

AI-Q NVIDIA Research Agent Blueprint
for Enterprise RA

Deployment, Scale and Sizing Guide

Version 01

ERA-DAS-004 | 2

Table of Contents

Abstract 1
Introduction 1

Scope 2

Target Audience 2

System Overview and Architecture 3

AI-Q NVIDIA Research Agent 3

Data Ingestion and Preparation Pipeline 4

RAG (Retrieval-Augmented Generation) Framework 5

AI-Q Instruct LLM and Toolchain 5

Performance and Observability 5

Enterprise Reference Architecture Overview (RA) 5

Hardware Enterprise Reference Architecture 5

Software Reference Stack 7

System Configuration 9
Assumptions 9

Pre-requisites for installing RAG and AI-Q 9

Deploy and Configure RAG Blueprint 9

Deploy and Configure AI-Q Blueprint 12

Ingesting Enterprise Data for Research 14

Benchmarking and Scale Methodology 16
Setup Nemo Agent Toolkit (NAT) to benchmark AI-Q 16

Getting Started With Sizing a GPU Cluster 17

Datasets needed for prompt during sizing 18

Configuration File for NAT to run sizing 18

Run Benchmarking 18

Scale Methodology 19

Benchmarking and Scale testing Results for AI-Q 21
Latency Impact of Reasoning Model Scale 24

Latency v/s Concurrent Users at Scale 24

AI-Q scales Linearly 25

Latency Drops as Systems Scale 26

Sizing Guideline 28
Conclusion 28

Appendix A 30
Appendix B 34

ERA-DAS-004 | 3

Appendix C 42
Appendix D 43
Appendix E 49

Abstract

The current landscape of Enterprise AI is rapidly evolving, shifting from just having a
dialogue with a large language model (LLM) to actually having sophisticated, goal-
oriented Agentic Workflows. This shift is driven by the need to not just generate
responses from an LLM but to also to have an AI do tasks based on the information
retrieved. Most Enterprises have a vast amount of data in PDFs or other documents that
can be used to ask complex questions, Retrieval Augmented Generation (RAG) can help
answer questions within Enterprise data, however if there are more complex questions
that require private as well as Public Internet data, we need an agent that can fetch data
from both sources, reflect on it and provide detailed reports. In this paper, we look at the
NVIDIA AI-Q Research Agent blueprint, an agentic system that can generate detailed
reports based on both internal and external data. We walk through how to deploy, how
to scale and provide sizing guidance.

Introduction
The current enterprise landscape is characterized by a rapidly escalating volume of
proprietary, internal data—often siloed within numerous systems like document
repositories, knowledge bases, and collaborative platforms. Simultaneously, the demand
for sophisticated, evidence-based decision-making is driving enterprises toward
deploying advanced AI systems. However, traditional Large Language Model (LLM)
deployments face significant hurdles:

● Data Siloing & Limited RAG: Internal knowledge is untapped because LLMs use
public data. Basic RAG lacks multi-step reasoning across diverse, proprietary
sources.

● Lack of Agency & Complex Reasoning: LLMs struggle with goal-oriented tasks
needing planning and iterative refinement. Users need a " Research Agent" for
synthesizing reports from internal and external data.

● Deployment Complexity & Scalability: Deploying powerful agentic AI requires
significant GPUs and complex orchestration. Lack of sizing guidance leads to high
costs and bottlenecks.

NVIDIA Blueprints simplify the deployment and management of complex AI systems
offering pre-validated architecture that automates dependency management between

ERA-DAS-004 | 2

various components, and uses Helm for easy deployment and scaling. The NVIDIA AI-Q
Research Agent blueprint directly addresses these challenges by providing a robust,
scalable, and agentic framework. AI-Q uses RAG for retrieval, can consume multiple data
sources, reason between different datasources, search the web for any additional
research and provide a detailed report on a given subject. AI-Q provides the open
blueprint and reference architecture for building next‑generation agents, while NeMo
Agent Toolkit is the underlying control layer, that integrates with other frameworks like
LangChain, LlamaIndex, etc., and connects, profiles, and optimizes AI agents across
frameworks and infrastructure..

Scope

This paper covers how to scale, size and optimize AI-Q Research Agent and covers the
following components on Enterprise Reference Architecture.

Out of scope: AI-Q allows a human in the loop feature, this feature was not used when
conducting performance tests for AI-Q.

Table1. Scope of NVIDIA Blueprints, NVIDIA NIM versions along with GPUs tested

NVIDIA Components NVIDIA GPUs

AI-Q Blueprint v.1.2.0 w/
Meta Llama 70B NIM v latest

RTX PRO 6000 BSE

RAG Blueprint v.2.3.0
With
Nemotron Super 49B 1.5 NIM v 1.14.0

RTX PRO 6000 BSE

NeMo Agent Toolkit v.1.2.0 RTX PRO 6000 BSE

Target Audience

This guide is meant to help NVIDIA partners architecting agentic solutions for deep
research based on existing enterprise data. This guide helps determine Infrastructure
and sizing requirements for cluster-level deployments. The guide can be used for both
new and existing deployments to determine the capacity and scale needed based on
Deep Research workload. It can also be used by the following Personas as they architect
their Enterprise solutions.

https://github.com/NVIDIA-AI-Blueprints/aiq-research-assistant
https://github.com/NVIDIA-AI-Blueprints/rag
https://github.com/NVIDIA/NeMo-Agent-Toolkit

ERA-DAS-004 | 3

Enterprise Architects: Enterprise Architects tasked with designing and defining servers,
GPU’s and Networking gear to determine what Infrastructure resources will be needed
to support Deep Research agents.

MLOps Engineer: MLOps Engineers can use this to define Infrastructure requirements
as they talk to Infrastructure/Cloud teams to carve out resources to run Agentic
workflows for Deep Research.

Platform Engineer: Platform Engineers can use this guide to determine how to design
their Container Environment around Kubernetes, and also what kind of resources will be
needed by the cluster to support Deep research agents.

System Overview and Architecture
This paper was validated on Enterprise Reference Architecture in the 2-8-5-200
configuration using RTX PRO 6000 Blackwell Server Edition GPUs , with Cluster
Software Reference stack version 25.09 and AI-Q, and RAG deployed on top of it.

Figure 1. System Overview

ERA-DAS-004 | 4

AI-Q NVIDIA Research Agent

AI-Q is an advanced agentic framework designed for deep, comprehensive research. It
functions by employing a Retrieval-Augmented Generation (RAG) system to extract and
contextualize information from existing enterprise documents. It leverages Tavily
internet search agent for external information gathering. This combination allows AI-Q
to correlate and reason about topics from disparate internal files, integrate external
data, and ultimately synthesize all fetched information into a complete report.

Figure 2: AI-Q Blueprint Architecture

Here are the key components of AI-Q

Data Ingestion and Preparation Pipeline
This component handles enterprise data onboarding and indexing. NeMo Retriever
extraction is used to chunk and embed multi-modal data from multiple sources, the
embeddings are then stored in a Vector Database like Milvus. This pipeline is part of the
NVIDIA RAG Blueprint. The tests conducted for performance used two different
datasets , these are uploaded and part of the blueprint on Github.

The datasets used were:

ERA-DAS-004 | 5

● Biomedical_Dataset: Scientific journals on the Cystic Fibrosis CFTR gene from
2021-2024

● Financial_Dataset: Financial reports from Apple, Facebook, Google, Meta from
2020-2024

RAG (Retrieval-Augmented Generation) Framework
The RAG layer provides grounded context retrieval for LLM inference, this executes
semantic and hybrid search across our datasets. Applies metadata filtering, reranking,
returns high-relevance context to minimize hallucination. The RAG blueprint used here
uses NVIDIA Nemotron 49B Super v1.5 as the NIM LLM to perform the reasoning for a
given research. We call this the Reasoning NIM for reference hench forth in the
document configs

AI-Q Instruct LLM and Toolchain
This is part of the blueprint responsible for coming up with the initial plan based on the
users instruction, the Instruct LLM used in the blueprint is Meta Llama 70B, it judges
the response from the RAG and Reasoning LLM , determines if additional internet search
is needed, if needed, it will kick off Tavily to perform a search. The Instruct LLM, then
also synthesizes the final response by combining retrieved context with the user’s
instruction, while enforcing format, tone, or policy constraints

Performance and Observability
AI-Q helm charts can optionally also deploy Phoenix. Phoenix is an open source AI
observability platform designed for experimentation, evaluation, and troubleshooting.
Phoenix can help evaluate where the toolkit spends time, show traces of entire agentic
workflows, records time series based metrics over open telemetry like tokens generated,
latency etc.

Phoenix is a great tool to visualize how the agentic workflow is behaving, where are the
bottlenecks if any.

Enterprise Reference Architecture Overview (RA)
This guide is part of NVIDIA Enterprise Reference Architecture, which covers certified
hardware, software stack, and sizing recommendations to design, build, and scale an
end-to-end accelerated computing cluster deployment with balanced CPU to GPU to NIC
patterns. The Enterprise Reference architecture provides guided and detailed hardware

ERA-DAS-004 | 6

and software architecture recommended by NVIDIA for optimal server, cluster, and
network configuration needed to build and scale AI factories.

NVIDIA Enterprise Reference Architecture includes hardware design recommendations,
generic software stack configurations, and scalability.

Hardware Enterprise Reference Architecture
For this version of the document, we used NVIDIA's 2-8-5-200 Enterprise RA reference
configuration for the overall stack. The PCIe-Optimized 2-8-5-200 (CPU-GPU-NIC-
Bandwidth) reference configuration is for NVIDIA-Certified compute nodes using PCIe
GPUs, allowing you to deploy up to 8 GPUs with up to 5 NICs balanced with 2 CPUs. This
pattern can scale from 4 to up to 32 nodes in a cluster. The Enterprise RA design
recommends using Spectrum-X Ethernet Networking Platform - Combining Spectrum-4
Ethernet switches and NVIDIA Bluefield-3 SuperNICs for optimized networking.

Figure 3. System architecture of Enterprise RA 2-8-5-200 reference configuration

 Note: For the detailed hardware design, refer to NVIDIA 2-8-5-200 with RTX PRO 6000
BSE NVIDIA Spectrum Platforms Enterprise Reference Architecture: NVOnline :1125114

ERA-DAS-004 | 7

Table 2. Specification of Individual Components in the server with NVIDIA RTX PRO 6000
Blackwell Server Edition GPUs

Component Specification

CPUs AMD EPYC 9555 64-Core Processor 64
cores 3200 MT/s

GPUs 8 x NVIDIA RTX PRO 6000 BSE

Networking – E/W 4 x NVIDIA BlueField-3, B3140H

Networking – N/S 1 x NVIDIA BlueField-3, B3220

Host Memory 32 x 64 GB DRAM (2048)

Host Boot Drive 2 x 896 GB (~1.8 TB)

Host Storage 2 x 3.84TB Storage (~7.6 TB)

The systems are connected with NVIDIA SN5600 switches. For this particular guide, we
are using NFS Storage that has been deployed on the BCM head node to provide
Persistent Volumes for uploading embedded Enterprise documents. Enterprise
customers can use their storage systems to provide storage volumes needed by
Kubernetes and NIM inference microservices.

For this test we used a pool of 9 servers with 8 NVIDIA RTX PRO 6000 BSE GPUs per
node. The complete cluster has 72 GPUs in total.

Software Stack
The software stack used for this environment leverages the bare-metal servers with
Kubernetes as the cluster orchestration tool. BCM is part of the NVIDIA AI Enterprise
software suite, and it provides all the tools you need to deploy and manage an AI
datacenter. It also helps in deploying a Kubernetes cluster on top of the bare-metal
servers to create a pool of GPU resources. BCM is then used to deploy all the operators
like the GPU Operator, Network Operator, NIM Operator, etc. to run the GPUs and
Network cards effectively. We then deploy a NIM service, picking the model for which
the Inference service needs to be tested and scaled. We installed Run:ai version 2.2
using the SaaS format.

Figure 5. Overview of the overall deployment stack

ERA-DAS-004 | 8

This test environment uses NVIDIA AI Enterprise software to install and configure the
necessary software and tools required to efficiently deploy and operate an AI factory.
Once servers are racked and networked, NVIDIA BCM is used to image individual servers,
deploying Ubuntu 24.04 as the operating system, installing NVIDIA GPU and network
drivers, and setting up Kubernetes clusters.

Beyond these core capabilities, the deployment also aligns the software dependencies
for various components required for Kubernetes cluster operations, such as a Container
Network Interface (CNI) for managing container networks, NGINX Ingress Controller
for handling cluster ingress traffic, and MetalLB for load balancing services, Prometheus
and Grafana to visualize overall stack metrics and also provides firmware to configure
and optimize OS like Cumulus Linux for the NVIDIA Spectrum switches, firmware for the
Bluefield Super NICs etc.

Note: For detailed Software reference design, refer to NVIDIA Software Reference Stack
and automation for Enterprise RA - vanilla Kubernetes: NVOnline : 1141332

https://partners.nvidia.com/DocumentDetails?DocID=1141332

ERA-DAS-004 | 9

System Configuration
This section provides a step by step instruction on how the blueprints are deployed once
the Cluster Software Reference stack has been deployed and configured.

Assumptions
● The environment has egress to the internet enabled

Pre-requisites for installing RAG and AI-Q
● A Kubernetes Cluster with a supported version installed with NVIDIA GPU

Operator and NVIDIA Network Operator installed, which should already be in place
if the NVIDIA Software Enterprise RA is followed.

● Active Subscription to NVAIE and Access to the NGC Enterprise Catalog. Please
generate and download your nvcr.io access token in NGC.

● Account in Tavily and an Access token to Tavily API, this will be needed for AI-Q
to run internet search agent

● Install Helm in the Kubernetes Cluster and download the helm CLI. This should
have been installed if the Software Enterprise RA is followed.

● Access to Kubernetes Clusters config file and `kubectl` CLI installed, this file is
in the Enterprise RA cluster BCMe head node under /<user>/.kube/config

● A default Storage Class is defined to create Persistent Volume Claims by
Kubernetes, this can be an NFS or Block-based storage class, the storage class
name is default.

● Ability to create two namespaces in the Kubernetes cluster. rag, aiq

Deploy and Configure RAG Blueprint

NVIDIA RAG Blueprint can be deployed in multiple ways, for the purpose of this
document and respect to the Enterprise Software Reference Architecture we are using
Helm as the deployment method. For detailed information on Helm and how to deploy
RAG using Helm, refer to the NVIDIA Github Repository here.

From the system that has access to the Kubernetes API and has Helm deployed, run the
following on the command prompt

https://github.com/NVIDIA-AI-Blueprints/rag/blob/main/docs/deploy-helm.md

ERA-DAS-004 | 10

Export the NGC API KEY

export NGC_API_KEY="nvapi-<redacted>"

Create a directory for RAG, CD to it and fetch the RAG repo

mkdir rag
cd rag
Git clone https://github.com/NVIDIA-AI-Blueprints/rag.git

Add the appropriate Helm Repos to the cluster

helm repo add nvidia-nim https://helm.ngc.nvidia.com/nim/nvidia/ --username='$oauthtoken' --
password=$NGC_API_KEY
helm repo add nim https://helm.ngc.nvidia.com/nim/ --username='$oauthtoken' --
password=$NGC_API_KEY
helm repo add nemo-microservices https://helm.ngc.nvidia.com/nvidia/nemo-microservices --
username='$oauthtoken' --password=$NGC_API_KEY
helm repo add baidu-nim https://helm.ngc.nvidia.com/nim/baidu --username='$oauthtoken' --
password=$NGC_API_KEY
helm repo add bitnami https://charts.bitnami.com/bitnami
helm repo add otel https://open-telemetry.github.io/opentelemetry-helm-charts
helm repo add zipkin https://zipkin.io/zipkin-helm
helm repo add prometheus https://prometheus-community.github.io/helm-charts

Change the directory

cd rag/deploy/helm

create a namespace for RAG

kubectl create namespace rag

Update the default values from RAG Helm chart to work with RTX PRO 6000 BSE GPUs,
copy and paste the default values file to a new file name in the rag/deploy/helm folder
called values-2gpu-rtxpro6000.yaml. The detailed YAML file for this config is provided in
Appendix A, RAG Config, below are key things to update in the file

https://github.com/NVIDIA-AI-Blueprints/rag.git

ERA-DAS-004 | 11

Ensure under the NIM section, the model is updated with Nemotron 49B v1.5 with the
right NIM profile for RTX PRO with fp8 precision

nim-llm:
 enabled: true
 image:
 repository: nvcr.io/nim/nvidia/llama-3.3-nemotron-super-49b-v1.5
 tag: "1.14.1"
 resources:
 limits:
 nvidia.com/gpu: 2
 memory: 128Gi # Increased from 96Gi
 requests:
 nvidia.com/gpu: 2
 memory: 128Gi # Increased from 96Gi
 model:
 name: "nvidia/llama-3.3-nemotron-super-49b-v1.5"
 env:
 - name: NIM_MODEL_NAME
 value: "nvidia/llama-3.3-nemotron-super-49b-v1.5"
 - name: NIM_MODEL_PROFILE
 value: "610f006b15f3adbdb072da0b4155d8a772332cf1768fb7389ef92a83c31c26dc"

Also, if needed you can provide a specific node in the cluster to deploy rest of the RAG
components

Install RAG using Helm

helm upgrade --install rag -n rag https://helm.ngc.nvidia.com/nvidia/blueprint/charts/nvidia-blueprint-
rag-v2.2.0.tgz -f values-2gpu-rtxpro6000.yaml \
--username '$oauthtoken' \
--password "${NGC_API_KEY}" \
--set imagePullSecret.
password=$NGC_API_KEY \
--set ngcApiSecret.password=$NGC_API_KEY

Update Helm Dependencies

helm dependency update nvidia-blueprint-rag

ERA-DAS-004 | 12

At this point RAG has been deployed and configured, the pods for RAG nim-llm-0 will be
be deployed, these pods will take a few minutes to go into “running” state along with
other components and also the RAG server and nim-llm will have services created in
Kubernetes with cluster IP. We need to make sure that the RAG server and the NIM LLM
have IP addresses that can be reached by the benchmarking RAG tool. For this exercise
we used External Loadbalancing IPs for both these services , you can do the same

Edit the NIM-LLM service, RAG server to use Load Balancing IP

kubectl patch service nim-llm -n rag \
 -p '{"spec":{"type":"LoadBalancer","ports":[{"port":8000,"targetPort":8000}]}}'

kubectl patch service rag-server -n rag \
 -p '{"spec":{"type":"LoadBalancer","ports":[{"port":8081,"targetPort":8081}]}}'

At this point the setup should have the RAG pipeline deployed with all its components in
Milvus in a standalone fashion.

Deploy and Configure AI-Q Blueprint
We are deploying the NVIDIA AI-Q blueprint from Github Repo here.

Clone the Git Repo into a folder called aiq

git clone https://github.com/NVIDIA-AI-Blueprints/aiq-research-assistant

Set environment variables, on the system from which you are installing AI-Q

export NGC_API_KEY=”nvapi-xxx” # your API key
export TAVILY_API_KEY=”yyy” # your Tavily API key, optional for web search

Create a namespace:

kubectl create namespace aira
cd aiq-research-assistant/

Add the AI-Q helm chart

https://github.com/NVIDIA-AI-Blueprints/aiq-research-assistant
https://github.com/NVIDIA-AI-Blueprints/aiq-research-assistant

ERA-DAS-004 | 13

helm repo add nvidia-nim https://helm.ngc.nvidia.com/nim/nvidia/ --username='$oauthtoken' --
password=$NGC_API_KEY
helm repo add nim https://helm.ngc.nvidia.com/nim/ --username='$oauthtoken' --
password=$NGC_API_KEY

helm repo add nvidia-nim https://helm.ngc.nvidia.com/nim \
 --username='$oauthtoken' \
 --password=$NGC_API_KEY

We need to change the default Helm Values file for our system, copy the values.yaml file
in the folder under deploy/helm/aiq-aira to a file called values-rtx-pro-6k.yaml in the
deploy/helm folder. We will be editing the file to make some key changes.

Update the nim-llm section to point to the version of the latest version of NIM with the
correct profile for RTX PRO 6000 BSE GPUs

nim-llm:
 enabled: true
 service:
 name: "nim-llm"
 image:
 repository: nvcr.io/nim/meta/llama-3.3-70b-instruct
 pullPolicy: IfNotPresent
 tag: "1.12.0"
 resources:
 limits:
 nvidia.com/gpu: 1
 requests:
 nvidia.com/gpu: 1
 model:
 name: "meta/llama-3.3-70b-instruct"
 env:
 - name: NIM_MODEL_NAME
 value: "meta/llama-3.3-70b-instruct"
 - name: NIM_MODEL_PROFILE
 value: "257a3035dbddb2a2cd48f5763ee64f972af4ba0dd5ef92ade1dbb478f6cf5dd3"

Detailed config YAML for AI-Q is provided in Appendix B of this document

Deploy the AI-Q Helm Chart

helm upgrade --install aira -n aiq deploy/helm/aiq-aira -f deploy/helm/aiq-aira/values-rtx-pro-6k.yaml \

ERA-DAS-004 | 14

--set imagePullSecret.password=$NGC_API_KEY \
--set ngcApiSecret.password=$NGC_API_KEY \
--set tavilyApiSecret.password=$TAVILY_API_KEY

Once AI-Q has been deployed, make sure all the pods are up and running.

We then need to make the frontend and the NIM-llm pod available with an IP so we can
reach it from outside the cluster. We also need to expose the Phoenix pod to trace the
benchmarking tests as well as the instruct-llm in AI-Q

kubectl patch svc aira-aira-frontend -n aiq -p '{"spec": {"type": "LoadBalancer", "ports": [{"name": "http",
"port": 3001, "NodePort": 30001}]}}'

kubectl patch service instruct-llm -n aiq \
 -p '{"spec":{"type":"LoadBalancer","ports":[{"port":8000,"targetPort":8000}]}}'

kubectl patch service aiq-aira-phoenix -n aiq \
 -p '{"spec":{"type":"LoadBalancer","ports":[{"port":60006,"targetPort":6006}]}}'

By now we should have AI-Q deployed and all the services loadbalanced. We are now
going to ingest two datasets within the system using NeMo Retriever extraction.

Ingesting Enterprise Data for Research

RAG and AI-Q blueprint have been configured and deployed, we now need to
ingest Enterprise files, data that can be used by AI-Q to conduct deep
research.This will be done using NeMo Retriever extraction, an open source
library that is part of the RAG pipeline. Individual files can be added to RAG in a
single Collection, or multiple collections can be created as well.

The AI research assistant demo web application requires two default collections.
One collection supports a biomedical research prompt and contains reports on
Cystic Fibrosis. The second supports a financial research prompt and contains
public financial documents from Alphabet, Meta, and Amazon.

To load these default collections, apply the standalone Kubernetes job:

ERA-DAS-004 | 15

Set the RAG_INGEST_URL environment variable based on your RAG deployment.

First we need to port forward the rag ingestor service

kubectl port-forward -n rag service/ingestor-server 8082:8082
export RAG_INGEST_URL="http://localhost:8082"

On the same node where RAG_INGEST_URL was set above, create a Python

environment with the correct dependencies:

uv python install 3.12
uv venv --python 3.12 --python-preference managed
uv run pip install -r data/requirements.txt

Copy the Enterprise zip files intended for user research into the current directory for

upload. These files will be ingested into the RAG system, enabling AI-Q users to conduct

in-depth research.

Note: This folder already has the default Financial and Bio Medical Collection needed for
the benchmarking of this folder

cd data
cp files/* .

Run the ingest:

uv run python zip_to_collection.py

By now the RAG and AI-Q have been installed and the data needed for deep research is
already embedded and ingested into Milvus.

ERA-DAS-004 | 16

Benchmarking and Scale Methodology
NVIDIA AI-Q is an agentic solution based on the NVIDIA NeMo™ Agent Toolkit . NVIDIA
NeMo Agent Toolkit is an open-source framework for building, profiling, and optimizing
agents and tools for agentic workflows. NeMo Agent Toolkit also has a profiling and
benchmarking tool that can be used to determine how an agentic workflow is
performing on a given architecture.

For this guide, we used the NeMo Agent Toolkit Sizing and profiling function to test
simultaneous concurrent users requesting deep research reports on various kinds of
topics. The profiler in the NeMo Agent Toolkit, collects usage statistics in real time.
These stats include the time each session/user took to get the detailed report back from
AI-Q, what the LLM Latency was compared to the overall Workflow latency.

NeMo Agent Toolkit provides the following metrics that tells how a agentic workflow is
performing at a given concurrency level (concurrent users utilizing the workflow)

● The P95 LLM Latency (95th percentile LLM latency) column contains the latency,
in seconds, across all LLM invocations. If multiple models are used, the value will
trend towards the latency of the model with the highest latency.

● The P95 WF Runtime (95th percentile workflow runtime) column contains the
response time, in seconds, of the workflow and is computed across all runs at the
specified concurrency.

● The Total Runtime column contains the total time, in seconds, taken to process
the entire dataset at a specified concurrency level.

NeMo Agent Toolkit sizing tool can be given how many concurrent users to run, here is a
sample out put

Note: AI-Q also has man in the middle function, this function helps a user refine the created report further
to their liking, the benchmarking tests done here did not test this feature.

Setup NeMo Agent Toolkit to benchmark AI-Q

On a linux system that’s outside the Enterprise RA cluster, setup NeMo Agent Toolkit

Clone the NeMo Agent Toolkit repository to the benchmarking system

git clone -b main https://github.com/NVIDIA/NeMo-Agent-Toolkit.git nemo-agent-toolkit

ERA-DAS-004 | 17

cd nemo-agent-toolkit

Initialize, fetch, and update submodules in the Git repository

git submodule update --init --recursive

Create a Python environment

uv venv --python 3.12 --seed .venv
source .venv/bin/activate

Install the NeMo Agent Toolkit library. To install the NeMo Agent Toolkit library along
with all of the optional dependencies. Including developer tools (--all-groups) and all of
the dependencies needed for profiling and plugins (--all-extras) in the source repository,
run the following:

uv sync --all-groups --all-extras

In addition to plugins, there are optional dependencies needed for profiling. To install
these dependencies, run the following:

uv pip install -e '.[profiling]'

Load Python modules needed for NeMo Agent Toolkit to talk to AI-Q Workflows

uv pip install --no-deps -e ../aiq-research-assistant/aira

Getting Started With Sizing a GPU Cluster

To begin, set the configuration file and output directory.

cd <NAT-root-directory>
export CALC_OUTPUT_DIR=.tmp/sizing_calc/

ERA-DAS-004 | 18

export CONFIG_FILE=${CALC_OUTPUT_DIR}aiq-test.yml
mkdir -p ${CALC_OUTPUT_DIR}

Datasets needed for prompt during sizing
The sizing tool config file, needs a dataset that has a list of prompts that it can use to
run concurrent users tests. This is a JSON format file and can have any no. of entries.
For benchmarking we used the dataset.json file in Appendix C. This file needs to be
copied into the NeMo Agent Toolkit folder under .tmp directory

Configuration File for NeMo Agent Toolkit to run sizing
We need to add a evaluation config file to let NeMo Agent Toolkit know where the
workflow is, what are the different LLMs to test, how to access the LLM, and what
datasets to use,please add a YAML config file called aiq-test-rtxpro6k.yml in the
.tmp/sizing_calc folder in NeMo Agent Toolkit.

This file, provided in Appendix D has the evaluation sections, please update the config
file with the right IP/endpoints for NIM-LLM from RAG, the Instruct-LLM from AI-Q and
the RAG server URL. Also, if needed update the Phoenix app endpoint to send traces for
the benchmarking tests

Run Benchmarking
Activate virtual environment

cd ~/tmp/NeMo-Agent-Toolkit
source .venv/bin/activate
uv pip install --no-deps -e ../../aiq-research-assistant/

Export Tavily API key

export TAVILY_API_KEY="tvly-prod-redacted"

Run The Sizing calculator
The example below shows a concurrency run for 1 and 5, this can be changed or
more concurrencies added to the command

nat sizing calc --config_file .tmp/sizing_calc/aiq-test-rtxpro6k.yml --calc_output_dir
.tmp/sizing_calc/concurrency_era_1_5 --concurrencies 1,5

ERA-DAS-004 | 19

Scale Methodology

To establish the benchmarking on RTX PRO 6000 BSE GPUs, we started load testing AI-
Q with a 1X scale of all the components, this means on the 9 node cluster, every
component deployed between RAG and AI-Q was running at 1X scale. We started NeMo
Agent Toolkit sizing to get NIM Latency and Workflow Latency at different incremental
concurrency ranges at 1X scale, the concurrency we ran was from 2, 4, 8 etc till 256
users. We would then scale the reasoning NIM to 2X scale, doubling the total no. of pods
and hence GPU consumption and fetch the NIM Latency and Workflow latency at the
same concurrencies. The goal was to make sure the LLM Latency and the Workflow
latency dropped as we scaled the reasoning NIM LLM pods. We did this till we maxed out
all the GPUs in the cluster at 32X NIM LLM scale, where all the 72 GPUs we consumed.

Table 3. Scale and Benchmarking runs tested

Overall
Scale

Reasoning NIM
Scale

(Nemotron
Super 49B)

Instruct NIM
Scale

(Meta Lama
70B)

Precision Other RAG
Component

s Scale

Concurrency

1X 1 Pod (2 GPUs) 1 Pod (1
GPU)

fp8 1X 2,4,8,16,32,6
4,96,128,25
6

2X 2 Pod (4 GPUs) 1 Pod (1
GPU)

fp8 1X 2,4,8,16,32,6
4,96,128,25
6

4X 4 Pod (8 GPUs) 1 Pod (1
GPU)

fp8 1X 2,4,8,16,32,6
4,96,128,25
6

8X 8 Pod (16 GPUs) 1 Pod (1
GPU)

fp8 1X 2,4,8,16,32,6
4,96,128,25
6

16X 16 Pod (32
GPUs)

1 Pod (1
GPU)

fp8 1X 2,4,8,16,32,6
4,96,128,25
6

ERA-DAS-004 | 20

32X 32 Pod (64
GPUs)

1 Pod (1
GPU)

fp8 1X 2,4,8,16,32,6
4,96,128,25
6

Other Scale Options Tested

1X 1 Pod (2 GPUs) 2 Pod (2
GPU)

fp8 1X 2,4,8,16,32,6
4

1X 1 Pod (2 GPUs) 1 Pod (1
GPU)

fp8 Reranker 2X 2,4,8,16,32,6
4

1X -32X 1 Pod (2 GPUs)-
32 Pod (54
GPUs)

1 Pod (1
GPU)

nvfp4 1X 2,4,8,16,32,6
4

We also ran scaling exercises where we would scale the Instruct LLM instead on the
Reasoning NIM to check the overall impact at different concurrencies. We even scaled
Nemotron reranker in RAG’s pipeline to test how that impacts the overall latency of the
workflow. Earlier benchmarking tests were done with bf16 precision as well.

Scale the reasoning NIM LLM from 1 X to 2X, please wait till all the pods are online.

kubectl scale statefulset rag-nim-llm --replicas=2 -n rag

Check if all the NIM -LLM pods are running
Kubectl get pods -n rag

ERA-DAS-004 | 21

Benchmarking and Scale testing Results
for AI-Q

Performance tests were conducted using different numbers of concurrent users. The
results, shown below, were generated by scaling various components from both the RAG
and AI-Q blueprints. A few observations based on the runs

● On an average, each concurrent user call in AI-Q was generating ~17,000 -24,000
output tokens per session, so the overall ISL/OSL for AI-Q was 20/20000, see
Figure 6 from the Phoenix server capturing spans and tokens

● AI-Q does at least two rounds of reasoning rounds to check for relevancy of the
output tokens generated, see Figure 7 capturing the overall workflow

● We initially used precision of bf16 and moved to fp8 precision for NIM this
improved the overall latency by ~20%

● When a large number of requests come to the Nemotron Super 49B NIM pod, the
backend service of the pod limits the total number of requests to 4 for latency
profile, and to 5 for throughput profile, this is cause of the optimizations done on
the NIM for RTX PRO 6000 GPUs, keeping the host framebuffer memory in mind
and also the KV cache usage needed to store context. As a result of this, few
requests are waiting in the queue to process. The results here capture the p95
latency numbers, however the average latency is almost half the p95 latency. For
example, the requests that get in the first batch complete the workflow in 6
minutes, however the requests that are in queue can take ~17-20 minutes.

Figure 6. Phoenix app showcasing the average tokens per session and P50/P95 latencies

ERA-DAS-004 | 22

Figure 7. Gantt chart showcasing where the workflow spends time

ERA-DAS-004 | 23

Latency Impact of Reasoning Model Scale

The Nemotron Super 49B reasoning model significantly influences both overall workflow
latency and NIM LLM latency. Scaling the Reasoning Model NIM resulted in a latency
reduction of approximately 10-30% for the same number of concurrent users. This is
when the precision of the model is already set to fp8. Most other components part of
the RAG and AI-Q blueprint did not reach max usage when running benchmarking tests.
See Figure 8 for the overall GPU consumption of various components in the system.
While AI-Q Nemotron Instruct NIM, was also high in usage, it did not contribute primarily
to the overall workflow latency.

Figure 8. Overall GPU usage of various components

Latency v/s Concurrent Users at Scale

As we scaled the reasoning LLM pods from 1X till 32X, the overall workflow latency kept
increasing as more concurrent users were added. Concurrent users at 96 were above the
knee for latency. Concurrent users above 96 showed a higher drop in latency. See Figure
9. for reference. Overall, at 32X the workflow latency was lower by approximately ~30 %
than at 2X scale.

ERA-DAS-004 | 24

Figure 9 . Workflow Latency v/s Concurrent Users at scale

AI-Q scales Linearly
The AI-Q system demonstrated linear scalability with the Reasoning LLM NIM.
Specifically, when the Reasoning LLM NIM was doubled (2X scale), the system could
simultaneously handle twice the number of concurrent users—up to eight—while
maintaining the workflow latency below 1000 seconds for individual users generating
reports. This established that AI-Q's scaling performance is directly proportional to the
system's scaling. Refer to Figure 10 for the benchmarked concurrent user capacity
achieved under the 1000-second workflow latency constraint.

ERA-DAS-004 | 25

Figure 10. Linear concurrent users with System Scale

Latency Drops as Systems Scale

The performance analysis demonstrated a clear correlation between the scaling of the
Reasoning Large Language Model (LLM) and a reduction in critical latency metrics.
Specifically, for any defined level of concurrent users, increasing the Reasoning LLM
resulted in a measurable drop in both the overall LLM processing latency and the end-to-
end Workflow latency.

ERA-DAS-004 | 26

Figure 11. Workflow Latency dropped for a specific concurrency at scale

ERA-DAS-004 | 27

Sizing Guideline
Below is the sizing guidance for an Enterprise RA 2-8-5-200 Cluster with RTX PRO 6000
GPUs , a minimum of two nodes will allow for 16 simultaneous users to build reports
while keeping total workflow latency below 1000 Seconds. As users grow, scaling up the
Reasoning LLM pods is recommended to keep the workflow latency under 1000
seconds. This is based on the Biomedical and Finance datasets, as the datasets grow,
certain components like Milvus, Nemotron reranker etc. will have to be scaled as well.

Table 4 . Sizing RTX PRO 6000 BSE for AIQ on Enterprise RA 2-8-5-200 Architecture

Reasonin
g Model

Scale

Nodes
(Worke

r)

RTX PRO 6000
BSE GPUs

Concurrenc
y

Workflow
Latency

(Seconds)

LLM Latency
(Seconds)

Estimated
Throughput
(Cumulative

Tokens)

2X 2 12 8 759.38 112.85 152000

4X 2 16 16 869.99 117.38 304000

8X 3 24 32 956.40 120 608000

16X 5 40 64 951.35 116.60 1216000

32X 9 72 100 1000 133 1900000

Conclusion
AI-Q blueprint is an agentic workflow that leverages an Enterprises existing multi modal
data to create deep research reports along with internet search. The agentic workflow
leverage the Nemotron Super 49B reasoning model to reflect and think about the
results before generating a final report, this creates a very high volume of tokens per
user session (Approx Average 19000 tokens). For deep research reports the time it takes
to generate tokens is comparatively higher than most LLM chat/summary use cases.
RTX PRO 6000 GPUs work for uptill peak usage of 100 users for a latency SLA of 1000
Seconds. Latency can grow for concurrencies above 128 users.

To scale and get the most efficiency out of the System for AI-Q

ERA-DAS-004 | 28

● Scaling the reasoning model, Nemotron 49B, has the biggest impact on lowering
workflow TCO. As more users are added, scale the Nemotorn 49B NIM LLM pod to
keep consistent workflow latency

● Select NIM profiles with fp8 precision using TRT-LLM backend and Tensor
Parallelism of 2 over vLLM backed profiles.

● Linear scale can be achieved by scaling the reasoning LLM pods

ERA-DAS-004 | 29

Appendix A
RAG values.YAML for Helm Deployment.

Note: Please replace the node name in the node-selector field to the host name of a
node in the cluster. This will allow all non NIM-LLM pods to be scheduled on a single
node. Makes it easy to scale the NIM-LLM pod later on.

Custom values for 2 GPU deployment with RTX Pro 6000 GPUs

This configuration allocates 2 full GPUs across key services on RTX Pro 6000 nodes

Using Nemotron 49B version 1.5 NIM

Allocate 2 GPUs to the main LLM NIM for Nemotron 49B v1.5

nim-llm:

 enabled: true

 image:

 repository: nvcr.io/nim/nvidia/llama-3.3-nemotron-super-49b-v1.5

 tag: "1.14.0"

 resources:

 limits:

 nvidia.com/gpu: 2

 memory: 128Gi # Increased from 96Gi

 requests:

 nvidia.com/gpu: 2

 memory: 128Gi # Increased from 96Gi

 model:

 name: "nvidia/llama-3.3-nemotron-super-49b-v1.5"

 env:

 - name: NIM_MODEL_NAME

 value: "nvidia/llama-3.3-nemotron-super-49b-v1.5"

 - name: NIM_MODEL_PROFILE

ERA-DAS-004 | 30

 value: "610f006b15f3adbdb072da0b4155d8a772332cf1768fb7389ef92a83c31c26dc"

 # - name: NIM_HTTP_MAX_WORKERS

 # value: "10"

Keep other services on single GPU

nvidia-nim-llama-32-nv-embedqa-1b-v2:

 enabled: true

 nodeSelector:

 kubernetes.io/hostname: pdx-2852-w01-lr6

 resources:

 limits:

 nvidia.com/gpu: 1

 requests:

 nvidia.com/gpu: 1

text-reranking-nim:

 enabled: true

 nodeSelector:

 kubernetes.io/hostname: pdx-2852-w01-lr6

 resources:

 limits:

 nvidia.com/gpu: 1

 requests:

 nvidia.com/gpu: 1

Disable VLM if not needed to save GPU resources

nim-vlm:

 enabled: false

ERA-DAS-004 | 31

ingestor-server:

 nodeSelector:

 kubernetes.io/hostname: pdx-2852-w01-lr6

 # Keep ingestion services on single GPU each

 nv-ingest:

 nodeSelector:

 kubernetes.io/hostname: pdx-2852-w01-lr6

 paddleocr-nim:

 nodeSelector:

 kubernetes.io/hostname: pdx-2852-w01-lr6

 resources:

 limits:

 nvidia.com/gpu: 1

 requests:

 nvidia.com/gpu: 1

 nemoretriever-graphic-elements-v1:

 nodeSelector:

 kubernetes.io/hostname: pdx-2852-w01-lr6

 resources:

 limits:

 nvidia.com/gpu: 1

 requests:

 nvidia.com/gpu: 1

 nemoretriever-page-elements-v2:

 nodeSelector:

ERA-DAS-004 | 32

 kubernetes.io/hostname: pdx-2852-w01-lr6

 resources:

 limits:

 nvidia.com/gpu: 1

 requests:

 nvidia.com/gpu: 1

 nemoretriever-table-structure-v1:

 nodeSelector:

 kubernetes.io/hostname: pdx-2852-w01-lr6

 resources:

 limits:

 nvidia.com/gpu: 1

 requests:

 nvidia.com/gpu: 1

 milvus:

 standalone:

 nodeSelector:

 kubernetes.io/hostname: pdx-2852-w01-lr6

 resources:

 limits:

 nvidia.com/gpu: 1

 redis:

 image:

 repository: redis

 tag: 8.2.1

ERA-DAS-004 | 33

Appendix B

AI-Q Helm values file

--

The following values are for the AIQ AIRA backend service.

--

replicaCount: 1

The name of the image pull secret to use for the AIQ container images.

Either create the secret manually and update the name here

or update the imagePullSecret.password with your NGC API key

ngcImagePullSecretName: "ngc-secret"

imagePullSecret:

 create: true

 name: "ngc-secret"

 registry: "nvcr.io"

 username: "$oauthtoken"

 password: "" #UPDATE THIS

The image repository and tag for the AIQ AIRA backend service.

image:

 repository: nvcr.io/nvidia/blueprint/aira-backend

 tag: v1.1.0

 pullPolicy: IfNotPresent

The service type and port for the main AIQ AIRA backend service

service:

 port: 3838

Update each value according to your desired configuration.

config:

 # The instruct_ settings are for the general purpose Q&A LLM

ERA-DAS-004 | 35

 instruct_model_name: "meta/llama-3.3-70b-instruct"

 instruct_temperature: "0.0"

 instruct_api_key: "not-needed"

 instruct_base_url: "http://nim-llm.aira.svc.cluster.local:8000/v1"

 # The nemotron_ settings are for the reasoning LLM

 nemotron_api_key: "not-needed" # not needed as we use the nemotron service from the RAG deployment
which does not require an API key

 nemotron_model_name: "nvidia/llama-3.3-nemotron-super-49b-v1.5"

 nemotron_temperature: "0.5"

 nemotron_base_url: "http://nim-llm.rag.svc.cluster.local:8000/v1" # provided by the RAG deployment

 nemotron_max_tokens: "5000"

 nemotron_stream: "true"

 # Enter your Tavily API key here to enable web search

 tavily_api_key: "" #UPDATE THIS

 # Enter the IP address of the RAG services

 rag_ingest_url: "http://ingestor-server.rag.svc.cluster.local:8082" # provided by the RAG deployment

 rag_url: "http://rag-server.rag.svc.cluster.local:8081" # provided by the RAG deployment

 rag_api_key: "" #Typically not required

 milvus_host: "milvus.rag.svc.cluster.local" # provided by the RAG deployment

 milvus_port: "19530"

Do not update this command. It is the default command to launch the AI-Q backend service.

command: "/entrypoint.sh"

--

The following values are for the instruct LLM service

The nemotron llm is assumed to be deployed via the RAG helm chart

--

ngcApiSecret:

 name: "ngc-api"

 password: "" # UPDATE THIS

 create: true

nim-llm:

 enabled: true

 service:

ERA-DAS-004 | 36

 name: "nim-llm"

 image:

 repository: nvcr.io/nim/meta/llama-3.3-70b-instruct

 pullPolicy: IfNotPresent

 tag: "1.12.0"

 resources:

 limits:

 nvidia.com/gpu: 1

 requests:

 nvidia.com/gpu: 1

 model:

 name: "meta/llama-3.3-70b-instruct"

 env:

 - name: NIM_MODEL_NAME

 value: "meta/llama-3.3-70b-instruct"

 - name: NIM_MODEL_PROFILE

 value: "257a3035dbddb2a2cd48f5763ee64f972af4ba0dd5ef92ade1dbb478f6cf5dd3"

--

The following values are for the nginx proxy that enables the AIQ frontend

to interact with both the AIQ AIRA backend service and the RAG service

You may need to update the RAG service IP address if you have not deployed RAG via helm on the same cluster

--

nginx:

 nginxImage:

 ngcImageRegistry: ""

 ngcImageRegistryPath: ""

 name: "nginx"

 tag: "1.27.0"

 pullPolicy: Always

 service:

 port: 8051

ERA-DAS-004 | 37

 nginx_config:

 conf: |-

 worker_processes auto;

 events {

 worker_connections 1024;

 }

 http {

 proxy_ssl_server_name on;

 proxy_cache_path /server_cache_llm levels=1:2 keys_zone=llm_cache:10m max_size=20g inactive=14d
use_temp_path=off;

 proxy_cache_path /server_cache_intel levels=1:2 keys_zone=intel_cache:10m max_size=20g
inactive=14d use_temp_path=off;

 error_log /dev/stdout info;

 log_format upstream_time '$remote_addr - $remote_user [$time_local] '

 '"$request" $status $body_bytes_sent '

 '"$http_referer" "$http_user_agent"'

 'rt=$request_time uct="$upstream_connect_time" uht="$upstream_header_time"
urt="$upstream_response_time"';

 log_format cache_log '[$time_local] ($upstream_cache_status) "$request" $status - $body_bytes_sent
bytes {$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth:
$http_authorization';

 log_format no_cache_log '[$time_local] (BYPASSED) "$request" $status - $body_bytes_sent bytes
{$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth: $http_authorization';

 log_format mirror_log '[$time_local] (MIRROR) "$request" $status - $body_bytes_sent bytes
{$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth: $http_authorization';

 log_format nvai_cache_log '[$time_local] ($upstream_cache_status) "$request" $status -
$body_bytes_sent bytes {$remote_addr} "$http_user_agent" $request_time - $connection_requests. Auth:
$http_authorization. $upstream_addr';

 map $http_cache_control $cache_bypass {

ERA-DAS-004 | 38

 no-cache 1;

 }

 # Log to stdout and a file for searchability

 access_log /dev/stdout cache_log;

 access_log /var/log/nginx/access.log cache_log;

 error_log /dev/stdout info;

 error_log /var/log/nginx/error.log info;

 server {

 listen 8051;

 server_name _;

 # Common proxy settings

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass_request_headers on;

 # Common buffer settings

 large_client_header_buffers 4 32k;

 client_header_buffer_size 4k;

 # Common timeout settings

 client_body_timeout 900s;

 client_header_timeout 900s;

 # Common settings for document-related endpoints

 proxy_read_timeout 600s;

 proxy_connect_timeout 60s;

 proxy_send_timeout 600s;

 client_max_body_size 100M;

 proxy_max_temp_file_size 0;

 proxy_buffering on;

 proxy_buffer_size 1M;

 proxy_buffers 100 1M;

ERA-DAS-004 | 39

 proxy_busy_buffers_size 2M;

 # Original routes

 location ~ ^/v1/(status|documents|collections) {

 proxy_pass http://ingestor-server.rag.svc.cluster.local:8082/1is_args$args;

 proxy_set_header Host http://ingestor-server.rag.svc.cluster.local:8082;

 }

 # Protected routes

 location ~ ^/v2/protected/aiq/v1/(status|documents|collections) {

 proxy_pass http://ingestor-server.rag.svc.cluster.local:8082/1is_args$args;

 proxy_set_header Host http://ingestor-server.rag.svc.cluster.local:8082;

 }

 # Special case for files route

 location /v2/protected/aiq/v1/files {

 proxy_pass http://ingestor-server.rag.svc.cluster.local:8082/v1/documents;

 proxy_set_header Host http://ingestor-server.rag.svc.cluster.local:8082;

 }

 # Protected routes AIRA v1

 location ~
^/v2/protected/aiq/v1/((generate_query|generate_summary|artifact_qa|default_collections)(/stream)?)$ {

 proxy_pass http://aira-aira-backend.aira.svc.cluster.local:3838/1is_args$args;

 proxy_set_header Host http://aira-aira-backend.aira.svc.cluster.local:3838;

 }

 # Health routes

 location /v2/protected/aiq/keepalive {

 default_type text/plain;

 return 200 "OK";

 }

 location /v2/protected/aiq/health {

 default_type text/plain;

 return 200 "OK";

 }

ERA-DAS-004 | 40

 location = /health {

 default_type text/plain;

 return 200 "OK";

 }

 location = /keepalive {

 default_type text/plain;

 return 200 "OK";

 }

 # Catch-all for other protected routes

 location /v2/protected/aiq/ {

 rewrite ^/v2/protected/aiq/(.*) /$1 break;

 proxy_pass http://aira-aira-backend.aira.svc.cluster.local:3838;

 proxy_set_header Host $host;

 }

 # Default location for all other routes

 location / {

 proxy_pass http://aira-aira-backend.aira.svc.cluster.local:3838;

 proxy_set_header Host $host;

 }

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root /usr/share/nginx/html;

 }

 }

 }

--

The following values are for the AIQ AIRA frontend service.

--

ERA-DAS-004 | 41

The frontend application is a React web app. We recommend a NodePort so the frontend will be accessible at
<your-node-ip>:3001

frontend:

 enabled: true

 # Update the value below to the IP address and port of the nginx service

 proxyUrl: http://aira-nginx.aira.svc.cluster.local:8051

 service:

 port: 3001

 targetPort: 3001

 image:

 repository: nvcr.io/nvidia/blueprint/aira-frontend

 tag: v1.1.0

 pullPolicy: IfNotPresent

 replicaCount: 1

--

The following values are optional utility services

--

Enables the Phoenix tracing service

phoenix:

 enabled: true

 image:

 repository: arizephoenix/phoenix

 tag: latest

 pullPolicy: IfNotPresent

 resources:

 limits:

 cpu: 500m

 memory: 512Mi

 requests:

 cpu: 200m

 memory: 256Mi

ERA-DAS-004 | 42

Appendix C

Evaluation Dataset , research_assistant_dataset.json

[

 {

 "id": 1,

 "question": "{\"topic\": \"Artificial Intelligence in Healthcare\", \"report_organization\": \"Research

applications, benefits, challenges, and future prospects\", \"search_web\": true, \"rag_collection\":

\"biomedical_dataset\", \"num_queries\": 3, \"llm_name\": \"nemotron\"}",

 "answer": "A comprehensive report on AI in healthcare."

 },

 {

 "id": 2,

 "question": "{\"topic\": \"Machine Learning in Finance\", \"report_organization\": \"Examine ML applications

in financial services\", \"search_web\": true, \"rag_collection\": \"financial_dataset\", \"num_queries\": 3,

\"llm_name\": \"nemotron\"}",

 "answer": "Analysis of ML in finance."

 },

 {

 "id": 3,

 "question": "{\"topic\": \"Climate Change and Renewable Energy\", \"report_organization\": \"Analyze impact

on renewable energy adoption\", \"search_web\": true, \"rag_collection\": \"\", \"num_queries\": 3,

\"llm_name\": \"nemotron\"}",

 "answer": "Research on climate change and energy."

 }

]

ERA-DAS-004 | 43

Appendix D

File to run NeMo Agent Toolkit sizing against AI-Q, aiq-test-rtxpro6k.yml

general:

 use_uvloop: true

 telemetry:

 tracing:

 phoenix:

 _type: phoenix

 endpoint: http://10.184.203.86:6006/v1/traces

 project: default

 front_end:

 _type: fastapi

 endpoints:

 - path: /generate_query

 method: POST

 description: Creates the query

 function_name: generate_query

 - path: /generate_summary

 method: POST

 description: Generates the summary

 function_name: generate_summary

 - path: /artifact_qa

 method: POST

 description: Q/A or chat about a previously generated artifact

 function_name: artifact_qa

 - path: /aiqhealth

ERA-DAS-004 | 44

 method: GET

 description: Health check for the AIQ AIRA service

 function_name: health_check

 - path: /default_collections

 method: GET

 description: Get the default collections

 function_name: default_collections

 # Add profiler endpoint

 - path: /analyze_performance

 method: POST

 description: Analyze performance metrics using profiler agent

 function_name: profiler_agent

llms:

 instruct_llm:

 _type: openai

 model_name: meta/llama-3.3-70b-instruct

 temperature: 0.0

 base_url: http://10.184.203.82:8000/v1

 api_key: not-needed

 stream: false

 max_retries: 1 # Default is 3

 timeout: 120

 nemotron:

 _type: openai

 model_name: nvidia/llama-3.3-nemotron-super-49b-v1.5

 temperature: 0.0

ERA-DAS-004 | 45

 base_url: http://10.184.203.83:8000/v1

 stream: false

 api_key: not-needed

 max_retries: 1 # Default is 3

 timeout: 120

functions:

 generate_query:

 _type: generate_queries

 llm_name: nemotron

 generate_summary:

 _type: generate_summaries

 rag_url: http://10.184.203.84:8081/v1

 timeout: 60

 artifact_qa:

 _type: artifact_qa

 llm_name: instruct_llm

 rag_url: http://10.184.203.84:8081/v1

 timeout: 60

 # Add profiler agent and related tools

 profiler_agent:

 _type: profiler_agent

 llm_name: instruct_llm

 max_iterations: 4

 max_retries: 3

ERA-DAS-004 | 46

 tools:

 - px_query

 - flow_chart

 - token_usage

 - response_composer

 output_dir: .tmp/aiq/aira/profiler_agent/ # Add persistent storage

 px_query:

 _type: px_query

 phoenix_url: http://10.184.203.86:6006

 time_window_seconds: 600000

 default_project_name: default

 flow_chart:

 _type: flow_chart

 token_usage:

 _type: token_usage

 response_composer:

 _type: response_composer

workflow:

 _type: ai_researcher

 timeout: 600

ERA-DAS-004 | 47

eval:

 general:

 output_dir: .tmp/eval/aiq-test-rtxpro6k

 dataset:

 _type: json

 file_path: .tmp/research_assistant_dataset.json

 profiler:

 base_metrics: true

 token_uniqueness_forecast: false

 workflow_runtime_forecast: false

 compute_llm_metrics: true

 csv_exclude_io_text: true

 prompt_caching_prefixes:

 enable: false

 min_frequency: 0.1

 bottleneck_analysis:

 enable_nested_stack: false

 # # Evaluators for quality assessment during sizing calculations

 # evaluators:

 # research_quality_evaluator:

 # _type: tunable_rag_evaluator

 # llm_name: instruct_llm # Using your existing LLM

 # judge_llm_prompt: |

 # You are an expert evaluator for AI research assistant outputs. Assess the quality of the generated research

content based on:

 # 1. Coverage: How comprehensively does it address the research question?

 # 2. Correctness: How accurate and factual is the information?

 # 3. Relevance: How relevant is the content to the specific research domain?

ERA-DAS-004 | 48

 # 4. Citation Quality: How well are sources cited and referenced?

 # Rate each aspect from 0.0 to 1.0.

 # default_scoring: true

 # default_score_weights:

 # coverage: 0.3

 # correctness: 0.3

 # relevance: 0.2

 # citation_quality: 0.2

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the
information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document
is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time
without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or
environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such
inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of
each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information
contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the
application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability
of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA
accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any
manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this
document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE
FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s
aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the
product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active
Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All other brands
or product names are the property of their respective holders. ʺARMʺ is used to represent ARM Holdings plc; its operating company ARM Limited; and
the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM
Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2020 NVIDIA Corporation. All rights reserved.

http://www.nvidia.com/

