
Best Practices Guide
Release r1.12

NVIDIA Corporation

Mar 11, 2025

Contents

1 NVIDIA GPUDirect Storage Best Practices Guide 1

2 Introduction 3

3 Software Settings 5
3.1 System Settings . 5
3.2 Use of CUDA Context in GPU Kernels and Storage IO . 6
3.3 cuFile Configuration Settings . 7

4 API Usage 9
4.1 cuFileDriverOpen . 11
4.2 cuFileHandleRegister . 11
4.3 cuFileBufRegister, cuFileRead, cuFileWrite, cuFileBatchIOSubmit, cuFileBatchIOGet-

Status, cuFileReadAsync, cuFileWriteAsync, and cuFileStreamRegister 11
4.3.1 IO Pattern 1 . 14
4.3.2 IO Pattern 2 . 15
4.3.3 IO Pattern 3 . 15
4.3.4 IO Pattern 4 . 16
4.3.5 IO Pattern 5 . 18
4.3.6 IO Pattern 6 . 19
4.3.7 IO Pattern 7 . 20

4.4 cuFileHandleDeregister . 22
4.5 cuFileBufDeregister . 23
4.6 cuFileStreamRegister . 23
4.7 cuFileStreamDeregister . 23
4.8 cuFileDriverClose . 23

5 Notice 25

6 OpenCL 27

7 Trademarks 29

i

ii

Chapter 1. NVIDIA GPUDirect Storage
Best Practices Guide

The Best Practices guide provides guidance from experts who are knowledgeable about NVIDIA®
GPUDirect® Storage (GDS).

1

Best Practices Guide, Release r1.12

2 Chapter 1. NVIDIA GPUDirect Storage Best Practices Guide

Chapter 2. Introduction

The purpose of the Best Practices guide is to provide guidance from experts who are knowledge-
able about NVIDIA® GPUDirect® Storage (GDS). This guide also provides information about the lessons
learned when building and scaling massive GPU accelerated I/O storage infrastructures. The intended
audience includes data center planning staff, system builders, developers, and storage vendors.

3

Best Practices Guide, Release r1.12

4 Chapter 2. Introduction

Chapter 3. Software Settings

This section describes the settings required for GDS.

For the best performance, multiple software settings are required across the entire system, and some
settings are specific to the filesystem that you are using.

For more information, refer to the GPUDirect Storage Installation and Troubleshooting Guide.

3.1. System Settings

For GDS p2p support on the Grace CPU based DGX™ (Grace Hopper) platform, IOMMU should be
enabled and passthrough settings should be disabled.

The following are system settings that we recommend for the best performance on a bare metal
x86_64 based platform.

▶ PCIe Access Control Services (ACS).

ACS forces P2P PCIe transactions to go up through the PCIe Root Complex, which does not
enable GDS to bypass the CPU on paths between a network adapter or NVMe and the GPU in
systems that include a PCIe switch.

For optimal GDS performance, disable ACS.

Note

To list all of the PCI switches that have ACS enabled, issue ∕usr∕local∕cuda∕gds∕tools∕
gdscheck -p.

▶ IOMMU

When the IOMMU setting is enabled, PCIe traffic will be routed through the CPU root ports. This
routing limits themaximumachievable throughput for configurationswhere the GPU andNIC are
under the same PCIe switch. Before you install GDS, youmust disable IOMMU. Refer to Installing
GPUDirect Storage for more information.

Note

To determinewhether the IOMMUsetting is enabled, check the output fromcat /proc/cmdline
or use the gdscheck command..

5

https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html#install-gds
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html#install-gds

Best Practices Guide, Release r1.12

As an example, the following output shows IOMMU is enabled on this system:

$ cat ∕proc∕cmdline
BOOT_IMAGE=∕boot∕vmlinuz-5.19.0-38-generic root=UUID=fb2a25a8-9d2e-4e1c-9d8a-
↪→efabdf165adc ro rootflags=data=ordered amd_iommu=on

Similarly, using gdscheck you should see the following output if the IOMMU is disabled on the
system:

$ ∕usr∕local∕cuda∕gds∕tools∕gdscheck -p
IOMMU: disabled
Platform verification succeeded

▶ NIC affinity

For the P2P DMA to function efficiently, NICs, NVMes and GPUs should be under a PCIe switch
when possible. For the P2PDMA to function efficiently onNVIDIADGX™based platforms, ensure
at least one NIC is in the same CPU socket as the GPU.

▶ Avoid configurations where the NICs are assigned across the CPU sockets that require PCIe traf-
fic to cross the CPU root ports or go across CPU sockets that use QPI.

▶ NIC versions

▶ When using Mellanox ConnectX-5 or later, the HCAs must be configured in InfiniBand or
RoCE v2 mode.

▶ For GDS support, MLNX_OFED 5.4 or later, or DOCA 2.9.0 or later is required.

3.2. Use of CUDA Context in GPU Kernels and
Storage IO

There are scenarios where the GDS workload data can be posted through intermediate buffers called
bounce buffers. Hence a D2D copy is involved to/from these GPU bounce buffers to/from the appli-
cation’s GPU buffers. The cuFile library posts these IOs on a stream created on the primary CUDA
context. If a heavy compute job or application kernel is running in the background in the form of GPU
kernels on a separate context (not the primary context), it can interfere with the D2D copies and in-
crease the D2D copy launch times. This problem does not happen if the compute kernels are running
in the primary context, so it is recommended that the application launch GPU kernels on the primary
context instead of using a separate context.

Note

If the application uses CUDA runtime API, the kernel launches will happen in the primary context
by default.

6 Chapter 3. Software Settings

Best Practices Guide, Release r1.12

3.3. cuFile Configuration Settings

The cuFile configuration settings in GDS are stored in the /etc/cufile.json file.

You can edit the file for best performance for your application as shown below. For information on the
parameters in the file, refer to https://docs.nvidia.com/gpudirect-storage/configuration-guide/index.
html#gds-parameters.

To display the configuration setting, run the following command:

$ cat ∕etc∕cufile.json

A portion of the sample output:

"properties": {
∕∕ max IO size issued by cuFile to nvidia-fs driver (in KB)
"max_direct_io_size_kb" : 16384,
...

}

For the requested IO size, GDS issues IO requests sequentially in chunks of reads/writes based on
the max_direct_io_size parameter. Larger values of max_direct_io_sizewill result in a reduced
number of calls to the IO stack and might result in higher throughput.

The max_direct_io_size_kb parameter can be set to a value that is a multiple of 64K. This process
defines the additional system memory that is used for each buffer during cuFileBufRegister up
to a maximum value for the properties:max_direct_io_size_kb parameter of 16MB. This value
can be reduced to 1MB to lower the amount of system memory that is used per buffer.

The total system memory that is used can be obtained from nvidia-fs stats.

In this example, each of 256 threads register a 1MB buffer for GDS.

1. Run the following command:

$ cat ∕proc∕driver∕nvidia-fs∕stats

2. Review the output:

NVFS statistics(ver:1.0)
Active Shadow-Buffer (MB): 256...

There are many tunables available in cufile.json. Refer to GPUDirect Storage Parameters.

3.3. cuFile Configuration Settings 7

https://docs.nvidia.com/gpudirect-storage/configuration-guide/index.html#gds-parameters
https://docs.nvidia.com/gpudirect-storage/configuration-guide/index.html#gds-parameters
https://docs.nvidia.com/gpudirect-storage/configuration-guide/index.html#gds-parameters

Best Practices Guide, Release r1.12

8 Chapter 3. Software Settings

Chapter 4. API Usage

This section describes best practices to remember when you use the GDS APIs.

The cuFile APIs are designed to be thread safe.

The fork system call should not be used after the cuFile library is initialized. The behavior of the APIs
after the fork system call is undefined in the child process.

APIs with GPU buffers should be called in a valid CUDA context.

The following table outlines recommendations for various IO-specific use cases and their correspond-
ing cuFile APIs which would be best suited.

Table 1: cuFile API Use Cases

Mode IO Behavior Use Case Pros/Cons

cuFileRead
cuFileWrite

Synchronous submis-
sion
Synchronous comple-
tion

Single-threaded appli-
cation using standard
file system calls for
a single large file and
large buffers (>16MB)

Pros
▶ Simple to use

Cons
▶ Does not help for

multiple buffers

cuFile Threadpool en-
abled
cuFileRead
cuFileWrite

Synchronous submis-
sion
Synchronous comple-
tion

Single-threaded appli-
cation using standard
file system calls for
a single large file and
large buffers
Multi-threaded appli-
cation using standard
file system calls for
multiple files and
buffers.
Application has thread
pools for its IO pipeline.

Pros
▶ Simple to use
▶ Lower submission

latency
▶ Better for

medium-sized
IO requests of
64K and above.

Cons
▶ Scalability lim-

ited by number
of CPU threads
used.

▶ Higher CPU cost
for smaller IO
sizes (4k-64k).

continues on next page

9

Best Practices Guide, Release r1.12

Table 1 – continued from previous page

Mode IO Behavior Use Case Pros/Cons

cuFileBat-
chIOSetup
cuFileBatchIOSub-
mit
cuFileBatchIOGet-
Status

Synchronous submis-
sion
Asynchronous comple-
tion

Single-threaded appli-
cation using standard
filesystem calls that
performs IO for multi-
ple non-contiguous file
offsets, sizes, and GPU
buffers.
Each IO request is small
(< 64KB)
Can track completion
of IOs asynchronously
or wait in the same
thread.

Pros
▶ Lower average

completion la-
tency

▶ Lower CPU cost
because of batch
submission

Cons
▶ Higher submis-

sion latency, can
be reduced by
partial submis-
sion

▶ More complex to
code: submit fol-
lowed by polling
for completion of
the batch

cuFileStreamReg-
ister
cuFileReadAsync
cuFileWriteAsync
cu-
FileStreamDereg-
ister

Asynchronous submis-
sion
Asynchronous comple-
tion

Single threaded ap-
plication using stan-
dard file system calls
for multiple non-
contiguous file offsets,
sizes and GPU buffers.
IO sizes - buffer data is
dependent upon prior
CUDA work.

Pros
▶ Simple to use for

CUDA developers
▶ Works with CUDA

semantics: fire
and forget.

▶ Lower submission
latency

Cons
▶ Higher execution

latency for IO size
(<1 MB)

▶ Needs multi-
ple streams to
submit in parallel.

▶ Higher CPU
utilization if
synchronizing
periodically.

10 Chapter 4. API Usage

Best Practices Guide, Release r1.12

4.1. cuFileDriverOpen

The cuFileDriverOpen API should be invoked only once per process and must occur before any
other cuFile API is invoked. The application should call this routine to avoid the latency of the driver
initialization that will be otherwise incurred in the first IO call.

4.2. cuFileHandleRegister

The cuFileHandleRegister API converts a file descriptor to a cuFileHandle and checks the ability
of the named file, at its mount point, to be supported via GDS on this platform. This routine is required
for calling all cuFile API calls that take a cuFileHandle parameter.

Note

There should be only one handle created for each file descriptor.

The same handle can be shared by multiple threads. Refer to the sample programs for more informa-
tion about using the same handle by multiple threads.

Note

In compatibility mode, an additional file descriptor can be opened on the file without requiring
O_DIRECTmode. This mode can also handle unaligned reads/writes, even when POSIX cannot.

4.3. cuFileBufRegister, cuFileRead, cuFileWrite,
cuFileBatchIOSubmit,
cuFileBatchIOGetStatus, cuFileReadAsync,
cuFileWriteAsync, and
cuFileStreamRegister

GPU buffers need to be exposed to third-party devices to enable DMA by those devices. The set
of pages that span those buffers in the GPU virtual address space need to be mapped to the Base
Address Register (BAR) space, and this mapping is an overhead.

The mechanism to accomplish this mapping is called registration. Explicit GPU buffer registration
with the cuFileBufRegister API is optional. If a user buffer is not registered, an intermediate pre-
registered GPU buffer that is owned by the cuFile implementation is used, and there is an extra copy
from there to the user buffer. The following table and IO pattern descriptions provide guidance on
whether registration is profitable.

4.1. cuFileDriverOpen 11

Best Practices Guide, Release r1.12

Note

IO Pattern 1 is a suboptimal baseline case and is not referenced in this table.

12 Chapter 4. API Usage

Best Practices Guide, Release r1.12

Use Case Description Recommendation

A 4KB-aligned GPU buffer is
reused as an intermediate
buffer to read or write data us-
ing optimal IO sizes for storage
systems in multiples of 4KB.

The GPU buffer is used as an in-
termediate buffer to stream the
contents or to populate a differ-
ent data structure in GPUmem-
ory.
You can implement this use
case for IO libraries with DSG.

Register this reusable interme-
diate buffer to avoid the addi-
tional internal staging of data
by using GPU bounce buffers in
the cuFile library.
Refer to IO Pattern 2 for the rec-
ommended usage.

Filling a largeGPUbuffer for one
use.

The GPU buffer is the final lo-
cation of the data. Since the
buffer will not be reused, the
registration cost will not be
amortized. A usage example
is reading large preformatted
checkpoint binary data.
Registering a large buffer can
have a latency impact when the
buffer is registered.

This can also cause BAR mem-
ory exhaustion because running
multiple threads or applications
will compete for BAR memory.
Read or write the data without
buffer registration.
Refer to IO Pattern 3 for the rec-
ommended usage.

Partitioning a GPU buffer to
be accessed across multiple
threads.

The main thread allocates a
large memory buffer and cre-
ates multiple threads. Each
thread registers a portion of the
memory buffer independently
and uses that as in IO Pattern 2.
You can also register the entire
buffer in the parent thread and
use this registered buffer with
the size and devPtr_offset
parameters set appropriately
with the buffer offsets for each
thread. A cudaContext must
be established in each thread
before registering the GPU
buffers.

Allocate, register, and deregis-
ter the buffers in each thread
independently for simple IO
workflows.
For cases where the GPU mem-
ory is preallocated, each thread
can set the appropriate context
and register the buffers inde-
pendently.
Refer to IOPattern 6 for the rec-
ommended usage.
After you install the
GDS package, see
cufile_sample_016.cc
and cufile_sample_017.cc
under ∕usr∕local∕CUDA-X.
y∕samples∕ for more details.

GPU offsets, file offsets, and IO
request sizes are unaligned.

IO reads or writes are mostly
unaligned. An intermediate
aligned buffer might be needed
to handle alignment issues with
GPU offsets, file offsets, and IO
sizes.

Do not register the buffer.
Refer to IO Pattern 4 and IO Pat-
tern 5.

Working on a GPU with a small
BAR space as compared to the
available GPU memory.

In some GPU SKUs, the BAR
memory is smaller than the to-
tal device memory.

To avoid failures because of BAR
memory exhaustion, do not reg-
ister the buffer.
Refer to IO Pattern 3.

4.3. cuFileBufRegister, cuFileRead, cuFileWrite, cuFileBatchIOSubmit, cuFileBatchIOGetStatus,
cuFileReadAsync, cuFileWriteAsync, and cuFileStreamRegister

13

Best Practices Guide, Release r1.12

4.3.1. IO Pattern 1

The following is a code sample for IO Pattern 1.

1 #define MB(x) ((x)*1024*1024L)
2 #define GB(x) ((x)*1024*1024L*1024L)
3
4
5 void thread_func(CUfileHandle_t cuHandle)
6 {
7 void *devPtr_base;
8 int readSize = MB(100);
9 int devPtr_offset = 0;
10 int file_offset = 0;
11 int ret = 0;
12
13 cudaSetDevice(0);
14 cudaMalloc(&devPtr_base, GB(1));
15
16 for (int i = 0; i < 10; i++) {
17
18 cuFileBufRegister((char *)devPtr_base + devPtr_offset, readSize, 0);
19
20 ret = cuFileRead(cuHandle, (char *)devPtr_base + devPtr_offset,

readSize, file_offset, 0);
21
22

<... launch cuda kernel using contents at devPtr_base + devPtr_offset … >

23 file_offset += readSize;
24 devPtr_offset += readSize;
25
26 cuFileBufDeregister((char *)devPtr_base + devPtr_offset);
27 }
28 }

1. Allocate 1 GB of GPU memory with cudaMalloc.

2. Fill the 1 GB by reading 100 MB at a time from the file as seen in the following loop:

a. At line 18, the GPU buffer of 100 MB is registered.

b. Submit the read for 100MB (readsize is 100 MB).

c. At line 26, the GPU buffer of 100 MB is deregistered.

Although semantically correct, this loop might not provide the best performance because cuFile-
BufRegister and cuFileBufDeregister are continuously issued in the loop. For example, this
problem can be addressed as shown in IO Pattern 2.

14 Chapter 4. API Usage

Best Practices Guide, Release r1.12

4.3.2. IO Pattern 2

The following is a code sample for IO Pattern 2.

1 #define MB(x) ((x)*1024*1024L)
2 #define GB(x) ((x)*1024*1024L*1024L)
3
4
5 void thread_func(CUfileHandle_t cuHandle)
6 {
7 void *devPtr_base;
8 int readSize = MB(100);
9 int devPtr_offset = 0;
10 int file_offset = 0;
11 int ret = 0;
12
13 cudaSetDevice(0);
14 cudaMalloc(&devPtr_base, GB(1));
15 cuFileBufRegister(devPtr_base, GB(1), 0);
16
17 for (int i = 0; i < 10; i++) {
18
19 ret = cuFileRead(cuHandle, devPtr_base,

readSize, file_offset, devPtr_offset);
20

21 <... launch cuda kernel using contents at devPtr_base + devPtr_offset�
↪→… >
22
23 file_offset += readSize;
24 devPtr_offset += readSize;
25
26 }
27 cuFileBufDeregister(devPtr_base);
28 }

4.3.3. IO Pattern 3

The following is a code sample for IO Pattern 3.

1 #define MB(x) ((x)*1024*1024L)
2 #define GB(x) ((x)*1024*1024L*1024L)
3
4
5 void thread_func(CUfileHandle_t cuHandle)
6 {
7 void *devPtr_base;
8 int readSize = MB(100);
9 int devPtr_offset = 0;
10 int file_offset = 0;
11 int ret = 0;
12
13 cudaSetDevice(0);
14 cudaMalloc(&devPtr_base, GB(1));

(continues on next page)

4.3. cuFileBufRegister, cuFileRead, cuFileWrite, cuFileBatchIOSubmit, cuFileBatchIOGetStatus,
cuFileReadAsync, cuFileWriteAsync, and cuFileStreamRegister

15

Best Practices Guide, Release r1.12

(continued from previous page)

15
16 for (int i = 0; i < 10; i++) {
17
18 ret = cuFileRead(cuHandle, (char *)devPtr_base,

readSize, file_offset, devPtr_offset);
19
20 <... launch cuda kernel using contents at devPtr_base + devPtr_offset … >
21
22 file_offset += readSize;
23 devPtr_offset += readSize;
24 }
25 }

This example demonstrates the usage of cuFileRead/cuFileWrite APIs without using the cuFile-
BufRegister and cuFileBufDeRegister APIs. The IO-Pattern - 3 code snippet is the same as the
IO Pattern 1 and IO Pattern 2 code snippets but the cuFileBufRegister API is not used.

1. Allocate 1 GB of GPU memory.

2. Fill the entire GPU memory of 1 GB by reading 100 MB at a time from the file as seen in the loop.

Note

Although semantically correct, this loop might not be optimal.

Internally, GDS uses GPU bounce buffers to perform IOs. Bounce buffers are GPU memory alloca-
tions that are internal to GDS, and these buffers are registered and managed by the GDS library. The
number of bounce buffers is capped based on the max_device_cache_size (representing the to-
tal size of the bounce buffer cache) and per_buffer_cache_size (representing the size of each
buffer) setting in the ∕etc∕cufile.json file. The default values for max_device_cache_size and
per_buffer_cache_size are 128MB and 1MB respectively, which amounts to 128 bounce buffers
in total by default.

4.3.4. IO Pattern 4

The following is a code sample for IOPattern 4. This is an unaligned IOdue tofile offset being unaligned.

1 #define MB(x) ((x)*1024*1024L)
2 #define GB(x) ((x)*1024*1024L*1024L)
3
4
5 void thread_func(CUfileHandle_t cuHandle)
6 {
7 void *devPtr_base;
8 int readSize = MB(100);
9 int devPtr_offset = 0;
10 int file_offset = 3; ∕∕ Start from odd offset
11 int ret = 0;
12
13 cudaSetDevice(0);
14 cudaMalloc(&devPtr_base, GB(1));
15 cuFileBufRegister(devPtr_base, GB(1), 0);

(continues on next page)

16 Chapter 4. API Usage

Best Practices Guide, Release r1.12

(continued from previous page)

16
17 for (int i = 0; i < 10; i++) {
18 ∕∕ IO issued at offsets which are not 4K aligned
19 ret = cuFileRead(cuHandle, devPtr_base,

readSize, file_offset, devPtr_offset);
20 assert(ret >= 0);

<... launch cuda kernel using contents at devPtr_base + devPtr_offset … >
21
22 file_offset += readSize;
23 devPtr_offset += readSize;
24
25 }
26 cuFileBufDeRegister(devPtr_base);
27 }

This example demonstrates the usage of cuFileRead or cuFileWrite when IO is unaligned.

An IO is unaligned if one of the following conditions is true:

▶ The file_offset that was issued in cuFileRead or cuFileWrite is not 4K aligned.

▶ The size that was issued in cuFileRead or cuFileWrite is not 4K aligned.

▶ The devPtr_base that was issued in cuFileRead or cuFileWrite is not 4K aligned.

▶ The devPtr_offset that was issued in cuFileRead or cuFileWrite is not 4K aligned.

Note

In the above example, the initialization of file_offset is on line 10.

1. After allocating 1 GB of GPUmemory, cuFileBufRegister is immediately invoked for the entire
range of 1 GB as seen on line 15.

2. Fill the entire 1 GB GPU memory by reading 100 MB at a time from file as seen in the following
loop:

a. The initial file_offset is at 3, and reads are submitted with a readSize value of 100MB at an
offset of 3 for each iteration.

Therefore, file_offset during each read is not 4K aligned.

b. Since file_offset is not 4K aligned, the GDS library will internally use GPU bounce buffers
to complete the IO.

The GPU bounce buffer mechanism is identical to IO Pattern 3.

3. Unaligned IOs might not be optimal and should be avoided by reading the size value that is spec-
ified in multiples of 4KB and the file_offsets value that is specified in multiples of 4KB.

In the above example, an entire 1GB of GPUmemory was registered using cuFileBufRegister.
However, because the IO was unaligned, the GDS library cannot perform IO directly to these reg-
istered buffers. To handle unaligned IOs, the library will use GPU bounce buffers to perform the
IO and copy the data from the bounce buffers to the application buffers. As a best practice, if the
application typically performs unaligned IO, the application buffers do not need to be registered
using the GDS library.

The example in IO Pattern 4 demonstrates what happens when file_offset is unaligned; the
previously mentioned points are accurate if any of the unaligned conditions is true.

4.3. cuFileBufRegister, cuFileRead, cuFileWrite, cuFileBatchIOSubmit, cuFileBatchIOGetStatus,
cuFileReadAsync, cuFileWriteAsync, and cuFileStreamRegister

17

Best Practices Guide, Release r1.12

If the application can’t issue 4K aligned IO, instead of using the cuFileBufRegister API, use the
cuFileRead or cuFileWrite APIs as described in IO-Pattern-2.

Note

When the write workload is unaligned, GDS uses Read-Modify-Write internally using POSIX mode.

4.3.5. IO Pattern 5

The following is a code sample for IO Pattern 5. This IO is an unaligned IO due to buffer pointer and
offset not being 4K aligned.

1 #define MB(x) ((x)*1024*1024L)
2 #define GB(x) ((x)*1024*1024L*1024L)
3
4
5 void thread_func(CUfileHandle_t cuHandle)
6 {
7 void *devPtr_base;
8 int readSize = MB(100);
9 int devPtr_offset = 3; ∕∕ Start from odd offset
10 int file_offset = 0;
11 int ret = 0;
12
13 cudaSetDevice(0);
14 cudaMalloc(&devPtr_base, GB(1));
15 cuFileBufRegister(devPtr_base, GB(1), 0);
16
17 for (int i = 0; i < 10; i++) {
18 ∕∕ IO issued at gpu buffer offsets which are not 4K aligned
19 ret = cuFileRead(cuHandle, devPtr_base,

readSize, file_offset, devPtr_offset);
20 assert (ret >= 0);

<... launch cuda kernel using contents at devPtr_base + devPtr_
↪→offset … >
21
22 file_offset += readSize;
23 devPtr_offset += readSize;
24
25 }
26 cuFileBufDeRegister(devPtr_base);
27 }

This example demonstrates using cuFileRead/cuFileWrite when IO is unaligned. The de-
vPtr_base + devPtr_offset that are issued to cuFileRead or cuFileWrite are not 4K aligned.

If the IO is unaligned, the cuFile library will issue IO through its internal GPU bounce buffer cache.
However, if the allocation of the internal cache fails, the IO will fail. To avoid IO failure in this case, you
can set allow_compat_mode to true in the ∕etc∕cufile.json file. With this setting, IO will fall
back to using POSIX API calls withing GDS.

18 Chapter 4. API Usage

Best Practices Guide, Release r1.12

4.3.6. IO Pattern 6

The following program snippet demonstratess the use cuFile batch APIs.

int main(int argc, char *argv[]) {
int fd[MAX_BATCH_IOS];
void *devPtr[MAX_BATCH_IOS];
CUfileDescr_t cf_descr[MAX_BATCH_IOS];
CUfileHandle_t cf_handle[MAX_BATCH_IOS];
CUfileIOParams_t io_batch_params[MAX_BATCH_IOS];
CUfileIOEvents_t io_batch_events[MAX_BATCH_IOS];

<Get program inputs>

status = cuFileDriverOpen();
if (status.err != CU_FILE_SUCCESS) {

std::cerr << "cufile driver open error: "
<< cuFileGetErrorString(status) << std::endl;

return -1;
}

<Open files and call cuFileHandleRegister for each of the batch entry file�
↪→handles>

<Allocate cuda memory and register buffers using cuFileBufRegister for each�
↪→of the

batch entries>

for(i = 0; i < batch_size; i++) {
io_batch_params[i].mode = CUFILE_BATCH;
io_batch_params[i].fh = cf_handle[i];
io_batch_params[i].u.batch.devPtr_base = devPtr[i];
io_batch_params[i].u.batch.file_offset = i * size;
io_batch_params[i].u.batch.devPtr_offset = 0;
io_batch_params[i].u.batch.size = size;
io_batch_params[i].opcode = CUFILE_READ;

}
std::cout << "Setting Up Batch" << std::endl;
errorBatch = cuFileBatchIOSetUp(&batch_id, batch_size);
if(errorBatch.err != 0) {

std::cerr << "Error in setting Up Batch" << std::endl;
goto error;

}

errorBatch = cuFileBatchIOSubmit(batch_id, batch_size, io_batch_params,�
↪→flags);

if(errorBatch.err != 0) {
std::cerr << "Error in IO Batch Submit" << std::endl;
goto error;

}

∕∕ Setting min_nr to batch_size for this example.
min_nr = batch_size;
while(num_completed != min_nr) {

memset(io_batch_events, 0, sizeof(*io_batch_events));
nr = batch_size;
errorBatch = cuFileBatchIOGetStatus(batch_id, batch_size, &nr, io_

(continues on next page)

4.3. cuFileBufRegister, cuFileRead, cuFileWrite, cuFileBatchIOSubmit, cuFileBatchIOGetStatus,
cuFileReadAsync, cuFileWriteAsync, and cuFileStreamRegister

19

Best Practices Guide, Release r1.12

(continued from previous page)

↪→batch_events, NULL);
if(errorBatch.err != 0) {

std::cerr << "Error in IO Batch Get Status" << std::endl;
goto error;

}
std::cout << "Got events " << nr << std::endl;
num_completed += nr;
<Copy to the user buffer>

}

cuFileBatchIODestroy(batch_id);
< Deregister the device memory using cuFileBufDeregister>

status = cuFileDriverClose();
std::cout << "cuFileDriverClose Done" << std::endl;
if (status.err != CU_FILE_SUCCESS) {

...
}
ret = 0;
return ret;
...

}

This program demonstrates a simple use case where cuFile batch APIs can be used to perform a read
with a specified batch size. It provides an example of a sequence of calls where each entry uses reg-
istered buffers on each individual file descriptor.

It may be worthwhile to mention that min_nr passed to cuFileBatchIOGetStatus() in the above
example was set to batch_size. It is possible that min_nr can be set to something less than
batch_size and as the min_nr number of I/Os are completed, that many numbers of I/Os can be
submitted subsequently to the I/O pipeline resulting in an enhanced I/O throughput.

4.3.7. IO Pattern 7

The following program snippet uses cuFile stream-based async I/O APIs to perform a data integrity
test.

typedef struct io_args_s
{

void *devPtr;
size_t max_size;
off_t offset;
off_t buf_off;
ssize_t read_bytes_done;
ssize_t write_bytes_done;

} io_args_t;

int main(int argc, char *argv[]) {

unsigned char iDigest[SHA256_DIGEST_LENGTH],
oDigest[SHA256_DIGEST_LENGTH];

<Get inputs>

(continues on next page)

20 Chapter 4. API Usage

Best Practices Guide, Release r1.12

(continued from previous page)

<Create a data file using some random data>

∕∕ Allocate device Memory and register with cuFile
check_cudaruntimecall(cudaMalloc(&args.devPtr, args.max_size));
∕∕ Register buffers. For unregistered buffers, this call is not required.
status = cuFileBufRegister(args.devPtr, args.max_size, 0);
if (status.err != CU_FILE_SUCCESS) {

goto error;
}

< Open the data file just created for read and create a new data file to�
↪→write the content

read from the datafile>

<Register the filehandles>

∕∕ Create stream for I∕O.
check_cudaruntimecall(cudaStreamCreateWithFlags(&io_stream,

cudaStreamNonBlocking));

∕∕ Register Streams for best performance
∕∕ If all the inputs i.e. size, offset and buf_off are known and they are page�

↪→aligned, then
∕∕ use CU_FILE_STREAM_FIXED_AND_ALIGNED flag. If they are not known but will
∕∕ always be page aligned then use CU_FILE_STREAM_PAGE_ALIGNED_INPUTS flag
∕∕ flag.
check_cudaruntimecall(cuFileStreamRegister(io_stream,

CU_FILE_STREAM_FIXED_AND_ALIGNED));

∕∕ special case for holes
check_cudaruntimecall(cudaMemsetAsync(args.devPtr, 0, args.max_size, io_

↪→stream));

status = cuFileReadAsync(cf_rhandle, (unsigned char *)args.devPtr,
&args.max_size, &args.offset, &args.buf_off,

&args.read_bytes_done, io_stream);
if (status.err != CU_FILE_SUCCESS) {

std::cerr << "read failed : "
<< cuFileGetErrorString(status) << std::endl;

ret = -1;
goto error;

}

∕∕ Write loaded data from GPU memory to a new file
status = cuFileWriteAsync(cf_whandle, (unsigned char *)args.devPtr,

(size_t *)&args.max_size, &args.offset, &args.buf_
↪→off,

&args.write_bytes_done, io_stream);
if (status.err != CU_FILE_SUCCESS) {

goto error;
}

std::cout << "writing submit done to file :" << TEST_WRITEFILE << std::endl;
check_cudaruntimecall(cudaStreamSynchronize(io_stream));
if((args.read_bytes_done < (ssize_t)args.max_size) ||

(args.write_bytes_done < args.read_bytes_done))

(continues on next page)

4.3. cuFileBufRegister, cuFileRead, cuFileWrite, cuFileBatchIOSubmit, cuFileBatchIOGetStatus,
cuFileReadAsync, cuFileWriteAsync, and cuFileStreamRegister

21

Best Practices Guide, Release r1.12

(continued from previous page)

{
std::cerr << "io error issued size:" << args.max_size <<

" read:" << args.read_bytes_done <<
" write:" << args.write_bytes_done << std::endl;

goto error;
}
∕∕ Compare file signatures
ret = SHASUM256(TEST_READWRITEFILE, iDigest, args.max_size);
if(ret < 0) {

...
}
DumpSHASUM(iDigest);
ret = SHASUM256(TEST_WRITEFILE, oDigest, args.max_size);
if(ret < 0) {

...
}
DumpSHASUM(oDigest);
if (memcmp(iDigest, oDigest, SHA256_DIGEST_LENGTH) != 0) {

std::cerr << "SHA SUM Mismatch" << std::endl;
ret = -1;

} else {
std::cout << "SHA SUM Match" << std::endl;
ret = 0;

}
if(io_stream) {

check_cudaruntimecall(cuFileStreamDeregister(io_stream));
check_cudaruntimecall(cudaStreamDestroy(io_stream));

}
<Free up all the resources>

return ret;

error:
...

}

This program demonstrates a simple use case where the cuFile stream APIs can be used to perform
a data integrity test using a single stream. It first creates a data file using random content. Then it
reads the content through an I/O stream andwrites that content into a newfile. Finally it compares the
content of the newly created data file against the original content using SHA (simple hash algorithm).
It is possible that the exact size may not be known in the beginning and will be known later. In that
scenario, one can set the actual size using the CUDA host call back function (cuLaunchHostFunc) on
the same stream before calling cuFileReadAsync or cuFileWriteAsync APIs.

4.4. cuFileHandleDeregister

Prerequisite: Before calling this API, the application must ensure that the IO on that handle has com-
pleted and is no longer being used. The file descriptor should still be open.

To reclaim resources before ending the process, always invoke the cuFileHandleDeregister API.

22 Chapter 4. API Usage

Best Practices Guide, Release r1.12

4.5. cuFileBufDeregister

Prerequisite: Before calling this API, the applicationmust ensure that all the cuFile IO operations using
the buffer have completed.

For every buffer registered by using cuFileBufRegister, use this API to deregister it by using the
same device pointer that was used for registration. This process ensures that all resources are re-
claimed before ending the process.

4.6. cuFileStreamRegister

The cuFileStreamRegister API converts a file descriptor to a cuFileHandle and checks the ability
of the named file, at its mount point, to be supported via GDS on this platform.

Explicit stream registration with the cuFileStreamRegister API is optional. If the stream is regis-
tered, then some internal buffers and associated metadata resources will be pre-allocated for sub-
sequent stream I/O and may improve I/O latencies. Additionally these resources will be reused until
deregistered using cuFileStreamUnregister. Without this API, all these resources will be allocated
during actual I/O.

4.7. cuFileStreamDeregister

Prerequisite: Before calling this API, the application must ensure that the I/O on that stream has
completed and the stream is no longer being used

For every stream registered by using cuFileStreamRegister, use this API to deregister it by using
the same stream thatwas used for registration. To reclaim resources before ending theprocess, always
invoke this API.

4.8. cuFileDriverClose

Prerequisites: Before calling this API, the application must ensure that all cuFile IO operations have
completed and that all buffers and handles are deregistered.

In order to reduce the tear-down time of a GDS enabled application (i.e. expedited release of pinned
GPU buffers and other cuFile resources), it is highly recommended to call the cuFileDriverClose()
API at the end of the application.

4.5. cuFileBufDeregister 23

Best Practices Guide, Release r1.12

24 Chapter 4. API Usage

Chapter 5. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

25

Best Practices Guide, Release r1.12

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

26 Chapter 5. Notice

Chapter 6. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

27

Best Practices Guide, Release r1.12

28 Chapter 6. OpenCL

Chapter 7. Trademarks

NVIDIA, the NVIDIA logo, CUDA, DGX, DGX-1, DGX-2, DGX-A100, Tesla, and Quadro are trademarks
and/or registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they are
associated.

Copyright

©2020-2025, NVIDIA Corporation & affiliates. All rights reserved

29

	NVIDIA GPUDirect Storage Best Practices Guide
	Introduction
	Software Settings
	System Settings
	Use of CUDA Context in GPU Kernels and Storage IO
	cuFile Configuration Settings

	API Usage
	cuFileDriverOpen
	cuFileHandleRegister
	cuFileBufRegister, cuFileRead, cuFileWrite, cuFileBatchIOSubmit, cuFileBatchIOGetStatus, cuFileReadAsync, cuFileWriteAsync, and cuFileStreamRegister
	IO Pattern 1
	IO Pattern 2
	IO Pattern 3
	IO Pattern 4
	IO Pattern 5
	IO Pattern 6
	IO Pattern 7

	cuFileHandleDeregister
	cuFileBufDeregister
	cuFileStreamRegister
	cuFileStreamDeregister
	cuFileDriverClose

	Notice
	OpenCL
	Trademarks

