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1.

1.1.

Introduction

NVIDIA Grace CPU Superchip and NVIDIA
GH200 Grace Hopper Superchip Overview

The Grace CPU is the first data center CPU designed by NVIDIA. The Grace CPU has 72
high-performance and power efficient Arm Neoverse V2 Cores, connected by a
high-performance NVIDIA Scalable Coherency Fabric and server-class LPDDR5X memory.

The Grace CPU is found in two data center NVIDIA superchip products. The first is the
NVIDIA GH200 Grace Hopper™ Superchip that pairs the power efficient, high-bandwidth
NVIDIA Grace CPU with an NVIDIA H100 Tensor Core GPU to maximize the capabilities
for accelerated computing and generative Al workloads. The heart of the GH200 Grace
Hopper Superchip, is the NVLink-C2C that delivers up to 900 gigabytes per second (GB/s)
of total bandwidth, which is 7X higher than PCle Gen5 lanes commonly used in
accelerated systems. NVLink-C2C enables the GPU to have direct access to over 600GB
of memory, GH200 runs the full NVIDIA software stack and can be easily deployed in
standard servers to run a variety of inference, data analytics, and other compute and
memory-intensive workloads.

The second is the NVIDIA Grace CPU Superchip, with 144 cores in a no-compromise CPU
for HPC, demanding cloud, and enterprise computing workloads. The Grace CPU
Superchip delivers up to 1 TB/s of memory bandwidth, best-in-class data center
throughput and up to 2X the performance per watt of today's leading servers.
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Figure 1-1.  NVIDIA Grace CPU Superchip
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Table 1-1.  NVIDIA Grace CPU Superchip Specifications

| Core Architecture
| Core Count

Cache

| Memory Technology
| Raw Memory BW
| Memory Size
| FP64 Peak

PCI Express

Power

Grace CPU Superchip
Armv9-A Neoverse V2 Cores with 4x128b SVE2
144

L1: 64KB I-cache + 64KB D-cache per core

L2: 1MB per core
L3: 234MB per superchip

LPDDR5X with ECC in the same package.
Upto 1 TB/s

Up to 960GB

7.1 TFLOPS

8x PCle Gen 5 x16 interfaces; with an option to bifurcate.

Total 1 TB/s PCle Bandwidth.
Additional low-speed PCle connectivity for management.

500W TDP with Memory, 12V Supply

Table 1-2. NVIDIA GH200 Grace Hopper Superchip Specifications

CPU Core Architecture
CPU Core Count

CPU Cache

CPU Memory
Technology

CPU Raw Memory BW
CPU Memory Size

GPU Multi-Processor
Architecture

GPU Multi-Processor
Count

GPU Memory
Technology

GPU Memory Size

NVIDIA Grace Performance Tuning Guide

GH200 Grace Hopper Superchip

Armv9-A Neoverse V2 Cores with 4x128b SVE2
72

L1: 64KB I-cache + 64KB D-cache per core

L2: 1TMB per core

L3:117MB

LPDDR5X with ECC in the same package.

Up to 500 GB/s
Up to 480GB

Hopper SM compute capability 9.0

132

High-Bandwidth Memory HBM3
High-Bandwidth Memory HMB3e

96GB HBM3
144GB HBM3e
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| GH200 Grace Hopper Superchip |
‘ Power 550-1000W TDP with Memory, 12V Supply ‘

1.1.1. High Performance Architecture

The Grace CPU delivers high, single-threaded performance, high memory bandwidth, and
outstanding data movement capabilities with leadership performance per watt. To
enable the Grace CPU Superchip, these design goals required the development of several
innovations.

The Grace Hopper CPU+GPU Superchip combines high performance of the Grace CPU
with world-class GPU performance of the NVIDIA H100 GPU.

1.1.2. Alleviate Bottlenecks with NVLink-C2C
Interconnect

To create the Grace CPU Superchip with up to 144 Arm Neoverse V2 cores and avoid
bottlenecks when moving data between the chips, the NVLink Chip-2-Chip (C2C)
interconnect provides a high-speed, direct connection between chips. A typical server
architecture has two sockets, each composed of multiple dies and each die can
represent multiple non-uniform memory (NUMA) domains. The Grace CPU Superchip
uses a clean and simple memory topology. With only two NUMA nodes and the
high-bandwidth NVLink-C2C, the Grace CPU Superchip helps alleviate NUMA bottlenecks
for application developers and users.

Similarly, the memory of the Grace Hopper Superchip is set up as two NUMA nodes
connected through the high-bandwidth NVLink-C2C, making access to both CPU and
GPU memory seamless for applications developers and users.
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Figure 1-2. Comparing the Grace CPU Superchip with NVLink-C2C to the
Traditional Server Architecture-Based on X86-64
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Figure 1-3. Overview of the Grace + Hopper Superchip System
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1.1.3. Scale Cores and Bandwidth with NVIDIA Scalable
Coherency Fabric

NVIDIA Scalable Coherency Fabric (SCF), shown in Figure 1-4, is a mesh fabric and
distributed cache architecture that is designed by NVIDIA to scale cores and bandwidth.
To keep data flowing between the CPU cores, NVLink-C2C, memory, and system 10, SCF
provides over 3.2 TB/s of total bisection bandwidth.
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The CPU cores and SCF cache partitions are distributed throughout the mesh, and the
Cache Switch Nodes route data through the fabric and serve as interfaces between the
CPU, cache memory, and system 10s. A Grace CPU Superchip has 234 MB of distributed
L3 cache across the two chips.

Figure 1-4. NVIDIA Grace CPU and the NVIDIA Scalable Coherency Fabric
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Figure 1-4 shows the NVIDIA Grace CPU and the NVIDIA Scalable Coherency Fabiric,
which join the Neoverse V2 cores and distributed cache and system |0 in a
high-bandwidth mesh interconnect.

The Grace CPU supports Memory Partitioning and Monitoring (MPAM), which is the Arm®
standard to partition the system cache and memory resources to provide performance
isolation between jobs. By using MPAM, the NVIDIA-designed SCF Cache supports the
partitioning of cache capacity, I/0, and memory bandwidth. MPAM also supports the use
of MPAM performance monitor groups (PMGs) to monitor resources, such as cache
storage usage and memory bandwidth usage.

1.1.4. LPDDR5X Memory Subsystem

The Grace CPU Superchip uses up to 960 GB of server-class LPDDR5X memory with
Error Correction Code (ECC). This design strikes the optimal balance of bandwidth,
energy efficiency, capacity, and cost for large-scale Al and HPC workloads.

Compared to an eight-channel DDR5 design, the Grace CPU LPDDR5X memory
subsystem provides up to 53% more bandwidth at 1/8th the power per gigabyte per
second while being close in cost. An HBM2e memory subsystem provides substantial
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memory bandwidth and energy efficiency but at more than three times the
cost-per-gigabyte and only one-eighth the maximum capacity with LPDDR5X.

The Grace CPU LPDDR5X architecture is the first data center class, resilient
implementation of LPDDR technology. LPDDR5 channel sparing also restores the
memory subsystem health upon reboot, which results in a low service rate due to failed
memory. This allows the Grace CPU to be deployed in scenarios where serviceability is
difficult and expensive.

The co-packaged memory employs a novel provisioning and error detection technique
which eliminates the need to service or replace failed memory in the field, allowing the
Grace CPU to be deployed in scenarios where serviceability is difficult or costly.

The lower power consumption of LPDDR5X reduces the overall system power
requirements and enables more resources to be used in the CPU cores. The compact
form factor enables twice the density of a typical DIMM-based design.

1.1.5. CPUI/O

The Grace CPU Superchip supports up to 128 lanes of PCle Gen 5 for I/O connectivity,
and each PCle Gen 5 x16 link supports up to 128 GB/s of bi-directional bandwidth and,
for additional connectivity, can be bifurcated into 2x8s. Additional PCle interfaces are
provided for system management purposes. Server makers can use the standard
expansion options for a variety of PCle slot form factors with out-of-box support for
NVIDIA GPUs, NVIDIA DPUs, NVIDIA ConnectX SmartNICs, E1.S, and M.2 NVMe devices,
modular BMC options, and so on.

1.1.6. Grace CPU Core Architecture

The Grace CPU Neoverse V2 core implements the Armv9.0-A architecture, which extends
the architecture that was defined in the Armv8-A architectures up to Armv8.5-A.
Application binaries that are built for an Armv8 architecture up to Armv8.5-A will execute
on NVIDIA Grace, and this includes binaries that target CPUs like the Ampere Altra, the
AWS Graviton2, and the AWS Graviton3.

E Important: The NVIDIA HPC Compilers compile for fixed-length which are not binary
compatible between, for example, Graviton and Grace.
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1.1.7. SIMD Vectorization

The Neoverse V2 implements the following single instruction multiple data (SIMD) vector
instruction sets in a 4x128-bit configuration:

e The Scalable Vector Extension version 2 (SVE2)
e Advanced SIMD (NEON)

Each of the four 128-bit functional units can retire SVE2 or NEON instructions, and this
design allows more codes to take advantage of the SIMD performance.

Many applications and libraries are already taking advantage of Advanced SIMD (also
known as NEON). SVE is a length-agnostic next generation SIMD instruction set
architecture (orthogonal to Advanced SIMD) and provides features such as prediction,
first faulting loads, gather, scatter, the ability to scale to large vector lengths without
requiring recompilation, or porting to new vector lengths by hand. SVE2 provides vector
length flexibility, which allows software efforts to focus on application specific
optimizations.

SVE is implemented in many flagship Arm implementations, and by using length agnostic
instructions for Grace CPU accrue toward portable binaries, ensures compatibility with
SVE optimizations. SVE?2 also extends the SVE ISA with advanced instructions that can
accelerate key HPC applications like machine learning, genomics, and cryptography.

Refer to Compilers for the command-line options with popular compilers.

1.1.8. Atomic Operations

NVIDIA Grace CPU supports the Large System Extension (LSE), which was introduced in
Armv8.1. LSE provides the following low-cost atomic operations, which can improve
system throughput for CPU-to-CPU communication, locks, and mutexes:
The Compare and Swap instructions, CAS, and CASP.
Atomic memory operation instructions, LD<0P> and ST<0P>, where <0P> is ADD, CLR,
EOR, SET, SMAX, SMIN, UMAX, or UMIN.
e The Swap procedure, SWP.

These instructions can operate on integer data. All compilers that support the Grace CPU
automatically use these instructions in synchronization functions like GCC’s __atomic
built-ins. When using LSE atomics instead of load/store exclusives, there is a huge
improvement. For instance, a shared integer value can be incremented with one atomic
ADD instead of the following sequence:

Load exclusive.
Add.
Attempt store exclusive.

E

If the operation fails, repeat the sequence.
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1.1.9. Additional Armv9 Features

The Grace CPU implements multiple key features of the Armv9 portfolio that provide
utilities in general purpose data center CPUs, including cryptographic acceleration,
scalable profiling extension, virtualization extensions, and secure boot. In addition to
standard Armv9 features, Grace also supports full-memory encryption.
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2. Understanding Your Grace Machine

After you boot up your Grace machine, run sudo ipmitool fru print command and check
the information about the NVIDIA Grace module.

Here is the sample output from a Grace CPU Superchip machine. The FRU Device
Description is PG535, and the Product Name is C2.

FRU Device Description : PG535 (ID 192)

Board Mfg Date : [REDACTED]

Board Mfg : NVIDIA

Board Product : PG535

Board Serial : [REDACTED]

Board Part Number : 699-2G535-0200-DV2
Product Manufacturer : NVIDIA

Product Name : C2

Product Part Number : 900-2G535-0000-000
Product Version : B-R06O

Product Serial : [REDACTED]

Here is the sample output from a Grace Hopper Superchip machine. The FRU Device
Description is PG539, and the Product Name is GH200.

FRU Device Description : PG530 (ID 133)

Board Mfg Date : [REDACTED]

Board Mfg : NVIDIA

Board Product : PG530

Board Serial : [REDACTED]

Board Part Number : 699-2G530-0206-QST
Product Manufacturer : NVIDIA

Product Name : GH200 480GB
Product Part Number : 900-2G530-0000-000
Product Version : A-R0O

Product Serial : [REDACTED]
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2.1. Checking the CPUs

The 1scpu command-line utility in Linux gets CPU information about the system, fetches
the CPU architecture information from the sysfs and /proc/cpuinfo files, and displays the
information in a terminal.

After you boot your Grace machineg, run the 1scpu command and check the CPUs.

Here is the sample output from a Grace CPU Superchip machine:

Architecture: aarch64

CPU op-mode(s): 64-bit

Byte Order: Little Endian
CPU(s): 144

On-line CPU(s) list: 0-143
Vendor ID: ARM

Model: 0

Thread(s) per core: 1
Core(s) per socket: 72

Socket(s): 2

Stepping: ropo

Frequency boost: disabled

CPU max MHz: 3582 .0000

CPU min MHz: 81.0000

BogoMIPS: 2000 .00

Flags: fp asimd evtstrm aes pmull shal sha2 crc32 atomics fphp a

simdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4
asimddp sha512 sve asimdfhm dit uscat ilrcpc flagm ssbs
sb paca pacg dcpodp sve2 sveaes svepmull svebitperm svesh
a3 svesm4 flagm2 frint svei8mm svebf16 i8mm bf16 dgh bti
Caches (sum of all):

L1d: 9 MiB (144 instances)

L1i: 9 MiB (144 instances)

L2: 144 MiB (144 instances)

L3: 228 MiB (2 instances)
NUMA :

NUMA node(s): 2

NUMA node® CPU(s): 0-71
NUMA nodel CPU(s): 72-143

Vulnerabilities:

Itlb multihit: Not affected

L1tf: Not affected

Mds: Not affected

Meltdown: Not affected

Mmio stale data: Not affected

Retbleed: Not affected

Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Spectre v1: Mitigation; __user pointer sanitization

Spectre v2: Not affected
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Srbds: Not affected
Tsx async abort: Not affected

From this output, you can see information such as the number of CPU sockets, how
many cores per socket, how many hardware threads per core, and the max/min CPU
frequency. You can also find the size of the L1, the L2, and the L3 caches.

Here is the sample output of a Grace Hopper Superchip system:

Architecture:
CPU op-mode(s):
Byte Order:
CPU(s):

On-line CPU(s) 1list:

Vendor ID:
Model:
Thread(s) per core:
Core(s) per socket:
Socket(s):
Stepping:
Frequency boost:
CPU max MHz:
CPU min MHz:
BogoMIPS:
Flags:

asimdhp

asimddp sha
dcpod
frint s

Caches (sum of all):
L1d:
L1i:
L2:
L3:

NUMA :
NUMA node(s):
NUMA node@ CPU(
NUMA nodel1 CPU(
NUMA node2 CPU(
NUMA node3 CPU(
NUMA node4 CPU(s
NUMA node5 CPU(
NUMA node6 CPU(
NUMA node7 CPU(
NUMA node8 CPU(

Vulnerabilities:
Itlb multihit:

aarché64
64-bit
Little Endian
72

0-71
ARM

0

1

72

1

ropo
disabled
3591.0000
81.0000
2000 .00

fp asimd evtstrm aes pmull shal sha2 crc32 atomics fphp

cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4

512 sve asimdfhm dit uscat ilrcpc flagm ssbs sb paca pacg

p sve2 sveaes svepmull svebitperm svesha3 svesm4 flagm2

vei8mm svebf16 i8mm bf16 dgh bti

4.5 MiB (72 instances)
4.5 MiB (72 instances)
72 MiB (72 instances)
114 MiB (1 instance)

0-71

Not affected

NVIDIA Grace Performance Tuning Guide
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L1tf: Not affected

Mds: Not affected

Meltdown: Not affected

Mmio stale data: Not affected

Retbleed: Not affected

Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Spectre v1: Mitigation; __user pointer sanitization

Spectre v2: Not affected

Srbds: Not affected

Tsx async abort: Not affected

E Note: This output shows nine NUMA nodes. The first node corresponds to the Grace
CPU, the second to the Hopper GPU, and the remaining seven nodes correspond to
NVIDIA Multi-Instance GPU (MIG) instances.

The seven MIG instances can be ignored if MIG mode is not being used.

2.2. Checking the Non-Uniform Memory
Access Settings

The 1scpu output includes basic information about the Non-Uniform Memory Access
(NUMA) settings on your Grace machine.

To understand more about the NUMA settings, run the numactl -H command, and hereis
the sample output from a Grace Superchip machine:

available: 2 nodes (0-1)

node @ cpus: ©12 34567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71

node @ size: 245090 MB

node O free: 99633 MB

node 1 cpus: 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

node 1 size: 245317 MB

node 1 free: 126895 MB

node distances:

node 0 1
0: 10 40
1: 40 10

The output shows that there are two NUMA nodes on this machine, the number of cores
on each NUMA node, and how much memory is available for each node. The output also
shows the node distances between NUMA nodes, which helps the Kernel scheduler
execute application threads on CPU cores that are closest to the memory resident data.
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Here is the sample output from a Grace + Hopper Superchip system:

available: 9 nodes (0-8)

node @ cpus: © 12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

27 28 29
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
node 0 size: 490310 MB
node @ free: 166560 MB
node 1 cpus:
node 1 size: 95232 MB
node 1 free: 92094 MB
node 2 cpus:
node 2 size: © MB
node 2 free: @ MB
node 3 cpus:
node 3 size: 0 MB
node 3 free: @ MB
node 4 cpus:
node 4 size: 0 MB
node 4 free: @ MB
node 5 cpus:
node 5 size: @ MB
node 5 free: @ MB
node 6 cpus:
node 6 size: © MB
node 6 free: @ MB
node 7 cpus:
node 7 size: © MB
node 7 free: 0 MB
node 8 cpus:
node 8 size: O MB
node 8 free: @ MB
node distances:
node 0 1 2 3 4 5 6 7 8
©: 10 80 80 80 80 80 80 80 80

1:

80

10 255 255 255 255 255 255 255

NVIDIA Grace Performance Tuning Guide
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2: 80 255 10 255 255 255 255

3: 80 255 255 108 255 255 255

4: 806 255 255 255 1@ 255 255

5: 80 255 255 255 255 1@ 255

6: 80 255 255 255 255 255 10

7: 80 255 255 255 255 255 255

8: 80 255 255 255 255 255 255 255

255
255
255
255
255

10

255
255
255
255
255
255

10

As noted in Checking the CPUs, the last seven NUMA nodes can be ignored if MIG is not

used.

2.3. Checking the GPU

Running the nvidia-smi command displays the status of the GPU in the system.

Here is sample output from a Grace Hopper Superchip system:

T et e T e L e +

| NVIDIA-SMI 535.104.606 Driver Version: 535.104.06 CUDA Version: 12.2

[ === T oo +

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M.

| [ | MIG M. |
| =========================================+======================+================= |

| 0 GH200 4806GB Off | 00000009:01:00.0 Off | 0 |
| N/JA 29C Po 108W / 9006W | OMiB / 97871MiB | 8% Default |
| | | Disabled |
R T T o oo +

T T T +

| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
e e e e ]|

| No running processes found |
T et e T e L e +

NVIDIA Grace Performance Tuning Guide
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2.4. Checking the Memory

One of the common ways of checking the memories on your Grace system is to run the
sudo dmidecode -t memory command. Here is the sample output from a Grace-Grace

machine:

# dmidecode 3.3

Getting SMBIOS data from sysfs.

SMBIOS 3.6.0 present.

# SMBIOS implementations newer than version 3.5.0 are not
# fully supported by this version of dmidecode.

Handle 0x000B, DMI type 16, 23 bytes

Physical Memory Array
Location: System Board Or Motherboard
Use: System Memory
Error Correction Type: Single-bit ECC
Maximum Capacity: 480 GB
Error Information Handle: No Error
Number Of Devices: 2

Handle ©x000C, DMI type 17, 92 bytes
Memory Device
Array Handle: 0x000B
Error Information Handle: 0x0000
Total Width: 540 bits
Data Width: 480 bits
Size: 240 GB
Form Factor: Die
Set: None
Locator: Not Specified
Bank Locator: Not Specified
Type: LPDDRS
Type Detail: None
Speed: Unknown
Manufacturer: Not Specified
Serial Number: 9223381974177924187
Asset Tag: Not Specified
Part Number: Not Specified
Rank: 1
Configured Memory Speed: Unknown
Minimum Voltage: Unknown
Maximum Voltage: Unknown
Configured Voltage: Unknown
Memory Technology: DRAM
Memory Operating Mode Capability: None
Firmware Version: Not Specified
Module Manufacturer ID: Unknown
Module Product ID: Unknown
Memory Subsystem Controller Manufacturer ID: Unknown
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Memory Subsystem Controller Product ID: Unknown
Non-Volatile Size: None

Volatile Size: None

Cache Size: None

Logical Size: None

Handle ©0x000D, DMI type 17, 92 bytes
Memory Device
Array Handle: 0x000B
Error Information Handle: 0x0000
Total Width: 540 bits
Data Width: 480 bits
Size: 240 GB
Form Factor: Die
Set: None
Locator: Not Specified
Bank Locator: Not Specified
Type: LPDDRS
Type Detail: None
Speed: Unknown
Manufacturer: Not Specified
Serial Number: 9223382071351559259
Asset Tag: Not Specified
Part Number: Not Specified
Rank: 1
Configured Memory Speed: Unknown
Minimum Voltage: Unknown
Maximum Voltage: Unknown
Configured Voltage: Unknown
Memory Technology: DRAM
Memory Operating Mode Capability: None
Firmware Version: Not Specified
Module Manufacturer ID: Unknown
Module Product ID: Unknown
Memory Subsystem Controller Manufacturer ID: Unknown
Memory Subsystem Controller Product ID: Unknown
Non-Volatile Size: None
Volatile Size: None
Cache Size: None
Logical Size: None

You can see from the output that there are two zones of LPDDR5 memories, each with
240GB, and each zone is from one Grace chip.
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3. Basic System Health Checks

To confirm that your system is healthy and is correctly configured, check the compute
performance and memory bandwidth with some simple benchmarks.

3.1. STREAM

Use the STREAM benchmark to check LPDDR5X memory bandwidth. The following
commands download and compile STREAM with a total memory footprint of
approximately 2.7GB, which is sufficient to exceed the L3 cache without excessive
runtime.

E Note: We recommend GCC version 12.3 or later.

S wget https://www.cs.virginia.edu/stream/FTP/Code/stream.c
$ gcc -Ofast -mcpu=neoverse-v2 -fopenmp \
-DSTREAM_ARRAY_SIZE=120000000 -DNTIMES=200 \
-0 stream_openmp.exe stream.c

To run STREAM, set the number of OpenMP threads (OMP_NUM_THREADS) according to
the example below. Use 0MP_PROC_BIND=spread to distribute the threads evenly over all
available cores and maximize bandwidth.

$ OMP_NUM_THREADS={THREADS} OMP_PROC_BIND=spread ./stream_openmp.exe
System bandwidth is proportional to the memory capacity. Find your system’s memory
capacity in the table below and use the given parameters to generate the expected score

for STREAM TRIAD. For example, when running on a Grace-Hopper superchip with a
memory capacity of 120GB, this command will score at least 450GB/s in STREAM TRIAD:

$ OMP_NUM_THREADS=72 OMP_PROC_BIND=spread ./stream_openmp.exe
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Similarly, this command will score at least 900GB/s in STREAM TRIAD on a Grace CPU
Superchip with a memory capacity of 240GB:
$ OMP_NUM_THREADS=144 OMP_PROC_BIND=spread numactl -m@,1 ./stream_openmp.exe

Table 3-1. Expected STREAM TRIAD Scores

Expected TRIAD
Superchip | Capacity (GB) |OMP_NUM_THREADS Bandwidth
Grace-Hopper 120 72 450+
Grace-Hopper 480 72 340+
Grace CPU 240 144 900+
Grace CPU 480 144 900+
Grace CPU 960 144 680+

S OMP_NUM_THREADS=72 OMP_PROC_BIND=spread numactl -m@,1 ./stream_openmp.exe

Array size = 120000000 (elements), Offset = @ (elements)

Memory per array = 915.5 MiB (= 0.9 GiB).

Total memory required = 2746.6 MiB (= 2.7 GiB).

Each kernel will be executed 200 times.

The *best* time for each kernel (excluding the first iteration)

will be used to compute the reported bandwidth.

Number of Threads requested = 72

Number of Threads counted = 72

Your clock granularity/precision appears to be 1 microseconds.

Each test below will take on the order of 2927 microseconds.
(= 2927 clock ticks)

Increase the size of the arrays if this shows that

you are not getting at least 20 clock ticks per test.

WARNING -- The above is only a rough guideline.

For best results, please be sure you know the

precision of your system timer.

Function Best Rate MB/s Avg time Min time Max time
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Copy: 919194.6 0.002149 0.002089 0.002228
Scale: 913460.90 0.002137 0.002102 0.002192
Add: 916926.9 0.003183 0.003141 0.003343
Triad: 903687.9 0.003223 0.003187 0.003308

Solution Validates: avg error less than 1.000000e-13 on all three arrays

3.2. Fused Multiply Add

NVIDIA provides an open source suite of benchmarking microkernels for Arm CPUs. To
allow precise counts of instructions and exercise specific functional units, these kernels
are written in assembly language. To measure the peak floating point capability of a core
and check the CPU clock speed, use a Fused Multiply Add (FMA) kernel.

To measure achievable peak performance of a core, the fp64_sve_pred_fmla kernel
executes a known number of SVE predicated fused multiply-add operations (FMLA) .
When combined with the perf tool, you can measure the performance and the core clock
speed.

S git clone https://github.com/NVIDIA/arm-kernels.git

$ cd arm-kernels

$ make

$ perf stat ./arithmetic/fp64_sve_pred_fmla.x

The benchmark score is reported in giga-operations per second (Gop/sec) near the top of
the benchmark output. Grace can perform 16 FP64 FMA operations per cycle, so a Grace
CPU with a nominal CPU frequency of 3.3GHz should report between 52 and 53 Gop/sec.
The CPU frequency is reported in the perf output on the cycles line and after the #
symbol.

Here is an example of the fp64_sve_pred_fmla.x execution output:

S perf stat ./arithmetic/fp64_sve_pred_fmla.x
4( 16(SVE_FMLA_64b) );

Iterations ;100000000

Total Inst;6400000000

Total Ops;25600000000

Inst/Iter;64

Ops/Iter ;256

Seconds;0.481267

GOps/sec;53.1929

Performance counter stats for './arithmetic/fp64_sve_pred_fmla.x':

482 .25 msec task-clock # 0.996 CPUs utilized
0 context-switches # 0.000 /sec
(%] cpu-migrations # 0.000 /sec
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3.3.

65 page-faults # 134.786 /sec
1,607,949,685 cycles # 3.334 GHz
6,704,065,953 instructions # 4.17 insn per cycle

<not supported> branches
18,383 branch-misses # 0.00% of all branches

0.484136320 seconds time elapsed

0.482678000 seconds user
0.000000000 seconds sys

C2C CPU-GPU Bandwidth

NVIDIA provides an open-source benchmark, similar to STREAM, that is designed to test
the bandwidth between various memory units on the system. This can be used to test
the bandwidth provided by NVLink C2C between the CPU and GPU of a Grace Hopper
Superchip.
Download, build, and run nvbandwidth:

git clone https://github.com/NVIDIA/nvbandwidth.git

cd nvbandwidth

# may need to update version of CUDA

docker run -it --rm --gpus all -v $(pwd):/nvbandwidth nvidia/cuda:12.2.8-devel-ubuntu22.64

# within docker

cd /nvbandwidth

apt update

apt install libboost-program-options-dev
./debian_install.sh

./nvbandwidth -t @

# next test

./nvbandwidth -t 1

# all tests can be listed with ./nvbandwidth -1
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Here is the output from the previous two commands on a sample system:

E Note: Bandwidth numbers depend on specific Grace Hopper SKUs and are also
influenced by factors such as IOMMU settings, GPU clock settings, and other
system-specific parameters. These factors should be carefully considered during any
bandwidth benchmarking activity.

# ./nvbandwidth -t ©
nvbandwidth Version: v@.2

Built from Git version:

NOTE: This tool reports current measured bandwidth on your system.

Additional system-specific tuning may be required to achieve maximal peak
bandwidth.

CUDA Runtime Version: 120260
CUDA Driver Version: 12020

Driver Version: 535.82
Device 0: GH200 1206GB

Running host_to_device_memcpy_ce.

memcpy CE CPU(row) -> GPU(column) bandwidth (GB/s)
0

0 416 .34

SUM host_to_device_memcpy_ce 416.34

# ./nvbandwidth -t 1

nvbandwidth Version: v0.2

Built from Git version:

NOTE: This tool reports current measured bandwidth on your system.

Additional system-specific tuning may be required to achieve maximal peak
bandwidth.
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CUDA Runtime Version: 120260
CUDA Driver Version: 12020

Driver Version: 535.82

Device 0: GH200 120GB

Running device_to_host_memcpy_ce.

memcpy CE CPU(row) <- GPU(column) bandwidth (GB/s)
0

0 295.47

SUM device_to_host_memcpy_ce 295.47

For memory copies that use CUDA copy engines (CEs), you should expect similar
numbers as shown in the output for systems with 120GB or 240GB of LPDDR5 memory.

Systems with 480GB LPDDR5 memory might have a lower bandwidth for host-to-device
copies (compared to the first test output shown above). On a healthy system, this
bandwidth should be approximately 350-360 GB/s.

Systems with 480GB LPDDRS5 should have similar device-to-host bandwidth as shown
above in the second test, except Grace-Hopper x4 systems, where this bandwidth should
be approximately 170 GB/s due to more CEs being reserved for saturating NVLink
bandwidth between GPUs.

To run bandwidth tests using the GPU’s streaming micro-processors (SMs), run the
./nvbandwidth -1 command for the exact test numbers. The achieved bandwidth should
be at least as large as the outputs shown by CE-based tests.
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4. Power and Thermals

This chapter provides information about CPU power and thermal management settings.

4.1. C-States

C-States refer to idle CPU power states, and Grace includes the following C-states:

e CO: active/run state.

This is the state of the CPU core while active.
e C1:clock gated state.

This state is entered when WFI/WFE instructions are executed by the CPU core. The
latency to enter/exit this state is negligible.

The LPI table in Advanced Configuration and Power Interface (ACPI) provides information
about the C-states to any CPU idle governors such as the cpuilde framework in Linux.

For systems that have the cpuidle governors enabled, the number of times the C1 state
is entered through the idle framework can be read by running the following command:

$ cat /sys/devices/system/cpu/cpu<n>/cpuidle/statel/usage

For systems that do not use cpuidle governors, the cpu cores can still enter clock gated
state when WFI/WFE instructions are executed, but no stats will be available.

4.2. P-States

P-States refers to performance states, and Grace does not offer explicit P-states.
Instead, Grace exposes the maximum and minimum performance capabilities through
ACPI's CPPC mechanism. CPPC offers users and operating systems the ability to request
any performance in the allowed bounds rather than discrete P-State. Refer to CPU
Performance and Frequency Management for more information.
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4.3. CPU Performance and Frequency
Management

Each CPU core can operate at its own independent frequency, and the frequency is
determined by the frequency policy governors that were used. Linux provides the
following frequency governors:

e Performance governor: Geared towards getting the maximum performance and sets
the performance/frequency request of the CPU cores to the maximum possible value.

The request is not based on activity and kept fixed at highest value.
e Userspace governor: Bypasses a kernel governor and provides control to the
userspace application for frequency control.

To set the frequency of the cores, a hypervisor, or a higher level software entity, can
take input from an application. The kernel does not modify the frequency based on
other information but will honor frequency caps based on thermals.

e Schedutil governor: Incorporates information from the scheduler, which are the
threads that are currently scheduled on cores, the activity on the core, load
estimation, and so on, to determine the optimal frequency for the core.

The goal of this governor is to provide best performance while saving power by
matching the frequency based on scheduler visible workloads.

e Ondemand governor: Adjusts the frequency based on the trailing load of the CPU
core.

This governor predicts the future load and ramps frequency accordingly.

Refer to https://www.kernel.org/doc/Documentation/cpu-freg/qgovernors.txt for more
information.

The default frequency governor in Grace is the performance governor, which sets the
frequency to the maximum value for that core. The maximum frequency usually
corresponds to the maximum possible performance and is higher than the frequency at
which nominal (sustained) performance can be achieved. When running at the maximum
frequency violates thermals, the thermal management solution throttles frequency.
Refer to Power and Thermal Management for more information.

Managing CPU frequency on a Linux server can be achieved by using the cpufreq
commands or directly by using the sysfs interface. The next section provides a concise
guide that combines the methods for setting a fixed frequency and a scaling max
frequency.
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4.3.1. Setting a Fixed Frequency

This section provides information about setting a fixed frequency.
e The cpufreq cCommand
This command allows you do complete the following tasks::
e Switch to userspace governor to manually set the frequency:
$ sudo cpufreg-set -g userspace
e Set the desired frequency (e.g., 3.2 GHz = 3200000 kHz):
$ sudo cpufreq-set -f 3200000
e The sysfs mMethod:
This command allows you do complete the following tasks:
e Switch to userspace governor (if supported):

$ echo userspace | sudo tee
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

e Set the desired frequency directly (replace [FREQUENCY] with your value in kHz):

S echo [FREQUENCY] | sudo tee
/sys/devices/system/cpu/cpu*/cpufreq/scaling_setspeed

4.3.2. Setting a Scaling Max Frequency

This section provides information about setting a scaling max frequency.

e The cpufreq command
e Switch to performance governor to limit the max scaling frequency:

$ sudo cpufreqg-set -g performance
e Set the scaling max frequency (e.g., 3.2 GHz = 3200000 kHz):
$ sudo cpufreq-set -u 3200000

e The sysfs method
e Switch to performance governor (if supported):

S echo performance | sudo tee
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

e Limit the maximum scaling frequency (by replacing [MAX_FREQUENCY] with your
value in kHz):

S echo [MAX_FREQUENCY] | sudo tee
/sys/devices/system/cpu/cpu*/cpufreq/scaling_max_frequency
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Here are general CPU frequency commands that you can use to read the currently
requested and measured settings:

e Software frequency request (kHz) for the CPU core <n>.
$ cat /sys/devices/system/cpu/cpu<n>/cpufreq/scaling_cur_freq

e Measured frequency (kHz).
$ cat /sys/devices/system/cpu/cpu<n>/cpufreq/cpuinfo_cur_freq

@ Note: This makes use of AMU (actmon), which is provided by ARM, where the source and
reference clocks are measured, and where the ratio is used to compute the actual
frequency. With the default measuring window used in Linux, there might be up to a 3%
error in the frequency read. To increase accuracy, the measurement window should be
increased in upstream Linux code.

4.4. GPU and Module Power Management

GPU provides power capping at the following scopes:

e Limit power consumption of the Grace + Hopper superchip (Module) and keep it
within the provided power limit.

e Limit power consumption of the GPU and keep it within the provided power limit.

Figure 4-1: GPU and Module Power Management

Static Power Automatic
Budget Power Steering
A
CPU
CPU CPU
MODULE GPU — <PU

This is done by Automatic power steering in the GPU because the GPU monitors power
telemetry for Grace, Module, and the GPU. Power capping at the Module scope works on
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monitoring the consumed Grace power, removing that from the Module power limit, and

giving the rest to the GPU.

The GPU can work within the new power limit or can stick to the limit that was explicitly
set for the GPU, where the lower of the two limits is respected. This leads to efficiently
balancing power between Grace and GPU to improve overall app perf by opportunistically
boosting the GoPU power budget. The GPU achieves power capping by using DVFS.

Table 4-1. Power Management
System Knobs Description
GPU nvidia-smi-q -d POWER Dumps Module and GPU power
temetry
GPU nvidia-smi -pl <limit in Watt> -sc | Sets limit for the GPU. This will
0 apply to the GPU if the limit is
lower than the limit evaluated
through “Automatic Power
Steering”
GPU nvidia-smi -pl <limit in Watt> -sc | Sets limit for the Module
1

Here is the output from the NVSMI log:
nvidia@localhost:~$ nvidia-smi -q -d POWER

Timestamp
Driver Version
CUDA Version

Attached GPUs
GPU 00000009:01:00.0
GPU Power Readings
Power Draw
Current Power Limit
Requested Power Limit
Default Power Limit
Min Power Limit
Max Power Limit
Power Samples
Duration
Number of Samples
Max
Min
Avg
Module Power Readings
Power Draw
Current Power Limit

NVIDIA Grace Performance Tuning Guide

: Fri Oct 6 22:46:55 2023

: 535.122
:12.2

: 77.61 W

: 900.00 W
: 900.00 W
: 900.00 W
: 100.00 W
: 900.00 W

. 2.36 sec
;119

. 78.26 W
: 76.65 W
: 77.48 W

: 147 .49 W
: 1000.00 W

DA-11438-001_04 | 33




Requested Power Limit : 1000.00 W

Default Power Limit : 1000.00 W
Min Power Limit . 200.00 W
Max Power Limit . 10006.00 W

4.5. Power and Thermal Management

Grace provides the following types of thermal management types:

e Limit power consumption and keep it within the provided power limit.
e Thermal sensor (Tj)-based management.

4.6. Power Telemetry

This section provides information about power telemetries for Grace, and guidance for
comparing Grace power telemetry to Intel and AMD power telemetry. This can be useful
when making comparisons in power efficiency to other CPU architectures.

4.6.1. Grace Power Telemetry

Grace exposes power telemetry through hwmon, which uses the ACPI power meter
interface. You can read the power telemetry information in one of the following ways:

e To display the name of the power meter.

This gives information about which power is being reported on hwmon node X.
cat /sys/class/hwmon/hwmonX/device/power1_oem_info

e To display power consumption, which is average power over past 50ms interval by
default, on hwmon node X:
cat /sys/class/hwmon/hwmonX/device/power1_average

e To display the power stats interval in milliseconds, on hwmon node X:
cat /sys/class/hwmon/hwmonX/device/power1_average_interval

e To change the power stats interval in milliseconds, on hwmon node X (default is 50) :
echo <value> | sudo tee /sys/class/hwmon/hwmonX/device/power1_average_interval

Table 4-2 provides information about the available power telemetry.

E Note: To see hwmon sysfs nodes, you need CONFIG_SENSORS_ACPI_POWER=m in kconfig.
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Refer to the NVIDIA Grace Platform Support Software Patches and Configurations guide for more

information about the patches.

Table 4-2.

| System

‘ Grace Superchip
|

|

Grace Hopper
Superchip

Available Power Telemetries

Telemetry

Grace Power Socket O

CPU Power Socket O
SyslO Power Socket O

Grace Power Socket 1

CPU Power Socket 1
SyslO Power Socket 1
Module Power Socket O

Grace Power Socket O
CPU Power Socket O
SyslO Power Socket O

NVIDIA Grace Performance Tuning Guide

Details

Total power of the socket 0, including
DRAM power and regulator loss.

CPU rail power for socket 0.
SOC rail power.

Total power of the socket 1, including
DRAM power and regulator loss.

CPU rail power for socket 1.
SOC rail power.

Total power of the CG1 module, including
DRAM power and regulator loss. This also
includes GPU and GPU HBM Power.

Power of Grace socket.
CPU rail power.
SOC rail power.
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Figure 4-2. Grace Power Telemetry Sensors

Grace Hopper Superchip Telemetry

Grace CPU
Module T T T T CPU All Cores
— Sensor_ 0 7 Sensor_1 »————— Sensor_ 2 »— —_—] +
Power Supply — — — Regulator
Caches
a’“--s-e-n;r-é--“‘.— soc System 10
e Regulator ¥
Other
Regulators
LPDDR5X DRAM
Hopper and HBM

Regulators |

Hopper

HBM GPU

Legend

: Sensor_0 ;- Total module power

:__ Sensor_1 __;

Grace Power, including DRAM and power for all regulators

:__ Sensor_2 __;

CPU Power, including regulator power

': Sensor_3 :' SyslO Power, including regulator power
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Figure 4-3. Grace SuperChip Telemetry Sensors

Grace Superchip Telemetry

Grace CPU Socket 0

Module T — All Cores
——— Sensor O0A —— Sensor_1A }— CPU Regulator ——— +
Power Supply — —
Caches
—:_”S?ensor_z.ﬂ.\l__j— SOC Regulator ————— System 10

Other Regulators

LPDDR5X DRAM Socket O
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S —— Grace CPU Socket 1
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LPDDR5X DRAM Socket 1

Legend

-::.Sensar_m‘-fB Grace Power, including DRAM and power for all regulators

\ Sensor_1A/B , CPU Power, including regulator power

(:: Sensor_24/B ::} SwslO Power, including regulator power

As noted in Table 4-2, the total power reported for the socket includes CPU power, DRAM
power, and regulator loss. Similarly, power is reported for the CPU cores and includes
regulator losses.

Regulator loss accounts for 15% of the TDP power limit.

DRAM power can be estimated based on total traffic using the formula in Table 4-3.

Table 4-3. Estimating DRAM Power

Config a b c
128GB, 4266MHz *00.0000136 "289 "2334
128GB, 3200MHz *00.0000175 '28.3 12043
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4.6.2.

Config a b c

512GB, 3200MHz *00.0000603 '56.2 "3396

DRAM Power (mW, without regulator losses):
a*DRAM_BW_GBps”2 + b*DRAM_BW_GBps + ¢

The DRAM bandwidth can be determined using the PMU metrics described in Grace CPU
Performance Metrics.

Comparing Grace and Intel® Power Telemetry

Intel® CPUs expose power telemetry through the Intel® Performance Counter Monitor
(Intel® PCM) APIs. When the power consumption of Grace CPUs is compared to Intel®
CPUs, these APIs can be used to gather comparable metrics.

The PCM APIs are available on GitHub at https://github.com/intel/pcm.

Refer to the following documentation for more information:

e Building from the source (https://github.com/intel/pcm#building-pcm-tools,
e Installing precompiled binaries
(https://github.com/intel/pcm#tdownloading-pre-compiled-pcm-tools)

PCM’s pcm-power utility can be run to collect performance metrics for a number of
intervals and the duration per interval. For example, to capture one minute of samples at
one-second intervals, run the following command:

sudo pcm-power 1.00 -i=60 —silent

For each interval, pcm-power prints the power consumption for each socket (SO, S1)
including CPU power consumption and and DRAM power consumption:

$ sudo pcm-power -silent 1.0 -i=606 | grep 'AS.; Consumed’

S0; Consumed energy units: 3563683; Consumed Joules: 217.51; Watts: 217.51

S0; Consumed DRAM energy units: 533250; Consumed DRAM Joules: 32.55; DRAM Watts: 32.55
S1; Consumed energy units: 3350361; Consumed Joules: 204.49; Watts: 204.49

S1; Consumed DRAM energy units: 597938; Consumed DRAM Joules: 36.50; DRAM Watts: 36.50
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Figure 4-4. Intel Power Telemetry Sensors

Intel Power Telemetry
(Based on Sapphire Rapid)

CPU Package

CPU .
N ——( Sensor 0 }—— All Cores
Regulator ~—
—{ ::'Sensar_l — 1 Uncore
Other
Regulators
Legend
Grey area Package power as reported by PCM tool (excluding regulator power, except for internal LDOs/FIVR)
Yellow area DRAM Power as reported by PCM toaol (excluding regulator power)
"...é-e-n;:r D Power for all cores, as reported by intel-rapl:0:0 {excluding regulator power, except for internal
~ LDOs,/FIVR)
Sensor_1 Uncore power, as reported by intel-rapl:0:1 (excluding regulator power)

As illustrated in Figure 4-4, the power consumption per socket does not include regulator
losses, and so is not directly comparable to the CPU Power Socket O and CPU Power
Socket 1 telemetry as described in Table 4-2. To compare Intel CPU power consumption
to Grace CPU power, remove the Grace regulator losses.

For more information about Power consumption metrics that are available through the
Linux powercap kernel interface in sysfs, go to Power Capping Framework.

To measure power consumption for cores only, excluding regulator losses or DRAM power
consumption, the metrics per CPU are available at:

For CPU O:
cat /sys/class/powercap/intel-rapl/intel-rapl:0/intel-rapl:0:0/energy_uj

For CPU 1:
cat /sys/class/powercap/intel-rapl/intel-rapl:1/intel-rapl:1:0/energy_uj
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These counters provide a running total of the microjoules consumed for each CPU.

Measurements from this interface are comparable to the CPU Power Socket O and CPU
Power Socket 1 telemetry as described in Table 4-2.

4.6.3. Comparing Grace and AMD Power Telemetry

AMD’s AMD uProf package includes utilities that provide power telemetry. When you
compare the power consumption of Grace CPUs to AMD CPUs, these APIs can be used to
gather comparable metrics.

To download and install the AMD uProf, go to
https://www.amd.com/en/developer/uprof.html.

Refer to the AMD pProf User Guide for platform-specific information about the available
metrics.

To capture measurements of power consumption per socket for 60 seconds with
measurements at one-second intervals, run the following command:

AMDUProfCLI-bin timechart --event socket=0-1,power --interval 1060 --duration 60 -o
powerQOutput

The resulting output file, in a CSV format, will be reported in the command output, for
example:

Live Profile Output file :
/home/nvex/powerQutput/AMDuProf-SWP-Timechart_Aug-05-2023_00-03-29/timechart.csv

It contains CSV-formatted power measurements per interval, with one column per
socket, for example:

RecordId, Timestamp, socket@-package-power, socket1-package-power
1,0:3:30:462, 95.56, 91.05
:31:462, 95.09, 90.63
2:462, 95.17, 90.23
3:462, 95.780, 90.70

2,0:3
3,0:3
4,0:3

’

:3
:3
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Figure 4-5.  AMD Power Telemetry Sensors
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Guidance for measuring power usage for the DRAM with AMD processors depends on
platform implementation details. Contact your platform vendor for guidance about
measuring power usage for comparison to the measurements LPDDR5x power readings
with Grace.

AMD pProf also allows per-core power utilization measurements to be captured. For
example, on a 64 core AMD processor:

AMDUProfCLI-bin timechart --event core=0-63,power --interval 1000 --duration 60 -o
powerQOutput
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The resulting file contains CSV-formatted power measurements per interval, with one
column per core. These cores are summed to get the total power output across all cores
to determine total power consumption by the CPU. As illustrated in Eigure 4-5, this
measurement does not include regulator losses. When regulator losses are removed from
the Grace CPU measurement the total is comparable to the Grace CPU rail power CPU
Power Socket O or CPU Power Socket 1 telemetries as described in Table 4-2,.

4.7. Power Capping

Power capping limits average power consumption and is usually set based on the thermal
power dissipation capability of the system. Grace throttles power when average power
exceeds this limit. Users can reduce the power limit lower than the default value that
was set in the BIOS. This setting is exposed through the Hwmon nodes and can be applied
to total socket power. Power capping can be applied only at the socket level and not at
the vdd_cpu or vdd_soc power levels.

To set power limit, run the following command:
echo <power value in micro Watts> > /sys/class/hwmon/hwmonX/device/power1_cap
For a Grace Hopper Superchip system, the capping power of the Grace CPU allows the

Hopper GPU to draw more power, which can improve performance of GPU-heavy
applications.

Power capping of the GPU can be applied according to GPU and Module Power
Management.

4.8. CPU Temperature Management

ACPI thermal management (Tj) uses telemetry from temperature sensors to ensure that
no local hotspots exceed the operating temperature. Power capping ensures that the
average power of the socket/module is at or below the thermal capacity of the system.
However, this does not account for asymmetric power distribution based on workload
distribution across the cores.

ACPI tables provide passive and critical temperature limits, and the thermal governor
tries to throttle CPUs to maintain temperature at or below the passive temperature
limits. If the temperature exceeds the critical temperature limit, a shutdown is initiated.

To read the critical and passive trip points used for ACPI software throttling:

cat /sys/class/thermal/thermal_zone*/trip_point_0_type
cat /sys/class/thermal/thermal_zone*/trip_point_0_temp
cat /sys/class/thermal/thermal_zone*/trip_point_1_type
cat /sys/class/thermal/thermal_zone*/trip_point_1_temp
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To modify these values, update the ACPI table.

@ Caution: We recommend that you do not change the default values. If the passive trip point
is lowered, throttling might occur more often, which affects the performance.

If the passive trip point is increased, the software might not always settle at the
temperature, which leads to more aggressive hardware throttling, and can reduce
performance.

4.9. GPU Temperatures

For GPU temperature using nvidia-smi, to get the temperature output, run the
nvidia-smi -q -d TEMPERATURE command.

This step gets the current temperature and the temperature-related limits.
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5. Operating System Settings

This chapter provides information about the operating system settings.

5.1. Page Size

Grace supports 64K and 4K Linux kernel page sizes. To configure your Linux kernel with
the page size that suits your business needs, change the following kconfig settings
during the kernel compilation:

4K page size: CONFIG_ARM64_4K_PAGES=y
64K page size: CONFIG_ARM64_64K_PAGES=y

The 64K page size can benefit the applications that allocate a large amount of memory
because there will be fewer page faults, better TLB hits, and efficiency.

E Note: The recommended default value for the page size is 64K.

5.2. Huge Pages

Huge pages might be beneficial to applications that allocate large chunks of memories,
and the main benefit is fewer TLB misses.

You can use huge pages on Grace systems in the following ways:

e Transparent Huge Pages (THP)
o Transparent to the application.
o Mostly automatic with a few available kernel tuning parameters.
o When using the recommended 64 KB page size, THP pages are currently too large
for practical use in most applications (refer to Transparent Huge Pages for more
information).
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e Hugetlbfs
o Does not suffer from fragmentation concerns or from allocation latency because
the huge pages are pre-allocated and indivisible.
Requires application modification.
Requires sysadmin setup.

5.2.1. Transparent Huge Pages

THP is completely transparent to applications, and applications can get the benefit of
huge pages without changing their source code (refer to Transparent Hugepage Support for
more information). As of kernel version 6.5, only 512MB THP pages are supported when a
64KB system page size is configured. If 512MB THP is too large for your application,
consider using hugetlbfs as described in Hugetlbfs.

Refer to Transparent Hugepage Support for more information about THP.

|§| Note: The default huge page size is related to the kernel page size (refer to HugeTLBpage
on ARM64 for more information).

5.2.2. Proactive Compaction

Proactive Compaction reduces allocation latency of huge pages by preemptively
performing the work in the background.Proactive compaction does not change the
probability of obtaining a huge page, but it changes how fast you can get one.

Without compaction, the kernel will return huge pages until it runs out of them. The
application will then experience a perf cliff because the kernel is going to defragment the
memory, and Proactive compaction smooths this out this process.

With compaction, when the applications start hitting a threshold of memory
fragmentation, the kernel begins to defragment the memory pages in the background
with anticipation of avoiding running out of huge pages and hitting a performance cliff.

The proactive compaction exposes a tunable, /proc/sys/vm/compaction_proactiveness,
which accepts values in the [0, 100] range, and a default value of 20. This tunable
determines how aggressively the kernel should compact memory in the background and
setting an aggressive value can lead to increased address translation latency. The
default value of 20 is reasonable and should only be changed based on perf data.

To limit the overhead of proactive compaction, you can use the on-demand compaction
method, which is available only after CONFIG_COMPACTION is set. When 1 is written to the
/proc/sys/vm/compact_memory file, all zones are compacted, and free memory is available in
contiguous blocks where possible. This can be important, for example, when allocating
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5.2.3.

5.3.

huge pages, because it will also directly compact memory as required. Refer to

Documentation for /proc/sys/vm/ for more information.
Hugetlbfs

By using hugetlbfs, pools of hugetlb pages can be preallocated, and applications can use
the huge pages in these pools. However, this requires changes in applications.

You can specify the minimum number of huge pages that are reserved by the system
and how big the pool can grow. You can configure malloc to use hugetlbfs for an app. We
strongly recommend that you test your app with hugetlbfs, and if it works with your app, use it.

The benefit of reserving a pool of huge pages at boot time is that at boot time, the
memory is not fragmented, so there is a greater chance that the requested number of
huge pages can be assembled..

Refer to HugeTLB Pages for more information.

Configuring Linux Perf

Refer to Configuring Perf for more information.

5.4. Performance Governor

5.5.

You can set the CPU governor using the cpupower command. For example, to set the CPU
governor to Performance, run the following command:

sudo cpupower frequency-set -g performance

E Note: On certain distributions, like Ubuntu, the cpufrequtils package provides a
cpufrequtils service that might change the CPU governor to ondemand when the
system boots. To avoid this behavior, users can disable this service by running the sudo
systemctl disable cpufrequtils command.

Init on Alloc

The CONFIG_INIT_ON_ALLOC_DEFAULT_ON kernel configuration option controls whether the
kernel will fill newly allocated pages and heap objects with zeroes by default. You can
overwrite this setting with the init_on_alloc=[8|1] kernel parameter.
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On coherent systems, such as Grace Hopper, where GPU memory is exposed as system
memory, this can cause heavy performance impacts to cudaMalloc() operations.

E Note: The recommended default value on GH is the init_on_alloc=0 parameter.

Not all distros will set the CONFIG_INIT_ON_ALLOC_DEFAULT_ON config on their kernels. For
example, the SUSE and RHEL kernels do not currently set this option, but the Ubuntu
—-generic kernel does set this option.

The current value of the init_on_alloc kernel configuration option on a system might be
printed as follows:

grep init_on_alloc /proc/cmdline
which should provide output like the following:

BOOT_IMAGE=/boot/vmlinuz-6.2.0-10810-nvidia-64k
root=UUID=7123054d-9b18-4c3d-8844-c538c751b59a ro rd.driver.blacklist=nouveau
nouveau.modeset=0 earlycon module_blacklist=nouveau acpi_power_meter.force_cap_on=y
numa_balancing=disable init_on_alloc=0 preempt=none

5.6. Input-Output Memory Management Unit
Passthrough

The Input-Output Memory Management Unit (IOMMU) is a hardware component that
performs address translation from I/O device virtual addresses (also called I/O virtual
address (IOVA)) to physical addresses. Different platforms have different IOMMUs, such
as the Intel IOMMU graphics address remapping table (GART) that is used by PCI Express
graphics cards, and System Memory Management Unit (SMMU) that is used by the ARM
platform.

Linux provides the iommu.passthrough mode, and you can configure the DMA to use (or
not use) the IOMMU to access the memory for addressing. This release requires that
SMMU passthrough NOT be enabled. Future kernel releases will change that guidance,
but for now we cannot run CUDA programs with SMMU in passthrough mode.

Setting iommu.passthrough to 1 on the kernel command line bypasses the IOMMU
translation for DMA and setting it to O uses IOMMU translation for DMA. This value
needs to be set at deployment (in the kernel configuration) or by editing the appropriate
grub configuration files. For the changes to take effect, you need to reboot the system.
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5.7.

To add kernel parameters, complete the steps for your distro:

Ubuntu

1.

Create the /etc/default/grub.d/iommu_passthrough.cfg file with the following
contents:

GRUB_CMDLINE_LINUX="S$GRUB_CMDLINE_LINUX iommu.passthrough=0"
Run the following commands:

sudo update-grub

sudo reboot

RedHat

1.

Run the following commands:
sudo grubby —-update-kernel=ALL —args="iommu.passthrough=0"

sudo reboot

SUSE

1.

Edit the /etc/default/grub file.

2. On the line that contains the GRUB_CMDLINE_LINUX string, append the

iommu.passthrough=08 parameter, and run the following commands:
sudo update-bootloader --refresh

sudo reboot

Automatic NUMA Scheduling and
Balancing

When using a Grace Hopper system, we recommend that you do not use Automatic
NUMA Scheduling and Balancing (AutoNUMA) features of the Linux kernel.

This is because of the additional page-faults that are introduced by AutoNUMA, which
can significantly hurt GPU-heavy application performance.

To see the status of AutoNUMA, use cat /proc/sys/kernel/numa_balancing.

If the output is 1, AutoNUMA is enabled, if it is 9, it is disabled.

To disable AutoNUMA in a session, use echo 8 > /proc/sys/kernel/numa_balancing.
To disable AutoNUMA permanently, use echo "kernel.numa_balancing = 8" >>
/etc/sysctl.conf.
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5.8. Swap File Size

This section applies only to Grace Hopper systems.

If an application allocates a large enough fraction of CPU memory, the kernel might
decide to migrate some pages, possibly from third-party applications, from CPU
memory to GPU memory. Currently, this memory can only be reclaimed through a swap
file. We recommend that you have a large enough swap file for these scenarios.

E Note: On a Grace Hopper system, we recommend using a swap file of at least ¥%-% the
aggregate GPU memory size in the system.
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6. Optimizing 10 Performance

6.1. Networking

We recommend that you download the latest driver and firmware for your network
adapter. Before making any changes, contact your network adapter’s vendor for
information about whether the tuning options in this guide are applicable.

6.1.1. NUMA Node

Always ensure that you use local CPU and memory that are in the same NUMA domain as
your network adapter.

To check your network adapter’s NUMA domain, run following commands:

cat /sys/class/net/<ethernet interface>/device/numa_node
cat /sys/class/net/<ethernet interface>/device/local_cpulist

6.1.2. [IRQ Balance

The operating system typically distributes the interrupts among all CPU cores in a
multi-processor system, but this can cause delayed interrupt processing.

To disable this on Linux, run the following command:

sudo systemctl disable irgbalance

6.1.3. Configuring Interrupt Handling

A channel in a network adapter is an IRQ and a set of queues that can trigger that IRQ. .
Typically, you do not want more interrupt queues than the number of cores in the
system, so control the number of interrupt queues in a NUMA domain.

To set the number of channels:

Before you begin, stop the irgbalance service.

1. Check the current settings with the following command:
ethtool -1 <adapter>

2. It tells you the current setting of various queue types.
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3. Set the number of channels, for example:
sudo ethtool -L <adapter> combined 16 tx © rx 0

4. To receive and to transmit (combined), set the receive queue (rx), the transmit queue
(tx), or a combined queue of both types.

5. Contact your vendor for information.
For NVIDIA Mellanox network adapters, to set the appropriate interrupt handling masks,
invoke the following script:

sudo set_irq_affinity.sh <adpater>

This script comes with a MOFED installation.

6.1.4. TX/RX Queue Size

The NIC’s queue size dictates how many ring buffers are allocated for DMA transfer. To
help prevent package drops, we recommend that you set the size to the maximum
allowed value. You can also set it to a value that works best for your use case.

To query the current setting of the queue size:

ethtool -g enpl1s@
Ring parameters for ibp1s9:
Pre-set maximums:

RX: 8192

RX Mini: n/a

RX Jumbo: n/a

TX: 8192
Current hardware settings:
RX: 512

RX Mini: n/a

RX Jumbo: n/a

TX: 1024

To set the queue size of a NIC:

sudo ethtool -G <adapter> rx <value> tx <value>

6.1.5. Large Receive Offload

Depending on your use case, you can optimize for max throughput or best latency, but
rarely both. Enabling Large Receive Offload (LRO) is a typical setting to optimize for
maximum network throughput, but it might negatively affect the network latency.
Contact your network adapter vendors for more information about whether LRO is
supported and the best practices for usage.

To enable/disable LRO:

sudo ethtool 1lro <on|off>
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6.1.6. MTU

We recommend that you set the network adapter’s MTU to jumbo frame (9000) when
you bring up the network interface:

sudo ifconfig <adapter> <IP_address> netmask <network_mask> mtu 9000 up

To check the current settings, here is a sample command you can run:

ifconfig <adapter> | grep mtu

6.1.7. MAX_ACC_OUT_READ

This setting is NVIDIA Mellanox-specific, and here are recommended values for the
following NICs:

e ConnextX-6: 44

e ConnectX-7: 0 (Device would tune this config automatically)
To check the current settings:

sudo mlxconfig —d <dev> query | grep MAX_ACC_OUT_READ

To set this setting to the recommended value:

1. Run the following commands:

sudo mlxconfig —d <dev> set ADVANCED_PCI_SETTINGS=1
sudo mlxconfig —d <dev> set MAX_ACC_OUT_READ=<value>

2. For this setting to take effect, reboot the system.

6.1.8. PCle Max Read Request

This setting is also NVIDIA Mellanox specific and can be applied to other network
adapters.

Note: Ensure that you set the MRRS to an appropriate value as recommended by your
vendor.

Here is an example that shows you how to set the MRRS of an NVIDIA Mellanox NIC to
4096:

sudo setpci -v -d <dev> cap_exp+8.w=5000:7000

This setting does not persist after the system reboots.
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6.1.9. Relaxed Ordering

Setting the PCle ordering to relaxed for the network adapter sometimes results in better
performance. There are different ways to enable relaxed ordering on the network
adapter. Contact your vendor for more information.

Here is a sample command to check relaxed ordering on NVIDIA Mellanox NICs. For this
command to work, set ADVANCED_PCI_SETTINGS to True (refer to MAX_ACK_OUT_READ for more
information).

sudo mlxconfig —d <dev> query | grep PCI_WR_ORDERING
PCI_WR_ORDERING per_mkey(0)

A value of 0 means that the application or driver determines whether to set RO for its
memory regions.
1. To enable relaxed ordering:
sudo mlxconfig —d <dev> set PCI_WR_ORDERING=1
2. Reboot the system.

6.1.10. 10b PCle tags

Ideally, the PCle endpoint should use 10b PCle tags to ensure that it can issue a large
number of read requests to hide high read latencies when the system is busy. Contact
your endpoint’s vendor for more information.

Here is an example for ConnectX-7:

setpci -s <bus> -v cap_exp+28.w

1000

If bit 12 is 1, then 18b tags are enabled.

If not, set bit 12. The drivers for IB should be unloaded first. Example:
systemctl stop openibd

setpci -s <bus> -v cap_exp+28.w

0040

setpci -s <bus> -v cap_exp+28.w=1040:1040

systemctl start openibd

6.2. Storage/Filesystem

This section provides information about performance tunings that are related to storage
and the filesystem.

6.2.1. Drop Page Cache

When files are read from storage into memories on a Linux system, they are cached in
unused memory areas called page cache. There are times you might want to drop the
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page cache. For example, if you want to benchmark the storage subsystem, you might
need to drop the page cache before benchmarking to see true storage performance.
To drop page cache, run the following command:

echo 3 | sudo tee /proc/sys/vm/drop_caches

To compare how much memory area has been released from dropping the page cache,
compare the Cached: line in the output of following command before and after invoking
the previous command:

cat /proc/meminfo | grep Cached
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7. Measuring Workload Performance

with Hardware Performance
Counters

Many software performance analysis tools rely on event counts from hardware
performance monitoring units (PMUs) to characterize workload performance. This
chapter provides information about how data from PMUs can be gathered and combined
to form metrics for performance optimization. For simplicity, the Linux perf tool is used,
but the same metrics can be used in any tool that gathers hardware performance events
from PMUs, for example, NVIDIA NSIGHT Systems.

7.1.

Introduction to Linux perf

The Linux perf tool is a widely available, open-source tool that is used to collect
application-level and system-level performance data. perf can monitor a rich set of
software and hardware performance events from different sources and, in many cases,
does not require administrator privileges (for example, root).

Installing perf depends on the distribution:

Ubuntu: apt install linux-tools-$(uname -r)
Red Hat: dnf install perf-$(uname -r)
SLES: zypper install perf

perf gathers data from PMUs by using the perf_event system that is provided by the
Linux kernel. Data can be gathered for the lifetime of a process or for a specific period.

perf supports the following measurement types:

Performance summary (perf stat): perf collects the total PMU event counts for a
workload and provides a high-level summary of the basic performance
characteristics.

This is a good approach for a first-pass performance analysis.

Event-based sampling (perf record): perf periodically gathers PMU event counters
and relates this data to source code locations.

The event counts are gathered when a specially configured event counter overflows,
which causes an interrupt that contains the instruction pointer addresses and
register information. perf uses this information to build stack traces and
function-level annotations to characterize the performance of functions of interest
on specific call paths. At a high level, this is a good approach for detailed
performance characterization after an initial workload characterization. After
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gathering data with the perf record command, to analyze the data, use the perf
report or perf annotate commands.

7.2. Configuring Perf

By default, unprivileged users can only gather information about context-switched
events, which includes most of the predefined CPU core events, such as cycle counts,
instruction counts, and some software events. To give unprivileged access to all PMUs
and global measurements, the following system settings need to be configured:

|§| Note: To configure these settings, you must have root access.

e perf_event_paranoid: This setting controls privilege checks in the kernel.

Setting this to -1 or @ allows non-root users to perform per-process and system-wide
performance monitoring (refer to Unprivileged users for more information).

e kptr_restrict: This setting affects how kernel addresses are exposed.
Setting it to @ assists in kernel symbol resolution.

For example:

$ echo -1 | sudo tee /proc/sys/kernel/perf_event_paranoid

$ echo 0 | sudo tee /proc/sys/kernel/kptr_restrict

To make these settings reboot persistent, follow your Linux distribution’s instructions for
configuring system parameters. Typically, you need to edit /etc/sysctl.conf or create a
file in the /etc/sysctl.d/ folder that contains the following lines:

kernel.perf_event_paranoid=-1
kernel .kptr_restrict=0

Warning: There are security implications for configuring these settings as shown in the
example above. You must read and understand the relevant Linux kernel documentation
and consult your system administrator.
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7.3. Gathering Hardware Performance Data
with Perf

To generate a high-level report of event counts, run the perf stat command. For
example, to count cache miss events, CPU cycles, and CPU instructions for ten seconds:

$ perf stat -a -e cache-misses,cycles,instructions sleep 10

You can also gather information for a specific process:

$ perf stat -e cycles, stalled-cycles-backend ./stream.exe

This counts total CPU cycles and cycles where the CPU is stalled on the frontend or
backend while stream.exe is executing.

The -e flag accepts a comma-separated list of performance events, which can be
predefined, or raw, events. To see the predefined events, type perf list. Raw events are
specified as rxxXx where XXxx is a hexadecimal event number. Refer to the Arm Neoverse
V2 Core Technical Reference Manual for more information about event numbers.

For a more detailed analysis, and gather in event-based sampling mode, run the perf
record command:
$ perf record -e cycles,instructions, dTLB-loads, dTLB-load-misses ./xhpl.exe

S perf report
$ perf annotate

Additional information about basic perf usage is available in the perf man pages.

7.4. Grace CPU Performance Metrics

This section provides formulas for useful performance metrics, which are the functions
of a hardware event count that more fully express the performance characteristics of
the system. For example, a simple count of instructions is less meaningful than the ratio
of instructions-per-cycle, which characterizes the processor’s usage. These metrics can
be used with any tool that gathers hardware performance event data from the Grace
PMUs.

The counters are provided by name, instead of event number because most performance
analysis tools provide names for common events. If your tool does not have a named
counter for one of the following events, use the translation tables in the Arm Neoverse
V2 Core Technical Reference Manual to convert the following event names to raw event
numbers. For example, FP_SCALE_OPS_SPEC has event number 0x80CO and
FP_FIXED_OPS_SPEC has event number Ox80C1, so data for the FLOPS computational
intensity metric can be gathered using perf by measuring raw events 0x80CO and
Ox80CH1:

perf record -e r80CO -e r80C1 ./a.out
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7.4.1. Cycle and Instruction Accounting

e IPC: Instructions retired per cycle.

INST_RETIRED/CPU_CYCLES

e Retiring: Percentage of total slots that are retired operations and indicates efficient
CPU usage.
100* (OP_RETIRED/OP_SPEC) * (1 - (STALL_SLOT/(CPU_CYCLES*8)))

e Backend Stalls: Fraction of total cycles that were stalled because of resource
constraints in the processor backend.
STALL_BACKEND/CPU_CYCLES

o Frontend Stalls: Fraction of total cycles that were stalled because of resource
constraints in the processor frontend.

STALL_FRONTEND/CPU_CYCLES

7.4.2. Computational Intensity

e SVE FLOPS: Floating point operations per second in any precision performed by the
SVE instructions.

Fused instructions count as two operations, for example, a fused multiply-add
instruction increases the count by twice the number of active SVE vector lanes.
These operations do not count as floating point operations that are performed by
scalar or NEON instructions.
FP_SCALE_OPS_SPEC/TIME

e Non-SVE FLOPS: Floating point operations per second in any precision performed by
an instruction that is not an SVE instruction.

Fused instructions count as two operations, for example, a scalar fused multiply-add
instruction increases the count by two, and a fused multiply-add NEON instruction
increases the count by twice the number of vector lanes. These operations do not
count as floating point operations performed by SVE instructions.

FP_FIXED_OPS_SPEC/TIME

e FLOPS: Floating point operations per second in any precision performed by any
instruction.

Fused instructions count as two operations.

(FP_SCALE_OPS_SPEC + FP_FIXED_OPS_SPEC)/TIME
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7.4.3. OQOperation Mix

e Load Percentage: Fraction of total instructions that were speculatively executed
because of the load instructions.

LD_SPEC/INST_SPEC

e Store Percentage: Fraction of total instructions speculatively executed because of
the store instructions.

ST_SPEC/INST_SPEC

e Branch Percentage: Fraction of total instructions that were speculatively executed
because of the branch instructions.

(BR_IMMED_SPEC + BR_INDIRECT_SPEC)/INST_SPEC

e Scalar Integer Percentage: Fraction of total instructions that were speculatively
executed because of the scalar integer instructions.

DP_SPEC/INST_SPEC

E Note: The DP in DP_SPEC stands for Data Processing.

e Scalar Floating Point Percentage: Fraction of total instructions speculatively
executed because of the scalar floating point instructions.

VFP_SPEC/INST_SPEC

e Synchronization Percentage: Fraction of total instructions that were speculatively
executed because of the synchronization instructions.

(ISB_SPEC + DSB_SPEC + DMB_SPEC)/INST_SPEC

e Crypto Percentage: Fraction of total instructions that were speculatively executed
because of the crypto instructions.

CRYPTO_SPEC/INST_SPEC

e SVE SIMD Percentage: Fraction of total instructions that were speculatively executed
because of the integer or floating point SVE SIMD instructions.

SVE_INST_SPEC/INST_SPEC

e NEON SIMD Percentage: Fraction of total instructions that were speculatively
executed because of the integer or floating point NEON SIMD instructions.

ASE_INST_SPEC/INST_SPEC

e SIMD Percentage: Fraction of total instructions that were speculatively executed
because of the integer or floating point vector/SIMD instructions.

(SVE_INST_SPEC + ASE_INST_SPEC)/INST_SPEC
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7.4.4.

7.4.5.

FP16 Percentage: Fraction of total instructions that were speculatively executed
because of the half-precision floating point instructions.

Includes scalar, fused, and SIMD instructions and cannot be used to measure
computational intensity.

FP_HP_SPEC/INST_SPEC

FP32 Percentage: Fraction of total instructions that were speculatively executed
because of the single-precision floating point instructions.

Includes scalar, fused, and SIMD instructions and cannot be used to measure
computational intensity.

FP_SP_SPEC/INST_SPEC

FP64 Percentage: Fraction of total instructions that were speculatively executed
because of the double-precision floating point instructions.

Includes scalar, fused, and SIMD instructions and cannot be used to measure
computational intensity.

FP_DP_SPEC/INST_SPEC

SVE Predication

Full SVE Instructions: Fraction of total instructions that were speculatively executed
because of the SVE SIMD instructions with all active predicates.

SVE_PRED_FULL_SPEC/INST_SPEC

Partial SVE Instructions: Fraction of total instructions that were speculatively
executed because of the SVE SIMD instructions in which at least one element is
FALSE.

SVE_PRED_PARTIAL_SPEC/INST_SPEC

Empty SVE Instructions: Fraction of total instructions that were speculatively
executed because of the SVE SIMD instructions with no active predicate.

SVE_PRED_EMPTY_SPEC/INST_SPEC

Cache Effectiveness

L1 Data Cache Misses: Fraction of total level 1 data cache read or write accesses that
miss.

L1D_CACHE includes reads and writes and is the sum of L1D_CACHE_RD and L1D_CACHE_WR.

LT1D_CACHE_REFILL/L1D_CACHE

L1 Data Cache Miss Rate: Count of level 1 data cache read or write accesses that
miss per kilo-instructions executed.

L1D_CACHE_REFILL/(INST_RETIRED / 1000)
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7.4.6.

L1 Instruction Cache Misses: Fraction of total level 1 instruction cache accesses that
miss.

L1I_CACHE does not measure cache maintenance instructions or non-cacheable
accesses.
LT1I_CACHE_REFILL/L1I_CACHE

L1 Instruction Cache Miss Rate: Count of level 1 instruction cache accesses missed
per kilo-instructions executed.

L1I_CACHE_REFILL/(INST_RETIRED / 1000)

L2 Cache Misses: Fraction of total level 2 cache read or write accesses that miss.

L2D_CACHE does not count cache maintenance operations or snoops from outside the
core.

L2D_CACHE_REFILL/L2D_CACHE

L2 Cache Miss Rate: Count of level 2 cache read or write accesses that miss per
kilo-instructions executed.

L2D_CACHE_REFILL/(INST_RETIRED / 1000)

L3 Cache Read Hits: Fraction of L3 cache read accesses that hit.
(LL_CACHE_RD - LL_CACHE_MISS_RD)/LL_CACHE_RD

L3 Cache Read Misses: Fraction of L3 cache read accesses that miss.

LL_CACHE_MISS_RD/LL_CACHE_RD

L3 Cache Read Miss Rate: Count of L3 cache read accesses missed per
kilo-instructions executed.

LL_CACHE_MISS_RD/(INST_RETIRED / 1000)

TLB Effectiveness

L1 Data TLB Misses: Fraction of total level 1 data TLB accesses that miss.
TLB maintenance instructions are not counted.

LTD_TLB_REFILL/L1D_TLB

L1 Data TLB Miss Rate: Count of level 1 data TLB accesses that miss per
kilo-instructions executed.

L1D_TLB_REFILL/(INST_RETIRED / 16000)

L1 Instruction TLB Misses: Fraction of total level 1 instruction TLB accesses that
miss.

TLB maintenance instructions are not counted.

LTI_TLB_REFILL/LT1I_TLB
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7.4.7.

7.4.8.

e L1 Instruction TLB Miss Rate: Count of level 1 instruction TLB accesses that miss per

kilo-instructions executed.

L1I_TLB_REFILL/(INST_RETIRED / 16000)

Branching

e Branch Mispredictions: Fraction of architecturally executed branches that were

mispredicted.

BR_MIS_PRED_RETIRED/BR_RETIRED

e Branch Misprediction Rate: Count of branches that were mispredicted for each
kilo-instructions that were executed.

BR_MIS_PRED_RETIRED/(INST_RETIRED / 1000)

Grace Uncore PMU Units

Grace includes the following uncore PMUs that are registered by the PMU driver with the

following naming conventions:

Table 7-1.

| System

Scalable Coherency Fabric

NVLINK-C2CO

PCle

|
|
| NVLINK-C2C1 (Grace-Hopper Only)
|
|

CNVLINK (Grace-Hopper Only)

Grace Uncore PMU Units

Uncore PMU name

nvidia_scf_pmu_<socket-id>

nvidia_nvlink_c2c0_pmu_<socket-id>

nvidia_nvlink_c2c1_pmu_<socket-id>

nvidia_pcie_pmu_<socket-id>

nvidia_cnvlink_pmu_<socket-id>

The traffic pattern determines which PMU is used for measuring the different access

types.

Table 7-2 provides information about PMU accounting for access patterns on the NVIDIA
Grace CPU Superchip.

Table 7-2. PMU Accounting for Access Patterns on the Grace Superchip
Source - Socket A
Destination Socket A CPU Socket B PCle Socket B PCIE reads
PCIR/W strongly ordered or relaxed order
(SO) writes (RO) writes
Local memory PCle PMU SCF PMU SCF PMU NVIink-C2C0O PMU
Remote PCle PMU SCF PMU N/A N/A
memory over
NVLink-C2C
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Table 7-3 provides information about PMU accounting for access patterns on the NVIDIA
Grace Hopper Superchip.

Table 7-3. PMU Accounting for Access Patterns on the Grace Hopper

Superchip
Source
Socket A GPU ATS GPU Accesses Local CPU
PCIR/W Translated not translated
Accesses by ATS
Destina | Local PCle PMU NVLink-C2CO NVLink-C2C1 SCF PMU
tion CPU PMU PMU
memory
Local PCle PMU N/A NVLink-C2C1 SCF PMU
GPU PMU
memory

Uncore PMU events are not attributable to a core, and perf must be run in system-wide
mode, as opposed to per-thread mode. If the measurement requires multiple events to
be measured, perf tools support event grouping from the same PMU.

For example, to monitor SCF CYCLES, CMEM_WB_ACCESS and CMEM_WR_ACCESS events from the
SCF PMU for socket O:
$ perf stat -a -e
duration_time, ' {nvidia_scf_pmu_0/cycles/,nvidia_scf_pmu_0/cmem_wb_access/,nvidia_scf_pmu_
@/cmem_wr_access/}' cmem_write_test
Performance counter stats for 'system wide':

168225760 ns duration_time

10515321 nvidia_scf_pmu_0/cycles/
191567 nvidia_scf_pmu_0/cmem_wb_access/
0 nvidia_scf_pmu_0/cmem_wr_access/

0.168225760 seconds time elapsed
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7.4.9. Scalable Coherency Fabric PMU Accounting
E Note: The bandwidth metrics in this section are in MBs per second.

This section provides additional formulas for useful performance metrics based on
events provided by the Scalable Coherency Fabric (SCF) PMU.

e Duration: Duration in nanoseconds

DURATION_TIME
e Cycles: SCF cycle count

CYCLES

e SCF local CPU memory write bandwidth: Write bandwidth from SCF to local CPU
memory

CMEM_WR_TOTAL_BYTES*1000/DURATION_TIME

e SCF local CPU memory read bandwidth: Read bandwidth from SCF to local CPU
memory.
Total “beats” are measured with each beat reading 32 bytes.
CMEM_RD_DATA*32%1000/DURATION_TIME

e SCF local GPU memory write bandwidth: Write bandwidth from SCF to local GPU

memory

GMEM_WR_TOTAL_BYTES*1000/DURATION_TIME

e SCF local GPU memory read bandwidth: Read bandwidth from SCF to local GPU
memory.
Total “beats” are measured with each beat reading 32 bytes.
GMEM_RD_DATA*32*1000/DURATION_TIME

e SCF remote memory write bandwidth: Write bandwidth from SCF to remote socket
memory

REMOTE_SOCKET_WR_TOTAL_BYTES*1000/DURATION_TIME

e SCF remote memory read bandwidth: Read bandwidth from SCF to remote socket
memory.
Total “beats” are measured with each beat reading 32 bytes.

REMOTE_SOCKET_RD_DATA#*32+*1000/DURATION_TIME
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e SCF local CPU memory write utilization percentage: Percent utilization from SCF to
local CPU memory for writes.
A total of CPU memory writeback (CMEM_WB_ACCESS) and write-unique and
non-coherent write requests (CMEM_WR_ACCESS) that are divided by the maximum writes
(8*CYCLES).

((CMEM_WB_ACCESS + CMEM_WR_ACCESS)/(8*CYCLES)) * 100.0

e SCF local GPU memory write utilization percentage: Percent utilization from SCF to
local GPU memory for writes.
A total of the local GPU memory writeback (MEM_WB_ACCESS) and write-unique and
the non-coherent write requests (GMEM_WR_ACCESS) that are divided by the maximum
writes (4*CYCLES).

Access to local GPU memory utilization:
( (GMEM_WB_ACCESS + GMEM_WR_ACCESS) / (4*CYCLES)) * 1060.0

e SCF remote memory write utilization percentage:

Percent utilization from SCF to remote socket memory for writes. A total of the
remote socket memory writeback ( SOCKET_{0,1}_WB_ACCESS) and the write-unique and
non-coherent write requests SOCKET_{0,1}_WR_ACCESS) that are divided by the maximum
writes (2*CYCLES).

Socket O access to socket T memory:
(( SOCKET_1_WB_ACCESS + SOCKET_1_WR_ACCESS) / (2*CYCLES)) * 100.0

Socket 1 access to socket O memory:

(( SOCKET_0_WB_ACCESS + SOCKET_0_WR_ACCESS) /(2*CYCLES)) * 100.0

e SCF local CPU memory read utilization percentage: Percent usage from SCF to local
CPU memory for reads.

Total local CPU memory reads (CMEM_RD_ACCESS) that are divided by the maximum
reads (8 * CYCLES).

((CMEM_RD_ACCESS) / (8*CYCLES)) * 100.8

e SCF local GPU memory read utilization percentage: Percent usage from SCF to the
local GPU memory reads.

A total of the local GPU memory reads (GMEM_RD_ACCESS) that are divided by the
maximum reads (4 * CYCLES).

Access to local GPU memory:

((GMEM_RD_ACCESS) / (4*CYCLES)) * 100.0

NVIDIA Grace Performance Tuning Guide DA-11438-001_04 | 65



e SCF remote memory read utilization percentage:

Percent usage from the SCF remote socket memory for reads.
A total of the remote socket memory reads (SOCKET_{0,1}_RD_ACCESS) that are divided by
the maximum reads (2 * CYCLES).

Socket O access to socket 1 memory:
((SOCKET_1_RD_ACCESS)/(2*CYCLES)) * 100.0
Socket 1 access to socket O memory:

( (SOCKET_@_RD_ACCESS)/(2*CYCLES)) * 100.0

e SCF Frequency: Frequency of SCF cycles in GHz
CYCLES / DURATION

e SCF local CPU memory read latency: Latency of SCF reads to local CPU memory, in
nanoseconds.

(CMEM_RD_OUTSTANDING/CMEM_RD_ACCESS) /(CYCLES/DURATION)

Average cycles per SCF local read request: (CMEM_RD_OUTSTANDING / CMEM_READ_ACCESS )
divided by SCF frequency (CYCLES/DURATION) to determine average nanoseconds per
local read.

e SCF local GPU memory read latency: Latency of SCF reads to local GPU memory, in
nanoseconds.
(GMEM_RD_OUTSTANDING/GMEM_RD_ACCESS) /(CYCLES/DURATION)

Average cycles per SCF local read request: (GMEM_RD_OUTSTANDING/GMEM_READ_ACCESS)
divided by SCF frequency (CYCLES/DURATION) to determine average nanoseconds per
local read.

e SCF Remote memory read latency: Latency of SCF reads to remote memory in
nanoseconds.
Average cycles per SCF remote read request: (SOCKET_{0, 1}_RD_OUTSTANDING /
SOCKET_{®, 1}_RD_ACCESS ) divided by SCF frequency (CYCLES/DURATION) to determine
average nanoseconds per remote socket read.

Socket O access to socket 1 memory:
(SOCKET_1_RD_OUTSTANDING/SOCKET_1_RD_ACCESS)/(CYCLES/DURATION)

Socket 1 access to socket O memory:
(SOCKET_0_RD_OUTSTANDING/SOCKET_0_RD_ACCESS)/(CYCLES/DURATION)
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7.4.10. PCle PMU Accounting

E Note: The bandwidth metrics in this section are in GBPs per second.

The PCle PMU requires an event filter to be specified when counting events, and the
Grace CPU has 10 PCle root ports per socket.

The root_port bitmap parameter can be passed to select the port(s) to monitor. For
example, the root_port=0xF parameter corresponds to root ports O through 3

Example: To count the rd_bytes_loc event from PCle root port O and 1 of socket O:
$ perf stat -a -e nvidia_pcie_pmu_0/rd_bytes_loc, root_port=0x3/

Example: To count the rd_bytes_loc event from PCle root port O and 1 in socket 1 and
measure the test duration (in nanoseconds):

$ perf stat -a -e duration_time, '{nvidia_pcie_pmu_1/rd_bytes_loc, root_port=0x3/}’
The rest of this section provides additional formulas for useful performance metrics
based on events provided by the PCle PMU.

e PCle read bandwidth: PCI Express read bandwidth, in GBps
Number of bytes read from local memory and remote memory (RD_BYTES_LOC,
RD_BYTES_REM) divided by the duration in nanoseconds.

(RD_BYTES_LOC + RD_BYTES_REM) / DURATION_TIME

e PCle write bandwidth: PCI Express write bandwidth, in GBps
Number of bytes written to local or remote memory (WR_BYTES_LOC,
WR_BYTES_REM), divided by the duration in nanoseconds.

(WR_BYTES_LOC + WR_BYTES_REM) / DURATION_TIME

e PCle bidirectional bandwidth: PCI Express read and write bandwidth, in GBps
Number of bytes read or written from local or remote memories, divided by the
duration in nanoseconds.
(RD_BYTES_LOC + RD_BYTES_REM + WR_BYTES_LOC + WR_BYTES_REM / DURATION_TIME)

e PCle read utilization percentage: Percent utilization of PCI Express for reads
Number of read requests to local and remote memories (RD_REQ_LOC,
RD_REQ_REM) divided by the maximum number of read requests per cycle (1 per
port, total 10) times the number of cycles.

( (RD_REQ_LOC + RD_REQ_REM) / (10 * CYCLES) ) * 100.0
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e PCle write utilization percentage: Percent utilization of PCI Express for writes
Number of write requests to local and remote memories (WR_REQ_LOC,
WR_REQ_REM) divided by the maximum number of write requests per cycle (1 per
port, total 10) times the number of cycles.

( (WR_REQ_LOC + WR_REQ_REM) / (10 * CYCLES) ) * 100.0

e PCle Frequency: Frequency of PCle cycles in GHz
CYCLES / DURATION

e PCIE local memory read latency: Latency of PCle reads to local memory, in
nanoseconds.

(RD_CUM_OUTS_LOC / RD_REQ_LOC)/(CYCLES/DURATION)

Average cycles per PCle local read request: (RD_CUM_OUTS_LOC / RD_REQ_LOC)
divided by PCle frequency (CYCLES/DURATION) to determine average nanoseconds
per local read.

e PCIE remote memory read latency: Latency of PCle reads to remote CPU memory, in
nanoseconds.
(RD_CUM_OUTS_REM / RD_REQ_REM)/(CYCLES/DURATION)

Average cycles per PCle remote read request: (RD_CUM_OUTS_REM / RD_REQ_REM)
divided by PCle frequency (CYCLES/DURATION) to determine average nanoseconds
per remote read.

7.4.11. NVLink C2C Accounting

E Note: The bandwidth metrics in this section are in GBPs per second.

The NVLink C2C PMU provides performance metrics for the CPU or GPU memory
accesses via the NVLink Chip-2-Chip (C2C) interconnect.

Two C2C PMUs, NVLINK-C2CO, and NVLINK-C2C1 are available and cover different types
of traffic. Refer to Table 7-2 and Table 7-3 for more information about the traffic
patterns covered by each PMU. The NVLINK-C2C1 PMU is unused on the Grace
Superchip.

This section provides additional formulas for useful performance metrics based on
events provided by the NVLINK C2C PMU.

e NVLink C2C read bandwidth: NVLink C2C read bandwidth, in GBps
Number of bytes read from local memory or remote memory (RD_BYTES_LOC,
RD_BYTES_REM) divided by the duration in nanoseconds.

(RD_BYTES_LOC + RD_BYTES_REM) / DURATION_TIME
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e NVLink C2C write bandwidth: NVLink C2C write bandwidth, in GBps
Number of bytes written to local or remote memory (WR_BYTES_LOC,
WR_BYTES_REM), divided by the duration in nanoseconds.

(WR_BYTES_LOC + WR_BYTES_REM) / DURATION_TIME

e NVLink C2C bidirectional bandwidth: NVLink C2C read and write bandwidth, in GBps
Number of bytes read or written from local or remote memories, divided by the
duration in nanoseconds.

(RD_BYTES_LOC + RD_BYTES_REM + WR_BYTES_LOC + WR_BYTES_REM / DURATION_TIME)

e NVLink C2C read utilization percentage: NVLink C2C utilization for reads
Number of read requests to local and remote memories (RD_REQ_LOC,
RD_REQ_REM) divided by the maximum number of read requests per cycle (10) times
the number of cycles.

( (RD_REQ_LOC + RD_REQ_REM) / (1@ * CYCLES) ) * 100.0

e NVLink C2C write utilization percentage: NVLink C2C utilization for writes
Number of write requests to local and remote memories (WR_REQ_LOC,
WR_REQ_REM) divided by the maximum number of write requests per cycle (10)
times the number of cycles.

( (WR_REQ_LOC + WR_REQ_REM) / (1@ * CYCLES) ) * 100.0

e NVLink C2C Frequency: Frequency of NVLink C2C cycles in GHz
CYCLES / DURATION

e NVLink C2C local memory read latency: Latency of NVLink C2C reads to local
memory, in nanoseconds.

(RD_CUM_OUTS_LOC / RD_REQ_LOC)/(CYCLES/DURATION)

Average cycles per C2C local read request (RD_CUM_OUTS_LOC / RD_REQ_LOC)
divided by C2C frequency (CYCLES/DURATION) to determine average nanoseconds
per local read.

e NVLink C2C remote memory read latency: Latency of NVLink C2C reads to remote
CPU memory, in nanoseconds.

(RD_CUM_OUTS_REM / RD_REQ_REM)/(CYCLES/DURATION)

Average cycles per C2C remote read request (RD_CUM_OUTS_REM / RD_REQ_REM)
divided by PCle frequency (CYCLES/DURATION) to determine average nanoseconds
per remote read.

7.4.12. Profiling CPU Behavior with Nsight Systems

The Nsight Systems tool (also referred to as nsys) profiles the system’s compute units
including the CPUs and GPUs (refer to Nsight Systems | NVIDIA Developer for more
information). The tool can trace more than 25 APIs including CUDA APIs, sample CPU
instruction pointers/backtraces, sample both CPU and SoC event counts, and sample
GPU hardware event counts to provide a system-wide view of a workload’s behavior.
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nsys can sample CPU and SoC events and graph their rates on the nsys Ul timeline. It can
generate the metrics described in Grace CPU Performance Metrics to NVLink C2C
Accounting and also graph them on the nsys Ul timeline. If CPU IP/backtrace data is
gathered concurrently, users can determine when CPU and SoC events are extremely
active (or inactive) and correlate that information with the IP/backtrace data to
determine which workload aspect was actively running at that time.

Figure 7.1 shows a sample nsys profile timeline. In this case, two Grace C2CO socket
metrics were collected in addition to the IPC (Instructions per Cycle) core metric on each
CPU. The C2C0O metrics (C2CO read and write utilization percentage) show GPU access to
the CPU’s memory. The IPC metric shows that thread 2965407, which is running on CPU
146, is memory bound (the IPC value is ~0.05) right before the C2CO activity. The
orange-yellow tick marks under thread 2965407 represent individual instruction
pointer/backtrace samples. Users can hover over these samples to get a backtrace that
represents the code that the thread was executing at that time. This data can be used to
understand what the workload is doing at that time.

Figure 7-1. An Example nsys Timeline

Data on CPU [84.238 ms]
GPU (84238 ms]

e on U 224457 e

Use the --cpu-core-metrics, --cpu-socket-metrics, and --sample nsys CLI switches to
collect the above data. Also, see the --cpu-core-events, --cpu-socket-events, and
--cpuctxsw nsys CLI switches that are used to profile CPU and/or SoC performance
issues. For more information, run nsys profile --help.
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8. Compilers

Many commercial and open-source compilers fully support NVIDIA Grace. This section
provides information about the available compilers, the recommended versions, and the
recommended command-line options.

8.1. NVIDIA HPC Compilers

The NVIDIA HPC SDK includes proven compilers, libraries, and software tools. The HPC
SDK compilers (NVHPC) enable cross-platform C, C++, and Fortran programming for
NVIDIA GPUs and multicore Arm, OpenPOWER, or x86-64 CPUs. The compilers are ideal
for HPC modeling and simulation applications that are written in C, C++, or Fortran with
OpenMP, OpenACC, and NVIDIA CUDA®.

When building natively on Grace, NVHPC version 23.3 or later automatically optimizes for
Grace without additional command-line options. To verify, pass the --version
command-line option and look for -tp neoverse-v2 in the output:

nvidia@localhost:~$ nvc --version

nvc 23.3-0 linuxarm64 target on aarch64 Linux -tp neoverse-v2
NVIDIA Compilers and Tools
Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.

The optimization and floating-point control flags for NVHPC are the same on NVIDIA
Grace as on other CPUs. Refer to the NVIDIA HPC Compilers User’s Guide for more
information.

E Note: NVIDIA provides the BLAS, LAPACK, and FFT math libraries that are optimized for
Grace, and we strongly recommend that you use them.
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8.2. GNU Toolchain

When using the GNU toolchain, we recommend GCC version 12.3 or later. When possible,
always use the latest version of GCC. GCC version 7 can be used on NVIDIA Grace, but
because these older compilers target earlier Armv8-A architecture variants, the
performance will be suboptimal. The latest and greatest binary versions of GNU toolchain
can be found from your GNU/Linux distribution or downloaded using Spack.

Even with the latest version of GCC, unless your toolchain has been configured and built
for Grace, additional command-line options are necessary to generate optimal code for
NVIDIA Grace. If no additional flags are provided, GCC will generate code targeting a
generic Armv8-A CPU. The recommended flags are provided in Table 8-1.

Note: More aggressive optimizations will trade floating point accuracy for

performance.
Table 8-1. Organization Levels and Flags
Optimization Level Flags Notes
Aggressive -Ofast Enable fast math optimizations
-mcpu=neoverse-v2
Moderate -03 -mcpu=neoverse-v2 | Recommended in most cases

The -mcpu=neoverse-v2 flag is used in all cases. We recommend that you use the -mcpu
flag instead of the -march and -mtune flags because this flag will select the CPU that you
were targeting for convenience instead of specifying the architecture with the required
extensions using the -march option and then specifying the -mtune option. Refer to
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html#aarch64-feature-modifiers for
more information about the instruction set features that can be turned on and off on a
per-feature basis.

The __sync built-ins in GNU C or GNU C++ are precursors to modern atomic extensions
that are used in the C11 / C++11 standards. These built-ins are now considered legacy,
and users should port the atomic extensionsin C11 / C++11. This is good advice for any
platform, but it is particularly relevant for CPUs implementing the AArch64 architecture
because the legacy __sync built-ins tend to enforce more strict orderings than are
necessary. Refer to https://gcc.gnu.org/onlinedocs/gcc/ 005f 005fatomic-Builtins.html
for more information.

The C standard does not specify the signedness of the char type. On x86, a char is
assumed to be signed by default, and on Arm, char is assumed to be unsigned. This
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difference can be addressed by using the standard int types that specify signedness
when the sign of a number is important (for example, uint8_t and int8_t) or by compiling
with the -fsigned-char flag to set the signedness of char at compile time.

Refer to https://gcc.gnu.org/onlinedocs/gcc-13.1.0/gcc/AArch64-Options.html for more
information about the command-line options that are required for the AArch64 target in
GCC.

8.3. LLVM Clang and Flang Compilers

When you use LLVM, we recommend LLVM version 16 or later. LLVM compilers support
Arm64 CPUs but mainly for C and C++ (the clang and clang++ commands). LLVM's Fortran
compiler (flang) is not yet widely used and is still maturing. Like the GNU compilers, Clang
prioritizes portability over performance and additional flags must be added to enable
optimization.

NVIDIA provides builds of LLVM Clang at developer.nvidia.com/grace/clang that are
specially packaged for the Grace CPU. These builds are mainline Clang that are
configured to support Grace, so the builds can be used as a drop-in replacement for
Clang in your current workflows.

Table 8-2. Optimization Levels and Flags

Optimization Level Flags Notes

Aggressive -Ofast Enable fast math optimizations
-mcpu=neoverse-v2

Moderate -03 -mcpu=neoverse-v2 | Recommended in most cases

Conservative -03 -ffp-contract=off Disable fused math operations
-mcpu=neoverse-v2

The -mcpu=neoverse-v2 flag is used in all cases, and we recommend using the -mcpu flag
instead of the -march and -mtune flags.

8.4. Arm Compiler for Linux and Other
Commercial Compilers

The Arm Compiler for Linux (ACfL) is a commercially supported, closed-source compiler
provided by Arm. It is free and is bundled with the optimized BLAS, LAPACK, and FFT
libraries. Arm supports NVIDIA Grace in ACfL through support for the Neoverse-V2 CPU
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microarchitecture. Refer to Arm Compiler for Linux for more information about compiler
options, flags, and support.

System vendors, such as HPE/Cray and Fuijitsu, also provide compilers that target their
own Arm-based products. The code generated by these vendor compilers tends to be
highly tuned for the target platform, which makes them a good choice in
performance-critical situations. Contact the system vendor for information and support.

8.5. Arm Architecture Feature Support

Like other major CPU architectures, there are instructions that cannot be reached
directly by translating the C / C++ language.. These instructions are usually supported by
the weight of compiler intrinsics and a set of feature macros that can be used in
applications to test for the specific architecture extension support at compile time. The
common set of intrinsics, additional data types, architectural feature macros among
others for the Arm architecture for compilers are defined by the Arm C / C++ Language
Extensions (ACLE). Refer to https://github.com/ARM-software/acle for more information.

A discussion on ACLE and intrinsics programming is out of scope for this document and
the users are advised to refer to it and their compiler documentation to check for the
level of compliance with the same.

NVIDIA Grace implements the Armv9-A architecture and several of the Armv9-A
architectural extensions. To see which Arm architectural features are enabled at compile
time, run the following command:

gcc -dM -E -mcpu=neoverse-v2 - < /dev/null | grep ARM_FEATURE

Here is an example of the output with GCC 12 on NVIDIA Grace:

nvidia@localhost:~$ gcc -dM -E -mcpu=native - < /dev/null | grep ARM_FEATURE | sort
#define __ARM_FEATURE_AES 1

#define __ARM_FEATURE_ATOMICS 1

#define __ARM_FEATURE_BF16_SCALAR_ARITHMETIC 1
#define __ARM_FEATURE_BF16_VECTOR_ARITHMETIC 1
#define __ARM_FEATURE_CLZ 1

#define __ARM_FEATURE_COMPLEX 1

#define __ARM_FEATURE_CRC32 1

#define __ARM_FEATURE_CRYPTO 1

#define __ARM_FEATURE_FMA 1

#define __ARM_FEATURE_FP16 FML 1

#define __ARM_FEATURE_FP16_SCALAR_ARITHMETIC 1
#define __ARM_FEATURE_FP16_VECTOR_ARITHMETIC 1
#define __ARM_FEATURE_FRINT 1

#define __ARM_FEATURE_IDIV 1

#define __ARM_FEATURE_JCVT 1

#define __ARM_FEATURE_MATMUL_INT8 1

#define __ARM_FEATURE_NUMERIC_MAXMIN 1

#define __ARM_FEATURE_QRDMX 1
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#define __ARM_FEATURE_SHA2 1

#define __ARM_FEATURE_SHA3 1

#define __ARM_FEATURE_SHA512 1

#define __ARM_FEATURE_SM3 1

#define __ARM_FEATURE_SM4 1

#define __ARM_FEATURE_SVE 1

#define __ARM_FEATURE_SVE2 1

#define __ARM_FEATURE_SVE2_AES 1
#define __ARM_FEATURE_SVE2_BITPERM 1
#define __ARM_FEATURE_SVE2_SHA3 1
#define __ARM_FEATURE_SVE2_SM4 1
#define __ARM_FEATURE_SVE_BITS @
#define __ARM_FEATURE_SVE_MATMUL_INTS8 1
#define __ARM_FEATURE_SVE_VECTOR_OPERATORS 1
#define __ARM_FEATURE_UNALIGNED 1

Refer to the output of the following command for more information about target

specific flags on arm64:
gcc -Q --help=target

Here is the sample output:

nvidia@localhost:~$ gcc -Q --help=target
The following options are target specific:

-mabi= 1p64
-march= armv8-a
-mbig-endian [disabled]
-mbionic [disabled]
-mbranch-protection=

-mcmodel= small

-mcpu= generic
-mfix-cortex-a53-835769 [enabled]
-mfix-cortex-a53-843419 [enabled]
-mgeneral-regs-only [disabled]
-mglibc [enabled]
-mharden-sls=

-mlittle-endian [enabled]
-mlow-precision-div [disabled]
-mlow-precision-recip-sqrt [disabled]
-mlow-precision-sqrt [disabled]
-mmusl [disabled]
-momit-leaf-frame-pointer [enabled]
-moutline-atomics [enabled]
-moverride=<string>

-mpc-relative-literal-loads [enabled]
-msign-return-address= none
-mstack-protector-guard-offset=

-mstack-protector-guard-reg=

-mstack-protector-guard= global
-mstrict-align [disabled]
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-msve-vector-bits=<number> scalable

-mtls-dialect= desc

-mtls-size= 24
-mtrack-speculation [disabled]
-mtune= generic
-muclibc [disabled]
-mverbose-cost-dump [disabled]

Known AArch64 ABIs (for use with the -mabi= option):
ilp32 1p64

Supported AArch64 return address signing scope (for use with
-msign-return-address= option):
all non-leaf none

The code model option names for -mcmodel:
large small tiny

Valid arguments to -mstack-protector-guard=:
global sysreg

The possible SVE vector lengths:
1024 128 2048 256 512 scalable

The possible TLS dialects:
desc trad

8.6. Using Code Locality to Improve
Performance

Improving executable code locality can increase efficiency on Grace, which benefits
the instruction cache hit rate, the iTLB hit rate, and branch prediction. Executables
and large shared objects with code spread over a wide virtual address range are
likely to see performance improvements by grouping frequently called functions
into as few naturally aligned 2MB virtual address ranges as possible. The perf
record and perf script commands can help determine the observed program
counter addresses over a span of time. To determine whether a given application
might be a candidate for this optimization, we recommend that you count the
number of observed address ranges in the perf output.

For large applications and/or libraries that are confirmed to access more than 30
such ranges in quick succession, this form of optimization might yield speedups of
as much as 50%. To achieve this, there are several ways to rearrange the linked
binary/binaries to group frequently called functions or group functions with the
other functions that they typically call. For example, some forms of automated
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Profile-Guided Optimization (PGO) might be beneficial in this scenario. The perf
record/perf script output can also be used to capture the names of the most
frequently called functions. By compiling with -ffunction-sections, the
frequency-sorted list of observed function names can be used to produce a linker
script that groups the "hot" functions nearby in memory, which achieves the same
goal.

The scripts at https://github.com/NVIDIA/cpu-code-locality-tool can help automate

the process of analyzing perf record output to identify candidates for optimization
and, where applicable, to produce the linker scripts described above.

Optimizations to decrease code size generally might be beneficial because smaller
code naturally spans fewer 2MB ranges. For example, if you are using gcc -03,
consider using -fno-ipa-cp-clone.
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9. Performance Tuning for Grace
Hopper-Based Applications

The NVIDIA GH200 Grace Hopper Superchip supports all features of CUDA Unified
Memory (refer to the CUDA Unified Memory Programming Guide for complete information
about Grace Hopper specific Performance Tuning). Additionally, just like system memory,
page-locked host memory can be accessed and transferred at the full bandwidth of the
NVLink-C2C interconnect.

All performance tuning advice from the NVIDIA Hopper Tuning Guide applies to tuning
application performance for the Hopper GPU on the Superchip. For example, the NVIDIA
Hopper GPU Architecture accelerates dynamic programming by using DPX Instructions.
These instructions benefit applications in industries including healthcare, robotics,
quantum computing, and data science.
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Appendix A: References

Here are links to some additional documentation:

NVIDIA Grace CPU Benchmarking Guide.
CUDA Unified Memory Programming Guide.

Dynamic programming instructions in this blog.

Hopper Tuning Guide
Arm Neoverse V2 (MP158) Software Developer Errata Notice
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