]

Short Long Possible
Parameters

Default Switch
Description

<none> Returns current
state of the CLI.

-e --environment Returns
information
about the
system
regarding
suitability of
the profiling
environment.

--session session
identifier

none Print the status
of the indicated
session.
The option
argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 55

Short Long Possible
Parameters

Default Switch
Description

variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

5.3.10. CLI Sessions Command Switch Subcommands
After choosing the sessions command switch, the following subcommands are
available. Usage:
nsys [global-options] sessions [subcommand]

Subcommand Description

list List all active sessions including ID, name,
and state information

5.4. Example Single Command Lines
Version Information
nsys -v

Effect: Prints tool version information to the screen.

Default analysis run
nsys profile <application>
 [application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection when the application stops. Trace CUDA, OpenGL, NVTX, and
OS runtime libraries APIs. Collect CPU sampling information and thread scheduling
information. Profile any child processes. Generate the report#.qdrep file in the default
location, incrementing the report number if needed to avoid overwriting any existing
output files.

Limited trace only run
nsys profile --trace=cuda,nvtx -d 20
 --sample=none --cpuctxsw=none -o my_test <application>
 [application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection after 20 seconds or when the application ends. Trace CUDA and
NVTX APIs. Do not collect CPU sampling information or thread scheduling information.
Profile any child processes. Generate the output file as my_test.qdrep in the current
working directory.

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 56

Delayed start run
nsys profile -e TEST_ONLY=0 -y 20
 <application> [application-arguments]

Effect: Set environment variable TEST_ONLY=0. Launch the application using the given
arguments. Start collecting after 20 seconds and end collection at application exit. Trace
CUDA, OpenGL, NVTX, and OS runtime libraries APIs. Collect CPU sampling and
thread schedule information. Profile any child processes. Generate the report#.qdrep file
in the default location, incrementing if needed to avoid overwriting any existing output
files.

Collect ftrace events
nsys profile --ftrace=drm/drm_vblank_event
 -d 20

Effect: Collect ftrace drm_vblank_event events for 20 seconds. Generate the
report#.qdrep file in the current working directory. Note that ftrace event collection
requires running as root. To get a list of ftrace events available from the kernel, run the
following:
sudo cat /sys/kernel/debug/tracing/available_events

Typical case: profile a Python script that uses CUDA
nsys profile --trace=cuda,cudnn,cublas,osrt,nvtx
 --delay=60 python my_dnn_script.py

Effect: Launch a Python script and start profiling it 60 seconds after the launch, tracing
CUDA, cuDNN, cuBLAS, OS runtime APIs, and NVTX as well as collecting thread
schedule information.

Typical case: profile an app that uses Vulkan
nsys profile --trace=vulkan,osrt,nvtx
 --delay=60 ./myapp

Effect: Launch an app and start profiling it 60 seconds after the launch, tracing Vulkan,
OS runtime APIs, and NVTX as well as collecting CPU sampling and thread schedule
information.

5.5. Example Interactive CLI Command Sequences
Collect from beginning of application, end manually
nsys start --stop-on-exit=false
nsys launch --trace=cuda,nvtx --sample=none <application> [application-
arguments]
nsys stop

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
application is launched. Launch the application, set up to allow tracing of CUDA and
NVTX as well as collection of thread schedule information. Stop only when explicitly
requested. Generate the report#.qdrep in the default location.

 Note:
If
you
start

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 57

a
collection
and
fail
to
stop
the
collection
(or
if
you
are
allowing
it
to
stop
on
exit,
and
the
application
runs
for
too
long)
your
system’s
storage
space
may
be
filled
with
collected
data
causing
significant
issues
for
the
system.
Nsight
Systems
will
collect
a
different
amount
of
data/
sec
depending
on
options,
but
in
general
Nsight
Systems
does

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 58

not
support
runs
of
more
than
5
minutes
duration.

Run application, begin collection manually, run until process ends
nsys launch -w true <application> [application-arguments]
nsys start

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until you manually
start collection at area of interest. Profile until the application ends. Generate the
report#.qdrep in the default location.

 Note:

If
you
launch
an
application
and
that
application
and
any
descendants
exit
before
start
is
called
Nsight
Systems
will
create
a
fully
formed .qdrep
file
containing
no
data.

Run application, start/stop collection using cudaProfilerStart/Stop
nsys start -c cudaProfileApi
nsys launch -w true <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as
a cudaProfileStart() is detected. Launch application for default analysis, sending
application output to the terminal. Stop collection at next call to cudaProfilerStop,

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 59

when the user calls nsys stop, or when the root process terminates. Generate the
report#.qdrep in the default location.

 Note:

If
you
call
nsys
launch
before
nsys
start
-
c
cudaProfilerApi
and
the
code
contains
a
large
number
of
short
duration
cudaProfilerStart/
Stop
pairs,
Nsight
Systems
may
be
unable
to
process
them
correctly,
causing
a
fault.
This
will
be
corrected
in
a
future
version.

 Note:

The
Nsight
Systems
CLI
does
not
support
multiple

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 60

calls
to
the
cudaProfilerStart/
Stop
API
at
this
time.

Run application, start/stop collection using NVTX
nsys start -c nvtx
nsys launch -w true -p MESSAGE@DOMAIN <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
NVTX range with given message in given domain (capture range) is opened. Launch
application for default analysis, sending application output to the terminal. Stop
collection when all capture ranges are closed, when the user calls nsys stop, or when
the root process terminates. Generate the report#.qdrep in the default location.

 Note:

The
Nsight
Systems
CLI
only
triggers
the
profiling
session
for
the
first
capture
range.

NVTX capture range can be specified:

‣ Message@Domain: All ranges with given message in given domain are capture
ranges. For example:
nsys launch -w true -p profiler@service ./app

This would make the profiling start when the first range with message "profiler" is
opened in domain "service".

‣ Message@*: All ranges with given message in all domains are capture ranges. For
example:
nsys launch -w true -p profiler@* ./app

This would make the profiling start when the first range with message "profiler" is
opened in any domain.

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 61

‣ Message: All ranges with given message in default domain are capture ranges. For
example:
nsys launch -w true -p profiler ./app

This would make the profiling start when the first range with message "profiler" is
opened in the default domain.

‣ By default only messages, provided by NVTX registered strings are considered to
avoid additional overhead. To enable non-registered strings check please launch
your application with NSYS_NVTX_PROFILER_REGISTER_ONLY=0 environment:
nsys launch -w true -p profiler@service -e
 NSYS_NVTX_PROFILER_REGISTER_ONLY=0 ./app

Run application, start/stop collection multiple times

The interactive CLI supports multiple sequential collections per launch.
nsys launch <application> [application-arguments]
nsys start
nsys stop
nsys start
nsys stop
nsys shutdown --kill sigkill

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until the start command
is executed. Collect data from start until stop requested, generate report#.qstrm in
the current working directory. Collect data from second start until the secont stop
request, generate report#.qdrep (incremented by one) in the current working directory.
Shutdown the interactive CLI and send sigkill to the target application's process group.

 Note:

Calling
nsys
cancel
after
nsys
start
will
cancel
the
collection
without
generating
a
report.

5.6. Example Stats Command Sequences
Display default statistics

nsys stats report1.qdrep

Effect: Export an SQLite file named report1.sqlite from report1.qdrep (assuming it does
not already exist). Print the default reports in column format to the console.

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 62

Note: The following two command sequences should present very similar information:

nsys profile --stats=true <application>

or

nsys profile <application>

nsys stats report1.qdrep

Display specific data from a report

nsys stats --report gputrace report1.qdrep

Effect: Export an SQLite file named report1.sqlite from report1.qdrep (assuming it does
not already exist). Print the report generated by the gputrace script to the console in
column format.

Generate multiple reports, in multiple formats, output multiple places

nsys stats --report gputrace --report gpukernsum --report cudaapisum
--format csv,column --output .,- report1.qdrep

Effect: Export an SQLite file named report1.sqlite from report1.qdrep (assuming it does
not already exist). Generate three reports. The first, the gputrace report, will be output
to the file report1_gputrace.csv in CSV format. The other two reports, gpukernsum
and cudaapisum, will be output to the console as columns of data. Although three
reports were given, only two formats and outputs are given. To reconcile this, both the
list of formats and outputs is expanded to match the list of reports by repeating the last
element.

Submit report data to a command

nsys stats --report cudaapisum --format table \ --output @"grep -E
(-|Name|cudaFree)" test.sqlite

Effect: Open test.sqlite and run the cudaapisum script on that file. Generate table data
and feed that into the command grep -E (-|Name|cudaFree). The grep command
will filter out everything but the header, formatting, and the cudaFree data, and display
the results to the console.

Note: When the output name starts with @, it is defined as a command. The command
is run, and the output of the report is piped to the command's stdin (standard-input).
The command's stdout and stderr remain attached to the console, so any output will be
displayed directly to the console.

Be aware there are some limitations in how the command string is parsed. No shell
expansions (including *, ?, [], and ~) are supported. The command cannot be piped
to another command, nor redirected to a file using shell syntax. The command and
command arguments are split on whitespace, and no quotes (within the command
syntax) are supported. For commands that require complex command line syntax, it is
suggested that the command be put into a shell script file, and the script designated as
the output command

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 63

5.7. Example Output from --stats Option
The nsys stats command can be used post analysis to generate specific or
personalized reports. For a default fixed set of summary statistics to be automatically
generated, you can use the --stats option with the nsys profile or nsys start
command to generate a fixed set of useful summary statistics.

If your run traces CUDA, these include CUDA API, Kernel, and Memory Operation
statistics:

If your run traces OS runtime events or NVTX push-pop ranges:

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 64

Recipes for these statistics as well as documentation on how to create your own metrics
will be available in a future version of the tool.

5.8. Importing and Viewing Command Line Results
Files
The CLI generates a .qdstrm file. The .qdstrm file is an intermediate result file, not
intended for multiple imports. It needs to be processed, either by importing it into the
GUI or by using the standalone QdstrmImporter to generate an optimized .qdrep file.
Use this .qdrep file when re-opening the result on the same machine, opening the result
on a different machine, or sharing results with teammates.

This version of Nsight Systems will attempt to automatically convert the .qdstrm file
to a .qdrep file with the same name after the run finishes if the required libraries are
available. The ability to turn off auto-conversion will be added in a later version.

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 65

Import Into the GUI

The CLI and host GUI versions must match to import a .qdstrm file successfully. The
host GUI is backward compatible only with .qdrep files.

Copy the .qdstrm file you are interested in viewing to a system where the Nsight
Systems host GUI is installed. Launch the Nsight Systems GUI. Select File->Import...
and choose the .qdstrm file you wish to open.

The import of really large, multi-gigabyte, .qdstrm files may take up all of the memory
on the host computer and lock up the system. This will be fixed in a later version.

Create .qdrep Using QdstrmImporter

The CLI and QdstrmImporter versions must match to convert a .qdstrm file into a .qdrep
file. This .qdrep file can then be opened in the same version or more recent versions of
the GUI.

To run QdstrmImporter on the host system, find the QdstrmImporter binary in the Host-
x86_64 directory in your installation. QdstrmImporter is available for all host platforms.
See options below.

To run QdstrmImporter on the target system, copy the Linux Host-x86_64 directory to
the target Linux system or install Nsight Systems for Linux host directly on the target.
The Windows or MacOS host QdstrmImporter will not work on a Linux Target. See
options below.

Short Long Parameter Description

-h --help Help message
providing
information
about available
options and their
parameters.

-v --version Output
QdstrmImporter
version information

-i --input-file filename or path Import .qdstrm file
from this location.

-o --output-file filename or path Provide a different
file name or path for

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 66

Short Long Parameter Description

the resulting .qdrep
file. Default is the
same name and path
as the .qdstrm file

5.9. Using the CLI to Analyze MPI Codes

5.9.1. Tracing MPI API calls
The Nsight Systems CLI has built-in API trace support via --trace=mpi option
only for the OpenMPI and MPICH implementations of MPI. It traces a default list of
synchronous MPI APIs. If you require more control over the list of traced APIs or if you
are using a different MPI implementation, see github nvtx pmpi wrappers.

You can use this documentation to generate a shared object to wrap a list of synchronous
MPI APIs with NVTX using the MPI profiling interface (PMPI). If you set your
LD_PRELOAD environment variable to the path of that object, nsys will capture and
report the MPI API trace information when --trace=nvtx is used. There is no need to
use --trace=MPI.

NVTX tracing is automatically enabled when MPI trace is turned on.

5.9.2. Using the CLI to Profile Applications Launched
with mpirun
This version of the Nsight Systems CLI supports concurrent use of the nsys profile
command. Each instance will create a separate report file.

You cannot use multiple instances of the interactive CLI concurrently, or use the
interactive CLI concurrently with nsys profile in this version.

Nsight Systems can be used to profile applications launched with mpirun command.
Since concurrent use of the CLI is supported only when using the nsys profile
command, Nsight Systems cannot profile each node from the GUI or from the interactive
CLI.

To profile everything, putting the data in one file:
nsys [nsys options] mpirun [mpi options]

To profile everything putting the data from each rank into a separate file:
mpirun [mpi options] nsys profile [nsys options]

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 67

To profile a single MPI process use a wrapper script. The following script(called
"wrap.sh") runs nsys on rank 0 only:
#!/bin/bash
if [[$OMPI_COMM_WORLD_RANK == 0]]; then
~/nsys/nsys profile ./myapp "$@" --mydummyargument
else
./myapp "$@"
fi

and then execute mpirun ./wrap.sh.

 Note:

Currently
you
will
need
a
dummy
argument
to
the
process,
so
that
Nsight
Systems
can
decide
which
process
to
profile.
This
means
that
your
process
must
accept
dummy
arguments
to
take
advantage
of
this
workaround.
This
script
as
written
is
for
Open
MPI,
but
should
be
easily

Profiling from the CLI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 68

adaptable
to
other
MPI
implementations.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 69

Chapter 6.
REPORT SCRIPTS

Report Scripts Shipped With Nsight Systems
The Nsight Systems development team created and maintains a set of report scripts for
some of the commonly requested reports. These scripts will be updated to adapt to any
changes in SQLite schema or internal data structures.

These scripts are located in the Nsight Systems package in the Target-<architecture>/
reports directory. The following standard reports are available:

apigpusum[:base] -- CUDA API & GPU Summary (CUDA
API + kernels + memory ops)
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this kernel
‣ Instances: The number of executions of this object
‣ Average : The average execution time of this kernel
‣ Minimum : The smallest execution time of this kernel
‣ Maximum : The largest execution time of this kernel
‣ Category : The category of the operation
‣ Operation : The name of the kernel

This report provides a summary of CUDA API calls, kernels and memory operations,
and their execution times. Note that the Time(%) column is calculated using a
summation of the Total Time column, and represents that API call's, kernel's, or memory
operation's percent of the execution time of the APIs, kernels and memory operations
listed, and not a percentage of the application wall or CPU execution time.

Report Scripts

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 70

This report combines data from the cudaapisum, gpukernsum, and gpumemsizesum
reports. It is very similar to profile section of nvprof --dependency-analysis.

cudaapisum -- CUDA API Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this function
‣ Num Calls : The number of calls to this function
‣ Average : The average execution time of this function
‣ Minimum : The smallest execution time of this function
‣ Maximum : The largest execution time of this function
‣ Name : The name of the function

This report provides a summary of CUDA API functions and their execution times. Note
that the Time(%) column is calculated using a summation of the Total Time column, and
represents that function's percent of the execution time of the functions listed, and not a
percentage of the application wall or CPU execution time.

cudaapitrace -- CUDA API Trace
Arguments - None

Output: All time values given in nanoseconds

‣ Start : Timestamp when API call was made
‣ Duration : Length of API calls
‣ Name : API function name
‣ Result : return value of API call
‣ CorrID : Correlation used to map to other CUDA calls
‣ Pid : Process ID that made the call
‣ Tid : Thread ID that made the call
‣ T-Pri : Run priority of call thread
‣ Thread Name : Name of thread that called API function

This report provides a trace record of CUDA API function calls and their execution
times.

gpukernsum[:base] -- CUDA GPU Kernel Summary
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time

Report Scripts

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 71

‣ Total Time : The total time used by all executions of this kernel
‣ Instances : The number of calls to this kernal
‣ Average : The average execution time of this kernal
‣ Minimum : The smallest execution time of this kernal
‣ Maximum : The largest execution time of this kernal
‣ Name : The name of the kernal

This report provides a summary of CUDA kernels and their execution times. Note that
the Time(%) column is calculated using a summation of the Total Time column, and
represents that kernel's percent of the execution time of the kernels listed, and not a
percentage of the application wall or CPU execution time.

gpumemsizesum -- GPU Memory Operations Summary
(by Size)
Arguments - None

Output: All memory values given in KiB

‣ Total : Total number of KiB utilized by this operation
‣ Operations : Number of executions of this operation
‣ Average : The average memory size of this operation
‣ Minimum : The smallest memory size of this operation
‣ Maximum : The largest memory size of this operation
‣ Name : The name of the operation

This report provides a summary of GPU memory operations and the amount of memory
they utilize.

gpumemtimesum -- GPU Memory Operations Summary
(by Time)
Arguments - None

Output: All memory values given in KiB

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this operation
‣ Operations: The number of operations of this type
‣ Average : The average execution time of this operation
‣ Minimum : The smallest execution time of this operation
‣ Maximum : The largest execution time of this operation
‣ Operation : The name of the memory operation

This report provides a summary of GPU memory operations and their execution times.
Note that the Time(%) column is calculated using a summation of the Total Time
column, and represents that operation's percent of the execution time of the operations
listed, and not a percentage of the application wall or CPU execution time.

Report Scripts

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 72

gpusum[:base] -- GPU Summary (kernels + memory
operations)
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this kernel
‣ Instances : The number of executions of this object
‣ Average : The average execution time of this kernal
‣ Minimum : The smallest execution time of this kernal
‣ Maximum : The largest execution time of this kernal
‣ Category : The category of the operation
‣ Name : The name of the kernal

This report provides a summary of CUDA kernels and memory operations, and their
execution times. Note that the Time(%) column is calculated using a summation of the
Total Time column, and represents that kernel's or memory operation's percent of the
execution time of the kernels and memory operations listed, and not a\ percentage of
the application wall or CPU execution time.

This report combines data from the gpukernsum and gpumemtimesum reports. This
report is very similar to output of the command nvprof --print-gpu-summary.

gputrace -- CUDA GPU Trace
Arguments - None

Output:

‣ Start : Start time of trace event in seconds
‣ Duration : Length of event in nanoseconds
‣ CorrId : Correlation ID
‣ GrdX, GrdY, GrdZ : Grid values
‣ BlkX, BlkY, BlkZ : Block values
‣ Reg/Trd : Registers per thread
‣ StcSMem : Size of Static Shared Memory
‣ DymSMem : Size of Dynamic Shared Memory
‣ Bytes : Size of memory operation
‣ Thru : Throughput in MB per Second
‣ SrcMemKd : Memcpy source memory kind or memset memory kind
‣ DstMemKd : Memcpy destination memory kind
‣ Device : GPU device name and ID
‣ Ctx : Context ID

Report Scripts

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 73

‣ Strm : Stream ID
‣ Name : Trace event name

This report displays a trace of CUDA kernels and memory operations. Items are sorted
by start time.

nvtxppsum -- NVTX Push/Pop Range Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all instances of this range
‣ Instances : The number of instances of this range
‣ Average : The average execution time of this range
‣ Minimum : The smallest execution time of this range
‣ Maximum : The largest execution time of this range
‣ Range : The name of the range

This report provides a summary of NV Tools Extensions Push/Pop Ranges and their
execution times. Note that the Time(%) column is calculated using a summation of the
Total Time column, and represents that range's percent of the execution time of the
ranges listed, and not a percentage of the application wall or CPU execution time.

openmpevtsum -- OpenMP Event Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of event type
‣ Count : The number of event type
‣ Average : The average execution time of event type
‣ Minimum : The smallest execution time of event type
‣ Maximum : The largest execution time of event type
‣ Name : The name of the event

This report provides a summary of OpenMP events and their execution times. Note that
the Time(%) column is calculated using a summation of the Total Time column, and
represents that event type's percent of the execution time of the events listed, and not a
percentage of the application wall or CPU execution time.

osrtsum -- OS Runtime Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time

Report Scripts

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 74

‣ Total Time : The total time used by all executions of this function
‣ Num Calls : The number of calls to this function
‣ Average : The average execution time of this function
‣ Minimum : The smallest execution time of this function
‣ Maximum : The largest execution time of this function
‣ Name : The name of the function

This report provides a summary of operating system functions and their execution
times. Note that the Time(%) column is calculated using a summation of the Total Time
column, and represents that function's percent of the execution time of the functions
listed, and not a percentage of the application wall or CPU execution time.

Report Formatters Shipped With Nsight Systems
The following formats are available in Nsight Systems

Column
Usage:

column[:nohdr][:nolimit][:nofmt][:<width>[:<width>]...]

Arguments

‣ nohdr : Do not display the header
‣ nolimit : Remove 100 character limit from auto-width columns Note: This can result

in extremely wide columns.
‣ nofmt : Do not reformat numbers.
‣ <width>... : Define the explicit width of one or more columns. If the value "." is

given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

The column formatter presents data in vertical text columns. It is primarily designed to
be a human-readable format for displaying data on a console display.

Text data will be left-justified, while numeric data will be right-justified. If the data
overflows the available column width, it will be marked with a "…" character, to indicate
the data values were clipped. Clipping always occurs on the right-hand side, even for
numeric data.

Numbers will be reformatted to make easier to visually scan and understand.
This includes adding thousands-separators. This process requires that the string
representation of the number is converted into its native representation (integer or
floating point) and then converted back into a string representation to print. This
conversion process attempts to preserve elements of number presentation, such as the
number of decimal places, or the use of scientific notation, but the conversion is not
always perfect (the number should always be the same, but the presentation may not
be). To disable the reformatting process, use the argument nofmt.

If no explicit width is given, the columns auto-adjust their width based off the header
size and the first 100 lines of data. This auto-adjustment is limited to a maximum

Report Scripts

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 75

width of 100 characters. To allow larger auto-width columns, pass the initial argument
nolimit. If the first 100 lines do not calculate the correct column width, it is suggested
that explicit column widths be provided.

Table
Usage:

table[:nohdr][:nolimit][:nofmt][:<width>[:<width>]...]

Arguments

‣ nohdr : Do not display the header
‣ nolimit : Remove 100 character limit from auto-width columns Note: This can result

in extremely wide columns.
‣ nofmt : Do not reformat numbers.
‣ <width>... : Define the explicit width of one or more columns. If the value "." is

given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

The table formatter presents data in vertical text columns inside text boxes. Other than
the lines between columns, it is identical to the column formatter.

CSV
Usage:

csv[:nohdr]

Arguments

‣ nohdr : Do not display the header

The csv formatter outputs data as comma-separated values. This format is commonly
used for import into other data applications, such as spread-sheets and databases.

There are many different standards for CSV files. Most differences are in how escapes
are handled, meaning data values that contain a comma or space.

This CSV formatter will escape commas by surrounding the whole value in double-
quotes.

TSV
Usage:

tsv[:nohdr][:esc]

Arguments

‣ nohdr : Do not display the header
‣ esc : escape tab characters, rather than removing them

The tsv formatter outputs data as tab-separated values. This format is sometimes used
for import into other data applications, such as spreadsheets and databases.

Report Scripts

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 76

Most TSV import/export systems disallow the tab character in data values. The formatter
will normally replace any tab characters with a single space. If the esc argument has
been provided, any tab characters will be replaced with the literal characters "\t".

JSON
Usage:

json

Arguments: no arguments

The json formatter outputs data as an array of JSON objects. Each object represents one
line of data, and uses the column names as field labels. All objects have the same fields.
The formatter attempts to recognize numeric values, as well as JSON keywords, and
converts them. Empty values are passed as an empty string (and not nil, or as a missing
field).

At this time the formatter does not escape quotes, so if a data value includes double-
quotation marks, it will corrupt the JSON file.

HDoc
Usage:

hdoc[:title=<title>][:css=<URL>]

Arguments:

‣ title : string for HTML document title
‣ css : URL of CSS document to include

The hdoc formatter generates a complete, verifiable (mostly), standalone HTML
document. It is designed to be opened in a web browser, or included in a larger
document via an <iframe>.

HTable
Usage:

htable

Arguments: no arguments

The htable formatter outputs a raw HTML <table> without any of the surrounding
HTML document. It is designed to be included into a larger HTML document. Although
most web browsers will open and display the document, it is better to use the hdoc
format for this type of use.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 77

Chapter 7.
MIGRATING FROM NVIDIA NVPROF

Using the Nsight Systems CLI nvprof Command
The nvprof command of the Nsight Systems CLI is intended to help former nvprof
users transition to nsys. Many nvprof switches are not supported by nsys, often because
they are now part of NVIDIA Nsight Compute.

The full nvprof documentation can be found at https://docs.nvidia.com/cuda/profiler-
users-guide.

The nvprof transition guide for Nsight Compute can be found at https://
docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide.

Any nvprof switch not listed below is not supported by the nsys nvprof command. No
additional nsys functionality is available through this command. New features will not
be added to this command in the future.

CLI nvprof Command Switch Options
After choosing the nvprof command switch, the following options are available. When
you are ready to move to using Nsight Systems CLI directly, see Command Line Options
documentation for the nsys switch(es) given below. Note that the nsys implementation
and output may vary from nvprof.

Usage.
nsys nvprof [options]

Switch Parameters (Default
in Bold)

nsys switch Switch Description

--annotate-mpi off, openmpi, mpich --trace=mpi AND --
mpi-impl

Automatically
annotate MPI
calls with
NVTX markers.
Specify the MPI

https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide

Migrating from NVIDIA nvprof

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 78

Switch Parameters (Default
in Bold)

nsys switch Switch Description

implementation
installed on
your machine.
Only OpenMPI
and MPICH
implementations are
supported.

--cpu-thread-tracing on, off --trace=osrt Collect information
about CPU thread
API activity.

--profile-api-trace none, runtime,
driver,all

--trace=cuda Turn on/off CUDA
runtime and driver
API tracing. For
Nsight Systems
there is no separate
CUDA runtime
and CUDA driver
trace, so selecting
runtime or driver
is equivalent to
selecting all .

--profile-from-start on, off if off use --capture-
range=cudaProfilerApi

Enable/disable
profiling from
the start of the
application. If
disabled, the
application can use
{cu,cuda}Profiler{Start,Stop}
to turn on/off
profiling.

-t,--timeout <nanoseconds>
default=0

--duration=seconds If greater than
0, stop the
collection and
kill the launched
application after
timeout seconds.
nvprof started
counting when the
CUDA driver is
initialized. nsys
starts counting
immediately.

Migrating from NVIDIA nvprof

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 79

Switch Parameters (Default
in Bold)

nsys switch Switch Description

--cpu-profiling on, off --sampling=cpu Turn on/off CPU
profiling

--openacc-profiling on, off --trace=openacc to
turn on

Enable/disable
recording
information from
the OpenACC
profiling interface.
Note: OpenACC
profiling interface
depends on the
presence of the
OpenACC runtime.
For supported
runtimes, see
CUDA Trace section
of documentation

-o, --export-profile <filename> --output={filename}
and/or --
export=sqlite

Export named file
to be imported
or opened in the
Nsight Systems
GUI. %q{ENV_VAR}
in string will be
replaced with
the set value of
the environment
variable. If not set
this is an error.
%h in the string is
replaced with the
system hostname.
%% in the string is
replaced with %.
%p in the string
is not supported
currently. Any other
character following
% is illegal. The
default is report1,
with the number
incrementing to
avoid overwriting
files, in users
working directory.

Migrating from NVIDIA nvprof

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 80

Switch Parameters (Default
in Bold)

nsys switch Switch Description

-f, --force-overwrite --force-
overwrite=true

Force overwriting
all output files with
same name.

-h, --help --help Print Nsight
Systems CLI help

-V, --version --version Print Nsight
Systems CLI version
information

Next Steps
NVIDIA Visual Profiler (NVVP) and NVIDIA nvprof are deprecated. New GPUs and
features will not be supported by those tools. We encourage you to make the move to
Nsight Systems now. For additional information, suggestions, and rationale, see the blog
series in Other Resources.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 81

Chapter 8.
PROFILING IN A DOCKER ON LINUX
DEVICES

Collecting data within a Docker

The following information assumes the reader is knowledgeable regarding Docker
containers. For further information about Docker use in general, see the Docker
documentation.

Enable Docker Collection

When starting the Docker to perform a Nsight Systems collection, additional steps are
required to enable the perf_event_open system call. This is required in order to utilize
the Linux kernel’s perf subsystem which provides sampling information to Nsight
Systems.

There are three ways to enable the perf_event_open syscall. You can enable it by using
the --privileged=true switch, adding --cap-add=SYS_ADMIN switch to your docker
run command file, or you can enable it by setting the seccomp security profile if your
system meets the requirements.

Secure computing mode (seccomp) is a feature of the Linux kernel that can be used to
restrict an application's access. This feature is available only if the kernel is enabled with
seccomp support. To check for seccomp support:
$ grep CONFIG_SECCOMP= /boot/config-$(uname -r)

The official Docker documentation says:
"Seccomp profiles require seccomp 2.2.1 which is not available on Ubuntu 14.04,
 Debian Wheezy, or Debian Jessie. To use seccomp on these distributions, you
 must download the latest static Linux binaries (rather than packages)."

Download the default seccomp profile file, default.json, relevant to your Docker version.
If perf_event_open is already listed in the file as guarded by CAP_SYS_ADMIN, then
remove the perf_event_open line. Add the following lines under "syscalls" and save
the resulting file as default_with_perf.json.
{
 "name": "perf_event_open",
 "action": "SCMP_ACT_ALLOW",
 "args": []
},

https://docs.docker.com
https://docs.docker.com

Profiling in a Docker on Linux Devices

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 82

Then you will be able to use the following switch when starting the Docker to apply the
new seccomp profile.
--security-opt seccomp=default_with_perf.json

Launch Docker Collection

Here is an example command that has been used to launch a Docker for testing with
Nsight Systems:
sudo nvidia-docker run --network=host --security-opt
seccomp=default_with_perf.json --rm -ti caffe-demo2 bash

There is a known issue where Docker collections terminate prematurely with older
versions of the driver and the CUDA Toolkit. If collection is ending unexpectedly, please
update to the latest versions.

After the Docker has been started, use the Nsight Systems CLI to launch a collection
within the Docker. The resulting .qdstrm file can be imported into the Nsight Systems
host like any other CLI result.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 83

Chapter 9.
DIRECT3D TRACE

Nsight Systems has the ability to trace both the Direct3D 11 API and the Direct3D 12 API
on Windows targets.

9.1. D3D11 API trace
Nsight Systems can capture information about Direct3D 11 API calls made by the
profiled process. This includes capturing the execution time of D3D11 API functions,
performance markers, and frame durations.

SLI Trace

Trace SLI queries and peer-to-peer transfers of D3D11 applications. Requires SLI
hardware and an active SLI profile definition in the NVIDIA console.

9.2. D3D12 API Trace
Direct3D 12 is a low-overhead 3D graphics and compute API for Microsoft Windows.
Information about Direct3D 12 can be found at the Direct3D 12 Programming Guide.

Nsight Systems can capture information about Direct3D 12 usage by the profiled
process. This includes capturing the execution time of D3D12 API functions,
corresponding workloads executed on the GPU, performance markers, and frame
durations.

https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide

Direct3D Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 84

The Command List Creation row displays time periods when command lists
were being created. This enables developers to improve their application’s
multithreaded command list creation. Command list creation time period is
measured between the call to ID3D12GraphicsCommandList::Reset and the call to
ID3D12GraphicsCommandList::Close.

The GPU row shows an aggregated view of D3D12 API calls and GPU workloads. Note
that not all D3D12 API calls are logged.

A Command Queue row is displayed for each D3D12 command queue created by the
profiled application. The row’s header displays the queue's running index and its type
(Direct, Compute, Copy).

The API row displays time periods where
ID3D12CommandQueue::ExecuteCommandLists was called. The GPU Workload row
displays time periods where workloads were executed by the GPU. The workload’s type
(Graphics, Compute, Copy, etc.) is displayed on the bar representing the workload’s
GPU execution.

Direct3D Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 85

In addition, you can see the PIX command queue CPU-side performance markers, GPU-
side performance markers and the GPU Command List performance markers, each in
their row.

Clicking on a GPU workload highlights the corresponding
ID3D12CommandQueue::ExecuteCommandLists,
ID3D12GraphicsCommandList::Reset and ID3D12GraphicsCommandList::Close
API calls, and vice versa.

Detecting which CPU thread was blocked by a fence can be difficult in complex apps
that run tens of CPU threads. The timeline view displays the 3 operations involved:

‣ The CPU thread pushing a signal command and fence value into the command
queue. This is displayed on the DX12 Synchronization sub-row of the calling thread.

‣ The GPU executing that command, setting the fence value and signaling the fence.
This is displayed on the GPU Queue Synchronization sub-row.

‣ The CPU thread calling a Win32 wait API to block-wait until the fence is signaled.
This is displayed on the Thread's OS runtime libraries row.

Clicking one of these will highlight it and the corresponding other two calls.

Direct3D Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 86

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 87

Chapter 10.
WDDM QUEUES

The Windows Display Driver Model (WDDM) architecture uses queues to send work
packets from the CPU to the GPU. Each D3D device in each process is associated
with one or more contexts. Graphics, compute, and copy commands that the profiled
application uses are associated with a context, batched in a command buffer, and pushed
into the relevant queue associated with that context.

Nsight Systems can capture the state of these queues during the trace session.

A command buffer in a WDDM queues may have one the following types:

‣ Render
‣ Deferred
‣ System
‣ MMIOFlip
‣ Wait
‣ Signal
‣ Device
‣ Software

It may also be marked as a Present buffer, indicating that the application has finished
rendering and requests to display the source surface.

See the Microsoft documentation for the WDDM architecture and the
DXGKETW_QUEUE_PACKET_TYPE enumeration.

WDDM Queues

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 88

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 89

Chapter 11.
VULKAN API TRACE

11.1. Vulkan Overview
Vulkan is a low-overhead, cross-platform 3D graphics and compute API, targeting
a wide variety of devices from PCs to mobile phones and embedded platforms. The
Vulkan API is defined by the Khronos Group. Information about Vulkan and the
Khronos Group can be found at the Khronos Vulkan Site.

Nsight Systems can capture information about Vulkan usage by the profiled process.
This includes capturing the execution time of Vulkan API functions, corresponding GPU
workloads, debug util labels, and frame durations. Vulkan profiling is supported on
both Windows and x86 Linux operating systems.

The Command Buffer Creation row displays time periods when command buffers were
being created. This enables developers to improve their application’s multi-threaded
command buffer creation. Command buffer creation time period is measured between
the call to vkBeginCommandBuffer and the call to vkEndCommandBuffer.

The Swap chains row displays the available swap chains and the time periods where
vkQueuePresentKHR was executed on each swap chain.

https://www.khronos.org/vulkan/

Vulkan API Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 90

A Queue row is displayed for each Vulkan queue created by the profiled application.
The API sub-row displays time periods where vkQueueSubmit was called. The GPU
Workload sub-row displays time periods where workloads were executed by the GPU.

In addition, you can see Vulkan debug util labels on both the CPU and the GPU.

Clicking on a GPU workload highlights the corresponding vkQueueSubmit call, and
vice versa.

11.2. Pipeline Creation Feedback
When tracing target application calls to Vulkan pipeline creation APIs, Nsight Systems
leverages the Pipeline Creation Feedback extension to collect more details about the
duration of individual pipeline creation stages.

See Pipeline Creation Feedback extension for details about this extension.

Vulkan pipeline creation feedback is available on NVIDIA driver release 435 or later.

https://github.com/KhronosGroup/Vulkan-Docs/blob/master/appendices/VK_EXT_debug_utils.txt
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VkPipelineCreationFeedbackEXT

Vulkan API Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 91

11.3. Vulkan GPU Trace Notes
‣ Vulkan GPU trace is available only when tracing apps that use NVIDIA GPUs.
‣ The endings of Vulkan Command Buffers execution ranges on Compute and

Transfer queues may appear earlier on the timeline than their actual occurrence.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 92

Chapter 12.
STUTTER ANALYSIS

Stutter Analysis Overview

Nsight Systems on Windows targets displays stutter analysis visualization aids for
profiled graphics applications that use either OpenGL, D3D11, D3D12 or Vulkan, as
detailed below in the following sections.

12.1. FPS Overview
The Frame Duration section displays frame durations on both the CPU and the GPU.

The stutter row highlights frames that are significantly longer than the other frames in
their immediate vicinity.

The stutter row uses an algorithm that compares the duration of each frame to the
median duration of the surrounding 19 frames. Duration difference under 4 milliseconds
is never considered a stutter, to avoid cluttering the display with frames whose absolute
stutter is small and not noticeable to the user.

For example, if the stutter threshold is set at 20%:

 1. Median duration is 10 ms. Frame with 13 ms time will not be reported (relative
difference > 20%, absolute difference < 4 ms)

 2. Median duration is 60 ms. Frame with 71 ms time will not be reported (relative
difference < 20%, absolute difference > 4 ms)

 3. Median duration is 60 ms. Frame with 80 ms is a stutter (relative difference > 20%,
absolute difference > 4 ms, both conditions met)

Stutter Analysis

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 93

OSC detection

The "19 frame window median" algorithm by itself may not work well with some cases
of "oscillation" (consecutive fast and slow frames), resulting in some false positives. The
median duration is not meaningful in cases of oscillation and can be misleading.

To address the issue and identify if oscillating frames, the following method is applied:

 1. For every frame, calculate the median duration, 1st and 3rd quartiles of 19-frames
window.

 2. Calculate the delta and ratio between 1st and 3rd quartiles.
 3. If the 90th percentile of 3rd – 1st quartile delta array > 4 ms AND the 90th percentile

of 3rd/1st quartile array > 1.2 (120%) then mark the results with "OSC" text.

Right-clicking the Frame Duration row caption lets you choose the target frame rate (30,
60, 90 or custom frames per second).

By clicking the Customize FPS Display option, a customization dialog pops up. In the
dialog, you can now define the frame duration threshold to customize the view of the
potentially problematic frames. In addition, you can define the threshold for the stutter
analysis frames.

Frame duration bars are color coded:

‣ Green, the frame duration is shorter than required by the target FPS ratio.
‣ Yellow, duration is slightly longer than required by the target FPS rate.

Stutter Analysis

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 94

‣ Red, duration far exceeds that required to maintain the target FPS rate.

The CPU Frame Duration row displays the CPU frame duration measured between the
ends of consecutive frame boundary calls:

‣ The OpenGL frame boundaries are eglSwapBuffers/glXSwapBuffers/
SwapBuffers calls.

‣ The D3D11 and D3D12 frame boundaries are IDXGISwapChainX::Present calls.
‣ The Vulkan frame boundaries are vkQueuePresentKHR calls.

The GPU Frame Duration row displays the time measured between

‣ The start time of the first GPU workload execution of this frame.
‣ The start time of the first GPU workload execution of the next frame.

12.2. Frame Health
The Frame Health row displays actions that took significantly a longer time during
the current frame, compared to the median time of the same actions executed during
the surrounding 19-frames. This is a great tool for detecting the reason for frame time
stuttering. Such actions may be: shader compilation, present, memory mapping, and
more. Nsight Systems measures the accumulated time of such actions in each frame.
For example: calculating the accumulated time of shader compilations in each frame
and comparing it to the accumulated time of shader compilations in the surrounding 19
frames.

Example of a Vulkan frame health row:

12.3. GPU Memory Utilization
The Memory Utilization row displays the amount of used local GPU memory and the
commit limit for each GPU.

Stutter Analysis

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 95

Note that this is not the same as the CUDA kernel memory allocation graph, see CUDA
GPU Memory Graph for that functionality.

12.4. Vertical Synchronization
The VSYNC rows display when the monitor's vertical synchronizations occur.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 96

Chapter 13.
MPI API TRACE

For Linux x86_64 and Power targets, Nsight Systems is capable of capturing information
about the MPI APIs executed in the profiled process. It has built-in API trace support
only for the OpenMPI and MPICH implementations of MPI and only for a default list of
synchronous APIs.

If you require more control over the list of traced APIs or if you are using a different
MPI implementation, see github nvtx pmpi wrappers. You can use this documentation
to generate a shared object to wrap a list of synchronous MPI APIs with NVTX using
the MPI profiling interface (PMPI). If you set your LD_PRELOAD environment variable
to the path of that object, Nsight Systems will capture and report the MPI API trace
information when NVTX tracing is enabled.

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

MPI API Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 97

NVTX tracing is automatically enabled when MPI trace is turned on.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 98

Chapter 14.
OPENMP TRACE

Nsight Systems for Linux x86_64 and Power targets is capable of capturing information
about OpenMP events. This functionality is built on the OpenMP Tools Interface
(OMPT), full support is available only for runtime libraries supporting tools interface
defined in OpenMP 5.0 or greater.

As an example, LLVM OpenMP runtime library partially implements tools interface.
If you use PGI compiler <= 20.4 to build your OpenMP applications, add -mp=libomp
switch to use LLVM OpenMP runtime and enable OMPT based tracing. If you use
Clang, make sure the LLVM OpenMP runtime library you link to was compiled with
tools interface enabled.

Only a subset of OpenMP events are traced. These are limited to the following:
ompt_callback_parallel_begin
ompt_callback_parallel_end
ompt_callback_sync_region
ompt_callback_task_create
ompt_callback_task_schedule
ompt_callback_implicit_task
ompt_callback_master
ompt_callback_reduction
ompt_callback_task_create
ompt_callback_cancel
ompt_callback_mutex_acquire, ompt_callback_mutex_acquired
ompt_callback_mutex_acquired, ompt_callback_mutex_released
ompt_callback_mutex_released
ompt_callback_work
ompt_callback_dispatch
ompt_callback_flush

 Note:

These
raw
OMPT
events
are

OpenMP Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 99

processed
and
reorganized
by
Nsight
Systems
to
be
more
user-
friendly.
You
may
not
see
exact
same
events
from
the
list.

Example screenshot:

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 100

Chapter 15.
OS RUNTIME LIBRARIES TRACE

OS runtime libraries can be traced to gather information about low-level userspace APIs.
This traces the system call wrappers and thread synchronization interfaces exposed by
the C runtime and POSIX Threads (pthread) libraries. This does not perform a complete
runtime library API trace, but instead focuses on the functions that can take a long time
to execute, or could potentially cause your thread be unscheduled from the CPU while
waiting for an event to complete.

OS runtime tracing complements and enhances sampling information by:

 1. Visualizing when the process is communicating with the hardware, controlling
resources, performing multi-threading synchronization or interacting with the
kernel scheduler.

 2. Adding additional thread states by correlating how OS runtime libraries traces affect
the thread scheduling:

‣ Waiting — the thread is not scheduled on a CPU, it is inside of an OS runtime
libraries trace and is believed to be waiting on the firmware to complete a
request.

‣ In OS runtime library function — the thread is scheduled on a CPU and inside
of an OS runtime libraries trace. If the trace represents a system call, the process
is likely running in kernel mode.

 3. Collecting backtraces for long OS runtime libraries call. This provides a way to
gather blocked-state backtraces, allowing you to gain more context about why the
thread was blocked so long, yet avoiding unnecessary overhead for short events.

OS Runtime Libraries Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 101

To enable OS runtime libraries tracing from Nsight Systems:

CLI — Use the -t, --trace option with the osrt parameter. See Command Line
Options for more information.

GUI — Select the Collect OS runtime libraries trace checkbox.

You can also use Skip if shorter than. This will skip calls shorter than the given
threshold. Enabling this option will improve performances as well as reduce noise on
thetimeline. We strongly encourage you to skip OS runtime libraries call shorter than 1
μs.

15.1. Locking a Resource
The functions listed below receive a special treatment. If the tool detects that the
resource is already acquired by another thread and will induce a blocking call, we
always trace it. Otherwise, it will never be traced.
pthread_mutex_lock
pthread_rwlock_rdlock
pthread_rwlock_wrlock
pthread_spin_lock
sem_wait

Note that even if a call is determined as potentially blocking, there is a chance that it
may not actually block after a few cycles have elapsed. The call will still be traced in this
scenario.

15.2. Limitations
‣ Nsight Systems only traces syscall wrappers exposed by the C runtime. It is not able

to trace syscall invoked through assembly code.

OS Runtime Libraries Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 102

‣ Additional thread states, as well as backtrace collection on long calls, are only
enabled if sampling is turned on.

‣ It is not possible to configure the depth and duration threshold when collecting
backtraces. Currently, only OS runtime libraries calls longer than 80 μs will generate
a backtrace with a maximum of 24 frames. This limitation will be removed in a
future version of the product.

‣ It is required to compile your application and libraries with the -funwind-tables
compiler flag in order for Nsight Systems to unwind the backtraces correctly.

15.3. OS Runtime Libraries Trace Filters
The OS runtime libraries tracing is limited to a select list of functions. It also depends on
the version of the C runtime linked to the application.

OS Runtime Libraries Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 103

15.4. OS Runtime Default Function List
Libc system call wrappers
accept
accept4
acct
alarm
arch_prctl
bind
bpf
brk
chroot
clock_nanosleep
connect
copy_file_range
creat
creat64
dup
dup2
dup3
epoll_ctl
epoll_pwait
epoll_wait
fallocate
fallocate64
fcntl
fdatasync
flock
fork
fsync
ftruncate
futex
ioctl
ioperm
iopl
kill
killpg
listen
membarrier
mlock
mlock2
mlockall
mmap
mmap64
mount
move_pages
mprotect
mq_notify
mq_open
mq_receive
mq_send
mq_timedreceive
mq_timedsend
mremap
msgctl
msgget
msgrcv
msgsnd
msync
munmap
nanosleep
nfsservctl
open
open64
openat
openat64
pause
pipe
pipe2
pivot_root
poll
ppoll
prctl
pread
pread64
preadv
preadv2
preadv64
process_vm_readv
process_vm_writev
pselect6
ptrace
pwrite
pwrite64
pwritev
pwritev2
pwritev64
read
readv
reboot
recv
recvfrom
recvmmsg
recvmsg
rt_sigaction
rt_sigqueueinfo
rt_sigsuspend
rt_sigtimedwait
sched_yield
seccomp
select
semctl
semget
semop
semtimedop
send
sendfile
sendfile64
sendmmsg
sendmsg
sendto
shmat
shmctl
shmdt
shmget
shutdown
sigaction
sigsuspend
sigtimedwait
socket
socketpair
splice
swapoff
swapon
sync
sync_file_range
syncfs
tee
tgkill
tgsigqueueinfo
tkill
truncate
umount2
unshare
uselib
vfork
vhangup
vmsplice
wait
wait3
wait4
waitid
waitpid
write
writev
_sysctl

OS Runtime Libraries Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 104

POSIX Threads
pthread_barrier_wait
pthread_cancel
pthread_cond_broadcast
pthread_cond_signal
pthread_cond_timedwait
pthread_cond_wait
pthread_create
pthread_join
pthread_kill
pthread_mutex_lock
pthread_mutex_timedlock
pthread_mutex_trylock
pthread_rwlock_rdlock
pthread_rwlock_timedrdlock
pthread_rwlock_timedwrlock
pthread_rwlock_tryrdlock
pthread_rwlock_trywrlock
pthread_rwlock_wrlock
pthread_spin_lock
pthread_spin_trylock
pthread_timedjoin_np
pthread_tryjoin_np
pthread_yield
sem_timedwait
sem_trywait
sem_wait

OS Runtime Libraries Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 105

I/O
aio_fsync
aio_fsync64
aio_suspend
aio_suspend64
fclose
fcloseall
fflush
fflush_unlocked
fgetc
fgetc_unlocked
fgets
fgets_unlocked
fgetwc
fgetwc_unlocked
fgetws
fgetws_unlocked
flockfile
fopen
fopen64
fputc
fputc_unlocked
fputs
fputs_unlocked
fputwc
fputwc_unlocked
fputws
fputws_unlocked
fread
fread_unlocked
freopen
freopen64
ftrylockfile
fwrite
fwrite_unlocked
getc
getc_unlocked
getdelim
getline
getw
getwc
getwc_unlocked
lockf
lockf64
mkfifo
mkfifoat
posix_fallocate
posix_fallocate64
putc
putc_unlocked
putwc
putwc_unlocked

Miscellaneous
forkpty
popen
posix_spawn
posix_spawnp
sigwait
sigwaitinfo
sleep
system
usleep

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 106

Chapter 16.
NVTX TRACE

The NVIDIA Tools Extension Library (NVTX) is a powerful mechanism that allows
users to manually instrument their application. Nsight Systems can then collect the
information and present it on the timeline.

Nsight Systems supports version 3.0 of the NVTX specification.

The following features are supported:

‣ Domains
nvtxDomainCreate(), nvtxDomainDestroy()

nvtxDomainRegisterString()

‣ Push-pop ranges (nested ranges that start and end in the same thread).
nvtxRangePush(), nvtxRangePushEx()

nvtxRangePop()

nvtxDomainRangePushEx()

nvtxDomainRangePop()

‣ Start-end ranges (ranges that are global to the process and are not restricted to a
single thread)
nvtxRangeStart(), nvtxRangeStartEx()

nvtxRangeEnd()

nvtxDomainRangeStartEx()

nvtxDomainRangeEnd()

‣ Marks
nvtxMark(), nvtxMarkEx()

nvtxDomainMarkEx()

‣ Thread names
nvtxNameOsThread()

‣ Categories
nvtxNameCategory()

nvtxDomainNameCategory()

To learn more about specific features of NVTX, please refer to the NVTX header file:
nvToolsExt.h or the NVTX documentation.

https://nvidia.github.io/NVTX/

NVTX Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 107

To use NVTX in your application, follow these steps:

 1. Add #include "nvtx3/nvToolsExt.h" in your source code. The nvtx3 directory
is located in the Nsight Systems package in the Target-<architecture>/nvtx/include
directory and is available via github at http://github.com/NVIDIA/NVTX.

 2. Add the following compiler flag: -ldl
 3. Add calls to the NVTX API functions. For example, try adding

nvtxRangePush("main") in the beginning of the main() function, and
nvtxRangePop() just before the return statement in the end.

For convenience in C++ code, consider adding a wrapper that implements RAII
(resource acquisition is initialization) pattern, which would guarantee that every
range gets closed.

 4. In the project settings, select the Collect NVTX trace checkbox.
 5. If you are on Android target, make sure that your application is launched by Nsight

Systems. This is required so that the necessary launch environment is prepared, and
the library responsible for collection of NVTX trace data is properly injected into the
process.

 6. If you are on Linux on Tegra, if launching the application manually, the following
environment variables should be specified:

‣ For ARMv7 processes:
NVTX_INJECTION32_PATH=/opt/nvidia/nsight_systems/libToolsInjection32.so

‣ For ARMv8 processes:
NVTX_INJECTION64_PATH=/opt/nvidia/nsight_systems/libToolsInjection64.so

Typically calls to NVTX functions can be left in the source code even if the application is
not being built for profiling purposes, since the overhead is very low when the profiler is
not attached.

NVTX is not intended to annotate very small pieces of code that are being called very
frequently. A good rule of thumb to use: if code being annotated usually takes less than
1 microsecond to execute, adding an NVTX range around this code should be done
carefully.

 Note:

Range
annotations
should
be
matched
carefully.
If
many
ranges
are
opened
but
not
closed,
Nsight
Systems
has
no

http://github.com/NVIDIA/NVTX

NVTX Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 108

meaningful
way
to
visualize
it.
A
rule
of
thumb
is
to
not
have
more
than
a
couple
dozen
ranges
open
at
any
point
in
time.
Nsight
Systems
does
not
support
reports
with
many
unclosed
ranges.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 109

Chapter 17.
CUDA TRACE

Nsight Systems is capable of capturing information about CUDA execution in the
profiled process.

The following information can be collected and presented on the timeline in the report:

‣ CUDA API trace — trace of CUDA Runtime and CUDA Driver calls made by the
application.

‣ CUDA Runtime calls typically start with cuda prefix (e.g. cudaLaunch).
‣ CUDA Driver calls typically start with cu prefix (e.g. cuDeviceGetCount).

‣ CUDA workload trace — trace of activity happening on the GPU, which includes
memory operations (e.g., Host-to-Device memory copies) and kernel executions.
Within the threads that use the CUDA API, additional child rows will appear in the
timeline tree.

‣ On Nsight Systems Workstation Edition, cuDNN and cuBLAS API tracing and
OpenACC tracing.

Near the bottom of the timeline row tree, the GPU node will appear and contain a
CUDA node. Within the CUDA node, each CUDA context used within the process will
be shown along with its corresponding CUDA streams. Steams will contain memory
operations and kernel launches on the GPU. Kernel launches are represented by blue,
while memory transfers are displayed in red.

CUDA Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 110

The easiest way to capture CUDA information is to launch the process from Nsight
Systems, and it will setup the environment for you. To do so, simply set up a normal
launch and select the Collect CUDA trace checkbox.

For Nsight Systems Workstation Edition this looks like:

For Nsight Systems Embedded Platforms Edition this looks like:

Additional configuration parameters are available:

‣ Collect backtraces for API calls longer than X seconds - turns on collection
of CUDA API backtraces and sets the minimum time a CUDA API event must
take before its backtraces are collected. Setting this value too low can cause high
application overhead and seriously increase the size of your results file.

‣ Flush data periodically — specifies the period after which an attempt to
flush CUDA trace data will be made. Normally, in order to collect full CUDA
trace, the application needs to finalize the device used for CUDA work (call

CUDA Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 111

cudaDeviceReset(), and then let the application gracefully exit (as opposed to
crashing).

This option allows flushing CUDA trace data even before the device is finalized.
However, it might introduce additional overhead to a random CUDA Driver or
CUDA Runtime API call.

‣ Skip some API calls — avoids tracing insignificant CUDA Runtime
API calls (namely, cudaConfigureCall(), cudaSetupArgument(),
cudaHostGetDevicePointers()). Not tracing these functions allows Nsight
Systems to significantly reduce the profiling overhead, without losing any
interesting data. (See CUDA Trace Filters, below)

‣ Collect GPU Memory Usage - collects information used to generate a graph of
CUDA allocated memory across time. Note that this will increase overhead. See
section on CUDA GPU Memory Allocation Graph below.

‣ For Nsight Systems Workstation Edition, Collect cuDNN trace, Collect cuBLAS
trace, Collect OpenACC trace - selects which (if any) extra libraries that depend on
CUDA to trace.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version
15.7 or greater and not compiling statically. In order to differentiate constructs, a PGI
runtime of 16.1 or later is required. Note that Nsight Systems Workstation Edition
does not support the GCC implementation of OpenACC at this time.

‣ For Nsight Systems Embedded Platforms Edition if desired, the target application
can be manually set up to collect CUDA trace. To capture information about CUDA
execution, the following requirements should be satisfied:

‣ The profiled process should be started with the specified environment variable,
depending on the architecture of the process:

‣ For ARMv7 (32-bit) processes: CUDA_INJECTION32_PATH, which should
point to the injection library:
/opt/nvidia/nsight_systems/libToolsInjection32.so

‣ For ARMv8 (64-bit) processes: CUDA_INJECTION64_PATH, which should
point to the injection library:
/opt/nvidia/nsight_systems/libToolsInjection64.so

‣ If the application is started by Nsight Systems, all required environment
variables will be set automatically.

Please note that if your application crashes before all collected CUDA trace data has
been copied out, some or all data might be lost and not present in the report.

17.1. CUDA GPU Memory Allocation Graph
When the Collect GPU Memory Usage option is selected from the Collect CUDA trace
option set, Nsight Systems will track CUDA GPU memory allocations and deallocations
and present a graph of this information in the timeline. This is not the same as the GPU
memory graph generated during stutter analysis on the Windows target (see Stutter
Memory Trace)

CUDA Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 112

Below, in the report on the left, memory is allocated and freed during the collection. In
the report on the right, memory is allocated, but not freed during the collection.

Here is another example, where allocations are happening on multiple GPUs

17.2. Unified Memory Transfer Trace
For Nsight Systems Workstation Edition, Unified Memory (also called Managed
Memory) transfer trace is enabled automatically in Nsight Systems when CUDA trace
is selected. It incurs no overhead in programs that do not perform any Unified Memory
transfers. Data is displayed in the Managed Memory area of the timeline:

HtoD transfer indicates the CUDA kernel accessed managed memory that was residing
on the host, so the kernel execution paused and transferred the data to the device. Heavy

CUDA Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 113

traffic here will incur performance penalties in CUDA kernels, so consider using manual
cudaMemcpy operations from pinned host memory instead.

PtoP transfer indicates the CUDA kernel accessed managed memory that was residing
on a different device, so the kernel execution paused and transferred the data to this
device. Heavy traffic here will incur performance penalties, so consider using manual
cudaMemcpyPeer operations to transfer from other devices' memory instead. The row
showing these events is for the destination device -- the source device is shown in the
tooltip for each transfer event.

DtoH transfer indicates the CPU accessed managed memory that was residing on a
CUDA device, so the CPU execution paused and transferred the data to system memory.
Heavy traffic here will incur performance penalties in CPU code, so consider using
manual cudaMemcpy operations from pinned host memory instead.

Some UVM transfers are highlighted with red to indicate potential performance issues:

Transfers with the following migration causes are highlighted:

‣ Coherence
UVM migration occurred to guarantee data coherence. SMs (streaming
multiprocessors) stop until the migration completes.

‣ Eviction
UVM migrated to the CPU because it was evicted to make room for another block
of memory on the GPU. This happens due to memory overcommitment which is
available on Linux with Compute Capability ≥ 6.

CUDA Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 114

17.3. CUDA Default Function List for CLI
CUDA Runtime API
cudaBindSurfaceToArray
cudaBindTexture
cudaBindTexture2D
cudaBindTextureToArray
cudaBindTextureToMipmappedArray
cudaConfigureCall
cudaCreateSurfaceObject
cudaCreateTextureObject
cudaD3D10MapResources
cudaD3D10RegisterResource
cudaD3D10UnmapResources
cudaD3D10UnregisterResource
cudaD3D9MapResources
cudaD3D9MapVertexBuffer
cudaD3D9RegisterResource
cudaD3D9RegisterVertexBuffer
cudaD3D9UnmapResources
cudaD3D9UnmapVertexBuffer
cudaD3D9UnregisterResource
cudaD3D9UnregisterVertexBuffer
cudaDestroySurfaceObject
cudaDestroyTextureObject
cudaDeviceReset
cudaDeviceSynchronize
cudaEGLStreamConsumerAcquireFrame
cudaEGLStreamConsumerConnect
cudaEGLStreamConsumerConnectWithFlags
cudaEGLStreamConsumerDisconnect
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamProducerConnect
cudaEGLStreamProducerDisconnect
cudaEGLStreamProducerReturnFrame
cudaEventCreate
cudaEventCreateFromEGLSync
cudaEventCreateWithFlags
cudaEventDestroy
cudaEventQuery
cudaEventRecord
cudaEventRecord_ptsz
cudaEventSynchronize
cudaFree
cudaFreeArray
cudaFreeHost
cudaFreeMipmappedArray
cudaGLMapBufferObject
cudaGLMapBufferObjectAsync
cudaGLRegisterBufferObject
cudaGLUnmapBufferObject
cudaGLUnmapBufferObjectAsync
cudaGLUnregisterBufferObject
cudaGraphicsD3D10RegisterResource
cudaGraphicsD3D11RegisterResource
cudaGraphicsD3D9RegisterResource
cudaGraphicsEGLRegisterImage
cudaGraphicsGLRegisterBuffer
cudaGraphicsGLRegisterImage
cudaGraphicsMapResources
cudaGraphicsUnmapResources
cudaGraphicsUnregisterResource
cudaGraphicsVDPAURegisterOutputSurface
cudaGraphicsVDPAURegisterVideoSurface
cudaHostAlloc
cudaHostRegister
cudaHostUnregister
cudaLaunch
cudaLaunchCooperativeKernel
cudaLaunchCooperativeKernelMultiDevice
cudaLaunchCooperativeKernel_ptsz
cudaLaunchKernel
cudaLaunchKernel_ptsz
cudaLaunch_ptsz
cudaMalloc
cudaMalloc3D
cudaMalloc3DArray
cudaMallocArray
cudaMallocHost
cudaMallocManaged
cudaMallocMipmappedArray
cudaMallocPitch
cudaMemGetInfo
cudaMemPrefetchAsync
cudaMemPrefetchAsync_ptsz
cudaMemcpy
cudaMemcpy2D
cudaMemcpy2DArrayToArray
cudaMemcpy2DArrayToArray_ptds
cudaMemcpy2DAsync
cudaMemcpy2DAsync_ptsz
cudaMemcpy2DFromArray
cudaMemcpy2DFromArrayAsync
cudaMemcpy2DFromArrayAsync_ptsz
cudaMemcpy2DFromArray_ptds
cudaMemcpy2DToArray
cudaMemcpy2DToArrayAsync
cudaMemcpy2DToArrayAsync_ptsz
cudaMemcpy2DToArray_ptds
cudaMemcpy2D_ptds
cudaMemcpy3D
cudaMemcpy3DAsync
cudaMemcpy3DAsync_ptsz
cudaMemcpy3DPeer
cudaMemcpy3DPeerAsync
cudaMemcpy3DPeerAsync_ptsz
cudaMemcpy3DPeer_ptds
cudaMemcpy3D_ptds
cudaMemcpyArrayToArray
cudaMemcpyArrayToArray_ptds
cudaMemcpyAsync
cudaMemcpyAsync_ptsz
cudaMemcpyFromArray
cudaMemcpyFromArrayAsync
cudaMemcpyFromArrayAsync_ptsz
cudaMemcpyFromArray_ptds
cudaMemcpyFromSymbol
cudaMemcpyFromSymbolAsync
cudaMemcpyFromSymbolAsync_ptsz
cudaMemcpyFromSymbol_ptds
cudaMemcpyPeer
cudaMemcpyPeerAsync
cudaMemcpyToArray
cudaMemcpyToArrayAsync
cudaMemcpyToArrayAsync_ptsz
cudaMemcpyToArray_ptds
cudaMemcpyToSymbol
cudaMemcpyToSymbolAsync
cudaMemcpyToSymbolAsync_ptsz
cudaMemcpyToSymbol_ptds
cudaMemcpy_ptds
cudaMemset
cudaMemset2D
cudaMemset2DAsync
cudaMemset2DAsync_ptsz
cudaMemset2D_ptds
cudaMemset3D
cudaMemset3DAsync
cudaMemset3DAsync_ptsz
cudaMemset3D_ptds
cudaMemsetAsync
cudaMemsetAsync_ptsz
cudaMemset_ptds
cudaPeerRegister
cudaPeerUnregister
cudaStreamAddCallback
cudaStreamAddCallback_ptsz
cudaStreamAttachMemAsync
cudaStreamAttachMemAsync_ptsz
cudaStreamCreate
cudaStreamCreateWithFlags
cudaStreamCreateWithPriority
cudaStreamDestroy
cudaStreamQuery
cudaStreamQuery_ptsz
cudaStreamSynchronize
cudaStreamSynchronize_ptsz
cudaStreamWaitEvent
cudaStreamWaitEvent_ptsz
cudaThreadSynchronize
cudaUnbindTexture

CUDA Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 115

CUDA Primary API
cu64Array3DCreate
cu64ArrayCreate
cu64D3D9MapVertexBuffer
cu64GLMapBufferObject
cu64GLMapBufferObjectAsync
cu64MemAlloc
cu64MemAllocPitch
cu64MemFree
cu64MemGetInfo
cu64MemHostAlloc
cu64Memcpy2D
cu64Memcpy2DAsync
cu64Memcpy2DUnaligned
cu64Memcpy3D
cu64Memcpy3DAsync
cu64MemcpyAtoD
cu64MemcpyDtoA
cu64MemcpyDtoD
cu64MemcpyDtoDAsync
cu64MemcpyDtoH
cu64MemcpyDtoHAsync
cu64MemcpyHtoD
cu64MemcpyHtoDAsync
cu64MemsetD16
cu64MemsetD16Async
cu64MemsetD2D16
cu64MemsetD2D16Async
cu64MemsetD2D32
cu64MemsetD2D32Async
cu64MemsetD2D8
cu64MemsetD2D8Async
cu64MemsetD32
cu64MemsetD32Async
cu64MemsetD8
cu64MemsetD8Async
cuArray3DCreate
cuArray3DCreate_v2
cuArrayCreate
cuArrayCreate_v2
cuArrayDestroy
cuBinaryFree
cuCompilePtx
cuCtxCreate
cuCtxCreate_v2
cuCtxDestroy
cuCtxDestroy_v2
cuCtxSynchronize
cuD3D10CtxCreate
cuD3D10CtxCreateOnDevice
cuD3D10CtxCreate_v2
cuD3D10MapResources
cuD3D10RegisterResource
cuD3D10UnmapResources
cuD3D10UnregisterResource
cuD3D11CtxCreate
cuD3D11CtxCreateOnDevice
cuD3D11CtxCreate_v2
cuD3D9CtxCreate
cuD3D9CtxCreateOnDevice
cuD3D9CtxCreate_v2
cuD3D9MapResources
cuD3D9MapVertexBuffer
cuD3D9MapVertexBuffer_v2
cuD3D9RegisterResource
cuD3D9RegisterVertexBuffer
cuD3D9UnmapResources
cuD3D9UnmapVertexBuffer
cuD3D9UnregisterResource
cuD3D9UnregisterVertexBuffer
cuEGLStreamConsumerAcquireFrame
cuEGLStreamConsumerConnect
cuEGLStreamConsumerConnectWithFlags
cuEGLStreamConsumerDisconnect
cuEGLStreamConsumerReleaseFrame
cuEGLStreamProducerConnect
cuEGLStreamProducerDisconnect
cuEGLStreamProducerPresentFrame
cuEGLStreamProducerReturnFrame
cuEventCreate
cuEventCreateFromEGLSync
cuEventCreateFromNVNSync
cuEventDestroy
cuEventDestroy_v2
cuEventQuery
cuEventRecord
cuEventRecord_ptsz
cuEventSynchronize
cuGLCtxCreate
cuGLCtxCreate_v2
cuGLInit
cuGLMapBufferObject
cuGLMapBufferObjectAsync
cuGLMapBufferObjectAsync_v2
cuGLMapBufferObjectAsync_v2_ptsz
cuGLMapBufferObject_v2
cuGLMapBufferObject_v2_ptds
cuGLRegisterBufferObject
cuGLUnmapBufferObject
cuGLUnmapBufferObjectAsync
cuGLUnregisterBufferObject
cuGraphicsD3D10RegisterResource
cuGraphicsD3D11RegisterResource
cuGraphicsD3D9RegisterResource
cuGraphicsEGLRegisterImage
cuGraphicsGLRegisterBuffer
cuGraphicsGLRegisterImage
cuGraphicsMapResources
cuGraphicsMapResources_ptsz
cuGraphicsUnmapResources
cuGraphicsUnmapResources_ptsz
cuGraphicsUnregisterResource
cuGraphicsVDPAURegisterOutputSurface
cuGraphicsVDPAURegisterVideoSurface
cuInit
cuLaunch
cuLaunchCooperativeKernel
cuLaunchCooperativeKernelMultiDevice
cuLaunchCooperativeKernel_ptsz
cuLaunchGrid
cuLaunchGridAsync
cuLaunchKernel
cuLaunchKernel_ptsz
cuLinkComplete
cuLinkCreate
cuLinkCreate_v2
cuLinkDestroy
cuMemAlloc
cuMemAllocHost
cuMemAllocHost_v2
cuMemAllocManaged
cuMemAllocPitch
cuMemAllocPitch_v2
cuMemAlloc_v2
cuMemFree
cuMemFreeHost
cuMemFree_v2
cuMemGetInfo
cuMemGetInfo_v2
cuMemHostAlloc
cuMemHostAlloc_v2
cuMemHostRegister
cuMemHostRegister_v2
cuMemHostUnregister
cuMemPeerRegister
cuMemPeerUnregister
cuMemPrefetchAsync
cuMemPrefetchAsync_ptsz
cuMemcpy
cuMemcpy2D
cuMemcpy2DAsync
cuMemcpy2DAsync_v2
cuMemcpy2DAsync_v2_ptsz
cuMemcpy2DUnaligned
cuMemcpy2DUnaligned_v2
cuMemcpy2DUnaligned_v2_ptds
cuMemcpy2D_v2
cuMemcpy2D_v2_ptds
cuMemcpy3D
cuMemcpy3DAsync
cuMemcpy3DAsync_v2
cuMemcpy3DAsync_v2_ptsz
cuMemcpy3DPeer
cuMemcpy3DPeerAsync
cuMemcpy3DPeerAsync_ptsz
cuMemcpy3DPeer_ptds
cuMemcpy3D_v2
cuMemcpy3D_v2_ptds
cuMemcpyAsync
cuMemcpyAsync_ptsz
cuMemcpyAtoA
cuMemcpyAtoA_v2
cuMemcpyAtoA_v2_ptds
cuMemcpyAtoD
cuMemcpyAtoD_v2
cuMemcpyAtoD_v2_ptds
cuMemcpyAtoH
cuMemcpyAtoHAsync
cuMemcpyAtoHAsync_v2
cuMemcpyAtoHAsync_v2_ptsz
cuMemcpyAtoH_v2
cuMemcpyAtoH_v2_ptds
cuMemcpyDtoA
cuMemcpyDtoA_v2
cuMemcpyDtoA_v2_ptds
cuMemcpyDtoD
cuMemcpyDtoDAsync
cuMemcpyDtoDAsync_v2
cuMemcpyDtoDAsync_v2_ptsz
cuMemcpyDtoD_v2
cuMemcpyDtoD_v2_ptds
cuMemcpyDtoH
cuMemcpyDtoHAsync
cuMemcpyDtoHAsync_v2
cuMemcpyDtoHAsync_v2_ptsz
cuMemcpyDtoH_v2
cuMemcpyDtoH_v2_ptds
cuMemcpyHtoA
cuMemcpyHtoAAsync
cuMemcpyHtoAAsync_v2
cuMemcpyHtoAAsync_v2_ptsz
cuMemcpyHtoA_v2
cuMemcpyHtoA_v2_ptds
cuMemcpyHtoD
cuMemcpyHtoDAsync
cuMemcpyHtoDAsync_v2
cuMemcpyHtoDAsync_v2_ptsz
cuMemcpyHtoD_v2
cuMemcpyHtoD_v2_ptds
cuMemcpyPeer
cuMemcpyPeerAsync
cuMemcpyPeerAsync_ptsz
cuMemcpyPeer_ptds
cuMemcpy_ptds
cuMemcpy_v2
cuMemsetD16
cuMemsetD16Async
cuMemsetD16Async_ptsz
cuMemsetD16_v2
cuMemsetD16_v2_ptds
cuMemsetD2D16
cuMemsetD2D16Async
cuMemsetD2D16Async_ptsz
cuMemsetD2D16_v2
cuMemsetD2D16_v2_ptds
cuMemsetD2D32
cuMemsetD2D32Async
cuMemsetD2D32Async_ptsz
cuMemsetD2D32_v2
cuMemsetD2D32_v2_ptds
cuMemsetD2D8
cuMemsetD2D8Async
cuMemsetD2D8Async_ptsz
cuMemsetD2D8_v2
cuMemsetD2D8_v2_ptds
cuMemsetD32
cuMemsetD32Async
cuMemsetD32Async_ptsz
cuMemsetD32_v2
cuMemsetD32_v2_ptds
cuMemsetD8
cuMemsetD8Async
cuMemsetD8Async_ptsz
cuMemsetD8_v2
cuMemsetD8_v2_ptds
cuMipmappedArrayCreate
cuMipmappedArrayDestroy
cuModuleLoad
cuModuleLoadData
cuModuleLoadDataEx
cuModuleLoadFatBinary
cuModuleUnload
cuStreamAddCallback
cuStreamAddCallback_ptsz
cuStreamAttachMemAsync
cuStreamAttachMemAsync_ptsz
cuStreamBatchMemOp
cuStreamBatchMemOp_ptsz
cuStreamCreate
cuStreamCreateWithPriority
cuStreamDestroy
cuStreamDestroy_v2
cuStreamSynchronize
cuStreamSynchronize_ptsz
cuStreamWaitEvent
cuStreamWaitEvent_ptsz
cuStreamWaitValue32
cuStreamWaitValue32_ptsz
cuStreamWaitValue64
cuStreamWaitValue64_ptsz
cuStreamWriteValue32
cuStreamWriteValue32_ptsz
cuStreamWriteValue64
cuStreamWriteValue64_ptsz
cuSurfObjectCreate
cuSurfObjectDestroy
cuSurfRefCreate
cuSurfRefDestroy
cuTexObjectCreate
cuTexObjectDestroy
cuTexRefCreate
cuTexRefDestroy
cuVDPAUCtxCreate
cuVDPAUCtxCreate_v2

CUDA Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 116

17.4. cuDNN Function List for X86 CLI
cuDNN API functions
cudnnActivationBackward
cudnnActivationBackward_v3
cudnnActivationBackward_v4
cudnnActivationForward
cudnnActivationForward_v3
cudnnActivationForward_v4
cudnnAddTensor
cudnnBatchNormalizationBackward
cudnnBatchNormalizationBackwardEx
cudnnBatchNormalizationForwardInference
cudnnBatchNormalizationForwardTraining
cudnnBatchNormalizationForwardTrainingEx
cudnnCTCLoss
cudnnConvolutionBackwardBias
cudnnConvolutionBackwardData
cudnnConvolutionBackwardFilter
cudnnConvolutionBiasActivationForward
cudnnConvolutionForward
cudnnCreate
cudnnCreateAlgorithmPerformance
cudnnDestroy
cudnnDestroyAlgorithmPerformance
cudnnDestroyPersistentRNNPlan
cudnnDivisiveNormalizationBackward
cudnnDivisiveNormalizationForward
cudnnDropoutBackward
cudnnDropoutForward
cudnnDropoutGetReserveSpaceSize
cudnnDropoutGetStatesSize
cudnnFindConvolutionBackwardDataAlgorithm
cudnnFindConvolutionBackwardDataAlgorithmEx
cudnnFindConvolutionBackwardFilterAlgorithm
cudnnFindConvolutionBackwardFilterAlgorithmEx
cudnnFindConvolutionForwardAlgorithm
cudnnFindConvolutionForwardAlgorithmEx
cudnnFindRNNBackwardDataAlgorithmEx
cudnnFindRNNBackwardWeightsAlgorithmEx
cudnnFindRNNForwardInferenceAlgorithmEx
cudnnFindRNNForwardTrainingAlgorithmEx
cudnnFusedOpsExecute
cudnnIm2Col
cudnnLRNCrossChannelBackward
cudnnLRNCrossChannelForward
cudnnMakeFusedOpsPlan
cudnnMultiHeadAttnBackwardData
cudnnMultiHeadAttnBackwardWeights
cudnnMultiHeadAttnForward
cudnnOpTensor
cudnnPoolingBackward
cudnnPoolingForward
cudnnRNNBackwardData
cudnnRNNBackwardDataEx
cudnnRNNBackwardWeights
cudnnRNNBackwardWeightsEx
cudnnRNNForwardInference
cudnnRNNForwardInferenceEx
cudnnRNNForwardTraining
cudnnRNNForwardTrainingEx
cudnnReduceTensor
cudnnReorderFilterAndBias
cudnnRestoreAlgorithm
cudnnRestoreDropoutDescriptor
cudnnSaveAlgorithm
cudnnScaleTensor
cudnnSoftmaxBackward
cudnnSoftmaxForward
cudnnSpatialTfGridGeneratorBackward
cudnnSpatialTfGridGeneratorForward
cudnnSpatialTfSamplerBackward
cudnnSpatialTfSamplerForward
cudnnTransformFilter
cudnnTransformTensor
cudnnTransformTensorEx

CUDA Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 117

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 118

Chapter 18.
OPENACC TRACE

Nsight Systems for Linux x86_64 and Power targets is capable of capturing information
about OpenACC execution in the profiled process.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version 15.7
or later. In order to differentiate constructs (see tooltip below), a PGI runtime of 16.0 or
later is required. Note that Nsight Systems does not support the GCC implementation of
OpenACC at this time.

Under the CPU rows in the timeline tree, each thread that uses OpenACC will show
OpenACC trace information. You can click on a OpenACC API call to see correlation
with the underlying CUDA API calls (highlighted in teal):

If the OpenACC API results in GPU work, that will also be highlighted:

OpenACC Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 119

Hovering over a particular OpenACC construct will bring up a tooltip with details about
that construct:

To capture OpenACC information from the Nsight Systems GUI, select the Collect
OpenACC trace checkbox under Collect CUDA trace configurations. Note that turning
on OpenACC tracing will also turn on CUDA tracing.

Please note that if your application crashes before all collected OpenACC trace data has
been copied out, some or all data might be lost and not present in the report.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 120

Chapter 19.
OPENGL TRACE

OpenGL and OpenGL ES APIs can be traced to assist in the analysis of CPU and GPU
interactions.

A few usage examples are:

 1. Visualize how long eglSwapBuffers (or similar) is taking.
 2. API trace can easily show correlations between thread state and graphics driver's

behavior, uncovering where the CPU may be waiting on the GPU.
 3. Spot bubbles of opportunity on the GPU, where more GPU workload could be

created.
 4. Use KHR_debug extension to trace GL events on both the CPU and GPU.

OpenGL trace feature in Nsight Systems consists of two different activities which will be
shown in the CPU rows for those threads

‣ CPU trace: interception of API calls that an application does to APIs (such as
OpenGL, OpenGL ES, EGL, GLX, WGL, etc.).

‣ GPU trace (or workload trace): trace of GPU workload (activity) triggered by use
of OpenGL or OpenGL ES. Since draw calls are executed back-to-back, the GPU
workload trace ranges include many OpenGL draw calls and operations in order to
optimize performance overhead, rather than tracing each individual operation.

To collect GPU trace, the glQueryCounter() function is used to measure how much
time batches of GPU workload take to complete.

OpenGL Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 121

Ranges defined by the KHR_debug calls are represented similarly to OpenGL API and
OpenGL GPU workload trace. GPU ranges in this case represent incremental draw cost.
They cannot fully account for GPUs that can execute multiple draw calls in parallel. In
this case, Nsight Systems will not show overlapping GPU ranges.

OpenGL Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 122

19.1. OpenGL Trace Using Command Line
For general information on using the target CLI, see CLI Profiling on Linux. For the CLI,
the functions that are traced are set to the following list:
glWaitSync
glReadPixels
glReadnPixelsKHR
glReadnPixelsEXT
glReadnPixelsARB
glReadnPixels
glFlush
glFinishFenceNV
glFinish
glClientWaitSync
glClearTexSubImage
glClearTexImage
glClearStencil
glClearNamedFramebufferuiv
glClearNamedFramebufferiv
glClearNamedFramebufferfv
glClearNamedFramebufferfi
glClearNamedBufferSubDataEXT
glClearNamedBufferSubData
glClearNamedBufferDataEXT
glClearNamedBufferData
glClearIndex
glClearDepthx
glClearDepthf
glClearDepthdNV
glClearDepth
glClearColorx
glClearColorIuiEXT
glClearColorIiEXT
glClearColor
glClearBufferuiv
glClearBufferSubData
glClearBufferiv
glClearBufferfv
glClearBufferfi
glClearBufferData
glClearAccum
glClear
glDispatchComputeIndirect
glDispatchComputeGroupSizeARB
glDispatchCompute
glComputeStreamNV
glNamedFramebufferDrawBuffers
glNamedFramebufferDrawBuffer
glMultiDrawElementsIndirectEXT
glMultiDrawElementsIndirectCountARB
glMultiDrawElementsIndirectBindlessNV
glMultiDrawElementsIndirectBindlessCountNV
glMultiDrawElementsIndirectAMD
glMultiDrawElementsIndirect
glMultiDrawElementsEXT
glMultiDrawElementsBaseVertex
glMultiDrawElements
glMultiDrawArraysIndirectEXT
glMultiDrawArraysIndirectCountARB
glMultiDrawArraysIndirectBindlessNV
glMultiDrawArraysIndirectBindlessCountNV
glMultiDrawArraysIndirectAMD
glMultiDrawArraysIndirect
glMultiDrawArraysEXT
glMultiDrawArrays
glListDrawCommandsStatesClientNV
glFramebufferDrawBuffersEXT
glFramebufferDrawBufferEXT
glDrawTransformFeedbackStreamInstanced
glDrawTransformFeedbackStream
glDrawTransformFeedbackNV
glDrawTransformFeedbackInstancedEXT
glDrawTransformFeedbackInstanced
glDrawTransformFeedbackEXT
glDrawTransformFeedback
glDrawTexxvOES
glDrawTexxOES
glDrawTextureNV
glDrawTexsvOES
glDrawTexsOES
glDrawTexivOES
glDrawTexiOES
glDrawTexfvOES
glDrawTexfOES
glDrawRangeElementsEXT
glDrawRangeElementsBaseVertexOES
glDrawRangeElementsBaseVertexEXT
glDrawRangeElementsBaseVertex
glDrawRangeElements
glDrawPixels
glDrawElementsInstancedNV
glDrawElementsInstancedEXT
glDrawElementsInstancedBaseVertexOES
glDrawElementsInstancedBaseVertexEXT
glDrawElementsInstancedBaseVertexBaseInstanceEXT
glDrawElementsInstancedBaseVertexBaseInstance
glDrawElementsInstancedBaseVertex
glDrawElementsInstancedBaseInstanceEXT
glDrawElementsInstancedBaseInstance
glDrawElementsInstancedARB
glDrawElementsInstanced
glDrawElementsIndirect
glDrawElementsBaseVertexOES
glDrawElementsBaseVertexEXT
glDrawElementsBaseVertex
glDrawElements
glDrawCommandsStatesNV
glDrawCommandsStatesAddressNV
glDrawCommandsNV
glDrawCommandsAddressNV
glDrawBuffersNV
glDrawBuffersATI
glDrawBuffersARB
glDrawBuffers
glDrawBuffer
glDrawArraysInstancedNV
glDrawArraysInstancedEXT
glDrawArraysInstancedBaseInstanceEXT
glDrawArraysInstancedBaseInstance
glDrawArraysInstancedARB
glDrawArraysInstanced
glDrawArraysIndirect
glDrawArraysEXT
glDrawArrays
eglSwapBuffersWithDamageKHR
eglSwapBuffers
glXSwapBuffers
glXQueryDrawable
glXGetCurrentReadDrawable
glXGetCurrentDrawable
glGetQueryObjectuivEXT
glGetQueryObjectuivARB
glGetQueryObjectuiv
glGetQueryObjectivARB
glGetQueryObjectiv

OpenGL Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 123

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 124

Chapter 20.
CUSTOM ETW TRACE

Use the custom ETW trace feature to enable and collect any manifest-based ETW log.
The collected events are displayed on the timeline on dedicated rows for each event
type.

Custom ETW is available on Windows target machines.

Custom ETW Trace

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 125

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 126

Chapter 21.
DEBUG VERSIONS OF ELF FILES

Often, after a binary is built, especially if it is built with debug information (-g compiler
flag), it gets stripped before deploying or installing. In this case, ELF sections that
contain useful information, such as non-export function names or unwind information,
can get stripped as well.

One solution is to deploy or install the original unstripped library instead of the stripped
one, but in many cases this would be inconvenient. Nsight Systems can use missing
information from alternative locations.

For target devices with Ubuntu, see Debug Symbol Packages. These packages typically
install debug ELF files with /usr/lib/debug prefix. Nsight Systems can find debug
libraries there, and if it matches the original library (e.g., the built-in BuildID is the
same), it will be picked up and used to provide symbol names and unwind information.

Many packages have debug companions in the same repository and can be directly
installed with APT (apt-get). Look for packages with the -dbg suffix. For other
packages, refer to the Debug Symbol Packages wiki page on how to add the debs
package repository. After setting up the repository and running apt-get update, look for
packages with -dbgsym suffix.

To verify that a debug version of a library has been picked up and downloaded from the
target device, look in the Module Summary section of Analysis Summary:

https://wiki.ubuntu.com/Debug_Symbol_packages
https://wiki.ubuntu.com/Debug_Symbol_packages

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 127

Chapter 22.
READING YOUR REPORT IN GUI

22.1. Generating a New Report
Users can generate a new report by stopping a profiling session. If a profiling session has
been canceled, a report will not be generated, and all collected data will be discarded.

A new .qdrep file will be created and put into the same directory as the project file
(.qdproj).

22.2. Opening an Existing Report
An existing .qdrep file can be opened using File > Open....

22.3. Sharing a Report File
Report files (.qdrep) are self-contained and can be shared with other users of Nsight
Systems. The only requirement is that the same or newer version of Nsight Systems is
always used to open report files.

Project files (.qdproj) are currently not shareable, since they contain full paths to the
report files.

To quickly navigate to the directory containing the report file, right click on it in the
Project Explorer, and choose Show in folder... in the context menu.

22.4. Report Tab
While generating a new report or loading an existing one, a new tab will be created. The
most important parts of the report tab are:

‣ View selector — Allows switching between Analysis Summary, Timeline View,
Diagnostics Summary, and Symbol Resolution Logs views.

Reading Your Report in GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 128

‣ Timeline — This is where all charts are displayed.
‣ Function table — Located below the timeline, it displays statistical information

about functions in the target application in multiple ways.

Additionally, the following controls are available:

‣ Zoom slider — Allows you to vertically zoom the charts on the timeline.

22.5. Analysis Summary View
This view shows a summary of the profiling session. In particular, it is useful to review
the project configuration used to generate this report. Information from this view can be
selected and copied using the mouse cursor.

22.6. Timeline View
The timeline view consists of two main controls: the timeline at the top, and a bottom
pane that contains the events view and the function table. In some cases, when sampling
of a process has not been enabled, the function table might be empty and hidden.

The bottom view selector sets the view that is displayed in the bottom pane.

22.6.1. Timeline
Timeline is a versatile control that contains a tree-like hierarchy on the left, and
corresponding charts on the right.

Contents of the hierarchy depend on the project settings used to collect the report. For
example, if a certain feature has not been enabled, corresponding rows will not be show
on the timeline.

To display trace events in the Events View right-click a timeline row and select the
“Show in Events View” command. The events of the selected row and all of its sub-rows
will be displayed in the Events View.

Reading Your Report in GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 129

If a timeline row has been selected for display in the Events View then double-clicking
a timeline item on that row will automatically scroll the content of the Events View to
make the corresponding Events View item visible and select it.

22.6.2. Events View
The Events View provides a tabular display of the trace events. The view contents can be
searched and sorted.

Double-clicking an item in the Events View automatically focuses the Timeline View on
the corresponding timeline item.

API calls, GPU executions, and debug markers that occurred within the boundaries of a
debug marker are displayed nested to that debug marker. Multiple levels of nesting are
supported.

Events view recognizes these types of debug markers:

‣ NVTX
‣ Vulkan VK_EXT_debug_marker markers, VK_EXT_debug_utils labels
‣ PIX events and markers
‣ OpenGL KHR_debug markers

22.6.3. Function Table Modes

The function table can work in three modes:

‣ Top-Down View — In this mode, expanding top-level functions provides
information about the callee functions. One of the top-level functions is typically the
main function of your application, or another entry point defined by the runtime
libraries.

Reading Your Report in GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 130

‣ Bottom-Up View — This is a reverse of the Top-Down view. On the top level,
there are functions directly hit by the sampling profiler. To explore all possible call
chains leading to these functions, you need to expand the subtrees of the top-level
functions.

‣ Flat View — This view enumerates all functions ever observed by the profiler, even
if they have never been directly hit, but just appeared somewhere on the call stack.
This view typically provides a high-level overview of which parts of the code are
CPU-intensive.

Each of the views helps understand particular performance issues of the application
being profiled. For example:

‣ When trying to find specific bottleneck functions that can be optimized, the Bottom-
Up view should be used. Typically, the top few functions should be examined.
Expand them to understand in which contexts they are being used.

‣ To navigate the call tree of the application and while generally searching for
algorithms and parts of the code that consume unexpectedly large amount of CPU
time, the Top-Down view should be used.

‣ To quickly assess which parts of the application, or high level parts of an algorithm,
consume significant amount of CPU time, use the Flat view.

The Top-Down and Bottom-Up views have Self and Total columns, while the Flat view
has a Flat column. It is important to understand the meaning of each of the columns:

‣ Top-Down view

‣ Self column denotes the relative amount of time spent executing instructions of
this particular function.

‣ Total column shows how much time has been spent executing this function,
including all other functions called from this one. Total values of sibling rows
sum up to the Total value of the parent row, or 100% for the top-level rows.

‣ Bottom-Up view

‣ Self column for top-level rows, as in the Top-Down view, shows how much time
has been spent directly in this function. Self times of all top-level rows add up to
100%.

‣ Self column for children rows breaks down the value of the parent row based on
the various call chains leading to that function. Self times of sibling rows add up
to the value of the parent row.

‣ Flat view

‣ Flat column shows how much time this function has been anywhere on the
call stack. Values in this column do not add up or have other significant
relationships.

 Note:

If
low-
impact
functions
have
been
filtered

Reading Your Report in GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 131

out,
values
may
not
add
up
correctly
to
100%,
or
to
the
value
of
the
parent
row.
This
filtering
can
be
disabled.

Contents of the symbols table is tightly related to the timeline. Users can apply and
modify filters on the timeline, and they will affect which information is displayed in
the symbols table:

‣ Per-thread filtering — Each thread that has sampling information associated with it
has a checkbox next to it on the timeline. Only threads with selected checkboxes are
represented in the symbols table.

‣ Time filtering — A time filter can be setup on the timeline by pressing the left
mouse button, dragging over a region of interest on the timeline, and then choosing
Filter by selection in the dropdown menu. In this case, only sampling information
collected during the selected time range will be used to build the symbols table.

 Note:

If
too
little
sampling
data
is
being
used
to
build
the
symbols
table
(for
example,
when
the
sampling
rate
is
configured
to

Reading Your Report in GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 132

be
low,
and
a
short
period
of
time
is
used
for
time-
based
filtering),
the
numbers
in
the
symbols
table
might
not
be
representative
or
accurate
in
some
cases.

22.6.4. Filter Dialog

‣ Collapse unresolved lines is useful if some of the binary code does not have
symbols. In this case, subtrees that consist of only unresolved symbols get collapsed
in the Top-Down view, since they provide very little useful information.

‣ Hide functions with CPU usage below X% is useful for large applications, where
the sampling profiler hits lots of function just a few times. To filter out the "long
tail," which is typically not important for CPU performance bottleneck analysis, this
checkbox should be selected.

Reading Your Report in GUI

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 133

22.7. Diagnostics Summary View
This view shows important messages. Some of them were generated during the profiling
session, while some were added while processing and analyzing data in the report.
Messages can be one of the following types:

‣ Informational messages
‣ Warnings
‣ Errors

To draw attention to important diagnostics messages, a summary line is displayed on
the timeline view in the top right corner:

Information from this view can be selected and copied using the mouse cursor.

22.8. Symbol Resolution Logs View
This view shows all messages related to the process of resolving symbols. It might be
useful to debug issues when some of the symbol names in the symbols table of the
timeline view are unresolved.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 134

Chapter 23.
BROKEN BACKTRACES ON TEGRA

In Nsight Systems Embedded Platforms Edition, in the symbols table there is a special
entry called Broken backtraces. This entry is used to denote the point in the call chain
where the unwinding algorithms used by Nsight Systems could not determine what is
the next (caller) function.

Broken backtraces happen because there is no information related to the current function
that the unwinding algorithms can use. In the Top-Down view, these functions are
immediate children of the Broken backtraces row.

One can eliminate broken backtraces by modifying the build system to provide at
least one kind of unwind information. The types of unwind information, used by the
algorithms in Nsight Systems, include the following:

For ARMv7 binaries:

‣ DWARF information in ELF sections: .debug_frame, .zdebug_frame, .eh_frame,
.eh_frame_hdr. This information is the most precise. .zdebug_frame is a
compressed version of .debug_frame, so at most one of them is typically present.
.eh_frame_hdr is a companion section for .eh_frame and might be absent.

Compiler flag: -g.
‣ Exception handling information in EHABI format provided in .ARM.exidx and

.ARM.extab ELF sections. .ARM.extab might be absent if all information is
compact enough to be encoded into .ARM.exidx.

Compiler flag: -funwind-tables.
‣ Frame pointers (built into the .text section).

Compiler flag: -fno-omit-frame-pointer.

For Aarch64 binaries:

‣ DWARF information in ELF sections: .debug_frame, .zdebug_frame, .eh_frame,
.eh_frame_hdr. See additional comments above.

Compiler flag: -g.
‣ Frame pointers (built into the .text section).

Compiler flag: -fno-omit-frame-pointer.

Broken Backtraces on Tegra

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 135

The following ELF sections should be considered empty if they have size of 4 bytes:
.debug_frame, .eh_frame, .ARM.exidx. In this case, these sections only contain
termination records and no useful information.

For GCC, use the following compiler invocation to see which compiler flags are enabled
in your toolchain by default (for example, to check if -funwind-tables is enabled by
default):
$ gcc -Q --help=common

For GCC and Clang, add -### to the compiler invocation command to see which
compiler flags are actually being used.

Since EHABI and DWARF information is compiled on per-unit basis (every .cpp or
.c file, as well as every static library, can be built with or without this information),
presence of the ELF sections does not guarantee that every function has necessary
unwind information.

Frame pointers are required by the Aarch64 Procedure Call Standard. Adding frame
pointers slows down execution time, but in most cases the difference is negligible.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 136

Chapter 24.
LAUNCH PROCESSES IN STOPPED STATE

In many cases, it is important to profile an application from the very beginning of its
execution. When launching processes, Nsight Systems takes care of it by making sure
that the profiling session is fully initialized before making the exec() system call on
Linux, and by using the JDWP protocol on Android.

If the process launch capabilities of Nsight Systems are not sufficient, the application
should be launched manually, and the profiler should be configured to attach to the
already launched process. One approach would be to call sleep() somewhere early in
the application code, which would provide time for the user to attach to the process in
Nsight Systems Embedded Platforms Edition, but there are two other more convenient
mechanisms that can be used on Linux, without the need to recompile the application.
(Note that the rest of this section is only applicable to Linux-based target devices, not
Windows or Android.)

Both mechanisms ensure that between the time the process is created (and therefore its
PID is known) and the time any of the application's code is called, the process is stopped
and waits for a signal to be delivered before continuing.

24.1. LD_PRELOAD
The first mechanism uses LD_PRELOAD environment variable. It only works with
dynamically linked binaries, since static binaries do not invoke the runtime linker, and
therefore are not affected by the LD_PRELOAD environment variable.

‣ For ARMv7 binaries, preload
/opt/nvidia/nsight_systems/libLauncher32.so

‣ Otherwise if running from host, preload
/opt/nvidia/nsight_systems/libLauncher64.so

‣ Otherwise if running from CLI, preload
[installation_directory]/libLauncher64.so

The most common way to do that is to specify the environment variable as part of the
process launch command, for example:
$ LD_PRELOAD=/opt/nvidia/nsight_systems/libLauncher64.so ./my-aarch64-binary --
arguments

Launch Processes in Stopped State

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 137

When loaded, this library will send itself a SIGSTOP signal, which is equivalent to typing
Ctrl+Z in the terminal. The process is now a background job, and you can use standard
commands like jobs, fg and bg to control them. Use jobs -l to see the PID of the
launched process.

When attaching to a stopped process, Nsight Systems will send SIGCONT signal, which is
equivalent to using the bg command.

24.2. Launcher
The second mechanism can be used with any binary. Use
[installation_directory]/launcher to launch your application, for example:
$ /opt/nvidia/nsight_systems/launcher ./my-binary --arguments

The process will be launched, daemonized, and wait for SIGUSR1 signal. After attaching
to the process with Nsight Systems, the user needs to manually resume execution of the
process from command line:
$ pkill -USR1 launcher

 Note:

Note
that
pkill
will
send
the
signal
to
any
process
with
the
matching
name.
If
that
is
not
desirable,
use
kill
to
send
it
to
a
specific
process.
The
standard
output
and
error
streams
are
redirected

Launch Processes in Stopped State

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 138

to
/
tmp/
stdout_<PID>.txt
and
/
tmp/
stderr_<PID>.txt.

The launcher mechanism is more complex and less automated than the LD_PRELOAD
option, but gives more control to the user.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 139

Chapter 25.
IMPORT NVTXT

ImportNvtxt is an utility which allows conversion of a NVTXT file to a Nsight Systems
report file (*.qdrep) or to merge it with an existing report file.

Note: NvtxtImport supports custom TimeBase values. Only these values are supported:

‣ Manual — timestamps are set using absolute values.
‣ Relative — timestamps are set using relative values with regards to report file

which is being merged with nvtxt file.
‣ ClockMonotonicRaw — timestamps values in nvtxt file are considered to be

gathered on the same target as the report file which is to be merged with nvtxt using
clock_gettime(CLOCK_MONOTONIC_RAW, ...) call.

‣ CNTVCT — timestamps values in nvtxt file are considered to be gathered on the
same target as the report file which is to be merged with nvtxt using CNTVCT
values.

You can get usage info via help message:

Print help message:
-h [--help]

Show information about report file:
--cmd info -i [--input] arg

Create report file from existing nvtxt file:
--cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode] mode_name
 mode_args] [--target <Hw:Vm>] [--update_report_time]

Merge nvtxt file to existing report file:
--cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m [--mode]
 mode_name mode_args] [--target <Hw:Vm>] [--update_report_time]

Modes description:

‣ lerp - Insert with linear interpolation
--mode lerp --ns_a arg --ns_b arg [--nvtxt_a arg --nvtxt_b arg]

‣ lin - insert with linear equation
--mode lin --ns_a arg --freq arg [--nvtxt_a arg]

Modes' parameters:

https://docs.nvidia.com/gameworks/index.html#gameworkslibrary/nvtx/analysis_nvtxt_file_extension.htm

Import NVTXT

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 140

‣ ns_a - a nanoseconds value
‣ ns_b - a nanoseconds value (greater than ns_a)
‣ nvtxt_a - an nvtxt file's time unit value corresponding to ns_a nanoseconds
‣ nvtxt_b - an nvtxt file's time unit value corresponding to ns_b nanoseconds
‣ freq - the nvtxt file's timer frequency
‣ --target <Hw:Vm> - specify target id, e.g. --target 0:1
‣ --update_report_time - prolong report's profiling session time while merging if

needed. Without this option all events outside the profiling session time window
will be skipped during merging.

Commands
Info

To find out report's start and end time use info command.

Usage:
ImportNvtxt --cmd info -i [--input] arg

Example:
ImportNvtxt info Report.qdrep
Analysis start (ns) 83501026500000
Analysis end (ns) 83506375000000

Create

You can create a report file using existing NVTXT with create command.

Usage:
ImportNvtxt --cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode]
 mode_name mode_args]

Available modes are:

‣ lerp — insert with linear interpolation.
‣ lin — insert with linear equation.

Usage for lerp mode is:
--mode lerp --ns_a arg --ns_b arg [--nvtxt_a arg --nvtxt_b arg]

with:

‣ ns_a — a nanoseconds value.
‣ ns_b — a nanoseconds value (greater than ns_a).
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.
‣ nvtxt_b — an nvtxt file's time unit value corresponding to ns_b nanoseconds.

If nvtxt_a and nvtxt_b are not specified, they are repectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:
--mode lin --ns_a arg --freq arg [--nvtxt_a arg]

with:

Import NVTXT

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 141

‣ ns_a — a nanoseconds value.
‣ freq — the nvtxt file's timer frequency.
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Examples:
ImportNvtxt --cmd create -n Sample.nvtxt -o Report.qdrep

The output will be a new generated report file which can be opened and viewed by
Nsight Systems.

Merge

To merge NVTXT file with an existing report file use merge command.

Usage:
ImportNvtxt --cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m
 [--mode] mode_name mode_args]

Available modes are:

‣ lerp — insert with linear interpolation.
‣ lin — insert with linear equation.

Usage for lerp mode is:
--mode lerp --ns_a arg --ns_b arg [--nvtxt_a arg --nvtxt_b arg]

with:

‣ ns_a — a nanoseconds value.
‣ ns_b — a nanoseconds value (greater than ns_a).
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.
‣ nvtxt_b — an nvtxt file's time unit value corresponding to ns_b nanoseconds.

If nvtxt_a and nvtxt_b are not specified, they are repectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:
--mode lin --ns_a arg --freq arg [--nvtxt_a arg]

with:

‣ ns_a — a nanoseconds value.
‣ freq — the nvtxt file's timer frequency.
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Time values in <filename.nvtxt> are assumed to be nanoseconds if no mode
specified.

Example
ImportNvtxt --cmd merge -i Report.qdrep -n Sample.nvtxt -o NewReport.qdrep

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 142

Chapter 26.
VISUAL STUDIO INTEGRATION

NVIDIA Nsight Integration is a Visual Studio extension that allows you to access the
power of Nsight Systems from within Visual Studio.

When Nsight Systems is installed along with NVIDIA Nsight Integration, Nsight
Systems activities will appear under the NVIDIA Nsight menu in the Visual Studio
menu bar. These activities launch Nsight Systems with the current project settings and
executable.

Selecting the "Trace" command will launch Nsight Systems, create a new Nsight Systems
project and apply settings from the current Visual Studio project:

‣ Target application path
‣ Command line parameters
‣ Working folder

If the "Trace" command has already been used with this Visual Studio project then
Nsight Systems will load the respective Nsight Systems project and any previously
captured trace sessions will be available for review using the Nsight Systems project
explorer tree.

Visual Studio Integration

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 143

For more information about using Nsight Systems from within Visual Studio, please
visit

‣ NVIDIA Nsight Integration Overview
‣ NVIDIA Nsight Integration User Guide

https:/developer.nvidia.com/nsight-tools-visual-studio-integration
https:/docs.nvidia.com/nsight-vs-integration/index.html

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 144

Chapter 27.
TROUBLESHOOTING

If the profiler behaves unexpectedly during the profiling session, or the profiling session
fails to start, try the following steps:

‣ Close the host application.
‣ Restart the target device.
‣ Start the host application and connect to the target device.

To enable logging on the host, refer to this config file:
host-linux-x64/nvlog.config.template

When reporting any bugs please include the build version number as described in
the Help → About dialog. If possible, attach log files and report (.qdrep) files, as they
already contain necessary version information.

Nsight Systems uses a settings file (NVIDIA Nsight Systems.ini) on the host to
store information about loaded projects, report files, window layout configuration,
etc. Location of the settings file is described in the Help → About dialog. Deleting the
settings file will restore Nsight Systems to a fresh state, but all projects and reports will
disappear from the Project Explorer.

GUI Troubleshooting
If opening the Nsight Systems Linux GUI fails with the following error, you may be
missing some required libraries:
This application failed to start because it could not find or load the Qt
 platform plugin "xcb" in "". Available platform plugins are: xcb. Reinstalling
 the application may fix this problem.

Launch Nsight Systems using the following command line to determine which libraries
are missing and install them.
$ QT_DEBUG_PLUGINS=1 ./nsys-ui

If the workload does not run when launched via Nsight Systems or the timeline is
empty, check the stderr.log and stdout.log (click on drop-down menu showing Timeline
View and click on Files) to see the errors encountered by the app.

Troubleshooting

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 145

Android Targets
When connecting to an Android-based device, Nsight Systems installs its executable and
library files into the following directory:
/data/local/tmp/com.nvidia.nsightsystems.tools/

Logs on the target device are collected into this file:
/data/local/tmp/com.nvidia.nsightsystems.tools/nsys.log

To enable verbose logging on the target device, follow these steps:

 1. Close the host application.
 2. Place nvlog.config from host directory to /sdcard/ directory on target.
 3. Restart the target device.
 4. From ADB shell, launch the following command:

/data/local/tmp/com.nvidia.nsightsystems.tools/nsys --daemon --debug

On rooted Android devices, the command above should be started from superuser
(e.g., adb shell su -c ...).

 5. Start the host application and connect to the target device.

Please note that in some cases, debug logging can significantly slow down the profiler

Symbol Resolution
If stack trace information is missing symbols and you have a symbol file, you can
manually re-resolve using the ResolveSymbols utility. You will find this utility in the
[installation_path]\Host directory. This utility works with ELF format files or files
where each line is in the format <start><length><name>.

Short Long Argument Description

-h --help Help message
providing
information about
available options.

-l --process-list Print global process
IDs list

-s --sym-file filename Path to symbol file

-b --base-addr address If set then <start>
in symbol file is
treated as relative

Troubleshooting

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 146

Short Long Argument Description

address starting
from this base
address

-p --global-pid pid Which process in
the report should
be resolved. May be
omitted if there is
only one process in
the report.

-f --force This option forces
use of a given
symbol file.

-i --report filename Path to the report
with unresolved
symbols.

-o --output filename Path and name of
the output file. If
it is omitted then
"resolved" suffix
is added to the
original filename.

Verbose Logging on Linux Targets
Verbose logging is available when connecting to a Linux-based device from the GUI on
the host. This extra debug information is not available when launching via the command
line. Nsight Systems installs its executable and library files into the following directory:
/opt/nvidia/nsight_systems/

To enable verbose logging on the target device, when launched from the host, follow
these steps:

 1. Close the host application.
 2. Restart the target device.
 3. Place nvlog.config from host directory to the /opt/nvidia/nsight_systems

directory on target.
 4. From SSH console, launch the following command:

sudo /opt/nvidia/nsight_systems/nsys --daemon --debug

 5. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsys.log

in the directory where nsys command was launched.

Troubleshooting

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 147

Please note that in some cases, debug logging can significantly slow down the profiler.

Verbose Logging on Windows Targets
Verbose logging is available when connecting to a Windows-based device from the GUI
on the host. Nsight Systems installs its executable and library files into the following
directory by default:
C:\Program Files\NVIDIA Corporation\Nsight Systems 2020.3

To enable verbose logging on the target device, when launched from the host, follow
these steps:

 1. Close the host application.
 2. Terminate the nsys process.
 3. Place nvlog.config from host directory next to Nsight Systems Windows agent on

the target device

‣ Local Windows target:
C:\Program Files\NVIDIA Corporation\Nsight Systems 2020.3\target-
windows-x64

‣ Remote Windows target:
C:\Users\<user name>\AppData\Local\Temp\nvidia\nsight_systems

 4. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsight-sys.log

in the same directory as Nsight Systems Windows agent.

Please note that in some cases debug logging can significantly slow down the profiler.

QNX Troubleshooting
Common issues with QNX targets:

‣ Make sure that tracelogger utility is available and can be run on the target.
‣ Make sure that /tmp directory is accessible and supports sub-directories.
‣ When switching between Nsight Systems versions, processes related to the previous

version, including profiled applications forked by the daemon, must be killed before
the new version is used. If you experience issues after switching between Nsight
Systems versions, try rebooting the target.

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 148

Chapter 28.
OTHER RESOURCES

Looking for information to help you use Nsight Systems the most effectively? Here are
some more resources you might want to review:

Feature Videos
Short videos, only a minute or two, to introduce new features.

‣ OpenMP Trace Feature Spotlight
‣ Command Line Sessions Video Spotlight
‣ Direct3D11 Feature Spotlight
‣ Vulkan Trace
‣ Statistics Driven Profiling

Blog Posts
NVIDIA developer blogs, these are longer form, technical pieces written by tool and
domain experts.

‣ 2019 - Migrating to NVIDIA Nsight Tools from NVVP and nvprof
‣ 2019 - Transitioning to Nsight Systems from NVIDIA Visual Profiler / nvprof
‣ 2019 - NVIDIA Nsight Systems Add Vulkan Support
‣ 2019 - TensorFlow Performance Logging Plugin nvtx-plugins-tf Goes Public
‣ 2020 - NVIDIA Nsight Systems in Containers and the Cloud
‣ 2020 - Understanding the Visualization of Overhead and Latency in Nsight Systems

Training Seminars
2018 NCSA Blue Waters Webinar - Introduction to NVIDIA Nsight Systems

https://youtu.be/ZeuM2k_hrq0
https://youtu.be/r2ewwd4d0vc
https://youtu.be/DUhzjyBr-wg
https://youtu.be/witzRF-wu8M
https://www.youtube.com/watch?v=fyhPFTF75tk
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://devblogs.nvidia.com/nvidia-nsight-systems-adds-vulkan-support/
https://devblogs.nvidia.com/tensorflow-performance-logging-plugin-nvtx-plugins-tf-public/
https://developer.nvidia.com/blog/nvidia-nsight-systems-containers-cloud/
https://developer.nvidia.com/blog/understanding-the-visualization-of-overhead-and-latency-in-nsight-systems/
https://www.youtube.com/watch?v=WA8C48FJi3c

Other Resources

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 149

Conference Presentations
‣ GTC 2020 - Rebalancing the Load: Profile-Guided Optimization of the NAMD

Molecular Dynamics Program for Modern GPUs using Nsight Systems
‣ GTC 2020 - Scaling the Transformer Model Implementation in PyTorch Across

Multiple Nodes
‣ GTC 2019 - Using Nsight Tools to Optimize the NAMD Molecular Dynamics

Simulation Program
‣ GTC 2019 - Optimizing Facebook AI Workloads for NVIDIA GPUs
‣ GTC 2018 - Optimizing HPC Simulation and Visualization Codes Using NVIDIA

Nsight Systems
‣ GTC 2018 - Israel - Boost DNN Training Performance using NVIDIA Tools
‣ Siggraph 2018 - Taming the Beast; Using NVIDIA Tools to Unlock Hidden GPU

Performance

For More Support
To file a bug report or to ask a question on the Nsight Systems forums, you will need to
register with the NVIDIA Developer Program. See the FAQ. You do not need to register
to read the forums.

After that, you can access Nsight Systems Forums and the NVIDIA Bug Tracking
System.

To submit feedback directly from the GUI, go to Help->Send Feedback and fill out the
form. Enter your email address if you would like to hear back from the Nsight Systems
team.

https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21351
https://developer.nvidia.com/gtc/2020/video/s21351
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9866-optimizing+facebook+ai+workloads+for+nvidia+gpus
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=sil8105-boost+dnn+training+performance+using+nvidia+tools
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
https://www.nvidia.com/en-us/account/faq/
https://forums.developer.nvidia.com/c/development-tools/nsight-systems/116
https://developer.nvidia.com/nvidia_bug/add
https://developer.nvidia.com/nvidia_bug/add

Other Resources

www.nvidia.com
Nsight Systems User Guide v2020.5.1 | 150

	Table of Contents
	Profiling Linux Targets from the GUI
	1.1. Connecting to the Target Device
	1.2. System-Wide Profiling Options
	1.2.1. Linux x86_64
	1.2.2. Linux for Tegra

	1.3. Target Sampling Options
	Target Sampling Options for Workstation
	Target Sampling Options for Embedded Linux

	1.4. Hotkey Trace Start/Stop
	1.5. Launching and Attaching to Processes

	Profiling Windows Targets from the GUI
	Remoting to a Windows Based Machine
	Hotkey Trace Start/Stop
	Target Sampling Options on Windows
	Symbol Locations

	Profiling Android Targets from the GUI
	Configuring Your Android Device
	Application

	Profiling QNX Targets from the GUI
	Profiling from the CLI
	5.1. Installing the CLI on Your Target
	5.2. Command Line Options
	5.2.1. CLI Global Options

	5.3. CLI Command Switches
	5.3.1. CLI Profile Command Switch Options
	5.3.2. CLI Start Command Switch Options
	5.3.3. CLI Stop Command Switch Options
	5.3.4. CLI Cancel Command Switch Options
	5.3.5. CLI Launch Command Switch Options
	5.3.6. CLI Shutdown Command Switch Options
	5.3.7. CLI Export Command Switch Options
	5.3.8. CLI Stats Switch Options
	5.3.9. CLI Status Command Switch Options
	5.3.10. CLI Sessions Command Switch Subcommands

	5.4. Example Single Command Lines
	5.5. Example Interactive CLI Command Sequences
	5.6. Example Stats Command Sequences
	5.7. Example Output from --stats Option
	5.8. Importing and Viewing Command Line Results Files
	5.9. Using the CLI to Analyze MPI Codes
	5.9.1. Tracing MPI API calls
	5.9.2. Using the CLI to Profile Applications Launched with mpirun

	Report Scripts
	Report Scripts Shipped With Nsight Systems
	apigpusum[:base] -- CUDA API & GPU Summary (CUDA API + kernels + memory ops)
	cudaapisum -- CUDA API Summary
	cudaapitrace -- CUDA API Trace
	gpukernsum[:base] -- CUDA GPU Kernel Summary
	gpumemsizesum -- GPU Memory Operations Summary (by Size)
	gpumemtimesum -- GPU Memory Operations Summary (by Time)
	gpusum[:base] -- GPU Summary (kernels + memory operations)
	gputrace -- CUDA GPU Trace
	nvtxppsum -- NVTX Push/Pop Range Summary
	openmpevtsum -- OpenMP Event Summary
	osrtsum -- OS Runtime Summary

	Report Formatters Shipped With Nsight Systems
	Column
	Table
	CSV
	TSV
	JSON
	HDoc
	HTable

	Migrating from NVIDIA nvprof
	Using the Nsight Systems CLI nvprof Command
	CLI nvprof Command Switch Options
	Next Steps

	Profiling in a Docker on Linux Devices
	Direct3D Trace
	9.1. D3D11 API trace
	9.2. D3D12 API Trace

	WDDM Queues
	Vulkan API Trace
	11.1. Vulkan Overview
	11.2. Pipeline Creation Feedback
	11.3. Vulkan GPU Trace Notes

	Stutter Analysis
	12.1. FPS Overview
	12.2. Frame Health
	12.3. GPU Memory Utilization
	12.4. Vertical Synchronization

	MPI API Trace
	OpenMP Trace
	OS Runtime Libraries Trace
	15.1. Locking a Resource
	15.2. Limitations
	15.3. OS Runtime Libraries Trace Filters
	15.4. OS Runtime Default Function List

	NVTX Trace
	CUDA Trace
	17.1. CUDA GPU Memory Allocation Graph
	17.2. Unified Memory Transfer Trace
	17.3. CUDA Default Function List for CLI
	17.4. cuDNN Function List for X86 CLI

	OpenACC Trace
	OpenGL Trace
	19.1. OpenGL Trace Using Command Line

	Custom ETW Trace
	Debug Versions of ELF Files
	Reading Your Report in GUI
	22.1. Generating a New Report
	22.2. Opening an Existing Report
	22.3. Sharing a Report File
	22.4. Report Tab
	22.5. Analysis Summary View
	22.6. Timeline View
	22.6.1. Timeline
	22.6.2. Events View
	22.6.3. Function Table Modes
	22.6.4. Filter Dialog

	22.7. Diagnostics Summary View
	22.8. Symbol Resolution Logs View

	Broken Backtraces on Tegra
	Launch Processes in Stopped State
	24.1. LD_PRELOAD
	24.2. Launcher

	Import NVTXT
	Commands

	Visual Studio Integration
	Troubleshooting
	GUI Troubleshooting
	Android Targets
	Symbol Resolution
	Verbose Logging on Linux Targets
	Verbose Logging on Windows Targets
	QNX Troubleshooting

	Other Resources
	Feature Videos
	Blog Posts
	Training Seminars
	Conference Presentations
	For More Support

