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Abstract 
As enterprises scale their AI initiatives, maximizing return on investment from accelerated 
infrastructure has become a strategic and crucial objective. Most Enterprises are looking to 
run Inference services on Large Language models (LLMs) as a start but are also exploring 
running multiple models for varying use cases, to manage costs or to get better accuracy. 
Running multiple Inference services while using traditional methods of allocating GPUs 
statically often leads to underutilization, fragmented workloads, and increased operational 
overhead. This paper helps guide enterprises on how to pack more Inference models on a 
given set of NVIDIA GPUs using NVIDIA Run:ai, through intelligent scheduling, fractional 
GPUs, and dynamic resource management. We also explore the impact on performance with 
the Run:ai scheduler on utilizing fractional GPUs for NIM LLMs. 

Introduction 
NVIDIA NIMs simplify the deployment and management of inference services across a wide 
range of AI models. Delivered as pre-packaged, containerized inference servers, NIMs are 
readily available through the NVIDIA NGC catalog and are designed for rapid integration into 
enterprise AI infrastructure. Each NVIDIA NIM has a minimum number of GPUs that are 
needed to run Inference against a specific model. The minimum no. of GPUs that can support 
a specific number of users/workloads that can run concurrent Inference sessions against NIM, 
based on how the NIM is optimized ( latency v/s throughput).NIMs can be scaled easily by 
adding more GPUs as workload demands grow. 

The overall workload on a NIM service can vary at any point in the day, the challenge 
however is all the GPUs that are allocated to a particular NIM are consumed by that NIM 
regardless of the workload on that NIM, or in case of scale, the system GPUs might be scaled 
for max capacity, however only a percentage of users are consuming that NIM so the GPUs 
can be scaled down and can be given to another workload. ​
At times, enterprises might have powerful GPUs that can fractionally accommodate more than 
one NIM workload. While the GPUs are idle, they cannot be deallocated and allocated to 
other workloads because these GPUs are statically assigned.  

NVIDIA Run:ai is an intelligent workload manager that helps orchestrate AI workloads across 
a resource pool of GPUs. It can automatically scale up/down an inference service based on 
workload and can allocate fractional GPUs for various NIMs, Run:ai can also prioritize GPU 
allocation based on users, workload etc.  
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Scope 
 

This paper covers how to optimize and scale NVIDIA GPUs to run NVIDIA NIMs using Run:ai 
on an Enterprise Reference Architecture. The following NIMs and GPUs are covered. 

 

Table1.  Scope of NIMs and GPUs 

NVIDIA NIM for LLMs NVIDIA GPUs 

Meta Llama 3.1 8B Instruct H100 NVL 

DeepSeek R1 Distill Llama 8B H100 NVL 

 

Intended Audience 
This Guide is meant to help NVIDIA partners architecting Gen AI-based Large Language 
Models (LLMs) on Enterprise Infrastructure and sizing for cluster-level deployments. The 
guide can be used for both new and existing deployments to determine the capacity and scale 
needed based on the LLM workload. It can also be used by the following Personas as they 
architect their Enterprise solutions. 

 

Enterprise Architects: Enterprise Architects tasked with designing and defining servers, GPU’s 
and Networking gear to determine what Infrastructure resources will be needed to support 
specific workloads around LLMs based on NIMs 

MLOps Engineer: MLOps Engineers can use this to define Infrastructure requirements as they 
talk to Infrastructure/Cloud teams to carve out resources to run Inference Services on LLMs 
based on NIMs 

Platform Engineer: Platform Engineers can use this guide to determine how to design their 
Container Environment around Kubernetes, and also what kind of resources will be needed 
by the cluster to support various LLM workloads based on NIMs 
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Systems Overview 
For this guide, we are leveraging Enterprise Reference Architecture (RA) in the 2-4-3-200 
configuration using the Software Reference Stack with Run:ai and deploying NIMs on top of 
the stack​
 
 
Figure 1.​ System Overview 

 

 

 

 Note: For the detailed hardware design, refer to NVIDIA H100 NVL NVIDIA Spectrum 
Platforms Enterprise Reference Architecture: NVOnline | NVOnline: 1119885 

 

Run:ai Overview 
Run:ai is NVIDIA’s Kubernetes-native AI workload and GPU orchestration platform, 
purpose-built to help enterprises manage and scale AI workloads across heterogeneous 
infrastructure - on-prem, in the cloud and hybrid. ​
It enables centralized orchestration of AI compute for multiple departments and teams, 
supporting advanced scheduling, quota enforcement, and GPU resource sharing to maximize 
infrastructure efficiency and AI workload performance.  
Run:ai replaces the default Kubernetes scheduler with a purpose-built AI scheduler, enabling 
fine-grained control over GPU allocation, including GPU fractioning and advanced scheduling 
policies tailored to the unique needs of AI and deep learning workloads. 
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Run.ai has two major components. 

 

1.​ The Run:ai Control Plane: The centralized management layer that orchestrates 
individual GPU clusters. It enforces policies, manages workloads, and provides the UI 
and API for interacting with Run:ai environments. 

2.​ Run.ai Cluster: A local instance that receives instructions from the Control Plane. It 
handles resource management and submits workloads at the cluster level. Multiple 
Run:ai Clusters can be connected to a single Control Plane instance for unified 
management. 

 

 

 

 

 

Figure 2.​ Run:ai Architecture 

​
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Run:ai has three modes of operation,  

1.​ Saas /Classic: In this architecture, the Run:ai control plane is in the cloud, and the 
cluster can be in any data center/Cloud 

2.​ Self-Hosted: In this mode, both the Run:ai control plane and cluster are installed within 
the enterprise's datacenter/cloud, but requires connection to the internet to download 
bits 

3.​ Air-Gapped: This mode is Self-Hosted but requires no Internet connection 

 

Note: The scope of this Guide is limited to the SaaS/Classic Installation method. 

 

Enterprise Reference Architecture Overview 
This guide is part of NVIDIA Enterprise Reference Architecture, which covers certified 
hardware, software stack, and sizing recommendations to design, build, and scale an 
end-to-end accelerated computing cluster deployment with balanced CPU to GPU to NIC 
patterns. The Enterprise Reference architecture provides guided and detailed hardware and 
software architecture recommended by NVIDIA for optimal server, cluster, and network 
configuration needed to build and scale AI factories.   

NVIDIA Enterprise Reference Architecture includes hardware design recommendations, 
software stack configurations, and scalability.  

Hardware Enterprise Reference Architecture  
For this version of the document, we used NVIDIA's 2-4-3-200 Enterprise RA reference 
configuration for the overall stack. The PCIe-Optimized 2-4-3 ( CPU-GPU-NIC-Bandwidth) 
reference configuration is for 2U NVIDIA-Certified compute nodes using PCIe, allowing you to 
deploy up to 4 GPUs with up to 3 NICs balanced with 2 CPUs. This pattern can scale from 4 
to up to 32 nodes in a cluster. The Enterprise RA design recommends using NVIDIA 
Spectrum-X switches, Ethernet Platform - Combining Spectrum-4 Ethernet switches and 
NVIDIA Bluefield-3 SuperNICs for optimized networking. 

 

 Note: For the detailed hardware design, refer to NVIDIA L40S and H100 NVL NVIDIA 
Spectrum Platforms Enterprise Reference Architecture: NVOnline : 1119410 | NVOnline : 
1119885 
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Figure 3.​ System architecture of Enterprise RA 2-4-3-200 reference configuration 
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The server used while running the test on the Software Enterprise RA had the following 
characteristics. 

 

 

Table 2.​ Specification of Individual Components in the server with NVIDIA H100 GPUs 

Component Specification 

CPUs 2x INTEL(R) XEON(R) GOLD 6548Y+​
232 cores; 64 threads 

GPUs 4 x NVIDIA H100 NVL 

Networking – E/W ​​ 2 x NVIDIA BlueField-3, B3140H 

Networking – N/S ​​ 1 x NVIDIA BlueField-3, B3220 

Host Memory ​​ 32x 64 GB DRAM (2048) 

Host Boot Drive ​​ 2x 896 GB ( ~1.8 TB)  

Host Storage ​​ 8x 1787.88 GB  (~14TB) 

 

 

The Systems are connected with NVIDIA SN5600 switches, and below is the reference 
architecture for Networking. The Scalable Units are a pool of servers with the 2-4-3-200 
architecture.  

 

Figure 4. ​ Networking Reference for Enterprise RA  
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For this particular guide, we are using NFS Storage that has been deployed on the BCMe 
head node to provide Persistent Volumes to NIM workloads. Enterprise customers can use 
their storage systems to provide storage volumes needed by Kubernetes and the Inference 
Services (NIMs). 

Our current Enterprise RA data center deployment consists of a pool of 16 servers with 4 
NVIDIA H100 NVL GPUs per node. The complete cluster has 64 GPUs in total. 

Software Reference Stack  
The software reference stack leverages the bare-metal servers with Kubernetes as the cluster 
orchestration tool. BCMe is part of the NVIDIA AI Enterprise software suite, and it provides all 
the tools you need to deploy and manage an AI datacenter. It also helps in deploying a 
Kubernetes cluster on top of the bare-metal servers to create a pool of GPU resources. BCM 
is then used to deploy all the operators like the GPU Operator, Network Operator, NIM 
Operator, etc. to run the GPUs and Network cards effectively. We then deploy a NIM service, 
picking the model ​​for which the Inference service needs to be tested and scaled. We installed 
Run:ai version 2.2 using the SaaS format. 
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Figure 5.​ Overview of the overall deployment stack 

 

This Enterprise Reference Architecture leverages NVIDIA AI Enterprise software to install and 
configure the necessary software and tools required to efficiently deploy and operate an AI 
factory. Once servers are racked and networked, BCMe can be used to image individual 
servers, deploying Ubuntu 22.04 as the operating system, installing NVIDIA GPU and network 
drivers, and setting up Kubernetes clusters. 

Beyond these core capabilities, the deployment also aligns the software dependencies for 
various components required for Kubernetes cluster operations, such as a Container Network 
Interface (CNI) for managing container networks, NGINX Ingress Controller for handling 
cluster ingress traffic, and MetalLB for load balancing services within the Kubernetes 
environment also provides firmware to configure and optimize OS like Cumulus Linux for the 
NVIDIA Spectrum switches, firmware for the Bluefield Super NICs etc. 

 
Note: For detailed Software reference design, refer to NVIDIA Software Reference Stack 
and automation for Enterprise RA - vanilla Kubernetes: NVOnline : 1130533 

In this document, we will leverage NVIDIA NIM and install it on top of the Enterprise RA stack, 
test the performance of the inference server and show how the inference service scales as 
workloads change.  
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NVIDIA Inference Microservice (NIM)  
NVIDIA Inference Microservice (NIM) is a pre-trained, customized AI model packaged in the 
form factor of a Container optimized to run on NVIDIA Systems like Data Centers, RTX AI 
PCs and workstations. NVIDIA NGC Catalog hosts many NIMs for various AI model domains 
like Large Language Models (LLMs), Vision Language Models (VLMs), models for speech, 
medical imaging, 3D, Videos etc.  

For this guide, we are scaling and testing the following Large Language (LLMs) Model packed 
in NVIDIA NIMs, NVAIE also includes Support for these NIMs. 

 

Table 3. ​ NVIDIA NIM - Models & versions 

Model NIM Version 

Llama 3.1 8B Instruct 1.8.4  

DeepSeek R1 Distill Llama 8B 1.5.2 

 

System Configuration 
 

Pre-requisites for installing Run:ai and NIM LLM 
●​ A Kubernetes Cluster with a supported version installed with NVIDIA GPU Operator 

and NVIDIA Network Operator installed, which should already be in place if the 
NVIDIA Software Enterprise RA is followed. 

●​ Active Subscription to NVAIE and Access to the NGC Enterprise Catalog. Please 
generate and download your nvcr.io access token in NGC. For more information on 
how to get the access token, refer to the following guide. 

●​ Install Helm in the Kubernetes Cluster and download the helm CLI. This should have 
been installed if the Software Enterprise RA is followed. 

 
 

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA 

Deployment, Scale and Sizing Guide 

​ ERA-DAS-002   |   10 
 

https://catalog.ngc.nvidia.com/?filters=nvidia_nim%7CNVIDIA%20NIM%7Cnimmcro_nvidia_nim,resourceType%7CContainer%7Ccontainer
https://docs.nvidia.com/ngc/gpu-cloud/ngc-private-registry-user-guide/index.html


 

●​ Access to Kubernetes Clusters config file and `kubectl` CLI installed, this file is in the 
Enterprise RA cluster BCMe head node under /<user>/.kube/config 

●​ A Storage Class with present to create Persistent Volume Claims by Kubernetes, this 
can be an NFS or Block-based storage class, the storage class name is default. 

●​ Get the Run.ai SaaS Login, the run.ai portal, where the control pane requires a login 
to be created by NVIDIA. Please work with Account/SA teams to get an org carved out 
for this.  

●​ Access to the BCM node through which the Kubernetes Cluster was installed 

Pre-reqs for RunAI 
 

Please install the Run:ai Cluster and Control plane components on the Enterprise RA cluster. 
The reference implementation steps have been provided at the end of this document in 
Appendix A. 

At the end of the Run:ai installation you should have 

●​ The Enterprise RA cluster added to the Run:ai Control Plane 
●​ A Project created in Run:ai that has all the Nodes and 64 GPUs allocated to the 

cluster and a different namespace is used for Run:ai Project  
●​ The node pool in Run:ai has the placement strategy set to Spread instead of 

Bin-Pack for GPUs and CPUs 
●​ Users are created in Run:ai 

Please refer to Appendix A for reference implementation in a SaaS mode/Classic mode. 

Deploy and Configure NIM LLM on Run:ai 

Create Data Source for NIM 
The NIM inference service will need storage to load the NIM Cache on to, for that we need to 
create a Persistent Volume drive in the project Run:ai is going to use. 

Create a Persistent Volume for the Data Store that Run:ai Inference workload will use, replace 
<namespace-project> with the project name created in step above. 

Also, replace storage class with the StorageClass Name with the name in the cluster, change 
the server to the NFS server’s IP address, and the Path to the share/mount the NFS server is 
configured with 
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kubectl apply -f nfs-pv.yaml -n <namespace-project> 
 
apiVersion: v1 
kind: PersistentVolume 
metadata: 
 name: nfs-pv 
spec: 
 capacity: 
   storage: 100Gi 
 accessModes: 
   - ReadWriteMany 
 persistentVolumeReclaimPolicy: Retain 
 storageClassName: nfs-storage 
 nfs: 
   server: 10.185.118.25 
   path: /mnt/cm-nfs 

 

Create a PVC that can be used, replace <namespace-project> with the namespace in k8s 
Run:ai is using 
kubectl apply -f nfs-pvc.yaml -n <namespace-project> 
 
apiVersion: v1 
kind: PersistentVolumeClaim 
metadata: 
 name: nfs-pvc-nim 
spec: 
 accessModes: 
   - ReadWriteMany 
 resources: 
   requests: 
     storage: 100Gi 
 storageClassName: nfs-storage 

 

Create a Data Source in Run:ai to use the PVC created above 

Go to Workload Manager → Assets → Data Sources, click on New Data Source → 
PVC 

Select the scope to your project, click apply 

 

 

 

 
 

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA 

Deployment, Scale and Sizing Guide 

​ ERA-DAS-002   |   12 
 



 

 

 

 

 

 

 

 

 

 

Figure 6.​ Create a Data Source - Assign Scope 

 

 

Enter a name, select Existing PVC in the Data Mount field. Select the PVC name you 
created in the step above.  Make sure to enter  /opt/nim/.cache as the Container 
Path; this is where the NIM service will download the NIM cache. 

Click Create Data Source 
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Figure 7.​ Create DataSource- Details 
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Create a Secret 
A secret is needed for the workload to access NGC and download the correct NIMs.  

 

Create a NGC-API Secret 

Login to the Run:ai UI , Go to Workloads → Assets → Credentials 

Click on New Credential → Generic Secret 

Select the Scope to the Project in use, enter a Name for the Credential 

Under Secret, click New Secret and add NGC_API_KEY in the key and your NGC API token 
in the Value  field 

Click Create Credentials 

 

Add Docker Registry Secret 

Docker Registry secret is needed by run.ai to access nvcr.io. 

Login to Run.ai, Go to Workloads → Assets → Credentials 

Click on New Credential → Docker Registry 

Click Create Credentials 

Select the Scope of the Project in use, and enter a Name for the Credential. 

Under Secret, click New Secret and add $oauthtoken in the key and your NGC API 
token key in the Value  field 
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Deploy a Specific NIM LLM  
Go to Run:ai, click on Workload Manager → Workloads → Click on  New Workload 

Select inference, select the Project you will be using, Select Inference Type as Nvidia 
NIM, give the Inference workload a name, and Click Continue. 

 

Figure 8 .​ Deploy NIM- Provide Name 
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Select Meta/Llama-3.1-8b-instruct from the dropdown list for Model names 

Figure 9 .​ Create NIM- Select Model 
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Make sure the Provide a token radio button is selected and enter your NGC API Key in 
the field. 
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Figure 10.​ Create NIM- Provide NGC Key 
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Select one-gpu tile; this varies by the workload you select 

Figure 11.​ Create NIM- Provide Resources 
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Click on Model store to expand it, and select the Data Source we created in the steps above. 

 

Figure 12.​ Create NIM- Provide PVC 

 
Expand the General section and select days 30 box , click Create Inference.​ ​  
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Figure 13.​ Create NIM 

 

 You should see the inference service running in a few minutes. 

 

Figure 14.​ Create NIM- Running status 
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 Alternate YAML method 
​
You can create an Inference request via YAML as well. Submit the below sample YAML, 
replace the NGC_API with your API key to Kubectl 
​
​
​
apiVersion: run.ai/v2alpha1 
kind: InferenceWorkload 
metadata: 
 name: llama-8b-single-gpu 
 namespace: runai-test 
spec: 
 environment: 
   items: 
     NGC_API_KEY: 
       value: nvapi- # Update this to your API key, no quotes 
     NIM_CACHE_PATH: 
       value: /opt/nim/.cache 
 gpu: 
   value: "0.5" 
 image: 
   value: nvcr.io/nim/meta/llama-3.1-8b-instruct 
 minScale: 
   value: 1 
 maxScale: 
   value: 2 
 metric: 
   value: concurrency # 
 target: 
   value: 1000  # 
 ports: 
   items: 
     port1: 
       value: 
         container: 8000 
         protocol: http 
         serviceType: ServingPort 
 pvcs: 
   items: 
     pvc: 
       value: 
         claimName: nfs-pvc-nim 
         existingPvc: true 
         path: /opt/nim/.cache 
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         readOnly: false         
 

Query the Inference Server 
Find the Inference Server Endpoint 

●​ Under Workloads, select Columns on the top right. Add the column 
Connections. 

●​ See the connections of the inference-server-1 workload: 

Figure 15 .​ NIM Serving Endpoint  

 

Run:ai creates an External Name for the inference service, we can expose the service on an 
LB IP using the metal-LB already deployed on the cluster. Get the Deployment name of the 
inference service in Kubernetes by 

kubectl get deployment  -n <runai-namespace-project> 

Then, run the following, change the name to the name that’s on your cluster 

 
kubectl expose deployment <deployment-name> --port=8000 --target-port=8000  
--name=nim-lb-service-h100 --type=LoadBalancer -n <runai-namespace-project> 

 
Check the Load Balancing IP of the Inference Service bu: 
kubectl get svc -n <runai-namespace-project> 
 
Validate everything is running my running curl or pointing a browser to 
http://<LB-IP-Infernece-service>:8000/v1/models 
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You should see an output like below: 
​
​
{ 
  "object": "list", 
  "data": [ 
    { 
      "id": "meta/llama3-8b-instruct", 
      "object": "model", 
      "created": 1741026705, 
      "owned_by": "system", 
      "root": "meta/llama3-8b-instruct", 
      "parent": null, 
      "permission": [ 
        { 
          "id": "modelperm-777c1ee100c846b1ad8e0b4d530f4f1e", 
          "object": "model_permission", 
          "created": 1741026705, 
          "allow_create_engine": false, 
          "allow_sampling": true, 
          "allow_logprobs": true, 
          "allow_search_indices": false, 
          "allow_view": true, 
          "allow_fine_tuning": false, 
          "organization": "*", 
          "group": null, 
          "is_blocking": false 
        } 
      ] 
    } 
  ] 
} 
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Performance and Scale Methodology 
Run:ai works with Kubernetes to add a custom scheduler that manages the allocation of GPU 
resources to the AI workloads. This scheduler can also allocate fractional GPUs to the 
Workloads. In order to benchmark this solution, we first established the Inference workload 
benchmarks using the Gen-AI perf tool without Run:ai scheduler. Once that was established, 
we ran the same benchmarking process on the Inference workload deployed with Run:ai, 
using both fractional and full GPUs. We ran this for two models, Meta Llama 3.1 8B and 
DeepSeek R1 Distill Llama 8B. Once the Performance benchmarks were established, we then 
scaled the GPUs, the NIM Pod instances and the workload on the NIM LLM using Gen-AI 
Perf.​
 

 

Benchmarking NIM LLM  
To benchmark the NIM service, we used NVIDIA’s GenAI-Perf , a client-side tool, from within 
the Triton inference server running outside the cluster to generate load on the NIM service 
API. Gen-AI Perf is a tool developed by NVIDIA to measure the throughput and latency of 
generative AI models. It provides some key metrics to measure performance and benchmark. 

Typically, in an LLM application, a user provides a query (prompt), the inference service 
queues the request, then processes it, and a response is generated. The model takes the 
user input prompt and breaks it down into tokens for efficient processing. As such, there are 
some common terms used to define the process 

Tokens: The unit that LLM use to break a prompt into for processing 

Input Sequence Length ( ISL): The number of tokens entered by the user 

Output Sequence Length (OSL): The number of tokens produced by the inference request at 
the generation phase.  

Based on this, GenAI Perf can load an inference server with various ISL and OSL sequences 
to mimic Summarization, translation prompts, mimicking the scenarios a user might use the 
Inference server for, and provide various metrics. Here are some of the key metrics to monitor 
for an LLM Inference request: 

Time to First Token (TTFT): This metric calculates how long a user has to wait after entering a 
prompt and before the first token is received as a response from the inference service. 

Output Tokens Per Second Throughput: This metric shows all the tokens generated by the 
Inference Service per second for every request.  
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Inter Token Latency (ITL): Average time taken between consecutive tokens generated 

Concurrent Users (CCU): Total number of active users concurrently being served by the 
inference service  

 

Figure 16. ​ Performance Metrics to monitor for an LLM Inference  

 

 

 

  

 

Scale Methodology for NIM LLM with Run:ai 
Determining the appropriate scaling strategy for an LLM service depends on several key 
factors, including the expected number of concurrent users, acceptable peak-time 
performance, and organizational constraints such as budget and system tolerances. Two 
primary metrics drive this assessment: user latency and throughput. 

 
 

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA 

Deployment, Scale and Sizing Guide 

​ ERA-DAS-002   |   30 
 



 

●​ User Latency refers to the time a user waits for a request to be processed, typically 
measured as Time to First Token (TTFT) in LLM services. 

●​ Throughput represents the total number of requests the system can handle within a 
given timeframe, regardless of the number of concurrent users. 

To establish an optimal scaling approach, we evaluate how many concurrent users can issue 
queries simultaneously without a significant increase in latency or degradation in throughput. 
For this study, we set a performance threshold ensuring that user latency remains close to 
1000ms for all prompt requests. We then determine the maximum number of users a specific 
model can support, given the minimum number of GPUs needed to run for a particular 
characteristic, like chat, summary, translation, etc. For Meta Llama 8B, a single Pod needs at 
least one H100 NVL GPU. Scaling is achieved by increasing the number of pods running the 
NIM LLM within the Kubernetes cluster and analyzing the impact on user capacity as 
additional GPUs are consumed and as more LLM pods are scaled. With Run:ai, we are just 
increasing the number of replicas needed to run a LLM service, starting one replica per LLM 
service. A single replica is consuming 1 -2 GPUs based on the model's profile and Memory 
requirement.  

This methodology enables precise scalability planning, ensuring that AI infrastructure can 
dynamically adjust to varying workload demands while maintaining an optimal balance 
between performance and resource utilization. With Run:ai, this can be automated. Run:ai 
lets the user determine at what point to scale up or scale down resources based on 
Throughput, Latency, or Concurrent users. This can be defined while creating the Inference 
Workload.  

GenAI-Perf was used to load the NIM Service with multiple users, using a summarization 
characteristic, where ISL/OSL is set to 2000:200.  Once GenAI-Perf runs a workload against 
the NIM service it provides metrics to check the throughput, Latency and the Time it took the 
model to output the first token (TTFT) etc.  

 

Table 4.​ Models, Scale, and Use Cases tested 

LLM With 
Run:ai 

GPU GPU Scale 
Tested  

Use case Quantization 
tested 

Meta Llama 
3.1 8B Instruct 

No H100 
NVL 

From 1 Pod X 1 
GPU to 64 Pods 
X 1 ​
   

Summarization 
(2000:200) 
 

fp8 

DeepSeek R1 
Distill Llama 8B 

No H100 
NVL 

From 1 Pod X 1 
GPU to 64 Pods 

Summarization 
(2000:200) 
 

fp8 
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X 1 GPU​
   

Meta Llama 
3.1 8B Instruct 

Yes H100 
NVL 

From 1 Pod X 1 
GPU to 64 Pods 
X 1 GPU​
   

Summarization 
(2000:200) 
 

fp8 

DeepSeek R1 
Distill Llama 8B 

Yes H100 
NVL 

From 1 Pod X 1 
GPU to 64 Pods 
X 1 GPU​
   

Summarization 
(2000:200) 
 

fp8 

Meta Llama 
3.1 8B Instruct 

Yes H100 
NVL 

From 1 Pod X 0.5 
GPU to 128 Pods 
X 0.5 GPU​
   

Summarization 
(2000:200) 
 

fp8 

DeepSeek R1 
Distill Llama 8B 

Yes H100 
NVL 

From 1 Pod X 0.5 
GPU to 128 Pods 
X 0.5 GPU​
   

Summarization 
(2000:200) 
 

fp8 

Mixed 
Workloads​
​
Meta Llama 
3.1 8B & 
Deepseek R1 
Distill Llama 8B 

Yes H100 
NVL 

From 1 Pod X 1 
GPU to 128 Pods 
X 0.5 GPU (each 
LLM)​
   

Summarization 
(2000:200) 
 

fp8 

 

Installing and Configuring Gen-AI Perf 
Triton Inference Server can be installed as a Docker container or a Pod in a Kubernetes 
Cluster. You can get the server from NGC here. Triton Inference Server has the GenAI Perf 
tool in it. 

To run on Docker, 
docker pull nvcr.io/nvidia/tritonserver:24.12-trtllm-python-py3 

 

To run on Kubernetes, you can deploy it using this YAML file, make sure the secret to NGC is 
also created in the cluster, as described in the NIM Service creation steps above. 

Kubectl apply -f triton-server.yaml 
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apiVersion: v1 

kind: Pod 

metadata: 

  name: triton 

  labels: 

​ app: triton 

spec: 

  containers: 

  - name: triton 

​ image: nvcr.io/nvidia/tritonserver:24.10-py3-sdk 

​ command: ["sleep", "infinity"] 

​ volumeMounts: 

 ​ - mountPath: "/mnt" 

   ​ name: config-volume 

  volumes: 

​ - name: config-volume 

  ​ hostPath: 

    ​ path: /tmp 

    ​ type: Directory 

   

  

Once you have the docker container or the Kubernetes pod, shell into it to run the genai-perf 
command. 

The model name to run the GenAI Perf tool can be found by this command. Run this against 
the NIM LB Service, the IP in the command below is the IP of the NIM load balancer. 

curl http://{ip}:{port}/v1/models 

  

mrawat@pdxera-bcm01:~$ curl http://10.184.178.83:8000/v1/models 

  
{"object":"list","data":[{"id":"mistralai/mixtral-8x7b-instruct-v0
.1","object":"model","created":1737586179,"owned_by":"system","roo
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t":"mistralai/mixtral-8x7b-instruct-v0.1","parent":null,"max_model
_len":32768,"permission":[{"id":"modelperm-8d273b12ab3541c6807170b
0752429f0","object":"model_permission","created":1737586179,"allow
_create_engine":false,"allow_sampling":true,"allow_logprobs":true,
"allow_search_indices":false,"allow_view":true,"allow_fine_tuning"
:false,"organization":"*","group":null,"is_blocking":false}]}]} 

  

More on GenAI-Perf can be found here , below is the command used to run load using GenAI 
Perf 

  ​ genai-perf profile \ 

        ​ -m $MODEL \ #make sure put model name with quote ‘ ‘ 

        ​ --endpoint v1/chat/completions \ 

        ​ --endpoint-type chat \ 

        ​ --service-kind openai \ 

        ​ --streaming \ 

        ​ -u http://<IP of Nim-Service>:8000 \ 

        ​ --num-prompts 100 \ 

        ​ --synthetic-input-tokens-mean $inputLength \ 

        ​ --synthetic-input-tokens-stddev 50 \ 

        ​ --concurrency $CONCURRENCY \ 

        ​ --extra-inputs max_tokens:$OUTPUT_SEQUENCE_LENGTH \ 

        ​ --extra-input ignore_eos:true \ 

        ​ --profile-export-file 
test_chat_concurrency${concurrency}_input${input_tokens}_output${ou
tput_tokens}.json 
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Inference Performance and Scale Results 
with Run:ai 

Benchmarking without Run:ai 
To determine the baseline performance of the two models we ran a single GPU benchmarking 
test with Gen-AI Perf, we create a NIM LLM service without Run:ai with a single pod and 
single GPU, incrementally increased the concurrent users loaded by Gen-AI Perf registering 
the TTFT and Throughput until we saw the TTFT coming close to 1000ms. We registered the 
concurrent users count at which this was achieved and then scaled the GPUs consumed by 
the NIM LLM Service by scaling the Pods incrementally by 16X, 32X, and 64X. We noted the 
Baseline and scale numbers. Based on the results, the no. of Concurrent users scaled linearly 
as we scaled the GPUs consumed by the NIM Workloads.  

 

Below are the Baseline performance numbers recorded for each model for Single GPU 

 

Table 5.​ Single GPU Performance Numbers without Run:ai 

NIM LLM  GPU/Pod Pods CCU 

Throughput  

(Output 
Tokens/Sec) 

TTFT (ms) 

Meta Llama 
3.1 8B 1 1 141 3059 971 

Deepseek 
R1 Distill 
Llama 8B 

1 1 135 3117 976 

 

Benchmarking with Run:ai using a full GPU 
Once we had baseline performance numbers without Run:ai scheduling the workloads on the 
cluster, we created a NIM Inference workload using Run:ai, ran the same test on a single 
GPU managed by Run:ai and then scaled the workloads to 16X, 32X and 64X. This would 
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max out all the GPUs in the cluster. Gen-AI Perf tool was used to load as many concurrent 
users on the NIM service to reach a TTFT of close to 1000ms. 

 

The results in terms of the total concurrent users and the Throughput matched or was close to 
that of the tests without Run:ai schedular. See below table: 

 

Table 6.​ Single GPU Performance Numbers with Run:ai 

NIM LLM  GPU/Pod Pods CCU 

Throughput  

(Output 
Tokens/Sec) 

TTFT (ms) 

Meta Llama 
3.1 8B 1 1 137 2977 987 

Deepseek 
R1 Distill 
Llama 8B 

1 1 141 3225 987 

 

Benchmarking with Run:ai using a Fractional GPU 
Run:ai supports allocating fractional GPUs to AI workloads, however when an AI workload 
runs and is requesting a fractional GPU, if there are no other workload competing for the 
fractional GPU, Run:ai can allocate the entire GPU to the workload dynamically, for the next 
set of tests we ran the same NIM using Run:ai, however, we allocated only half( 0.5) the GPU 
of H100NVL to the NIM pod. We then ran the same Gen-AI perf tests on the NIM service and 
scaled the pods to 16x, 32X and 64X. Each Pod consumed 0.5 GPU and at 64X scale there 
was 1:1 mapping to pods and GPUs in the cluster. 

 

Since there were no other competing workloads, the dynamic GPU allocation in Run:ai gave 
the pods the entire GPU, and hence the perf results for the fraction (0.5) GPU are comparable 
to the NIM running with a full GPU.  

 

Table 7.​ Single GPU Performance Numbers with Run:ai fractional (0.5) GPU 
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NIM LLM  GPU/Pod Pods CCU 

Throughput  

(Output 
Tokens/Sec) 

TTFT (ms) 

Meta Llama 
3.1 8B 0.5 1 137 3086 995 

Deepseek 
R1 Distill 
Llama 8B 

0.5 1 141 3237 978 

 

Performance of NIM LLM at Scale with Run:ai 
The Below charts show how the NIM LLM scales with and without Run:ai ( both fractional and 
full GPUs). The concurrent users and throughput scales linearly. At Max scale (64 GPUs) 
there was a slight decrease in performance of the NIM LLM for the 0.5 fractional GPU, it was 
around ~10% drop in total concurrent users supported and ~20% drop in throughput. 

 

Below are the Perf numbers for Meta Llama 3.1 8 B. We ran the same test on Deepseek R1 
Distill Llama 8B; the results were similar. 

 

Figure 17.​ Concurrent Users scale for Meta Lama 3.18B  
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Figure 18.​ Throughput  scale for Meta Lama 3.18B  
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Simultaneous Multiple NIMs with Run:ai 
So far, we have run individual NIMs with different models on the cluster. Since Run:ai 
supports running AI workloads on fractional GPUs, we load both the NIMs, Meta Llama 3.1 8B 
and Deepseek R1 Distill Lama 8B simultaneously using Run:ai and gave 0.5 /half GPU to 
each. The cluster was then targeted by Gen-AI Perf to run workloads with the same number. 
In the CCU, we registered for individual runs of the respective models. The individual NIM 
workload was incrementally scaled along with the NIM Service pods to 16X, 32X, and 64X to 
completely utilize all the 64 GPUs in the cluster.  Each Pod consumed 0.5 GPU and at 64X 
scale there was 2:1 mapping of pods and GPUs in the cluster. 

 

Both the Inference services scaled linearly with Run:ai , both the Concurrent users and 
Throughput scaled Linearly 
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With Run:ai’s scheduler we were able to load twice as many users on the overall system, 
during peak workload where 128 pods ( 64 pods for each NIM service) were requesting 0.5 
GPU each, maxing out the 64 GPUs, there was 3X drop in TTFT and around 0.8X drop in the 
total Throughput the cluster cloud handle. 

−​  

 

 

 

The overall users we could load on the cluster were 2X  more than what we could load with 
individual models when all the GPUs were consumed. 

 

Figure 19.​ Concurrent User on Meta Llama 3.1 8B across the system 
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The System Throughput, or the total tokens processed by the cluster at max capacity, 
dropped by 0.4X compared to the total system throughput when individual NIMs were run at 
max GPU utilization. 

 

Figure 20.​ Throughput on Meta Llama 3.1 8B across the system 
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The overall User Latency, or TTFT, increased by 3X at the max GPU utilization; however, 
comparatively, the total no. of users that could be loaded and could run Inference on multiple 
models doubled. 
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Figure 21.​ TTFT on Meta Llama 3.1 8B across the system 

 

 

​
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Sizing Guidelines 
 

The above scaling methodology provides a framework on how to scale NIM LLMs on a 
system  based on user response wait times under common input/output sequence length. 
Organizations can use this framework to run tests on their stack with workload characteristics 
that are more specific to their users and determine what CCU values they are getting for a 
single GPU, Fractional GPU and running multiple models simultaneously. Based on the 
results and expected peak load they can determine how many GPUs will be needed and 
correspondingly they can size the servers needed to hold that many GPUs. Organizations can 
also use this framework to determine scale and sizing for other LLM NIMs. 

For example, For this version of the paper, below table would determine the concurrent users 
that run simultaneously using Run:ai on a single NVIDIA H100 NVL GPU, precision of fp8, 
characterization of 2000:200 on the 2-4-3-200 Enteprise RA based cluster and yet maintain a 
TTFT of close to 1000ms. 

 

 

Table 8 .​ Sizing GPUs for NIM Workloads with Run:ai 

Model CCU 
Throughput  

(Output Tokens/Sec) 
TTFT (ms) 

Meta Llama 3.1 8B 137 2977 987 

Deepseek R1 Distill Llama 8B 141 3225 987 

Mixed ( Both the above 

models) 278 6235 982 
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Summary 
 

NVIDIA Run:ai can be used to dynamically allocate GPUs to AI workloads in a Kubernetes 
Cluster. Run:ai can automatically scale up or scale down workload pods in a cluster, thereby 
releasing the amount of GPUs consumed. These free GPUs can then be assigned to other 
users/projects/workloads to drive the overall utilization of existing GPUs and datacenter 
resources. Run:ai can help scale NIMs based on concurrent users, user latency, and 
throughput. Below are the observations and conclusions for running NIM workloads at scale 
on a 16-node cluster with Run:ai 

 

●​ The Run:ai scheduler does not add any additional performance overhead to Inference 
workloads when running on full GPUs. The performance data for NIMs running with 
and without Run:ai are comparative 

●​ NIM scheduled on Fractional (0.5) GPUs  
○​ Scaled Linearly 
○​ Performance of CCU, TTFT, and Throughput was comparable to non-Run:ai 

tasks til 32X Scale. This is because if there is no other competing workload on 
that GPU, Run:ai will dynamically expand the GPU to full for the workload. 

○​ At  peak scale, consuming all the 64 GPUs in a cluster, the no. of concurrent 
users and throughput recorded were slightly lower, the Throughput dropped by 
~20%, and the Concurrent Users dropped by ~10% 

●​ Enterprise IT can use Run:ai to load more than one NIM for the same number of 
GPUs and get a variety of models to run, as well as twice as many users, decreasing 
the overall TCO. However, at full scale 64X, the TTFT can drop by 3X and the 
Throughput by 0.4X.  

​
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Appendix A 

Installing Pre-reqs for RunAI 

Get the Run.ai SaaS Login 
The run.ai portal where the control pane is required a login to be created by NVIDIA. Please 
work with Account/SA teams to get an org craved out for this. 

Installing Nginx 
 
helm repo add nginx-stable https://helm.nginx.com/stable 
helm repo update 
helm install nginx-ingress nginx-stable/nginx-ingress --set rbac.create=true 

Installing Prometheus 
Note: The default Prometheus enabled during creating the k8s cluster via BCM does not enable the prometheus 
operator in the monitoring namespace and that’s what Run:ai expects it to be at. 

 
helm repo add prometheus-community 
https://prometheus-community.github.io/helm-charts 
helm repo update 
helm install prometheus prometheus-community/kube-prometheus-stack -n monitoring 
--create-namespace --set grafana.enabled=false 

Create Certs and Private Keys 
Make sure to create it with the url that is going to be the cluster URL, replace era.nvidia.com 
with the URL you will be using 

 
# Generate a Private Key (2048-bit RSA) 
openssl genpkey -algorithm RSA -out era.nvidia.com.key -pkeyopt 
rsa_keygen_bits:2048 
 
# Generate a Self-Signed Certificate (Valid for 1 year) 
openssl req -x509 -new -key era.nvidia.com.key -out era.nvidia.com.crt -days 365 
-subj "/CN=era.nvidia.com" 

 
 

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA 

Deployment, Scale and Sizing Guide 

​ ERA-DAS-002   |   46 
 

http://era.nvidia.com


 

Update BCM Ingress with CA Certificates  
Run the cm-kubernetes-setup CLI command on the BCMe head node, select 
Configure Ingress 

 
Select the cluster you will use for Run:ai and select "yes", since we do want to configure an 
existing, properly signed certificate pair 

Press ENTER to proceed 
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Set the path to the key and Certs in the next screen, click ok 
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Expose Ingress Controller to use Public IP from the Metal LB 
pool 
 
The ingress so far is on private Cluster network, we will expose it to public network so that we 
can use the Run:ai UI through Ingress's public IP. 
kubectl patch svc ingress-nginx-controller  -n ingress-nginx  -p '{"spec": 
{"type": "LoadBalancer"}}' 

Update DNS Server  
Configure your DNS to map the IP of the Ingress Controller to the Service IP the Ingress 
Controller gets, the FQDN should point to the IP, so if you plan to use for e.g, 
`runai.nvidia.local` than the DNS and the Certificates should map the DNS 
runai.nvidia.local to the IP of the Nginx External IP,  you you can check the External IP 
the Ingress gets by running  

 
kubectl get svc -A 

Configure Run:ai 

Configure the addition of a cluster to Run.ai SaaS 
 

Login to the run.ai SaaS instance provided to you by NVIDIA, click on Resource, and click 
New Cluster button. 
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Give the cluster a name, let the default version, and enter the URL of the Kubernetes Cluster ( 
Note: This should be the same URL that the certs were created in the steps above, and the 
certificates) 

 

 

Capture the instructions and run the next command. 
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Install Run:ai Cluster 
 
kubectl create ns runai 
kubectl create secret tls runai-cluster-domain-tls-secret -n runai --cert 
/root/ca/era.nvidia.com.crt --key /root/ca/era.nvidia.com.key 
 helm repo add runai https://runai.jfrog.io/artifactory/api/helm/run-ai-charts 
--force-update 
helm repo update 
helm upgrade -i runai-cluster runai/runai-cluster -n runai --set 
controlPlane.url=nvidia-era.run.ai --set 
controlPlane.clientSecret=JpgdoQajWYHdCoN2YgQuolXFD5wnaL1D --set 
cluster.uid=1100804e-0bd4-4c11-9f15-0d0b8231ccca --set 
cluster.url=http://era.nvidia.com --version="2.20.20" --create-namespace 
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Wait for a few minutes till the cluster syncs with Control-Plane 

Install Knative for Inference Workloads 
kubectl apply -f 
https://github.com/knative/serving/releases/download/knative-v1.17.0/serving-crds.
yaml 
kubectl apply -f 
https://github.com/knative/serving/releases/download/knative-v1.17.0/serving-core.
yaml 
 
 

Configure Knative to use with Run: ai 
kubectl patch configmap/config-autoscaler \ 
  --namespace knative-serving \ 
  --type merge \ 
  --patch '{"data":{"enable-scale-to-zero":"true"}}' 
 
kubectl patch configmap/config-features \ 
  --namespace knative-serving \ 
  --type merge \ 
  --patch 
'{"data":{"kubernetes.podspec-schedulername":"enabled","kubernetes.podspec-affinit
y":"enabled","kubernetes.podspec-tolerations":"enabled","kubernetes.podspec-volume
s-emptydir":"enabled","kubernetes.podspec-securitycontext":"enabled","kubernetes.c
ontainerspec-addcapabilities":"enabled","kubernetes.podspec-persistent-volume-clai
m":"enabled","kubernetes.podspec-persistent-volume-write":"enabled","multi-contain
er":"enabled","kubernetes.podspec-init-containers":"enabled"}}' 

Configure HPA for Autoscaling by Knative 
kubectl apply -f 
https://github.com/knative/serving/releases/download/knative-v1.17.0/serving-hpa.y
aml 
 

 

Update Knative timeout  
For larger Inference Workloads, we need to increase the timeout value knative uses, else 
when a large model is deployed , the model will take a long time to download and run, knative 
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will think the workload isn't processing and timeout. In order to avoid this increase the time 
knative uses to wait for workloads to come up. The below will change it to 30 minutes. 

 
kubectl patch ConfigMap config-deployment -n knative-serving --type='merge' -p 
'{"data": {"progress-deadline": "1800s"}}' 

Create a Project in Run:ai 
Once the Cluster is connected to the Run:ai control plane, we need to create a Project in 
Run:ai , a project is a logical separation of resources, once a project gets created Run:ai adds 
its custom schedular in the namespace ont he Run:ai cluster defined during the creation of 
the project, this project is where all the workloads that are submitted will be scheduled by 
Run:ai. 

 

Go to Run:ai UI → Click on Organization from the Left Hand Menu → Select “ +New 
Project” 

 

Select the scope for the project, this could be org wide, enter the Name for the Project and the 
namespace the Kubernetes Cluster to be where Run:ai deploys its schedular,you can select 
an existing namespace in the cluster or create a new one, provide the GPU quota, this would 
be the max no. of GPUs to allocate from the pool to that project. 
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Change the Placement Strategy 
Run:ai will try to pack as many workload on GPUs in a single worker node before it moves to 
another node, it will try to pack as much as possible, In order to test NIM scaling we need to 
change this default behavior to Spread, where new workload will be spread across all the 
nodes and GPUs in the cluster. 

 

In the Run:ai UI→ Go to Resources on the LHS menu → Select Node Pools→ Click on the 
Node pool used , select Edit and change the Radio Button on Placement Strategy  to 
Spread for both GPU and CPU and Click Save .  

Add Users in Run:ai 
Login to Run:ai User Interface →On the LHS Menu →Select Access →Select Users→Click 
“New User” 
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