NVIDIA

NVIDIA NIM LLM with Run:ai and Vanilla
Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide

Version 01

ERA-DAS-002 | July 2025

Abstract
Introduction
Scope
Intended Audience
Systems Overview
Run:ai Overview
Enterprise Reference Architecture Overview
Hardware Enterprise Reference Architecture
Software Reference Stack
NVIDIA Inference Microservice (NIM)
System Configuration
Pre-requisites for installing Run:ai and NIM LLM
Pre-regs for RunAl
Deploy and Configure NIM LLM on Run:ai
Create Data Source for NIM
Create a Secret
Deploy a Specific NIM LLM
Alternate YAML method
Query the Inference Server
Performance and Scale Methodology
Benchmarking NIM LLM
Scale Methodology for NIM LLM with Run:ai
Installing and Configuring Gen-Al Perf
Inference Performance and Scale Results with Run:ai
Benchmarking without Run:ai
Benchmarking with Run:ai using a full GPU
Benchmarking with Run:ai using a Fractional GPU
Performance of NIM LLM at Scale with Run:ai
Simultaneous Multiple NIMs with Run:ai
Sizing Guidelines
Summary
Appendix A
Installing Pre-reqgs for RunAl
Get the Run.ai Saa$S Login

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide

Table of Contents

[. N N
O O O 0 01 O W WNDN = —

A A DB B B WWWWWWWWDNMNMNDNDN-_2 =22 4O A A
OO U h O NO OO O N O O© O NO NO - 2 -

ERA-DAS-002 | 2

Installing Nginx 46

Installing Prometheus 46
Create Certs and Private Keys 46
Update BCM Ingress with CA Certificates 47
Expose Ingress Controller to use Public IP from the Metal LB pool 48
Update DNS Server 49
Configure Run:ai 49
Configure the addition of a cluster to Run.ai SaaS 49
Install Run:ai Cluster 51
Install Knative for Inference Workloads 52
Configure Knative to use with Run: ai 52
Configure HPA for Autoscaling by Knative 52
Update Knative timeout 52
Create a Project in Run:ai 53
Change the Placement Strategy 55
Add Users in Run:ai 55

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 3

As enterprises scale their Al initiatives, maximizing return on investment from accelerated
infrastructure has become a strategic and crucial objective. Most Enterprises are looking to
run Inference services on Large Language models (LLMs) as a start but are also exploring
running multiple models for varying use cases, to manage costs or to get better accuracy.
Running multiple Inference services while using traditional methods of allocating GPUs
statically often leads to underutilization, fragmented workloads, and increased operational
overhead. This paper helps guide enterprises on how to pack more Inference models on a
given set of NVIDIA GPUs using NVIDIA Run:ai, through intelligent scheduling, fractional
GPUs, and dynamic resource management. We also explore the impact on performance with
the Run:ai scheduler on utilizing fractional GPUs for NIM LLMs.

NVIDIA NIMs simplify the deployment and management of inference services across a wide
range of Al models. Delivered as pre-packaged, containerized inference servers, NIMs are
readily available through the NVIDIA NGC catalog and are designed for rapid integration into
enterprise Al infrastructure. Each NVIDIA NIM has a minimum number of GPUs that are
needed to run Inference against a specific model. The minimum no. of GPUs that can support
a specific number of users/workloads that can run concurrent Inference sessions against NIM,
based on how the NIM is optimized (latency v/s throughput).NIMs can be scaled easily by
adding more GPUs as workload demands grow.

The overall workload on a NIM service can vary at any point in the day, the challenge
however is all the GPUs that are allocated to a particular NIM are consumed by that NIM
regardless of the workload on that NIM, or in case of scale, the system GPUs might be scaled
for max capacity, however only a percentage of users are consuming that NIM so the GPUs
can be scaled down and can be given to another workload.

At times, enterprises might have powerful GPUs that can fractionally accommodate more than
one NIM workload. While the GPUs are idle, they cannot be deallocated and allocated to
other workloads because these GPUs are statically assigned.

NVIDIA Run:ai is an intelligent workload manager that helps orchestrate Al workloads across
a resource pool of GPUs. It can automatically scale up/down an inference service based on
workload and can allocate fractional GPUs for various NIMs, Run:ai can also prioritize GPU
allocation based on users, workload etc.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 1

Scope

This paper covers how to optimize and scale NVIDIA GPUs to run NVIDIA NIMs using Run:ai
on an Enterprise Reference Architecture. The following NIMs and GPUs are covered.

Table1. Scope of NIMs and GPUs

Meta Llama 3.1 8B Instruct H100 NVL

DeepSeek R1 Distill Llama 8B H100 NVL

Intended Audience

This Guide is meant to help NVIDIA partners architecting Gen Al-based Large Language
Models (LLMs) on Enterprise Infrastructure and sizing for cluster-level deployments. The
guide can be used for both new and existing deployments to determine the capacity and scale
needed based on the LLM workload. It can also be used by the following Personas as they
architect their Enterprise solutions.

Enterprise Architects: Enterprise Architects tasked with designing and defining servers, GPU’s
and Networking gear to determine what Infrastructure resources will be needed to support
specific workloads around LLMs based on NIMs

MLOps Engineer: MLOps Engineers can use this to define Infrastructure requirements as they
talk to Infrastructure/Cloud teams to carve out resources to run Inference Services on LLMs
based on NIMs

Platform Engineer: Platform Engineers can use this guide to determine how to design their
Container Environment around Kubernetes, and also what kind of resources will be needed
by the cluster to support various LLM workloads based on NIMs

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 2

Systems Overview

For this guide, we are leveraging Enterprise Reference Architecture (RA) in the 2-4-3-200
configuration using the Software Reference Stack with Run:ai and deploying NIMs on top of
the stack

Figure 1. System Overview

Software Reference Stack W/
Run:ai

Note: For the detailed hardware design, refer to NVIDIA H100 NVL NVIDIA Spectrum
Platforms Enterprise Reference Architecture: NVOnline | NVOnline: 1119885

Run:ai Overview

Run:ai is NVIDIA's Kubernetes-native Al workload and GPU orchestration platform,
purpose-built to help enterprises manage and scale Al workloads across heterogeneous
infrastructure - on-prem, in the cloud and hybrid.

It enables centralized orchestration of Al compute for multiple departments and teams,
supporting advanced scheduling, quota enforcement, and GPU resource sharing to maximize
infrastructure efficiency and Al workload performance.

Run:ai replaces the default Kubernetes scheduler with a purpose-built Al scheduler, enabling
fine-grained control over GPU allocation, including GPU fractioning and advanced scheduling
policies tailored to the unique needs of Al and deep learning workloads.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 3

Run.ai has two major components.

1. The Run:ai Control Plane: The centralized management layer that orchestrates
individual GPU clusters. It enforces policies, manages workloads, and provides the Ul
and API for interacting with Run:ai environments.

2. Run.ai Cluster: A local instance that receives instructions from the Control Plane. It
handles resource management and submits workloads at the cluster level. Multiple

Run:ai Clusters can be connected to a single Control Plane instance for unified
management.

Figure 2. Run:ai Architecture

NVIDIA Run:ai + NVIDIA Enterprise Reference Architecture

NVIDIA Run:ai .
Control Plane @ - .

Run:ai namespace

Em—@ O096

nver-pull-
secret

® o

NIM-Service- NIM-Service NIM-Cache
LB

NIM-servi pli /
e
-9 009
MetalLB NIM- GPU- Network
Operator Operator Operator
Enterprise RA @
(2-4-3-200)

B

BCM Nodes

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA
Deployment, Scale and Sizing Guide

ERA-DAS-002 | 4

Run:ai has three modes of operation,

1. Saas /Classic: In this architecture, the Run:ai control plane is in the cloud, and the
cluster can be in any data center/Cloud

2. Self-Hosted: In this mode, both the Run:ai control plane and cluster are installed within
the enterprise's datacenter/cloud, but requires connection to the internet to download
bits

3. Air-Gapped: This mode is Self-Hosted but requires no Internet connection

Note: The scope of this Guide is limited to the SaaS/Classic Installation method.

This guide is part of NVIDIA Enterprise Reference Architecture, which covers certified
hardware, software stack, and sizing recommendations to design, build, and scale an
end-to-end accelerated computing cluster deployment with balanced CPU to GPU to NIC
patterns. The Enterprise Reference architecture provides guided and detailed hardware and
software architecture recommended by NVIDIA for optimal server, cluster, and network
configuration needed to build and scale Al factories.

NVIDIA Enterprise Reference Architecture includes hardware design recommendations,
software stack configurations, and scalability.

For this version of the document, we used NVIDIA's 2-4-3-200 Enterprise RA reference
configuration for the overall stack. The PCle-Optimized 2-4-3 (CPU-GPU-NIC-Bandwidth)
reference configuration is for 2U NVIDIA-Certified compute nodes using PCle, allowing you to
deploy up to 4 GPUs with up to 3 NICs balanced with 2 CPUs. This pattern can scale from 4
to up to 32 nodes in a cluster. The Enterprise RA design recommends using NVIDIA
Spectrum-X switches, Ethernet Platform - Combining Spectrum-4 Ethernet switches and
NVIDIA Bluefield-3 SuperNICs for optimized networking.

Note: For the detailed hardware design, refer to NVIDIA L40S and H100 NVL NVIDIA
Spectrum Platforms Enterprise Reference Architecture: NVOnline: 1119410 | NVOnline :
1119885

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 5

Figure 3.

System architecture of Enterprise RA 2-4-3-200 reference configuration

System Memory

System Memory

B3220
DPU (N-5)

t 1

NVLink
Bridge

t ¢

NVLink
Bridge

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide

B3220
DPU (N-5)

CPU Interconnect

Up to PCle Gen5 x16

Up to PCle Gen4 x16

Up to PCle Gen5 x4

3x NVLink P2P Total 600GB/s

1x400Gh/s SmartNIC for
GPU Compute (E-W)

2x200Gb/s DPU for storage
network and user/control
management plane

PCle NVMe local
storage

ERA-DAS-002 | 6

The server used while running the test on the Software Enterprise RA had the following

characteristics.

Table 2. Specification of Individual Components in the server with NVIDIA H100 GPUs

CPUs 2x INTEL(R) XEON(R) GOLD 6548Y+
232 cores; 64 threads
GPUs 4 x NVIDIA H100 NVL

Networking — E/W

2 x NVIDIA BlueField-3, B3140H

Networking — N/S

1 x NVIDIA BlueField-3, B3220

Host Memory

32x 64 GB DRAM (2048)

Host Boot Drive

2x 896 GB (~1.8 TB)

Host Storage

8x 1787.88 GB (~14TB)

The Systems are connected with NVIDIA SN5600 switches, and below is the reference
architecture for Networking. The Scalable Units are a pool of servers with the 2-4-3-200

architecture.

Figure 4. Networking Reference for Enterprise RA

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide

ERA-DAS-002 | 7

T

Customer Network

Support Servers Storage Network —

/\/

: SN5600 | ...
Consolidated Network

4x GPU Nodes 4x GPU Nodes
(Scalable Unit) (Scalable Unit)

For this particular guide, we are using NFS Storage that has been deployed on the BCMe
head node to provide Persistent Volumes to NIM workloads. Enterprise customers can use
their storage systems to provide storage volumes needed by Kubernetes and the Inference
Services (NIMs).

Our current Enterprise RA data center deployment consists of a pool of 16 servers with 4
NVIDIA H100 NVL GPUs per node. The complete cluster has 64 GPUs in total.

Software Reference Stack

The software reference stack leverages the bare-metal servers with Kubernetes as the cluster
orchestration tool. BCMe is part of the NVIDIA Al Enterprise software suite, and it provides all
the tools you need to deploy and manage an Al datacenter. It also helps in deploying a
Kubernetes cluster on top of the bare-metal servers to create a pool of GPU resources. BCM
is then used to deploy all the operators like the GPU Operator, Network Operator, NIM
Operator, etc. to run the GPUs and Network cards effectively. We then deploy a NIM service,
picking the model for which the Inference service needs to be tested and scaled. We installed
Run:ai version 2.2 using the SaaS format.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 8

Figure 5. Overview of the overall deployment stack

Benchmark GenAl-perf
NIM Operator, NIM Cache, NIM-LLM Llama3.1 8B
Al Workload Ieite

Cloud Native Stack GPU Operator, Network Operator, DCGM, Prometheus

Container Orchestration Upstream K8s + Run:ai 2.2

Provisioning/Management Base Command Manager

Hypervisor/Guest OS Ubuntu 22.04 BareMetal

Hardware Intel Sapphire Rapids / NVIDIA GPU / Spectrum X

This Enterprise Reference Architecture leverages NVIDIA Al Enterprise software to install and
configure the necessary software and tools required to efficiently deploy and operate an Al
factory. Once servers are racked and networked, BCMe can be used to image individual
servers, deploying Ubuntu 22.04 as the operating system, installing NVIDIA GPU and network
drivers, and setting up Kubernetes clusters.

Beyond these core capabilities, the deployment also aligns the software dependencies for
various components required for Kubernetes cluster operations, such as a Container Network
Interface (CNI) for managing container networks, NGINX Ingress Controller for handling
cluster ingress traffic, and MetalLB for load balancing services within the Kubernetes
environment also provides firmware to configure and optimize OS like Cumulus Linux for the
NVIDIA Spectrum switches, firmware for the Bluefield Super NICs etc.

Note: For detailed Software reference design, refer to NVIDIA Software Reference Stack
and automation for Enterprise RA - vanilla Kubernetes: NVOnline : 1130533

In this document, we will leverage NVIDIA NIM and install it on top of the Enterprise RA stack,
test the performance of the inference server and show how the inference service scales as
workloads change.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 9

NVIDIA Inference Microservice (NIM)

NVIDIA Inference Microservice (NIM) is a pre-trained, customized Al model packaged in the
form factor of a Container optimized to run on NVIDIA Systems like Data Centers, RTX Al
PCs and workstations. NVIDIA NGC Catalog hosts many NIMs for various Al model domains
like Large Language Models (LLMs), Vision Language Models (VLMs), models for speech,
medical imaging, 3D, Videos etc.

For this guide, we are scaling and testing the following Large Language (LLMs) Model packed
in NVIDIA NIMs, NVAIE also includes Support for these NIMs.

Table 3. NVIDIA NIM - Models & versions

Llama 3.1 8B Instruct 1.84

DeepSeek R1 Distill Llama 8B 1.5.2

System Configuration

Pre-requisites for installing Run:ai and NIM LLM

e A Kubernetes Cluster with a supported version installed with NVIDIA GPU Operator
and NVIDIA Network Operator installed, which should already be in place if the
NVIDIA Software Enterprise RA is followed.

e Active Subscription to NVAIE and Access to the NGC Enterprise Catalog. Please
generate and download your nvcr.io access token in NGC. For more information on
how to get the access token, refer to the following guide.

e Install Helm in the Kubernetes Cluster and download the helm CLI. This should have
been installed if the Software Enterprise RA is followed.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 10

https://catalog.ngc.nvidia.com/?filters=nvidia_nim%7CNVIDIA%20NIM%7Cnimmcro_nvidia_nim,resourceType%7CContainer%7Ccontainer
https://docs.nvidia.com/ngc/gpu-cloud/ngc-private-registry-user-guide/index.html

e Access to Kubernetes Clusters config file and "kubectl” CLI installed, this file is in the
Enterprise RA cluster BCMe head node under /<user>/.kube/config

e A Storage Class with present to create Persistent Volume Claims by Kubernetes, this
can be an NFS or Block-based storage class, the storage class name is default.

e Get the Run.ai SaaS Login, the run.ai portal, where the control pane requires a login
to be created by NVIDIA. Please work with Account/SA teams to get an org carved out
for this.

e Access to the BCM node through which the Kubernetes Cluster was installed

Please install the Run:ai Cluster and Control plane components on the Enterprise RA cluster.
The reference implementation steps have been provided at the end of this document in
Appendix A.

At the end of the Run:ai installation you should have

The Enterprise RA cluster added to the Run:ai Control Plane
A Project created in Run:ai that has all the Nodes and 64 GPUs allocated to the
cluster and a different namespace is used for Run:ai Project

e The node pool in Run:ai has the placement strategy set to Spread instead of
Bin-Pack for GPUs and CPUs

e Users are created in Run:ai

Please refer to_Appendix A for reference implementation in a SaaS mode/Classic mode.

The NIM inference service will need storage to load the NIM Cache on to, for that we need to
create a Persistent Volume drive in the project Run:ai is going to use.

Create a Persistent Volume for the Data Store that Run:ai Inference workload will use, replace
<namespace-project> with the project name created in step above.

Also, replace storage class with the StorageClass Name with the name in the cluster, change
the server to the NFS server’s IP address, and the Path to the share/mount the NFS server is
configured with

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 11

kubectl apply -f nfs-pv.yaml -n <namespace-project>

apiVersion: vl
kind: PersistentVolume
metadata:
name: nfs-pv
spec:
capacity:
storage: 100Gi
accessModes:
- ReadWriteMany

persistentVolumeReclaimPolicy: Retain

storageClassName: nfs-storage
nfs:

server: 10.185.118.25

path: /mnt/cm-nfs

Create a PVC that can be used, replace <namespace-project> with the namespace in k8s

Run:ai is using

kubectl apply -f nfs-pvc.yaml -n <namespace-project>

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: nfs-pvc-nim
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 100Gi
storageClassName: nfs-storage

Create a Data Source in Run:ai to use the PVC created above

Go to Workload Manager — Assets — Data Sources, click on New Data Source —

PVC

Select the scope to your project, click apply

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide

ERA-DAS-002

12

Figure 6. Create a Data Source - Assign Scope

Type e rvc

Scope ~

Set the scope for this data source

o =
Scope X
Data source name & description
Search for a cluster, department, or project Q
Enter a name
‘] st nvidia-era ()
0/40 runai-era

Description CANCEL APPLY

0/250

CANCEL CREATE DATA SOURCE

Enter a name, select Existing PVCinthe Data Mount field. Select the PVC name you
created in the step above. Make sure to enter /opt/nim/.cache as the Container
Path; this is where the NIM service will download the NIM cache.

Click Create Data Source

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 13

Figure 7. Create DataSource- Details

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 14

Data source name & description o~

pve-inference

13/ 40
Description
0/250

Data mount ~
Select PVC
(O Existing PVC (® NewPvVC
Storage class -
Access mode v

0/3
Claim size Units
1 GB v
Volume mode v

Set the data target location (The workload creator will be able to override this)

Container path
Jopt/nim/.cache

Restrictions ~

CANCEL CREATE DATA SOURCE

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 15

Create a Secret

A secret is needed for the workload to access NGC and download the correct NIMs.

reate a NGC-API ret
Login to the Run:ai Ul , Go to Workloads — Assets — Credentials
Click on New Credential — Generic Secret
Select the Scope to the Project in use, enter a Name for the Credential

Under Secret, click New Secret and add NGC_API_KEY in the key and your NGC API token
in the Value field

Click Create Credentials

Add Docker Registry Secret
Docker Registry secret is needed by run.ai to access nvcr.io.

Login to Run.ai, Go to Workloads — Assets — Credentials

Click on New Credential — Docker Registry
Click Create Credentials
Select the Scope of the Project in use, and enter a Name for the Credential.

Under Secret, click New Secret and add Soauthtoken in the key and your NGC API
token key in the Value field

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 16

http://run.ai
http://nvcr.io
http://run.ai

Deploy a Specific NIM LLM
Go to Run:ai, click on Workload Manager — Workloads — Click on New Workload

Select inference, select the Project you will be using, Select Inference Type as Nvidia
NIM, give the Inference workload a name, and Click Continue.

Figure 8 . Deploy NIM- Provide Name

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 17

Cluster ~

Set under which cluster to create this inference

Cluster

. v
runai-era
Projects
Select the project in which your workload will run
IF Name - Q + NEW PROJECT

test

Resources

@ Over gquota © Quota @ Allocated

Inference type

Select to create either a custom or model-based inference

O Custom
O m Run:ai Catalog
O ~ | Hugging Face

@ <A NVIDIANIM

Inference name

test-inference]

14/ 40

Select Meta/Llama-3.1-8b-instruct from the dropdown list for Model names

Figure 9 . Create NIM- Select Model

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 18

Cluster runai-era Va

Project test V4
Inference type Model: from NVIDIA NIM ra
Inference name test-inference ~
Model ~

Select or type the model name

Model
e.g., meta/llama-3.1-8b-base

deepmind/alphafold2
deepmind/alphafold2-multimer
nvidia/parakeet-ctc-1.1b-asr
meta/codellama-13b-instruct

meta/codellama-34b-instruct

meta/codellama-70b-instruct + NEW COMPUTE RESOURCE

mit/diffdock

|-
nvidia/maxine-eye-contact small-fraction
defog/llama-3-sglcoder-8b GPU devices: 1
es): 0.1 GPU % (of device): 10
1100 CPU compute (Cores): 0.1

tokyotech-lim/llama-3-swallow-70b-instruct-v0.1
CPU Memory (MB): 100

yentinglin/llama-3-taiwan-70b-instruct

meta/llama-3.1-405b-instruct

meta/llama-3.1-70b-instruct

meta/llama-3.1-8b-base 100
es): 0.1

1100
meta/llama-3.1-8b-instruct

meta/llama-2-13b-chat

HERTICA AUTOSTANNY

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 19

Make sure the Provide a token radio button is selected and enter your NGC API Key in
the field.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 20

Figure 10. Create NIM- Provide NGC Key

Cluster runai-era ra
Project test f
Inference type Model: from NVIDIA NIM [’
Inference name test-inference e
Model ~

Select or type the model name

Maodel
meta/llama-3.1-8b-instruct

Set how the model profile should be selected (%)

@ Automatically (recemmended) (Z)

(O Manually @

Set the NGC access

D Do not access NGC. Load the model from a local model-store (2)

Set how to access NGC
@ Provide a token

O Select credential

NGC APl key

Serving endpoint access v

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 21

Select one-gpu tile; this varies by the workload you select

Figure 11. Create NIM- Provide Resources

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 22

NGC API key
fddddgdf5te654646547657658768769867

Serving endpoint access v

Compute resource

Select the node resources needed to run your workload

15 Last used - Q

D) D)
— —
two-gpus cpu-only

GPU devices: 2
CPU compute (Cores): 0.2
CPU Memory (MB): 200

GPU devices: 0
CPU compute (Cores): 0.1
CPU Memory (MB): 100

+ NEW COMPUTE RESOURCE

=
—
small-fraction

GPU devices: 1

GPU % (of device): 10
CPU compute {Cores): 0.1
CPU Memery (MB): 100

3
—c
half-gpu

GPU devices: 1

GPU % (of device): 50
CPU compute (Cores): 0.1
CPU Memory (MB): 100

3
—
one-gpu

GPU devices: 1

GPU % (of device): 100
CPU compute (Cores): 0.1
CPU Memory (MB): 100

For 1 replica: one-gpuX1

Replica autoscaling

Nodes

Deployment, Scale and Sizing Guide

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

ERA-DAS-002

| 23

Click on Model store to expand it, and select the Data Source we created in the steps above.

Figure 12. Create NIM- Provide PVC

Model store .

Select the data source that will serve as a model store (%)

1 Last used v Q + NEW DATA SOURCE

&

llama8b-pvc

Type: PVC

Expand the General section and select days 30 box, click Create Inference.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 24

Figure 13. Create NIM

General

Set the timeframe for auto-deletion after workload completion or failure (2)

days hours minutes
30 z

Set annotation(s) (3
+ ANNOTATION

Setlabel(s) @

+ LABEL

seconds

CANCEL CREATE INFERENCE

You should see the inference service running in a few minutes.

Figure 14. Create NIM- Running status

Workloads

Workloads + NEW WORKLOAD Cluster: runai-era Add Filter

0O oo e sus Poject Running /.

O S nimimionoss — o et 7

@ NvDIAERA o

1 1 0Bytes 81.56 68 100

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide

ERA-DAS-002 | 25

You can create an Inference request via YAML as well. Submit the below sample YAML,
replace the NGC_API with your API key to Kubectl

apiVersion: run.ai/v2alphal
kind: InferenceWorkload
metadata:
name: llama-8b-single-gpu
namespace: runai-test
spec:
environment:
items:
NGC_API KEY:
value: nvapi- # Update this to your API key, no quotes
NIM CACHE PATH:
value: /opt/nim/.cache
gpu:
value: "0.5"
image:
value: nvcr.io/nim/meta/llama-3.1-8b-instruct
minScale:
value: 1
maxScale:
value: 2
metric:
value: concurrency #
target:
value: 1000 #
ports:
items:
portl:
value:
container: 8000
protocol: http
serviceType: ServingPort
pvcs:
items:
pvc:
value:
claimName: nfs-pvc-nim
existingPvc: true
path: /opt/nim/.cache

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 26

readOnly: false

Query the Inference Server

Find the Inference Server Endpoint

e Under Workloads, select Columns on the top right. Add the column
Connections.
e See the connections of the inference-server-1 workload:

Figure 15 . NIM Serving Endpoint

Connections Associated with Workload inference-server-1 X

Search connections Q

Name T Connection type Access Address
Serving Endpoint Serving endpoint http:/finference-server-1.runai-team-a.sve.cluster.local l‘

Rows perpage 20 = 1-10of1
CLOSE

Run:ai creates an External Name for the inference service, we can expose the service on an
LB IP using the metal-LB already deployed on the cluster. Get the Deployment name of the
inference service in Kubernetes by

kubectl get deployment -n <runai-namespace-project>

Then, run the following, change the name to the name that’s on your cluster

kubectl expose deployment <deployment-name> --port=8000 --target-port=8000
—--name=nim-1lb-service-hl00 --type=LoadBalancer -n <runai-namespace-project>

Check the Load Balancing IP of the Inference Service bu:
kubectl get svc -n <runai-namespace-project>

Validate everything is running my running curl or pointing a browser to
http://<LB-IP-Infernece-service>:8000/v1/models

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 27

You should see an output like below:

"object": "list",
"data": [
{
"id": "meta/llama3-8b-instruct",
"object": "model",

"created": 1741026705,

"owned by": "system",

"root": "meta/llama3-8b-instruct",
"parent": null,

"permission": [

{

"id": "modelperm-777cleel00c846blad8e0b4d530f4fle",

"object": "model permission",
"created": 1741026705,

"allow create engine": false,
"allow sampling": true,
"allow logprobs": true,
"allow search indices": false,
"allow view": true,
"allow fine tuning": false,
"organization": "*",

"group": null,

"is blocking": false

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide

ERA-DAS-002

| 28

Run:ai works with Kubernetes to add a custom scheduler that manages the allocation of GPU
resources to the Al workloads. This scheduler can also allocate fractional GPUs to the
Workloads. In order to benchmark this solution, we first established the Inference workload
benchmarks using the Gen-Al perf tool without Run:ai scheduler. Once that was established,
we ran the same benchmarking process on the Inference workload deployed with Run:ai,
using both fractional and full GPUs. We ran this for two models, and

Once the Performance benchmarks were established, we then
scaled the GPUs, the NIM Pod instances and the workload on the NIM LLM using Gen-Al
Perf.

To benchmark the NIM service, we used NVIDIA's GenAl-Perf , a client-side tool, from within
the Triton inference server running outside the cluster to generate load on the NIM service
API. Gen-Al Perf is a tool developed by NVIDIA to measure the throughput and latency of
generative Al models. It provides some key metrics to measure performance and benchmark.

Typically, in an LLM application, a user provides a query (prompt), the inference service
queues the request, then processes it, and a response is generated. The model takes the
user input prompt and breaks it down into tokens for efficient processing. As such, there are
some common terms used to define the process

Tokens: The unit that LLM use to break a prompt into for processing
Input Sequence Length (ISL): The number of tokens entered by the user

Output Sequence Length (OSL): The number of tokens produced by the inference request at
the generation phase.

Based on this, GenAl Perf can load an inference server with various ISL and OSL sequences
to mimic Summarization, translation prompts, mimicking the scenarios a user might use the
Inference server for, and provide various metrics. Here are some of the key metrics to monitor
for an LLM Inference request:

Time to First Token (TTFT): This metric calculates how long a user has to wait after entering a
prompt and before the first token is received as a response from the inference service.

Output Tokens Per Second Throughput: This metric shows all the tokens generated by the
Inference Service per second for every request.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 29

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/perf_analyzer/genai-perf/README.html

Inter Token Latency (ITL): Average time taken between consecutive tokens generated

Concurrent Users (CCU): Total number of active users concurrently being served by the
inference service

Figure 16. Performance Metrics to monitor for an LLM Inference

[Inference service I

< Time to First Token (TTFT) > E@E@
: E

| Use

F
.)

Generation time

Scale Methodology for NIM LLM with Run:ai

Determining the appropriate scaling strategy for an LLM service depends on several key
factors, including the expected number of concurrent users, acceptable peak-time
performance, and organizational constraints such as budget and system tolerances. Two
primary metrics drive this assessment: user latency and throughput.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 30

e User Latency refers to the time a user waits for a request to be processed, typically
measured as Time to First Token (TTFT) in LLM services.

e Throughput represents the total number of requests the system can handle within a
given timeframe, regardless of the number of concurrent users.

To establish an optimal scaling approach, we evaluate how many concurrent users can issue
queries simultaneously without a significant increase in latency or degradation in throughput.
For this study, we set a performance threshold ensuring that user latency remains close to
1000ms for all prompt requests. We then determine the maximum number of users a specific
model can support, given the minimum number of GPUs needed to run for a particular
characteristic, like chat, summary, translation, etc. For Meta Llama 8B, a single Pod needs at
least one H100 NVL GPU. Scaling is achieved by increasing the number of pods running the
NIM LLM within the Kubernetes cluster and analyzing the impact on user capacity as
additional GPUs are consumed and as more LLM pods are scaled. With Run:ai, we are just
increasing the number of replicas needed to run a LLM service, starting one replica per LLM
service. A single replica is consuming 1 -2 GPUs based on the model's profile and Memory
requirement.

This methodology enables precise scalability planning, ensuring that Al infrastructure can
dynamically adjust to varying workload demands while maintaining an optimal balance
between performance and resource utilization. With Run:ai, this can be automated. Run:ai
lets the user determine at what point to scale up or scale down resources based on
Throughput, Latency, or Concurrent users. This can be defined while creating the Inference
Workload.

GenAl-Perf was used to load the NIM Service with multiple users, using a summarization
characteristic, where ISL/OSL is set to 2000:200. Once GenAl-Perf runs a workload against
the NIM service it provides metrics to check the throughput, Latency and the Time it took the
model to output the first token (TTFT) etc.

Table 4. Models, Scale, and Use Cases tested

Meta Llama No H100 From 1 Pod X 1 Summarization fp8
3.1 8B Instruct NVL GPU to 64 Pods | (2000:200)

X1
DeepSeek R1 | No H100 From 1 Pod X 1 Summarization fp8
Distill Llama 8B NVL GPU to 64 Pods | (2000:200)

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 31

X1 GPU
Meta Llama Yes H100 From 1 Pod X 1 Summarization fp8
3.1 8B Instruct NVL GPU to 64 Pods (2000:200)

X1 GPU
DeepSeek R1 | Yes H100 From 1 Pod X 1 Summarization fp8
Distill Llama 8B NVL GPU to 64 Pods (2000:200)

X1 GPU
Meta Llama Yes H100 From 1 Pod X 0.5 | Summarization fp8
3.1 8B Instruct NVL GPU to 128 Pods | (2000:200)

X 0.5 GPU
DeepSeek R1 | Yes H100 From 1 Pod X 0.5 | Summarization fp8
Distill Llama 8B NVL GPU to 128 Pods | (2000:200)

X 0.5 GPU
Mixed Yes H100 From 1 Pod X 1 Summarization fp8
Workloads NVL GPU to 128 Pods | (2000:200)

X 0.5 GPU (each
Meta Llama LLM)
3.18B &
Deepseek R1
Distill Llama 8B

Triton Inference Server can be installed as a Docker container or a Pod in a Kubernetes
Cluster. You can get the server from NGC_here. Triton Inference Server has the GenAl Perf

tool in it.

To run on Docker,

docker pull nvcr.io/nvidia/tritonserver:24.12-trtllm-pyvthon-pv3

To run on Kubernetes, you can deploy it using this YAML file, make sure the secret to NGC is
also created in the cluster, as described in the NIM Service creation steps above.

Kubectl apply -f triton-server.yaml

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide

ERA-DAS-002 | 32

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
http://nvcr.io/nvidia/tritonserver:24.12-trtllm-python-py3

apiVersion: vl
kind: Pod
metadata:
name: triton
labels:
app: triton
spec:
containers:
- name: triton
image: nvcr.io/nvidia/tritonserver:24.10-py3-sdk
command: ["sleep", "infinity"]
volumeMounts:
- mountPath: "/mnt"
name: config-volume
volumes:
- name: config-volume
hostPath:
path: /tmp
type: Directory

Once you have the docker container or the Kubernetes pod, shell into it to run the genai-perf
command.

The model name to run the GenAl Perf tool can be found by this command. Run this against
the NIM LB Service, the IP in the command below is the IP of the NIM load balancer.

curl http://{ip}:{port}/vl/models

mrawat@pdxera-bcm0l:~$ curl http://10.184.178.83:8000/v1/models

{"object":"1list","data":[{"id":"mistralai/mixtral-8x7b-instruct-v0
.1","object":"model", "created":1737586179, "owned by":"system", "roo

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 33

t":"mistralai/mixtral—8x7b—instruct—v0.1","parent":null,"max_model
_len":32768, "permission": [{"id":"modelperm-8d273b12ab3541c6807170b
0752429f0", "object":"model permission","created":1737586179,"allow
_create engine":false,"allow sampling":true,"allow logprobs":true,
"allow search indices":false,"allow view":true,"allow fine tuning"
:false, "organization":"*","group":null, "is blocking":false}]}]}

More on GenAl-Perf can be found_here , below is the command used to run load using GenAl
Perf

genai-perf profile \
-m $MODEL \ #make sure put model name with quote '
-—-endpoint vl/chat/completions \
--endpoint-type chat \
--service-kind openai \
--streaming \
-u http://<IP of Nim-Service>:8000 \
—--num-prompts 100 \
--synthetic-input-tokens-mean $inputLength \
--synthetic-input-tokens-stddev 50 \
—-—concurrency S$SCONCURRENCY \
--extra-inputs max tokens:$OUTPUT_ SEQUENCE LENGTH \
-—extra-input ignore eos:true \

--profile-export-file
test_chat_concurrency${concurrency}_input${input_tokens}_output${ou
tput tokens}.json

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 34

https://github.com/triton-inference-server/client/tree/r24.03/src/c++/perf_analyzer/genai-perf

Inference Performance and Scale Results
with Run:ai

Benchmarking without Run:ai

To determine the baseline performance of the two models we ran a single GPU benchmarking
test with Gen-Al Perf, we create a NIM LLM service without Run:ai with a single pod and
single GPU, incrementally increased the concurrent users loaded by Gen-Al Perf registering
the TTFT and Throughput until we saw the TTFT coming close to 1000ms. We registered the
concurrent users count at which this was achieved and then scaled the GPUs consumed by
the NIM LLM Service by scaling the Pods incrementally by 16X, 32X, and 64X. We noted the
Baseline and scale numbers. Based on the results, the no. of Concurrent users scaled linearly
as we scaled the GPUs consumed by the NIM Workloads.

Below are the Baseline performance numbers recorded for each model for Single GPU

Table 5. Single GPU Performance Numbers without Run:ai

Meta Llama
318B 1 1 141 3059 971
Deepseek
R1 Distill 1 1 135 3117 976
Llama 8B

Benchmarking with Run:ai using a full GPU

Once we had baseline performance numbers without Run:ai scheduling the workloads on the
cluster, we created a NIM Inference workload using Run:ai, ran the same test on a single
GPU managed by Run:ai and then scaled the workloads to 16X, 32X and 64X. This would

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 35

max out all the GPUs in the cluster. Gen-Al Perf tool was used to load as many concurrent
users on the NIM service to reach a TTFT of close to 1000ms.

The results in terms of the total concurrent users and the Throughput matched or was close to
that of the tests without Run:ai schedular. See below table:

Table 6. Single GPU Performance Numbers with Run:ai

Meta Llama
318B 1 1 137 2977 987
Deepseek
R1 Distill 1 1 141 3225 987
Llama 8B

Benchmarking with Run:ai using a Fractional GPU

Run:ai supports allocating fractional GPUs to Al workloads, however when an Al workload
runs and is requesting a fractional GPU, if there are no other workload competing for the
fractional GPU, Run:ai can allocate the entire GPU to the workload dynamically, for the next
set of tests we ran the same NIM using Run:ai, however, we allocated only half(0.5) the GPU
of H100ONVL to the NIM pod. We then ran the same Gen-Al perf tests on the NIM service and
scaled the pods to 16x, 32X and 64X. Each Pod consumed 0.5 GPU and at 64X scale there
was 1:1 mapping to pods and GPUs in the cluster.

Since there were no other competing workloads, the dynamic GPU allocation in Run:ai gave
the pods the entire GPU, and hence the perf results for the fraction (0.5) GPU are comparable
to the NIM running with a full GPU.

Table 7. Single GPU Performance Numbers with Run:ai fractional (0.5) GPU

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 36

Meta Llama
318B 0.5 1 137 3086 995
Deepseek
R1 Distill 0.5 1 141 3237 978
Llama 8B

Performance of NIM LLM at Scale with Run:ai

The Below charts show how the NIM LLM scales with and without Run:ai (both fractional and
full GPUs). The concurrent users and throughput scales linearly. At Max scale (64 GPUs)
there was a slight decrease in performance of the NIM LLM for the 0.5 fractional GPU, it was
around ~10% drop in total concurrent users supported and ~20% drop in throughput.

Below are the Perf numbers for Meta Llama 3.1 8 B. We ran the same test on Deepseek R1
Distill Llama 8B; the results were similar.

Figure 17. Concurrent Users scale for Meta Lama 3.18B

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 37

13000
10000
BOOD
6000
4000

2000

s CCLVWIThDLE RUMZE1 141
e CCL WD RN 2 1 GRS 137
e CCLWIEh RUNcE1 0.5 GPU 137

Figure 18.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide

13

CCU for TTFT ~1000ms

Meta Llama 3.1 8B

Throughput scale for Meta Lama 3.18B

a7

40 43 48 43 52 55 58
32 54
866 9364
4384 10200
234 B7EE
ERA-DAS-002

| 38

Meta Llama 3.1 8b
Output Throughput [Tokens/Second)

250000

200000

150000

lo0oao

Tthrotaghput (Tok ens/Sec

S0000

1 16 32 64
e THEF LR e WATEROUIE RN .81 3055 AB447 97128 1e58@2
——Throughput \With Run:al 1 GFU 2577 49197 SOE 7D 156680
e THIFURN UL WATH RUiMCAL 05 GFU J086 43285 B7133 152694

Simultaneous Multiple NIMs with Run:ai

So far, we have run individual NIMs with different models on the cluster. Since Run:ai
supports running Al workloads on fractional GPUs, we load both the NIMs, Meta Llama 3.1 8B
and Deepseek R1 Distill Lama 8B simultaneously using Run:ai and gave 0.5 /half GPU to
each. The cluster was then targeted by Gen-Al Perf to run workloads with the same number.
In the CCU, we registered for individual runs of the respective models. The individual NIM
workload was incrementally scaled along with the NIM Service pods to 16X, 32X, and 64X to
completely utilize all the 64 GPUs in the cluster. Each Pod consumed 0.5 GPU and at 64X
scale there was 2:1 mapping of pods and GPUs in the cluster.

Both the Inference services scaled linearly with Run:ai , both the Concurrent users and
Throughput scaled Linearly

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 39

Mixed Model W/Run:ai (Meta Llama 8B & Deepseek R1 Distill 8B)
CCU Registered
10000

9000
8000
7000
6000
5000 O
e
4000
3000
2000

1000

1 16 32 64
e Meta Llama 3.1 8B 137 2192 5000 8768
s DeepseekR1 Distill 8B 141 2256 5000 9024

With Run:ai’s scheduler we were able to load twice as many users on the overall system,
during peak workload where 128 pods (64 pods for each NIM service) were requesting 0.5
GPU each, maxing out the 64 GPUs, there was 3X drop in TTFT and around 0.8X drop in the
total Throughput the cluster cloud handle.

The overall users we could load on the cluster were 2X more than what we could load with
individual models when all the GPUs were consumed.

Figure 19. Concurrent User on Meta Llama 3.1 8B across the system

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 40

System Concurrent Users
20000

18000

16000

14000

12000

o 10000

000

G000

4000

2000

o
withowt Aunzal WIth Runcal 0.5 GPU With Run:al0.s GPU Mixed Models

maeriesl 834 B768 177a2

The System Throughput, or the total tokens processed by the cluster at max capacity,
dropped by 0.4X compared to the total system throughput when individual NIMs were run at
max GPU utilization.

Figure 20. Throughput on Meta Llama 3.1 8B across the system

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 41

System Throughput (Tokens/Second)
2 50000

200000

B 150000
[=]
o
T
)
E
[
B
.4
[=]
5
(=%
=
H

£ 100000

50000

0

without Run:a WWith Runald.5 GPU WIth Aurcal 0.5 GPU Mixed Models
mSerles1 195332 152684 119121

The overall User Latency, or TTFT, increased by 3X at the max GPU utilization; however,
comparatively, the total no. of users that could be loaded and could run Inference on multiple
models doubled.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA
Deployment, Scale and Sizing Guide
ERA-DAS-002 | 42

Figure 21. TTFT on Meta Llama 3.1 8B across the system

System TTFT [(ms)
3500

2000

2500

2000

TIFT [ms})

1500

1000

L]
without Runi:al With Aurcal 0.5 GPU With Aurcal 0.5 GPU Mixed Maodels

mSerlesl 1016 1078 30335

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 43

Sizing Guidelines

The above scaling methodology provides a framework on how to scale NIM LLMs on a
system based on user response wait times under common input/output sequence length.
Organizations can use this framework to run tests on their stack with workload characteristics
that are more specific to their users and determine what CCU values they are getting for a
single GPU, Fractional GPU and running multiple models simultaneously. Based on the
results and expected peak load they can determine how many GPUs will be needed and
correspondingly they can size the servers needed to hold that many GPUs. Organizations can
also use this framework to determine scale and sizing for other LLM NIMs.

For example, For this version of the paper, below table would determine the concurrent users
that run simultaneously using Run:ai on a single NVIDIA H100 NVL GPU, precision of fp8,
characterization of 2000:200 on the 2-4-3-200 Enteprise RA based cluster and yet maintain a
TTFT of close to 1000ms.

Table 8 . Sizing GPUs for NIM Workloads with Run:ai

Meta Llama 3.1 8B 137 2977 087

Deepseek R1 Distill Llama 8B 141 3225 987

Mixed (Both the above
models) 278 6235 982

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 44

NVIDIA Run:ai can be used to dynamically allocate GPUs to Al workloads in a Kubernetes
Cluster. Run:ai can automatically scale up or scale down workload pods in a cluster, thereby
releasing the amount of GPUs consumed. These free GPUs can then be assigned to other
users/projects/workloads to drive the overall utilization of existing GPUs and datacenter
resources. Run:ai can help scale NIMs based on concurrent users, user latency, and
throughput. Below are the observations and conclusions for running NIM workloads at scale
on a 16-node cluster with Run:ai

e The Run:ai scheduler does not add any additional performance overhead to Inference
workloads when running on full GPUs. The performance data for NIMs running with
and without Run:ai are comparative

e NIM scheduled on Fractional (0.5) GPUs

o Scaled Linearly

o Performance of CCU, TTFT, and Throughput was comparable to non-Run:ai
tasks til 32X Scale. This is because if there is no other competing workload on
that GPU, Run:ai will dynamically expand the GPU to full for the workload.

o At peak scale, consuming all the 64 GPUs in a cluster, the no. of concurrent
users and throughput recorded were slightly lower, the Throughput dropped by
~20%, and the Concurrent Users dropped by ~10%

e Enterprise IT can use Run:ai to load more than one NIM for the same number of
GPUs and get a variety of models to run, as well as twice as many users, decreasing
the overall TCO. However, at full scale 64X, the TTFT can drop by 3X and the
Throughput by 0.4X.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 45

Appendix A

Installing Pre-reqgs for RunAl

Get the Run.ai SaaS Login

The run.ai portal where the control pane is required a login to be created by NVIDIA. Please
work with Account/SA teams to get an org craved out for this.

Installing Nginx

helm repo add nginx-stable https://helm.nginx.com/stable
helm repo update
helm install nginx-ingress nginx-stable/nginx-ingress --set rbac.create=true

Installing Prometheus

Note: The default Prometheus enabled during creating the k8s cluster via BCM does not enable the prometheus
operator in the monitoring namespace and that's what Run:ai expects it to be at.

helm repo add prometheus-community
https://prometheus-community.github.io/helm-charts

helm repo update

helm install prometheus prometheus-community/kube-prometheus-stack -n monitoring
--create-namespace --set grafana.enabled=false

Create Certs and Private Keys

Make sure to create it with the url that is going to be the cluster URL, replace_era.nvidia.com
with the URL you will be using

Generate a Private Key (2048-bit RSA)
openssl genpkey -algorithm RSA -out era.nvidia.com.key -pkeyopt
rsa keygen bits:2048

Generate a Self-Signed Certificate (Valid for 1 year)
openssl req -x509 -new -key era.nvidia.com.key -out era.nvidia.com.crt -days 365
-subj "/CN=era.nvidia.com"

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 46

http://era.nvidia.com

Update BCM Ingress with CA Certificates

Run the cm-kubernetes-setup CLI command on the BCMe head node, select
Configure Ingress

Select the cluster you will use for Run:ai and select "yes", since we do want to configure an
existing, properly signed certificate pair

Press ENTER to proceed

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 47

Set the path to the key and Certs in the next screen, click ok

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 48

Expose Ingress Controller to use Public IP from the Metal LB
pool

The ingress so far is on private Cluster network, we will expose it to public network so that we
can use the Run:ai Ul through Ingress's public IP.

kubectl patch svc ingress-nginx-controller -n ingress-nginx -p '{"spec":
{"type": "LoadBalancer"}}'

Update DNS Server

Configure your DNS to map the IP of the Ingress Controller to the Service IP the Ingress
Controller gets, the FQDN should point to the IP, so if you plan to use for e.g,
‘runai.nvidia.local’ than the DNS and the Certificates should map the DNS
runai.nvidia.local to the IP of the Nginx External IP, you you can check the External IP
the Ingress gets by running

kubectl get svc -A

Configure Run:ai

Configure the addition of a cluster to Run.ai SaaS

Login to the run.ai SaaS instance provided to you by NVIDIA, click on Resource, and click
New Cluster button.

Clusters @ NVIDIAERA e
Q an :
+ NEW CLUSTER Add Filter SEAREH COLMNG MORE

Cluster /1 Kubernetes distribution Kubernetes version Status Last connected Creation time URL Run:ai cluster version

O runai-era Vanilla 1.29.14 Connected) Now 2/21/2025,13:18 hitps://nvidia-era runai-poc.com 2.20.22

Rows perpage 20 w 1-10f1

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 49

Give the cluster a name, let the default version, and enter the URL of the Kubernetes Cluster (
Note: This should be the same URL that the certs were created in the steps above, and the
certificates)

Cluster name ~

Enter a name

0/ 40
Run:ai version ~
2.20 v
Settings o~

Enter a URL for the Kubernetes cluster. It will only be accessible within the organization network.

For more information, see the Installation guide

Cluster URL
http://era.nvidia.com

CONTINUE

Capture the instructions and run the next command.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 50

Cluster name ~

Enter a name

0/ 40
Run:ai version ~
2.20 v
Settings ~

Enter a URL for the Kubernetes cluster. It will only be accessible within the organization network.

For more information, see the Installation guide

Cluster URL
http:/fera.nvidia.com

CONTINUE

Install Run:ai Cluster

kubectl create ns runai

kubectl create secret tls runai-cluster-domain-tls-secret -n runai --cert
/root/ca/era.nvidia.com.crt --key /root/ca/era.nvidia.com.key

helm repo add runai https://runai.jfrog.io/artifactory/api/helm/run-ai-charts
--force-update

helm repo update

helm upgrade -i runai-cluster runai/runai-cluster -n runai --set
controlPlane.url=nvidia-era.run.ai --set
controlPlane.clientSecret=JpgdoQajWYHdCoN2YgQuolXFD5wnalLlD --set
cluster.uid=1100804e-0bd4-4c11-9f15-0d0b8231ccca —--set
cluster.url=http://era.nvidia.com --version="2.20.20" --create-namespace

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 51

Wait for a few minutes till the cluster syncs with Control-Plane

Install Knative for Inference Workloads

kubectl apply -f
https://github.com/knative/serving/releases/download/knative-vl.17.0/serving-crds.
yaml

kubectl apply -f
https://github.com/knative/serving/releases/download/knative-v1.17.0/serving—-core.
yaml

Configure Knative to use with Run: ai

kubectl patch configmap/config-autoscaler \
--namespace knative-serving \
--type merge \
—--patch '{"data":{"enable-scale-to-zero":"true"}}'

kubectl patch configmap/config-features \

-—-namespace knative-serving \

-—type merge \

—--patch
'{"data": {"kubernetes.podspec-schedulername":"enabled", "kubernetes.podspec-affinit
y":"enabled", "kubernetes.podspec-tolerations":"enabled", "kubernetes.podspec-volume
s—emptydir":"enabled", "kubernetes.podspec-securitycontext":"enabled", "kubernetes.c
ontainerspec-addcapabilities":"enabled", "kubernetes.podspec-persistent-volume-clai
m" :"enabled", "kubernetes.podspec-persistent-volume-write":"enabled", "multi-contain
er":"enabled", "kubernetes.podspec-init-containers":"enabled"}}'

Configure HPA for Autoscaling by Knative

kubectl apply -f
https://github.com/knative/serving/releases/download/knative-vl1.17.0/serving-hpa.y
aml

Update Knative timeout

For larger Inference Workloads, we need to increase the timeout value knative uses, else
when a large model is deployed , the model will take a long time to download and run, knative

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 52

https://knative.dev/docs/install/yaml-install/serving/install-serving-with-yaml/#prerequisites

will think the workload isn't processing and timeout. In order to avoid this increase the time
knative uses to wait for workloads to come up. The below will change it to 30 minutes.

kubectl patch ConfigMap config-deployment -n knative-serving --type='merge' -p
'{"data": {"progress-deadline": "1800s"}}"'

Once the Cluster is connected to the Run:ai control plane, we need to create a Project in
Run:ai, a project is a logical separation of resources, once a project gets created Run:ai adds
its custom schedular in the namespace ont he Run:ai cluster defined during the creation of
the project, this project is where all the workloads that are submitted will be scheduled by
Run:ai.

Go to Run:ai Ul — Click on Organization from the Left Hand Menu — Select “ +New
Project”

Select the scope for the project, this could be org wide, enter the Name for the Project and the
namespace the Kubernetes Cluster to be where Run:ai deploys its schedular,you can select
an existing namespace in the cluster or create a new one, provide the GPU quota, this would
be the max no. of GPUs to allocate from the pool to that project.

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 53

Department gl

Set under which department to create this project

Scope
nvidia-era/runai-era/default =

Project name & description ~

test-era

8/40

Description

0/ 250

Namespace

Set the namespace associated to the project

(®) Create from the project name (2)

(O Enter existing namespace from the cluster (2)

MNamespace

runai-test-era

Quota management e
Drag the node pools to set the order of priority by which workloads will be scheduled to use them. Then click the boxes to
set the quotas and scheduling preferences for each node pool.

For more information, see the Run:ai Scheduler guide

QUOTA SCHEDULING PREFERENCES

Over-guota state @ GPU devices

(] Project total Enabled 0.00

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 54

Change the Placement Strategy

Run:ai will try to pack as many workload on GPUs in a single worker node before it moves to
another node, it will try to pack as much as possible, In order to test NIM scaling we need to
change this default behavior to Spread, where new workload will be spread across all the
nodes and GPUs in the cluster.

In the Run:ai Ul— Go to Resources on the LHS menu — Select Node Pools— Click on the
Node pool used , select Edit and change the Radio Button on Placement Strategy to
Spread for both GPU and CPU and Click Save .

Add Users in Run:ai

Login to Run:ai User Interface —On the LHS Menu —Select Access —Select Users—Click
“New User”

Run:ai Users @ NVIDIAERA o
Access rules Q m H
+ NEWUSER el SEARCH COLUMNS MORE
Users
User T Type Last login Access rule(s) Created by Creation time Last updated

Applications

D bgotfried@nvidia.com Local 2/27/2025, 09:46 View bsavla@nvidia.com 2/18/2025,13:53 2/18/2025,13:53
Roles

D bsavia@nvidia.com Local 6/11/2025, 10:52 View 2/13/2025,10:16 2/13/2025,10:16

D nvidia-era-test@run.ai Local 2/20/2025, 12:26 View 2/13/2025,10:16 2/13/2025,10:16

O test@gmail.com Local 2/18/2025,13:18 View bsavla@nvidia.com 2/18/2025,13:15 2/18/2025,1315

Rows perpage 20 w T4of4

NVIDIA NIM LLM with Run:ai and Vanilla Kubernetes for Enterprise RA

Deployment, Scale and Sizing Guide
ERA-DAS-002 | 55

	
	Abstract
	Introduction
	Scope
	Intended Audience

	
	Systems Overview
	Run:ai Overview
	Enterprise Reference Architecture Overview
	Hardware Enterprise Reference Architecture
	Software Reference Stack

	
	NVIDIA Inference Microservice (NIM)

	System Configuration
	Pre-requisites for installing Run:ai and NIM LLM
	Pre-reqs for RunAI
	Deploy and Configure NIM LLM on Run:ai
	Create Data Source for NIM

	
	Create a Secret
	
	
	Deploy a Specific NIM LLM
	 Alternate YAML method
	Query the Inference Server

	
	Performance and Scale Methodology
	Benchmarking NIM LLM
	
	Scale Methodology for NIM LLM with Run:ai
	Installing and Configuring Gen-AI Perf

	
	Inference Performance and Scale Results with Run:ai
	Benchmarking without Run:ai
	Benchmarking with Run:ai using a full GPU
	Benchmarking with Run:ai using a Fractional GPU
	Performance of NIM LLM at Scale with Run:ai
	
	Simultaneous Multiple NIMs with Run:ai

	​
	Sizing Guidelines
	
	Summary
	​
	Appendix A
	Installing Pre-reqs for RunAI
	Get the Run.ai SaaS Login
	Installing Nginx
	Installing Prometheus
	Create Certs and Private Keys
	Update BCM Ingress with CA Certificates
	Expose Ingress Controller to use Public IP from the Metal LB pool
	Update DNS Server

	Configure Run:ai
	Configure the addition of a cluster to Run.ai SaaS
	Install Run:ai Cluster
	Install Knative for Inference Workloads
	Configure Knative to use with Run: ai
	Configure HPA for Autoscaling by Knative
	Update Knative timeout
	Create a Project in Run:ai
	
	Change the Placement Strategy
	Add Users in Run:ai

