<3

NVIDIA cuObject: GPUDirect Storage
for Objects

Releaserl.16

NVIDIA Corporation

Jan 12, 2026

Contents

1

1
1
1

1

1

5 Supported S3 Operations

NVIDIA cuObject: Accelerated CUDA libraries for Object Storage
OVEIVIEW . . . e
Product Architecture and Design Philosophy
2.1 Key Architectural Components
2.2 TheControlvs. DataPlaneSplit

.
2
1
1
3 Technical Specifications and Protocols
1
1
1
4

3.1 Transport Layer: Dynamic Connection (DC)
3.2 RDMA enabled GET and PUT workflow

.3.3 Data Flow Sequence (GET and PUT operation)

API Reference for Developers

1.4.1 Client Side API (cuObject client library)

1.42 Server Side API (cuObject server library)

Chapter 1. NVIDIA cuObject:
Accelerated CUDA libraries
for Object Storage

cuObject (GPUDirect Storage for Objects) is a high performance suite of libraries designed to enable
direct data transfers between GPU memory or system memory and S3 compatible object storage using
RDMA. By relying on RDMA operations rather than TCP based transfers, cuObject avoids CPU kernel
TCP processing and can bypass the CPU for data payload transfers. cuObject eliminates the traditional
bottleneck of staging data in local scratch file systems, enabling high throughput data ingestion for
Al training and inference at scale.

This technical guide provides an overview of cuObject libraries to storage solution architects, devel-
opers, and partners developing on premises object storage stacks.

Many Al workloads require massive bandwidth. Traditional object storage workflows often follow a
data lake to scratch filesystem to GPU pattern, which introduces latency and redundancy. cuObject
flattens this topology by facilitating direct access between GPUs and object storage.

The solution is delivered as two distinct libraries.

cuObject client library
Integrated into the GPU application or middleware. It intercepts S3 requests and manages the
RDMA data sink or source.

The cuObject client library is available in CUDA Toolkit 13.1.1 and later and is governed by the
CUDA Toolkit End User License Agreement.

cuObject server library
Integrated into the storage partner object server. It manages the RDMA data source or sink and
handles buffer registration.

NVIDIA cuObject: GPUDirect Storage for Objects, Release r1.16

The cuObject server library is available in a separately downloadable package and is also governed
by the CUDA Toolkit End User License Agreement.

1.2.2. The Control vs. Data Plane Split

A defining feature of cuObject is the separation of control and data paths.

GPU Application
S3 protocol
AWS SDK — Object Server
RDMA token exchange

out of band
communication

cuObjClient cuObjServer

==

Figure 1.1: Control vs. data plane split in cuObject

Control plane (REST APIs)
Standard S3 GET and PUT requests are sent via the storage partner S3 SDK. These requests are
modified to include specific metadata tags (for example, x-amz-rdma-token).

Data plane (RDMA)
Actual data payloads are transferred directly between the storage node and GPU memory or
system memory using RDMA operations, bypassing the host CPU.

1.3. Technical Specifications and Protocols

1.3.1. Transport Layer: Dynamic Connection (DC)

The current implementation of cuObject requires Dynamic Connection (DC) transport. Unlike Reliable
Connections (RC), DC transport does not require pre establishing connections between every client
and server pair.

Scalability
Clients do not need knowledge of the storage server topology or object distribution.

2 Chapter 1. NVIDIA cuObject: Accelerated CUDA libraries for Object Storage

NVIDIA cuObject: GPUDirect Storage for Objects, Release r1.16

Resource Efficiency
Connections are established only when required for data transport, preserving NIC resources.

Protocol Support
DC works over InfiniBand and RoCEv2.

1.3.2. RDMA enabled GET and PUT workflow

To negotiate the RDMA transfer within a standard S3 HTTP request, cuObject uses custom header
tags.

| Client node | [Object Cluster (server nodes) |
GPU application process
RDMA to
GPU memory
(GPUDirect)
RDMA to ObjServer 1
host memory

Forward
Data 8 request
transfer ObjServer 2 = 6

cuObClient library

1
0 ¢ 1
ObjServer n
v 5
N S3 protocol 9
http request hdr + RDMA Request tag http response hdr + RDMA reply tag

Figure 1.2: The x-amz-rdma-token protocol in cuObject

Request tag
The client sends x-amz-rdma-token containing RDMA metadata (for example, 66607f7c. . .)
to the proxy or gateway.

Reply tag
If the transfer is successfully offloaded to RDMA, the proxy responds with x-amz-rdma-reply.

1.3.3. Data Flow Sequence (GET and PUT operation)

1. Client: GPU application or data loader library issues an HTTP GET or PUT through an S3 SDK.

2. The S3 SDK checks for RDMA support, registers the memory, and initiates the GET or PUT re-
quest.

3. The cuObject client library checks request validity, selects an optimal NIC, and performs memory
registration.

4. The cuObject client library performs a callback with the RDMA tag and context.

1.3. Technical Specifications and Protocols 3

NVIDIA cuObject: GPUDirect Storage for Objects, Release r1.16

The S3 SDK resumes the operation and sends the RDMA tag (for example, x-amz-rdma-token)
to the storage gateway or endpoint.

Gateway: parses the tag and, if enabled, instructs specific data nodes to transfer data using
RDMA.

Data nodes allocate a local buffer and register it for RDMA using cuObject server APlIs.

The cuObject server APIs synchronously or asynchronously perform 10 using the local buffer and
remote RDMA tag. The library establishes a DC connection with the client and pushes or pulls
the data via RDMA (RDMA_WRITE or RDMA_READ) directly to or from the client GPU or system
memory.

Gateway returns HTTP status 260 OK once the RDMA transfer is complete. An RDMA reply tag
(for example, x-amz-rdma-reply) is sent to inform the RDMA status.

Integration requires modifying the S3 SDK on the client side and the storage software on the server
side.

The client library manages RDMA configuration and memory registration.

Initialization
cuObjClient(CUObjOps_t& ops, cuObjProto_t proto)

Data Operations

cuObjGet(...)
Initiates a GET operation by inserting the x-amz-rdma-token tag in the HTTP header.

cuObjPut(...)
Initiates a PUT operation by inserting the x-amz-rdma-token tag in the HTTP header.

Both functions accept void *ctx, void *ptr (buffer), size_t size,and loff_t offset.

The server library handles RDMA buffer registration and performs RDMA operations.

Buffer Management

registerBuffer(const void *ptr, size_t size)
Registers a memory region for RDMA.

allocHostBuffer(size_t size)
Allocates pinned memory on the CPU.

4 Chapter 1. NVIDIA cuObject: Accelerated CUDA libraries for Object Storage

NVIDIA cuObject: GPUDirect Storage for Objects, Release r1.16

Request Handling

handleGetObject(...)
Performs RDMA_WRITE to push data to the remote client.

handlePutObject(...)
Performs RDMA_READ to pull data from the remote client.

Memory Descriptors
Supports simple blob data (registerBuffer) and scatter gather lists
(getRDMABufferFromSgList).

NVIDIA provides support for the following S3 operations via RDMA offload.

Operation Description Data Direction Support Status

PUT / PUTFILE Server pulls data from client via RDMA Client to Server Version 1
GET / GETFILE Server pushes data to client via RDMA Server to Client Version 1
UPLOAD_PART Chunked data upload (parallel or serial) Client to Server Version 1
RANGE_GET Byte range fetch from object Server to Client Version 1

©2020-2026, NVIDIA Corporation & affiliates. All rights reserved

1.5. Supported S3 Operations 5

	NVIDIA cuObject: Accelerated CUDA libraries for Object Storage
	Overview
	Product Architecture and Design Philosophy
	Key Architectural Components
	The Control vs. Data Plane Split

	Technical Specifications and Protocols
	Transport Layer: Dynamic Connection (DC)
	RDMA enabled GET and PUT workflow
	Data Flow Sequence (GET and PUT operation)

	API Reference for Developers
	Client Side API (cuObject client library)
	Server Side API (cuObject server library)

	Supported S3 Operations

