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Abstract 
 

The current landscape of Enterprise AI is rapidly evolving, shifting from just having a 
dialogue with a large language model (LLM) to actually having sophisticated, goal-
oriented Agentic Workflows. This shift is driven by the need to not just generate 
responses from an LLM but to also to have an AI do tasks based on the information 
retrieved. Most Enterprises have a vast amount of data in PDFs or other documents that 
can be used to ask complex questions, Retrieval Augmented Generation (RAG) can help 
answer questions within Enterprise data, however if there are more complex questions 
that require private as well as Public Internet data, we need an agent that can fetch data 
from both sources, reflect on it and provide detailed reports. In this paper, we look at the 
NVIDIA AI-Q Research Agent blueprint, an agentic system that can generate detailed 
reports based on both internal and external data. We walk through how to deploy, how 
to scale and provide sizing guidance. 

 

Introduction 
The current enterprise landscape is characterized by a rapidly escalating volume of 
proprietary, internal data—often siloed within numerous systems like document 
repositories, knowledge bases, and collaborative platforms. Simultaneously, the demand 
for sophisticated, evidence-based decision-making is driving enterprises toward 
deploying advanced AI systems. However, traditional Large Language Model (LLM) 
deployments face significant hurdles: 

● Data Siloing & Limited RAG: Internal knowledge is untapped because LLMs use 
public data. Basic RAG lacks multi-step reasoning across diverse, proprietary 
sources. 

● Lack of Agency & Complex Reasoning: LLMs struggle with goal-oriented tasks 
needing planning and iterative refinement. Users need a " Research Agent" for 
synthesizing reports from internal and external data. 

● Deployment Complexity & Scalability: Deploying powerful agentic AI requires 
significant GPUs and complex orchestration. Lack of sizing guidance leads to high 
costs and bottlenecks. 

 

NVIDIA Blueprints simplify the deployment and management of complex AI systems  
offering pre-validated architecture that automates dependency management between 
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various components, and uses Helm for easy deployment and scaling. The NVIDIA AI-Q 
Research Agent  blueprint directly addresses these challenges by providing a robust, 
scalable, and agentic framework. AI-Q uses RAG for retrieval, can consume multiple data 
sources, reason between different datasources, search the web for any additional 
research and provide a detailed report on a given subject. AI-Q provides the open 
blueprint and reference architecture for building next‑generation agents, while NeMo 
Agent Toolkit is the underlying control layer, that integrates with other frameworks like 
LangChain, LlamaIndex, etc., and connects, profiles, and optimizes AI agents across 
frameworks and infrastructure..  

 

Scope 

This paper covers how to scale, size and optimize AI-Q Research Agent and covers the 
following components on Enterprise Reference Architecture.  

Out of scope: AI-Q allows a human in the loop feature, this feature was not used when 
conducting performance tests for AI-Q. 

 

Table1.  Scope of NVIDIA Blueprints, NVIDIA NIM versions along with GPUs tested 

NVIDIA Components  NVIDIA GPUs 

AI-Q Blueprint v.1.2.0 w/ 
Meta Llama 70B NIM v latest 

RTX PRO 6000 BSE 

RAG Blueprint v.2.3.0  
With  
Nemotron Super 49B 1.5 NIM v 1.14.0 

 

RTX PRO 6000 BSE 

NeMo Agent Toolkit v.1.2.0 RTX PRO 6000 BSE 

Target Audience 

This guide is meant to help NVIDIA partners architecting agentic solutions for deep 
research based on existing enterprise data. This guide helps determine Infrastructure 
and sizing requirements for cluster-level deployments. The guide can be used for both 
new and existing deployments to determine the capacity and scale needed based on 
Deep Research workload. It can also be used by the following Personas as they architect 
their Enterprise solutions. 

 

https://github.com/NVIDIA-AI-Blueprints/aiq-research-assistant
https://github.com/NVIDIA-AI-Blueprints/rag
https://github.com/NVIDIA/NeMo-Agent-Toolkit
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Enterprise Architects: Enterprise Architects tasked with designing and defining servers, 
GPU’s and Networking gear to determine what Infrastructure resources will be needed 
to support Deep Research agents. 

MLOps Engineer: MLOps Engineers can use this to define Infrastructure requirements 
as they talk to Infrastructure/Cloud teams to carve out resources to run Agentic 
workflows for Deep Research.  

Platform Engineer: Platform Engineers can use this guide to determine how to design 
their Container Environment around Kubernetes, and also what kind of resources will be 
needed by the cluster to support Deep research agents. 

System Overview and Architecture 
This paper was validated on Enterprise Reference Architecture in the 2-8-5-200 
configuration using RTX PRO 6000 Blackwell Server Edition GPUs , with Cluster 
Software Reference stack version 25.09 and AI-Q, and RAG deployed on top of it.  

 

Figure 1. System Overview 
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AI-Q NVIDIA Research Agent  

AI-Q is an advanced agentic framework designed for deep, comprehensive research. It 
functions by employing a Retrieval-Augmented Generation (RAG) system to extract and 
contextualize information from existing enterprise documents. It leverages Tavily 
internet search agent for external information gathering. This combination allows AI-Q 
to correlate and reason about topics from disparate internal files, integrate external 
data, and ultimately synthesize all fetched information into a complete report. 

 

Figure 2: AI-Q Blueprint Architecture 

 

 

Here are the  key components of AI-Q 

Data Ingestion and Preparation Pipeline 
This component handles enterprise data onboarding and indexing. NeMo Retriever 
extraction is used to chunk and embed multi-modal data from multiple sources, the 
embeddings are then stored in a Vector Database like Milvus. This pipeline is part of the 
NVIDIA RAG Blueprint. The tests conducted for performance used two different 
datasets , these are uploaded and part of the blueprint on Github.  

 

The datasets used were: 
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● Biomedical_Dataset: Scientific journals on the Cystic Fibrosis CFTR gene from 
2021-2024 

● Financial_Dataset: Financial reports from Apple, Facebook, Google, Meta from 
2020-2024 

 

RAG (Retrieval-Augmented Generation) Framework 
The RAG layer provides grounded context retrieval for LLM inference, this executes 
semantic and hybrid search across our datasets. Applies metadata filtering, reranking, 
returns high-relevance context to minimize hallucination. The RAG blueprint used here 
uses NVIDIA Nemotron 49B Super v1.5 as the NIM LLM to perform the reasoning for a 
given research. We call this the Reasoning NIM for reference hench forth in the 
document configs 
 

AI-Q Instruct LLM and Toolchain 
This is part of the blueprint responsible for coming up with the initial plan based on the 
users instruction, the Instruct LLM used in the blueprint is Meta Llama 70B, it judges 
the response from the RAG and Reasoning LLM , determines if additional internet search 
is needed, if needed, it will kick off Tavily to perform a search. The Instruct LLM, then 
also synthesizes the final response by combining retrieved context with the user’s 
instruction, while enforcing format, tone, or policy constraints 

Performance and Observability  
AI-Q helm charts can optionally also deploy Phoenix. Phoenix is an open source AI 
observability platform designed for experimentation, evaluation, and troubleshooting. 
Phoenix can help evaluate where the toolkit spends time, show traces of entire agentic 
workflows, records time series based metrics over open telemetry like tokens generated, 
latency etc. 

Phoenix is a great tool to visualize how the agentic workflow is behaving, where are the 
bottlenecks if any. 

 

Enterprise Reference Architecture Overview (RA) 
This guide is part of NVIDIA Enterprise Reference Architecture, which covers certified 
hardware, software stack, and sizing recommendations to design, build, and scale an 
end-to-end accelerated computing cluster deployment with balanced CPU to GPU to NIC 
patterns. The Enterprise Reference architecture provides guided and detailed hardware 
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and software architecture recommended by NVIDIA for optimal server, cluster, and 
network configuration needed to build and scale AI factories.   

NVIDIA Enterprise Reference Architecture includes hardware design recommendations, 
generic software stack configurations, and scalability.  

Hardware Enterprise Reference Architecture  
For this version of the document, we used NVIDIA's 2-8-5-200 Enterprise RA reference 
configuration for the overall stack. The PCIe-Optimized 2-8-5-200 ( CPU-GPU-NIC-
Bandwidth) reference configuration is for NVIDIA-Certified compute nodes using PCIe 
GPUs, allowing you to deploy up to 8 GPUs with up to 5 NICs balanced with 2 CPUs. This 
pattern can scale from 4 to up to 32 nodes in a cluster. The Enterprise RA design 
recommends using Spectrum-X Ethernet Networking Platform - Combining Spectrum-4 
Ethernet switches and NVIDIA Bluefield-3 SuperNICs for optimized networking. 

 

 

 

Figure 3. System architecture of Enterprise RA 2-8-5-200 reference configuration 

 

 

 

 Note: For the detailed hardware design, refer to NVIDIA 2-8-5-200 with RTX PRO 6000 
BSE NVIDIA Spectrum Platforms Enterprise Reference Architecture: NVOnline :1125114 
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Table 2. Specification of Individual Components in the server with NVIDIA RTX PRO 6000 
Blackwell Server Edition GPUs 

 

Component Specification 

CPUs AMD EPYC 9555 64-Core Processor 64 
cores 3200 MT/s 

GPUs 8 x NVIDIA RTX PRO 6000 BSE 

Networking – E/W 4 x NVIDIA BlueField-3, B3140H 

Networking – N/S 1 x NVIDIA BlueField-3, B3220 

Host Memory 32 x 64 GB DRAM (2048) 

Host Boot Drive 2 x 896 GB ( ~1.8 TB)  

Host Storage 2 x 3.84TB Storage (~7.6 TB) 

The systems are connected with NVIDIA SN5600 switches. For this particular guide, we 
are using NFS Storage that has been deployed on the BCM head node to provide 
Persistent Volumes for uploading embedded Enterprise documents. Enterprise 
customers can use their storage systems to provide storage volumes needed by 
Kubernetes and NIM inference microservices. 

For this test we used a pool of 9 servers with 8 NVIDIA RTX PRO 6000 BSE GPUs per 
node. The complete cluster has 72 GPUs in total. 

 

Software Stack  
The software stack used for this environment leverages the bare-metal servers with 
Kubernetes as the cluster orchestration tool. BCM is part of the NVIDIA AI Enterprise 
software suite, and it provides all the tools you need to deploy and manage an AI 
datacenter. It also helps in deploying a Kubernetes cluster on top of the bare-metal 
servers to create a pool of GPU resources. BCM is then used to deploy all the operators 
like the GPU Operator, Network Operator, NIM Operator, etc. to run the GPUs and 
Network cards effectively. We then deploy a NIM service, picking the model for which 
the Inference service needs to be tested and scaled. We installed Run:ai version 2.2 
using the SaaS format. 

 

Figure 5. Overview of the overall deployment stack 
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This test environment uses NVIDIA AI Enterprise software to install and configure the 
necessary software and tools required to efficiently deploy and operate an AI factory. 
Once servers are racked and networked, NVIDIA BCM is used to image individual servers, 
deploying Ubuntu 24.04 as the operating system, installing NVIDIA GPU and network 
drivers, and setting up Kubernetes clusters. 

Beyond these core capabilities, the deployment also aligns the software dependencies 
for various components required for Kubernetes cluster operations, such as a Container 
Network Interface (CNI) for managing container networks, NGINX Ingress Controller 
for handling cluster ingress traffic, and MetalLB for load balancing services, Prometheus 
and Grafana to visualize overall stack metrics and also provides firmware to configure 
and optimize OS like Cumulus Linux for the NVIDIA Spectrum switches, firmware for the 
Bluefield Super NICs etc. 

 

 
Note: For detailed Software reference design, refer to NVIDIA Software Reference Stack 
and automation for Enterprise RA - vanilla Kubernetes: NVOnline : 1141332 

 

https://partners.nvidia.com/DocumentDetails?DocID=1141332
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System Configuration 
This section provides a step by step instruction on how the blueprints are deployed once 
the Cluster Software Reference stack has been deployed and configured. 

Assumptions 
● The environment has egress to the internet enabled 

Pre-requisites for installing RAG and AI-Q 
● A Kubernetes Cluster with a supported version installed with NVIDIA GPU 

Operator and NVIDIA Network Operator installed, which should already be in place 
if the NVIDIA Software Enterprise RA is followed. 

● Active Subscription to NVAIE and Access to the NGC Enterprise Catalog. Please 
generate and download your nvcr.io access token in NGC.  

● Account in Tavily and an Access token to Tavily API, this will be needed for AI-Q 
to run internet search agent 

● Install Helm in the Kubernetes Cluster and download the helm CLI. This should 
have been installed if the Software Enterprise RA is followed. 

● Access to Kubernetes Clusters config file and `kubectl` CLI installed, this file is 
in the Enterprise RA cluster BCMe head node under /<user>/.kube/config 

● A default Storage Class is defined to create Persistent Volume Claims by 
Kubernetes, this can be an NFS or Block-based storage class, the storage class 
name is default. 

● Ability to create two namespaces in the Kubernetes cluster. rag, aiq 

Deploy and Configure RAG Blueprint 
 

NVIDIA RAG Blueprint can be deployed in multiple ways, for the purpose of this 
document and respect to the Enterprise Software Reference Architecture we are using 
Helm as the deployment method. For detailed information on Helm and how to deploy 
RAG using Helm, refer to the NVIDIA Github Repository here.  

From the system that has access to the Kubernetes API and has Helm deployed, run the 
following on the command prompt 

 
 
 

https://github.com/NVIDIA-AI-Blueprints/rag/blob/main/docs/deploy-helm.md
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Export the NGC API KEY 
 
export NGC_API_KEY="nvapi-<redacted>" 
 

Create a directory for RAG, CD to it and fetch the RAG repo 

 

mkdir rag 
cd rag 
Git clone https://github.com/NVIDIA-AI-Blueprints/rag.git 
 

Add the appropriate Helm Repos to the cluster  

 
helm repo add nvidia-nim https://helm.ngc.nvidia.com/nim/nvidia/ --username='$oauthtoken' --
password=$NGC_API_KEY 
helm repo add nim https://helm.ngc.nvidia.com/nim/ --username='$oauthtoken' --
password=$NGC_API_KEY 
helm repo add nemo-microservices https://helm.ngc.nvidia.com/nvidia/nemo-microservices --
username='$oauthtoken' --password=$NGC_API_KEY 
helm repo add baidu-nim https://helm.ngc.nvidia.com/nim/baidu --username='$oauthtoken' --
password=$NGC_API_KEY 
helm repo add bitnami https://charts.bitnami.com/bitnami 
helm repo add otel https://open-telemetry.github.io/opentelemetry-helm-charts 
helm repo add zipkin https://zipkin.io/zipkin-helm 
helm repo add prometheus https://prometheus-community.github.io/helm-charts 
 

Change the directory  

 

cd rag/deploy/helm  
 

create a namespace for RAG 

 

kubectl create namespace rag 
 

Update the default values from RAG Helm chart to work with RTX PRO 6000 BSE GPUs, 
copy and paste the default values file to a new file name in the rag/deploy/helm folder 
called values-2gpu-rtxpro6000.yaml. The detailed YAML file for this config is provided in 
Appendix A, RAG Config, below are key things to update in the file 

 

https://github.com/NVIDIA-AI-Blueprints/rag.git
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Ensure under the NIM section, the model is updated with Nemotron 49B v1.5 with the 
right NIM profile for RTX PRO with fp8 precision 

 

nim-llm: 
  enabled: true 
  image: 
    repository: nvcr.io/nim/nvidia/llama-3.3-nemotron-super-49b-v1.5 
    tag: "1.14.1" 
  resources: 
    limits: 
      nvidia.com/gpu: 2 
      memory: 128Gi  # Increased from 96Gi 
    requests: 
      nvidia.com/gpu: 2 
      memory: 128Gi  # Increased from 96Gi 
  model: 
    name: "nvidia/llama-3.3-nemotron-super-49b-v1.5" 
  env: 
    - name: NIM_MODEL_NAME 
      value: "nvidia/llama-3.3-nemotron-super-49b-v1.5" 
    - name: NIM_MODEL_PROFILE 
      value: "610f006b15f3adbdb072da0b4155d8a772332cf1768fb7389ef92a83c31c26dc" 

 

Also, if needed you can provide a specific node in the cluster to deploy rest of the RAG 
components 

 

Install RAG using Helm  

 
helm upgrade --install rag -n rag https://helm.ngc.nvidia.com/nvidia/blueprint/charts/nvidia-blueprint-
rag-v2.2.0.tgz -f values-2gpu-rtxpro6000.yaml \ 
--username '$oauthtoken' \ 
--password "${NGC_API_KEY}" \ 
--set imagePullSecret. 
password=$NGC_API_KEY \ 
--set ngcApiSecret.password=$NGC_API_KEY 

 

Update Helm Dependencies 

 
helm dependency update nvidia-blueprint-rag 
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At this point RAG has been deployed and configured, the pods for RAG nim-llm-0 will be 
be deployed, these pods will take a few minutes to go into “running” state along with 
other components and also the RAG server and nim-llm will have services created in 
Kubernetes with cluster IP. We need to make sure that the RAG server and the NIM LLM 
have IP addresses that can be reached by the benchmarking RAG tool. For this exercise 
we used External Loadbalancing IPs for both these services , you can do the same  

 

Edit the NIM-LLM service, RAG server to use Load Balancing IP 

 

kubectl patch service nim-llm -n rag \ 
  -p '{"spec":{"type":"LoadBalancer","ports":[{"port":8000,"targetPort":8000}]}}' 

 

kubectl patch service rag-server -n rag \ 
  -p '{"spec":{"type":"LoadBalancer","ports":[{"port":8081,"targetPort":8081}]}}' 

 

At this point the setup should have the RAG pipeline deployed with all its components in 
Milvus in a standalone fashion. 

Deploy and Configure AI-Q Blueprint 
We are deploying the NVIDIA AI-Q blueprint from Github Repo here.  
 
Clone the Git Repo into a folder called aiq 
 
git clone https://github.com/NVIDIA-AI-Blueprints/aiq-research-assistant 

 

Set environment variables, on the system from which you are installing AI-Q 

 

export NGC_API_KEY=”nvapi-xxx” # your API key 
export TAVILY_API_KEY=”yyy” # your Tavily API key, optional for web search 
 
 

Create a namespace: 

kubectl create namespace aira 
cd aiq-research-assistant/ 
 

Add the AI-Q helm chart 

https://github.com/NVIDIA-AI-Blueprints/aiq-research-assistant
https://github.com/NVIDIA-AI-Blueprints/aiq-research-assistant
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helm repo add nvidia-nim https://helm.ngc.nvidia.com/nim/nvidia/ --username='$oauthtoken' --
password=$NGC_API_KEY 
helm repo add nim https://helm.ngc.nvidia.com/nim/ --username='$oauthtoken' --
password=$NGC_API_KEY 
 
helm repo add nvidia-nim https://helm.ngc.nvidia.com/nim \ 
  --username='$oauthtoken' \ 
  --password=$NGC_API_KEY  
 
 

We need to change the default Helm Values file for our system, copy the values.yaml file 
in the folder under deploy/helm/aiq-aira to a file called values-rtx-pro-6k.yaml in the 
deploy/helm folder. We will be editing the file to make some key changes.  

 

Update the nim-llm section to point to the version of the latest version of NIM with the 
correct profile for RTX PRO 6000 BSE GPUs 

nim-llm: 
  enabled: true 
  service: 
    name: "nim-llm" 
  image: 
      repository: nvcr.io/nim/meta/llama-3.3-70b-instruct 
      pullPolicy: IfNotPresent 
      tag: "1.12.0" 
  resources: 
    limits: 
      nvidia.com/gpu: 1 
    requests: 
      nvidia.com/gpu: 1 
  model: 
    name: "meta/llama-3.3-70b-instruct" 
  env: 
    - name: NIM_MODEL_NAME 
      value: "meta/llama-3.3-70b-instruct" 
    - name: NIM_MODEL_PROFILE 
      value: "257a3035dbddb2a2cd48f5763ee64f972af4ba0dd5ef92ade1dbb478f6cf5dd3" 

 

Detailed config YAML for AI-Q is provided in Appendix B of this document 

Deploy the AI-Q Helm Chart 
 

helm upgrade --install aira -n aiq deploy/helm/aiq-aira -f deploy/helm/aiq-aira/values-rtx-pro-6k.yaml \ 
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--set imagePullSecret.password=$NGC_API_KEY \ 
--set ngcApiSecret.password=$NGC_API_KEY \ 
--set tavilyApiSecret.password=$TAVILY_API_KEY  
 

Once AI-Q has been deployed, make sure all the pods are up and running.  

 

We then need to make the frontend and the NIM-llm pod available with an IP so we can 
reach it from outside the cluster. We also need to expose the Phoenix pod to trace the 
benchmarking tests as well as the instruct-llm in AI-Q 

 

kubectl patch svc aira-aira-frontend -n aiq -p '{"spec": {"type": "LoadBalancer", "ports": [{"name": "http", 
"port": 3001, "NodePort": 30001}]}}' 
 
kubectl patch service instruct-llm -n aiq \ 
  -p '{"spec":{"type":"LoadBalancer","ports":[{"port":8000,"targetPort":8000}]}}' 
 
 
kubectl patch service aiq-aira-phoenix -n aiq \ 
  -p '{"spec":{"type":"LoadBalancer","ports":[{"port":60006,"targetPort":6006}]}}' 

 

By now we should have AI-Q deployed and all the services loadbalanced. We are now 
going to ingest two datasets within the system using NeMo Retriever extraction.  

 

Ingesting Enterprise Data for Research 

RAG and AI-Q blueprint have been configured and deployed, we now need to 
ingest Enterprise files, data that can be used by AI-Q to conduct deep 
research.This will be done using NeMo Retriever extraction, an open source 
library that is part of the RAG pipeline. Individual files can be added to RAG in a 
single Collection, or multiple collections can be created as well. 

The AI research assistant demo web application requires two default collections. 
One collection supports a biomedical research prompt and contains reports on 
Cystic Fibrosis. The second supports a financial research prompt and contains 
public financial documents from Alphabet, Meta, and Amazon. 

To load these default collections, apply the standalone Kubernetes job: 
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Set the RAG_INGEST_URL environment variable based on your RAG deployment. 

First we need to port forward the rag ingestor service 

kubectl port-forward -n rag service/ingestor-server 8082:8082 
export RAG_INGEST_URL="http://localhost:8082" 

 

On the same node where RAG_INGEST_URL was set above, create a Python 

environment with the correct dependencies: 

uv python install 3.12 
uv venv --python 3.12 --python-preference managed 
uv run pip install -r data/requirements.txt 

 

Copy the Enterprise zip files intended for user research into the current directory for 

upload. These files will be ingested into the RAG system, enabling AI-Q users to conduct 

in-depth research. 

Note: This folder already has the default Financial and Bio Medical Collection needed for 
the benchmarking of this folder 

cd data 
cp files/* . 

 

Run the ingest: 

uv run python zip_to_collection.py 

By now the RAG and AI-Q have been installed and the data needed for deep research is 
already embedded and ingested into Milvus. 
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Benchmarking and Scale Methodology 
NVIDIA AI-Q is an agentic solution based on the NVIDIA NeMo™ Agent Toolkit . NVIDIA 
NeMo Agent Toolkit is an open-source framework for building, profiling, and optimizing 
agents and tools for agentic workflows. NeMo Agent Toolkit also has a profiling and 
benchmarking tool that can be used to determine how an agentic workflow is 
performing on a given architecture. 

For this guide, we used the NeMo Agent Toolkit Sizing and profiling function to test 
simultaneous concurrent users requesting deep research reports on various kinds of 
topics. The profiler in the NeMo Agent Toolkit, collects usage statistics in real time. 
These stats include the time each session/user took to get the detailed report back from 
AI-Q, what the LLM Latency was compared to the overall Workflow latency.  

NeMo Agent Toolkit provides the following metrics that tells how a agentic workflow is 
performing at a given concurrency level (concurrent users utilizing the workflow) 

 

● The P95 LLM Latency (95th percentile LLM latency) column contains the latency, 
in seconds, across all LLM invocations. If multiple models are used, the value will 
trend towards the latency of the model with the highest latency. 

● The P95 WF Runtime (95th percentile workflow runtime) column contains the 
response time, in seconds, of the workflow and is computed across all runs at the 
specified concurrency. 

● The Total Runtime column contains the total time, in seconds, taken to process 
the entire dataset at a specified concurrency level. 

NeMo Agent Toolkit sizing tool can be given how many concurrent users to run, here is a 
sample out put  

 

Note: AI-Q also has man in the middle function, this function helps a user refine the created report further 
to their liking, the benchmarking tests done here did not test this feature. 

 

Setup NeMo Agent Toolkit  to benchmark AI-Q 
 

On a linux system that’s outside the Enterprise RA cluster, setup NeMo Agent Toolkit 

Clone the NeMo Agent Toolkit repository to the benchmarking system 

 

git clone -b main https://github.com/NVIDIA/NeMo-Agent-Toolkit.git nemo-agent-toolkit 
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cd nemo-agent-toolkit 

 

 

Initialize, fetch, and update submodules in the Git repository 

git submodule update --init --recursive 

 

Create a Python environment 

uv venv --python 3.12 --seed .venv 
source .venv/bin/activate  

 

Install the NeMo Agent Toolkit library. To install the NeMo Agent Toolkit library along 
with all of the optional dependencies. Including developer tools (--all-groups) and all of 
the dependencies needed for profiling and plugins (--all-extras) in the source repository, 
run the following: 

uv sync --all-groups --all-extras 

 

In addition to plugins, there are optional dependencies needed for profiling. To install 
these dependencies, run the following: 

uv pip install -e '.[profiling]' 

 

Load Python modules needed for NeMo Agent Toolkit to talk to AI-Q Workflows 

uv pip install --no-deps -e ../aiq-research-assistant/aira 

 

Getting Started With Sizing a GPU Cluster 

To begin, set the configuration file and output directory. 

cd <NAT-root-directory> 
export CALC_OUTPUT_DIR=.tmp/sizing_calc/ 
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export CONFIG_FILE=${CALC_OUTPUT_DIR}aiq-test.yml 
mkdir -p ${CALC_OUTPUT_DIR} 

 

 
Datasets needed for prompt during sizing 
The sizing tool config file, needs a dataset that has a list of prompts that it can use to 
run concurrent users tests. This is a JSON format file and can have any no. of entries. 
For benchmarking we used the dataset.json file in Appendix C. This file needs to be 
copied into the NeMo Agent Toolkit folder under .tmp directory 

Configuration File for NeMo Agent Toolkit to run sizing 
We need to add a evaluation config file to let NeMo Agent Toolkit know where the 
workflow is, what are the different LLMs to test, how to access the LLM, and what 
datasets to use,please add a YAML config file called aiq-test-rtxpro6k.yml in the 
.tmp/sizing_calc folder in NeMo Agent Toolkit. 

This file, provided in Appendix D has the evaluation sections, please update the config 
file with the right IP/endpoints for NIM-LLM from RAG, the Instruct-LLM from AI-Q and 
the RAG server URL. Also, if needed update the Phoenix app endpoint to send traces for 
the benchmarking tests 

Run Benchmarking  
Activate virtual environment 

cd ~/tmp/NeMo-Agent-Toolkit 
source .venv/bin/activate 
uv pip install --no-deps -e ../../aiq-research-assistant/ 
 

Export Tavily API key 

export TAVILY_API_KEY="tvly-prod-redacted" 

 

Run The Sizing calculator 
The example below shows a concurrency run for 1 and 5, this can be changed or 
more concurrencies added to the command 
 
nat sizing calc   --config_file .tmp/sizing_calc/aiq-test-rtxpro6k.yml   --calc_output_dir 
.tmp/sizing_calc/concurrency_era_1_5   --concurrencies 1,5 
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Scale Methodology 

To establish the benchmarking on RTX PRO 6000 BSE GPUs, we started load testing AI-
Q with a 1X scale of all the components, this means on the 9 node cluster, every 
component deployed between RAG and AI-Q was running at 1X scale. We started NeMo 
Agent Toolkit sizing to get NIM Latency and Workflow Latency at different incremental 
concurrency ranges at 1X scale, the concurrency we ran was from 2, 4, 8 etc till 256 
users. We would then scale the reasoning NIM to 2X scale, doubling the total no. of pods 
and hence GPU consumption and fetch the NIM Latency and Workflow latency at the 
same concurrencies. The goal was to make sure the LLM Latency and the Workflow 
latency dropped as we scaled the reasoning NIM LLM pods. We did this till we maxed out 
all the GPUs in the cluster at 32X NIM LLM scale, where all the 72 GPUs we consumed.  

 

Table 3. Scale and Benchmarking runs tested 

 

Overall 
Scale 

Reasoning NIM 
Scale  

(Nemotron 
Super 49B) 

Instruct NIM 
Scale  

(Meta Lama 
70B) 

Precision Other RAG 
Component

s Scale  

Concurrency 

1X 1 Pod ( 2 GPUs) 1 Pod ( 1 
GPU) 

fp8 1X 2,4,8,16,32,6
4,96,128,25
6 

2X 2 Pod ( 4 GPUs) 1 Pod ( 1 
GPU) 

fp8 1X 2,4,8,16,32,6
4,96,128,25
6 

4X 4 Pod ( 8 GPUs) 1 Pod ( 1 
GPU) 

fp8 1X 2,4,8,16,32,6
4,96,128,25
6 

8X 8 Pod ( 16 GPUs) 1 Pod ( 1 
GPU) 

fp8 1X 2,4,8,16,32,6
4,96,128,25
6 

16X 16 Pod ( 32 
GPUs) 

1 Pod ( 1 
GPU) 

fp8 1X 2,4,8,16,32,6
4,96,128,25
6 
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32X 32 Pod ( 64 
GPUs) 

1 Pod ( 1 
GPU) 

fp8 1X 2,4,8,16,32,6
4,96,128,25
6 

Other Scale Options Tested 

1X 1 Pod ( 2 GPUs) 2 Pod ( 2 
GPU) 

fp8 1X 2,4,8,16,32,6
4 

1X  1 Pod ( 2 GPUs) 1 Pod ( 1 
GPU) 

fp8 Reranker 2X 2,4,8,16,32,6
4 

1X -32X 1 Pod ( 2 GPUs)-
32 Pod (54 
GPUs) 

1 Pod ( 1 
GPU) 

nvfp4 1X 2,4,8,16,32,6
4 

 

We also ran scaling exercises where we would scale the Instruct LLM instead on the 
Reasoning NIM to check the overall impact at different concurrencies. We even scaled 
Nemotron reranker in RAG’s pipeline to test how that impacts the overall latency of the 
workflow. Earlier benchmarking tests were done with bf16 precision as well. 

 
Scale the reasoning NIM LLM from 1 X to 2X, please wait till all the pods are online. 

kubectl scale statefulset rag-nim-llm --replicas=2 -n rag 

Check if all the NIM -LLM pods are running  
Kubectl get pods -n rag  
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Benchmarking and Scale testing Results 
for AI-Q  
 

Performance tests were conducted using different numbers of concurrent users. The 
results, shown below, were generated by scaling various components from both the RAG 
and AI-Q blueprints. A few observations based on the runs 

● On an average, each concurrent user call in AI-Q was generating ~17,000 -24,000 
output tokens per session, so the overall ISL/OSL for AI-Q was 20/20000, see 
Figure 6 from the Phoenix server capturing spans and tokens  

● AI-Q does at least two rounds of reasoning rounds to check for relevancy of the 
output tokens generated, see Figure 7 capturing the overall workflow 

● We initially used precision of bf16 and moved to fp8 precision for NIM this 
improved the overall latency by ~20% 

● When a large number of requests come to the Nemotron Super 49B NIM pod, the 
backend service of the pod limits the total number of requests to 4 for latency 
profile, and to 5 for throughput profile, this is cause of the optimizations done on 
the NIM for RTX PRO 6000 GPUs, keeping the host framebuffer memory in mind 
and also the KV cache usage needed to store context. As a result of this, few 
requests are waiting in the queue to process. The results here capture the p95 
latency numbers, however the average latency is almost half the p95 latency. For 
example, the requests that get in the first batch complete the workflow in 6 
minutes, however the requests that are in queue can take ~17-20  minutes. 

 

Figure 6. Phoenix app showcasing the average tokens per session and P50/P95 latencies 
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Figure 7. Gantt chart showcasing where the workflow spends time 
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Latency Impact of Reasoning Model Scale 

The Nemotron Super 49B reasoning model significantly influences both overall workflow 
latency and NIM LLM latency. Scaling the Reasoning Model NIM resulted in a latency 
reduction of approximately 10-30% for the same number of concurrent users. This is 
when the precision of the model is already set to fp8. Most other components part of 
the RAG and AI-Q blueprint did not reach max usage when running benchmarking tests. 
See Figure 8 for the overall GPU consumption of various components in the system. 
While AI-Q Nemotron Instruct NIM, was also high in usage, it did not contribute primarily 
to the overall workflow latency. 

Figure 8. Overall GPU usage of various components 

 

 

Latency v/s Concurrent Users at Scale 

As we scaled the reasoning LLM pods from 1X  till 32X, the overall workflow latency kept 
increasing as more concurrent users were added. Concurrent users at 96 were above the 
knee for latency. Concurrent users above 96 showed a higher drop in latency. See Figure 
9. for reference. Overall, at 32X the workflow latency was lower by approximately ~30 % 
than at 2X scale.   
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Figure 9 . Workflow Latency v/s Concurrent Users at scale 

 

 

 

AI-Q scales Linearly  
The AI-Q system demonstrated linear scalability with the Reasoning LLM NIM. 
Specifically, when the Reasoning LLM NIM was doubled (2X scale), the system could 
simultaneously handle twice the number of concurrent users—up to eight—while 
maintaining the workflow latency below 1000 seconds for individual users generating 
reports. This established that AI-Q's scaling performance is directly proportional to the 
system's scaling. Refer to Figure 10 for the benchmarked concurrent user capacity 
achieved under the 1000-second workflow latency constraint. 
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Figure 10. Linear concurrent users with System Scale 

 

 

Latency Drops as Systems Scale 
 

The performance analysis demonstrated a clear correlation between the scaling of the 
Reasoning Large Language Model (LLM) and a reduction in critical latency metrics. 
Specifically, for any defined level of concurrent users, increasing the Reasoning LLM 
resulted in a measurable drop in both the overall LLM processing latency and the end-to-
end Workflow latency.  
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Figure 11. Workflow Latency dropped for a specific concurrency at scale 
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Sizing Guideline  
Below is the sizing guidance for an Enterprise RA 2-8-5-200 Cluster with RTX PRO 6000 
GPUs , a minimum of two nodes will allow for 16 simultaneous users to build reports 
while keeping total workflow latency below 1000 Seconds. As users grow, scaling up the 
Reasoning LLM pods is recommended to keep the workflow latency under 1000 
seconds. This is based on the Biomedical and Finance datasets, as the datasets grow, 
certain components like Milvus, Nemotron reranker etc. will have to be scaled as well. 

 

Table 4 . Sizing RTX PRO 6000 BSE for AIQ on Enterprise RA 2-8-5-200 Architecture 

Reasonin
g Model 

Scale 

Nodes 
(Worke

r) 

RTX PRO 6000 
BSE GPUs 

Concurrenc
y  

Workflow 
Latency 

(Seconds) 

LLM Latency 
(Seconds) 

Estimated 
Throughput 
(Cumulative 

Tokens) 

2X 2 12 8 759.38 112.85 152000 

4X 2 16 16 869.99 117.38 304000 

8X 3 24 32 956.40 120 608000 

16X 5 40 64 951.35 116.60 1216000 

32X 9 72 100 1000 133 1900000 

Conclusion 
AI-Q blueprint is an agentic workflow that leverages an Enterprises existing multi modal 
data to create deep research reports along with internet search. The agentic workflow 
leverage the Nemotron Super 49B reasoning model to reflect and think about the 
results before generating a final report, this creates a very high volume of tokens per 
user session (Approx Average 19000 tokens). For deep research reports the time it takes 
to generate tokens is comparatively higher than most LLM chat/summary use cases. 
RTX PRO 6000 GPUs work for uptill peak usage of 100 users for a latency SLA of 1000 
Seconds. Latency can grow for concurrencies above 128 users. 

To scale and get the most efficiency out of the System for AI-Q 



 

ERA-DAS-004 | 28 
 

● Scaling the reasoning model, Nemotron 49B, has the biggest impact on lowering 
workflow TCO. As more users are added, scale the Nemotorn 49B NIM LLM pod to 
keep consistent workflow latency 

● Select NIM profiles with fp8 precision using TRT-LLM backend and Tensor 
Parallelism of 2 over vLLM backed profiles. 

● Linear scale can be achieved by scaling the reasoning LLM pods 
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Appendix A 
RAG values.YAML for Helm Deployment. 

Note: Please replace the node name in the node-selector field to the host name of a 
node in the cluster. This will allow all non NIM-LLM pods to be scheduled on a single 
node. Makes it easy to scale the NIM-LLM pod later on. 

 

# Custom values for 2 GPU deployment with RTX Pro 6000 GPUs 

# This configuration allocates 2 full GPUs across key services on RTX Pro 6000 nodes 

# Using Nemotron 49B version 1.5 NIM 

 

# Allocate 2 GPUs to the main LLM NIM for Nemotron 49B v1.5 

nim-llm: 

 enabled: true 

 image: 

   repository: nvcr.io/nim/nvidia/llama-3.3-nemotron-super-49b-v1.5 

   tag: "1.14.0" 

 resources: 

   limits: 

     nvidia.com/gpu: 2 

     memory: 128Gi  # Increased from 96Gi 

   requests: 

     nvidia.com/gpu: 2 

     memory: 128Gi  # Increased from 96Gi 

 model: 

   name: "nvidia/llama-3.3-nemotron-super-49b-v1.5" 

 env: 

   - name: NIM_MODEL_NAME 

     value: "nvidia/llama-3.3-nemotron-super-49b-v1.5" 

   - name: NIM_MODEL_PROFILE 
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     value: "610f006b15f3adbdb072da0b4155d8a772332cf1768fb7389ef92a83c31c26dc" 

   # - name: NIM_HTTP_MAX_WORKERS 

   #   value: "10" 

 

# Keep other services on single GPU 

nvidia-nim-llama-32-nv-embedqa-1b-v2: 

 enabled: true 

 nodeSelector: 

   kubernetes.io/hostname: pdx-2852-w01-lr6 

 resources: 

   limits: 

     nvidia.com/gpu: 1 

   requests: 

     nvidia.com/gpu: 1 

 

text-reranking-nim: 

 enabled: true 

 nodeSelector: 

   kubernetes.io/hostname: pdx-2852-w01-lr6 

 resources: 

   limits: 

     nvidia.com/gpu: 1 

   requests: 

     nvidia.com/gpu: 1 

 

# Disable VLM if not needed to save GPU resources 

nim-vlm: 

 enabled: false 
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ingestor-server: 

 nodeSelector: 

   kubernetes.io/hostname: pdx-2852-w01-lr6 

 # Keep ingestion services on single GPU each 

 nv-ingest: 

   nodeSelector: 

     kubernetes.io/hostname: pdx-2852-w01-lr6 

   paddleocr-nim: 

     nodeSelector: 

       kubernetes.io/hostname: pdx-2852-w01-lr6 

     resources: 

       limits: 

         nvidia.com/gpu: 1 

       requests: 

         nvidia.com/gpu: 1 

   

   nemoretriever-graphic-elements-v1: 

     nodeSelector: 

       kubernetes.io/hostname: pdx-2852-w01-lr6 

     resources: 

       limits: 

         nvidia.com/gpu: 1 

       requests: 

         nvidia.com/gpu: 1 

   

   nemoretriever-page-elements-v2: 

     nodeSelector: 
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       kubernetes.io/hostname: pdx-2852-w01-lr6 

     resources: 

       limits: 

         nvidia.com/gpu: 1 

       requests: 

         nvidia.com/gpu: 1 

   

   nemoretriever-table-structure-v1: 

     nodeSelector: 

       kubernetes.io/hostname: pdx-2852-w01-lr6 

     resources: 

       limits: 

         nvidia.com/gpu: 1 

       requests: 

         nvidia.com/gpu: 1 

   

   milvus: 

     standalone: 

       nodeSelector: 

         kubernetes.io/hostname: pdx-2852-w01-lr6 

       resources: 

         limits: 

           nvidia.com/gpu: 1 

   

   redis: 

     image: 

       repository: redis 

       tag: 8.2.1 
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Appendix B 
 

AI-Q Helm values file  

# ------------------------------------------------------------ 

# The following values are for the AIQ AIRA backend service. 

# ------------------------------------------------------------ 

 

replicaCount: 1 

 

# The name of the image pull secret to use for the AIQ container images. 

# Either create the secret manually and update the name here 

# or update the imagePullSecret.password with your NGC API key 

ngcImagePullSecretName: "ngc-secret" 

 

imagePullSecret: 

 create: true 

 name: "ngc-secret" 

 registry: "nvcr.io" 

 username: "$oauthtoken" 

 password: "" #UPDATE THIS 

 

# The image repository and tag for the AIQ AIRA backend service. 

image:  

 repository: nvcr.io/nvidia/blueprint/aira-backend 

 tag: v1.1.0 

 pullPolicy: IfNotPresent 

 

# The service type and port for the main AIQ AIRA backend service 

service: 

 port: 3838 

 

# Update each value according to your desired configuration. 

config: 

 # The instruct_ settings are for the general purpose Q&A LLM 
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 instruct_model_name: "meta/llama-3.3-70b-instruct" 

 instruct_temperature: "0.0" 

 instruct_api_key: "not-needed" 

 instruct_base_url: "http://nim-llm.aira.svc.cluster.local:8000/v1" 

 # The nemotron_ settings are for the reasoning LLM 

 nemotron_api_key: "not-needed" # not needed as we use the nemotron service from the RAG deployment 
which does not require an API key 

 nemotron_model_name: "nvidia/llama-3.3-nemotron-super-49b-v1.5" 

 nemotron_temperature: "0.5" 

 nemotron_base_url: "http://nim-llm.rag.svc.cluster.local:8000/v1" # provided by the RAG deployment 

 nemotron_max_tokens: "5000" 

 nemotron_stream: "true" 

 # Enter your Tavily API key here to enable web search 

 tavily_api_key: "" #UPDATE THIS 

 # Enter the IP address of the RAG services 

 rag_ingest_url: "http://ingestor-server.rag.svc.cluster.local:8082" # provided by the RAG deployment 

 rag_url: "http://rag-server.rag.svc.cluster.local:8081" # provided by the RAG deployment 

 rag_api_key: "" #Typically not required 

 milvus_host: "milvus.rag.svc.cluster.local" # provided by the RAG deployment 

 milvus_port: "19530" 

 

# Do not update this command. It is the default command to launch the AI-Q backend service. 

command: "/entrypoint.sh" 

 

 

# ------------------------------------------------------------ 

# The following values are for the instruct LLM service 

# The nemotron llm is assumed to be deployed via the RAG helm chart 

# ------------------------------------------------------------ 

 

ngcApiSecret: 

 name: "ngc-api" 

 password: "" # UPDATE THIS 

 create: true 

 

nim-llm: 

 enabled: true 

 service: 
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   name: "nim-llm" 

 image: 

     repository: nvcr.io/nim/meta/llama-3.3-70b-instruct 

     pullPolicy: IfNotPresent 

     tag: "1.12.0" 

 resources: 

   limits: 

     nvidia.com/gpu: 1 

   requests: 

     nvidia.com/gpu: 1 

 model: 

   name: "meta/llama-3.3-70b-instruct" 

 env: 

   - name: NIM_MODEL_NAME 

     value: "meta/llama-3.3-70b-instruct" 

   - name: NIM_MODEL_PROFILE 

     value: "257a3035dbddb2a2cd48f5763ee64f972af4ba0dd5ef92ade1dbb478f6cf5dd3" 

 

 

# ------------------------------------------------------------ 

# The following values are for the nginx proxy that enables the AIQ frontend 

# to interact with both the AIQ AIRA backend service and the RAG service 

# 

# You may need to update the RAG service IP address if you have not deployed RAG via helm on the same cluster 

# ------------------------------------------------------------ 

 

nginx: 

  nginxImage: 

   ngcImageRegistry: "" 

   ngcImageRegistryPath: "" 

   name: "nginx" 

   tag: "1.27.0" 

   pullPolicy: Always 

 

 service: 

   port: 8051 
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 nginx_config: 

   conf: |- 

     worker_processes auto; 

 

     events { 

         worker_connections 1024; 

     } 

 

     http { 

         proxy_ssl_server_name on; 

 

         proxy_cache_path /server_cache_llm levels=1:2 keys_zone=llm_cache:10m max_size=20g inactive=14d 
use_temp_path=off; 

 

         proxy_cache_path /server_cache_intel levels=1:2 keys_zone=intel_cache:10m max_size=20g 
inactive=14d use_temp_path=off; 

 

         error_log /dev/stdout info; 

 

         log_format upstream_time '$remote_addr - $remote_user [$time_local] ' 

                                 '"$request" $status $body_bytes_sent ' 

                                 '"$http_referer" "$http_user_agent"' 

                                 'rt=$request_time uct="$upstream_connect_time" uht="$upstream_header_time" 
urt="$upstream_response_time"'; 

 

         log_format cache_log '[$time_local] ($upstream_cache_status) "$request" $status - $body_bytes_sent 
bytes {$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth: 
$http_authorization'; 

 

         log_format no_cache_log '[$time_local] (BYPASSED) "$request" $status - $body_bytes_sent bytes 
{$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth: $http_authorization'; 

 

         log_format mirror_log '[$time_local] (MIRROR) "$request" $status - $body_bytes_sent bytes 
{$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth: $http_authorization'; 

 

         log_format nvai_cache_log '[$time_local] ($upstream_cache_status) "$request" $status - 
$body_bytes_sent bytes {$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth: 
$http_authorization. $upstream_addr'; 

 

         map $http_cache_control $cache_bypass { 
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             no-cache   1; 

         } 

 

         # Log to stdout and a file for searchability 

         access_log /dev/stdout cache_log; 

         access_log /var/log/nginx/access.log cache_log; 

 

         error_log /dev/stdout info; 

         error_log /var/log/nginx/error.log info; 

 

         server { 

           listen 8051; 

           server_name _; 

 

           # Common proxy settings 

           proxy_set_header X-Real-IP $remote_addr; 

           proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; 

           proxy_set_header X-Forwarded-Proto $scheme; 

           proxy_pass_request_headers on; 

 

           # Common buffer settings 

           large_client_header_buffers 4 32k; 

           client_header_buffer_size 4k; 

 

           # Common timeout settings 

           client_body_timeout 900s; 

           client_header_timeout 900s; 

 

           # Common settings for document-related endpoints 

           proxy_read_timeout 600s; 

           proxy_connect_timeout 60s; 

           proxy_send_timeout 600s; 

           client_max_body_size 100M; 

           proxy_max_temp_file_size 0; 

           proxy_buffering on; 

           proxy_buffer_size 1M; 

           proxy_buffers 100 1M; 
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           proxy_busy_buffers_size 2M; 

 

           # Original routes 

           location ~ ^/v1/(status|documents|collections) { 

               proxy_pass http://ingestor-server.rag.svc.cluster.local:8082/$1$is_args$args; 

               proxy_set_header Host http://ingestor-server.rag.svc.cluster.local:8082; 

           } 

 

           # Protected routes 

           location ~ ^/v2/protected/aiq/v1/(status|documents|collections) { 

               proxy_pass http://ingestor-server.rag.svc.cluster.local:8082/$1$is_args$args; 

               proxy_set_header Host http://ingestor-server.rag.svc.cluster.local:8082; 

           } 

 

           # Special case for files route 

           location /v2/protected/aiq/v1/files { 

               proxy_pass http://ingestor-server.rag.svc.cluster.local:8082/v1/documents; 

               proxy_set_header Host http://ingestor-server.rag.svc.cluster.local:8082; 

           } 

 

           # Protected routes AIRA v1 

           location ~ 
^/v2/protected/aiq/v1/((generate_query|generate_summary|artifact_qa|default_collections)(/stream)?)$ { 

               proxy_pass http://aira-aira-backend.aira.svc.cluster.local:3838/$1$is_args$args; 

               proxy_set_header Host http://aira-aira-backend.aira.svc.cluster.local:3838; 

           } 

 

           # Health routes 

           location /v2/protected/aiq/keepalive { 

               default_type text/plain; 

               return 200 "OK";         

           } 

 

           location /v2/protected/aiq/health { 

               default_type text/plain; 

               return 200 "OK";         

           } 
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           location = /health { 

               default_type text/plain; 

               return 200 "OK"; 

           } 

 

           location = /keepalive { 

               default_type text/plain; 

               return 200 "OK"; 

           } 

 

 

           # Catch-all for other protected routes 

           location /v2/protected/aiq/ { 

               rewrite ^/v2/protected/aiq/(.*) /$1 break; 

               proxy_pass http://aira-aira-backend.aira.svc.cluster.local:3838; 

               proxy_set_header Host $host; 

           } 

 

           # Default location for all other routes 

           location / { 

               proxy_pass http://aira-aira-backend.aira.svc.cluster.local:3838; 

               proxy_set_header Host $host; 

           } 

 

           error_page 500 502 503 504 /50x.html; 

           location = /50x.html { 

               root /usr/share/nginx/html; 

           } 

       } 

 

 

     } 

 

# ------------------------------------------------------------ 

# The following values are for the AIQ AIRA frontend service. 

# ------------------------------------------------------------ 
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# The frontend application is a React web app. We recommend a NodePort so the frontend will be accessible at 
<your-node-ip>:3001 

frontend: 

 enabled: true 

 # Update the value below to the IP address and port of the nginx service 

 proxyUrl: http://aira-nginx.aira.svc.cluster.local:8051 

 service: 

   port: 3001 

   targetPort: 3001 

 

 image: 

   repository: nvcr.io/nvidia/blueprint/aira-frontend 

   tag: v1.1.0 

   pullPolicy: IfNotPresent 

 

 replicaCount: 1 

 

# ------------------------------------------------------------ 

# The following values are optional utility services 

# ------------------------------------------------------------ 

 

# Enables the Phoenix tracing service 

phoenix: 

 enabled: true 

 image: 

   repository: arizephoenix/phoenix 

   tag: latest 

   pullPolicy: IfNotPresent 

 resources: 

   limits: 

     cpu: 500m 

     memory: 512Mi 

   requests: 

     cpu: 200m 

     memory: 256Mi 
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Appendix C  
 

Evaluation Dataset , research_assistant_dataset.json 

[ 

 { 

   "id": 1, 

   "question": "{\"topic\": \"Artificial Intelligence in Healthcare\", \"report_organization\": \"Research 

applications, benefits, challenges, and future prospects\", \"search_web\": true, \"rag_collection\": 

\"biomedical_dataset\", \"num_queries\": 3, \"llm_name\": \"nemotron\"}", 

   "answer": "A comprehensive report on AI in healthcare." 

 }, 

 { 

   "id": 2, 

   "question": "{\"topic\": \"Machine Learning in Finance\", \"report_organization\": \"Examine ML applications 

in financial services\", \"search_web\": true, \"rag_collection\": \"financial_dataset\", \"num_queries\": 3, 

\"llm_name\": \"nemotron\"}", 

   "answer": "Analysis of ML in finance." 

 }, 

 { 

   "id": 3, 

   "question": "{\"topic\": \"Climate Change and Renewable Energy\", \"report_organization\": \"Analyze impact 

on renewable energy adoption\", \"search_web\": true, \"rag_collection\": \"\", \"num_queries\": 3, 

\"llm_name\": \"nemotron\"}", 

   "answer": "Research on climate change and energy." 

 } 

] 
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Appendix D 
 

File to run NeMo Agent Toolkit sizing against AI-Q, aiq-test-rtxpro6k.yml 

 

general: 

 use_uvloop: true 

 telemetry: 

   tracing: 

     phoenix: 

       _type: phoenix 

       endpoint: http://10.184.203.86:6006/v1/traces 

       project: default 

 front_end: 

   _type: fastapi 

   endpoints: 

     - path: /generate_query 

       method: POST 

       description: Creates the query 

       function_name: generate_query 

     - path: /generate_summary 

       method: POST 

       description: Generates the summary 

       function_name: generate_summary 

     - path: /artifact_qa 

       method: POST 

       description: Q/A or chat about a previously generated artifact 

       function_name: artifact_qa 

     - path: /aiqhealth 
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       method: GET 

       description: Health check for the AIQ AIRA service 

       function_name: health_check 

     - path: /default_collections 

       method: GET 

       description: Get the default collections 

       function_name: default_collections 

     # Add profiler endpoint 

     - path: /analyze_performance 

       method: POST 

       description: Analyze performance metrics using profiler agent 

       function_name: profiler_agent 

 

 

llms: 

 instruct_llm: 

   _type: openai 

   model_name: meta/llama-3.3-70b-instruct 

   temperature: 0.0 

   base_url: http://10.184.203.82:8000/v1 

   api_key: not-needed 

   stream: false 

   max_retries: 1  # Default is 3 

   timeout: 120 

  nemotron: 

   _type: openai 

   model_name: nvidia/llama-3.3-nemotron-super-49b-v1.5 

   temperature: 0.0 
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   base_url: http://10.184.203.83:8000/v1 

   stream: false 

   api_key: not-needed 

   max_retries: 1  # Default is 3 

   timeout: 120 

 

functions: 

 generate_query: 

   _type: generate_queries 

   llm_name: nemotron 

 

 generate_summary: 

   _type: generate_summaries 

   rag_url: http://10.184.203.84:8081/v1 

   timeout: 60 

 

 artifact_qa: 

   _type: artifact_qa 

   llm_name: instruct_llm 

   rag_url: http://10.184.203.84:8081/v1 

   timeout: 60 

 

 # Add profiler agent and related tools 

 profiler_agent: 

   _type: profiler_agent 

   llm_name: instruct_llm 

   max_iterations: 4 

   max_retries: 3 
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   tools: 

     - px_query 

     - flow_chart 

     - token_usage 

     - response_composer 

   output_dir: .tmp/aiq/aira/profiler_agent/  # Add persistent storage 

 

 px_query: 

   _type: px_query 

   phoenix_url: http://10.184.203.86:6006 

   time_window_seconds: 600000 

   default_project_name: default 

 

 flow_chart: 

   _type: flow_chart 

 

 token_usage: 

   _type: token_usage 

 

 response_composer: 

   _type: response_composer 

 

 

 

workflow: 

 _type: ai_researcher 

 timeout: 600 
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eval: 

 general: 

   output_dir: .tmp/eval/aiq-test-rtxpro6k 

   dataset: 

     _type: json 

     file_path: .tmp/research_assistant_dataset.json 

   profiler: 

     base_metrics: true 

     token_uniqueness_forecast: false 

     workflow_runtime_forecast: false 

     compute_llm_metrics: true 

     csv_exclude_io_text: true 

     prompt_caching_prefixes: 

       enable: false 

       min_frequency: 0.1 

     bottleneck_analysis: 

       enable_nested_stack: false 

  # # Evaluators for quality assessment during sizing calculations 

 # evaluators: 

 #   research_quality_evaluator: 

 #     _type: tunable_rag_evaluator 

 #     llm_name: instruct_llm  # Using your existing LLM 

 #     judge_llm_prompt: | 

 #       You are an expert evaluator for AI research assistant outputs. Assess the quality of the generated research 

content based on: 

 #       1. Coverage: How comprehensively does it address the research question? 

 #       2. Correctness: How accurate and factual is the information? 

 #       3. Relevance: How relevant is the content to the specific research domain? 
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 #       4. Citation Quality: How well are sources cited and referenced? 

       

 #       Rate each aspect from 0.0 to 1.0. 

 #     default_scoring: true 

 #     default_score_weights: 

 #       coverage: 0.3 

 #       correctness: 0.3 

 #       relevance: 0.2 

 #       citation_quality: 0.2 
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