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The current landscape of Enterprise Al is rapidly evolving, shifting from just having a
dialogue with a large language model (LLM) to actually having sophisticated, goal-
oriented Agentic Workflows. This shift is driven by the need to not just generate
responses from an LLM but to also to have an Al do tasks based on the information
retrieved. Most Enterprises have a vast amount of data in PDFs or other documents that
can be used to ask complex questions, Retrieval Augmented Generation (RAG) can help
answer questions within Enterprise data, however if there are more complex questions
that require private as well as Public Internet data, we need an agent that can fetch data
from both sources, reflect on it and provide detailed reports. In this paper, we look at the
NVIDIA Al-Q Research Agent blueprint, an agentic system that can generate detailed
reports based on both internal and external data. We walk through how to deploy, how
to scale and provide sizing guidance.

The current enterprise landscape is characterized by a rapidly escalating volume of
proprietary, internal data—often siloed within numerous systems like document
repositories, knowledge bases, and collaborative platforms. Simultaneously, the demand
for sophisticated, evidence-based decision-making is driving enterprises toward
deploying advanced Al systems. However, traditional Large Language Model (LLM)
deployments face significant hurdles:

e Data Siloing & Limited RAG: Internal knowledge is untapped because LLMs use
public data. Basic RAG lacks multi-step reasoning across diverse, proprietary
sources.

e Lack of Agency & Complex Reasoning: LLMs struggle with goal-oriented tasks
needing planning and iterative refinement. Users need a " Research Agent" for
synthesizing reports from internal and external data.

e Deployment Complexity & Scalability: Deploying powerful agentic Al requires
significant GPUs and complex orchestration. Lack of sizing guidance leads to high
costs and bottlenecks.

NVIDIA Blueprints simplify the deployment and management of complex Al systems
offering pre-validated architecture that automates dependency management between



various components, and uses Helm for easy deployment and scaling. The NVIDIA Al-Q
Research Agent blueprint directly addresses these challenges by providing a robust,
scalable, and agentic framework. Al-Q uses RAG for retrieval, can consume multiple data
sources, reason between different datasources, search the web for any additional
research and provide a detailed report on a given subject. Al-Q provides the open
blueprint and reference architecture for building next-generation agents, while NeMo
Agent Toolkit is the underlying control layer, that integrates with other frameworks like
LangChain, Llamalndex, etc., and connects, profiles, and optimizes Al agents across
frameworks and infrastructure..

Scope

This paper covers how to scale, size and optimize Al-Q Research Agent and covers the
following components on Enterprise Reference Architecture.

Out of scope: Al-Q allows a human in the loop feature, this feature was not used when
conducting performance tests for Al-Q.

Tablel. Scope of NVIDIA Blueprints, NVIDIA NIM versions along with GPUs tested

Al-Q Blueprint v.1.2.0 w/ RTX PRO 6000 BSE
Meta Llama 70B NIM v latest

RAG Blueprint v.2.3.0 RTX PRO 6000 BSE
With
Nemotron Super 49B 1.5 NIM v 1.14.0

NeMo Agent Toolkit v.1.2.0 RTX PRO 6000 BSE

Target Audience

This guide is meant to help NVIDIA partners architecting agentic solutions for deep
research based on existing enterprise data. This guide helps determine Infrastructure
and sizing requirements for cluster-level deployments. The guide can be used for both
new and existing deployments to determine the capacity and scale needed based on
Deep Research workload. It can also be used by the following Personas as they architect
their Enterprise solutions.
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Enterprise Architects: Enterprise Architects tasked with designing and defining servers,
GPU’s and Networking gear to determine what Infrastructure resources will be needed
to support Deep Research agents.

MLOps Engineer: MLOps Engineers can use this to define Infrastructure requirements
as they talk to Infrastructure/Cloud teams to carve out resources to run Agentic
workflows for Deep Research.

Platform Engineer: Platform Engineers can use this guide to determine how to design
their Container Environment around Kubernetes, and also what kind of resources will be
needed by the cluster to support Deep research agents.

System Overview and Architecture

This paper was validated on Enterprise Reference Architecture in the 2-8-5-200
configuration using RTX PRO 6000 Blackwell Server Edition GPUs , with Cluster
Software Reference stack version 25.09 and Al-Q, and RAG deployed on top of it.

Figure 1. System Overview

Perf Test

Enterprise RA 2-8-5-200
(RTX PRO 6000 GPUs)
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Al-Q is an advanced agentic framework designed for deep, comprehensive research. It
functions by employing a Retrieval-Augmented Generation (RAG) system to extract and
contextualize information from existing enterprise documents. It leverages Tavily
internet search agent for external information gathering. This combination allows Al-Q
to correlate and reason about topics from disparate internal files, integrate external
data, and ultimately synthesize all fetched information into a complete report.

Figure 2: Al-Q Blueprint Architecture
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Here are the key components of Al-Q

This component handles enterprise data onboarding and indexing. NeMo Retriever
extraction is used to chunk and embed multi-modal data from multiple sources, the
embeddings are then stored in a Vector Database like Milvus. This pipeline is part of the
NVIDIA RAG Blueprint. The tests conducted for performance used two different
datasets, these are uploaded and part of the blueprint on Github.

The datasets used were:
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e Biomedical_Dataset: Scientific journals on the Cystic Fibrosis CFTR gene from
2021-2024

e Financial_Dataset: Financial reports from Apple, Facebook, Google, Meta from
2020-2024

The RAG layer provides grounded context retrieval for LLM inference, this executes
semantic and hybrid search across our datasets. Applies metadata filtering, reranking,
returns high-relevance context to minimize hallucination. The RAG blueprint used here
uses NVIDIA Nemotron 49B Super v1.5 as the NIM LLM to perform the reasoning for a
given research. We call this the Reasoning NIM for reference hench forth in the
document configs

This is part of the blueprint responsible for coming up with the initial plan based on the
users instruction, the Instruct LLM used in the blueprint is Meta Llama 70B, it judges
the response from the RAG and Reasoning LLM , determines if additional internet search
is needed, if needed, it will kick off Tavily to perform a search. The Instruct LLM, then
also synthesizes the final response by combining retrieved context with the user’s
instruction, while enforcing format, tone, or policy constraints

Al-Q helm charts can optionally also deploy Phoenix. Phoenix is an open source Al
observability platform designed for experimentation, evaluation, and troubleshooting.
Phoenix can help evaluate where the toolkit spends time, show traces of entire agentic
workflows, records time series based metrics over open telemetry like tokens generated,
latency etc.

Phoenix is a great tool to visualize how the agentic workflow is behaving, where are the
bottlenecks if any.

This guide is part of NVIDIA Enterprise Reference Architecture, which covers certified
hardware, software stack, and sizing recommendations to design, build, and scale an
end-to-end accelerated computing cluster deployment with balanced CPU to GPU to NIC
patterns. The Enterprise Reference architecture provides guided and detailed hardware
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and software architecture recommended by NVIDIA for optimal server, cluster, and
network configuration needed to build and scale Al factories.

NVIDIA Enterprise Reference Architecture includes hardware design recommendations,
generic software stack configurations, and scalability.

Hardware Enterprise Reference Architecture

For this version of the document, we used NVIDIA's 2-8-5-200 Enterprise RA reference
configuration for the overall stack. The PCle-Optimized 2-8-5-200 ( CPU-GPU-NIC-
Bandwidth) reference configuration is for NVIDIA-Certified compute nodes using PCle
GPUs, allowing you to deploy up to 8 GPUs with up to 5 NICs balanced with 2 CPUs. This
pattern can scale from 4 to up to 32 nodes in a cluster. The Enterprise RA design
recommends using Spectrum-X Ethernet Networking Platform - Combining Spectrum-4
Ethernet switches and NVIDIA Bluefield-3 SuperNICs for optimized networking.

Figure 3. System architecture of Enterprise RA 2-8-5-200 reference configuration
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Note: For the detailed hardware design, refer to NVIDIA 2-8-5-200 with RTX PRO 6000
BSE NVIDIA Spectrum Platforms Enterprise Reference Architecture: NVOnline:1125114
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Table 2. Specification of Individual Components in the server with NVIDIA RTX PRO 6000
Blackwell Server Edition GPUs

CPUs AMD EPYC 9555 64-Core Processor 64
cores 3200 MT/s
GPUs 8 x NVIDIA RTX PRO 6000 BSE
Networking - E/W 4 x NVIDIA BlueField-3, B3140H
Networking - N/S 1 x NVIDIA BlueField-3, B3220
Host Memory 32 x 64 GB DRAM (2048)
Host Boot Drive 2x896 GB(~1.8TB)
Host Storage 2 x 3.84TB Storage (~7.6 TB)

The systems are connected with NVIDIA SN5600 switches. For this particular guide, we
are using NFS Storage that has been deployed on the BCM head node to provide
Persistent Volumes for uploading embedded Enterprise documents. Enterprise
customers can use their storage systems to provide storage volumes needed by
Kubernetes and NIM inference microservices.

For this test we used a pool of 9 servers with 8 NVIDIA RTX PRO 6000 BSE GPUs per
node. The complete cluster has 72 GPUs in total.

Software Stack

The software stack used for this environment leverages the bare-metal servers with
Kubernetes as the cluster orchestration tool. BCM is part of the NVIDIA Al Enterprise
software suite, and it provides all the tools you need to deploy and manage an Al
datacenter. It also helps in deploying a Kubernetes cluster on top of the bare-metal
servers to create a pool of GPU resources. BCM is then used to deploy all the operators
like the GPU Operator, Network Operator, NIM Operator, etc. to run the GPUs and
Network cards effectively. We then deploy a NIM service, picking the model for which
the Inference service needs to be tested and scaled. We installed Run:ai version 2.2
using the Saa$S format.

Figure 5. Overview of the overall deployment stack
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This test environment uses NVIDIA Al Enterprise software to install and configure the
necessary software and tools required to efficiently deploy and operate an Al factory.
Once servers are racked and networked, NVIDIA BCM is used to image individual servers,
deploying Ubuntu 24.04 as the operating system, installing NVIDIA GPU and network
drivers, and setting up Kubernetes clusters.

Beyond these core capabilities, the deployment also aligns the software dependencies
for various components required for Kubernetes cluster operations, such as a Container
Network Interface (CNI) for managing container networks, NGINX Ingress Controller
for handling cluster ingress traffic, and MetalLB for load balancing services, Prometheus
and Grafana to visualize overall stack metrics and also provides firmware to configure
and optimize OS like Cumulus Linux for the NVIDIA Spectrum switches, firmware for the
Bluefield Super NICs etc.

Note: For detailed Software reference design, refer to NVIDIA Software Reference Stack
and automation for Enterprise RA - vanilla Kubernetes: NVOnline : 1141332
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System Configuration

This section provides a step by step instruction on how the blueprints are deployed once
the Cluster Software Reference stack has been deployed and configured.

Assumptions

e The environment has egress to the internet enabled

Pre-requisites for installing RAG and Al-Q

e A Kubernetes Cluster with a supported version installed with NVIDIA GPU
Operator and NVIDIA Network Operator installed, which should already be in place
if the NVIDIA Software Enterprise RA is followed.

e Active Subscription to NVAIE and Access to the NGC Enterprise Catalog. Please
generate and download your nvcr.io access token in NGC.

e Account in Tavily and an Access token to Tavily API, this will be needed for AI-Q
to run internet search agent

e Install Helm in the Kubernetes Cluster and download the helm CLI. This should
have been installed if the Software Enterprise RA is followed.

e Access to Kubernetes Clusters config file and “kubectl™ CLI installed, this file is
in the Enterprise RA cluster BCMe head node under /<user>/.kube/config

e A default Storage Class is defined to create Persistent Volume Claims by
Kubernetes, this can be an NFS or Block-based storage class, the storage class
name is default.

e Ability to create two namespaces in the Kubernetes cluster. rag, aiq

Deploy and Configure RAG Blueprint

NVIDIA RAG Blueprint can be deployed in multiple ways, for the purpose of this
document and respect to the Enterprise Software Reference Architecture we are using
Helm as the deployment method. For detailed information on Helm and how to deploy
RAG using Helm, refer to the NVIDIA Github Repository here.

From the system that has access to the Kubernetes APl and has Helm deployed, run the
following on the command prompt
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Export the NGC API KEY
export NGC_API_KEY="nvapi-<redacted>"

Create a directory for RAG, CD to it and fetch the RAG repo

mkdir rag
cd rag
Git clone https://github.com/NVIDIA-Al-Blueprints/rag.git

Add the appropriate Helm Repos to the cluster

helm repo add nvidia-nim https://helm.ngc.nvidia.com/nim/nvidia/ --username='$oauthtoken’ --
password=$NGC_API_KEY

helm repo add nim https://helm.ngc.nvidia.com/nim/ --username='$oauthtoken' --
password=$NGC_API_KEY

helm repo add nemo-microservices https://helm.ngc.nvidia.com/nvidia/nemo-microservices --
username="'$oauthtoken’ --password=$NGC_API_KEY

helm repo add baidu-nim https://helm.ngc.nvidia.com/nim/baidu --username="'$oauthtoken’ --
password=$NGC_API_KEY

helm repo add bitnami https://charts.bitnami.com/bitnami

helm repo add otel https://open-telemetry.github.io/opentelemetry-helm-charts

helm repo add zipkin https://zipkin.io/zipkin-helm

helm repo add prometheus https://prometheus-community.github.io/helm-charts

Change the directory

cd rag/deploy/helm

create a namespace for RAG

kubectl create namespace rag

Update the default values from RAG Helm chart to work with RTX PRO 6000 BSE GPUs,
copy and paste the default values file to a new file name in the rag/deploy/helm folder
called values-2gpu-rtxpro6000.yaml. The detailed YAML file for this config is provided in
Appendix A, RAG Config, below are key things to update in the file
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Ensure under the NIM section, the model is updated with Nemotron 49B v1.5 with the
right NIM profile for RTX PRO with fp8 precision

nim-lim:
enabled: true
image:
repository: nvcr.io/nim/nvidia/llama-3.3-nemotron-super-49b-v1.5
tag: "1.14.1"
resources:
limits:

nvidia.com/gpu: 2
memory: 128Gi # Increased from 96Gi
requests:
nvidia.com/gpu: 2
memory: 128Gi # Increased from 96Gi
model:
name: "nvidia/llama-3.3-nemotron-super-49b-v1.5"
env:
- name: NIM_MODEL_NAME
value: "nvidia/llama-3.3-nemotron-super-49b-v1.5"
- name: NIM_MODEL_PROFILE
value: "610f006b 15f3adbdb072da0b4155d8a772332cf1768fb7389ef92a83c31c26dc"

Also, if needed you can provide a specific node in the cluster to deploy rest of the RAG
components

Install RAG using Helm

helm upgrade --install rag -n rag https://helm.ngc.nvidia.com/nvidia/blueprint/charts/nvidia-blueprint-
rag-v2.2.0.tgz -f values-2gpu-rtxpro6000.yaml \

--username '$oauthtoken'\

--password "${NGC_API_KEY}" \

--set imagePullSecret.

password=$NGC_API_KEY \

--set ngcApiSecret.password=$NGC_API_KEY

Update Helm Dependencies

helm dependency update nvidia-blueprint-rag
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At this point RAG has been deployed and configured, the pods for RAG nim-llm-0 will be
be deployed, these pods will take a few minutes to go into “running” state along with
other components and also the RAG server and nim-Ilm will have services created in
Kubernetes with cluster IP. We need to make sure that the RAG server and the NIM LLM
have IP addresses that can be reached by the benchmarking RAG tool. For this exercise
we used External Loadbalancing IPs for both these services, you can do the same

Edit the NIM-LLM service, RAG server to use Load Balancing IP

kubectl patch service nim-llm -n rag \
-p '{"spec":{"type":"LoadBalancer","ports":[{"port":8000,"targetPort":8000}]}}'

kubectl patch service rag-server -n rag \
-p '{"spec":{"type":"LoadBalancer","ports":[{"port":8081,"targetPort":808 1}]}}'

At this point the setup should have the RAG pipeline deployed with all its components in
Milvus in a standalone fashion.

We are deploying the NVIDIA Al-Q blueprint from Github Repo here.
Clone the Git Repo into a folder called aiq

git clone https://github.com/NVIDIA-AI-Blueprints/aig-research-assistant

Set environment variables, on the system from which you are installing Al-Q

export NGC_API_KEY="nvapi-xxx” # your API key
export TAVILY_API_KEY="yyy” # your Tavily APl key, optional for web search

Create a namespace:

kubectl create namespace aira
cd aig-research-assistant/

Add the Al-Q helm chart

ERA-DAS-004 | 12


https://github.com/NVIDIA-AI-Blueprints/aiq-research-assistant
https://github.com/NVIDIA-AI-Blueprints/aiq-research-assistant

helm repo add nvidia-nim https://helm.ngc.nvidia.com/nim/nvidia/ --username='$oauthtoken’ --
password=$NGC_API_KEY

helm repo add nim https://helm.ngc.nvidia.com/nim/ --username="'$oauthtoken' --
password=$NGC_API_KEY

helm repo add nvidia-nim https://helm.ngc.nvidia.com/nim \
--username='$oauthtoken' \
--password=$NGC_API_KEY

We need to change the default Helm Values file for our system, copy the values.yaml file
in the folder under deploy/helm/aig-aira to a file called values-rtx-pro-6k.yaml in the
deploy/helm folder. We will be editing the file to make some key changes.

Update the nim-Iim section to point to the version of the latest version of NIM with the
correct profile for RTX PRO 6000 BSE GPUs
nim-lim:
enabled: true
service:
name: "nim-Iim"
image:
repository: nvcr.io/nim/meta/llama-3.3-70b-instruct
pullPolicy: IfNotPresent
tag: "1.12.0"
resources:
limits:
nvidia.com/gpu: 1
requests:
nvidia.com/gpu: 1
model:
name: "meta/llama-3.3-70b-instruct”
env:
- name: NIM_MODEL_NAME
value: "meta/llama-3.3-70b-instruct”
- name: NIM_MODEL_PROFILE
value: "257a3035dbddb2a2cd48f5763ee64f972af4ba0dd5ef92ade 1dbb478f6cf5dd3"

Detailed config YAML for AI-Q is provided in Appendix B of this document
Deploy the AI-Q Helm Chart

helm upgrade --install aira -n aiq deploy/helm/aig-aira -f deploy/helm/aig-aira/values-rtx-pro-6k.yaml \
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--set imagePullSecret.password=$NGC_API_KEY \
--set ngcApiSecret.password=$NGC_API_KEY \
--set tavilyApiSecret.password=$TAVILY_API_KEY

Once Al-Q has been deployed, make sure all the pods are up and running.

We then need to make the frontend and the NIM-IIm pod available with an IP so we can
reach it from outside the cluster. We also need to expose the Phoenix pod to trace the
benchmarking tests as well as the instruct-lim in Al-Q

kubectl patch svc aira-aira-frontend -n aiq -p '{"spec": {"type": "LoadBalancer"”, "ports": [{"name": "http",
"port": 3001, "NodePort": 30001}1}}

kubectl patch service instruct-llm -n aiq \
-p '{"spec":{"type":"LoadBalancer","ports":[{"port":8000,"targetPort":8000}]}}'

kubectl patch service aig-aira-phoenix -n aiq \
-p '{"spec":{"type":"LoadBalancer","ports":[{"port":60006,"targetPort":6006}]}}'

By now we should have Al-Q deployed and all the services loadbalanced. We are now
going to ingest two datasets within the system using NeMo Retriever extraction.

Ingesting Enterprise Data for Research

RAG and Al-Q blueprint have been configured and deployed, we now need to
ingest Enterprise files, data that can be used by AI-Q to conduct deep
research.This will be done using NeMo Retriever extraction, an open source
library that is part of the RAG pipeline. Individual files can be added to RAG in a
single Collection, or multiple collections can be created as well.

The Al research assistant demo web application requires two default collections.
One collection supports a biomedical research prompt and contains reports on
Cystic Fibrosis. The second supports a financial research prompt and contains
public financial documents from Alphabet, Meta, and Amazon.

To load these default collections, apply the standalone Kubernetes job:
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Set the RAG_INGEST_URL environment variable based on your RAG deployment.
First we need to port forward the rag ingestor service

kubectl port-forward -n rag service/ingestor-server 8082:8082
export RAG_INGEST_URL="http://localhost:8082"

On the same node where RAG_INGEST_URL was set above, create a Python
environment with the correct dependencies:

uv python install 3.12
uv venv --python 3.12 --python-preference managed
uv run pip install -r data/requirements.txt

Copy the Enterprise zip files intended for user research into the current directory for
upload. These files will be ingested into the RAG system, enabling Al-Q users to conduct
in-depth research.

Note: This folder already has the default Financial and Bio Medical Collection needed for
the benchmarking of this folder

cd data
cp files/*.
Run the ingest:

uv run python zip_to_collection.py

By now the RAG and AI-Q have been installed and the data needed for deep research is
already embedded and ingested into Milvus.
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NVIDIA AI-Q is an agentic solution based on the NVIDIA NeMo™ Agent Toolkit . NVIDIA
NeMo Agent Toolkit is an open-source framework for building, profiling, and optimizing
agents and tools for agentic workflows. NeMo Agent Toolkit also has a profiling and
benchmarking tool that can be used to determine how an agentic workflow is
performing on a given architecture.

For this guide, we used the NeMo Agent Toolkit Sizing and profiling function to test
simultaneous concurrent users requesting deep research reports on various kinds of
topics. The profiler in the NeMo Agent Toolkit, collects usage statistics in real time.
These stats include the time each session/user took to get the detailed report back from
Al-Q, what the LLM Latency was compared to the overall Workflow latency.

NeMo Agent Toolkit provides the following metrics that tells how a agentic workflow is
performing at a given concurrency level (concurrent users utilizing the workflow)

e The P95 LLM Latency (95th percentile LLM latency) column contains the latency,
in seconds, across all LLM invocations. If multiple models are used, the value will
trend towards the latency of the model with the highest latency.

e The P95 WF Runtime (95th percentile workflow runtime) column contains the
response time, in seconds, of the workflow and is computed across all runs at the
specified concurrency.

e The Total Runtime column contains the total time, in seconds, taken to process
the entire dataset at a specified concurrency level.

NeMo Agent Toolkit sizing tool can be given how many concurrent users to run, here is a
sample out put

Note: Al-Q also has man in the middle function, this function helps a user refine the created report further
to their liking, the benchmarking tests done here did not test this feature.

On a linux system that’s outside the Enterprise RA cluster, setup NeMo Agent Toolkit

Clone the NeMo Agent Toolkit repository to the benchmarking system

git clone -b main https://github.com/NVIDIA/NeMo-Agent-Toolkit.git nemo-agent-toolkit
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cd nemo-agent-toolkit

Initialize, fetch, and update submodules in the Git repository
git submodule update --init --recursive

Create a Python environment

uv venv --python 3.12 --seed .venv
source .venv/bin/activate

Install the NeMo Agent Toolkit library. To install the NeMo Agent Toolkit library along
with all of the optional dependencies. Including developer tools (--all-groups) and all of
the dependencies needed for profiling and plugins (--all-extras) in the source repository,
run the following:

uv sync --all-groups --all-extras

In addition to plugins, there are optional dependencies needed for profiling. To install
these dependencies, run the following:

uv pip install -e ".[profiling]’

Load Python modules needed for NeMo Agent Toolkit to talk to Al-Q Workflows
uv pip install --no-deps -e ../aig-research-assistant/aira

Getting Started With Sizing a GPU Cluster

To begin, set the configuration file and output directory.

cd <NAT-root-directory>
export CALC_OUTPUT_DIR=.tmp/sizing_calc/
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export CONFIG_FILE=${CALC_OUTPUT_DIR}aig-test.yml
mkdir -p ${CALC_OUTPUT_DIR}

Datasets needed for prompt during sizing

The sizing tool config file, needs a dataset that has a list of prompts that it can use to
run concurrent users tests. This is a JSON format file and can have any no. of entries.
For benchmarking we used the dataset.json file in Appendix C. This file needs to be
copied into the NeMo Agent Toolkit folder under .tmp directory

Configuration File for NeMo Agent Toolkit to run sizing

We need to add a evaluation config file to let NeMo Agent Toolkit know where the
workflow is, what are the different LLMs to test, how to access the LLM, and what
datasets to use,please add a YAML config file called aig-test-rtxpro6k.yml in the
.tmp/sizing_calc folder in NeMo Agent Toolkit.

This file, provided in Appendix D has the evaluation sections, please update the config
file with the right IP/endpoints for NIM-LLM from RAG, the Instruct-LLM from Al-Q and
the RAG server URL. Also, if needed update the Phoenix app endpoint to send traces for
the benchmarking tests

Run Benchmarking

Activate virtual environment

cd ~/tmp/NeMo-Agent-Toolkit
source .venv/bin/activate
uv pip install --no-deps -e ../../aig-research-assistant/

Export Tavily API key
export TAVILY_API_KEY="tvly-prod-redacted"

Run The Sizing calculator
The example below shows a concurrency run for 1 and 5, this can be changed or
more concurrencies added to the command

nat sizing calc --config_file .tmp/sizing_calc/aig-test-rtxpro6k.yml --calc_output_dir
.tmp/sizing_calc/concurrency_era_1_5 --concurrencies 1,5
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Scale Methodology

To establish the benchmarking on RTX PRO 6000 BSE GPUs, we started load testing Al-
Q with a 1X scale of all the components, this means on the 9 node cluster, every
component deployed between RAG and Al-Q was running at 1X scale. We started NeMo
Agent Toolkit sizing to get NIM Latency and Workflow Latency at different incremental
concurrency ranges at 1X scale, the concurrency we ran was from 2, 4, 8 etc till 256
users. We would then scale the reasoning NIM to 2X scale, doubling the total no. of pods
and hence GPU consumption and fetch the NIM Latency and Workflow latency at the
same concurrencies. The goal was to make sure the LLM Latency and the Workflow
latency dropped as we scaled the reasoning NIM LLM pods. We did this till we maxed out
all the GPUs in the cluster at 32X NIM LLM scale, where all the 72 GPUs we consumed.

Table 3. Scale and Benchmarking runs tested

1X 1 Pod (2GPUs) | 1Pod(1 fp8 1X 2,4,8,16,32,6
GPU) 4,96,128,25
6
2X 2 Pod (4 GPUs) | 1Pod(1 fp8 1X 2,4,8,16,32,6
GPU) 4,96,128,25
6
4X 4 Pod (8 GPUs) [ 1Pod(1 fp8 1X 2,4,8,16,32,6
GPU) 4,96,128,25
6
8X 8 Pod (16 GPUs) [ 1 Pod ( 1 fp8 1X 2,4,8,16,32,6
GPU) 4,96,128,25
6
16X 16 Pod (32 1 Pod (1 fp8 1X 2,4,8,16,32,6
GPUs) GPU) 4,96,128,25
6
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32X 32 Pod (64 1 Pod (1 fp8 1X 2,4,8,16,32,6
GPUs) GPU) 4,96,128,25
6
Other Scale Options Tested
1X 1 Pod (2 GPUs) |2 Pod (2 fp8 1X 2,4,8,16,32,6
GPU) 4
1X 1 Pod(2GPUs) | 1Pod(1 fp8 Reranker 2X | 2,4,8,16,32,6
GPU) 4
1X-32X | 1 Pod (2 GPUs)- [ 1Pod (1 nvfp4 1X 2,4,8,16,32,6
32 Pod (54 GPU) 4
GPUs)

We also ran scaling exercises where we would scale the Instruct LLM instead on the
Reasoning NIM to check the overall impact at different concurrencies. We even scaled
Nemotron reranker in RAG’s pipeline to test how that impacts the overall latency of the
workflow. Earlier benchmarking tests were done with bf16 precision as well.

Scale the reasoning NIM LLM from 1 X to 2X, please wait till all the pods are online.

kubectl scale statefulset rag-nim-llm --replicas=2 -n rag

Check if all the NIM -LLM pods are running

Kubectl get pods -n rag
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Performance tests were conducted using different numbers of concurrent users. The
results, shown below, were generated by scaling various components from both the RAG
and Al-Q blueprints. A few observations based on the runs

e On an average, each concurrent user call in Al-Q was generating ~17,000 -24,000
output tokens per session, so the overall ISL/OSL for Al-Q was 20/20000, see
Figure 6 from the Phoenix server capturing spans and tokens

e AI-Q does at least two rounds of reasoning rounds to check for relevancy of the
output tokens generated, see Figure 7 capturing the overall workflow

e We initially used precision of bf16 and moved to fp8 precision for NIM this
improved the overall latency by ~20%

e When a large number of requests come to the Nemotron Super 49B NIM pod, the
backend service of the pod limits the total number of requests to 4 for latency
profile, and to 5 for throughput profile, this is cause of the optimizations done on
the NIM for RTX PRO 6000 GPUs, keeping the host framebuffer memory in mind
and also the KV cache usage needed to store context. As a result of this, few
requests are waiting in the queue to process. The results here capture the p95
latency numbers, however the average latency is almost half the p95 latency. For
example, the requests that get in the first batch complete the workflow in 6
minutes, however the requests that are in queue can take ~17-20 minutes.

Figure 6. Phoenix app showcasing the average tokens per session and P50/P95 latencies
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Figure 7. Gantt chart showcasing where the workflow spends time

Gantt Chart of Nested Calls (All Examples)
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The Nemotron Super 49B reasoning model significantly influences both overall workflow
latency and NIM LLM latency. Scaling the Reasoning Model NIM resulted in a latency
reduction of approximately 10-30% for the same number of concurrent users. This is
when the precision of the model is already set to fp8. Most other components part of
the RAG and AI-Q blueprint did not reach max usage when running benchmarking tests.
See Figure 8 for the overall GPU consumption of various components in the system.
While Al-Q Nemotron Instruct NIM, was also high in usage, it did not contribute primarily
to the overall workflow latency.

Figure 8. Overall GPU usage of various components
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As we scaled the reasoning LLM pods from 1X till 32X, the overall workflow latency kept
increasing as more concurrent users were added. Concurrent users at 96 were above the
knee for latency. Concurrent users above 96 showed a higher drop in latency. See Figure
9. for reference. Overall, at 32X the workflow latency was lower by approximately ~30 %
than at 2X scale.
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Figure 9. Workflow Latency v/s Concurrent Users at scale
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The AI-Q system demonstrated linear scalability with the Reasoning LLM NIM.
Specifically, when the Reasoning LLM NIM was doubled (2X scale), the system could
simultaneously handle twice the number of concurrent users—up to eight—while
maintaining the workflow latency below 1000 seconds for individual users generating
reports. This established that Al-Q's scaling performance is directly proportional to the
system's scaling. Refer to Figure 10 for the benchmarked concurrent user capacity
achieved under the 1000-second workflow latency constraint.
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Figure 10. Linear concurrent users with System Scale
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The performance analysis demonstrated a clear correlation between the scaling of the
Reasoning Large Language Model (LLM) and a reduction in critical latency metrics.
Specifically, for any defined level of concurrent users, increasing the Reasoning LLM
resulted in a measurable drop in both the overall LLM processing latency and the end-to-
end Workflow latency.
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Figure 11. Workflow Latency dropped for a specific concurrency at scale
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Sizing Guideline

Below is the sizing guidance for an Enterprise RA 2-8-5-200 Cluster with RTX PRO 6000
GPUs , a minimum of two nodes will allow for 16 simultaneous users to build reports
while keeping total workflow latency below 1000 Seconds. As users grow, scaling up the
Reasoning LLM pods is recommended to keep the workflow latency under 1000
seconds. This is based on the Biomedical and Finance datasets, as the datasets grow,
certain components like Milvus, Nemotron reranker etc. will have to be scaled as well.

Table 4. Sizing RTX PRO 6000 BSE for AlQ on Enterprise RA 2-8-5-200 Architecture

2X 2 12 8 759.38 112.85 152000

4X ) 16 16 869.99 117.38 304000

8X 3 24 32 956.40 120 608000

16X 5 40 64 951.35 116.60 1216000

32X 9 72 100 1000 133 1900000
Conclusion

Al-Q blueprint is an agentic workflow that leverages an Enterprises existing multi modal
data to create deep research reports along with internet search. The agentic workflow
leverage the Nemotron Super 49B reasoning model to reflect and think about the
results before generating a final report, this creates a very high volume of tokens per
user session (Approx Average 19000 tokens). For deep research reports the time it takes
to generate tokens is comparatively higher than most LLM chat/summary use cases.
RTX PRO 6000 GPUs work for uptill peak usage of 100 users for a latency SLA of 1000
Seconds. Latency can grow for concurrencies above 128 users.

To scale and get the most efficiency out of the System for Al-Q
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e Scaling the reasoning model, Nemotron 49B, has the biggest impact on lowering
workflow TCO. As more users are added, scale the Nemotorn 49B NIM LLM pod to
keep consistent workflow latency

e Select NIM profiles with fp8 precision using TRT-LLM backend and Tensor
Parallelism of 2 over vLLM backed profiles.

e Linear scale can be achieved by scaling the reasoning LLM pods
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Appendix A

RAG values.YAML for Helm Deployment.

Note: Please replace the node name in the node-selector field to the host name of a
node in the cluster. This will allow all non NIM-LLM pods to be scheduled on a single
node. Makes it easy to scale the NIM-LLM pod later on.

nim-Ilm
enabled: true
image
repository: nvcr.io/nim/nvidia/llama-3.3-nemotron-super-49b-v1.5
tag: "1.14.0
resources
limits
nvidia.com/gpu: 2
memory: 128Gi
requests
nvidia.com/gpu: 2
memory: 128Gi
model
name: "nvidia/llama-3.3-nemotron-super-49b-v1.5
env
name: NIM_MODEL_NAME
value: "nvidia/llama-3.3-nemotron-super-49b-v1.5
name: NIM_MODEL_PROFILE
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value: "610f006b 15f3adbdb072da0b4155d8a772332cf1768fb7389ef92a83¢c31¢c26dc

nvidia-nim-llama-32-nv-embedga-1b-v2
enabled: true
nodeSelector

kubernetes.io/hostname: pdx-2852-w01-Ir6
resources

limits

nvidia.com/gpu: 1

requests

nvidia.com/gpu: 1

text-reranking-nim
enabled: true

nodeSelector

kubernetes.io/hostname: pdx-2852-w01-Ir6

resources
limits
nvidia.com/gpu: 1
requests

nvidia.com/gpu: 1

nim-vim

enabled: false
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ingestor-server
nodeSelector

kubernetes.io/hostname: pdx-2852-w01-Ir6

nv-ingest
nodeSelector

kubernetes.io/hostname: pdx-2852-w01-Ir6
paddleocr-nim

nodeSelector

kubernetes.io/hostname: pdx-2852-w01-Ir6

resources

limits

nvidia.com/gpu: 1
requests

nvidia.com/gpu: 1

nemoretriever-graphic-elements-v1

nodeSelector

kubernetes.io/hostname: pdx-2852-w01-Ir6

resources
limits
nvidia.com/gpu: 1
requests

nvidia.com/gpu: 1

nemoretriever-page-elements-v2

nodeSelector
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kubernetes.io/hostname: pdx-2852-w01-Ir6
resources
limits
nvidia.com/gpu: 1
requests

nvidia.com/gpu: 1

nemoretriever-table-structure-v1
nodeSelector
kubernetes.io/hostname: pdx-2852-w01-Ir6
resources
limits
nvidia.com/gpu: 1

requests

nvidia.com/gpu: 1

milvus
standalone
nodeSelector
kubernetes.io/hostname: pdx-2852-w01-Ir6
resources
limits

nvidia.com/gpu: 1

redis
image
repository: redis

tag: 8.2.1
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Appendix B

Al-Q Helm values file

replicaCount: 1

ngclmagePullSecretName: "ngc-secret

imagePullSecret

create: true

name: "ngc-secret
registry: "nvcr.io
username: "$oauthtoken

password

image

repository: nver.io/nvidia/blueprint/aira-backend
tag:v1.1.0

pullPolicy: IfNotPresent

service

port: 3838




instruct_model_name: "meta/llama-3.3-70b-instruct
instruct_temperature: "0.0
instruct_api_key: "not-needed

instruct_base_url: "http://nim-lim.aira.svc.cluster.local:8000/v1

nemotron_api_key: "not-needed

nemotron_model_name: "nvidia/llama-3.3-nemotron-super-49b-v1.5
nemotron_temperature: "0.5

nemotron_base_url: "http://nim-lim.rag.svc.cluster.local:8000/v 1
nemotron_max_tokens: "5000

nemotron_stream: "true

tavily_api_key

rag_ingest_url: "http://ingestor-server.rag.svc.cluster.local:8082

rag_url: "http://rag-server.rag.svc.cluster.local:808 1
rag_api_key
milvus_host: "milvus.rag.svc.cluster.local

milvus_port: "19530

command: "/entrypoint.sh

ngcApiSecret
name: "ngc-api
password

create: true

nim-llm
enabled: true

service
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name: "nim-llm
image
repository: nvcr.io/nim/meta/llama-3.3-70b-instruct
pullPolicy: IfNotPresent
tag: "1.12.0
resources
limits
nvidia.com/gpu: 1

requests

nvidia.com/gpu: 1

model

name: "meta/llama-3.3-70b-instruct
env

name: NIM_MODEL_NAME

value: "meta/llama-3.3-70b-instruct

name: NIM_MODEL_PROFILE

value: "257a3035dbddb2a2cd48f5763ee64f972af4ba0dd5ef92ade 1dbb478f6cf5dd3

nginx

nginxlmage
ngclmageRegistry
ngclmageRegistryPath
name: "nginx

tag: "1.27.0
pullPolicy: Always

service

port: 8051
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nginx_config
conf: |-

worker_processes auto;

events {

worker_connections 1024;

http {

proxy_ssl_server_name on;

proxy_cache_path /server_cache_llm levels=1:2 keys_zone=Ilm_cache:10m max_size=20g inactive=14d
use_temp_path=off;

proxy_cache_path /server_cache_intel levels=1:2 keys_zone=intel_cache:10m max_size=20g
inactive=14d use_temp_path=off;

error_log /dev/stdout info;

log_format upstream_time '$remote_addr - $remote_user [$time_local] '
"$request” $status $body_bytes_sent '
"$http_referer" "$http_user_agent™

rt=$request_time uct="$upstream_connect_time" uht="$upstream_header_time"
urt="$upstream_response_time";

log_format cache_log '[$time_local] ($upstream_cache_status) "$request” $status - $body_bytes_sent
bytes {$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth:
$http_authorization’;

log_format no_cache_log '[$time_local] (BYPASSED) "$request” $status - $body_bytes_sent bytes
{$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth: $http_authorization’;

log_format mirror_log '[$time_local] (MIRROR) "$request” $status - $body_bytes_sent bytes
{$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth: $http_authorization’;

log_format nvai_cache_log '[$time_local] ($upstream_cache_status) "$request” $status -
$body_bytes_sent bytes {$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth:
$http_authorization. $upstream_addr’;

map $http_cache_control $cache_bypass {

ERA-DAS-004 | 37




no-cache 1;

# Log to stdout and a file for searchability

access_log /dev/stdout cache_log;

access_log /var/log/nginx/access.log cache_log;

error_log /dev/stdout info;

error_log /var/log/nginx/error.log info;

server {
listen 8051;

server_name _;

# Common proxy settings

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

proxy_pass_request_headers on;

# Common buffer settings
large_client_header_buffers 4 32k;

client_header_buffer_size 4k;

# Common timeout settings
client_body_timeout 900s;

client_header_timeout 900s;

# Common settings for document-related endpoints
proxy_read_timeout 600s;

proxy_connect_timeout 60s;

proxy_send_timeout 600s;

client_max_body_size 100M;
proxy_max_temp_file_size O;

proxy_buffering on;

proxy_buffer_size 1M;

proxy_buffers 100 1M;
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proxy_busy_buffers_size 2M;

# Original routes
location ~ ~/v1/(status|documents]|collections) {
proxy_pass http://ingestor-server.rag.svc.cluster.local:8082/$ 1$is_args$args;

proxy_set_header Host http://ingestor-server.rag.svc.cluster.local:8082;

# Protected routes
location ~ ~/v2/protected/aig/v1/(status|documents|collections) {
proxy_pass http://ingestor-server.rag.svc.cluster.local:8082/$ 1$is_args$args;

proxy_set_header Host http://ingestor-server.rag.svc.cluster.local:8082;

# Special case for files route
location /v2/protected/aig/v1/files {
proxy_pass http://ingestor-server.rag.svc.cluster.local:8082/v1/documents;

proxy_set_header Host http://ingestor-server.rag.svc.cluster.local:8082;

# Protected routes AIRA v1

location ~
Afv2/protected/aig/v1/((generate_query|generate_summarylartifact_galdefault_collections)(/stream)?)$ {

proxy_pass http://aira-aira-backend.aira.svc.cluster.local:3838/$ 1$is_args$args;

proxy_set_header Host http://aira-aira-backend.aira.svc.cluster.local:3838;

# Health routes

location /v2/protected/aig/keepalive {
default_type text/plain;
return 200 "OK";

location /v2/protected/aig/health {
default_type text/plain;
return 200 "OK";
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location = /health {
default_type text/plain;
return 200 "OK";

location = /keepalive {
default_type text/plain;
return 200 "OK";

# Catch-all for other protected routes
location /v2/protected/aiq/ {
rewrite A/v2/protected/aiq/(.*) /$1 break;
proxy_pass http://aira-aira-backend.aira.svc.cluster.local:3838;

proxy_set_header Host $host;

# Default location for all other routes

location / {

proxy_pass http://aira-aira-backend.aira.svc.cluster.local:3838;

proxy_set_header Host $host;

error_page 500 502 503 504 /50x.html;
location = /50x.html {

root /usr/share/nginx/html;
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frontend

enabled: true

proxyUrl: http://aira-nginx.aira.svc.cluster.local:805 1
service

port: 3001

targetPort: 3001

image

repository: nvcr.io/nvidia/blueprint/aira-frontend
tag:v1.1.0

pullPolicy: IfNotPresent

replicaCount: 1

phoenix
enabled: true

image

repository: arizephoenix/phoenix

tag: latest

pullPolicy: IfNotPresent
resources

limits

cpu: 500m

memory: 512Mi
requests

cpu: 200m

memory: 256Mi
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Appendix C

Evaluation Dataset , research_assistant_dataset.json

id": 1
question”: "{\"topic\": \"Artificial Intelligence in Healthcare\", \"report_organization\": \"Research

applications, benefits, challenges, and future prospects\", \"search_web\": true, \"rag_collection\":

\"biomedical_dataset\", \"num_queries\": 3, \"llm_name\": \"nemotron\"}

answer": "A comprehensive report on Al in healthcare.

id": 2
question”: "{\"topic\": \"Machine Learning in Finance\", \"report_organization\": \"Examine ML applications

in financial services\", \"search_web\": true, \"rag_collection\": \"financial_dataset\", \"num_queries\": 3,

\"llm_name\": \"nemotron\"}

answer": "Analysis of ML in finance.

id": 3

question”: "{\"topic\": \"Climate Change and Renewable Energy\", \"report_organization\": \"Analyze impact

on renewable energy adoption\", \"search_web\": true, \"rag_collection\": \"\", \"num_queries\": 3,

\"llm_name\": \"nemotron\"}

answer": "Research on climate change and energy.
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Appendix D

File to run NeMo Agent Toolkit sizing against Al-Q, aig-test-rtxpro6k.yml

general
use_uvloop: true
telemetry
tracing
phoenix
_type: phoenix
endpoint: http://10.184.203.86:6006/v 1/traces
project: default
front_end
_type: fastapi
endpoints
path: /generate_query
method: POST
description: Creates the query
function_name: generate_query
path: /generate_summary
method: POST
description: Generates the summary
function_name: generate_summary
path: /artifact_ga
method: POST
description: Q/A or chat about a previously generated artifact
function_name: artifact_qga

path: /aighealth
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method: GET

description: Health check for the AIQ AIRA service
function_name: health_check

path: /default_collections

method: GET

description: Get the default collections

function_name: default_collections

path: /analyze_performance
method: POST
description: Analyze performance metrics using profiler agent

function_name: profiler_agent

lIms
instruct_llm
_type: openai
model_name: meta/llama-3.3-70b-instruct

temperature: 0.0

base_url: http://10.184.203.82:8000/v 1

api_key: not-needed

stream: false

max_retries: 1

timeout: 120

nemotron

_type: openai

model_name: nvidia/llama-3.3-nemotron-super-49b-v1.5

temperature: 0.0
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base_url: http://10.184.203.83:8000/v 1
stream: false

api_key: not-needed

max_retries: 1

timeout: 120

functions
generate_query
_type: generate_queries

[lm_name: nemotron

generate_summary
_type: generate_summaries
rag_url: http://10.184.203.84:8081/v1

timeout: 60

artifact_qga
_type: artifact_qa

[lIm_name: instruct_lIm

rag_url: http://10.184.203.84:8081/v1

timeout: 60

profiler_agent

_type: profiler_agent
[lIm_name: instruct_lIm
max_iterations: 4

max_retries: 3
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tools
px_query
flow_chart
token_usage

response_composer

output_dir: .tmp/aig/aira/profiler_agent/

px_query
_type: px_query

phoenix_url: http://10.184.203.86:6006
time_window_seconds: 600000

default_project_name: default

flow_chart

_type: flow_chart

token_usage

_type: token_usage

response_composer

_type: response_composer

workflow
_type: ai_researcher

timeout: 600
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eval

general

output_dir: .tmp/eval/aig-test-rtxpro6k

dataset
_type: json
file_path: .tmp/research_assistant_dataset.json
profiler
base_metrics: true
token_uniqueness_forecast: false
workflow_runtime_forecast: false
compute_llm_metrics: true
csv_exclude_io_text: true
prompt_caching_prefixes
enable: false
min_frequency: 0.1
bottleneck_analysis

enable_nested_stack: false
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