
DU-08141-001 _v12.0 through 12.4 Revision 02 | December 2021

Virtual GPU Software Management SDK

User Guide

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | ii

Table of Contents

Chapter 1. Introduction to the NVIDIA vGPU Software Management SDK..........................1
1.1. NVIDIA vGPU Software Management Interfaces...1

1.2. Introduction to NVML..3

1.3. NVIDIA vGPU Software Management SDK contents...3

Chapter 2. Managing vGPUs from a hypervisor by using NVML... 5
2.1. Determining whether a GPU supports hosting of vGPUs...5

2.2. Discovering the vGPU capabilities of a physical GPU...5

2.3. Getting the properties of a vGPU type...7

2.4. Getting the properties of a vGPU instance..8

2.5. Building an NVML-enabled application for a vGPU host.. 11

Chapter 3. Managing vGPUs from a guest VM.. 12
3.1. NVIDIA vGPU Software Server Interfaces for GPU Management from a Guest VM............. 12

3.2. How GPU engine usage is reported...12

3.3. Using NVML to manage vGPUs... 13

3.3.1. Determining whether a GPU is a vGPU or pass-through GPU...................................... 13

3.3.2. Physical GPU properties that do not apply to a vGPU..13

3.3.2.1. GPU identification properties that do not apply to a vGPU......................................14

3.3.2.2. InfoROM properties that do not apply to a vGPU... 14

3.3.2.3. GPU operation mode properties that do not apply to a vGPU................................. 14

3.3.2.4. PCI Express properties that do not apply to a vGPU... 15

3.3.2.5. Environmental properties that do not apply to a vGPU... 15

3.3.2.6. Power consumption properties that do not apply to a vGPU...................................16

3.3.2.7. ECC properties that do not apply to a vGPU..16

3.3.2.8. Clocks properties that do not apply to a vGPU.. 16

3.3.3. Building an NVML-enabled application for a guest VM... 17

3.4. Using Windows Performance Counters to monitor GPU performance................................17

3.5. Using NVWMI to monitor GPU performance...17

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | iii

List of Figures

Figure 1. NVIDIA vGPU Software server interfaces for GPU management2

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | iv

List of Tables

Table 1. Summary of NVIDIA vGPU Software server interfaces for GPU management2

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 1

Chapter 1. Introduction to the
NVIDIA vGPU Software
Management SDK

The NVIDIA vGPU software Management SDK enables third party applications to monitor and
control NVIDIA physical GPUs and virtual GPUs that are running on virtualization hosts. The
NVIDIA vGPU software Management SDK supports control and monitoring of GPUs from both
the hypervisor host system and from within guest VMs.

NVIDIA vGPU software enables multiple virtual machines (VMs) to have simultaneous, direct
access to a single physical GPU, using the same NVIDIA graphics drivers that are deployed on
non-virtualized operating systems. For an introduction to NVIDIA vGPU software, see Virtual
GPU Software User Guide.

1.1. NVIDIA vGPU Software Management
Interfaces

The local management interfaces that are supported within an NVIDIA vGPU software server
are shown in Figure 1.

http://docs.nvidia.com/grid/12.0/pdf/grid-vgpu-user-guide.pdf
http://docs.nvidia.com/grid/12.0/pdf/grid-vgpu-user-guide.pdf

Introduction to the NVIDIA vGPU Software Management SDK

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 2

Figure 1. NVIDIA vGPU Software server interfaces for GPU management

For a summary of the NVIDIA vGPU software server interfaces for GPU management,
including the hypervisors and guest operating systems that support each interface, and notes
about how each interface can be used, see Table 1.

Table 1. Summary of NVIDIA vGPU Software server interfaces for GPU
management

Interface Hypervisor Guest OS Notes
nvidia-smi
command

Any supported
hypervisor

Windows,
64-bit
Linux

Command line, interactive use

NVIDIA Management
Library (NVML)

Any supported
hypervisor

Windows,
64-bit
Linux

Integration of NVIDIA GPU management
with third-party applications

NVIDIA Control
Panel

- Windows Detailed control of graphics settings, basic
configuration reporting

Windows
Performance
Counters

- Windows Performance metrics provided by Windows
Performance Counter interfaces

Introduction to the NVIDIA vGPU Software Management SDK

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 3

Interface Hypervisor Guest OS Notes
NVWMI - Windows Detailed configuration and performance

metrics provided by Windows WMI
interfaces

1.2. Introduction to NVML
NVIDIA Management Library (NVML) is a C-based API for monitoring and managing various
states of NVIDIA GPU devices. NVML is delivered in the NVIDIA vGPU software Management
SDK and as a runtime version:

‣ The NVIDIA vGPU software Management SDK is distributed as separate archives for
Windows and Linux.

The SDK provides the NVML headers and stub libraries that are required to build third-
party NVML applications. It also includes a sample application.

‣ The runtime version of NVML is distributed with the NVIDIA vGPU software host driver.

Each new version of NVML is backwards compatible, so that applications written to a version
of the NVML can expect to run unchanged on future releases of the NVIDIA vGPU software
drivers and NVML library.

For details about the NVML API, see:

‣ NVML API Reference Manual

‣ NVML man pages

1.3. NVIDIA vGPU Software Management
SDK contents

The SDK consists of the NVML developer package and is distributed as separate archives for
Windows and Linux:

‣ Windows: grid_nvml_sdk_463.15.zip ZIP archive

‣ Linux: grid_nvml_sdk_460.106.00.tgz GZIP-compressed tar archive

The contents of these archives are summarized in the following table.

Content Windows Folder Linux Directory

SDK Samples And Tools License Agreement

Virtual GPU Software Management SDK User Guide
(this document)

NVML API documentation, on Linux as man pages nvml_sdk/doc/ nvml_sdk/doc/

http://docs.nvidia.com/deploy/pdf/NVML_API_Reference_Guide.pdf

Introduction to the NVIDIA vGPU Software Management SDK

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 4

Content Windows Folder Linux Directory

Sample source code and platform-dependent
build files:

‣ Windows: Visual C project

‣ Linux: Make file

nvml_sdk/example/ nvml_sdk/examples/

NVML header file nvml_sdk/include/ nvml_sdk/include/

Stub library to allow compilation on platforms
without an NVIDIA driver installed

nvml_sdk/lib/ nvml_sdk/lib/

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 5

Chapter 2. Managing vGPUs from a
hypervisor by using NVML

NVIDIA vGPU software supports monitoring and control of physical GPUs and virtual GPUs
that are running on virtualization hosts. NVML includes functions that are specific to managing
vGPUs on NVIDIA vGPU software virtualization hosts. These functions are defined in the
nvml_grid.h header file.

Note: NVIDIA vGPU software does not support the management of pass-through GPUs from a
hypervisor. NVIDIA vGPU software supports the management of pass-through GPUs only from
within the guest VM that is using them.

2.1. Determining whether a GPU supports
hosting of vGPUs

If called on platforms or GPUs that do not support NVIDIA vGPU, functions that are specific to
managing vGPUs return one of the following errors:

‣ NVML_ERROR_NOT_SUPPORTED

‣ NVML_ERROR_INVALID_ARGUMENT

To determine whether a GPU supports hosting of vGPUs, call the
nvmlDeviceGetVirtualizationMode() function.

A vGPU-capable device reports its virtualization mode as
NVML_GPU_VIRTUALIZATION_MODE_HOST_VGPU.

2.2. Discovering the vGPU capabilities of a
physical GPU

To discover the vGPU capabilities of a physical GPU, call the functions in the following table.

Managing vGPUs from a hypervisor by using NVML

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 6

Function Purpose

nvmlDeviceGetVirtualizationMode() Determine the virtualization mode of a
GPU. GPUs capable of hosting virtual
GPUs report their virtualization mode as
NVML_GPU_VIRTUALIZATION_MODE_HOST_VGPU.

nvmlDeviceGetSupportedVgpus() Return a list of vGPU type IDs that are supported
by a GPU.

nvmlDeviceGetCreatableVgpus() Return a list of vGPU type IDs that can currently
be created on a GPU. The result depends on
whether MIG mode is enabled for the GPU.

‣ If MIG mode is not enabled for the GPU, or
if the GPU does not support MIG, the result
reflects the number and type of vGPUs that
are already running on the GPU.

‣ If no vGPUs are running on the GPU, the
list contains the IDs of all vGPU types that
the GPU supports.

‣ If one or more vGPUs are running on the
GPU, but the GPU is not fully loaded, the
list contains only the ID of the type of the
vGPUs that are already running.

‣ If the GPU is fully loaded, the list contains
no vGPU type IDs.

‣ If MIG mode is enabled for the GPU, the
result reflects the number and type of GPU
instances on which no vGPUs are already
running.

‣ If no GPU instances have been created,
the list contains no vGPU type IDs.

‣ If GPU instances have been created, the
list contains only the IDs of the vGPU
types that correspond to GPU instances
on which no vGPU is running.

‣ If a vGPU is running on every GPU
instance, the list contains no vGPU type
IDs.

nvmlDeviceGetActiveVgpus() Return a list of handles for vGPUs currently
running on a GPU.

Managing vGPUs from a hypervisor by using NVML

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 7

Function Purpose

nvmlDeviceGetVgpuMetadata() Return a vGPU metadata structure for the
physical GPU.

2.3. Getting the properties of a vGPU type
To get the properties of a vGPU type, call the functions in the following table.

Function Purpose

nvmlVgpuTypeGetClass() Read the class of a vGPU type (for example,
Quadro, or NVS)

nvmlVgpuTypeGetName() Read the name of a vGPU type (for example, GRID
M60-0Q)

nvmlVgpuTypeGetDeviceID() Read PCI device ID of a vGPU type (vendor/device/
subvendor/subsystem)

nvmlVgpuTypeGetFramebufferSize() Read the frame buffer size of a vGPU type

nvmlVgpuTypeGetNumDisplayHeads() Read the number of display heads supported by a
vGPU type

nvmlVgpuTypeGetResolution() Read the maximum resolution of a vGPU type’s
supported display head

nvmlVgpuTypeGetLicense() Read license information required to operate a
vGPU type

nvmlVgpuTypeGetFrameRateLimit() Read the static frame limit for a vGPU type

nvmlVgpuTypeGetMaxInstances() Read the maximum number of vGPU instances
that can be created on a GPU

nvmlVgpuTypeGetGpuInstanceProfileId() Read the corresponding GPU instance
profile ID of a vGPU type. If MIG mode is
not enabled for the GPU, or if the GPU
does not support MIG, the profile ID is
INVALID_GPU_INSTANCE_PROFILE_ID.

Managing vGPUs from a hypervisor by using NVML

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 8

2.4. Getting the properties of a vGPU
instance

To get the properties of a vGPU instance, call the functions in the following table.

Function Purpose

nvmlVgpuInstanceGetVmID() Read the ID of the VM currently associated with a
vGPU instance

nvmlVgpuInstanceGetUUID() Read a vGPU instance’s UUID

nvmlVgpuInstanceGetMdevUUID() Read a vGPU instance’s virtual function I/O (VFIO)
mediated device (mdev) UUID (hypervisors based
on KVM only)

nvmlVgpuInstanceGetVmDriverVersion() Read the guest driver version currently loaded on
a vGPU instance

nvmlVgpuInstanceGetFbUsage() Read a vGPU instance’s current frame buffer
usage

nvmlVgpuInstanceGetFBCStats() Read the following frame buffer capture (FBC)
statistics for a vGPU instance:

‣ Count of active FBC sessions

‣ Moving average of new frames captured per
second by all active sessions

‣ Moving average of new frame capture latency
in microseconds for all active sessions

nvmlVgpuInstanceGetFBCSessions() For each active FBC session on a vGPU instance,
read the following statistics:

‣ FBC session ID

‣ Owning PID

‣ vGPU instance identifier

‣ Display ordinal associated with the FBC
session.

‣ FBC session type

‣ FBC session flags

‣ Maximum horizontal resolution supported by
the session

Managing vGPUs from a hypervisor by using NVML

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 9

Function Purpose

‣ Maximum vertical resolution supported by the
session

‣ Horizontal resolution requested by the caller
in the capture call

‣ Vertical resolution requested by the caller in
the capture call

‣ Moving average of new frames captured per
second by the session

‣ Moving average new frame capture latency in
microseconds for the session

nvmlVgpuInstanceGetLicenseStatus() Read a vGPU instance’s current license status
(licensed or unlicensed)

nvmlVgpuInstanceGetType() Read the vGPU type ID of a vGPU instance

nvmlVgpuInstanceGetFrameRateLimit() Read a vGPU instance’s frame rate limit

nvmlVgpuInstanceGetEncoderStats() Read the following encoder statistics for a vGPU
instance:

‣ Count of active encoder sessions

‣ One-second trailing average of encoded FPS
of all active sessions

‣ One-second trailing average of encode
latency in microseconds

nvmlVgpuInstanceGetEncoderSessions() For each active encoder session on a vGPU
instance, read the following statistics:

‣ Encoder session ID

‣ Owning PID

‣ Codec type, for example, H.264 or H.265

‣ Encode resolution

‣ One-second trailing averages for encoded
FPS and encode latency

nvmlDeviceGetVgpuUtilization() Read a vGPU instance’s usage of the following
resources as a percentage of the physical GPU’s
capacity:

‣ 3D/Compute

Managing vGPUs from a hypervisor by using NVML

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 10

Function Purpose

‣ Frame buffer bandwidth

‣ Video encoder

‣ Video decoder

nvmlDeviceGetVgpuProcessUtilization() For each process running on a vGPU instance,
read the process ID and usage by the process of
the following resources as a percentage of the
physical GPU’s capacity:

‣ 3D/Compute

‣ Frame buffer bandwidth

‣ Video encoder

‣ Video decoder

nvmlVgpuInstanceGetAccountingMode() Read the accounting mode of the vGPU instance

nvmlVgpuInstanceGetAccountingPids() Read the maximum number of processes that can
be queried and the current list of process IDs

nvmlVgpuInstanceGetAccountingStats() For each process ID returned by
nvmlVgpuInstanceGetAccountingPids(), read
the following statistics:

‣ GPU utilization

‣ Memory utilization

‣ Maximum memory usage

‣ Amount of time the graphics or compute
context was active

‣ Start time of the process

‣ Whether the process is still running

nvmlGetVgpuCompatibility() Return compatibility information about a vGPU
and a physical GPU, such as:

‣ The VM states from which the vGPU can be
run on the physical GPU

‣ Any factors limiting compatibility between the
vGPU and the physical GPU

nvmlVgpuInstanceGetMetadata() Return a vGPU metadata structure for a vGPU and
its associated VM

Managing vGPUs from a hypervisor by using NVML

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 11

2.5. Building an NVML-enabled
application for a vGPU host

Fuctions that are specific to vGPUs are defined in the header file nvml_grid.h.

To build an NVML-enabled application for a vGPU host, ensure that you include nvml_grid.h
in addition to nvml.h:
#include <nvml.h>
#include <nvml_grid.h>

For more information, refer to the sample code that is included in the SDK.

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 12

Chapter 3. Managing vGPUs from a
guest VM

NVIDIA vGPU software supports monitoring and control within a guest VM of vGPUs or pass-
through GPUs that are assigned to the VM. The scope of management interfaces and tools
used within a guest VM is limited to the guest VM within which they are used. They cannot
monitor any other GPUs in the virtualization platform.

For monitoring from a guest VM, certain properties do not apply to vGPUs. The values that the
NVIDIA vGPU software management interfaces report for these properties indicate that the
properties do not apply to a vGPU.

3.1. NVIDIA vGPU Software Server
Interfaces for GPU Management from
a Guest VM

The NVIDIA vGPU software server interfaces that are available for GPU management from a
guest VM depend on the guest operating system that is running in the VM.

Interface Guest OS Notes
nvidia-smi command Windows, 64-bit Linux Command line, interactive use

NVIDIA Management
Library (NVML)

Windows, 64-bit Linux Integration of NVIDIA GPU management with
third-party applications

NVIDIA Control Panel Windows Detailed control of graphics settings, basic
configuration reporting

Windows Performance
Counters

Windows Performance metrics provided by Windows
Performance Counter interfaces

NVWMI Windows Detailed configuration and performance metrics
provided by Windows WMI interfaces

3.2. How GPU engine usage is reported
Usage of GPU engines is reported for vGPUs as a percentage of the vGPU’s maximum possible
capacity on each engine. The GPU engines are as follows:

Managing vGPUs from a guest VM

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 13

‣ Graphics/SM

‣ Memory controller

‣ Video encoder

‣ Video decoder

The amount of a physical engine's capacity that a vGPU is permitted to occupy depends on the
scheduler under which the GPU is operating:

‣ NVIDIA vGPUs operating under the Best Effort Scheduler and the Equal Share Scheduler
are permitted to occupy the full capacity of each physical engine if no other vGPUs are
contending for the same engine. Therefore, if a vGPU occupies 20% of the entire graphics
engine in a particular sampling period, its graphics usage as reported inside the VM is
20%.

‣ NVIDIA vGPUs operating under the Equal Share Scheduler can occupy no more than their
allocated share of the graphics engine. Therefore, if a vGPU has a fixed allocation of 25% of
the graphics engine, and it occupies 25% of the engine in a particular sampling period, its
graphics usage as reported inside the VM is 100%.

3.3. Using NVML to manage vGPUs
NVIDIA vGPU software supports monitoring and control within a guest VM by using NVML.

3.3.1. Determining whether a GPU is a vGPU or
pass-through GPU

NVIDIA vGPUs are presented in guest VM management interfaces in the same fashion as
pass-through GPUs.

To determine whether a GPU device in a guest VM is a vGPU or a pass-through GPU, call the
NVML function nvmlDeviceGetVirtualizationMode().

A GPU reports its virtualization mode as follows:

‣ A GPU operating in pass-through mode reports its virtualization mode as
NVML_GPU_VIRTUALIZATION_MODE_PASSTHROUGH.

‣ A vGPU reports its virtualization mode as NVML_GPU_VIRTUALIZATION_MODE_VGPU.

3.3.2. Physical GPU properties that do not apply to a
vGPU

Properties and metrics other than GPU engine usage are reported for a vGPU in a similar
way to how the same properties and metrics are reported for a physical GPU. However,
some properties do not apply to vGPUs. The NVML device query functions for getting these
properties return a value that indicates that the properties do not apply to a vGPU. For details
of NVML device query functions, see Device Queries in NVML API Reference Manual.

http://docs.nvidia.com/deploy/nvml-api/group__nvmlDeviceQueries.html

Managing vGPUs from a guest VM

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 14

3.3.2.1. GPU identification properties that do not apply to a
vGPU

GPU Property NVML Device Query Function
NVML return code on
vGPU

Serial Number nvmlDeviceGetSerial()

vGPUs are not assigned serial numbers.

NOT_SUPPORTED

GPU UUID nvmlDeviceGetUUID()

vGPUs are allocated random UUIDs.

SUCCESS

VBIOS Version nvmlDevicenvmlDeviceGetVbiosVersion()

vGPU VBIOS version is hard-wired to zero.

SUCCESS

GPU Part Number nvmlDeviceGetBoardPartNumber() NOT_SUPPORTED

3.3.2.2. InfoROM properties that do not apply to a vGPU
The InfoROM object is not exposed on vGPUs. All the functions in the following table return
NOT_SUPPORTED.

GPU Property NVML Device Query Function

Image Version nvmlDeviceGetInforomImageVersion()

OEM Object nvmlDeviceGetInforomVersion()

ECC Object nvmlDeviceGetInforomVersion()

Power Management Object nvmlDeviceGetInforomVersion()

3.3.2.3. GPU operation mode properties that do not apply
to a vGPU

GPU Property NVML Device Query Function
NVML return code on
vGPU

GPU Operation Mode
(Current)

nvmlDeviceGetGpuOperationMode()

Tesla GPU operating modes are not supported on
vGPUs.

NOT_SUPPORTED

GPU Operation Mode
(Pending)

nvmlDeviceGetGpuOperationMode()

Tesla GPU operating modes are not supported on
vGPUs.

NOT_SUPPORTED

Compute Mode nvmlDeviceGetComputeMode()

A vGPU always returns
NVML_COMPUTEMODE_PROHIBITED.

SUCCESS

Driver Model nvmlDeviceGetDriverModel() SUCCESS (Windows)

Managing vGPUs from a guest VM

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 15

GPU Property NVML Device Query Function
NVML return code on
vGPU

A vGPU supports WDDM mode only in Windows
VMs.

3.3.2.4. PCI Express properties that do not apply to a vGPU
PCI Express characteristics are not exposed on vGPUs. All the functions in the following table
return NOT_SUPPORTED.

GPU Property NVML Device Query Function

Generation Max nvmlDeviceGetMaxPcieLinkGeneration()

Generation Current nvmlDeviceGetCurrPcieLinkGeneration()

Link Width Max nvmlDeviceGetMaxPcieLinkWidth()

Link Width Current nvmlDeviceGetCurrPcieLinkWidth()

Bridge Chip Type nvmlDeviceGetBridgeChipInfo()

Bridge Chip Firmware nvmlDeviceGetBridgeChipInfo()

Replays nvmlDeviceGetPcieReplayCounter()

TX Throughput nvmlDeviceGetPcieThroughput()

RX Throughput nvmlDeviceGetPcieThroughput()

3.3.2.5. Environmental properties that do not apply to a
vGPU

All the functions in the following table return NOT_SUPPORTED.

GPU Property NVML Device Query Function

Fan Speed nvmlDeviceGetFanSpeed()

Clocks Throttle Reasons nvmlDeviceGetSupportedClocksThrottleReasons()

nvmlDeviceGetCurrentClocksThrottleReasons()

Current Temperature nvmlDeviceGetTemperature()

nvmlDeviceGetTemperatureThreshold()

Shutdown Temperature nvmlDeviceGetTemperature()

nvmlDeviceGetTemperatureThreshold()

Slowdown Temperature nvmlDeviceGetTemperature()

nvmlDeviceGetTemperatureThreshold()

Managing vGPUs from a guest VM

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 16

3.3.2.6. Power consumption properties that do not apply to
a vGPU

vGPUs do not expose physical power consumption of the underlying GPU. All the functions in
the following table return NOT_SUPPORTED.

GPU Property NVML Device Query Function

Management Mode nvmlDeviceGetPowerManagementMode()

Draw nvmlDeviceGetPowerUsage()

Limit nvmlDeviceGetPowerManagementLimit()

Default Limit nvmlDeviceGetPowerManagementDefaultLimit()

Enforced Limit nvmlDeviceGetEnforcedPowerLimit()

Min Limit nvmlDeviceGetPowerManagementLimitConstraints()

Max Limit nvmlDeviceGetPowerManagementLimitConstraints()

3.3.2.7. ECC properties that do not apply to a vGPU
Error-correcting code (ECC) is not supported on vGPUs. All the functions in the following table
return NOT_SUPPORTED.

GPU Property NVML Device Query Function

Mode nvmlDeviceGetEccMode()

Error Counts nvmlDeviceGetMemoryErrorCounter()

nvmlDeviceGetTotalEccErrors()

Retired Pages nvmlDeviceGetRetiredPages()

nvmlDeviceGetRetiredPagesPendingStatus()

3.3.2.8. Clocks properties that do not apply to a vGPU
All the functions in the following table return NOT_SUPPORTED.

GPU Property NVML Device Query Function

Application Clocks nvmlDeviceGetApplicationsClock()

Default Application Clocks nvmlDeviceGetDefaultApplicationsClock()

Max Clocks nvmlDeviceGetMaxClockInfo()

Policy: Auto Boost nvmlDeviceGetAutoBoostedClocksEnabled()

Policy: Auto Boost Default nvmlDeviceGetAutoBoostedClocksEnabled()

Managing vGPUs from a guest VM

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 17

3.3.3. Building an NVML-enabled application for a
guest VM

To build an NVML-enabled application, refer to the sample code included in the SDK.

3.4. Using Windows Performance
Counters to monitor GPU
performance

In Windows VMs, GPU metrics are available as Windows Performance Counters through the
NVIDIA GPU object.

For access to Windows Performance Counters through programming interfaces, refer to
the performance counter sample code included with the NVIDIA Windows Management
Instrumentation SDK.

On vGPUs, the following GPU performance counters read as 0 because they are not applicable
to vGPUs:

‣ % Bus Usage

‣ % Cooler rate

‣ Core Clock MHz

‣ Fan Speed

‣ Memory Clock MHz

‣ PCI-E current speed to GPU Mbps

‣ PCI-E current width to GPU

‣ PCI-E downstream width to GPU

‣ Power Consumption mW

‣ Temperature C

3.5. Using NVWMI to monitor GPU
performance

In Windows VMs, Windows Management Instrumentation (WMI) exposes GPU metrics in
the ROOT\CIMV2\NV namespace through NVWMI. NVWMI is included with the NVIDIA driver
package. After the driver is installed, NVWMI help information in Windows Help format is
available as follows:
C:\Program Files\NVIDIA Corporation\NVIDIA WMI Provider>nvwmi.chm

https://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx
https://developer.nvidia.com/nvwmi-sdk
https://developer.nvidia.com/nvwmi-sdk
https://msdn.microsoft.com/en-us/library/aa394582%28v=vs.85%29.aspx

Managing vGPUs from a guest VM

Virtual GPU Software Management SDK DU-08141-001 _v12.0 through 12.4 Revision 02 | 18

For access to NVWMI through programming interfaces, use the NVWMI SDK. The NVWMI SDK,
with white papers and sample programs, is included in the NVIDIA Windows Management
Instrumentation SDK.

On vGPUs, some instance properties of the following classes do not apply to vGPUs:

‣ Gpu

‣ PcieLink

Gpu instance properties that do not apply to vGPUs

Gpu Instance Property Value reported on vGPU

gpuCoreClockCurrent -1

memoryClockCurrent -1

pciDownstreamWidth 0

pcieGpu.curGen 0

pcieGpu.curSpeed 0

pcieGpu.curWidth 0

pcieGpu.maxGen 1

pcieGpu.maxSpeed 2500

pcieGpu.maxWidth 0

power -1

powerSampleCount -1

powerSamplingPeriod -1

verVBIOS.orderedValue 0

verVBIOS.strValue -

verVBIOS.value 0

PcieLink instance properties that do not apply to vGPUs

No instances of PcieLink are reported for vGPU.

https://developer.nvidia.com/nvwmi-sdk
https://developer.nvidia.com/nvwmi-sdk

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA GRID, NVIDIA GRID vGPU, NVIDIA Maxwell, NVIDIA Pascal, NVIDIA Turing, NVIDIA Volta, GPUDirect, Quadro, and Tesla are trademarks
or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies
with which they are associated.

Copyright
© 2013-2021 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Introduction to the NVIDIA vGPU Software Management SDK
	1.1. NVIDIA vGPU Software Management Interfaces
	1.2. Introduction to NVML
	1.3. NVIDIA vGPU Software Management SDK contents

	Managing vGPUs from a hypervisor by using NVML
	2.1. Determining whether a GPU supports hosting of vGPUs
	2.2. Discovering the vGPU capabilities of a physical GPU
	2.3. Getting the properties of a vGPU type
	2.4. Getting the properties of a vGPU instance
	2.5. Building an NVML-enabled application for a vGPU host

	Managing vGPUs from a guest VM
	3.1. NVIDIA vGPU Software Server Interfaces for GPU Management from a Guest VM
	3.2. How GPU engine usage is reported
	3.3. Using NVML to manage vGPUs
	3.3.1. Determining whether a GPU is a vGPU or pass-through GPU
	3.3.2. Physical GPU properties that do not apply to a vGPU
	3.3.2.1. GPU identification properties that do not apply to a vGPU
	3.3.2.2. InfoROM properties that do not apply to a vGPU
	3.3.2.3. GPU operation mode properties that do not apply to a vGPU
	3.3.2.4. PCI Express properties that do not apply to a vGPU
	3.3.2.5. Environmental properties that do not apply to a vGPU
	3.3.2.6. Power consumption properties that do not apply to a vGPU
	3.3.2.7. ECC properties that do not apply to a vGPU
	3.3.2.8. Clocks properties that do not apply to a vGPU

	3.3.3. Building an NVML-enabled application for a guest VM

	3.4. Using Windows Performance Counters to monitor GPU performance
	3.5. Using NVWMI to monitor GPU performance

