
NVIDIA GPUDirect Storage
Benchmarking and Configuration Guide

Release r1.12

NVIDIA Corporation

Mar 11, 2025

Contents

1 NVIDIA GPUDirect Storage Benchmarking and Configuration Guide 1

2 Introduction 3

3 About this Guide 5

4 Benchmarking GPUDirect Storage 7
4.1 Determining PCIe Device Affinity . 8
4.2 GPUDirect Storage Configuration Parameters . 15
4.2.1 System Parameters . 16
4.2.2 GPUDirect Storage Parameters . 16

4.3 GPUDirect Storage Benchmarking Tools . 24
4.3.1 gdsio Utility . 24
4.3.2 gds-stats Tool . 27

5 GPUDirect Storage Benchmarking on Direct Attached Storage 31
5.1 GPUDirect Storage Performance on DGX-2 System . 31
5.2 GPUDirect Storage Performance on a DGX A100 System 36

6 GPUDirect Storage Benchmarking on Network Attached Storage 39
6.1 GPUDirect Storage Benchmarking on NFS . 39

7 Summary 47

8 Benchmarking and Performance 49
8.1 The Language of Performance . 49
8.2 Benchmarking Storage Performance . 50

9 Notice 53

10 OpenCL 55

11 Trademarks 57

i

ii

Chapter 1. NVIDIA GPUDirect Storage
Benchmarking and
Configuration Guide

The Benchmarking and Configuration Guide helps you evaluate and test GDS functionality and perfor-
mance by using sample applications.

1

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

2 Chapter 1. NVIDIA GPUDirect Storage Benchmarking and Configuration Guide

Chapter 2. Introduction

NVIDIA® GPUDirect® Storage (GDS) is the newest addition to the GPUDirect family. GDS enables a
direct data path for direct memory access (DMA) transfers between GPU memory and storage, which
avoids a bounce buffer through the CPU. This direct path increases system bandwidth and decreases
the latency and utilization load on the CPU.

The purpose of this guide is to help the user evaluate and test GDS functionality and performance by
using sample applications. These applications can be run after you set up and install GDS and before
you run the custom applications that have been modified to take advantage of GDS.

Refer to the following guides for more information about GDS:

▶ GPUDirect Storage Design Guide

▶ GPUDirect Storage Overview Guide

▶ cuFile API Reference Guide

▶ GPUDirect Storage Release Notes

▶ GPUDirect Storage Best Practices Guide

▶ GPUDirect Storage Troubleshooting Guide

▶ GPUDirect Storage O_DIRECT Requirements Guide

To learn more about GDS, refer to the following posts:

▶ GPUDirect Storage: A Direct Path Between Storage and GPU Memory.

▶ The Magnum IO series.

3

https://docs.nvidia.com/gpudirect-storage/design-guide/index.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://docs.nvidia.com/gpudirect-storage/o-direct-guide/index.html
https://devblogs.nvidia.com/gpudirect-storage/
https://developer.nvidia.com/blog/tag/magnum-io/

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

4 Chapter 2. Introduction

Chapter 3. About this Guide

Configuration and benchmarking are very tightly coupled activities. Benchmarking provides the ability
to determine the potential performance based on the current system configuration, and the impact of
configuration changes. Configuration changes are sometimes required to achieve optimal benchmark
results, which will potentially translate into increased performance of production workloads.

This guide provides information and examples of the various system configuration attributes, both
hardware and software, and how they factor into the delivered performance of GPUDirect Storage.
Local drive configurations (Direct Attached Storage - DAS) and Network storage (Network Attached
Storage - NAS) are covered. The benchmarking tool included when GDS is installed, gdsio, is covered
and its use demonstrated.

Appendix A covers benchmarking and performance in general, along with considerations when bench-
marking storage systems.

5

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

6 Chapter 3. About this Guide

Chapter 4. Benchmarking GPUDirect
Storage

GDS enables high throughput and low latency data transfer between storage and GPUmemory, which
allows you to program the DMA engine of a PCIe device with the correct mappings tomove data in and
out of a target GPU’s memory. As such, it becomes clear the path between the GPU and the network
card or storage device/controller factors significantly into delivered performance, both throughput
and latency. The PCIe topology, PCIe root complex, switches and the physical location of the GPU and
network and storage devices need to be examined and factored into the configuration details when
benchmarking GDS.

Achieving optimal performance with GDS benchmarking requires working through the PCIe topology
and determining:

▶ which IO devices and GPUs are on the same PCIe switch or root complex

▶ which device communication paths require traversing multiple PCIe ports and possibly crossing
CPU socket boundaries

The diagram in the following section illustrates an example of PCIe topology, showing different devices
across multiple PCIe switches.

Determining PCIe device proximity is not necessarily an easy task, as it requires using multiple Linux
utilities to correlate device names and numbers to the hierarchical numbering scheme used to identify
PCIe devices, referred to as BDF notation (bus:device.func) or extended BDF notation, which adds
a PCIe domain identifier to the notation, as in domain:bus:device.func.

$ lspci | grep -i nvidia
36:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)

$ lspci -D | grep -i nvidia
0000:36:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)

In the first example, note the standard PCIe BDF notation for the first NVIDIA GPU, 36:00.0. In the
second example, the -D flag was added to show the PCIe domain (extended BDF), 0000:36:00.0.

7

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

4.1. Determining PCIe Device Affinity

The examples in this section were performed on an NVIDIA DGX-2™ system. The figure below shows
a subset of the DGX-2 system architecture, illustrating the PCIe topology:

Figure 1: PCIe Topology

A
DGX-
2
sys-
tem
has
two
CPU
sock-
ets,
and
each
socket
has
two
PCIe
trees.
Each
of
the
four
PCIe
trees
(only
one
is
shown
above)
has
two

levels of switches. Up to four NVMe drives hang off of the first level of switches. Each second-level
switch has a connection to the first level switch, a PCIe slot that can be populated with a NIC or RAID
card, and two GPUs.

The commands and methodology in the following sample output apply to any system that runs Linux.
The goal is to associate GPUs and NVMe drives in the PCIe hierarchy and determine which device
names to use for GPUs and NVMe drives that share the same upstream PCIe switch. To resolve this
issue, you must correlate Linux device names with PCIe BDF values. For the locally attached NVMe
disks, here is an example that uses Linux ∕dev∕disk∕by-path directory entries:

dgx2> ls -l ∕dev∕disk∕by-path
total 0
lrwxrwxrwx 1 root root 9 Nov 19 12:08 pci-0000:00:14.0-usb-0:8.1:1.0-scsi-0:0:0:0 ->�
↪→..∕..∕sr0
lrwxrwxrwx 1 root root 9 Nov 19 12:08 pci-0000:00:14.0-usb-0:8.2:1.0-scsi-0:0:0:0 ->�
↪→..∕..∕sda
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:01:00.0-nvme-1 -> ..∕..∕nvme0n1
lrwxrwxrwx 1 root root 15 Nov 19 12:08 pci-0000:01:00.0-nvme-1-part1 -> ..∕..∕
↪→nvme0n1p1

(continues on next page)

8 Chapter 4. Benchmarking GPUDirect Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

lrwxrwxrwx 1 root root 15 Nov 19 12:08 pci-0000:01:00.0-nvme-1-part2 -> ..∕..∕
↪→nvme0n1p2
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:05:00.0-nvme-1 -> ..∕..∕nvme1n1
lrwxrwxrwx 1 root root 15 Nov 19 12:08 pci-0000:05:00.0-nvme-1-part1 -> ..∕..∕
↪→nvme1n1p1
lrwxrwxrwx 1 root root 15 Nov 19 12:08 pci-0000:05:00.0-nvme-1-part2 -> ..∕..∕
↪→nvme1n1p2
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:2e:00.0-nvme-1 -> ..∕..∕nvme2n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:2f:00.0-nvme-1 -> ..∕..∕nvme3n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:51:00.0-nvme-1 -> ..∕..∕nvme4n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:52:00.0-nvme-1 -> ..∕..∕nvme5n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:b1:00.0-nvme-1 -> ..∕..∕nvme6n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:b2:00.0-nvme-1 -> ..∕..∕nvme7n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:da:00.0-nvme-1 -> ..∕..∕nvme8n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:db:00.0-nvme-1 -> ..∕..∕nvme9n1

Since the current system configuration has nvme0 and nvme1 devices configured into a RAID0 device
(∕dev∕md0 not shown here), the focus is on the remaining available nvme devices, nvme2 through
nvme9. You can get the same PCIe-to-device information for the GPUs that use the nvidia-smi
utility and specify the GPU attributes to query:

dgx2> nvidia-smi --query-gpu=index,name,pci.domain,pci.bus,pci.device,pci.device_id,
↪→pci.sub_device_id --format=csv
index, name, pci.domain, pci.bus, pci.device, pci.device_id, pci.sub_device_id
0, Tesla V100-SXM3-32GB, 0x0000, 0x34, 0x00, 0x1DB810DE, 0x12AB10DE
1, Tesla V100-SXM3-32GB, 0x0000, 0x36, 0x00, 0x1DB810DE, 0x12AB10DE
2, Tesla V100-SXM3-32GB, 0x0000, 0x39, 0x00, 0x1DB810DE, 0x12AB10DE
3, Tesla V100-SXM3-32GB, 0x0000, 0x3B, 0x00, 0x1DB810DE, 0x12AB10DE
4, Tesla V100-SXM3-32GB, 0x0000, 0x57, 0x00, 0x1DB810DE, 0x12AB10DE
5, Tesla V100-SXM3-32GB, 0x0000, 0x59, 0x00, 0x1DB810DE, 0x12AB10DE
6, Tesla V100-SXM3-32GB, 0x0000, 0x5C, 0x00, 0x1DB810DE, 0x12AB10DE
7, Tesla V100-SXM3-32GB, 0x0000, 0x5E, 0x00, 0x1DB810DE, 0x12AB10DE
8, Tesla V100-SXM3-32GB, 0x0000, 0xB7, 0x00, 0x1DB810DE, 0x12AB10DE
9, Tesla V100-SXM3-32GB, 0x0000, 0xB9, 0x00, 0x1DB810DE, 0x12AB10DE
10, Tesla V100-SXM3-32GB, 0x0000, 0xBC, 0x00, 0x1DB810DE, 0x12AB10DE
11, Tesla V100-SXM3-32GB, 0x0000, 0xBE, 0x00, 0x1DB810DE, 0x12AB10DE
12, Tesla V100-SXM3-32GB, 0x0000, 0xE0, 0x00, 0x1DB810DE, 0x12AB10DE
13, Tesla V100-SXM3-32GB, 0x0000, 0xE2, 0x00, 0x1DB810DE, 0x12AB10DE
14, Tesla V100-SXM3-32GB, 0x0000, 0xE5, 0x00, 0x1DB810DE, 0x12AB10DE
15, Tesla V100-SXM3-32GB, 0x0000, 0xE7, 0x00, 0x1DB810DE, 0x12AB10DE

Use the Linux lspci command to tie it all together:

dgx2> lspci -tv | egrep -i "nvidia | micron"
-+-[0000:d7]-+-00.0-[d8-e7]----00.0-[d9-e7]--+-00.0-[da]----00.0 Micron Technology�
↪→Inc 9200 PRO NVMe SSD
| | +-01.0-[db]----00.0 Micron Technology�
↪→Inc 9200 PRO NVMe SSD
| | +-04.0-[de-e2]----00.0-[df-e2]--+-00.0-
↪→[e0]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | | \-10.0-
↪→[e2]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | \-0c.0-[e3-e7]----00.0-[e4-e7]--+-00.0-
↪→[e5]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | \-10.0-
↪→[e7]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]

(continues on next page)

4.1. Determining PCIe Device Affinity 9

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

+-[0000:ae]-+-00.0-[af-c7]----00.0-[b0-c7]--+-00.0-[b1]----00.0 Micron Technology�
↪→Inc 9200 PRO NVMe SSD
| | +-01.0-[b2]----00.0 Micron Technology�
↪→Inc 9200 PRO NVMe SSD
| | +-04.0-[b5-b9]----00.0-[b6-b9]--+-00.0-
↪→[b7]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | | \-10.0-
↪→[b9]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | +-0c.0-[ba-be]----00.0-[bb-be]--+-00.0-
↪→[bc]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | | \-10.0-
↪→[be]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | \-10.0-[bf-c7]----00.0-[c0-c7]--+-02.0-
↪→[c1]----00.0 NVIDIA Corporation Device 1ac2
| | +-03.0-
↪→[c2]----00.0 NVIDIA Corporation Device 1ac2
| | +-04.0-
↪→[c3]----00.0 NVIDIA Corporation Device 1ac2
| | +-0a.0-
↪→[c5]----00.0 NVIDIA Corporation Device 1ac2
| | +-0b.0-
↪→[c6]----00.0 NVIDIA Corporation Device 1ac2
| | \-0c.0-
↪→[c7]----00.0 NVIDIA Corporation Device 1ac2
+-[0000:4e]-+-00.0-[4f-67]----00.0-[50-67]--+-00.0-[51]----00.0 Micron Technology�
↪→Inc 9200 PRO NVMe SSD
| | +-01.0-[52]----00.0 Micron Technology�
↪→Inc 9200 PRO NVMe SSD
| | +-04.0-[55-59]----00.0-[56-59]--+-00.0-
↪→[57]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | | \-10.0-
↪→[59]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | +-0c.0-[5a-5e]----00.0-[5b-5e]--+-00.0-
↪→[5c]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | | \-10.0-
↪→[5e]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | \-10.0-[5f-67]----00.0-[60-67]--+-02.0-
↪→[61]----00.0 NVIDIA Corporation Device 1ac2
| | +-03.0-
↪→[62]----00.0 NVIDIA Corporation Device 1ac2
| | +-04.0-
↪→[63]----00.0 NVIDIA Corporation Device 1ac2
| | +-0a.0-
↪→[65]----00.0 NVIDIA Corporation Device 1ac2
| | +-0b.0-
↪→[66]----00.0 NVIDIA Corporation Device 1ac2
| | \-0c.0-
↪→[67]----00.0 NVIDIA Corporation Device 1ac2
+-[0000:2b]-+-00.0-[2c-3b]----00.0-[2d-3b]--+-00.0-[2e]----00.0 Micron Technology�
↪→Inc 9200 PRO NVMe SSD
| | +-01.0-[2f]----00.0 Micron Technology�
↪→Inc 9200 PRO NVMe SSD
| | +-04.0-[32-36]----00.0-[33-36]--+-00.0-
↪→[34]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | | \-10.0-
↪→[36]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]

(continues on next page)

10 Chapter 4. Benchmarking GPUDirect Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

| | \-0c.0-[37-3b]----00.0-[38-3b]--+-00.0-
↪→[39]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
| | \-10.0-
↪→[3b]----00.0 NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]

In the above example, we explicitly searched for SSDs from the given vendor. To determine the manu-
facturer of the NVMe SSD devices on your system, simply run lsblk -o NAME,MODEL. Alternatively,
use nvme as the string to match with nvidia.

A few things to note here. First, the NVME SSD devices are grouped in pairs on each of the PCIe up-
stream switches, as shown in the displayed extended BDF format (left most column), showing domain
zero, and Bus IDs 0xd7 (0000:d7), 0xae, 0x4e and 0x2b. Also, two distinct NVIDIA device IDs are re-
vealed (right-most column) - 0x1db8 and 0x1ac2. The 0x1db8 devices are the Tesla V100 SXM3 32GB
GPUs, and the 0x1ac2 devices are NVSwitches. Our interest here is in the GPU devices, and the topol-
ogy shows that there will be an optimal performance path between a pair of NVMe SSDs and four
possible V100 GPUs. Given this information, we can create a RAID0 device comprised of two NVMe
SSDs on the same PCIe switch, and determine which GPUs are on the same PCIe upstream switch.

Starting at the top of the lspci output, note twoNVMedrives at PCIe bus 0xda and 0xdb. The disk-by-
path data indicates these are nvme8 and nvme9 devices. The four GPUs on the same segment, 0xe0,
0xe2, 0xe5 and 0xe7, are GPUs 12, 13, 14 and 15 respectively, as determined from the nvidia-smi
output. The following table s hows the PCIe GPU-to-NVMe affinity for all installed GPUs and corre-
sponding NVMe SSD pairs.

Table 1: DGX-2 GPU / NVMe Affinity (example)

Seenvidia-smi command
output

See∕dev∕disk∕by-path en-
tries

GPU # GPU PCIe NVMe # NVMe
PCIe

0, 1, 2, 3 0x34, 0x36, 0x39,
0x3b

nvme2, nvme3 0x2e,
0x2f

4, 5, 6, 7 0x57, 0x59, 0x5c,
0x5e

nvme4, nvme5 0x51,
0x52

8, 9, 10, 11 0xb7, 0xb9, 0xbc,
0xbe

nvme6, nvme7 0xb1,
0xb2

12, 13, 14, 15 0xe0, 0xe2, 0xe5,
0xe7

nvme8, nvme9 0xda,
0xdb

With this information, we can configure a target workload for optimal throughput and latency, lever-
aging PCIe topology and device proximity of the GPUs and NVMe SSDs. This will be demonstrated
in the next couple sections. Note that it is not guaranteed the actual PCIe BDF values will be the
same for every NVIDIA DGX-2. This is because enumeration of the PCIe topology is based on specific
configuration details and determined at boot time.

The same logic applies to storage that is network attached (NAS). The network interface (NIC) becomes
the “storage controller”, in terms of the data flow between the GPUs and storage. Fortunately, deter-
mining PCIe topology is a much easier task for GPUs and NICs, as the nvidia-smi utility includes
options for generating this information. Specifically, nvidia-smi topo -mp generates a simple
topology map in the form of a matrix showing the connection(s) at the intersection of the installed
GPUs and network interfaces.

4.1. Determining PCIe Device Affinity 11

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

For readability, the sample output below from a DGX-2 system shows the first eight columns, and the
first four Mellanox device rows, not the entire table generated when executing nvidia-smi topo
-mp.

dgx2> nvidia-smi topo -mp
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7

GPU0 X PIX PXB PXB NODE NODE NODE NODE
GPU1 PIX X PXB PXB NODE NODE NODE NODE
GPU2 PXB PXB X PIX NODE NODE NODE NODE
GPU3 PXB PXB PIX X NODE NODE NODE NODE
GPU4 NODE NODE NODE NODE X PIX PXB PXB
GPU5 NODE NODE NODE NODE PIX X PXB PXB
GPU6 NODE NODE NODE NODE PXB PXB X PIX
GPU7 NODE NODE NODE NODE PXB PXB PIX X
GPU8 SYS SYS SYS SYS SYS SYS SYS SYS
GPU9 SYS SYS SYS SYS SYS SYS SYS SYS
GPU10 SYS SYS SYS SYS SYS SYS SYS SYS
GPU11 SYS SYS SYS SYS SYS SYS SYS SYS
GPU12 SYS SYS SYS SYS SYS SYS SYS SYS
GPU13 SYS SYS SYS SYS SYS SYS SYS SYS
GPU14 SYS SYS SYS SYS SYS SYS SYS SYS
GPU15 SYS SYS SYS SYS SYS SYS SYS SYS
mlx5_0 PIX PIX PXB PXB NODE NODE NODE NODE
mlx5_1 PXB PXB PIX PIX NODE NODE NODE NODE
mlx5_2 NODE NODE NODE NODE PIX PIX PXB PXB
mlx5_3 NODE NODE NODE NODE PXB PXB PIX PIX

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA�

↪→nodes (for example, QPI∕UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host�

↪→Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe�

↪→Host Bridge)
PIX = Connection traversing at most a single PCIe bridge

The optimal path between a GPU and NIC will be one PCIe switch path designated as PIX. The least
optimal path is designated as SYS, which indicates that the data path requires traversing the CPU-to-
CPU interconnect (NUMA nodes).

If you use this data when you configure and test GDS performance, the ideal setup would be, for
example, a data flow from mlx5_0 to/from GPUs 0 and 1, mlx5_1 to/from GPUs 1 and 2, and so on.

On systems where nvidia-smi is not available and cannot be installed, determining the ideal setup
can still be accomplished. Using tools such as lscpi or hwloc’s lstopo can enable administrators to
identify the best pairing of GPUs with NVMes and NICs. Below is an example output of lstopo from
a different DGX-2 machine:

Figure 2: dgx2> lstopo –of png

Tak-
ing
the
group-
ing
as-
so-
ci-

12 Chapter 4. Benchmarking GPUDirect Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

ated
with
NU-
MAN-
ode
L#3
in
the
bot-
tom
left
quad-
rant
for
an
ex-
am-
ple,
it
can
be
seen
that
the
GPU
iden-
ti-
fied
by
PCI

07:00.0 would best be associated with the NVMes nvme0c0n1 (PCI 08:00.0) and nvme1c1nc (PCI
09:00.0). The GPU identified by PCI 0f:00.0 can also be associated with those same NVMes and
nvidia-smi would categorize their relationship as PXB, but as the image shows this will involve crossing
a greater number of PCIe bridges compared to the 07 GPU. It should also be noted that since both
GPUs must communicate via a common switch down to the NVMes, concurrent communication by
both GPUs with the NVMes may reduce performance. Regarding NIC affinity, it likely makes sense
to use mlx5_0 in conjunction with GPU 0f:00.0 and mlx5_1 with GPU 07:00.0 to avoid concurrent
communication across shared bridges.

Formachines that cannot render graphical output, the xml output of lstopo can also be used to identify
the same features. Below is a snippet of such an output, obtained by running lstopo --of xml,
for the NUMANode L#3 grouping just examined. Various lines have been removed for readability and
brevity, but the topology has not been altered.

<object type="Bridge" gp_index="867" bridge_type="1-1" depth="2" bridge_pci="0000:[02-
↪→13]" pci_busid="0000:01:00.0" pci_type="0604 [1000:c010] [1000:a096] b0" pci_link_
↪→speed="31.507692">
<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="Bridge" gp_index="843" bridge_type="1-1" depth="3" bridge_pci=

↪→"0000:[03-09]" pci_busid="0000:02:00.0" pci_type="0604 [1000:c010] [1000:a096] b0"�
↪→pci_link_speed="31.507692">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="Bridge" gp_index="822" bridge_type="1-1" depth="4" bridge_pci=

↪→"0000:[04-09]" pci_busid="0000:03:00.0" pci_type="0604 [1000:c010] [1000:a096] b0"�
↪→pci_link_speed="31.507692">

(continues on next page)

4.1. Determining PCIe Device Affinity 13

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="Bridge" gp_index="951" bridge_type="1-1" depth="5" bridge_pci=

↪→"0000:[05-07]" pci_busid="0000:04:00.0" pci_type="0604 [1000:c010] [1000:a096] b0"�
↪→pci_link_speed="31.507692">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="Bridge" gp_index="924" bridge_type="1-1" depth="6" bridge_pci=

↪→"0000:[06-07]" pci_busid="0000:05:00.0" pci_type="0604 [1000:c010] [10de:13b8] b0"�
↪→pci_link_speed="31.507692">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="Bridge" gp_index="903" bridge_type="1-1" depth="7" bridge_pci=

↪→"0000:[07-07]" pci_busid="0000:06:00.0" pci_type="0604 [1000:c010] [10de:13b8] b0"�
↪→pci_link_speed="31.507692">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="PCIDev" gp_index="878" pci_busid="0000:07:00.0" pci_type=

↪→"0302 [10de:20b2] [10de:1463] a1" pci_link_speed="31.507692">
<info name="PCIVendor" value="NVIDIA Corporation"∕>
<object type="OSDev" gp_index="1017" name="opencl0d0" subtype="OpenCL"�

↪→osdev_type="5">
<info name="GPUModel" value="NVIDIA A100-SXM4-80GB"∕>

...

<object type="Bridge" gp_index="900" bridge_type="1-1" depth="5" bridge_pci=
↪→"0000:[08-08]" pci_busid="0000:04:10.0" pci_type="0604 [1000:c010] [1000:a096] b0"�
↪→pci_link_speed="7.876923">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="PCIDev" gp_index="852" pci_busid="0000:08:00.0" pci_type="0108�

↪→[144d:a824] [144d:a801] 00" pci_link_speed="7.876923">
<info name="PCIVendor" value="Samsung Electronics Co Ltd"∕>
<object type="OSDev" gp_index="984" name="nvme0c0n1" subtype="Disk" osdev_

↪→type="0">
...

<object type="Bridge" gp_index="866" bridge_type="1-1" depth="5" bridge_pci=
↪→"0000:[09-09]" pci_busid="0000:04:14.0" pci_type="0604 [1000:c010] [1000:a096] b0"�
↪→pci_link_speed="7.876923">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="PCIDev" gp_index="831" pci_busid="0000:09:00.0" pci_type="0108�

↪→[144d:a824] [144d:a801] 00" pci_link_speed="7.876923">
<info name="PCIVendor" value="Samsung Electronics Co Ltd"∕>
<object type="OSDev" gp_index="983" name="nvme1c1n1" subtype="Disk" osdev_

↪→type="0">
...

<object type="Bridge" gp_index="966" bridge_type="1-1" depth="3" bridge_pci=
↪→"0000:[0a-0f]" pci_busid="0000:02:04.0" pci_type="0604 [1000:c010] [1000:a096] b0"�
↪→pci_link_speed="31.507692">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="Bridge" gp_index="870" bridge_type="1-1" depth="4" bridge_pci=

↪→"0000:[0b-0f]" pci_busid="0000:0a:00.0" pci_type="0604 [1000:c010] [1000:a096] b0"�
↪→pci_link_speed="31.507692">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="Bridge" gp_index="848" bridge_type="1-1" depth="5" bridge_pci=

↪→"0000:[0c-0c]" pci_busid="0000:0b:00.0" pci_type="0604 [1000:c010] [1000:a096] b0"�
↪→pci_link_speed="31.507692">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="PCIDev" gp_index="824" pci_busid="0000:0c:00.0" pci_type="0207�

(continues on next page)

14 Chapter 4. Benchmarking GPUDirect Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

↪→[15b3:101b] [15b3:0007] 00" pci_link_speed="31.507692">
<info name="PCIVendor" value="Mellanox Technologies"∕>
<info name="PCIDevice" value="MT28908 Family [ConnectX-6]"∕>
<object type="OSDev" gp_index="995" name="ibp12s0" osdev_type="2">
<∕object>
<object type="OSDev" gp_index="1011" name="mlx5_0" osdev_type="3">

...

<object type="Bridge" gp_index="948" bridge_type="1-1" depth="5" bridge_pci=
↪→"0000:[0d-0f]" pci_busid="0000:0b:10.0" pci_type="0604 [1000:c010] [1000:a096] b0"�
↪→pci_link_speed="31.507692">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="Bridge" gp_index="954" bridge_type="1-1" depth="6" bridge_pci=

↪→"0000:[0e-0f]" pci_busid="0000:0d:00.0" pci_type="0604 [1000:c010] [10de:13b8] b0"�
↪→pci_link_speed="31.507692">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="Bridge" gp_index="926" bridge_type="1-1" depth="7" bridge_pci=

↪→"0000:[0f-0f]" pci_busid="0000:0e:00.0" pci_type="0604 [1000:c010] [10de:13b8] b0"�
↪→pci_link_speed="31.507692">

<info name="PCIVendor" value="Broadcom ∕ LSI"∕>
<object type="PCIDev" gp_index="907" pci_busid="0000:0f:00.0" pci_type=

↪→"0302 [10de:20b2] [10de:1463] a1" pci_link_speed="31.507692">
<info name="PCIVendor" value="NVIDIA Corporation"∕>
<object type="OSDev" gp_index="1018" name="opencl0d1" subtype="OpenCL"�

↪→osdev_type="5">
<info name="GPUModel" value="NVIDIA A100-SXM4-80GB"∕>

...

Examination of the XML will lead to the same conclusions regarding GPU and NVMe/NIC affinity, again
for instance taking the GPU associated with pci_busid=0000:07:00.0, we see that it shares an up-
stream bridge (gp_index="822") with the NVMes nvme0c0n1 and nvme1c1n1 at a depth of 3. The
GPU associated with pci_busid=0000:0f:00.0 also shares an upstream bridge with these NVMes,
but further upstream at a depth of 2 (gp_index="867"), matching upwith the depiction in the graph-
ical output examined earlier.

4.2. GPUDirect Storage Configuration
Parameters

There are various parameters and settings that will factor into delivered performance. In addition
to storage/filesystem-specific parameters, there are system settings and GDS-specific parameters
defined in ∕etc∕cufile.json.

4.2. GPUDirect Storage Configuration Parameters 15

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

4.2.1. System Parameters

On the system side, the following should be checked:

▶ PCIe Access Control Service (ACS)

PCIe ACS is a security feature for peer-to-peer transactions Each transaction is checked to de-
termine whether peer-to-peer communication is allowed between the source and destination
devices. Each such transaction must be routed through the root complex, which induces latency
and impacts sustainable throughput. The best GDS performance is obtained when PCIe ACS is
disabled.

▶ IOMMU

The PCIe Input/Output Memory Management Unit (IOMMU) is a facility for handling address
translations for IO devices, and requires routing though the PCIe root complex. On most sys-
tems, it is recommended that the IOMMU be disabled as it can cause GDS IO operations to fail
or perform poorly. For Grace Hopper based systems, the IOMMU does not need to be disabled.

4.2.2. GPUDirect Storage Parameters

This section describes the JSON configuration parameters used by GDS.

When GDS is installed, the ∕etc∕cufile.json parameter file is installed with default values. The
implementation allows for generic GDS settings and parameters specific to a file system or storage
partner.

Note

Consider compat_mode for systems or mounts that are not yet set up with GDS support.

Table 2: GPUDirect Storage cufile.json Variables

Parameter Default Value Description

logging:dir CWD Location of the GDS log file.

logging:level ERROR Verbosity of logging.

profile:nvtx false Boolean which if set to true,
generates NVTX traces for pro-
filing.

profile:cufile_stats 0 Enable cuFile IO stats. Level 0
means no cuFile statistics.

profile:io_batchsize 128 Maximum size of the batch al-
lowed.

proper-
ties:max_direct_io_size_kb

16384 Maximum IO chunk size (4K
aligned) used by cuFile for each
IO request (in KB).

continues on next page

16 Chapter 4. Benchmarking GPUDirect Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

Table 2 – continued from previous page

Parameter Default Value Description

proper-
ties:max_device_cache_size_kb

131072 Maximum device memory
size (4K aligned) for reserving
bounce buffers for the entire
GPU (in KB).

proper-
ties:max_device_pinned_mem_size_kb

33554432 Maximum per-GPU memory
size in KB, including the mem-
ory for the internal bounce
buffers, that can be pinned.

properties:use_poll_mode false Boolean that indicates whether
the cuFile library uses polling
or synchronous wait for the
storage to complete IO. Polling
might be useful for small IO
transactions. Refer to Poll
Mode below.

proper-
ties:poll_mode_max_size_kb

4 Maximum IO request size (4K
aligned) in or equal to which li-
brary will be polled (in KB).

properties.
force_compat_mode

false If true, this option can be
used to force all IO to use
compatibility mode. Alterna-
tively the admin can unload the
nvidia_fs.ko or not expose
the character devices in the
docker container environment.

proper-
ties:allow_compat_mode

false If true, enables the compatibil-
ity mode, which allows cuFile
to issue POSIX read/write. To
switch to GDS-enabled I/O, set
this to false. Refer to Com-
patibility Mode below.

proper-
ties:use_pci_p2pdma

false If true, enables GDS to pref-
erentially use p2pdma over the
traditional nvidia-fs path if the
kernel supports it. Otherwise,
the traditional path via nvidia-fs
is used. Refer to P2P Mode be-
low.

proper-
ties:rdma_dev_addr_list

[] Provides the list of relevant
client IPv4 addresses for all the
interfaces that can be used for
RDMA.

continues on next page

4.2. GPUDirect Storage Configuration Parameters 17

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

Table 2 – continued from previous page

Parameter Default Value Description

proper-
ties:rdma_load_balancing_policy

RoundRobin Specifies the load balancing
policy for RDMA memory regis-
tration. By default, this value is
set to RoundRobin. Here are the
valid values that can be used for
this property: FirstFit - Suit-
able for cases where numGpus
matches numPeers and GPU
PCIe lane width is greater or
equal to the peer PCIe lane
width.
MaxMinFit - This will try to
assign peers in a manner that
there is least sharing. Suitable
for cases, where all GPUs are
loaded uniformly.
RoundRobin - This parameter
uses only the NICs that are the
closest to the GPU for mem-
ory registration in a round robin
fashion.
RoundRobinMaxMin - Similar
to RoundRobin but uses peers
with least sharing.
Randomized - This parameter
uses only the NICs that are the
closest to the GPU for mem-
ory registration in a randomized
fashion.

proper-
ties:rdma_dynamic_routing

false Boolean parameter applicable
only to Network Based File Sys-
tems. This could be enabled for
platformswhereGPUs andNICs
do not share a common PCIe-
root port.

proper-
ties:rdma_dynamic_routing_order

["GPU_MEM_NVLINKS",
"GPU_MEM", "SYS_MEM",
"P2P"]

The routing order applies only if
rdma_dynamic_routing is en-
abled. Users can specify an or-
dered list of routing policies se-
lected when routing an IO on a
first-fit basis.

properties:io_batchsize 128 The max number of IO opera-
tions per batch.

proper-
ties:gds_rdma_write_support

true Enable GDS write support for
RDMA based storage.

continues on next page

18 Chapter 4. Benchmarking GPUDirect Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

Table 2 – continued from previous page

Parameter Default Value Description

properties:io_priority default Enable io priority w.r.t. compute
streams
Valid options are “default”,
“low”, “med”, “high”
Tuning this might be helpful
in cases where cudaMemcpy is
not performing as expected be-
cause of the GPU being con-
sumed by the compute.

fs:generic:posix_unaligned_writesfalse Setting to true forces the use
of a POSIX write instead of cu-
FileWrite for unaligned writes.

fs:lustre:posix_gds_min_kb4KB Applicable only for the EXAS-
caler filesystem. This is ap-
plicable for reads and writes.
IO threshold for read/write (4K
aligned) that is equal to or be-
low the threshold that cuFile
will use for a POSIX read/write.
It was observed that for smaller
IO size such as 4KB/8KB, set-
ting this threshold to 4KB/8KB
yields better performance.

fs:lustre:rdma_dev_addr_list[] Provides the list of relevant
client IPv4 addresses for all the
interfaces that can be used by a
single lustre mount. This prop-
erty is used by the cuFile dy-
namic routing feature to infer
preferred RDMA devices.

fs:lustre:mount_table [] Specifies a dictionary of IPv4
mount addresses against a Lus-
tre mount point.This property
is used by the cuFile dynamic
routing feature. Refer to the
default cufile.json for sam-
ple usage.

fs:nfs:rdma_dev_addr_list [] Provides the list of IPv4 ad-
dresses for all the interfaces a
single NFS mount can use. This
property is used by the cuFile
dynamic routing feature to infer
preferred RDMA devices.

continues on next page

4.2. GPUDirect Storage Configuration Parameters 19

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

Table 2 – continued from previous page

Parameter Default Value Description

fs:nfs:mount_table [] Specifies a dictionary of IPv4
mount addresses against a Lus-
tre mount point. This property
is used by the cuFile dynamic
routing feature. Refer to the
default cufile.json for sam-
ple usage.

fs:weka:rdma_write_supportfalse If set to true, cuFileWrite will
use RDMA writes instead of
falling back to posix writes for
a WekaFs mount.

fs:weka:<rdma_dev_addr_list>[] Provides the list of relevant
client IPv4 addresses for all
the interfaces a single WekaFS
mount can use. This property
is also used by the cuFile dy-
namic routing feature to infer
preferred rdma devices.

fs:weka:mount_table [] Specifies a dictionary of IPv4
mount addresses against a
WekaFS mount point. This
property is used by the cuFile
dynamic routing feature. Refer
to the default cufile.json
for sample usage.

denylist:drivers [] Administrative setting that dis-
ables supported storage drivers
on the node.

denylist:devices [] Administrative setting that dis-
ables specific supported block
devices on the node.
Not applicable for DFS.

denylist:mounts [] Administrative setting that dis-
ables specific mounts in the
supportedGDS-enabledfilesys-
tems on the node.

denylist:filesystems [] Administrative setting that dis-
ables specific supported GDS-
ready filesystems on the node.

miscella-
neous:skip_topology_detection

false Setting this to true will skip
topology detection in compat
mode. This will reduce the high
startup latency seen in compat
mode on systems with multiple
PCI devices.

continues on next page

20 Chapter 4. Benchmarking GPUDirect Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

Table 2 – continued from previous page

Parameter Default Value Description

execu-
tion::max_io_queue_depth

128 This specifies the maximum
number of pending work items
that can be held by the cuFile li-
brary’s internal threadpool sub-
system.

execu-
tion::max_io_threads

4 This specifies the number of
threadpool threads that can
process work items produced
into a work queue correspond-
ing to a single GPU on the sys-
tem.

execution::parallel_io true Setting this to true will al-
low parallel processing of work
items by enqueuing into the
threadpool subsystem provided
by the cuFile library

execu-
tion::min_io_threshold_size_kb

8192 This option specifies the size in
KB that the I/O work item sub-
mitted by the application would
be split into, when enqueu-
ing into threadpool sub-system,
provided there are enough par-
allel buffers available.

execu-
tion::max_request_parallelism

4 This number specifies themaxi-
mum number of parallel buffers
available, that the original I/O
work item buffer can be split
into, when enqueuing into the
threadpool sub-system.

Note

Workload/application-specific parameters can be set by using the CUFILE_ENV_PATH_JSON
environment variable that is set to point to an alternate cufile.json file, for example,
CUFILE_ENV_PATH_JSON=∕home∕gds_user∕my_cufile.json.

There are two mode types that you can set in the cufile.json configuration file:

▶ Poll Mode

The cuFile API set includes an interface to put the driver in polling mode. Refer to cuFileDri-
verSetPollMode() in the cuFile API Reference Guide formore information. When the poll mode
is set, a read or write issued that is less than or equal to properties:poll_mode_max_size_kb
(4KB by default) will result in the library polling for IO completion, rather than blocking (sleep).
For small IO size workloads, enabling poll mode may reduce latency.

▶ Compatibility Mode

4.2. GPUDirect Storage Configuration Parameters 21

https://docs.nvidia.com/cuda/cufile-api/index.html

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

There are several possible scenarios where GDSmight not be available or supported, for example,
when the GDS software is not installed, the target file system is not GDS supported,O_DIRECT
cannot be enabled on the target file, and so on. When you enable compatibility mode, and GDS
is not functional for the IO target, the code that uses the cuFile APIs fall backs to the standard
POSIX read/write path. To learn more about compatibility mode, refer to cuFile Compatibility
Mode.

In more recent Linux kernels, support has been added for peer-to-peer DMA amongst devices without
the use of custom kernel modules. Starting in CUDA 12.8, GDS supports this new P2Pmode of opera-
tion and nvidia-fs is no longer needed under certain configurations. Refer to the GDS Troubleshooting
Guide for more information on system requirements and how to enable this mode.

From a benchmarking and performance perspective, the default settings work very
well across a variety of IO loads and use cases. We recommended that you use
the default values for max_direct_io_size_kb, max_device_cache_size_kb, and
max_device_pinned_mem_size_kb unless a storage provider has a specific recommendation,
or analysis and testing show better performance after you change one or more of the defaults.

The cufile.json file has been designed to be extensible such that parameters can be set that are ei-
ther generic and apply to all supported file systems (fs:generic), or file systemspecific (fs:lustre).
The fs:generic:posix_unaligned_writes parameter enables the use of the POSIX write path
when unaligned writes are encountered. Unaligned writes are generally sub-optimal, as they can re-
quire read-modify-write operations.

If the target workload generates unaligned writes, you might want to set posix_unaligned_writes
to true, as the POSIX path for handling unaligned writes might be more performant, depending on
the target filesystem and underlying storage. Also, in this case, the POSIX path will write to the page
cache (system memory).

When the IO size is less than or equal to posix_gds_min_kb, the fs:lustre:posix_gds_min_kb
setting invokes the POSIX read/write path rather than cuFile path. When using Lustre, for small IO
sizes, the POSIX path can have better (lower) latency.

The GDS parameters are among several elements that factor into delivered storage IO performance.
It is advisable to start with the defaults and only make changes based on recommendations from a
storage vendor or based on empirical data obtained during testing and measurements of the target
workload.

This is the JSON schema:

∕etc∕cufile.json
{

"logging": {
∕∕ log directory, if not enabled will create log file
∕∕ under current working directory
∕∕"dir": "∕home∕<xxxx>",
∕∕ ERROR|WARN|INFO|DEBUG|TRACE (in decreasing order of priority)

"level": "ERROR"
},

"profile": {
∕∕ nvtx profiling on∕off
"nvtx": false,
∕∕ cufile stats level(0-3)
"cufile_stats": 0

},

(continues on next page)

22 Chapter 4. Benchmarking GPUDirect Storage

https://docs.nvidia.com/cuda/cufile-api/index.html#cufile-compatibility-mode
https://docs.nvidia.com/cuda/cufile-api/index.html#cufile-compatibility-mode
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html#troubleshoot-faq-nvme
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html#troubleshoot-faq-nvme

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

"execution" : {
∕∕ max number of workitems in the queue;
"max_io_queue_depth": 128,
∕∕ max number of host threads per gpu to spawn for parallel IO
"max_io_threads" : 4,
∕∕ enable support for parallel IO
"parallel_io" : true,
∕∕ minimum IO threshold before splitting the IO
"min_io_threshold_size_kb" :8192,
∕∕ maximum parallelism for a single request
"max_request_parallelism" : 4

},

"properties": {
∕∕ max IO size (4K aligned) issued by cuFile to nvidia-fs driver(in KB)
"max_direct_io_size_kb" : 16384,
∕∕ device memory size (4K aligned) for reserving bounce buffers
∕∕ for the entire GPU (in KB)
"max_device_cache_size_kb" : 131072,
∕∕ limit on maximum memory (4K aligned) that can be pinned
∕∕ for a given process (in KB)
"max_device_pinned_mem_size_kb" : 33554432,
∕∕ true or false (true will enable asynchronous io submission to nvidia-fs driver)
"use_poll_mode" : false,
∕∕ maximum IO request size (4K aligned) within or equal
∕∕ to which library will poll (in KB)
"poll_mode_max_size_kb": 4,
∕∕ allow compat mode, this will enable use of cufile posix read∕writes
"allow_compat_mode": false,
∕∕ client-side rdma addr list for user-space file-systems

∕∕ (e.g ["10.0.1.0", "10.0.2.0"])
"rdma_dev_addr_list": []

},

"fs": {
"generic": {

∕∕ for unaligned writes, setting it to true
∕∕ will use posix write instead of cuFileWrite

"posix_unaligned_writes" : false
},

"lustre": {
∕∕ IO threshold for read∕write (4K aligned)) equal to or below
∕∕ which cufile will use posix reads (KB)
"posix_gds_min_kb" : 0

}
},

"blacklist": {
∕∕ specify list of vendor driver modules to blacklist for nvidia-fs
"drivers": [],
∕∕ specify list of block devices to prevent IO using libcufile
"devices": [],
∕∕ specify list of mount points to prevent IO using libcufile

(continues on next page)

4.2. GPUDirect Storage Configuration Parameters 23

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

∕∕ (e.g. ["∕mnt∕test"])
"mounts": [],
∕∕ specify list of file-systems to prevent IO using libcufile
∕∕ (e.g ["lustre", "wekafs", "vast"])
"filesystems": []

}
∕∕ Application can override custom configuration via
∕∕ export CUFILE_ENV_PATH_JSON=<filepath>
∕∕ e.g : export CUFILE_ENV_PATH_JSON="∕home∕<xxx>∕cufile.json"

}

4.3. GPUDirect Storage Benchmarking Tools

There are several storage benchmarking tools and utilities for Linux systems, with varying degrees of
features and functionality. The fio utility is one of the more popular and powerful tools that is used
to generate storage IO loads and offers significant flexibility for tuning IO generation based on the
desired IO load characteristics. For those familiar with fio on Linux systems, the use of gdsio will be
very intuitive.

Since GDS is relatively new technology, with support dependencies and a specific set of libraries and
APIs that fall outside standard POSIX IO APIs, none of the existing storage IO load generation utilities
include GDS support. As a result, the installation of GDS includes the gdsio load generator which
provides several command line options that enable generating various storage IO load characteristics
via both the traditional CPU and the GDS data path.

4.3.1. gdsio Utility

The gdsio utility is similar to a number of disk/storage IO load generating tools. It supports a series
of command line arguments to specify the target files, file sizes, IO sizes, number of IO threads, and
so on. Additionally, gdsio includes built-in support for using the traditional IO path (CPU), as well as
the GDS path - storage to/from GPU memory.

Starting 12.2, the tool also supports three newmemory (-m <2, 3, 4>) types to exercise the host mem-
ory support option using cuFile APIs. The new memory type option is only supported with certain
transfer modes such as -x (0, 5, 6, 7). Additionally support for non O_DIRECT file descriptors is also
introduced. It can be specified by the option -O 1. By default the gdsio utility works with O_DIRECT
file descriptors which is represented by -O 0, although that need not be specified explicitly.

dgx2> .∕gdsio --help
gdsio version :1.1
Usage [using config file]: gdsio rw-sample.gdsio
Usage [using cmd line options]:.∕gdsio

-f <file name>
-D <directory name>
-d <gpu_index (refer nvidia-smi)>
-n <numa node>
-m <memory type(0 - (cudaMalloc), 1 - (cuMem), 2 - (cudaMallocHost), 3 -�

↪→(malloc) 4 - (mmap))>
-w <number of threads for a job>

(continues on next page)

24 Chapter 4. Benchmarking GPUDirect Storage

https://linux.die.net/man/1/fio

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

-s <file size(K|M|G)>
-o <start offset(K|M|G)>
-i <io_size(K|M|G)> <min_size:max_size:step_size>
-p <enable nvlinks>
-b <skip bufregister>
-o <start file offset>
-V <verify IO>
-x <xfer_type>
-I <(read) 0|(write)1| (randread) 2| (randwrite) 3>
-T <duration in seconds>
-k <random_seed> (number e.g. 3456) to be used with random read∕write>
-U <use unaligned(4K) random offsets>
-R <fill io buffer with random data>
-F <refill io buffer with random data during each write>
-B

xfer_type:
0 - Storage->GPU (GDS)
1 - Storage->CPU
2 - Storage->CPU->GPU
3 - Storage->CPU->GPU_ASYNC
4 - Storage->PAGE_CACHE->CPU->GPU
5 - Storage->GPU_ASYNC_STREAM
6 - Storage->GPU_BATCH
7 - Storage->GPU_BATCH_STREAM

Note:
read test (-I 0) with verify option (-V) should be used with files written (-I 1)�
↪→with -V option
read test (-I 2) with verify option (-V) should be used with files written (-I 3)�
↪→with -V option, using same random seed (-k),
same number of threads(-w), offset(-o), and data size(-s)
write test (-I 1∕3) with verify option (-V) will perform writes followed by read

These gdsio options provide the necessary flexibility to construct IO tests based on a specific set of
requirements, and/or simply to assess performance for several different load types. Important to note
that when using the -D flag to specify a target directory, gdsiomust first execute write loads (-I 1
or -I 3) to create the files. The number of files created is based on the thread count (-w flag); 1 file is
created for each thread. This is an alternative to using the-fflag where file pathnames are specified.
The -D and-f flags cannot be used together.

The transfer types (-x flag) are further defined in the following table:

Table 3: gdsio Data Path Transfer Options

x Transfer Type File Open
O_DIRECT?

Host Memory
Allocation
Type

Device Mem-
ory Allocation
Type

Copies

0 XFER_GPU_DIRECTYes cudaMal-
locHost,
malloc or
mmap

cudaMalloc()∕
cuMemMap()

Zero copy

continues on next page

4.3. GPUDirect Storage Benchmarking Tools 25

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

Table 3 – continued from previous page

x Transfer Type File Open
O_DIRECT?

Host Memory
Allocation
Type

Device Mem-
ory Allocation
Type

Copies

1 XFER_CPU_ONLYYes Posix_mem_align
(4k)

N/A Zero copy

2 XFER_CPU_GPU Yes cudaMallo-
cHost()

cudaMal-
loc()
(use of mul-
tiple CUDA
streams
for cuMem-
cpyAsync()

One copy

3 XFER_CPU_ASYNC_GPUYes cudaMalloc-
Managed()

cudaMalloc-
Managed()
(use
cuMemAd-
vise() to set
hints for man-
aged memory
+ cuMem-
cpyPrefetchAsync())

One copy
(streaming
buffer)

4 XFER_CPU_CACHED_GPUNo (use page
cache)

cudaMallo-
cHost()

cudaMal-
loc()
(use of mul-
tiple CUDA
streams
for cuMem-
cpyAsync())

Two copies

5 XFER_GPU_DIRECT_ASYNCYes cudaMal-
locHost,
malloc or
mmap

cudaMalloc()∕
cuMemMap()

Zero copy

6 XFER_GPU_BATCHYes cudaMal-
locHost,
malloc or
mmap

cudaMalloc()∕
cuMemMap()

Zero copy

7 XFER_GPU_BATCH_STREAMYes cudaMal-
locHost,
malloc or
mmap

cudaMalloc()∕
cuMemMap()

Zero copy

* Starting from GDS 1.7 release, if the poll mode is enabled through cufile.json then it will use
poll mode. Otherwise, the XFER_GPU_DIRECT_ASYNC option would exercise stream-based async I/O
mechanism

Similar to the Linux fio storage load generator, gdsio supports the use of config files that contain
the parameter values to use for a gdsio execution. This offers an alternative to lengthy command
line strings, and the ability to build a collection of config files that can easily be reused for testing

26 Chapter 4. Benchmarking GPUDirect Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

different configurations and workloads. The gdsio config file syntax supports global parameters, as
well as individual job parameters. There are sample gdsio config files installed with GDS in ∕usr∕
local∕cuda∕gds∕tools. The files with the .gdsio extension are sample gdsio config files, and
the README included in the same directory provides additional information on the command line and
config file syntax for gdsio.

With these options and the support of parameter config files, it is a relatively simple process to run
gdsio and assess performance using different data paths to/from GPU/CPU memory.

4.3.2. gds-stats Tool

The gds_stats tool is used to extract per-process statistics on the GDS IO. It can be used in conjunc-
tion with other generic tools (Linux iostat), and GPU-specific tools (nvidia-smi, the Data Center
GPUManager (DCGM) command line tool, dcgmi) to get a complete picture of data flow on the target
system.

To use gds_stats, the profile:cufile_stats attribute in ∕etc∕cufile.json must be set to 1,
2 or 3.

Note

The default value of 0 disables statistics collection.

The different levels provide an increasing amount of statistical data. When profile:cufile_stats
is set to 3 (max level), the gds_stats utility provides a -l (level) CLI flag. Even when GDS is collecting
level 3 stats, only level 1 or level 2 stats can be displayed.

In the example below, a gdsio job is started in the background, and level 3 gds_stats are extracted:

dgx2> gdsio -D ∕nvme23∕gds_dir -d 2 -w 8 -s 1G -i 1M -x 0 -I 0 -T 300 &
[1] 850272
dgx2> gds_stats -p 850272 -l 3
cuFile STATS VERSION : 3
GLOBAL STATS:
Total Files: 8
Total Read Errors : 0
Total Read Size (MiB): 78193
Read BandWidth (GiB∕s): 6.32129
Avg Read Latency (us): 1044
Total Write Errors : 0
Total Write Size (MiB): 0
Write BandWidth (GiB∕s): 0
Avg Write Latency (us): 0
READ-WRITE SIZE HISTOGRAM :
0-4(KiB): 0 0
4-8(KiB): 0 0
8-16(KiB): 0 0
16-32(KiB): 0 0
32-64(KiB): 0 0
64-128(KiB): 0 0
128-256(KiB): 0 0
256-512(KiB): 0 0
512-1024(KiB): 0 0
1024-2048(KiB): 78193 0

(continues on next page)

4.3. GPUDirect Storage Benchmarking Tools 27

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

2048-4096(KiB): 0 0
4096-8192(KiB): 0 0
8192-16384(KiB): 0 0
16384-32768(KiB): 0 0
32768-65536(KiB): 0 0
65536-...(KiB): 0 0
PER_GPU STATS:
GPU 0 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0�
↪→Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0�
↪→free=0 MiB=0
GPU 1 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0�
↪→Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0�
↪→free=0 MiB=0
GPU 2 Read: bw=6.32129 util(%)=797 n=78193 posix=0 unalign=0 r_sparse=0 r_inline=0�
↪→err=0 MiB=78193 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0�
↪→BufRegister: n=8 err=0 free=0 MiB=8
GPU 3 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0�
↪→Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0�
↪→free=0 MiB=0
. . .
GPU 15 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0�
↪→Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0�
↪→free=0 MiB=0
PER_GPU POOL BUFFER STATS:
PER_GPU POSIX POOL BUFFER STATS:
GPU 0 4(KiB) :0∕0 1024(KiB) :0∕0 16384(KiB) :0∕0
GPU 1 4(KiB) :0∕0 1024(KiB) :0∕0 16384(KiB) :0∕0
GPU 2 4(KiB) :0∕0 1024(KiB) :0∕0 16384(KiB) :0∕0
. . .
GPU 14 4(KiB) :0∕0 1024(KiB) :0∕0 16384(KiB) :0∕0
GPU 15 4(KiB) :0∕0 1024(KiB) :0∕0 16384(KiB) :0∕0

PER_GPU RDMA STATS:
GPU 0000:34:00.0 :
GPU 0000:36:00.0 :
. . .
GPU 0000:39:00.0 :
GPU 0000:e5:00.0 :
GPU 0000:e7:00.0 :

RDMA MRSTATS:
peer name nr_mrs mr_size(MiB)

Here are the levels of gds_stats that are captured and displayed:

▶ Level 3.

Shown above, includes (tarting at the top), a summary section, GLOBAL STATS, followed by
a READ-WRITE SIZE HISTOGRAM section, PER_GPU STATS, PER_GPU POOL BUFFER STATS,
PER_GPU POSIX POOL BUFFER STATS, PER_GPU RDMA STATS and RDMA MRSTATS.

▶ Level 2

The GLOBAL STATS and READ-WRITE SIZE HISTOGRAM sections.

▶ Level 1

GLOBAL STATS.

These are described as:

28 Chapter 4. Benchmarking GPUDirect Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

▶ GLOBAL STATS - Summary data including read/write throughput and latency.

▶ READ-WRITE SIZE HISTOGRAM - Distribution of the size of read and write IOs.

▶ PER_GPU STATS - Various statistics for each GPU, including read and write throughput, counters
for sparse IOs, POSIX IOs, errors, unaligned IOs and data on registered buffers.

The next two stats provide information on the buffer pool used for bounce buffers for both GDS IO and
POSIX IO. These pools use fixed size 1MB buffers in a 128MB pool (See “max_device_cache_size_kb”
: 131072 in the ∕etc∕cufile.json parameters). This pool is used when buffers are not registered,
unaligned buffer or file offsets, and when the storage and GPU cross NUMA nodes (typically CPU sock-
ets).

▶ PER_GPU POOL BUFFER STATS - Bounce buffer stats when GDS is in use.

▶ PER_GPU POSIX POOL BUFFER STATS - Systemmemory bounce buffer stats when compatmode
(POSIX IO) is used.

These last two stats provide data related to RDMA traffic when GDS is configured with Network At-
tached Storage (NAS):

▶ PER_GPU RDMA STATS - RDMA traffic.

▶ PER_GPU RDMA MRSTATS - RDMA memory registration data.

The gds_stats are very useful for understanding important aspects of the IO load. Not just per-
formance (BandWidth and Latency), but also the IO size distribution for understanding an important
attribute of the workload, and PER_GPU STATS enable a view into which GPUs are reading/writing data
to/from the storage.

There are various methods that you can use to monitor gds_stats data at regular intervals, such as
shell wrappers that define intervals and extract the data of interest. Additionally, the Linux watch
command can be used to monitor gds_stats data at regular intervals:

Every 1.0s: gds_stats -p 951816 | grep 'BandWidth\|Latency'
psg-dgx2-g02: Fri Nov 20 13:16:36 2020

Read BandWidth (GiB∕s): 6.38327
Avg Read Latency (us): 1261
Write BandWidth (GiB∕s): 0
Avg Write Latency (us): 0

In the above example, gds_stats was started using the Linux watch command:

watch -n 1 "gds_stats -p 31470 | grep 'BandWidth\|Latency'"

This command results in the bandwidth and latency stats being updated in your Command Prompt
window every second.

4.3. GPUDirect Storage Benchmarking Tools 29

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

30 Chapter 4. Benchmarking GPUDirect Storage

Chapter 5. GPUDirect Storage
Benchmarking on Direct
Attached Storage

This section covers benchmarking GDS on storage directly attached to the server, typically in the form
of NVMe SSD devices on the PCIe bus. The specific examples on DGX-2 and DGX A100 can be used
as guidelines for any server configuration. Note that in the following examples, the output of various
command line tools and utilities is included. In some cases, rows or columns are deleted to improve
readability and clarity.

5.1. GPUDirect Storage Performance on DGX-2
System

Currently, GDS supports NVMe devices as direct attached storage, where NVMe SSDs are plugged
directly into the PCIe bus. The DGX-2 system comes configured with up to 16 of these devices that
are typically configured as a large RAID metadevice. As per the previous section, the DGX-2 system
used to execute these examples was very specifically configured, such that pairs of NVMe SSDs on
the same PCIe switch are in a RAID0 group, and the gdsio command line intentionally selects GPUs
that share the same upstream PCIe switch.

A Simple Example: Writing to large files with a large IO size using the GDS path.

This example uses aRAID0device configuredwith nvme2andnvme3with an ext4file system (mounted
as ∕nvme23, with a gds_dir subdirectory to hold the generated files).

dgx2> gdsio -D ∕nvme23∕gds_dir -d 2 -w 8 -s 500M -i 1M -x 0 -I 0 -T 120
IoType: READ XferType: GPUD Threads: 8 DataSetSize: 818796544∕4096000(KiB) IOSize:�
↪→1024(KiB) Throughput: 6.524658 GiB∕sec, Avg_Latency: 1197.370995 usecs ops: 799606�
↪→total_time 119.679102 secs

Here is some additional information about the options in the example:

▶ -D ∕nvme23∕gds_dir, the target directory.

▶ -d 2, selects GPU # 2 for data target/destination.

▶ -w 8, 8 workers (8 IO threads)

▶ -s 500M, the target file size.

31

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

▶ -i 1M, IO size (important for assessing throughput).

▶ -x 0, the IO data path, in this case GDS.

See Table 2 in gdsio Utility for more information.

▶ -I 0, writes the IO load (0 is for reads, 1 is for writes)

▶ -T 120, runs for 120 seconds.

The results generated by gdsio show expected performance, given that the storage IO target is a RAID
0 configuration of the two NVMe SSDs, where each SSD is configured with around 3.4GB/sec large
read performance. The average sustained throughput was 6.5GB/sec, with a 1.2ms average latency.
We can look at system data during the gdsio execution for additional data points on data rates and
movement. This is often useful for validating results reported by load generators, as well as ensuring
the data path is as expected. Using the Linux iostat utility (iostat -cxzk 1):

avg-cpu: %user %nice %system %iowait %steal %idle
0.03 0.00 0.42 7.87 0.00 91.68

Device r∕s rkB∕s r_await rareq-sz w∕s wkB∕s . . . %util
md127 54360.00 6958080.00 0.00 128.00 0.00 0.00 . . . 0.00
nvme2n1 27173.00 3478144.00 1.03 128.00 0.00 0.00 . . . 100.00
nvme3n1 27179.00 3478912.00 0.95 128.00 0.00 0.00 . . . 100.00

Also, data from the nvidia-smi dmon command:

dgx2> nvidia-smi dmon -i 2 -s putcm
gpu pwr gtemp mtemp sm mem enc dec rxpci txpci mclk pclk fb bar1
Idx W C C % % % % MB∕s MB∕s MHz MHz MB MB

2 63 37 37 0 4 0 0 8923 0 958 345 326 15
2 63 37 37 0 4 0 0 8922 0 958 345 326 15
2 63 37 37 0 4 0 0 8930 0 958 345 326 15
2 63 37 37 0 4 0 0 8764 0 958 345 326 15

This data is consistent with the results reported by gdsio. The iostat data shows just over 3.4GB/sec
from each of the two NVMe drives, and close to 1ms latency per device. Note each drive sustained
about 27kwrites-per-second (IOPS). The seconddata set from thedmon subcommandofnvidia-smi,
note the rxpci column. Recall our gdsio command line initiated GPUDirect Storage reads, so reads
from the storage to the GPU. We see the selected GPU, 2, receiving over 8GB/sec over PCIe. This is
GPUDirect Storage in action - the GPU reading (PCIe receive) directly from the NVMe drives over PCIe.

While the preceding information is important to enable an optimal configuration, the GDS software
will always attempt to maintain an optimal data path, in some cases via another GPU that has bet-
ter affinity to the storage targets. By monitoring PCIe traffic with either nvidia-smi or dcgmi (the
command line component of DCGM), we can observe data rates in and out of the GPUs.

Using a previous example, running on the same RAID0 metadevice comprised of two NVMe drives on
the same PCIe switch, but specifying GPU 12 this time, and capturing GPU PCIe traffic with dcgmi,
we’ll observe sub-optimal performance as GPU 12 is not on the same downstream PCIe switch as our
two NVMe drives.

dgx2> gdsio -D ∕nvme23∕gds_dir -d 12 -w 8 -s 500M -i 1M -x 0 -I 0 -T 120
IoType: READ XferType: GPUD Threads: 8 DataSetSize: 491438080∕4096000(KiB) IOSize:�
↪→1024(KiB) Throughput: 3.893747 GiB∕sec, Avg_Latency: 2003.091575 usecs ops: 479920�
↪→total_time 120.365276 secs

Note throughput dropped from 6.5GB/sec to 3.9GB/sec, and latency almost doubled to 2ms. The PCIe
traffic data tells an interesting story:

32 Chapter 5. GPUDirect Storage Benchmarking on Direct Attached Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

dgx2> dcgmi dmon -e 1009,1010 -d 1000
Entity PCITX PCIRX

Id
GPU 0 4712070210 5237742827
GPU 1 435418 637272

. . .
GPU 11 476420 739272
GPU 12 528378278 4721644934
GPU 13 481604 741403
GPU 14 474700 736417
GPU 15 382261 611617

Note we observe PCIe traffic on GPU 12, but also traffic on GPU 0. This is GDS in action once again.
The cuFile library will select a GPU for the data buffers (GPU memory) that is on the same PCIe switch
as the storage. In this case, GPU 0 was selected by the library, as it is the first of four GPUs on the
same PCIe switch as the NVMe devices. The data is then moved to the target GPU (12).

The net effect of a sub-optimal device selection is an overall decrease in throughput, and increase
in latency. With GPU 2, the average throughput was 6.5GB/sec, average latency 1ms. With GPU 12,
the average throughput was 3.9GB/sec, average latency 2ms. Thus we observe a 40% decrease in
throughput and a 2X increase in latency when a non-optimal configuration is used.

Not all workloads are about throughput. Smaller IO sizes and random IO patterns are an attribute of
many production workloads, and assessing IOPS (IO Operations Per Second) performance is a neces-
sary component to the storage benchmarking process.

A critical component to determining what peak performance levels can be achieved is ensuring there
is sufficient load. Specifically, for storage benchmarking, the number of processes/threads generating
IO is critical to determining maximum performance.

The gdsio tool provides for specifying random reads or randomwrites (-Iflag). In the examples below,
once again we’re showing an optimal combination of GPU (0) and NVMe devices, generating a small
(4k) random read low with an increasing number of threads (-w).

dgx2> gdsio -D ∕nvme23∕gds_dir -d 0 -w 4 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 4 DataSetSize: 11736528∕4194304(KiB) IOSize:�
↪→4(KiB) Throughput: 0.093338 GiB∕sec, Avg_Latency: 163.478958 usecs ops: 2934132�
↪→total_time 119.917332 secs
dgx2> gdsio -D ∕nvme23∕gds_dir -d 0 -w 8 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 8 DataSetSize: 23454880∕8388608(KiB) IOSize:�
↪→4(KiB) Throughput: 0.187890 GiB∕sec, Avg_Latency: 162.422553 usecs ops: 5863720�
↪→total_time 119.049917 secs
dgx2> gdsio -D ∕nvme23∕gds_dir -d 0 -w 16 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 16 DataSetSize: 48209436∕16777216(KiB)�
↪→IOSize: 4(KiB) Throughput: 0.385008 GiB∕sec, Avg_Latency: 158.918796 usecs ops:�
↪→12052359 total_time 119.415992 secs
dgx2> gdsio -D ∕nvme23∕gds_dir -d 0 -w 32 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 32 DataSetSize: 114100280∕33554432(KiB)�
↪→IOSize: 4(KiB) Throughput: 0.908862 GiB∕sec, Avg_Latency: 139.107219 usecs ops:�
↪→28525070 total_time 119.726070 secs
dgx2> gdsio -D ∕nvme23∕gds_dir -d 0 -w 64 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 64 DataSetSize: 231576720∕67108864(KiB)�
↪→IOSize: 4(KiB) Throughput: 1.848647 GiB∕sec, Avg_Latency: 134.554997 usecs ops:�
↪→57894180 total_time 119.465109 secs
dgx2> gdsio -D ∕nvme23∕gds_dir -d 0 -w 128 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 128 DataSetSize: 406924776∕134217728(KiB)�
↪→IOSize: 4(KiB) Throughput: 3.243165 GiB∕sec, Avg_Latency: 151.508258 usecs ops:�
↪→101731194 total_time 119.658960 secs

5.1. GPUDirect Storage Performance on DGX-2 System 33

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

We can compute the IOPS by dividing the ops value by the total time. Note in all cases the total time
was just over 119 seconds (120 seconds was specified as the run duration on the command line).

Thread Count (-w) IOPS (ops / total_time)

4 24,468

8 49,255

16 100,928

32 238,245

64 484,612

128 850,240

It is interesting to observe the average latency on each run (Avg_Latency) actually gets better as the
number of threads and IOPS increases, with 134.5us average latency at 484,612 IOPS running 64
threads. Increasing the thread count to 128, we observe a slight uptick in latency to 151.51us while
sustaining 850,240 random reads per second. Tracking latency with throughput (or, in this case, IOPS)
is important in characterizing delivered performance. In this example, the specification for the NVMe
drives that make up the RAID0 device indicates a random read capability of about 800k IOPS per drive.
Thus, even with 128 threads generating load, the latency is excellent as the load is well within drive
specifications, as each of the two drives in the RAID0 device sustained about 425,000 IOPS. This was
observed with the iostat utility:

avg-cpu: %user %nice %system %iowait %steal %idle
16.03 0.00 6.52 76.97 0.00 0.48

Device r∕s rkB∕s rrqm∕s %rrqm r_await rareq-sz . . . %util
md127 856792.00 3427172.00 0.00 0.00 0.00 4.00 . . . 0.00
nvme2n1 425054.00 1700216.00 0.00 0.00 0.13 4.00 . . . 100.80
nvme3n1 431769.00 1727080.00 0.00 0.00 0.13 4.00 . . . 100.00

We observe the row showing the RAID0 metadevice, md127, displaying total reads per second (r/s)
reflects the sum of the two underlying NVMe drives.

Extending this example to demonstrate delivered performance when a GPU target is specified that is
not part of the same PCIe segment:

dgx2> gdsio -D ∕nvme23∕gds_dir -d 10 -w 64 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 64 DataSetSize: 13268776∕67108864(KiB)�
↪→IOSize: 4(KiB) Throughput: 0.105713 GiB∕sec, Avg_Latency: 2301.201214 usecs ops:�
↪→3317194 total_time 119.702494 secs

In this example we specified GPU 10 as the data read target. Note the dramatic difference in perfor-
mance. With 64 threads generating random reads, latency went from 151.51us to 2.3ms, and IOPS
dropped from 850k IOPS to about 28k IOPS. This is due to the overhead of GDS using a GPU on the
same PCIe segment for the primary read buffer, then moving that data to the specified GPU. Again,
this can be observed when monitoring GPU PCIe traffic:

dgx2> dcgmi dmon -e 1009,1010 -d 1000
Entity PCITX PCIRX

Id
GPU 0 108216883 122481373
GPU 1 185690 61385

(continues on next page)

34 Chapter 5. GPUDirect Storage Benchmarking on Direct Attached Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

. . .
GPU 9 183268 60918
GPU 10 22110153 124205217
. . .

We observe PCIe traffic on both GPU 10, which was specified in the gdsio command line, and GPU 0,
which was selected by GDS as the primary read buffer due to its proximity to the NVMe devices. Using
gds_stats, we can see the buffer allocation on GPU 0:

dgx2> gds_stats -p 1545037 -l 3
cuFile STATS VERSION : 3
GLOBAL STATS:
Total Files: 64
Total Read Errors : 0
Total Read Size (MiB): 4996
Read BandWidth (GiB∕s): 0.126041
Avg Read Latency (us): 2036
Total Write Errors : 0
Total Write Size (MiB): 0
Write BandWidth (GiB∕s): 0
Avg Write Latency (us): 0
READ-WRITE SIZE HISTOGRAM :
0-4(KiB): 0 0
4-8(KiB): 1279109 0
8-16(KiB): 0 0
. . .
65536-...(KiB): 0 0
PER_GPU STATS:
GPU 0 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0�
↪→Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0�
↪→free=0 MiB=0
. . .
GPU 9 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0�
↪→Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0�
↪→free=0 MiB=0
GPU 10 Read: bw=0.124332 util(%)=6387 n=1279109 posix=0 unalign=0 r_sparse=0 r_
↪→inline=0 err=0 MiB=4996 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0�
↪→BufRegister: n=64 err=0 free=0 MiB=0
GPU 11 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0�
↪→Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0�
↪→free=0 MiB=0
. . .
PER_GPU POOL BUFFER STATS:
GPU : 0 pool_size_MiB : 64 usage : 63∕64 used_MiB : 63

The output from gds_stats shows Read activity on GPU 10 (specified on the gdsio command line),
and POOL BUFFER activity on GPU 0, with 63 of 64 1MB buffers in use. Recall GDS selected GPU 0
because it’s the first GPU on the same PCIe segment as the NVMe drives. This illustrates one of the
uses of the GPU POOL BUFFER (see section on gds_stats).

There are two key points to consider based on these results. First, for small, random IO loads, a large
number of threads generating load are necessary to assess peak performance capability. Second, for
small, random IO loads, the performance penalty of a sub-optimal configuration is much more severe
than was observed with large throughput-oriented IO loads.

5.1. GPUDirect Storage Performance on DGX-2 System 35

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

5.2. GPUDirect Storage Performance on a DGX
A100 System

GDS is also supported on DGX A100 system, the world’s first 5 peta FLOPS AI system built with a new
generation of GPUs, NVMe drives and network interfaces. Please refer to the DGX A100 product page
for details. In this section, we will use the same test methodology we used on the DGX-2 example to
benchmark GDS performance on a DGX A100 system.

First, we map out the GPU and NMVe drive affinity:

▶ Checking the NVMe drive name and PICe BFD values:

dgxuser@dgxa100:~$ ls -l ∕dev∕disk∕by-path∕
total 0
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:08:00.0-nvme-1 -> ..∕..∕nvme0n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:09:00.0-nvme-1 -> ..∕..∕nvme1n1
lrwxrwxrwx 1 root root 13 Oct 26 10:51 pci-0000:22:00.0-nvme-1 -> ..∕..∕nvme2n1
lrwxrwxrwx 1 root root 15 Oct 26 10:51 pci-0000:22:00.0-nvme-1-part1 -> ..∕..∕
↪→nvme2n1p1
lrwxrwxrwx 1 root root 15 Oct 26 10:51 pci-0000:22:00.0-nvme-1-part2 -> ..∕..∕
↪→nvme2n1p2
lrwxrwxrwx 1 root root 13 Oct 26 10:51 pci-0000:23:00.0-nvme-1 -> ..∕..∕nvme3n1
lrwxrwxrwx 1 root root 15 Oct 26 10:51 pci-0000:23:00.0-nvme-1-part1 -> ..∕..∕
↪→nvme3n1p1
lrwxrwxrwx 1 root root 15 Oct 26 10:51 pci-0000:23:00.0-nvme-1-part2 -> ..∕..∕
↪→nvme3n1p2
lrwxrwxrwx 1 root root 9 Oct 26 10:51 pci-0000:25:00.3-usb-0:1.1:1.0-scsi-
↪→0:0:0:0 -> ..∕..∕sr0
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:52:00.0-nvme-1 -> ..∕..∕nvme4n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:53:00.0-nvme-1 -> ..∕..∕nvme5n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:89:00.0-nvme-1 -> ..∕..∕nvme6n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:8a:00.0-nvme-1 -> ..∕..∕nvme7n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:c8:00.0-nvme-1 -> ..∕..∕nvme8n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:c9:00.0-nvme-1 -> ..∕..∕nvme9n1

▶ Checking the GPU index numbering correlated to the PCIe BFD:

dgxuser@gpu01:~$ nvidia-smi --query-gpu=index,name,pci.domain,pci.bus, --format=csv
index, name, pci.domain, pci.bus
0, A100-SXM4-40GB, 0x0000, 0x07
1, A100-SXM4-40GB, 0x0000, 0x0F
2, A100-SXM4-40GB, 0x0000, 0x47
3, A100-SXM4-40GB, 0x0000, 0x4E
4, A100-SXM4-40GB, 0x0000, 0x87
5, A100-SXM4-40GB, 0x0000, 0x90
6, A100-SXM4-40GB, 0x0000, 0xB7
7, A100-SXM4-40GB, 0x0000, 0xBD

▶ Checking the NVMe drive and GPU PCIe slot relationship:

dgxuser@dgxa100:~$ lspci -tv | egrep -i "nvidia|NVMe"
| +-01.1-[b1-cb]----00.0-[b2-cb]--+-00.0-[b3-b7]----00.0-[b4-b7]----00.
↪→0-[b5-b7]----00.0-[b6-b7]----00.0-[b7]----00.0 NVIDIA Corporation Device 20b0
| | | \-10.
↪→0-[bb-bd]----00.0-[bc-bd]----00.0-[bd]----00.0 NVIDIA Corporation Device 20b0
| | +-08.0-[be-ca]----00.0-[bf-ca]--+-00.

(continues on next page)

36 Chapter 5. GPUDirect Storage Benchmarking on Direct Attached Storage

https://www.nvidia.com/en-us/data-center/dgx-a100/

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

↪→0-[c0-c7]----00.0-[c1-c7]--+-00.0-[c2]----00.0 NVIDIA Corporation Device 1af1
| | | | �
↪→ +-01.0-[c3]----00.0 NVIDIA Corporation Device 1af1
| | | | �
↪→ +-02.0-[c4]----00.0 NVIDIA Corporation Device 1af1
| | | | �
↪→ +-03.0-[c5]----00.0 NVIDIA Corporation Device 1af1
| | | | �
↪→ +-04.0-[c6]----00.0 NVIDIA Corporation Device 1af1
| | | | �
↪→ \-05.0-[c7]----00.0 NVIDIA Corporation Device 1af1
| | | +-04.
↪→0-[c8]----00.0 Samsung Electronics Co Ltd NVMe SSD Controller PM173X
| | | +-08.
↪→0-[c9]----00.0 Samsung Electronics Co Ltd NVMe SSD Controller PM173X
| +-01.1-[81-95]----00.0-[82-95]--+-00.0-[83-8a]----00.0-[84-8a]--+-00.
↪→0-[85-88]----00.0-[86-88]--+-00.0-[87]----00.0 NVIDIA Corporation Device 20b0
| | | +-10.
↪→0-[89]----00.0 Samsung Electronics Co Ltd NVMe SSD Controller PM173X
| | | \-14.
↪→0-[8a]----00.0 Samsung Electronics Co Ltd NVMe SSD Controller PM173X
| | | \-10.
↪→0-[8e-91]----00.0-[8f-91]--+-00.0-[90]----00.0 NVIDIA Corporation Device 20b0
| +-01.1-[41-55]----00.0-[42-55]--+-00.0-[43-48]----00.0-[44-48]----00.
↪→0-[45-48]----00.0-[46-48]--+-00.0-[47]----00.0 NVIDIA Corporation Device 20b0
| | | \-10.
↪→0-[4c-4f]----00.0-[4d-4f]--+-00.0-[4e]----00.0 NVIDIA Corporation Device 20b0
| | +-08.0-[50-54]----00.0-[51-54]--+-00.
↪→0-[52]----00.0 Samsung Electronics Co Ltd NVMe SSD Controller PM173X
| | | +-04.
↪→0-[53]----00.0 Samsung Electronics Co Ltd NVMe SSD Controller PM173X
| +-03.2-[22]----00.0 Samsung Electronics Co Ltd NVMe SSD Controller�
↪→SM981∕PM981∕PM983
| +-03.3-[23]----00.0 Samsung Electronics Co Ltd NVMe SSD Controller�
↪→SM981∕PM981∕PM983

+-01.1-[01-13]----00.0-[02-13]--+-00.0-[03-09]----00.0-[04-09]--+-00.
↪→0-[05-07]----00.0-[06-07]----00.0-[07]----00.0 NVIDIA Corporation Device 20b0

| | +-10.
↪→0-[08]----00.0 Samsung Electronics Co Ltd NVMe SSD Controller PM173X

| | \-14.
↪→0-[09]----00.0 Samsung Electronics Co Ltd NVMe SSD Controller PM173X

| | \-10.
↪→0-[0d-0f]----00.0-[0e-0f]----00.0-[0f]----00.0 NVIDIA Corporation Device 20b0
dgxuser@dgxa100:~$

Then mapping the NVMe and GPU affinities:

5.2. GPUDirect Storage Performance on a DGX A100 System 37

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

Table 4: Mapping the NVMe and GPU Affinity

GPU # GPU PCIe Bus # NVMe # NVMe PCIe Bus #

0, 1 0x07, 0x0F nvme0, nvme1 0x08, 0x09

2, 3 0x47, 0x4e nvme4, nvme5 0x52, 0x53

4, 5 0x87, 0x90 nvme6, nvme7 0x89, 0x8a

6, 7 0xb7, 0xbd nvme8, nvme9 0xc8, 0xc9

By default, all NVMe drives in DGX systems are configured as a RAID0 storage array ∕dev∕md1, but
they are connected with different PCIe switches, as shown below.

38 Chapter 5. GPUDirect Storage Benchmarking on Direct Attached Storage

Chapter 6. GPUDirect Storage
Benchmarking on Network
Attached Storage

NAS configurations bring the network element into the storage equation, which of course must be
factored in when assessing performance. Throughput, IOPS, and latency are all dependent on the
network configuration, such as the number of configured interfaces, interface speed, as well as the
backend storage configuration. For example, if the storage backend is NVMe SSDs, 4 such devices do-
ing streaming reads will saturate a single 100GB network. The entire configuration end-to-end needs
to be examined and sized appropriately to ensure any potential hardware bottlenecks are identified
and resolved.

6.1. GPUDirect Storage Benchmarking on NFS

The Network File System, NFS, was invented by SunMicrosystems in the early 1980s, and became one
of the earliest network storage solutions broadly deployed in production environments. An NFS server
with direct attached storage can export that storage over the network, making exported file systems
available to any number of NFS clients. NFS offers ease of use and administration, a mature code base
(it’s been around for decades) which makes it relatively robust. Early implementations relied on UDP
or TCP as the protocol for transferring data over the network with NFS. With Remote Direct Memory
Access (RDMA) capability, network overhead is significantly reduced, enabling higher throughput and
lower latency read/write operations between NFS clients and the server.

With GPUDirect Storage configured for NFS, the transport protocol is RDMA, leveraging the high-
speed, low-latency data flow between the client(s) and server. The RDMA operations move data over
the network via the IB interfaces, then data is moved to/from the IB cards to the GPUs via DMA oper-
ations, bypassing the CPU and system memory.

As discussed previously, the PCIe topology is a factor in determining the optimal configuration on the
NFS client. Ideally, the NICs issuing reads/writes to the NFS server should be on the same PCIe switch
as the issuing GPU. On NVIDIA DGX systems, the nvidia-smi utility helps to determine the optimal
NIC/GPU pairings:

nfs_client> nvidia-smi topo -mp
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 . . . mlx5_0 �

↪→ mlx5_1 mlx5_2 mlx5_3
GPU0 X PIX PXB PXB NODE NODE NODE NODE . . . PIX �
↪→ PXB NODE NODE

(continues on next page)

39

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

GPU1 PIX X PXB PXB NODE NODE NODE NODE . . . PIX �
↪→ PXB NODE NODE
GPU2 PXB PXB X PIX NODE NODE NODE NODE . . . PXB �
↪→ PIX NODE NODE
GPU3 PXB PXB PIX X NODE NODE NODE NODE . . . PXB �
↪→ PIX NODE NODE
GPU4 NODE NODE NODE NODE X PIX PXB PXB . . . NODE �
↪→ NODE PIX PXB
GPU5 NODE NODE NODE NODE PIX X PXB PXB . . . NODE �
↪→ NODE PIX PXB
GPU6 NODE NODE NODE NODE PXB PXB X PIX . . . NODE �
↪→ NODE PXB PIX
GPU7 NODE NODE NODE NODE PXB PXB PIX X . . . NODE �
↪→ NODE PXB PIX
mlx5_0 PIX PIX PXB PXB NODE NODE NODE NODE . . . X �
↪→ PXB NODE NODE
mlx5_1 PXB PXB PIX PIX NODE NODE NODE NODE . . . PXB �
↪→ X NODE NODE
mlx5_2 NODE NODE NODE NODE PIX PIX PXB PXB . . . NODE �
↪→ NODE X PXB
mlx5_3 NODE NODE NODE NODE PXB PXB PIX PIX . . . NODE �
↪→ NODE PXB X

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA�

↪→nodes (for example, QPI∕UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host�

↪→Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe�

↪→Host Bridge)
PIX = Connection traversing at most a single PCIe bridge

The above example is generated on a DGX-2 system. For brevity, 8 of the 16 GPUs and 4 of the 8 NICs
are shown. From the Legend provided with the topology map, we see the optimal path is represented
as PIX (Connection traversing at most a single PCIe bridge). Thus, for GPU 0 and 1, the
mlx5_0 is the closest NIC, for GPU 2 and 3, it’s mlx5_1, and so on. The network device names in Linux
use the prefix ib, so we need to see which interface names map to which device names. This is done
with the ibdev2netdev utility:

nfs_client> ibdev2netdev
mlx5_0 port 1 ==> ib0 (Up)
mlx5_1 port 1 ==> ib1 (Up)
mlx5_2 port 1 ==> ib2 (Up)
mlx5_3 port 1 ==> ib3 (Up)
mlx5_4 port 1 ==> ib4 (Down)
mlx5_5 port 1 ==> ib5 (Down)
mlx5_6 port 1 ==> ib6 (Up)
mlx5_7 port 1 ==> ib7 (Up)
mlx5_8 port 1 ==> ib8 (Up)
mlx5_9 port 1 ==> ib9 (Up)

The network configuration between the NFS server and client will obviously factor significantly into
the delivered performance. It is beyond the scope of this document to detail the steps involved in
configuring networks, subnets, routing tables. An overview covers the basics prior to getting into

40 Chapter 6. GPUDirect Storage Benchmarking on Network Attached Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

examples of running gdsio on NFS.

On the server side, there is a single RAID0 device consisting of 8 locally attached NVMe SSDs. The
device is configured with an ext4 file system, and made accessible via two mount points. There are
two 100GB network interfaces configured on the server for NFS traffic, and each NIC is assigned
multiple IP addresses to different subnets to balance network traffic from the client.

On the client side, there are 8 100GB networks configured. The network configuration (subnets, rout-
ing tables) determines which interface on the client side will route to which of the two interfaces on
the server side when the client issues an NFS mount. The client-side mount paths have been inten-
tionally named to reflect the network path between the client and the server. Specifically, the mount
points on the client are decomposed as:

∕mnt∕nfs∕``[client-side network interface]``∕data∕``[server-side network interface]``

where the client network interface name is the actual device (ib9, ib8, etc.) and the server is either 0
or 1, indicating which one of the two server networks will handle the connection.

nfs_client> mount | grep nfs
192.168.0.10:∕mnt∕nfs_10∕10 on ∕mnt∕nfs∕ib9∕data∕0 type nfs (rw,relatime,vers=3,
↪→rsize=1048576,wsize=1048576,namlen=255,hard,proto=rdma,port=20049, timeo=600,
↪→retrans=2,sec=sys,mountaddr=192.168.0.10,mountvers=3,mountproto=tcp, local_lock=none,
↪→addr=192.168.0.10)
192.168.0.11:∕mnt∕nfs_11∕11 on ∕mnt∕nfs∕ib9∕data∕1 type nfs (rw,relatime,vers=3,
↪→rsize=1048576,wsize=1048576,namlen=255,hard,proto=rdma,port=20049, timeo=600,
↪→retrans=2,sec=sys,mountaddr=192.168.0.11,mountvers=3,mountproto=tcp, local_lock=none,
↪→addr=192.168.0.11)
192.168.1.10:∕mnt∕nfs_10∕10 on ∕mnt∕nfs∕ib8∕data∕0 type nfs (rw,relatime,vers=3,
↪→rsize=1048576,wsize=1048576,namlen=255,hard,proto=rdma,port=20049, timeo=600,
↪→retrans=2,sec=sys,mountaddr=192.168.1.10,mountvers=3,mountproto=tcp, local_lock=none,
↪→addr=192.168.1.10)
192.168.1.11:∕mnt∕nfs_11∕11 on ∕mnt∕nfs∕ib8∕data∕1 type nfs (rw,relatime,vers=3,
↪→rsize=1048576,wsize=1048576,namlen=255,hard,proto=rdma,port=20049, timeo=600,
↪→retrans=2,sec=sys,mountaddr=192.168.1.11,mountvers=3,mountproto=tcp, local_lock=none,
↪→addr=192.168.1.11)
. . .

In the mount output on the client (partial, shown above), ∕mnt∕nfs∕ib9∕data∕0 will route through
the ib9 interface on the client to the interface assigned 192.168.0.10 on the server (reflected as ‘0’ in
the path string), and ∕mnt∕nfs∕ib9∕data∕1 will also route through ib9 on the client, to the second
interface on the server, 192.168.0.11 (reflected as ‘1’ in the path string). This convention is used for
all the client-side mounts, so IO pathnames can be selected to effectively balance the load across all
interfaces.

From a performance/benchmarking perspective, the key aspects of the configuration under test, in
addition to the balanced network setup just discussed, are the underlying storage config on the server
(8 x NVMe SSD) and number and speed of network interfaces on the server (2 x 100Gb). In terms
of throughput, two 100Gb networks can sustain about 12GB/sec each under ideal conditions. The
storage servers can support (2 x 12GB/sec) 24GB/sec or so, but keep in mind there are many things
that factor into deliveredperformance - protocol overhead, networkMTUsize, NFS attributes, software
stack, load characteristics, etc.

In this first example, gdsio is used to generate a random write load of small IOs (4k) to one of the NFS
mount points, that will traverse ib0 on the client side. The ib0 interface is on the same PCIe segment
as GPU 0 and 1.

nfs_client> gdsio -D ∕mnt∕nfs∕ib0∕data∕0∕gds_dir -d 0 -w 32 -s 500M -i 4K -x 0 -I 3 -
↪→T 120

(continues on next page)

6.1. GPUDirect Storage Benchmarking on NFS 41

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

IoType: RANDWRITE XferType: GPUD Threads: 32 DataSetSize: 81017740∕16384000(KiB)�
↪→IOSize: 4(KiB) Throughput: 0.645307 GiB∕sec, Avg_Latency: 189.166333 usecs ops:�
↪→20254435 total_time 119.732906 secs

nfs_client> gdsio -D ∕mnt∕nfs∕ib0∕data∕0∕gds_dir -d 12 -w 32 -s 500M -i 4K -x 0 -I 3 -
↪→T 120
IoType: RANDWRITE XferType: GPUD Threads: 32 DataSetSize: 71871140∕16384000(KiB)�
↪→IOSize: 4(KiB) Throughput: 0.572407 GiB∕sec, Avg_Latency: 213.322597 usecs ops:�
↪→17967785 total_time 119.742801 secs

The first invocation specifies GPU 0, the second GPU 12. Note the difference in ops and latency. In the
optimal GPU/IB case, we observed just over 169k IOPS, 189.2us average latency. In the non-optimal
case (GPU12 to the samemount point), we see an increase in latency to 213.3 usec at about 150k IOPS.
The performance difference is not huge (12% in latency, 19% in IOPS), but worth noting nonetheless.

For random reads, the difference between the optimal and sub-optimal case is larger:

nfs_client> gdsio -D ∕mnt∕nfs∕ib0∕data∕0∕gds_dir -d 0 -w 32 -s 500M -i 4K -x 0 -I 2 -
↪→T 120
IoType: RANDREAD XferType: GPUD Threads: 32 DataSetSize: 111181604∕16384000(KiB)�
↪→IOSize: 4(KiB) Throughput: 0.890333 GiB∕sec, Avg_Latency: 137.105980 usecs ops:�
↪→27795401 total_time 119.091425 secs
nfs_client> gdsio -D ∕mnt∕nfs∕ib0∕data∕0∕gds_dir -d 10 -w 32 -s 500M -i 4K -x 0 -I 2 -
↪→T 120
IoType: RANDREAD XferType: GPUD Threads: 32 DataSetSize: 78621148∕16384000(KiB)�
↪→IOSize: 4(KiB) Throughput: 0.629393 GiB∕sec, Avg_Latency: 193.975032 usecs ops:�
↪→19655287 total_time 119.129013 secs

With GPU 0 and ib0, we see about 234k IOPS, 194us average latency. With GPU 10 and ib0, we see
about 165k IOPS, 194us latency.

Small, random IOs are all about IOPS and latency. For determining throughput, we use larger files sizes
and much larger IO sizes.

nfs_client> gdsio -D ∕mnt∕nfs∕ib0∕data∕0∕gds_dir -d 0 -w 32 -s 1G -i 1M -x 0 -I 1 -T�
↪→120
IoType: WRITE XferType: GPUD Threads: 64 DataSetSize: 876086272∕67108864(KiB) IOSize:�
↪→1024(KiB) Throughput: 6.962237 GiB∕sec, Avg_Latency: 8976.802942 usecs ops: 855553�
↪→total_time 120.004668 secs
nfs_client> gdsio -D ∕mnt∕nfs∕ib0∕data∕0∕gds_dir -d 0 -w 32 -s 1G -i 1M -x 0 -I 0 -T�
↪→120
IoType: READ XferType: GPUD Threads: 32 DataSetSize: 1196929024∕33554432(KiB) IOSize:�
↪→1024(KiB) Throughput: 9.482088 GiB∕sec, Avg_Latency: 3295.183817 usecs ops: 1168876�
↪→total_time 120.382817 secs

Above a large sequential write, then read, was generated. In both cases, 32 threads were spawned
(-w 32) doing 1M IOs. In the write case, we sustained 6.9GB/sec, and in the read case 9.5GB/sec
throughput. Both invocations used ib0 and GPU 0. Changing the GPU from 0 to 8:

nfs_client> gdsio -D ∕mnt∕nfs∕ib0∕data∕0∕gds_dir -d 8 -w 32 -s 1G -i 1M -x 0 -I 0 -T�
↪→120
IoType: READ XferType: GPUD Threads: 32 DataSetSize: 1053419520∕33554432(KiB) IOSize:�
↪→2048(KiB) Throughput: 8.352013 GiB∕sec, Avg_Latency: 7480.408305 usecs ops: 514365�
↪→total_time 120.284676 secs

We note again a decrease in throughput (8.3GB/sec from 9.5GB/sec) and increase in latency (3.4ms to
7.5ms).

42 Chapter 6. GPUDirect Storage Benchmarking on Network Attached Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

Using the supported gdsio config files facilitates an easily reusable “tool box” of IO loads and config-
urations. Also, with multiple jobs running, gdsiowill aggregate the results, making it easier to see the
complete performance picture.

Here’s a sample configuration file to generate 4k random reads to multiple NFS mount points for 4
different GPUs. Note various parameters defined in the global section, then job-specific parameters
(GPU, target mount point, number of threads) in each job section.

[global]
name=nfs_random_read
#0,1,2,3,4,5
xfer_type=0
#IO type, rw=read, rw=write, rw=randread, rw=randwrite
rw=randread
#block size, for variable block size can specify range e.g. bs=1M:4M:1M, (1M : start�
↪→block size, 4M : end block size, 1M :steps in which size is varied)
bs=4k
#file-size
size=500M
#secs
runtime=120

[job1]
#numa node
numa_node=0
#gpu device index (check nvidia-smi)
gpu_dev_id=0
num_threads=16
directory=∕mnt∕nfs∕ib0∕data∕0∕gds_dir

[job2]
numa_node=0
gpu_dev_id=2
num_threads=16
directory=∕mnt∕nfs∕ib1∕data∕0∕gds_dir

[job3]
numa_node=0
gpu_dev_id=4
num_threads=16
directory=∕mnt∕nfs∕ib2∕data∕0∕gds_dir

[job4]
numa_node=0
gpu_dev_id=6
num_threads=16
directory=∕mnt∕nfs∕ib3∕data∕0∕gds_dir

Executing gdsio using the above config file, simply pass the file name as the only argument:

nfs_client> gdsio nfs_rr.gdsio
IoType: RANDREAD XferType: GPUD Threads: 64 DataSetSize: 277467756∕32768000(KiB)�
↪→IOSize: 4(KiB) Throughput: 2.213928 GiB∕sec, Avg_Latency: 110.279539 usecs ops:�
↪→69366939 total_time 119.522363 secs

The sustained random read rate was about 580k IOPS (69366939 / 119.52).

For throughput testing, the load attributes need to be changed so gdsio issues reads and writes, not
random reads and random writes (see rw=in the global section). Also, the IO size (bs= in the global

6.1. GPUDirect Storage Benchmarking on NFS 43

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

section) must be increased to maximize throughput.

Using an edited gdsio config file reflecting those changes, we can generate a throughput-oriented
workload with multiple GPUs. The configuration file:

[global]
name=nfs_large_read
xfer_type=0
rw=read
bs=1M
size=1G
runtime=120
do_verify=0

[job1]
numa_node=0
gpu_dev_id=0
num_threads=8
directory=∕mnt∕nfs∕ib0∕data∕0∕gds_dir

[job3]
numa_node=0
gpu_dev_id=2
num_threads=8
directory=∕mnt∕nfs∕ib1∕data∕1∕gds_dir

[job5]
numa_node=0
gpu_dev_id=4
num_threads=8
directory=∕mnt∕nfs∕ib2∕data∕0∕gds_dir

[job7]
numa_node=0
gpu_dev_id=6
num_threads=8
directory=∕mnt∕nfs∕ib3∕data∕1∕gds_dir

[job9]
numa_node=1
gpu_dev_id=8
num_threads=8
directory=∕mnt∕nfs∕ib6∕data∕0∕gds_dir

[job11]
numa_node=1
gpu_dev_id=10
num_threads=8
directory=∕mnt∕nfs∕ib7∕data∕1∕gds_dir

[job13]
numa_node=1
gpu_dev_id=12
num_threads=8
directory=∕mnt∕nfs∕ib8∕data∕0∕gds_dir

[job15]
numa_node=1

(continues on next page)

44 Chapter 6. GPUDirect Storage Benchmarking on Network Attached Storage

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

gpu_dev_id=14
num_threads=8
directory=∕mnt∕nfs∕ib9∕data∕1∕gds_dir

Running the large read load:

nfs_client> gdsio nfs_sr.gdsio
IoType: READ XferType: GPUD Threads: 64 DataSetSize: 1608664064∕67108864(KiB) IOSize:�
↪→1024(KiB) Throughput: 12.763141 GiB∕sec, Avg_Latency: 4896.861494 usecs ops:�
↪→1570961 total_time 120.200944 secs

We see 12.76GB/sec sustained throughput with the configuration used.

The examples shown are intended to serve as a starting point. NAS storage environments, NFS or
partner solutions, can be complex to configure given the number of variables that come into play
once a network is introduced in the storage IO path. Various configuration options can be changed,
both in terms of the load generated (the gdsio command line or config file), as well as the system setup
(network, NFS, and so on) in order to determine the optimal configuration for the target workload.

In order to observe the data rates while under load, there are a few options. Certainly, on the server
side, Linux utilities like iostat should be used to monitor traffic and capture statistics on the back-
end storage, as well as nfsstat on both the client and server side for NFS specific statistics. For
byte and packet rates over the networks, there is a dependency on the actual network devices and
software stack, and whether or not any per-interface statistics are maintained. In our configuration,
NVIDIA/Mellanox cards are used:

nfs_client> lspci -v | grep -i mellanox
35:00.0 Infiniband controller: Mellanox Technologies MT27800 Family [ConnectX-5]

Subsystem: Mellanox Technologies MT27800 Family [ConnectX-5]
. . .

In this environment, various counters are maintained that can be examined and, with a relatively sim-
ple script, per-second data and packet rates can be monitored. These counters can be found in
∕sys∕class∕infiniband∕[INTERFACE]∕ports∕[PORT NUMBER]∕counters, e.g. ∕sys∕class∕
infiniband∕mlx5_19∕ports∕1∕counters. The counters of interest are:

▶ port_rcv_data - receive bytes

▶ port_xmit_data - transmit bytes

▶ port_rcv_packets - receive packets

▶ port_xmit_packets - transmit packets

Note the ibdev2netdev utility should be used to determine the correct interface name that corre-
sponds to the configured device name. And of course these same counters will be available on the
client, assuming of course the same network hardware and software.

On the client side, GDS maintains a stats file with useful counters specific to GDS:

nfs_client> cat ∕proc∕driver∕nvidia-fs∕stats
GDS Version: 0.9.0.743
NVFS statistics(ver: 2.0)
NVFS Driver(version: 2:3:1)

Active Shadow-Buffer (MiB): 128
Active Process: 1
Reads : n=424436862 ok=424436734 err=0 readMiB=21518771 io_state_err=0

(continues on next page)

6.1. GPUDirect Storage Benchmarking on NFS 45

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

(continued from previous page)

Reads : Bandwidth(MiB∕s)=13081 Avg-Latency(usec)=9773
Sparse Reads : n=19783000 io=0 holes=0 pages=0
Writes : n=309770912 ok=309770912 err=0 writeMiB=9748727 io_state_
↪→err=0 pg-cache=0 pg-cache-fail=0 pg-cache-eio=0
Writes : Bandwidth(MiB∕s)=6958 Avg-Latency(usec)=18386
Mmap : n=3584 ok=3584 err=0 munmap=3456
Bar1-map : n=3584 ok=3584 err=0 free=3456 callbacks=0 active=128
Error : cpu-gpu-pages=0 sg-ext=0 dma-map=0
Ops : Read=128 Write=0
GPU 0000:be:00.0 uuid:87e5c586-88ed-583b-df45-fcee0f1e7917 : Registered_MiB=0 Cache_
↪→MiB=0 max_pinned_MiB=8 cross_root_port(%)=0
GPU 0000:e7:00.0 uuid:029faa3b-cb0d-2718-259c-6dc650c636eb : Registered_MiB=0 Cache_
↪→MiB=0 max_pinned_MiB=8 cross_root_port(%)=0
. .

The GDS stats provide read and write operations counts (for example, Reads : n=[read_count]
and Writes : n=[write_count]), as well Bandwidth in MB/sec. Also error counters are maintained
that should be monitored periodically.

46 Chapter 6. GPUDirect Storage Benchmarking on Network Attached Storage

Chapter 7. Summary

Configuring and benchmarking storage can be a complex task. Fortunately the technology and tools
have reached a state of maturity in the industry, reducing complexity and enabling reduced time to
set up, measure and deploy a configuration that meets production performance requirements.

With the addition of GPUDirect Storage to the GPUDirect family, we now have the technology and the
tools to feed data-hungry GPUs at extremely high throughput and very low latency. This translates
into faster execution of computationally intensive workloads leveraging the immense compute power
of NVIDIA GPUs.

47

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

48 Chapter 7. Summary

Chapter 8. Benchmarking and
Performance

Benchmarking is the process of running software specifically designed to generate data for the pur-
pose of assessing performance. The scope of what is being utilized/measured will vary. Many bench-
marks are designed to simulate production workloads (MLperf, TPC, SPEC, and so on), utilize the en-
tire system, and require an audit process before a vendor can make the benchmark results publicly
available. Some benchmarks target measuring the performance of a specific subsystem; CPUs, GPUs,
storage, etc. Such benchmarks are sometimes referred to as microbenchmarks, and are often publicly
available software intended to generate load and report performance results specific to the compo-
nents under test, e.g. iperf for network performance and fio for disk/storage performance. These
subsystem-specific benchmarks and tools are extremely useful as they enable a “building-block” ap-
proach to overall system capability and performance. They also are good tools for verifying various
compute subsystems before moving to a full system workload.

8.1. The Language of Performance

System performance is typically described either in application-specific terms (for example, images-
per-second, transactions-per-second, Deep Learning (DL) training time-per-epoch, Inference through-
put, and so on) or more generic terms:

Bandwidth - howmuch
Bandwidth is the theoretical maximum attainable data rate, expressed as bytes-per-second,
sometimes bits-per-second.

Throughput - how fast
Throughput can reflect a data rate, e.g. 12GB/sec over a network link, 3.4GB/sec sequential reads
from an NVMe SSD. We also express some workload-specific metrics in terms of throughput, for
example, words-per-second, images-per-second, and so on.

IOPS - howmany
Input/Output operations per second, typically used in the context of disk IO (reads-per-second,
writes-per-second) and network IO (packets-per-second, messages-per-second).

Latency - how long
The time required to complete an operation, e.g. 5 milliseconds (ms) to do a disk read on an HDD,
40 microseconds (us) to write to an SSD, 70 nanoseconds (ns) for a CPU read data from system
memory.

Specific aspects of GPU and CPU performance may also be expressed in one or more of the above
terms, for example, throughput as the number of floating point or integer operations per second,

49

https://mlperf.org/
http://www.tpc.org
http://www.spec.org/
https://iperf.fr/
https://linux.die.net/man/1/fio

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

memory bandwidth and latency, interconnect (UPI/QPI, NVswitch, etc.) bandwidth and latency, and so
on.

Monitoring performance and capturing metrics that fall into one or more of the above categories is
typically done using base operating system utilities. There are a great many tools and utilities available
for Linux intended to provide observability into system utilization and performance. A discussion of
these tools is beyond the scope of this document, but we will refer to specific examples as applicable.
Also, various benchmark tools generate these detailed metrics, for example, the gdsio utility, which
gets installed as part of GDS, generates detailed data points of throughput, latency, and IOPS.

8.2. Benchmarking Storage Performance

Determining expected storage performance (and also network performance) has the advantage of
doing the math based on the specifications of the underlying hardware being measured. For exam-
ple, if the target storage is Direct Attached Storage (DAS) in the form of NVMe SSDs on the system’s
PCIe bus, the device specifications provide throughput, IOPS and latency values, and that information,
coupled with known PCIe bandwidth (Gen3, Gen4) and number of PCIe lanes (typically 16 lanes) con-
figured for the devices, the maximum theoretical performance can be calculated. This is discussed
further in the Storage Performance Basics for Deep Learning blog post.

For example, NVIDIA DGX-2 systems include NVMe SSDs for local storage. For such devices config-
ured as a RAID0 volume, the expectation for large reads and writes will be four times the specified
performance for a single device. The same logic applies to workloads that are more IOPS intensive
(small reads and writes). Putting some numbers on this example, the device specification for large
reads indicates 3.5GB/sec, so (4 x 3.5GB/sec) 14GB/sec expected throughput on large reads from the
RAID0 volume. As these are PCIe devices, depending on PCIe topology, achieving 14GB/sec pushes the
theoretical limit of PCI3 Gen3 16 lanes. The key point here is a solid understanding of the configuration
details is necessary to establish performance expectations.

The same logic and methodology applies to Network Attached Storage (NAS), for example, four NVMe
SSDs doing large reads or writes will potentially saturate a 100Gb NIC, so it is important to understand
the entire storage data path to correctly assess the delivered performance.

An important consideration when benchmarking storage is the presence of a file system. There are
two components to file systems that will impact performance:

▶ The operating system’s page cache

The page cache, which is implemented transparently and used by default when reading and writ-
ing data to/from a file system, caches data and metadata in the system’s main memory. The
performance benefit of the page cache can be substantial, as a typical two CPU socket system
can read/write systemmemory at significantly higher throughput and lower latency than storage.

▶ The file system-specific settings and tuneable parameters

File system-specific settings/parameters can happen at both creation time (mkfs) and at mount
time in the form of mount options. Some mount options are file system independent (for exam-
ple, atime, async, and so on), while other options are specific to the file system. Any perfor-
mance evaluation of the storage technology requires bypassing the page cache to ensure that
actual storage performance is being measured, and not the page cache read/write performance.

GDS currently supports the ext4 file system on Linux, and requires the use of the O_DIRECT flag on
files that are targeted for read/write by the GDS IO APIs. With O_DIRECT set, you can bypass the
system’s page cache.

50 Chapter 8. Benchmarking and Performance

https://developer.nvidia.com/blog/storage-performance-basics-for-deep-learning/

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

Another factor in assessing storage performance results are the IO characteristics, which are histori-
cally categorized as:

▶ Random IO (small IO size)

▶ Sequential IO (large IO size)

The terms random and sequential refer to the on-disk block layout of the target files and are relevant
when assessing storage that uses hard disk drives (HDDs). HDD technology implements spinning disks
with read/write heads that perform seek operations to locate the target blocks where the data is to
be read or written. This seek time induces IO latency due to electro-mechanical delays, (moving the
read/write heads around the platters). With Solid State Disks (SSDs), no such electro-mechanical exist,
so sequential versus random IO on SSDs is not a consideration in terms of seek times and latency.

However, in terms of setting expectations for the results, it is still important to factor in IO sizes. For
IO loads that tend to be small (< 500kB), the performance metric of relevance is IO operations per
second (IOPS) and latency, versus throughput, because loads with smaller IO sizes will not necessarily
maximize available throughput. If assessing maximum throughput is the goal, larger IO sizes should
be used when benchmarking.

8.2. Benchmarking Storage Performance 51

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

52 Chapter 8. Benchmarking and Performance

Chapter 9. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

53

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

54 Chapter 9. Notice

Chapter 10. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

55

NVIDIA GPUDirect Storage Benchmarking and Configuration Guide, Release r1.12

56 Chapter 10. OpenCL

Chapter 11. Trademarks

NVIDIA, the NVIDIA logo, CUDA, DGX, DGX-1, DGX-2, DGX-A100, Tesla, and Quadro are trademarks
and/or registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they are
associated.

Copyright

©2020-2025, NVIDIA Corporation & affiliates. All rights reserved

57

	NVIDIA GPUDirect Storage Benchmarking and Configuration Guide
	Introduction
	About this Guide
	Benchmarking GPUDirect Storage
	Determining PCIe Device Affinity
	GPUDirect Storage Configuration Parameters
	System Parameters
	GPUDirect Storage Parameters

	GPUDirect Storage Benchmarking Tools
	gdsio Utility
	gds-stats Tool

	GPUDirect Storage Benchmarking on Direct Attached Storage
	GPUDirect Storage Performance on DGX-2 System
	GPUDirect Storage Performance on a DGX A100 System

	GPUDirect Storage Benchmarking on Network Attached Storage
	GPUDirect Storage Benchmarking on NFS

	Summary
	Benchmarking and Performance
	The Language of Performance
	Benchmarking Storage Performance

	Notice
	OpenCL
	Trademarks

