NVIDIA

Virtual GPU Software

User Guide

DU-06920-001 _v17.0 through 17.2 May 2024

Table of Contents

Chapter 1. Introduction to NVIDIA VGPU SOftwWare.......cccccoviiieecessesceeeesesesse e 1
1.1. How NVIDIA VGPU SOftWare IS USEd.. ..o 1
1.1.2. GPU PaSS-TRIOUGN. ... 1
1.1.3. Bare-Metal DePIOYMENT. ...ttt 1
1.2. Primary Display Adapter Requirements for NVIDIA vGPU Software Deployments...... 2
1.3. NVIDIA VGPU SOftWAre FEAtUIMES. ...t 3
1.3.1. API SUPPOrt 0N NVIDIA VGPU.....oosesssiseissssee s 3
1.3.2. NVIDIA CUDA Toolkit and OpenCL Support on NVIDIA vGPU Software..........ccc.......... 4
1.3.3. AAditional VWS FEATUIES. ...t 7
1.3.4. NVIDIA GPU Cloud (NGC) Containers Support on NVIDIA vGPU Software................... 8
1.3.5. NVIDIA GPU Operator SUPPOIT ...t 8
1.4. How this GUIde IS OrganiZed.....cccoiiiiicieecese st 9
Chapter 2. Installing and Configuring NVIDIA Virtual GPU Manager.........ccocoeeervnenenes 10
2.1. ADOUT NVIDIA Virtual GPUS. ..ot 10
2.1. 1. NVIDIA VGPU ArCHITECTUIE ..ot 10
2.1.1.1. Time-Sliced NVIDIA vGPU Internal ArchiteCture. ... 11
2.1.2. ADOUL Virtual GPU TYPES. ..t 12
2.1.3. Virtual Display Resolutions for Q-series and B-series VGPUS.........ccccoooeeiviiiniireiinninn 14
2.1.4. Valid Time-Sliced Virtual GPU Configurations on a Single GPU........cccccoeveveverccrcnnn. 14
2. 1.5, GUEST VM SUPPDOI et 15
2.1.5.7. WIindows GUEST VM SUPPOIM ...ttt 15
2.1.5.2. LINUX GUEST VM SUPPOIM . ..ttt 15
2.2. Prerequisites for Using NVIDIA VGPU........ccooocsiesesse e 15
2.3. Switching the Mode of a GPU that Supports Multiple Display Modes........ccccccccvevevnnne.. 17
2.4. Installing and Configuring the NVIDIA Virtual GPU Manager for Citrix Hypervisor.... 17
2.4.1. Installing and Updating the NVIDIA Virtual GPU Manager for Citrix Hypervisor. 18
2.4.1.1. Installing the RPM package for Citrix HyperviSor.......cconineonineisiseeeens 18
2.4.1.2. Updating the RPM Package for Citrix HyperviSor. ..., 18
2.4.1.3. Installing or Updating the Supplemental Pack for Citrix Hypervisor................... 19
2.4.1.4. Verifying the Installation of the NVIDIA vGPU Software for Citrix Hypervisor
PACKAGE s 21
2.4.2. Configuring a Citrix Hypervisor VM with Virtual GPU........ccccoovricccececcceeeeeen, 22
2.4.3. Setting vGPU Plugin Parameters on Citrix HYPerviSOr. ..., 23
2.5. Installing the Virtual GPU Manager Package for Linux KVM.........cooconnnicnnenne. 24
2.6. Installing and Configuring the NVIDIA Virtual GPU Manager for Microsoft Azure
STACK HCl oottt bbbttt 25

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | ii

2.6.1. Installing the NVIDIA Virtual GPU Manager for Microsoft Azure Stack HCl............. 26
2.6.2. Setting the VGPU Series Allowed 0N @ GPU. ... 27
2.6.3. Adding a vGPU to a Microsoft Azure Stack HCI VM. 28
2.6.4. Uninstalling the NVIDIA Virtual GPU Manager for Microsoft Azure Stack HCL.... 29

2.7. Installing and Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise
LINUX KV ML 30

2.7.1. Installing the Virtual GPU Manager Package for Red Hat Enterprise Linux KVM.31
2.7.2. Verifying the Installation of the NVIDIA vGPU Software for Red Hat Enterprise

LINUX VMLt 32

2.8. Installing and Configuring the NVIDIA Virtual GPU Manager for Ubuntu.........ccccoooevunnee. 33
2.8.1. Installing the NVIDIA Virtual GPU Manager for UbBuntuU.........cccooonncnincnecene, 33
2.8.1.1. Installing the Virtual GPU Manager Package for Ubuntu.......cccccovvnnnninnins 33
2.8.1.2. Verifying the Installation of the NVIDIA vGPU Software for Ubuntu................... 34

2.9. Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere....35
2.9.1. Installing and Updating the NVIDIA Virtual GPU Manager for VMware vSphere. 36

2.9.1.1. Installing the NVIDIA Virtual GPU Manager on VMware vSphere..........cccooe..... 36
2.9.1.2. Updating the NVIDIA Virtual GPU Manager for VMware vSphere.............cc......... 38
2.9.1.3. Verifying the Installation of the NVIDIA vGPU Software Package for
VPN 38
2.9.1.4. Managing the NVIDIA GPU Management Daemon for VMware vSphere........ 39
2.9.2. Configuring VMware vMotion with vGPU for VMware vSphere........cconcinninne. 40
2.9.3. Changing the Default Graphics Type in VMware vSphere.......connevninenins 41
2.9.4. Configuring a vSphere VM with NVIDIA VGPU........cccoooiiieieeeeeeeeeeeeeee e, 45
2.9.4.1. Configuring a vSphere 8 VM with NVIDIA VGPU.......cccoooiinnnesnesseeene. 46
2.9.4.2. Configuring a vSphere 7 VM with NVIDIA VGPU........ccoocoiiininceeees 47
2.9.5. Setting vGPU Plugin Parameters on VMware VSphere........cocnnneseneenn. 49
2.10. Configuring the vGPU Manager for a Linux with KVM Hypervisor.........cun. 50
2.10.1. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor............... 50
2.10.2. Preparing the Virtual Function for an NVIDIA vGPU that Supports SR-IOV on
A LINUX WITN KV M HYDEIVISOI oot 51
2.10.3. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor........eeceennnn., 52
2.10.3.1. Creating a Legacy NVIDIA vGPU on a Linux with KVM Hypervisor................... 53
2.10.3.2. Creating an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM
H Y DI VISON oot 55
2.10.3.3. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor that Uses a
Vendor-Specific VFIO FrameWOrKo 57
2.10.4. Adding One or More vGPUs to a Linux with KVM Hypervisor VM..........ccccoovveirniu. 58
2.10.4.1. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using
VTSI s 59

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | iii

2.10.4.2. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using

the QEMU COMMANA LINE ..t 61
2.10.5. Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor...........cc...... 63
2.10.6. Deleting a vGPU on a Linux with KVM HYPEIrVISOr ... 64

2.10.6.1. Deleting a vGPU on a Linux with KVM Hypervisor that Uses the Standard

VFIO FramMEWOTK ...t 65

2.10.6.2. Deleting a vGPU on a Linux with KVM Hypervisor that Uses a Vendor-

SPECITIC VFIO FramMEBWOIK ...ttt 66
2.10.7. Preparing a GPU Configured for Pass-Through for Use with vGPU.........ccccccceeuuc..... 67
2.10.8. NVIDIA vGPU Information in the sysfs File System. ..., 69

2.10.8.1. NVIDIA vGPU Information in the sysfs File System for Hypervisors that

Use the Standard VFIO FrameEeWOrK ... 69

2.10.8.2. NVIDIA vGPU Information in the sysfs File System for Hypervisors that

Use a Vendor-Specific VFIO FrameEWOrK. ... 71

2.11. Putting a GPU INto MIXEd=-SiZ& MOUE........coiieeeeeeeeeseeee e 73
2.12. Placing a vGPU on a Physical GPU in Mixed-Size Mode.........ccoovninninnneincssseens 74
2.13. Disabling and Enabling ECC MEMOIY ... 76
2.13.1. Disabling ECC MEMIOIY ...ttt 76
2.13.2. ENABIING ECC MEMOIY ...t 78
2.14. Configuring a vGPU VM for Use with NVIDIA GPUDirect Storage Technology.............. 79
3.1. Display Resolutions for PhySiCal GPUS.........eeeeeceeeeeeeeee et 82
3.2. Using GPU Pass-Through on CitriX HYPeIrVISO ... 83
3.2.1. Configuring a VM for GPU Pass Through by Using XenCenter........coovnininiins 84
3.2.2. Configuring a VM for GPU Pass Through by USiNg Xe.......cccocoeninininininececns 84
3.3. Using GPU Pass-Through on Red Hat Enterprise Linux KVM or Ubuntu........ccccoouveininnee. 85
3.3.1. Configuring a VM for GPU Pass-Through by Using Virtual Machine Manager
(VIFE=NINAGEN) o 85
3.3.2. Configuring a VM for GPU Pass-Through by UsiNg Virsh........cccccenninnnne. 86
3.3.3. Configuring a VM for GPU Pass-Through by Using the QEMU Command Line....88
3.3.4. Preparing a GPU Configured for vGPU for Use in Pass-Through Mode...................... 88
3.4. Using GPU Pass-Through on Microsoft WindOWS SErver.........ees 91
3.4.1. Assigning a GPU to a VM on Microsoft Windows Server with Hyper-V.........c.......... 91
3.4.2. Returning a GPU to the Host OS from a VM on Windows Server with Hyper-\..93
3.5. Using GPU Pass-Through on VMware VSPRNEre.........cccoiieieesceeseie e 94

4.1. Installing the NVIDIA vGPU Software Graphics Driver and NVIDIA Control Panel on
WVINTOWS. . 96

4.1.1. Installing the NVIDIA vGPU Software Graphics Driver on Windows..........ccccocvvniee 96

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | iv

4.1.2. Installing the Standalone NVIDIA Control Panel App....eeeeee e, 99
4.2. Installing the NVIDIA vGPU Software Graphics Driver on LiNUX.......coconnenenneenne. 99
4.2.1. Installing the NVIDIA vGPU Software Graphics Driver on Linux from a .run File. 101

4.2.2. Installing the NVIDIA vGPU Software Graphics Driver on Ubuntu from a Debian

P ACKAGE R 103
4.2.3. Installing the NVIDIA vGPU Software Graphics Driver on Red Hat Distributions
TrOmM @N RPM PACKAGE. ...t 103
4.2.4. Disabling the Nouveau Driver for NVIDIA Graphics Cards.......coovnernceneineenn. 104
4.2.5. Disabling the Wayland Display Server Protocol for Red Hat Enterprise Linux.... 104
4.2.6. Disabling GSP FIrMWAIE. ..o 105
5.1. Prerequisites for Configuring a Licensed Client of NVIDIA License System................. 107
5.2. Configuring a Licensed Client on Windows with Default Settings.......cccooovevviviininris 108
5.3. Configuring a Licensed Client on Linux with Default SettingsS......cccoovveveveveveiceccieee, 108
5.4. Verifying the NVIDIA vGPU Software License Status of a Licensed Client.......cccc.co..... 110
6.1. Removing a VM’s NVIDIA vVGPU Configuration..........cccceeeeiieeeeeseeeeeeeeeee e, 112
6.1.1. Removing a Citrix Virtual Apps and Desktops VM’s vGPU configuration................ 112
6.1.1.1. Removing a VM'’s vGPU configuration by using XenCenter........ccoooninnnenn. 112
6.1.1.2. Removing a VM’'s vGPU configuration by USING Xe......cccomminrininnerniincincies 113
6.1.2. Removing a vSphere VM's VGPU Configuration........cccconineeseeesees 113
6.2. Modifying GPU AHOCAION POICY ...t 114
6.2.1. Modifying GPU Allocation Policy on Citrix Hypervisor........cneneseeeseseseiene, 114
6.2.1.1. Modifying GPU Allocation Policy by USING X€.......ccccovvriiniiiiiniieieeeiees e, 114
6.2.1.2. Modifying GPU Allocation Policy GPU by Using XenCenter........cccccoovernivrenne. 115
6.2.2. Modifying GPU Allocation Policy on VMware VSPhere.......conenineens 115
6.3. Migrating a VM Configured With VGPU. ... 118
6.3.1. Migrating a VM Configured with vVGPU on Citrix Hypervisor.........n 119
6.3.2. Since 17.2: Migrating a VM Configured with vGPU on a Linux with KVM
H Y DB VISON coi ittt bbbt bbbt bbbt 120
6.3.3. Since 17.2: Suspending and Resuming a VM Configured with vGPU on a Linux
WITN KV HY DEIVISON ..ot 121
6.3.4. Migrating a VM Configured with vGPU on VMware vSphere........cciiveceeennn. 121
6.3.5. Suspending and Resuming a VM Configured with vGPU on VMware vSphere...124
6.4. Enabling Unified Memory for @ VGPU. ... 124
6.4.1. Enabling Unified Memory for a vGPU on Citrix Hypervisor........cccenineincinenne. 124
6.4.2. Enabling Unified Memory for a vGPU on Red Hat Enterprise Linux KVM................ 125
6.4.3. Enabling Unified Memory for a vGPU on VMware vSphere.......cocecevecicecereen. 125

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | v

6.5. Enabling NVIDIA CUDA Toolkit Development Tools for NVIDIA VGPU.........ccccccoeeveinnce. 125

6.5.1. Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA VGPU.......cccccooconninninnenneenn. 126
6.5.2. Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA VGPU......cccccooemininineiniiees 127
6.5.2.1. Supported NVIDIA CUDA Toolkit Profiler Features........ccooevveeeeveeeseceeceeeean, 127
6.5.2.2. Clock Management for a vGPU VM for Which NVIDIA CUDA Toolkit Profilers
ATE ENADIEA. ... 127
6.5.2.3. Limitations on the Use of NVIDIA CUDA Toolkit Profilers with NVIDIA vGPU 128
6.5.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vVGPU VM., 128
6.6. Enabling the TCC Driver Model for @ VGPU.........ccooiiineeseeese s 129
7.1. NVIDIA System Management Interface Nvidia=SMi.....ccccocvinininneseees 130
7.2. Monitoring GPU Performance from a HYpPerviSOr. ... 131
7.2.1. Using nvidia-smi to Monitor GPU Performance from a Hypervisor...........ccco........ 131
7.2.1.1. Getting a Summary of all Physical GPUs in the System......cccocvvviniiininnis 131
7.2.1.2. Getting a Summary of all vVGPUs in the System.....ccecececeeeeeeeeen, 132
7.2.1.3. Getting Physical GPU DetailS......ccccvcesiesssess s 133
7.2.1.4. GettiNg VGPU DETAIIS. ... 136
7.2.1.5. Monitoring VGPU €NgINE USAGE. ...t 136
7.2.1.6. Monitoring vGPU engine usage by appliCationS.........ccccvniineneineieseseene. 137
7.2.1.7. MoNitoring ENCOAEr SESSIONS.......ciieieeieeeeeeceeeeeeeee et 138
7.2.1.8. Monitoring Frame Buffer Capture (FBC) S€SSIONS.....ccccccvovveevceeeeeeeeeceeeran 139
7.2.1.9. Listing SUPPOrted VGPU TYPES. ... 144
7.2.1.10. Listing the vGPU Types that Can Currently Be Created......cccccccovvviviivniireine. 145
7.2.2. Using Citrix XenCenter to monitor GPU performance........cocvecnenineineseieenn. 145
7.3. Monitoring GPU Performance from a GUESt VM. 146
7.3.1. Using nvidia-smi to Monitor GPU Performance from a Guest VM.......c.ccccoeveveinennnn 147
7.3.2. Using Windows Performance Counters to monitor GPU performance................. 148
7.3.3. Using NVWMI to monitor GPU performancCe........esesseseesseeseeenes 149
8.1. Scheduling Policies for Time-Sliced VGPUS........ccoseiseesceeeesiseseisseesenees 152
8.2. Scheduler Time Slice for Time-Sliced VGPUS.........ccociesesseei e 154
8.3. Getting Information about the Scheduling Behavior of Time-Sliced vGPUs................. 154
8.3.1. Getting Time-Sliced vGPU Scheduler Capabilities........cccooevevevevececeecceceeeen, 154
8.3.2. Getting Time-Sliced vGPU Scheduler State Information.........c.ccccoveeveniceneceecnn. 155
8.3.3. Getting Time-Sliced vGPU Scheduler WOrk LOGS. ... 156
8.3.4. Getting the Current Time-Sliced vGPU Scheduling Policy for All GPUs................... 157
8.4. Tools for Changing Scheduling Behavior for Time-Sliced VGPUS.........cccccccovvininiirnin. 158

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | i

8.5. Changing Scheduling Behavior for Time-Sliced vGPUs by Using the nvidia-smi

COMIM@NG. b8 159
8.6. Changing Scheduling Behavior for Time-Sliced vGPUs by Using the RmPVMRL
REGISTIY K BY .ttt 163
8.6.1. Changing the Time-Sliced vGPU Scheduling Behavior for All GPUs by Using the
RMPYMRL REGISTIY KEY ..ottt sttt 163
8.6.2. Changing the Time-Sliced vGPU Scheduling Behavior for Select GPUs by Using
the RMPVMRL REGISTIY KOV ... 164
8.6.3. Restoring Default Time-Sliced vGPU Scheduler Settings by Using the
RMPYMRL REGISTIY KEY ...ttt 166
8.6.4. RMPVMRL REGISTIY KEY ..ottt 167
DT KNOWIN ISSUES. ..t 171
9.2. TroUbIESNOOTING STEPS ..ot 171
9.2.1. Verifying the NVIDIA Kernel Driver IS Loaded........coinnssescneeeens 171
9.2.2. Verifying that Nvidia-Smi WOTKS ..o 172
9.2.3. Examining NVIDIA kernel driver OUTPUL ... 172
9.2.4. Examining NVIDIA Virtual GPU Manager MeSSages.......covnineeneneineneisssseeeens 172
9.2.4.1. Examining Citrix Hypervisor vGPU Manager MeSSages.......ccvveneininirsirniininns 173
9.2.4.2. Examining Red Hat Enterprise Linux KVM vGPU Manager Messages............. 173
9.2.4.3. Examining VMware vSphere vGPU Manager Messages.........covrinreneenneen: 174
9.3. Capturing configuration data for filing a bug report......eecee, 174
9.3.1. Capturing configuration data by running nvidia-bug-report.sh........cccccceeveveieennes. 175

9.3.2. Capturing Configuration Data by Creating a Citrix Hypervisor Status Report... 175

A.1. Virtual GPU Types for SUPPROrted GPUS..........oeeeeeeeeeeee e 177
A T.T. NVIDIA A4O Virtual GPU TYPES. ...t 177
A.1.2. NVIDIA ATB Virtual GPU TYPES.....oiiieeiiiseeiees s 180
A.1.3. NVIDIA ATO Virtual GPU TYPES.....iiieieeiieeeiecs st 182
A 1.4, NVIDIA A2 Virtual GPU TYPES. ...t 185
A 1.5 NVIDIA L40 Virtual GPU TYPES. .ttt 187
A.1.6. NVIDIA LAOS Virtual GPU TYPES. ..ot 191
A.1.7. NVIDIA L20 and NVIDIA L20 Liquid Cooled Virtual GPU Types......cccccovvvrrrrrrrrrrrren. 194
A.1.8. NVIDIA L4 Virtual GPU TYPES. .ttt 197
A.T.9. NVIDIA L2 Virtual GPU TYPES. ..t 200
A.1.10. NVIDIA RTX 6000 Ada Virtual GPU TYPES.....ccoiiiieeieeieieeie s 203
A.1.11. NVIDIA RTX 5880 Ada Virtual GPU TYPES.....ccociieeieeeieeieeeee e 206
A.1.12. NVIDIA RTX 5000 Ada Virtual GPU TYPES......cociieieeieieeiieieeie e 209

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | Vvii

A.1.13. NVIDIA RTX AB000 Virtual GPU TYPES....oiiriiriiseinsiseseiseissiissiseessiessss s 212

A.1.14. NVIDIA RTX A5500 Virtual GPU TYPES....oiieieeieiseeieese e 215
A.1.15. NVIDIA RTX A5000 Virtual GPU TYPES....oiieieeieiseeiieeseisessissie s 218
A 1.16. Tesla MT10 Virtual GPU TYPES.... et 221
A T.17.Tesla T4 Virtual GPU TYPES. ..ttt 223
A.1.18. Tesla V100 SXM2 Virtual GPU TYPES.....ccoiiiieisieieisiseesesese e 226
A.1.19. Tesla V100 SXM2 32GB Virtual GPU TYPES......cociieineieiseie e 228
A.1.20. Tesla V100 PCle Virtual GPU TYPES ... esss s 231
A.1.21. Tesla V100 PCle 32GB Virtual GPU TYPES....eeeieieies s 233
A.1.22. Tesla V100S PCle 32GB Virtual GPU TYPES.....ccoieisessiseeeseseise s 236
A.1.23. Tesla V100 FHHL Virtual GPU TYPES.....oieeeseisiesess s 238
A.1.24. Quadro RTX 8000 Virtual GPU TYPES.....cccovmieirieeieiseisiisessise s 241
A.1.25. Quadro RTX 8000 Passive Virtual GPU TYPES......ccccorriiresseesesese s 244
A.1.26. Quadro RTX 6000 Virtual GPU TYPES.....ccciineisisessisessise s 247
A.1.27. Quadro RTX 6000 Passive Virtual GPU TYPES.....cccoirereeseeeee s 249
A.2. Mixed Display Configurations for B-Series and Q-Series VGPUS.........ccccccoovevnivriinineien. 252
A.2.1. Mixed Display Configurations for B-Series VGPUS..........ccccoeviniinineiniieesseseeees 252
A.2.2. Mixed Display Configurations for Q-Series vGPUs Based on the NVIDIA Maxwell
ATCIITECTUIE .ottt 253
A.2.3. Mixed Display Configurations for Q-Series vGPUs Based on Architectures after
NVIDIA MEXWEIL ...ttt aen st asse st enasn st enannensnens 253
A.3. vVGPU Placements for GPUSs in Mixed-Siz€ MOE.......cccccvemiirieeieieeiieieceeieeee s 254
A.3.1. vGPU Placements for GPUs with 94 GB of Frame Buffer......ccciviinineinn. 254
A.3.2. vGPU Placements for GPUs with 80 GB of Frame Buffer....... e, 254
A.3.3. vGPU Placements for GPUs with 48 GB of Frame Buffer.......vcvcvcccnennn. 255
A.3.4. vGPU Placements for GPUs with 40 GB of Frame Buffer......ccccievecceceeenee, 257
A.3.5. vGPU Placements for GPUs with 32 GB of Frame Buffer........cccoeveeiveiiecnein. 258
A.3.6. vGPU Placements for GPUs with 24 GB of Frame Buffer.......coneinineinn. 258
A.3.7. vGPU Placements for GPUs with 20 GB of Frame Buffer......eececcccenn. 259
A.3.8. vGPU Placements for GPUs with 16 GB of Frame Buffer.......cvvcvcveccncnn. 260
I I LU 1 A O oY =] o [T = o 1= TP 262
B.1.1. Obtaining Best Performance on a NUMA Platform with Citrix Hypervisor............ 263
B.1.2. Obtaining Best Performance on a NUMA Platform with VMware vSphere ESXi.263
B.2. Maximizing PerfOrmMaNCe. ...t 263
C.1. Configuring the Xorg Server on the LiINUX SErVET. ... 266
C.2. Installing and Configuring x11vNnc on the LiNUX SErVer ..., 267

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | Vviii

C.3. Using a VNC Client to Connect to the LiNUX SErver...... s 268
Appendix D. Disabling NVIDIA Notification Icon for Citrix Published Application

ST =T ST =TT=1 [0} o 1= OO 271
D.1. Disabling NVIDIA Notification Icon for All Users' Citrix Published Application
S S S 0N ittt 273
D.2. Disabling NVIDIA Notification Icon for your Citrix Published Application User
SIS SIONS ettt R et 273
Appendix E. Citrix HypervisSOr BaSICS......iiieesessss et seane 275
E.1. Opening @ dOMO SNEIL ... 275
E.1.1. Accessing the domO shell through XenCenter.......ccinnieseeees 275
E.1.2. Accessing the domO shell through an SSH client........cccooviiniis 276
E.2. Copying Tiles £0 dOMOD. ... 276
E.2.1. Copying files by using an SCP CHENT.....cc.ccoiiiiiieceeee e 276
E.2.2. Copying files by using a CIFS-mounted file syStem......cccoovvnccinsescees 277
E.3. Determining @ VIM'S UUID ...t 277
E.3.1. Determining a VM'’s UUID by uSINg X& VM=liST.....ccocoiiiiiincesesseeis 278
E.3.2. Determining a VM'’s UUID by using XeNCeNTer ... 278
E.4. Using more than two vCPUs with Windows client VMS.........ccccinseseeene. 279
E.5. Pinning VMs to a specific CPU socket and COres.......oincnieesessesee s 279
E.6. Changing domO vCPU Default configuration........ccocoeeeeecceeeecececeeeeeeeeee e 280
E.6.1. Changing the number of domO VCPUS........ccccoiiiesse s 281
E.6.2. PINNING AOMO VCPUS ...t 281
E.7. How GPU locality is determinNed......ccoooiieiseee e 281
Appendix F. Citrix Hypervisor vVGPU Management........cccornneeensesessseeeseseseeenens 282
F.1. Management 0bjJects fOr GPUS. ... 282
F.1.T. pGPU = PRYSICAI GPU.....oci e 282
F.1.1.1. Listing the pgpu Objects Present on a Platform. ..., 282
F.1.1.2. Viewing Detailed Information About a pgpu Object. ..o, 283
F.1.1.3. Viewing physical GPUS in XENCENTEI ... 283
F.1.2. vgpu-type = VIrtual GPU TYPE ... 284
F.1.2.1. Listing the vgpu-type Objects Present on a Platform.....ccccovnvcvninciinin, 284
F.1.2.2. Viewing Detailed Information About a vgpu-type Object......ccccoovvviininciinis 288
F.1.3. gpu-group - collection of physiCal GPUS.........cccocvivicceceeeeee e 288
F.1.3.1. Listing the gpu-group Objects Present on a Platform......cccoonnnnne. 288
F.1.3.2. Viewing Detailed Information About a gpu-group Object.......ccccvnirnrrnrinnen, 289
Fo 1.4 VOPU = VIFTUBH GPU .ottt 289
F.2. Creating @ VGPU USING XE.... ettt 289
F.3. Controlling VGPU alloCaTiON.......ccciiicieieiecee et 290

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | ix

F.3.1. Determining the Physical GPU on Which a Virtual GPU is Resident........cccccveveunee. 290

F.3.2. Controlling the vGPU types enabled on specific physical GPUSs..........cccoocoveivninninne, 291
F.3.2.1. Controlling vGPU types enabled on specific physical GPUs by using
KB BN .ttt 291
F.3.2.2. Controlling vGPU Types Enabled on Specific Physical GPUs by Using xe.......292
F.3.3. Creating vGPUs on Specific Physical GPUS.........c.cccooviinninsesessese e 293
F.4. Cloning VGPU-ENGDIEA VIMS......ooeeeee e 294
F.4.1. Cloning a VGPU-enabled VM DY USING X€.....ccooiiiiiiieesisesise e 295
F.4.2. Cloning a vGPU-enabled VM by using XenCenter. ... 295
Appendix G. Citrix Hypervisor Performance TUNING......ccccvveieeeessecee e 296
G.T. CItriX HYPEIVISOI TOOIS ...ttt 296
G.2. USING REMOTE GraphiCS. ...ttt 296
G.2.1. Disabling CONSOIE VGA.. ...ttt 296

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | x

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.

Figure 24.

NVIDIA VGPU System ArChitECTUIE. ... 11

Time-Sliced NVIDIA vGPU Internal ArchiteCture. ..., 12
NVIDIA vGPU Manager supplemental pack selected in XenCenter.......ccccocvvevrininnne. 20
Successful installation of NVIDIA vGPU Manager supplemental pack...........ccc......... 21
Using Citrix XenCenter to configure a VM with @ VGPU........cccocoviiinincinciinens 23
Shared default graphiCs TYPE. ... 42
Host graphics settings fOr VGPU. ... 43
Shared graphiCS LY P .. e 44
Graphics device settings for a physical GPU........cccoieese e 44
Shared direCt graphiCs LY P . s 45
Command for AddiNG @ PCl DEVICE......c.ieeesesseseeisessieses st 46
VM Device Selections fOr VGPU.... .o 47
VM SELEINGS FOr VGPU. ..ot 48
Using XenCenter to configure a pass-through GPU.........ccccocnininsinies 84
NVIDIA driver iNSTallation.......oceecceeecee e 97
Verifying NVIDIA driver operation using NVIDIA Control Panel........cccccoevevevverennnee, 98
Update Xorg.CoONT SETEINGS. ... 102
Using XenCenter to remove a vGPU configuration from a VM........ccccooeevniviininnne 113
Modifying GPU placement policy in XeNCeNter. ..o, 115
Breadth-first allocation scheme setting for vGPU-enabled VMs........c..ccccoovcneenne. 116
Host graphics settings fOr VGPU. ... 117
Depth-first allocation scheme setting for vGPU-enabled VMSs..........cccccocvvininin 118
Using Citrix XenCenter to monitor GPU performance.........ccovneninineisnenn. 146

Using nvidia-smi from a Windows guest VM to get total resource usage by

Al1 APPICATIONS. ... 147

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | xi

Figure 25. Using nvidia-smi from a Windows guest VM to get resource usage by

INAIVIAUAI @PPIICATIONS ...ttt 148
Figure 26. Using Windows Performance Monitor to monitor GPU performance.................... 149
Figure 27. Using WMI Explorer to monitor GPU performance.........coonensenneeneeneeens 150
Figure 28. Including NVIDIA logs in a Citrix Hypervisor status report.........ien. 176
Figure 29. A NUMA Server Platform. .t 262
Figure 30. Connecting to the domO shell by using XenCenter.......consneens 276
Figure 31. Using XenCenter to determine @ VM'S UUID......cccoooiiiniininiessesesseenns 279
Figure 32. Physical GPU display in XENCENTET ... 284
Figure 33. Editing a GPU’s enabled vGPU types using XenCenter........nnnnnenn. 292
Figure 34. Using a custom GPU group within XenCenter......cccnnineineeesesseseeeene 294
Figure 35. Cloning @ VM USING XENCENTET ...t 295

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | xii

List of Tables

Table 1. Default Time Slice Length and Scheduling Frequency by vGPU Density.................. 168

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | xiii

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | xiv

Chapter 1. Introduction to NVIDIA
vGPU Software

NVIDIA vGPU software is a graphics virtualization platform that provides virtual machines
(VMs) access to NVIDIA GPU technology.

1.1. How NVIDIA vGPU Software Is Used

NVIDIA vGPU software can be used in several ways.

1.1.1. NVIDIA vGPU

NVIDIA Virtual GPU (vGPU) enables multiple virtual machines (VMs) to have simultaneous,
direct access to a single physical GPU, using the same NVIDIA graphics drivers that are
deployed on non-virtualized operating systems. By doing this, NVIDIA vGPU provides
VMs with unparalleled graphics performance, compute performance, and application
compatibility, together with the cost-effectiveness and scalability brought about by
sharing a GPU among multiple workloads.

For more information, see Installing and Configuring NVIDIA Virtual GPU Manager.

1.1.2. GPU Pass-Through

In GPU pass-through mode, an entire physical GPU is directly assigned to one VM,
bypassing the NVIDIA Virtual GPU Manager. In this mode of operation, the GPU is
accessed exclusively by the NVIDIA driver running in the VM to which it is assigned. The
GPU is not shared among VMs.

For more information, see Using GPU Pass-Through.

1.1.3. Bare-Metal Deployment

In a bare-metal deployment, you can use NVIDIA vGPU software graphics drivers with
vWS and vApps licenses to deliver remote virtual desktops and applications. If you intend
to use Tesla boards without a hypervisor for this purpose, use NVIDIA vGPU software
graphics drivers, not other NVIDIA drivers.

To use NVIDIA vGPU software drivers for a bare-metal deployment, complete these tasks:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 1

Introduction to NVIDIA vGPU Software

1. Install the driver on the physical host.

For instructions, see Installing the NVIDIA vGPU Software Graphics Driver.
2. License any NVIDIA vGPU software that you are using.

For instructions, see Virtual GPU Client Licensing User Guide.
3. Configure the platform for remote access.

To use graphics features with Tesla GPUs, you must use a supported remoting
solution, for example, RemoteFX, Citrix Virtual Apps and Desktops, VNC, or similar
technology.

4. Use the display settings feature of the host OS to configure the Tesla GPU as the
primary display.
NVIDIA Tesla generally operates as a secondary device on bare-metal platforms.

5. If the system has multiple display adapters, disable display devices connected through
adapters that are not from NVIDIA.

You can use the display settings feature of the host OS or the remoting solution
for this purpose. On NVIDIA GPUs, including Tesla GPUs, a default display device is
enabled.

Users can launch applications that require NVIDIA GPU technology for enhanced user
experience only after displays that are driven by NVIDIA adapters are enabled.

1.2. Primary Display Adapter
Requirements for NVIDIA vGPU
Software Deployments

The GPU that is set as the primary display adapter cannot be used for NVIDIA vGPU
deployments or GPU pass through deployments. The primary display is the boot display of
the hypervisor host, which displays SBIOS console messages and then boot of the OS or
hypervisor.

Any GPU that is being used for NVIDIA vGPU deployments or GPU pass through
deployments must be set as a secondary display adapter.

@ Note:

Citrix Hypervisor provides a specific setting to allow the primary display adapter to be
used for GPU pass through deployments.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 2

http://docs.nvidia.com/grid/17.0/pdf/grid-licensing-user-guide.pdf

Introduction to NVIDIA vGPU Software

© ‘scursid-vgpu-4 (CH B.2: VM 10.31.223.30-39)' Properties ? 5
r +
|- _
_: C|:u.1?¢-nlhddi Placement policy
F ok Set a placement policy for assigning Vs to GPUs to achieve either maximum density or maomum pedormance.
b Aerts
When centrol domain me @ Maximum density: put as many Vs as possible on the same GPU
| 4 F
[Ermail Oiptions O Maximum peformance: put VMs on as many GPUs as possible
None defmned
| @ Multipsthing Integeated GPU pass-through
| oL acive Choese whether you want this server 1o uie the integrated GPL. When a server is using the integrated GPLU, that
L 4
h

Leg Destination GPU coannot be passed through to a VM,

Lesal This server is currently using the integrated GPU,
After next reboot:

{®) This server will use the integrated GPU

@ Power On

Duzabled

Lo

Maarmurm density: Using t () This server will mot use the mnitegrated GPU
5 5.1 Live Patching [

chabled
| By Metwork Options
gin AP shooping deabled

=) Clustering

Only the following GPUs are supported as the primary display adapter:
> Tesla M6

» Quadro RTX 6000

» Quadro RTX 8000

All other GPUs that support NVIDIA vGPU software cannot function as the primary display
adapter because they are 3D controllers, not VGA devices.

If the hypervisor host does not have an extra graphics adapter, consider installing a low-
end display adapter to be used as the primary display adapter. If necessary, ensure that
the primary display adapter is set correctly in the BIOS options of the hypervisor host.

1.3. NVIDIA vGPU Software Features

NVIDIA vGPU software includes vWS, vPC, and vApps.

1.3.1. APl Support on NVIDIA vGPU

NVIDIA vGPU includes support for the following APlIs:

» Open Computing Language (OpenCL™ software) 3.0
» OpenGL’ 4.6
» Vulkan® 1.3

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 3

Introduction to NVIDIA vGPU Software

» DirectX 11

» DirectX 12 (Windows 10)

» Direct2D

» DirectX Video Acceleration (DXVA)

» NVIDIA® CUDA® 12.4

» NVIDIA vGPU software SDK (remote graphics acceleration)

» NVIDIA RTX (on GPUs based on the NVIDIA Volta graphic architecture and later
architectures)

Note: These APIs are backwards compatible. Older versions of the API are also supported.

1.3.2. NVIDIA CUDA Toolkit and OpenCL Support
on NVIDIA vGPU Software

NVIDIA CUDA Toolkit and OpenCL are supported with NVIDIA vGPU only on a subset of
vGPU types and supported GPUs.

For more information about NVIDIA CUDA Toolkit, see CUDA Toolkit Documentation 12.4.

@ Note:

If you are using NVIDIA vGPU software with CUDA on Linux, avoid conflicting installation
methods by installing CUDA from a distribution-independent runfile package. Do not
install CUDA from a distribution-specific RPM or Deb package.

To ensure that the NVIDIA vGPU software graphics driver is not overwritten when CUDA is
installed, deselect the CUDA driver when selecting the CUDA components to install.

For more information, see NVIDIA CUDA Installation Guide for Linux.

OpenCL and CUDA Application Support
OpenCL and CUDA applications are supported on the following NVIDIA vGPU types:

» The 8Q vGPU type on the Tesla M10 GPU
» All Q-series VGPU types on the following GPUs:

NVIDIA L2

NVIDIA L4

NVIDIA L20

NVIDIA L40

NVIDIA L40S

NVIDIA RTX 5000 Ada
NVIDIA RTX 6000 Ada
NVIDIA A2

vV V. v v vV v v Vv

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 4

https://docs.nvidia.com/cuda/archive/12.4.0/
http://docs.nvidia.com/cuda/archive/12.4.0/pdf/CUDA_Installation_Guide_Linux.pdf

Introduction to NVIDIA vGPU Software

» NVIDIA A10

» NVIDIA A16

» NVIDIA A40

NVIDIA RTX A5000
NVIDIA RTX A5500
NVIDIA RTX A6000

Tesla V100 SXM2

Tesla V100 SXM2 32GB
Tesla V100 PCle

Tesla V100 PCle 32GB
Tesla V100S PCle 32GB
Tesla V100 FHHL

Tesla T4

Quadro RTX 6000
Quadro RTX 6000 passive
Quadro RTX 8000

» Quadro RTX 8000 passive

vV V. v v vV vV vV v VvV Vv %

v

v

NVIDIA CUDA Toolkit Development Tool Support

NVIDIA vGPU supports the following NVIDIA CUDA Toolkit development tools on some
GPUs:

» Debuggers:
» CUDA-GDB

» Compute Sanitizer
» Profilers:

» The Activity, Callback, and Profiling APIs of the CUDA Profiling Tools Interface
(CUPTI)

Other CUPTI APIs, such as the Event and Metric APIs, are not supported.
» NVIDIA Nsight” Compute
» NVIDIA Nsight Systems
» NVIDIA Nsight plugin
» NVIDIA Nsight Visual Studio plugin

Other CUDA profilers, such as nvprof and NVIDIA Visual Profiler, are not supported.

These tools are supported only in Linux guest VMs.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 5

Introduction to NVIDIA vGPU Software

NVIDIA CUDA Toolkit profilers are supported and can be enabled on a VM for which
unified memory is enabled.

S Note: By default, NVIDIA CUDA Toolkit development tools are disabled on NVIDIA vGPU.
If used, you must enable NVIDIA CUDA Toolkit development tools individually for each
VM that requires them by setting vGPU plugin parameters. For instructions, see Enabling
NVIDIA CUDA Toolkit Development Tools for NVIDIA vGPU.

The following table lists the GPUs on which NVIDIA vGPU supports these debuggers and

profilers.

GPU

NVIDIA L2
NVIDIA L4
NVIDIA L20
NVIDIA L40
NVIDIA L40S

NVIDIA RTX 5000 Ada
NVIDIA RTX 6000 Ada

NVIDIA A2

NVIDIA A10
NVIDIA A16
NVIDIA A40
NVIDIA RTX A5000
NVIDIA RTX A5500
NVIDIA RTX A6000
Tesla T4

Quadro RTX 6000

Quadro RTX 6000
passive

Quadro RTX 8000

Quadro RTX 8000
passive

Tesla V100 SXM2

Tesla V100 SXM2
32GB

Tesla V100 PCle

Virtual GPU Software

vGPU Mode

Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced
Time-sliced

Time-sliced

Time-sliced

Time-sliced

Time-sliced

Time-sliced

Time-sliced

Debuggers Profilers
H H
#
#
#
H H
H H
#
#
#
H H
H #
#
#
#
H H
H #
#
#

H

H H

DU-06920-001 _v17.0 through 17.2 | 6

Introduction to NVIDIA vGPU Software

GPU vGPU Mode Debuggers Profilers
Tesla V100 PCle 32GB | Time-sliced H #

Tesla V100S PCle Time-sliced # #

32GB

Tesla V100 FHHL Time-sliced H H

Feature is supported

- Feature is not supported

Supported NVIDIA CUDA Toolkit Features
NVIDIA vGPU supports the following NVIDIA CUDA Toolkit features if the vGPU type,

physical GPU, and the hypervisor software version support the feature:
» Error-correcting code (ECC) memory
> Peer-to-peer CUDA transfers over NVLink

S Note: To determine the NVLink topology between physical GPUs in a host or vGPUs
assigned to a VM, run the following command from the host or VM:

S nvidia-smi topo -m

» Unified Memory

S Note: Unified memory is disabled by default. If used, you must enable unified memory
individually for each vGPU that requires it by setting a vGPU plugin parameter. For
instructions, see Enabling Unified Memory for a vGPU.

» NVIDIA Nsight Systems GPU context switch trace

Dynamic page retirement is supported for all vGPU types on physical GPUs that support
ECC memory, even if ECC memory is disabled on the physical GPU.

NVIDIA CUDA Toolkit Features Not Supported by NVIDIA vGPU

NVIDIA vGPU does not support the NVIDIA Nsight Graphics feature of NVIDIA CUDA
Toolkit.

S Note: The NVIDIA Nsight Graphics feature is supported in GPU pass-through mode and in
bare-metal deployments.

1.3.3. Additional vWS Features

In addition to the features of vPC and vApps, VWS provides the following features:

» Workstation-specific graphics features and accelerations

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 7

Introduction to NVIDIA vGPU Software

» Certified drivers for professional applications
» GPU pass through for workstation or professional 3D graphics

In pass-through mode, VWS supports multiple virtual display heads at resolutions up
to 8K and flexible virtual display resolutions based on the number of available pixels.
For details, see Display Resolutions for Physical GPUs.

» 10-bit color for Windows users. (HDR/10-bit color is not currently supported on Linux,
NVFBC capture is supported but deprecated.)

1.3.4. NVIDIA GPU Cloud (NGC) Containers
Support on NVIDIA vGPU Software

NVIDIA vGPU software supports NGC containers in NVIDIA vGPU and GPU pass-through
deployments on all supported hypervisors.

In NVIDIA vGPU deployments, Q-series vVGPU types are supported only on GPUs based on
NVIDIA GPU architectures after the Maxwell architecture.

In GPU pass-through deployments, all GPUs based on NVIDIA GPU architectures after the
NVIDIA Maxwell™ architecture that support NVIDIA vGPU software are supported.

NVIDIA vGPU software supports NGC containers on any guest operating system listed in
Supported Platforms - NVIDIA Container Toolkit that is also supported by NVIDIA vGPU
software.

For more information about setting up NVIDIA vGPU software for use with NGC
containers, see Using NGC with NVIDIA Virtual GPU Software Setup Guide.

1.3.5. NVIDIA GPU Operator Support

NVIDIA GPU Operator simplifies the deployment of NVIDIA vGPU software on software
container platforms that are managed by the Kubernetes container orchestration engine.
It automates the installation and update of NVIDIA vGPU software graphics drivers for
container platforms running in guest VMs that are configured with NVIDIA vGPU.

Any drivers to be installed by NVIDIA GPU Operator must be downloaded from the NVIDIA
Licensing Portal to a local computer. Automated access to the NVIDIA Licensing Portal by
NVIDIA GPU Operator is not supported.

NVIDIA GPU Operator supports automated configuration of NVIDIA vGPU software and
provides telemetry support through DCGM Exporter running in a guest VM.

NVIDIA GPU Operator is supported only on specific combinations of hypervisor software
release, container platform, vGPU type, and guest OS release. To determine if your
configuration supports NVIDIA GPU Operator with NVIDIA vGPU deployments, consult the
release notes for your chosen hypervisor at NVIDIA Virtual GPU Software Documentation.

For more information, see NVIDIA GPU Operator Overview on the NVIDIA documentation
portal.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 8

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/supported-platforms.html
http://docs.nvidia.com/ngc/pdf/ngc-vgpu-setup-guide.pdf
https://docs.nvidia.com/grid/17.0/
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/overview.html

Introduction to NVIDIA vGPU Software

1.4. How this Guide Is Organized

Virtual GPU Software User Guide is organized as follows:

>

>

This chapter introduces the capabilities and features of NVIDIA vGPU software.
Installing and Configuring NVIDIA Virtual GPU Manager provides a step-by-step guide
to installing and configuring vGPU on supported hypervisors.

Using GPU Pass-Through explains how to configure a GPU for pass-through on
supported hypervisors.

Installing the NVIDIA vGPU Software Graphics Driver explains how to install NVIDIA
vGPU software graphics driver on Windows and Linux operating systems.

Licensing an NVIDIA vGPU explains how to license NVIDIA vGPU licensed products on
Windows and Linux operating systems.

Modifying a VM's NVIDIA vGPU Configuration explains how to remove a VM’s vGPU
configuration and modify GPU assignments for vGPU-enabled VMs.

Monitoring GPU Performance covers performance monitoring of physical GPUs and
virtual GPUs from the hypervisor and from within individual guest VMs.

Changing Scheduling Behavior for Time-Sliced vGPUs describes the scheduling
behavior of NVIDIA vGPUs and how to change it.

Troubleshooting provides guidance on troubleshooting.

Virtual GPU Types Reference provides details of each vGPU available from each
supported GPU and provides examples of mixed virtual display configurations for B-
series and Q-series vGPUs.

Configuring x11vnc for Checking the GPU in a Linux Server explains how to use
x11vnc to confirm that the NVIDIA GPU in a Linux server to which no display devices
are directly connected is working as expected.

Disabling NVIDIA Notification Icon for Citrix Published Application User Sessions
explains how to ensure that the NVIDIA Notification Icon application does not prevent
the Citrix Published Application user session from being logged off even after the
user has quit all ot

Citrix Hypervisor Basics explains how to perform basic operations on Citrix Hypervisor
to install and configure NVIDIA vGPU software and optimize Citrix Hypervisor
operation with vGPU.

Citrix Hypervisor vGPU Management covers vGPU management on Citrix Hypervisor.

Citrix Hypervisor Performance Tuning covers vGPU performance optimization on Citrix
Hypervisor.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 9

Chapter 2. Installing and Configuring
NVIDIA Virtual GPU
Manager

The process for installing and configuring NVIDIA Virtual GPU Manager depends on the
hypervisor that you are using. After you complete this process, you can install the display
drivers for your guest OS and license any NVIDIA vGPU software licensed products that
you are using.

2.1. About NVIDIA Virtual GPUs
2.1.1. NVIDIA vGPU Architecture

The high-level architecture of NVIDIA vGPU is illustrated in Figure 1. Under the control of
the NVIDIA Virtual GPU Manager running under the hypervisor, NVIDIA physical GPUs are
capable of supporting multiple virtual GPU devices (vGPUs) that can be assigned directly
to guest VMs.

Guest VMs use NVIDIA vGPUs in the same manner as a physical GPU that has been
passed through by the hypervisor: an NVIDIA driver loaded in the guest VM provides
direct access to the GPU for performance-critical fast paths, and a paravirtualized
interface to the NVIDIA Virtual GPU Manager is used for non-performant management
operations.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 10

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 1. NVIDIA vGPU System Architecture

Guest VM

U Applications

Guest VM

Applications

Hypervisor Guest VM

uﬁpplications

A, A, 4,
ﬁ Ar Ar its
1| = =
: ! :
NVIDIA P A — R V4
Physical GPU E Virtual GPU ; Virtual GPU i Virtual GPU
J i i

Each NVIDIA vGPU is analogous to a conventional GPU, having a fixed amount of GPU
framebuffer, and one or more virtual display outputs or “heads”. The vGPU’s framebuffer
is allocated out of the physical GPU’s framebuffer at the time the vGPU is created, and
the vGPU retains exclusive use of that framebuffer until it is destroyed.

Depending on the physical GPU and the GPU virtualization software, NVIDIA Virtual GPU
Manager supports different types of vGPU on a physical GPU:

» On all GPUs that support NVIDIA vGPU software, time-sliced vGPUs can be created.

» Additionally, on GPUs that support the Multi-Instance GPU (MIG) feature and NVIDIA
Al Enterprise, MIG-backed vGPUs are supported. The MIG feature is introduced on
GPUs that are based on the NVIDIA Ampere GPU architecture.

S Note: Although earlier releases of NVIDIA vGPU software supported GPUs that
support the MIG feature, such GPUs are not supported on this release of NVIDIA
vGPU software. GPUs that support the MIG feature are supported only on NVIDIA Al
Enterprise.

2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture

A time-sliced vGPU is a vGPU that resides on a physical GPU that is not partitioned into
multiple GPU instances. All time-sliced vGPUs resident on a GPU share access to the
GPU’s engines including the graphics (3D), video decode, and video encode engines.

In a time-sliced vGPU, processes that run on the vGPU are scheduled to run in series.
Each vGPU waits while other processes run on other vGPUs. While processes are running
on a vGPU, the vGPU has exclusive use of the GPU's engines. You can change the default
scheduling behavior as explained in Changing Scheduling Behavior for Time-Sliced vGPUs.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 11

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 2. Time-Sliced NVIDIA vGPU Internal Architecture
Paravirtualized
Interface
L v v v
Hypervisor Guest VM Guest VM Guest VM
Applications uﬁ.pplicatiam I_[Applicatiam
& & &
Direct GPU | | Direct GPU | | Direct GPU
Access Access Access
| | T
¥ L] ¥
g:‘:gllial GPU Virtual GPU Virtual GPU Virtual GPU
¥ Dedicated Dedicated Dedicated
Scheduling Framebuffer Framebuffer Framebuffer
|
i
I
| : : i
: GPU Engines
lemmmmeens +| Graphics/ | | Video Video
Compute Decode Encode

2.1.2. About Virtual GPU Types

The number of physical GPUs that a board has depends on the board. Each physical

GPU can support several different types of virtual GPU (vGPU). vGPU types have a fixed
amount of frame buffer, number of supported display heads, and maximum resolutions’.
They are grouped into different series according to the different classes of workload

for which they are optimized. Each series is identified by the last letter of the vGPU type
name.

Series Optimal Workload

Q-series Virtual workstations for creative and technical professionals who require the
performance and features of Quadro technology

B-series Virtual desktops for business professionals and knowledge workers

! NVIDIA vGPUs with less than 1 Gbyte of frame buffer support only 1 virtual display head on a Windows 10 guest OS.

2 The -1B4 and -2B4 vGPU types are deprecated in this release, and may be removed in a future release. In preparation for
the possible removal of these vGPU types, use the following vGPU types, which provide equivalent functionality:

» Instead of -1B4 vGPU types, use -1B vGPU types.
» Instead of -2B4 vGPU types, use -2B vGPU types.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 12

Installing and Configuring NVIDIA Virtual GPU Manager

Series Optimal Workload

-seri , , , . o 4
A-series App streaming or session-based solutions for virtual applications users™

The number after the board type in the vGPU type name denotes the amount of frame
buffer that is allocated to a vGPU of that type. For example, a vGPU of type A16-4Q is
allocated 4096 Mbytes of frame buffer on an NVIDIA A16 board.

Due to their differing resource requirements, the maximum number of vGPUs that can be
created simultaneously on a physical GPU varies according to the vGPU type. For example,
an NVDIA A16 board can support up to 4 A16-4Q vGPUs on each of its two physical GPUs,
for a total of 16 vGPUs, but only 2 A16-8Q vGPUs, for a total of 8 vGPUs.

When enabled, the frame-rate limiter (FRL) limits the maximum frame rate in frames per
second (FPS) for a vGPU as follows:

» For B-series vGPUs, the maximum frame rate is 45 FPS.

» For Q-series and A-series vVGPUs, the maximum frame rate is 60 FPS.

By default, the FRL is enabled for all GPUs. The FRL is disabled when the vGPU scheduling
behavior is changed from the default best-effort scheduler on GPUs that support
alternative vGPU schedulers. For details, see Changing Scheduling Behavior for Time-
Sliced vGPUs. On vGPUs that use the best-effort scheduler, the FRL can be disabled as
explained in the release notes for your chosen hypervisor at NVIDIA Virtual GPU Software
Documentation.

@ Note:

NVIDIA vGPU is a licensed product on all supported GPU boards. A software license is
required to enable all vGPU features within the guest VM. The type of license required
depends on the vGPU type.

» Q-series vGPU types require a vWS license.
» B-series vGPU types require a vPC license but can also be used with a vWS license.

» A-series VGPU types require a vApps license.

For details of the virtual GPU types available from each supported GPU, see Virtual GPU
Types for Supported GPUs.

With many workloads, -1B and -1B4 vGPUs perform adequately with only 2 2560x 1600 virtual displays per vGPU. If you
want to use more than 2 2560x 1600 virtual displays per vGPU, use a vGPU with more frame buffer, such as a -2B or -2B4
vGPU. For more information, see NVIDIA GRID vPC Sizing Guide (PDF).

A-series NVIDIA vGPUs support a single display at low resolution to be used as the console display in remote application
environments such as RDSH and Citrix Virtual Apps and Desktops. The maximum resolution and number of virtual
display heads for the A-series NVIDIA vGPUs applies only to the console display. The maximum resolution of each

RDSH or Citrix Virtual Apps and Desktops session is determined by the remoting solution and is not restricted by the
maximum resolution of the vGPU. Similarly, the number of virtual display heads supported by each session is determined
by the remoting solution and is not restricted by the vGPU.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 13

https://docs.nvidia.com/grid/17.0/
https://docs.nvidia.com/grid/17.0/

Installing and Configuring NVIDIA Virtual GPU Manager

2.1.3. Virtual Display Resolutions for Q-series and
B-series vGPUs

Instead of a fixed maximum resolution per display, Q-series and B-series vGPUs support
a maximum combined resolution based on the number of available pixels, which is
determined by their frame buffer size. You can choose between using a small number of
high resolution displays or a larger number of lower resolution displays with these vGPUs.

The number of virtual displays that you can use depends on a combination of the
following factors:

» Virtual GPU series
» GPU architecture
» VvGPU frame buffer size

» Display resolution

S Note: You cannot use more than the maximum number of displays that a vGPU supports
even if the combined resolution of the displays is less than the number of available pixels
from the vGPU. For example, because -0Q and -0OB vGPUs support a maximum of only
two displays, you cannot use four 1280x 1024 displays with these vGPUs even though the
combined resolution of the displays (6220800) is less than the number of available pixels
from these vGPUs (8192000).

Various factors affect the consumption of the GPU frame buffer, which can impact the
user experience. These factors include and are not limited to the number of displays,
display resolution, workload and applications deployed, remoting solution, and guest OS.
The ability of a vGPU to drive a certain combination of displays does not guarantee that
enough frame buffer remains free for all applications to run. If applications run out of
frame buffer, consider changing your setup in one of the following ways:

» Switching to a vGPU type with more frame buffer
» Using fewer displays

» Using lower resolution displays

The maximum number of displays per vGPU listed in Virtual GPU Types for Supported
GPUs is based on a configuration in which all displays have the same resolution. For
examples of configurations with a mixture of display resolutions, see Mixed Display
Configurations for B-Series and Q-Series vGPUs.

2.1.4. Valid Time-Sliced Virtual GPU
Configurations on a Single GPU

NVIDIA vGPU software supports a mixture of different types of time-sliced vGPUs on the
same physical GPU. Any combination of A-series, B-series, and Q-series vGPUs with any
amount of frame buffer can reside on the same physical GPU simultaneously. The total

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 14

Installing and Configuring NVIDIA Virtual GPU Manager

amount of frame buffer allocated to the vGPUs on a physical GPU must not exceed the
amount of frame buffer that the physical GPU has.

For example, the following combinations of vGPUs can reside on the same physical GPU
simultaneously:

> A40-2B and A40-2Q
» A40-2Q and A40-4Q
» A40-2B and A40-4Q

By default, a GPU supports only vGPUs with the same amount of frame buffer and,
therefore, is in equal-size mode. To support vGPUs with different amounts of frame
buffer, the GPU must be put into mixed-size mode. When a GPU is in mixed-size mode,
the maximum number of some types of vGPU allowed on a GPU is less than when the
GPU is in equal-size mode. For more information, refer to the following topics:

» Putting a GPU Into Mixed-Size Mode
» Virtual GPU Types for Supported GPUs

Not all hypervisors and GPUs support a mixture of different types of time-sliced vGPUs
on the same physical GPU. To determine if your chosen hypervisor supports this feature
with your chosen GPU, consult the release notes for your hypervisor at NVIDIA Virtual
GPU Software Documentation.

2.1.5. Guest VM Support

NVIDIA vGPU supports Windows and Linux guest VM operating systems. The supported
vGPU types depend on the guest VM OS.

For details of the supported releases of Windows and Linux, and for further information
on supported configurations, see the driver release notes for your hypervisor at NVIDIA
Virtual GPU Software Documentation.

2.1.5.1. Windows Guest VM Support

Windows guest VMs are supported on all NVIDIA vGPU types, namely: Q-series, B-series,
and A-series NVIDIA vGPU types.

2.1.5.2. Linux Guest VM support

Linux guest VMs are supported on all NVIDIA vGPU types, namely: Q-series, B-series, and
A-series NVIDIA vGPU types.

2.2. Prerequisites for Using NVIDIA
vGPU

Before proceeding, ensure that these prerequisites are met:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 15

https://docs.nvidia.com/grid/17.0/
https://docs.nvidia.com/grid/17.0/
https://docs.nvidia.com/grid/17.0/
https://docs.nvidia.com/grid/17.0/

>

Installing and Configuring NVIDIA Virtual GPU Manager

You have a server platform that is capable of hosting your chosen hypervisor and
NVIDIA GPUs that support NVIDIA vGPU software.

One or more NVIDIA GPUs that support NVIDIA vGPU software is installed in your
server platform.

If you are using GPUs based on the NVIDIA Ampere architecture or later architectures,
the following BIOS settings are enabled on your server platform:

» VT-D/IOMMU

» SR-IOV

» Alternative Routing ID Interpretation (ARI)

You have downloaded the NVIDIA vGPU software package for your chosen hypervisor,
which consists of the following software:

» NVIDIA Virtual GPU Manager for your hypervisor
» NVIDIA vGPU software graphics drivers for supported guest operating systems

The following software is installed according to the instructions in the software
vendor's documentation:

» Your chosen hypervisor, for example, Citrix Hypervisor, Red Hat Enterprise Linux
KVM, or VMware vSphere Hypervisor (ESXi)

» The software for managing your chosen hypervisor, for example, Citrix XenCenter
management GUI, or VMware vCenter Server

» The virtual desktop software that you will use with virtual machines (VMs) running
NVIDIA Virtual GPU, for example, Citrix Virtual Apps and Desktops, or VMware
Horizon

S Note: If you are using VMware vSphere Hypervisor (ESXi), ensure that the ESXi host on
which you will configure a VM with NVIDIA vGPU is not a member of a fully automated
VMware Distributed Resource Scheduler (DRS) cluster. For more information, see
Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere.

A VM to be enabled with one or more virtual GPUs is created.

Note: If the VM uses UEFI boot and you plan to install a Linux guest OS in the VM,
ensure that secure boot is disabled.

Your chosen guest OS is installed in the VM.

For information about supported hardware and software, and any known issues for this
release of NVIDIA vGPU software, refer to the Release Notes for your chosen hypervisor:

>

>

>

Virtual GPU Software for Citrix Hypervisor Release Notes

Virtual GPU Software for Microsoft Azure Stack HCI Release Notes

Virtual GPU Software for Red Hat Enterprise Linux with KVM Release Notes
Virtual GPU Software for Ubuntu Release Notes

Virtual GPU Software for VMware vSphere Release Notes

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 16

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-citrix-xenserver.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-microsoft-azure-stack-hci.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-red-hat-el-kvm.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-ubuntu.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

2.3. Switching the Mode of a GPU that
Supports Multiple Display Modes

Some GPUs support display-off and display-enabled modes but must be used in NVIDIA
vGPU software deployments in display-off mode.

The GPUs listed in the following table support multiple display modes. As shown in the
table, some GPUs are supplied from the factory in display-off mode, but other GPUs are
supplied in a display-enabled mode.

GPU Mode as Supplied from the Factory
NVIDIA A40 Display-off
NVIDIA L40 Display-off
NVIDIA L40S Display-off
NVIDIA L20 Display-off
NVIDIA L20 liquid cooled Display-off
NVIDIA RTX 5000 Ada Display enabled
NVIDIA RTX 6000 Ada Display enabled
NVIDIA RTX A5000 Display enabled
NVIDIA RTX A5500 Display enabled
NVIDIA RTX A6000 Display enabled

A GPU that is supplied from the factory in display-off mode, such as the NVIDIA A40 GPU,
might be in a display-enabled mode if its mode has previously been changed.

To change the mode of a GPU that supports multiple display modes, use the
displaymodeselector tool, which you can request from the NVIDIA Display Mode
Selector Tool page on the NVIDIA Developer website.

S Note: Only the GPUs listed in the table support the displaymodeselector tool. Other
GPUs that support NVIDIA vGPU software do not support the displaymodeselector tool
and, unless otherwise stated, do not require display mode switching.

2.4. Installing and Configuring the
NVIDIA Virtual GPU Manager for
Citrix Hypervisor

The following topics step you through the process of setting up a single Citrix Hypervisor
VM to use NVIDIA vGPU. After the process is complete, you can install the graphics driver
for your guest OS and license any NVIDIA vGPU software licensed products that you are
using.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 17

https://developer.nvidia.com/displaymodeselector
https://developer.nvidia.com/displaymodeselector

Installing and Configuring NVIDIA Virtual GPU Manager

These setup steps assume familiarity with the Citrix Hypervisor skills covered in Citrix
Hypervisor Basics.

2.4.1. Installing and Updating the NVIDIA Virtual
GPU Manager for Citrix Hypervisor

The NVIDIA Virtual GPU Manager runs in the Citrix Hypervisor domO domain. The
NVIDIA Virtual GPU Manager for Citrix Hypervisor is supplied as an RPM file and as a
Supplemental Pack.

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If you
update vGPU Manager to a release that is incompatible with the guest VM drivers, guest
VMs will boot with vGPU disabled until their guest vGPU driver is updated to a compatible
version. Consult Virtual GPU Software for Citrix Hypervisor Release Notes for further details.

2.4.1.1. Installing the RPM package for Citrix Hypervisor

The RPM file must be copied to the Citrix Hypervisor domO domain prior to installation
(see Copying files to domO).

1. Use the rpm command to install the package:

[root@xenserver ~]# rpm -iv NVIDIA-vGPU-NVIDIA-vGPU-
CitrixHypervisor-8.2-550.90.05.x86_64.rpm

Preparing packages for installation...
NVIDIA-vGPU-NVIDIA-vGPU-CitrixHypervisor-8.2-550.90.05

[root@xenserver ~]#
2. Reboot the Citrix Hypervisor platform:
[root@xenserver ~]# shutdown -r now

Broadcast message from root (pts/1l) (Fri Jun 14 14:24:11 2024):

The system is going down for reboot NOW!
[root@xenserver ~]#

2.4.1.2. Updating the RPM Package for Citrix Hypervisor

If an existing NVIDIA Virtual GPU Manager is already installed on the system and you want
to upgrade, follow these steps:

1. Shut down any VMs that are using NVIDIA vGPU.

2. Install the new package using the -u option to the rpm command, to upgrade from the
previously installed package:

[root@xenserver ~]# rpm -Uv NVIDIA-vGPU-NVIDIA-vGPU-
CitrixHypervisor-8.2-550.90.05.x86_64.rpm

Preparing packages for installation...
NVIDIA-vGPU-NVIDIA-vGPU-CitrixHypervisor-8.2-550.90.05
[root@xenserver ~]#

[g] Note:

You can query the version of the current NVIDIA Virtual GPU Manager package using
the rpm -g command:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 18

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-citrix-xenserver.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

[root@xenserver ~]# rpm —q NVIDIA-vGPU-NVIDIA-vGPU-

CitrixHypervisor-8.2-550.90.05
[root@xenserver ~]#

If an existing NVIDIA GRID package is already installed and you don’t
select the upgrade (-U) option when installing a newer GRID package, the
rpm command will return many conflict errors.

Preparing packages for installation...

file /usr/bin/nvidia-smi from install of NVIDIA-vGPU-NVIDIA-
vGPU-CitrixHypervisor-8.2-550.90.05.x86 64 conflicts with file from

package NVIDIA-vGPU-xenserver-8.2-550.54.16.x86 64

file /usr/lib/libnvidia-ml.so from install of NVIDIA-vGPU-NVIDIA-
vGPU-CitrixHypervisor-8.2-550.90.05.x86 64 conflicts with file from

package NVIDIA-vGPU-xenserver-8.2-550.54.16.x86 64

3. Reboot the Citrix Hypervisor platform:

[root@xenserver ~]# shutdown -r now
Broadcast message from root (pts/l) (Fri Jun 14 14:24:11 2024):

The system is going down for reboot NOW!
[root@xenserver ~]#

2.4.1.3. Installing or Updating the Supplemental Pack
for Citrix Hypervisor
XenCenter can be used to install or update Supplemental Packs on Citrix Hypervisor

hosts. The NVIDIA Virtual GPU Manager supplemental pack is provided as an I1SO.

1. Select Install Update from the Tools menu.
2. Click Next after going through the instructions on the Before You Start section.

3. Click Select update or supplemental pack from disk on the Select Update section
and open NVIDIA’s Citrix Hypervisor Supplemental Pack ISO.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 19

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 3. NVIDIA vGPU Manager supplemental pack selected in
XenCenter

€3 Install Update = | @ (=]
=
& Choose an existing update to install or upload a new one e
Before You Start Select Automated Updates, choose an update to be downloaded from Citrix, or browse your computer for

an update or supplemental pack file.
Select Servers Automated Updates
Upload XenCenter will download and install all current updates from Citrix, usually with only a single reboot at

the end.

Prechecks
Update Mode Download update from Citrix
Install Update Update Description Date v Web Page

Refresh List] [Restore Dismissed Updates '

@ Select update or supplemental pack from disk

. . Filename: NVIDIA-vGPU-xenserver-7.1-367 92.x86_64.iso m
ciTRIX ==

< Previous][Next > H Cancel |

N

. Click Next on the Select Update section.

In the Select Servers section select all the Citrix Hypervisor hosts on which the
Supplemental Pack should be installed on and click Next.

6. Click Next on the Upload section once the Supplemental Pack has been uploaded to
all the Citrix Hypervisor hosts.

. Click Next on the Prechecks section.
. Click Install Update on the Update Mode section.
. Click Finish on the Install Update section.

ol

© 00

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 20

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 4. Successful installation of NVIDIA vGPU Manager
supplemental pack
€ Instoll Update =)
| : -
a Install the update o
| Before You Start
Update NVIDIA-vGPU-xenserver-7.1-367.92.,86_64.iso was successfully installed
Select Update
Select Servers - m
Upload f gta!||pg update NVTDiA -vgx-xenserver to localhost... done. =
Prechecks
| Update Mode
CiTRIX'

2.4.1.4. Verifying the Installation of the NVIDIA vGPU

Software for Citrix Hypervisor Package

After the Citrix Hypervisor platform has rebooted, verify the installation of the NVIDIA
vGPU software package for Citrix Hypervisor.

1. Verify that the NVIDIA vGPU software package is installed and loaded correctly by
checking for the NVIDIA kernel driver in the list of kernel loaded modules.

[root@xenserver ~]# lsmod | grep nvidia

nvidia 9522927 0

i2c_core 20294 2 nvidia,i2c 1801
[root@xenserver ~]#

2. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.

The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.

[root@xenserver ~]# nvidia-smi
Fri Jun 14 18:46:50 2024

| NVIDIA-SMI 550.90.05 Driver Version: 550.90.05 |
| == o o +

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 21

Installing and Configuring NVIDIA Virtual GPU Manager

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.

| + +

| 0 Tesla M60 On | 00000000:05:00.0 Off | Ooff

| N/A 25C P8 24w / 150W | 13MiB / 8191MiB | 0% Default

o e ——————— e ——————— +

| 1 Tesla M60 On | 00000000:06:00.0 Off | Off

| N/A 24C P8 24W / 150W | 13MiB / 8191MiB | 0% Default

e e e B +

| 2 Tesla M60 On | 00000000:86:00.0 Off | Off

| N/A 25C P8 25W / 150W | 13MiB / 8191MiB | 0% Default

e o= e e e L L e L L e et +

| 3 Tesla M60 On | 00000000:87:00.0 Off | Off

| N/A 28C P8 24w / 150W | 13MiB / 8191MiB | 0% Default

e e L e L L e e e e +

+ ___
Processes: GPU Memory
GPU PID Type Process name Usage

No running proce

[root@xenserver ~]#

sses found

If nvidia-smi fails to run or doesn’'t produce the expected output for all the NVIDIA GPUs
in your system, see Troubleshooting for troubleshooting steps.

2.4.2.

Virtual GPU

To support applications and workloads that are compute or graphics intensive, you can
add multiple vGPUs to a single VM.

Configuring a Citrix Hypervisor VM with

For details about which Citrix Hypervisor versions and NVIDIA vGPUs support the

assignment of multiple vGPUs to a VM, see Virtual GPU Software for Citrix Hypervisor

Release Notes.

Citrix Hypervisor supports configuration and management of virtual GPUs using
XenCenter, or the xe command line tool that is run in a Citrix Hypervisor domO shell.
Basic configuration using XenCenter is described in the following sections. Command line
management using xe is described in Citrix Hypervisor vGPU Management.

S Note: If you are using Citrix Hypervisor 8.1 or later and need to assign plugin configuration
parameters, create vGPUs using the xe command as explained in Creating a vGPU Using

XE.

1. Ensure the VM is powered off.
2. Right-click the VM in XenCenter, select Properties to open the VM's properties, and

select the GPU property.
The available GPU types are listed in the GPU type drop-down list:

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2

22

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-citrix-xenserver.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-citrix-xenserver.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 5. Using Citrix XenCenter to configure a VM with a vGPU

XenCenter = [@]=
fle View Pool Sever VM Storage Iemplates Tools Help
) Back ~) Forward - | [@ Add New Server | B New Pool ¥ New Storage T New vM | @) Start (3 Reboot () Suspend
Q|| @ Win7x64_CUDA_OPENCL (2) (1) on 'xs-72' Loggedinas: Localroot account |
B xencater General | Memory T 1 T T T
et cuonol P ﬁ
in’
rrre = General
= Win7x64_CUDA_OPENCL (2, —~ GPU
" s = Custom Fields
e <None You can improve graphics performance by assigning a virtual graphics processing unit to this
General ® P
emovable storag .
RHEL73 4 vCPU(s
5 Ubuntu Xenial Xer @ BootOptions GPUtype: Pass-through whole GPU [
Win7x64_CUDA_OF Description: oc NERTHIVE, Hate. Pass-through whole GPU -
Windows10-Rs1.1 (GRID MG0-8Q virtual GPU (1 per GPU, 4096x2160, 4 displ
Tags a Q virtual GPU (1 per GPU, 4096x2160, 4 displays) L L boore
_ B Vindons10-852 1 roder 18 €5%¢1 " GRID M60-8A virtual GPU (1 per GPU, 1280x1024, 1 display) N booted:
B localhost older: @ Ifthereir GRID M60-4Q virtual GPU (2 per GPU, 4096x2160, 4 displays) e able to start.
Operating System: (GRID MG0-4A virtual GPU (2 per GPU, 12801024, 1 display)
‘GRID M60-2Q virtual GPU (4 per GPU, 4096x2160, 4 displays)
Virtualization
ode (GRID M60-2A virtual GPU (4 per GPU, 12801024, 1 display)
(GRID M60-1Q virtual GPU (8 per GPU, 4096x2160, 2 displays) =
BIOS strings. GRID M60-1B virtual GPU (8 per GPU, 2560x1600, 4 displays)
copied: ‘GRID M60-1A virtual GPU (8 per GPU, 12801024, 1 display)
Virtualization statel ‘GRID ME0-0Q virtual GPU (16 per GPU, 2560x1600, 2 displays)
(GRID ME0-08 virtual GPU (16 per GPU, 2560x1600, 2 displays)
uuo: NVIDIA Corporation GP102GL [Tesla P40] GPUs (4
Pass-through whole GPU
Boot Options (GRID P40-24Q virtual GPU (1 per GPU, 4096x2160, 4 displays)
(GRID P40-24A virtual GPU (1 per GPU, 1280x1024, 1 display)
—— » — (GRID P40-12Q virtual GPU (2 per GPU, 4096x2160, 4 displays)
o ‘GRID P40-12A virtual GPU (2 per GPU, 1280x1024, 1 display)
(GRID P40-8Q virtual GPU (3 per GPU, 409612160, 4 displays)
(GRID P40-8A virtual GPU (3 per GPU, 1280x1024, 1 display) -
Infrastructure
Objects
Organizaion Views
Saved Searches

Notifications

After you have configured a Citrix Hypervisor VM with a vGPU, start the VM, either from
XenCenter or by using xe vm-start in a domO shell. You can view the VM’s console in
XenCenter.

After the VM has booted, install the NVIDIA vGPU software graphics driver as explained in
Installing the NVIDIA vGPU Software Graphics Driver.

2.4.3. Setting vGPU Plugin Parameters on Citrix
Hypervisor

Plugin parameters for a vGPU control the behavior of the vGPU, such as the frame rate
limiter (FRL) configuration in frames per second or whether console virtual network
computing (VNC) for the vGPU is enabled. The VM to which the vGPU is assigned is
started with these parameters. If parameters are set for multiple vGPUs assigned to the
same VM, the VM is started with the parameters assigned to each vGPU.

For each vGPU for which you want to set plugin parameters, perform this task in a

command shell in the Citrix Hypervisor domO domain.

1. Get the UUIDs of all VMs on the hypervisor host and use the output from the
command to identify the VM to which the vGPU is assigned.
[root@xenserver ~] xe vm-list
wuid (RO) : 7£6c855d-5635-2d57-9fbc-b1200172162£

name-label (RW): RHELS8.3
power-state (RO): running

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 23

Installing and Configuring NVIDIA Virtual GPU Manager

2. Get the UUIDs of all vGPUs on the hypervisor host and from the UUID of the VM to
which the vGPU is assigned, determine the UUID of the vGPU.

[root@xenserver ~] xe vgpu-list
uuid (RO) : d15083f8-5¢59-7474-d0cb-fbc3f7284f1b
vm-uuid (RO): 7£6c855d-5635-2d57-9fbc-b1200172162F

device (RO): 0
gpu-group-uuid (RO): 3a2fbc36-827d-a078-0b2f-9e86%ae6£d93

3. Use the xe command to set each vGPU plugin parameter that you want to set.

[root@xenserver ~] xe vgpu-param-set uuid=vgpu-uuid extra args='parameter=value'
vgpu-uuid
The UUID of the vGPU, which you obtained in the previous step.
parameter
The name of the vGPU plugin parameter that you want to set.
value

The value to which you want to set the vGPU plugin parameter.

This example sets the enable_uvm VGPU plugin parameter to 1 for the vGPU that has
the UUID d15083f8-5c59-7474-d0cb-fbc3£f7284f1b. This parameter setting enables
unified memory for the vGPU.

[root@xenserver ~] xe vgpu-param-set uuid=d15083£8-5c59-7474-d0cb-fbc3£7284f1b
extra args='enable uvm=1'

2.5. Installing the Virtual GPU Manager
Package for Linux KVM

NVIDIA vGPU software for Linux Kernel-based Virtual Machine (KVM) (Linux KVM) is
intended only for use with supported versions of Linux KVM hypervisors. For details
about which Linux KVM hypervisor versions are supported, see Virtual GPU Software for
Generic Linux with KVM Release Notes.

and Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM.

Note: If you are using Red Hat Enterprise Linux KVM, follow the instructions in Installing

Before installing the Virtual GPU Manager package for Linux KVM, ensure that the
following prerequisites are met:

» The following packages are installed on the Linux KVM server:

» The x86 64 build of the GNU Compiler Collection (GCC)
> Linux kernel headers

» The package file is copied to a directory in the file system of the Linux KVM server.

If the Nouveau driver for NVIDIA graphics cards is present, disable it before installing the
package.

1. Change to the directory on the Linux KVM server that contains the package file.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 24

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-generic-linux-kvm.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-generic-linux-kvm.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

cd package-file-directory
package-file-directory
The path to the directory that contains the package file.
2. Make the package file executable.
chmod +x package-file-name
package-file-name
The name of the file that contains the Virtual GPU Manager package for Linux
KVM, for example NVIDIA-Linux-x86 64-390.42-vgpu-kvm.run.
3. Run the package file as the root user.
sudo sh./package-file-name
The package file should launch and display the license agreement.
4. Accept the license agreement to continue with the installation.
When installation has completed, select OK to exit the installer.

6. Reboot the Linux KVM server.

systemctl reboot

ol

2.6. Installing and Configuring the
NVIDIA Virtual GPU Manager for
Microsoft Azure Stack HCI

Before you begin, ensure that the prerequisites in Prerequisites for Using NVIDIA vGPU
are met and the Microsoft Azure Stack HCI host is configured as follows:

» The Microsoft Azure Stack HCI OS is installed as explained in Deploy the Azure Stack
HCI operating system on the Microsoft documentation site.

» The following BIOS settings are enabled:

» Virtualization support, for example, Intel Virtualization Technology (VT-D) or AMD
Virtualization (AMD-V)

> SR-IOV

» Above 4G Decoding

» For Supermicro servers: ASPM Support

» For servers that have an AMD CPU:
» Alternative Routing ID Interpretation (ARI)
» Access Control Service (ACS)

» Advanced Error Reporting (AER)

Follow this sequence of instructions to set up a single Microsoft Azure Stack HCI VM to
use NVIDIA vGPU.

1. Installing the NVIDIA Virtual GPU Manager for Microsoft Azure Stack HCI
2. Setting the vGPU Series Allowed on a GPU

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 25

https://learn.microsoft.com/en-us/azure-stack/hci/deploy/operating-system
https://learn.microsoft.com/en-us/azure-stack/hci/deploy/operating-system

Installing and Configuring NVIDIA Virtual GPU Manager

3. Adding a vGPU to a Microsoft Azure Stack HCI VM

These instructions assume familiarity with the Microsoft Windows PowerShell commands
covered in Manage VMs on Azure Stack HCI using Windows PowerShell on the Microsoft
documentation site.

After the set up is complete, you can install the graphics driver for your guest OS and
license any NVIDIA vGPU software licensed products that you are using.

2.6.1. Installing the NVIDIA Virtual GPU Manager
for Microsoft Azure Stack HCI

The driver package for the Virtual GPU Manager is distributed as an archive file. You must
extract the contents of this archive file to enable the package to be added to the driver
store from a setup information file.

Perform this task in a Windows PowerShell window as the Administrator user.

1. Download the archive file in which the driver package for the Virtual GPU Manager is
distributed.

2. Extract the contents of the archive file to a directory that is accessible from the
Microsoft Azure Stack HCI host.

3. Change to the Gridsw-Azure-Stack-HCI directory that you extracted from the
archive file.

4. Use the pnpPUtil tool to add the driver package for the Virtual GPU Manager to the
driver store from the nvgridswhci.inf setup information file.

In the command for adding the driver package, also set the options to traverse
subdirectories for driver packages and reboot the Microsoft Azure Stack HCI host if
necessary to complete the operation.
PS C:> pnputil /add-driver nvgridswhci.inf /subdirs /install /reboot

5. After the host has rebooted, verify that the NVIDIA Virtual GPU Manager can
successfully communicate with the NVIDIA physical GPUs in your system.

Run the nvidia-smi command with no arguments for this purpose.

Running the nvidia-smi command should produce a listing of the GPUs in your
platform.

6. Confirm that the Microsoft Azure Stack HCI host has GPU adapters that can be
partitioned by listing the GPUs that support GPU-P.
PS C:> Get-VMHostPartitionableGpu
If the NVIDIA Virtual GPU Manager is correctly installed, each GPU in the host GPU is

listed. The numbers of partitions that each GPU supports and the unique name for
referencing each GPU are also listed.

7. For each GPU, set the number of partitions that the GPU should support to the
maximum number of vGPUs that can be added to the GPU.

PS C:> Set-VMHostPartitionableGpu -Name "gpu-name" -PartitionCount partitions
gpu-name

The unique name for referencing the GPU that you obtained in the previous step.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 26

https://learn.microsoft.com/en-us/azure-stack/hci/manage/vm-powershell

Installing and Configuring NVIDIA Virtual GPU Manager

partitions

The maximum number of vGPUs that can be added to the GPU. This number
depends on the virtual GPU type. For example, the maximum number of each type
of vGPU that can be added to the NVIDIA A16 GPU is as follows:

Virtual GPU Type Maximum vGPUs per GPU
A16-16Q 1

A16-16A
A16-8Q 2

A16-8A
A16-4Q 4

A16-4A
A16-2Q 8

A16-2B

A16-2A
A16-1Q 16

A16-1B

Al16-1A

The Virtual GPU Manager allows virtual GPUs (vGPUs) to be created on a GPU from only
one VGPU series. By default, only Q-series vGPUs may be created on a GPU. You can
change the vGPU series allowed on a GPU by setting the GridGpupProfileType value for
the GPU in the Windows registry.

This task requires administrator user privileges.

1. Use Windows PowerShell to get the driver key of the GPU on which you want to set
the allowed vGPU series.

You will need this information in the next step to identify the Windows registry key in
which information about the GPU is stored.

a).

Get the InstancelD property of the GPU on which you want to set the allowed
vGPU series.

PS C:\> Get-PnpDevice -PresentOnly |

>> Where-Object {$_.InstanceId -like "PCI\VEN_lODE*" } |
>> Select-Object -Property FriendlyName,Instanceld |

>> Format-List

FriendlyName : NVIDIA Al100
Instanceld : PCI
\VEN_ 10DE&DEV_2236&SUBSYS 148210DE&REV AI\6&17F903&0&00400000

. Get the DEVPKEY Device Driver property of the GPU from the InstanceID

property that you got in the previous step.

PS C:\> Get-PnpDeviceProperty -InstanceIld "instance-id" |

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 27

Installing and Configuring NVIDIA Virtual GPU Manager

>> where {$_.KeyName -eq "DEVPKEY Device Driver"} |
>> Select-Object -Property Data

Data

{4d36e968-e325-11ce-bfc1-08002be10318}\0001

instance-id
The InstancelID property of the GPU that
you got in the previous step, for example, pCc1
\VEN_10DE&DEV_2236&SUBSYS 148210DE&REV_A1\6&17F90360&00400000.

2. Set the GridGpupProfileType DWord (REG DWORD) registry value in the Windows
registry key HKEY LOCAL MACHINE\SYSTEM\ControlSet001l\Control\Class\driver-
key.
driver-key

The driver key for the GPU that you got in the previous step, for example,
{4d36e968-e325-11ce-bfcl1-08002bel10318}\0001.

The value to set depends on the vGPU series that you want to be allowed on the GPU.

vGPU Series Value
Q-series 1
A-series

B-series

You add a vGPU to a Microsoft Azure Stack HCI VM by adding a GPU-P adapter to a VM.

Perform this task in a Windows PowerShell window as the Administrator user.

1. Set the variable svm to the name of the virtual machine to which you are adding a
vGPU.
PS C:> $vm = "vm-name"
vm-name
The name of the virtual machine to which you are adding a vGPU.
2. Allow the VM to control cache types for MMIO access.
PS C:> Set-VM -GuestControlledCacheTypes $true -VMName $vm
3. Set the lower MMIO space to 1 GB to allow sufficient MMIO space to be mapped.

PS C:> Set-VM -LowMemoryMappedIoSpace 1Gb -VMName S$vm

This amount is twice the amount that the device must allow for alignment. Lower
MMIQO space is the address space below 4 GB and is required for any device that has
32-bit BAR memory.

4. Set the upper MMIO space to 32 GB to allow sufficient MMIO space to be mapped.

PS C:> Set-VM -HighMemoryMappedIoSpace 32GB -VMName $vm

This amount is twice the amount that the device must allow for alignment. Upper
MMIQO space is the address space above approximately 64 GB.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 28

8.

Installing and Configuring NVIDIA Virtual GPU Manager

Confirm that the Microsoft Azure Stack HCI host has a GPU that supports the GPU-P
adapter that you want to create.

PS C:> get-VMHostPartitionableGpu

The maximum and minimum values that you can specify for the properties of the GPU
that you want to create are also listed.

Add a GPU-P adapter to the VM.

PS C:> Add-VMGpuPartitionAdapter -VMName $vm °
-MinPartitionVRAM min-ram °
-MaxPartitionVRAM max-ram °
-OptimalPartitionVRAM opt-ram °
-MinPartitionEncode min-enc °
-MaxPartitionEncode max-enc °
-OptimalPartitionEncode opt-enc °
-MinPartitionDecode min-dec °
-MaxPartitionDecode max-dec °
-OptimalPartitionDecode opt-dec °
-MinPartitionCompute min-compute °
-MaxPartitionCompute max-compute °
-OptimalPartitionCompute opt-compute

S Note: Because partitions are resolved only when the VM is started, this command
cannot validate that the Microsoft Azure Stack HCI host has a GPU that supports the
GPU-P adapter that you want to create. The values that you specify must be within the
maximum and minimum values that were listed in the previous step.

List the adapters assigned to the VM to confirm that the GPU-P adapter has been
added to the VM.

PS C:> Get-VMGpuPartitionAdapter -VMName $vm

This command also returns the adapter ID to use for reconfiguring or deleting a GPU
partition.

Connect to and start the VM.

2.6.4. Uninstalling the NVIDIA Virtual GPU

Manager for Microsoft Azure Stack HCI

If you no longer require the Virtual GPU Manager on your Microsoft Azure Stack HCI
server, you can uninstall the driver package for the Virtual GPU Manager.
Perform this task in a Windows PowerShell window as the Administrator user.

1.

Determine the published name of the driver package for the Virtual GPU Manager by
enumerating all third-party driver packages in the driver store.

PS C:> pnputil /enum-drivers

Information similar to the following example is displayed. In this example, the
published name of the driver package for the Virtual GPU Manager is cem5. inf.
Microsoft PnP Utility

Published name : oem5.inf

Driver package provider : NVIDIA

Class : Display adapters

Driver date and version : 01/01/2023 31.0.15.2807

Signer name : Microsoft Windows Hardware Compatibility Publisher

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 29

Installing and Configuring NVIDIA Virtual GPU Manager

2. Delete and uninstall the driver package for the Virtual GPU Manager.
PS C:> pnputil /delete-driver vgpu-manager-package-published-name /uninstall /reboot
vgpu-manager-package-published-name
The published name of the driver package for the Virtual GPU Manager that you
obtained in the previous step, for example, oem5. inf.

This example deletes and uninstalls the driver package for which the published name

iS oem5.1inf.

PS C:> pnputil.exe /delete-driver oem5.inf /uninstall /reboot
Microsoft PnP Utility

Driver package uninstalled.
Driver package deleted successfully.

If necessary, the Microsoft Azure Stack HCI server is rebooted.

2.7. Installing and Configuring the
NVIDIA Virtual GPU Manager for
Red Hat Enterprise Linux KVM

The following topics step you through the process of setting up a single Red Hat
Enterprise Linux Kernel-based Virtual Machine (KVM) VM to use NVIDIA vGPU.

CAUTION: Output from the VM console is not available for VMs that are running vGPU.
Make sure that you have installed an alternate means of accessing the VM (such as a VNC
server) before you configure vGPU.

Follow this sequence of instructions:

1. Installing the Virtual GPU Manager Package for Red Hat Enterprise Linux KVM

2. Verifying the Installation of the NVIDIA vGPU Software for Red Hat Enterprise Linux
KVM

3. vGPUs that support SR-I0V only: Preparing the Virtual Function for an NVIDIA vGPU
that Supports SR-IOV on a Linux with KVM Hypervisor

Optional: Putting a GPU Into Mixed-Size Mode

Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor
Creating an NVIDIA vGPU on a Linux with KVM Hypervisor

Adding One or More vGPUs to a Linux with KVM Hypervisor VM
Optional: Placing a vGPU on a Physical GPU in Mixed-Size Mode
Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor

© ©® N O A

After the process is complete, you can install the graphics driver for your guest OS and
license any NVIDIA vGPU software licensed products that you are using.

the Virtual GPU Manager Package for Linux KVM.

Note: If you are using a generic Linux KVM hypervisor, follow the instructions in Installing

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 30

Installing and Configuring NVIDIA Virtual GPU Manager

2.7.1. Installing the Virtual GPU Manager
Package for Red Hat Enterprise Linux KVM

The NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM is provided as a . rpm
file.

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If you
update vGPU Manager to a release that is incompatible with the guest VM drivers, guest
VMs will boot with vGPU disabled until their guest vGPU driver is updated to a compatible
version. Consult Virtual GPU Software for Red Hat Enterprise Linux with KVM Release Notes
for further details.

Before installing the RPM package for Red Hat Enterprise Linux KVM, ensure that

the sshd service on the Red Hat Enterprise Linux KVM server is configured to permit
root login. If the Nouveau driver for NVIDIA graphics cards is present, disable it before
installing the package. For instructions, see How to disable the Nouveau driver and install
the Nvidia driver in RHEL 7 (Red Hat subscription required).

Some versions of Red Hat Enterprise Linux KVM have z-stream updates that break Kernel
Application Binary Interface (kABI) compatibility with the previous kernel or the GA kernel.
For these versions of Red Hat Enterprise Linux KVM, the following Virtual GPU Manager
RPM packages are supplied:

» A package for the GA Linux KVM kernel
» A package for the updated z-stream kernel

To differentiate these packages, the name of each RPM package includes the kernel
version. Ensure that you install the RPM package that is compatible with your Linux KVM
kernel version.

1. Securely copy the RPM file from the system where you downloaded the file to the Red
Hat Enterprise Linux KVM server.

» From a Windows system, use a secure copy client such as WinSCP.
» From a Linux system, use the scp command.

2. Use secure shell (SSH) to log in as root to the Red Hat Enterprise Linux KVM server.,
ssh rootQ@kvm-server
kvm-server
The host name or IP address of the Red Hat Enterprise Linux KVM server.

3. Change to the directory on the Red Hat Enterprise Linux KVM server to which you
copied the RPM file.
cd rpm-file-directory
rpm-file-directory
The path to the directory to which you copied the RPM file.
4. Use the rpm command to install the package.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 31

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-red-hat-el-kvm.pdf
https://access.redhat.com/solutions/1155663
https://access.redhat.com/solutions/1155663

Installing and Configuring NVIDIA Virtual GPU Manager

rpm -iv NVIDIA-vGPU-rhel-8.9-550.90.05.x86_ 64.rpm
Preparing packages for installation...
NVIDIA-vGPU-rhel-8.9-550.90.05

#

5. Reboot the Red Hat Enterprise Linux KVM server.
systemctl reboot

2.7.2. \Verifying the Installation of the NVIDIA
vGPU Software for Red Hat Enterprise
Linux KVM

After the Red Hat Enterprise Linux KVM server has rebooted, verify the installation of the
NVIDIA vGPU software package for Red Hat Enterprise Linux KVM.

1. Verify that the NVIDIA vGPU software package is installed and loaded correctly by
checking for the VFIO drivers in the list of kernel loaded modules.
lsmod | grep vfio

nvidia vgpu vfio 27099 0

nvidia 12316924 1 nvidia vgpu vfio

vfio mdev 12841 O

mdev 20414 2 vfio mdev,nvidia vgpu vfio

vfio iommu typel 22342 0

vfio 32331 3 vfio mdev,nvidia vgpu vfio,vfio iommu typel
#

2. Verify that the 1ibvirtd service is active and running.
service libvirtd status

3. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.
The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.

nvidia-smi
Fri Jun 14 18:46:50 2024

e +

| NVIDIA-SMI 550.90.05 Driver Version: 550.90.05 |

|——m o o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| = = |
| 0 Tesla M60 On | 0000:85:00.0 Off | Off |
| N/A 23C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
it ittt e e o B e T e +
| 1 Tesla M60 On | 0000:86:00.0 Off | Off |
| N/A 29C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
it ittt T T T o B ittt e e TP +
| 2 Tesla P40 On | 0000:87:00.0 Off | Off |
| N/A 21C P8 18w / 250W | 53MiB / 24575MiB | 0% Default |
o o o +
e +
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
| |
| No running processes found |
e +
#

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 32

Installing and Configuring NVIDIA Virtual GPU Manager

If nvidia-smi fails to run or doesn’t produce the expected output for all the NVIDIA GPUs
in your system, see Troubleshooting for troubleshooting steps.

2.8. Installing and Configuring the
NVIDIA Virtual GPU Manager for
Ubuntu

Follow this sequence of instructions to set up a single Ubuntu VM to use NVIDIA vGPU.

1. Installing the NVIDIA Virtual GPU Manager for Ubuntu
2. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor

vGPUs that support SR-I0V only: Preparing the Virtual Function for an NVIDIA vGPU
that Supports SR-IOV on a Linux with KVM Hypervisor

Optional: Putting a GPU Into Mixed-Size Mode

Creating an NVIDIA vGPU on a Linux with KVM Hypervisor
Adding One or More vGPUs to a Linux with KVM Hypervisor VM
Optional: Placing a vGPU on a Physical GPU in Mixed-Size Mode
Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor

w

© N o U b

CAUTION: Output from the VM console is not available for VMs that are running vGPU.
Make sure that you have installed an alternate means of accessing the VM (such as a VNC
server) before you configure vGPU.

After the process is complete, you can install the graphics driver for your guest OS and
license any NVIDIA vGPU software licensed products that you are using.

2.8.1. Installing the NVIDIA Virtual GPU Manager
for Ubuntu

The NVIDIA Virtual GPU Manager for Ubuntu is provided as a Debian package (. deb) file.

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If you
update vGPU Manager to a release that is incompatible with the guest VM drivers, guest
VMs will boot with vGPU disabled until their guest vGPU driver is updated to a compatible
version. Consult Virtual GPU Software for Ubuntu Release Notes for further details.

2.8.1.1. Installing the Virtual GPU Manager Package for
Ubuntu

Before installing the Debian package for Ubuntu, ensure that the sshd service on the
Ubuntu server is configured to permit root login. If the Nouveau driver for NVIDIA
graphics cards is present, disable it before installing the package.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 33

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-ubuntu.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

1. Securely copy the Debian package file from the system where you downloaded the file
to the Ubuntu server.

» From a Windows system, use a secure copy client such as WinSCP.
» From a Linux system, use the scp command.

2. Use secure shell (SSH) to log in as root to the Ubuntu server.

ssh root@Rubuntu-server
ubuntu-server
The host name or IP address of the Ubuntu server.

3. Change to the directory on the Ubuntu server to which you copied the Debian
package file.
cd deb-file-directory
deb-file-directory
The path to the directory to which you copied the Debian package file.

4. Use the apt command to install the package.
apt install ./nvidia-vgpu-ubuntu-550.90.05_amd64.deb

5. Reboot the Ubuntu server.
systemctl reboot

2.8.1.2. Verifying the Installation of the NVIDIA vGPU

Software for Ubuntu

After the Ubuntu server has rebooted, verify the installation of the NVIDIA vGPU software
package for Ubuntu.

1. Verify that the NVIDIA vGPU software package is installed and loaded correctly by
checking for the VFIO drivers in the list of kernel loaded modules.
lsmod | grep vfio

nvidia vgpu vfio 27099 O

nvidia 12316924 1 nvidia vgpu vfio

vfio mdev 12841 O

mdev 20414 2 vfio mdev,nvidia vgpu vfio

vfio iommu typel 22342 O

vfio 32331 3 vfio mdev,nvidia vgpu vfio,vfio iommu typel
#

2. Verify that the 1ibvirtd service is active and running.
service libvirtd status

3. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.
The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.

nvidia-smi
Fri Jun 14 18:46:50 2024

| NVIDIA-SMI 550.90.05 Driver Version: 550.90.05 |

|—mmm o o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap] Memory-Usage | GPU-Util Compute M. |
| + + |
| 0 Tesla M60 On | 0000:85:00.0 Off | Off |

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 34

Installing and Configuring NVIDIA Virtual GPU Manager

| N/A 23C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
o o B et +
| 1 Tesla M60 On | 0000:86:00.0 Off | Off |
| N/A 29C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
o o ———— - ——— +
| 2 Tesla P40 On | 0000:87:00.0 Off | Off |
| N/A 21C P8 18W / 250W | 53MiB / 24575MiB | 0% Default |
fomm o o 1
e +
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
| |
| No running processes found |
o +

If nvidia-smi fails to run or doesn’'t produce the expected output for all the NVIDIA GPUs
in your system, see Troubleshooting for troubleshooting steps.

2.9. Installing and Configuring the
NVIDIA Virtual GPU Manager for
VMware vSphere

You can use the NVIDIA Virtual GPU Manager for VMware vSphere to set up a VMware
vSphere VM to use NVIDIA vGPU.

[g] Note:

Some servers, for example, the Dell R740, do not configure SR-IOV capability if the SR-IOV
SBIOS setting is disabled on the server. If you are using the Tesla T4 GPU with VMware
vSphere on such a server, you must ensure that the SR-IOV SBIOS setting is enabled on
the server.

However, with any server hardware, do not enable SR-IOV in VMware vCenter Server

for the Tesla T4 GPU. If SR-IOV is enabled in VMware vCenter Server for T4, VMware
vCenter Server lists the status of the GPU as needing a reboot. You can ignore this status
message.

NVIDIA vGPU Instructions

S Note: The Xorg service is not required for graphics devices in NVIDIA vGPU mode. For more
information, see Installing and Updating the NVIDIA Virtual GPU Manager for VMware

vSphere.

To set up a VMware vSphere VM to use NVIDIA vGPU, follow this sequence of instructions:

1. Installing and Updating the NVIDIA Virtual GPU Manager for VMware vSphere
2. Configuring VMware vMotion with vGPU for VMware vSphere

3. Changing the Default Graphics Type in VMware vSphere

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 35

Installing and Configuring NVIDIA Virtual GPU Manager

4. Configuring a vSphere VM with NVIDIA vGPU
5. Optional: Setting vGPU Plugin Parameters on VMware vSphere

After configuring a vSphere VM to use NVIDIA vGPU, you can install the NVIDIA vGPU
software graphics driver for your guest OS and license any NVIDIA vGPU software
licensed products that you are using.

Requirements for Configuring NVIDIA vGPU in a DRS Cluster

You can configure a VM with NVIDIA vGPU on an ESXi host in a VMware Distributed
Resource Scheduler (DRS) cluster. However, to ensure that the automation level of the
cluster supports VMs configured with NVIDIA vGPU, you must set the automation level to
Partially Automated or Manual.

For more information about these settings, see Edit Cluster Settings in the VMware
documentation.

2.9.1. Installing and Updating the NVIDIA Virtual
GPU Manager for VMware vSphere

The NVIDIA Virtual GPU Manager runs on the ESXi host. It is distributed as a number of
software components in a ZIP archive.

The NVIDIA Virtual GPU Manager software components are as follows:

» A software component for the NVIDIA vGPU hypervisor host driver

» A software component for the NVIDIA GPU Management daemon

You can install these software components in one of the following ways:
» By copying the software components to the ESXi host and then installing them as
explained in Installing the NVIDIA Virtual GPU Manager on VMware vSphere

» By importing the software components manually as explained in Import Patches
Manually in the VMware vSphere documentation

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If
you update vGPU Manager to a release that is incompatible with the guest VM drivers,
guest VMs will boot with vGPU disabled until their guest vGPU driver is updated to a
compatible version. Consult Virtual GPU Software for VMware vSphere Release Notes for
further details.

2.9.1.1. Installing the NVIDIA Virtual GPU Manager on
VMware vSphere

To install the NVIDIA Virtual GPU Manager you need to access the ESXi host via the ESXi
Shell or SSH. Refer to VMware’s documentation on how to enable ESXi Shell or SSH for an
ESXi host.

Before you begin, ensure that the following prerequisites are met:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 36

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-755AB944-F3D0-43DD-82CD-8CDDDF8674E8.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.update_manager.doc/GUID-1F5292F1-904D-4607-871A-AE426EF9BD3F.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.update_manager.doc/GUID-1F5292F1-904D-4607-871A-AE426EF9BD3F.html
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

The ZIP archive that contains NVIDIA vGPU software has been downloaded from the
NVIDIA Licensing Portal.

The software components for the NVIDIA Virtual GPU Manager have been extracted
from the downloaded ZIP archive.

1. Copy the NVIDIA Virtual GPU Manager component files to the ESXi host.
2. Put the ESXi host into maintenance mode.

$ esxcli system maintenanceMode set --enable true

3. Install the NVIDIA vGPU hypervisor host driver and the NVIDIA GPU Management
daemon from their software component files.

a). Run the esxcli command to install the NVIDIA vGPU hypervisor host driver from
its software component file.
S esxcli software vib install -d /vmfs/volumes/datastore/host-driver-component.zip
b). Run the esxc1i command to install the NVIDIA GPU Management daemon from
its software component file.

S esxcli software vib install -d /vmfs/volumes/datastore/gpu-management-daemon-
component.zip

datastore
The name of the VMFS datastore to which you copied the software components.
host-driver-component
The name of the file that contains the NVIDIA vGPU hypervisor host driver in the
form of a software component. Ensure that you specify the file that was extracted
from the downloaded ZIP archive. For example, for VMware vSphere 7.0.2, host-
driver-component is NVD-VMware-x86_64-550.90.05-10EM.702.0.0.17630552-
bundle-build-number.
gpu-management-daemon-component
The name of the file that contains the NVIDIA GPU Management daemon in
the form of a software component. Ensure that you specify the file that was
extracted from the downloaded ZIP archive. For example, for VMware vSphere
7.0.2, gpu-management-daemon-component is VMW-esx-7.0.2-nvd-gpu-mgmt-
daemon-1.0-0.0.0001.

4. Exit maintenance mode.

$ esxcli system maintenanceMode set --enable false

5. Reboot the ESXi host.

$ reboot

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 37

Installing and Configuring NVIDIA Virtual GPU Manager

2.9.1.2. Updating the NVIDIA Virtual GPU Manager for
VMware vSphere

Update the NVIDIA Virtual GPU Manager if you want to install a new version of NVIDIA
Virtual GPU Manager on a system where an existing version is already installed.

To update the vGPU Manager VIB you need to access the ESXi host via the ESXi Shell or
SSH. Refer to VMware’s documentation on how to enable ESXi Shell or SSH for an ESXi
host.

S Note: Before proceeding with the vGPU Manager update, make sure that all VMs are
powered off and the ESXi host is placed in maintenance mode. Refer to VMware’s
documentation on how to place an ESXi host in maintenance mode

1. Stop the NVIDIA GPU Management Daemon.
S /etc/init.d/nvdGpuMgmtDaemon stop

2. Update the NVIDIA vGPU hypervisor host driver and the NVIDIA GPU Management
daemon.

a). Run the esxc1i command to update the NVIDIA vGPU hypervisor host driver from
its software component file.

$ esxcli software vib update -d /vmfs/volumes/datastore/host-driver-component.zip

b). Run the esxc1i command to update the NVIDIA GPU Management daemon from
its software component file.

S esxcli software vib update -d /vmfs/volumes/datastore/gpu-management-daemon-
component.zip

datastore
The name of the VMFS datastore to which you copied the software components.
host-driver-component
The name of the file that contains the NVIDIA vGPU hypervisor host driver in the
form of a software component. Ensure that you specify the file that was extracted
from the downloaded ZIP archive. For example, for VMware vSphere 7.0.2, host-
driver-component is NVD-VMware-x86_64-550.90.05-10EM.702.0.0.17630552-
bundle-build-number.
gpu-management-daemon-component
The name of the file that contains the NVIDIA GPU Management daemon in
the form of a software component. Ensure that you specify the file that was
extracted from the downloaded ZIP archive. For example, for VMware vSphere
7.0.2, gpu-management-daemon-component is VMW-esx-7.0.2-nvd-gpu-mgmt-
daemon-1.0-0.0.0001.

3. Reboot the ESXi host and remove it from maintenance mode.

2.9.1.3. Verifying the Installation of the NVIDIA vGPU

Software Package for vSphere

After the ESXi host has rebooted, verify the installation of the NVIDIA vGPU software
package for vSphere.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 38

Installing and Configuring NVIDIA Virtual GPU Manager

1. Verify that the NVIDIA vGPU software package installed and loaded correctly by
checking for the NVIDIA kernel driver in the list of kernel loaded modules.

[root@esxi:~] vmkload mod -1 | grep nvidia
nvidia 5 8420

2. If the NVIDIA driver is not listed in the output, check dmesg for any load-time errors
reported by the driver.

3. Verify that the NVIDIA GPU Management daemon has started.
$ /etc/init.d/nvdGpuMgmtDaemon status

4. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.

The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.

[root@esxi:~] nvidia-smi

Fri Jun 14 17:56:22 2024

e +

| NVIDIA-SMI 550.90.05 Driver Version: 550.90.05 |

| ——m o o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| ; f |
| 0 Tesla M60 On | 00000000:05:00.0 Off | Off |
| N/A 25C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
it ittt e e o e +
| 1 Tesla M60 On | 00000000:06:00.0 Off | Off |
| N/A 24C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
it ittt e T T e Bt ittt e P B ittt L e +
| 2 Tesla M60 On | 00000000:86:00.0 Off | Off |
| N/A 25C P8 25W / 150W | 13MiB / 8191MiB | 0% Default |
e o o +
| 3 Tesla M60 On | 00000000:87:00.0 Off | Off |
| N/A 28C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
Rt ittt e e e o B ettt +
e +
| Processes: GPU Memory |
| GPU PID Type Process name Usage |

If nvidia-smi fails to report the expected output for all the NVIDIA GPUs in your system,
see Troubleshooting for troubleshooting steps.

2.9.1.4. Managing the NVIDIA GPU Management
Daemon for VMware vSphere

The NVIDIA GPU Management Daemon for VMware vSphere is a service that is controlled
through scripts in the /etc/init.d directory. You can use these scripts to start the
daemon, stop the daemon, and get its status.

To start the NVIDIA GPU Management Daemon, enter the following command:
$ /etc/init.d/nvdGpuMgmtDaemon start
To stop the NVIDIA GPU Management Daemon, enter the following command:

$ /etc/init.d/nvdGpuMgmtDaemon stop

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 39

Installing and Configuring NVIDIA Virtual GPU Manager

To get the status of the NVIDIA GPU Management Daemon, enter the following
command:

$ /etc/init.d/nvdGpuMgmtDaemon status

2.9.2. Configuring VMware vMotion with vGPU
for VMware vSphere

NVIDIA vGPU software supports vGPU migration, which includes VMware vMotion and
suspend-resume, for VMs that are configured with vGPU. To enable VMware vMotion with
vGPU, an advanced vCenter Server setting must be enabled. However, suspend-resume
for VMs that are configured with vGPU is enabled by default.

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support vGPU migration, see Virtual GPU Software for VMware vSphere Release Notes.

Before configuring VMware vMotion with vGPU for an ESXi host, ensure that the current
NVIDIA Virtual GPU Manager for VMware vSphere package is installed on the host.

1. Log in to vCenter Server by using the vSphere Web Client.
2. In the Hosts and Clusters view, select the vCenter Server instance.

Note: Ensure that you select the vCenter Server instance, not the vCenter Server VM.

3. Click the Configure tab.
4. In the Settings section, select Advanced Settings and click Edit.

5. In the Edit Advanced vCenter Server Settings window that opens, type vGpPU in the
search field.

6. When the vgpu.hotmigrate.enabled setting appears, set the Enabled option and click
OK.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 40

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

[10.31.115.130 - Edit Advanced vCenter Server Settings (?)

ﬁ; Adding or modifying configuration parameters is unsupported and can cause instability. Configuration parameters cannot
be removed once they are added. Continue only if you know what you are doing.

(@ vePy| -

Mame alue Summary

vgpu.hotmigrate.enabled [Enabled Enable vGPU hot migration

2.9.3. Changing the Default Graphics Type in
VMware vSphere

After the vGPU Manager VIB for VMware vSphere VIB is installed, the default graphics
type is Shared. To enable vGPU support for VMs in VMware vSphere, you must change the
default graphics type to Shared Direct.

If you do not change the default graphics type, VMs to which a vGPU is assigned fail to
start and the following error message is displayed:

The amount of graphics resource available in the parent resource pool is
insufficient for the operation.

=} | Note: Change the default graphics type before configuring vGPU. Output from the VM
console in the VMware vSphere Web Client is not available for VMs that are running vGPU.

Before changing the default graphics type, ensure that the ESXi host is running and that
all VMs on the host are powered off.

1. Log in to vCenter Server by using the vSphere Web Client.
2. In the navigation tree, select your ESXi host and click the Configure tab.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 41

Installing and Configuring NVIDIA Virtual GPU Manager

3. From the menu, choose Graphics and then click the Host Graphics tab.
4. On the Host Graphics tab, click Edit.

Figure 6. Shared default graphics type

vmware® vSphere Web Client #= U | Administrator@PSG-HOME.LOCAL ~ | Help ~
Navigator X [J 192.168.11.30 | B 2 [[[| {ShActons ~ =
4 Back Getting Started Summary Monitor | Configure | Permissions VMs Resource Pools Datastores Networks

¥ | & B8

~[31192.168.11.6 “ Host Graphics | Graphics Devices

Advanced -

w [z home Host Graphics Settings

» [B192.168.11.20(v Virtual Machines

H§ 192.168.11.30 VM Startup/Shutdown Default graphics type: Shared

Agent VM Settings Shared passthrough GPU Spread VMs across GPUs (best performance)
assignment policy:

Swap file location
Default VM Compatibility

+ System
Licensing
Time Configuration
Authentication Services
Certificate
Power Management
Advanced System Settings
System Resource Reservation
Security Profile
System Swap
Host Profile

+ Hardware
Processors
Memory

Leomm]

Power Management
PCI Devices

w Virtual Flash -

< [»

5. In the Edit Host Graphics Settings dialog box that opens, select Shared Direct and
click OK.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 42

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 7. Host graphics settings for vGPU

[J 192.168.11.30 - Edit Host Graphics Settings ?)

,ﬂ, Settings will take effect after restarting the host or "xorg" service.

(L) Shared
VMware shared virtual graphics

(®) Shared Direct
Vendor shared passthrough graphics

Shared passthrough GPU assignment policy:
(») Spread VMs across GPUs (best performance)

(L) Group VMs on GPU until full (GPU consolidation)

OK] [Cancel

VMs. For more information, see Modifying GPU Allocation Policy on VMware vSphere.

Note: In this dialog box, you can also change the allocation scheme for vGPU-enabled

After you click OK, the default graphics type changes to Shared Direct.

6. Click the Graphics Devices tab to verify the configured type of each physical GPU on
which you want to configure vGPU.

The configured type of each physical GPU must be Shared Direct. For any physical
GPU for which the configured type is Shared, change the configured type as follows:

a). On the Graphics Devices tab, select the physical GPU and click the Edit icon.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 43

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 8. Shared graphics type

Getiing Started Summary Monitor | Configure | Permissions VMs Resource Pools Dalastores Nefworks Update Manager

i Host Graphics | Graphics Devices

Time Configuration

Graphics Devices
Authentication Services

Certificate 4 Q Fiter -
Power Management Name Vendor Azive Type [e
Advanced System Settings NVIDIATesla M60 NVIDIA Corporation Shared Shared 798 6B
System Resource Reservation NVIDIATesla M60 NVIDIA Corporation Shared Shared 79968
Security Profile
System Swap
Host Profile
+ Hardware L] 2items [3Ewort~ [3C0py~

REELEIE VMs asseciated with the graphics device "NVIDIATesla ME0™
Memory
& [m G 5 | {gactons - % (a Fiter -

b). In the Edit Graphics Device Settings dialog box that opens, select Shared Direct
and click OK.

Figure 9. Graphics device settings for a physical GPU

A Settings will take effect after restarting the host or “xorg" service.
() Shared
VMware shared virtual graphics

(=) Shared Direct
Vendor shared passthrough graphics

7. Restart the ESXi host or stop and restart the Xorg service if necessary and nv-
hostengine on the ESXi host.
To stop and restart the Xorg service and nv-hostengine, perform these steps:
a). VMware vSphere releases before 7.0 Update 1 only: Stop the Xorg service.

The Xorg service is not required for graphics devices in NVIDIA vGPU mode.
b). Stop nv-hostengine.
[root@esxi:~] nv-hostengine -t
c). Wait for 1 second to allow nv-hostengine to stop.
d). Start nv-hostengine.
[root@esxi:~] nv-hostengine -d
e). VMware vSphere releases before 7.0 Update 1 only: Start the Xorg service.

The Xorg service is not required for graphics devices in NVIDIA vGPU mode.
[root@esxi:~] /etc/init.d/xorg start

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 44

Installing and Configuring NVIDIA Virtual GPU Manager

8. In the Graphics Devices tab of the VMware vCenter Web Ul, confirm that the active
type and the configured type of each physical GPU are Shared Direct.

Figure 10. Shared direct graphics type

Getting Started Summary Monitor Conﬁuu[e‘?ermlssmns VMs Resource Pools Datastores Nefworks Update Manager

Host Graphics | Graphics Devices

Time Configuration
Graphics Devices

Authentication Services

Certificate 7 Q Fiter

Power Management Name Vendor cive Type Memary

NVIDIATesla M50 NVIDIA Corporation Shared Direct Shared Drect 79868

NVIDIATesla M50 NVIDIA Corporation Shared Direct Shared Drect 7.99 6B

Advanced System Settings
System Resource Reservation
Security Profile
System Swap
Host Profile

o M M (a Finc - 2items [Export~ [[5Copy ~
Processors

WMs associated with the graphics device 'NVIDIATesla M60™
Memory

L R

After changing the default graphics type, configure vGPU as explained in Configuring a
vSphere VM with NVIDIA vGPU.

See also the following topics in the VMware vSphere documentation:

» Login tovCenter Server by Using the vSphere Web Client

» Configuring Host Graphics

2.9.4. Configuring a vSphere VM with NVIDIA
vGPU

To support applications and workloads that are compute or graphics intensive, you can
add multiple vGPUs to a single VM.

For details about which VMware vSphere versions and NVIDIA vGPUs support the
assignment of multiple vGPUs to a VM, see Virtual GPU Software for VMware vSphere
Release Notes.

CAUTION: Output from the VM console in the VMware vSphere Web Client is not available
for VMs that are running vGPU. Make sure that you have installed an alternate means of
accessing the VM (such as VMware Horizon or a VNC server) before you configure vGPU.

VM console in vSphere Web Client will become active again once the vGPU parameters
are removed from the VM’s configuration.

How to configure a vSphere VM with a vGPU depends on your VMware vSphere version as
explained in the following topics:

» Configuring a vSphere 8 VM with NVIDIA vGPU

» Configuring a vSphere 7 VM with NVIDIA vGPU

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 45

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-CE128B59-E236-45FF-9976-D134DADC8178.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-E0862AED-BF69-4C85-A811-EEE626F63B48.html
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

After you have configured a vSphere VM with a vGPU, start the VM. VM console in
vSphere Web Client is not supported in this vGPU release. Therefore, use VMware Horizon
or VNC to access the VM’s desktop.

After the VM has booted, install the NVIDIA vGPU software graphics driver as explained in
Installing the NVIDIA vGPU Software Graphics Driver.

2.9.4.1. Configuring a vSphere 8 VM with NVIDIA vGPU

1. Open the vCenter Web Ul.

2. In the vCenter Web Ul, right-click the VM and choose Edit Settings.
3. In the Edit Settings window that opens, configure the vGPUs that you want to add to

the VM.

Add each vGPU that you want to add to the VM as follows:
a). From the ADD NEW DEVICE menu, choose PCI Device.

Figure 11.

Edit Settings

Virtual Hardware

> CPU

» Memory
> Hard disk 1

» SCSI controller O
> Network adapter 1
> CD/DVD drive 1

» Video card

» SATA controller O
> Security Devices

» Other

Command for Adding a PCI Device

RHELS.1_base

Advanced Parameters

©

50 GB

VMware Paravirtual

WM Network Connected

Datastore ISO File Connected

Specify custom settings

AHCI

Mot Configured

Additional Hardware

ADD NEW DEVICE ~

Disks, Drives and Storage

Hard Disk
Existing Hard Disk
RDM Disk

Host USB Device
NYVDIMM

CD/DVD Drive
Controllers

NWMe Controller
SATA Controller
SCS| Controller

USB Controller

Other Devices

PCl Device

Trusted Platform Module
Watchdog Timer
Precision Clock

Serial Port I

Network

Network Adapter

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2 | 46

Installing and Configuring NVIDIA Virtual GPU Manager

b). In the Device Selection window that opens, select the type of vGPU you want to
configure and click SELECT.

S Note: NVIDIA vGPU software does not support vCS on VMware vSphere. Therefore,
C-series VGPU types are not available for selection in the Device Selection window.

Figure 12. VM Device Selections for vGPU

Device Selection

MName T Access Type T Manufacturer T
O 0000:81:00.0 | Starship/Matisse PCle Dummy Functi... DirectPath 1O Advanced Micro Devices, Inc. [AM..
o Starship/Matisse PCle Dummy Function Dynamic DirectPath .. Advanced Micro Devices, Inc. [AM..
O nvidia_a40-1b NVIDIA GRID vGPU NWIDIA
O nvidia_a40-2b NVIDIA GRID vGPU NWIDLA
O nvidia_a40-1g NVIDIA GRID vGPU NWVIDIA
O nvidia_ad0-2q NVIDIA GRID vGPU NWVIDIA
i | 1- 6 of 31 items 176 > 3

CANCEL

4. Back in the Edit Settings window, click OK.

2.9.4.2. Configuring a vSphere 7 VM with NVIDIA vGPU

If you are adding multiple vGPUs to a single VM, perform this task for each vGPU that you
want to add to the VM.

1. Open the vCenter Web Ul.
2. In the vCenter Web Ul right-click the VM and choose Edit Settings.
3. Click the Virtual Hardware tab.
4. In the New device list, select Shared PCI Device and click Add.
The PCI device field should be auto-populated with NVIDIA GRID vGPU.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 47

Installing and Configuring NVIDIA Virtual GPU Manager

Figure 13. VM settings for vGPU

H Win7x86 - Edit Settings (7} b

| Virtual Hardware = VM Options | SDRS Rules | vApp Options |

» [CPU K B
» @ Memory \ 1024 ‘ ~|[mB v)
b (2 Hard disk 1 24 = [cB -

» SCSl controller 0 LS| Logic SAS

» [Network adapter 1 |'-VM Network v-‘| [+ Connect...
¥ (@) CD/DVD drive 1 | Datastore ISO File v\| [+ Connect...
F [Floppy drive 1 | Client Device v.l
+ [Video card | Specify custom settings v-l
+ PCl device 0 " NVIDIA GRID vGPU |+ |
GPU Profile grid_m10-4q j
grid_m10-8q * are unavailable when
grid_m10-8a ient. You cannot
o or restore snapshots of
grid_m10-4qg
SATA controller 0| 9Md-m10-42
) grid_m10-2qg
k3 VMCl device
grid_m10-2a v

¢ Other Devices

The maximum number of devices of this type has been reached.

New device: | Shared PCI Device - Add

Compatibility: ESXi 6.0 and later (VM version 11) OK Cancel

5. From the GPU Profile drop-down menu, choose the type of vGPU you want to
configure and click OK.

Note: NVIDIA vGPU software does not support vCS on VMware vSphere. Therefore,
C-series VGPU types are not available for selection from the GPU Profile drop-down
menu.
6. Ensure that VMs running vGPU have all their memory reserved:
a). Select Edit virtual machine settings from the vCenter Web Ul.
b). Expand the Memory section and click Reserve all guest memory (All locked).

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 48

Installing and Configuring NVIDIA Virtual GPU Manager

Plugin parameters for a vGPU control the behavior of the vGPU, such as the frame rate
limiter (FRL) configuration in frames per second or whether console virtual network
computing (VNC) for the vGPU is enabled. The VM to which the vGPU is assigned is
started with these parameters. If parameters are set for multiple vGPUs assigned to the
same VM, the VM is started with the parameters assigned to each vGPU.

Ensure that the VM to which the vGPU is assigned is powered off.

For each vGPU for which you want to set plugin parameters, perform this task in the
vSphere Client. vGPU plugin parameters are PCI pass through configuration parameters
in advanced VM attributes.

O ok wn o~

In the vSphere Client, browse to the VM to which the vGPU is assigned.
Context-click the VM and choose Edit Settings.

In the Edit Settings window, click the VM Options tab.

From the Advanced drop-down list, select Edit Configuration.

In the Configuration Parameters dialog box, click Add Row.

In the Name field, type the parameter name pciPassthruvgpu-id.cfg.parameter, in

the Value field type the parameter value, and click OK.

vgpu-id
A positive integer that identifies the vGPU assigned to a VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and
you are setting a plugin parameter for both vGPUs, set the following parameters:

pciPassthru0.cfg.parameter
pciPassthrul.cfg.parameter
parameter

The name of the vGPU plugin parameter that you want to set. For example, the
name of the vGPU plugin parameter for enabling unified memory is enable_uvm.

To enable unified memory for two vGPUs that are assigned to a VM, set
pciPassthru0.cfg.enable uvm and pciPassthrul.cfg. enable uvm to 1.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 49

Installing and Configuring NVIDIA Virtual GPU Manager

2.10. Configuring the vGPU Manager for
a Linux with KVM Hypervisor

NVIDIA vGPU software supports the following Linux with KVM hypervisors: Red Hat
Enterprise Linux with KVM and Ubuntu.

2.10.1. Getting the BDF and Domain of a GPU on a
Linux with KVM Hypervisor

Sometimes when configuring a physical GPU for use with NVIDIA vGPU software, you
must find out which directory in the sysfs file system represents the GPU. This directory
is identified by the domain, bus, slot, and function of the GPU.

For more information about the directory in the sysfs file system that represents a
physical GPU, see NVIDIA vGPU Information in the sysfs File System.

1. Obtain the PCl device bus/device/function (BDF) of the physical GPU.

lspci | grep NVIDIA

The NVIDIA GPUs listed in this example have the PCI device BDFs 06:00.0 and
07:00.0.

lspci | grep NVIDIA

06:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M10] (rev
al)

07:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M10] (rev
al)

2. Obtain the full identifier of the GPU from its PCl device BDF.
virsh nodedev-list --cap pci| grep transformed-bdf
transformed-bdf
The PCI device BDF of the GPU with the colon and the period replaced with
underscores, for example, 06 00 0.

This example obtains the full identifier of the GPU with the PCI device BDF 06:00.0.

virsh nodedev-list --cap pci| grep 06_00_0
pci 0000 06 00 O

3. Obtain the domain, bus, slot, and function of the GPU from the full identifier of the
GPU.
virsh nodedev-dumpxml full-identifier| egrep 'domain|bus|slot|function'
full-identifier
The full identifier of the GPU that you obtained in the previous step, for example,
pci 0000 06 00 O.

This example obtains the domain, bus, slot, and function of the GPU with the PCI
device BDF 06:00.0.

virsh nodedev-dumpxml pci_0000_06_00 0| egrep 'domain|bus|slot|function'
<domain>0x0000</domain>
<bus>0x06</bus>
<slot>0x00</slot>
<function>0x0</function>

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 50

Installing and Configuring NVIDIA Virtual GPU Manager

<address domain='0x0000"' bus='0x06"' slot='0x00' function='0x0"'/>

2.10.2. Preparing the Virtual Function for an
NVIDIA vGPU that Supports SR-IOV on a
Linux with KVM Hypervisor

An NVIDIA vGPU that supports SR-IOV resides on a physical GPU that supports SR-IOV,
such as a GPU based on the NVIDIA Ampere architecture. Before creating an NVIDIA vGPU
on a GPUthat supports SR-I0OV, you must enable the virtual functions of the GPU and
obtain the domain, bus, slot, and function of the specific virtual function on which you
want to create the vGPU.

Before performing this task, ensure that the GPU is not being used by any other
processes, such as CUDA applications, monitoring applications, or the nvidia-smi
command.

1. Enable the virtual functions for the physical GPU in the sysfs file system.

Note: The virtual functions for the physical GPU in the sysfs file system are disabled
after the hypervisor host is rebooted or if the driver is reloaded or upgraded.

Use only the custom script sriov-manage provided by NVIDIA vGPU software for this
purpose. Do not try to enable the virtual function for the GPU by any other means.
/usr/lib/nvidia/sriov-manage -e domain:bus:slot.function
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without the 0x prefix.

Note: Only one mdev device file can be created on a virtual function.

This example enables the virtual functions for the GPU with the domain 00, bus 41,
slot 0000, and function o.
/usr/lib/nvidia/sriov-manage -e 00:41:0000.0
2. Obtain the domain, bus, slot, and function of the available virtual functions on the
GPU.
1ls -1 /sys/bus/pci/devices/domain\:bus\:slot. function/ | grep virtfn
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example shows the output of this command for a physical GPU with slot 00, bus
41, domain 0000, and function o.
1s -1 /sys/bus/pci/devices/0000:41:00.0/ | grep virtfn

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn0O -> ../0000:41:00.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl -> ../0000:41:00.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl0O -> ../0000:41:01.6

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 51

Installing and Configuring NVIDIA Virtual GPU Manager

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnll -> ../0000:41:01.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl2 -> ../0000:41:02.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl3 -> ../0000:41:02.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnld -> ../0000:41:02.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl5 -> ../0000:41:02.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnle -> ../0000:41:02.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl7 -> ../0000:41:02.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl8 -> ../0000:41:02.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnl9 -> ../0000:41:02.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn2 -> ../0000:41:00.6

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn20 -> ../0000:41:03.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn2l1 -> ../0000:41:03.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn22 -> ../0000:41:03.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn23 -> ../0000:41:03.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn24 -> ../0000:41:03.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn25 -> ../0000:41:03.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn26 -> ../0000:41:03.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn27 -> ../0000:41:03.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn28 -> ../0000:41:04.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn29 -> ../0000:41:04.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn3 -> ../0000:41:00.7

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn30 -> ../0000:41:04.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn31 -> ../0000:41:04.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfnd4d -> ../0000:41:01.0

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn5 -> ../0000:41:01.1

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn6 -> ../0000:41:01.2

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn7 -> ../0000:41:01.3

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn8 -> ../0000:41:01.4

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn9 -> ../0000:41:01.5

3. Choose the available virtual function on which you want to create the vGPU and note
its domain, bus, slot, and function.

2.10.3. Creating an NVIDIA vGPU on a Linux with
KVM Hypervisor

For each vGPU that you want to create, perform this task in a Linux commmand shell on the
a Linux with KVM hypervisor host.

Before you begin, ensure that you have the domain, bus, slot, and function of the GPU on
which you are creating the vGPU. For instructions, see Getting the BDF and Domain of a
GPU on a Linux with KVM Hypervisor.

How to create an NVIDIA vGPU on a Linux with KVM hypervisor depends on the following
factors:

» Whether the NVIDIA vGPU supports single root I/O virtualization (SR-IQV)

» Whether the hypervisor uses a vendor-specific Virtual Function I/O (VFIO) framework
for an NVIDIA vGPU that supports SR-IOV

S Note: A hypervisor that uses a vendor-specific VFIO framework for an NVIDIA vGPU
that supports SR-IOV uses the standard VFIO framework for a legacy NVIDIA vGPU.

A vendor-specific VFIO framework does not support the mediated VFIO mdev driver
framework.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 52

Installing and Configuring NVIDIA Virtual GPU Manager

For GPUs that support SR-I0V, use of a vendor-specific VFIO framework is introduced in
Ubuntu release 24.04.

To determine which instructions to follow for the NVIDIA vGPU that you are creating, refer
to the following table.

VFIO
NVIDIA vGPU Type Framework Instructions
Legacy: SR-IOV not Standard Creating a Legacy NVIDIA vGPU on a Linux with
supported KVM Hypervisor
SR-IOV supported Standard Creating an NVIDIA vGPU that Supports SR-IOV
on a Linux with KVM Hypervisor
SR-IQV supported Vendor specific | Creating an NVIDIA vGPU on a Linux with KVM

Hypervisor that Uses a Vendor-Specific VFIO
Framework

2.10.3.1. Creating a Legacy NVIDIA vGPU on a Linux with
KVM Hypervisor

A legacy NVIDIA vGPU does not support SR-IOV.

1. Change to the mdev_supported_types directory for the physical GPU.
cd /sys/class/mdev_bus/domain\:bus\:slot. function/mdev_supported types/
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example changes to the mdev_supported types directory for the GPU with the
domain 0000 and PCIl device BDF 06:00.0.
cd /sys/bus/pci/devices/0000\:06\:00.0/mdev_supported types/
2. Find out which subdirectory of mdev_supported types contains registration
information for the vGPU type that you want to create.
grep -1 "vgpu-type" nvidia-*/name
vgpu-type
The vGPU type, for example, M10-20Q.
This example shows that the registration information for the M10-2Q vGPU type is
contained in the nvidia-41 subdirectory of mdev supported types.

grep -1 "M10-2Q" nvidia-*/name
nvidia-41/name

3. Confirm that you can create an instance of the vGPU type on the physical GPU.

cat subdirectory/available_instances
subdirectory
The subdirectory that you found in the previous step, for example, nvidia-41.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 53

Installing and Configuring NVIDIA Virtual GPU Manager

The number of available instances must be at least 1. If the number is O, either an
instance of another vGPU type already exists on the physical GPU, or the maximum
number of allowed instances has already been created.

This example shows that four more instances of the M10-2Q vGPU type can be
created on the physical GPU.

cat nvidia-41/available_instances
4

4. Generate a correctly formatted universally unique identifier (UUID) for the vGPU.

uuidgen
2a618089-8b16-4d01-a136-25a0£3¢c73123

5. Write the UUID that you obtained in the previous step to the create file in the

registration information directory for the vGPU type that you want to create.

echo "uuid"> subdirectory/create

uuid
The UUID that you generated in the previous step, which will become the UUID of
the vGPU that you want to create.

subdirectory
The registration information directory for the vGPU type that you want to create,
for example, nvidia-41.

This example creates an instance of the M10-2Q vGPU type with the UUID
aa618089-8b16-4d01-al36-25a0£3c73123.
echo "aa618089-8b16-4d01-al36-25a0£3¢c73123" > nvidia-41/create

An mdev device file for the vGPU is added to the parent physical device directory of
the vGPU. The vGPU is identified by its UUID.

The /sys/bus/mdev/devices/ directory contains a symbolic link to the mdev device
file.

6. Make the mdev device file that you created to represent the vGPU persistent.
mdevctl define --auto --uuid uuid
uuid
The UUID that you specified in the previous step for the vGPU that you are
creating.

S| Note: Not all Linux with KVM hypervisor releases include the mdevctl command. If
your release does not include the mdevctl command, you can use standard features of
the operating system to automate the re-creation of this device file when the host is
booted. For example, you can write a custom script that is executed when the host is
rebooted.

7. Confirm that the vGPU was created.

a). Confirm that the /sys/bus/mdev/devices/ directory contains the mdev device file
for the vGPU.

1s -1 /sys/bus/mdev/devices/

total O

lrwxrwxrwx. 1 root root 0 Nov 24 13:33 aa618089-8b16-4d01-al36-25a0f3c73123 -
> ../../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:09.0/0000:06:00.0/
aa618089-8b16-4d01-al136-25a0f3c73123

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 54

Installing and Configuring NVIDIA Virtual GPU Manager

b). If your release includes the mdevctl command, list the active mediated devices on
the hypervisor host.

mdevctl list
2a618089-8b16-4d01-al136-25a0£f3c73123 0000:06:00.0 nvidia-41

2.10.3.2. Creating an NVIDIA vGPU that Supports SR-I0OV

on a Linux with KVM Hypervisor
An NVIDIA vGPU that supports SR-IOV resides on a physical GPU that supports SR-IOV,
such as a GPU based on the NVIDIA Ampere architecture.

Before performing this task, ensure that the virtual function on which you want to create
the vGPU has been prepared as explained in Preparing the Virtual Function for an NVIDIA
vGPU that Supports SR-IOV on a Linux with KVM Hypervisor.

If you want to support vGPUs with different amounts of frame buffer, also ensure that
the GPU has been put into mixed-size mode as explained in Preparing the Virtual Function
for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor.

1. Change to the mdev_supported types directory for the virtual function on which you

want to create the vGPU.

cd /sys/class/mdev_bus/domain\:bus\:vf-slot.v-function/mdev_supported_types/

domain

bus
The domain and bus of the GPU, without the 0x prefix.

vf-slot

v-function
The slot and function of the virtual function that you noted in Preparing the
Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM

Hypervisor.

This example changes to the mdev _supported types directory for the first virtual
function (virt£no) for the GPU with the domain 0000 and bus 41. The first virtual
function (virt£no) has slot 00 and function 4.
cd /sys/class/mdev_bus/0000\:41\:00.4/mdev_supported_ types
2. Find out which subdirectory of mdev_supported types contains registration
information for the vGPU type that you want to create.
grep -1 "vgpu-type" nvidia-*/name
vgpu-type
The vGPU type, for example, A40-20.

This example shows that the registration information for the A40-2Q vGPU type is
contained in the nvidia-558 subdirectory of mdev supported types.

grep -1 "A40-2Q" nvidia-*/name
nvidia-558/name

3. Confirm that you can create an instance of the vGPU type on the virtual function.

cat subdirectory/available_instances
subdirectory
The subdirectory that you found in the previous step, for example, nvidia-558.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 55

Installing and Configuring NVIDIA Virtual GPU Manager

The number of available instances must be 1. If the number is O, a vGPU has already
been created on the virtual function. Only one instance of any vGPU type can be
created on a virtual function.

This example shows that an instance of the A40-2Q vGPU type can be created on the
virtual function.

cat nvidia-558/available_instances
1

4. Generate a correctly formatted universally unique identifier (UUID) for the vGPU.

uuidgen
2a618089-8b16-4d01-a136-25a0£3¢c73123

5. Write the UUID that you obtained in the previous step to the create file in the

registration information directory for the vGPU type that you want to create.

echo "uuid"> subdirectory/create

uuid
The UUID that you generated in the previous step, which will become the UUID of
the vGPU that you want to create.

subdirectory
The registration information directory for the vGPU type that you want to create,
for example, nvidia-558.

This example creates an instance of the A40-2Q vGPU type with the UUID
aa618089-8b16-4d01-al36-25a0£3c73123.
echo "aa618089-8b16-4d01-al36-25a0£3¢c73123" > nvidia-558/create

An mdev device file for the vGPU is added to the parent virtual function directory of
the vGPU. The vGPU is identified by its UUID.

6. Time-sliced vGPUs only: Make the mdev device file that you created to represent the
vGPU persistent.
mdevctl define --auto --uuid uuid
uuid
The UUID that you specified in the previous step for the vGPU that you are
creating.

@ Note:

» If you are using a GPU that supports SR-I0V, the mdev device file persists after
a host reboot only if you enable the virtual functions for the GPU as explained
in Preparing the Virtual Function for an NVIDIA vGPU that Supports SR-IOV on
a Linux with KVM Hypervisor before rebooting any VM that is configured with a
vGPU on the GPU.

» You cannot use the mdevctl command to make the mdev device file for a MIG-
backed vGPU persistent. The mdev device file for a MIG-backed vGPU is not
retained after the host is rebooted because MIG instances are no longer available.

» Not all Linux with KVM hypervisor releases include the mdevct1l command. If your
release does not include the mdevctl command, you can use standard features of
the operating system to automate the re-creation of this device file when the host
is booted. For example, you can write a custom script that is executed when the
host is rebooted.

7. Confirm that the vGPU was created.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 56

Installing and Configuring NVIDIA Virtual GPU Manager

a). Confirm that the /sys/bus/mdev/devices/ directory contains a symbolic link to
the mdev device file.

1s -1 /sys/bus/mdev/devices/

total 0

lrwxrwxrwx. 1 root root 0 Jul 16 05:57 aa618089-8b16-4d01-al36-25a0£3c73123
-> ../../../devices/pci0000:40/0000:40:01.1/0000:41:00.4/2a618089-8b16-4d01-

al36-25a0f3c73123

b). If your release includes the mdevctl command, list the active mediated devices on
the hypervisor host.

mdevctl list
aa618089-8b16-4d01-al136-25a0£3¢c73123 0000:06:00.0 nvidia-558

2.10.3.3. Creating an NVIDIA vGPU on a Linux with KVM
Hypervisor that Uses a Vendor-Specific VFIO

Framework

A hypervisor uses a vendor-specific VFIO framework only for an NVIDIA vGPU that
supports SR-IOV. For a legacy NVIDIA vGPU, the hypervisor uses the standard VFIO
framework. A vendor-specific VFIO framework does not support the mediated VFIO mdev
driver framework.

For GPUs that support SR-I0V, use of a vendor-specific VFIO framework is introduced in
Ubuntu release 24.04.

Before performing this task, ensure that the virtual function on which you want to create
the vGPU has been prepared as explained in Preparing the Virtual Function for an NVIDIA
vGPU that Supports SR-IOV on a Linux with KVM Hypervisor.

If you want to support vGPUs with different amounts of frame buffer, also ensure that
the GPU has been put into mixed-size mode as explained in Preparing the Virtual Function
for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor.

1. Change to the directory in the sysfs file system that contains the files for vGPU

management on the virtual function on which you want to create the vGPU.

cd /sys/bus/pci/devices/domain\:bus\:vf-slot.v-function/nvidia

domain

bus
The domain and bus of the GPU, without the 0x prefix.

vf-slot

v-function
The slot and function of the virtual function that you noted in Preparing the
Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM

Hypervisor.
This example changes to the nvidia directory for the first virtual function (virt£no)
for the GPU with the domain 0000 and bus 3d. The first virtual function (virt£no) has
slot 00 and function 4.
cd /sys/bus/pci/devices/0000\:3d\:00.4/nvidia
2. Confirm that the directory contains the files for vGPU management on the virtual
function, namely creatable vgpu types and current vgpu_ type.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 57

Installing and Configuring NVIDIA Virtual GPU Manager

11
-r--r--r—-- 1 root root 4096 Aug 3 00:39 creatable vgpu types
-rw-r--r-- 1 root root 4096 Aug 3 00:39 current vgpu type

3. Confirm that a vGPU can be created on the virtual function.

cat current_vgpu_type
0

If the current vGPU type is O, a vGPU can be created on the virtual function.

Note: If the current vGPU type is not zero, a vGPU cannot be created on the virtual
function because a vGPU has already been created on it and only one vGPU can be
created on a virtual function.

4. Determine the NVIDIA vGPU types that can be created on the virtual function and the
integer ID that represents each vGPU type in the sysfs file system.
cat creatable_vgpu_types

NVIDIA A40-1Q 587
NVIDIA A40-2Q 558
NVIDIA A40-3Q 559
NVIDIA A40-4Q 560
NVIDIA A40-6Q 561

5. Write the ID that represents the type of the NVIDIA vGPU that you want to create to
the current vgpu_ type file.
echo vgpu-type-id > current_vgpu_type
vgpu-type-id
The ID that represents the type of the NVIDIA vGPU that you want to create in the
sysfs file system.

S| Note: You must specify an valid ID. If you specify an invalid ID, the write operation fails
and current vGPU type is set to 0.

This example creates an instance of the A40-4Q vGPU type.
echo 560 > current vgpu_type

6. Confirm that current vGPU type on the virtual function matches the type of the vGPU
that you created in the previous step.

cat current_vgpu_type
560

7. Confirm that the creatable vgpu types file is empty, signifying that no vGPUs can
be created on the virtual function.
cat creatable_vgpu_types

2.10.4. Adding One or More vGPUs to a Linux with
KVM Hypervisor VM

To support applications and workloads that are compute or graphics intensive, you can
add multiple vGPUs to a single VM.

For details about which hypervisor versions and NVIDIA vGPUs support the assignment
of multiple vGPUs to a VM, see Virtual GPU Software for Red Hat Enterprise Linux with KVM
Release Notes and Virtual GPU Software for Ubuntu Release Notes.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 58

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-red-hat-el-kvm.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-red-hat-el-kvm.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-ubuntu.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

Ensure that the following prerequisites are met:

» The VM to which you want to add the vGPUs is shut down.

» The vGPUs that you want to add have been created as explained in Creating an NVIDIA
vGPU on a Linux with KVM Hypervisor.

You can add vGPUs to a Linux with KVM hypervisor VM by using any of the following tools:
» The virsh command

» The QEMU command line
After adding vGPUs to a Linux with KVM hypervisor VM, start the VM.

virsh start vm-name

vm-name
The name of the VM that you added the vGPUs to.

After the VM has booted, install the NVIDIA vGPU software graphics driver as explained in
Installing the NVIDIA vGPU Software Graphics Driver.

2.10.4.1. Adding One or More vGPUs to a Linux with KVM
Hypervisor VM by Using virsh

1. In virsh, open for editing the XML file of the VM that you want to add the vGPU to.
virsh edit vm-name
vm-name
The name of the VM to that you want to add the vGPUs to.

2. For each vGPU that you want to add to the VM, add a device entry in the form of an
address element inside the source element to add the vGPU to the guest VM.

The content of the device entry depends on whether the hypervisor uses a vendor-
specific VFIO framework for an NVIDIA vGPU that supports SR-IOV.

For GPUs that support SR-I0V, use of a vendor-specific VFIO framework is introduced
in Ubuntu release 24.04.

» For a hypervisor that uses the standard VFIO framework, add a device entry that
identifies the vGPU through its UUID as follows:

<device>

<hostdev mode='subsystem' type='mdev' model='vfio-pci'>
<source>
<address uuid='uuid'/>
</source>
</hostdev>
</device>

uuid
The UUID that was assigned to the vGPU when the vGPU was created.

This example adds a device entry for the vGPU with the UUID a618089-8b16-4d01-
al36-25a0£3c73123.

<device>

<hostdev mode='subsystem' type='mdev' model='vfio-pci'>

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 59

Installing and Configuring NVIDIA Virtual GPU Manager

<source>
<address uuid='a618089-8b16-4d01-al136-25a0£3c73123"'/>
</source>
</hostdev>
</device>

This example adds device entries for two vGPUs with the following UUIDs:

> c73f1£fa6-489e-4834-9476-d70dabd98c40
> 3b356d38-854e-48be-b376-00c72c7d119¢c

<device>

<hostdev mode='subsystem' type='mdev' model='vfio-pci'>
<source>
<address uuid='c73f1fa6-489e-4834-9476-d70dabd98c40'/>
</source>
</hostdev>
<hostdev mode='subsystem' type='mdev' model='vfio-pci'>
<source>
<address uuid='3b356d38-854e-48be-b376-00c72c7d119c"'/>
</source>
</hostdev>
</device>

» For a hypervisor that uses a vendor-specific VFIO framework, add a device entry
that identifies the vGPU through the virtual function on which the vGPU is created
as follows:

<hostdev mode='subsystem' type='pci' managed='no'>
<source>
<address domain='domain' bus='bus' slot='vf-slot' function='v-function'/>
</source>
</hostdev>

domain

bus
The domain and bus of the GPU, including the ox prefix.

vf-slot

v-function
The slot and function of the virtual function that you noted in Preparing the
Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM

Hypervisor.

S Note: A vGPU is supported only in unmanaged 1ibvirt mode. Therefore, ensure
that in the hostdev element, the managed attribute is set to no.

This example adds a device entry for the vGPU that is created on the virtual
function 0000:3d:00.4.

<device>

<hostdev mode='subsystem' type='pci' managed='no'>
<source>
<address domain='0x0000"' bus='0x3d' slot='0x00' function='0x4"'/>
</source>
</hostdev>
</device>

This example adds device entries for two vGPUs that are created on the following
virtual functions:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 60

Installing and Configuring NVIDIA Virtual GPU Manager

» 0000:3d:00.4
» 0000:3d:00.5

<device>

<hostdev mode='subsystem' type='pci' managed='no'>
<source>
<address domain='0x0000' bus='0x3d' slot='0x00' function='0x4"'/>
</source>
</hostdev>
<hostdev mode='subsystem' type='pci' managed='no'>
<source>
<address domain='0x0000' bus='0x3d' slot='0x00' function='0x5"'/>
</source>
</hostdev>
</device>

Optional: Add a video element that contains a model element in which the type
attribute is set to none.

<video>

<model type='none'/>

</video>

Adding this video element prevents the default video device that 1ibvirt adds from
being loaded into the VM. If you don't add this video element, you must configure the
Xorg server or your remoting solution to load only the vGPU devices you added and
not the default video device.

2.10.4.2. Adding One or More vGPUs to a Linux with KVM

Hypervisor VM by Using the QEMU Command
Line

This task involves adding options to the QEMU command line that identify the vGPUs that
you want to add and the VM to which you want to add them.

1.

For each vGPU that you want to add to the VM, add one -device option that identifies
the vGPU.

The format of each -device option depends on whether the hypervisor uses a vendor-
specific VFIO framework for an NVIDIA vGPU that supports SR-IOV.

For GPUs that support SR-I0V, use of a vendor-specific VFIO framework is introduced
in Ubuntu release 24.04.

» For each vGPU on a hypervisor that uses the standard VFIO framework, add a -
device option that identifies the vGPU through its UUID.
-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/vgpu-uuid
vgpu-uuid

The UUID that was assigned to the vGPU when the vGPU was created.

» For each vGPU on a hypervisor that uses a vendor-specific VFIO framework, add a
-device option that identifies the vGPU through the virtual function on which the
vGPU is created.

-device vfio-pci,sysfsdev=/sys/bus/pci/devices/domain\:bus\:vf-slot.v—
function/

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 61

Installing and Configuring NVIDIA Virtual GPU Manager

domain
bus
The domain and bus of the GPU, without the 0x prefix.
vf-slot
v-function
The slot and function of the virtual function that you noted in Preparing the
Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM
Hypervisor.
2. Add a -uuid option to specify the VM to which you want to add the vGPUs.
-uuid vm-uuid
vm-uuid
The UUID that was assigned to the VM when the VM was created.

Adding One vGPU to a VM on a Hypervisor that Uses the Standard VFIO
Framework

This example adds the vGPU with the UUID aa618089-8b16-4d01-al36-25a0f3c73123 to
the VM with the UUID ebbl0a6e-7ac9-49%9aa-af92-£56bb8c65893.

—-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/aa618089-8b16-4d01-al36-25a0f3c73123
\
-uuid ebbllabe-7ac9-49%aa-af92-£56bb8c65893

Adding Two vGPUs to a VM on a Hypervisor that Uses the Standard VFIO
Framework

This example adds device entries for two vGPUs with the following UUIDs:

676428a0-2445-499f-9bfd-65cd4a%9bdl8f
6c5954b8-5bcl-4769-b820-8099fe50aaba

The entries are added to the VM with the UUID ec5e8ee0-657c-4db6-8775-
da70e332co67e.

-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/676428a0-2445-499f-9bfd-65cd4a%9bd18f
\

-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/6c5954b8-5bcl-4769-b820-8099fe50aaba
\

-uuid ec5e8ee0-657c-4db6-8775-da70e332c67e

Adding One vGPU to a VM on a Hypervisor that Uses a Vendor-Specific
VFIO Framework

This example adds the vGPU that is created on the virtual function 0000:3d:00.4 to the
VM with the UUID ebbl10a6e-7ac9-49%9aa-af92-f56bb8c65893.

-device vfio-pci,sysfsdev=/sys/bus/pci/devices/0000\:3d\:00.4 \
—uuid ebblOabe-7ac9-49%aa-af92-£f56bb8c65893

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 62

Installing and Configuring NVIDIA Virtual GPU Manager

Adding Two vGPUs to a VM on a Hypervisor that Uses a Vendor-Specific
VFIO Framework

This example adds device entries for two vGPUs that are created on the following virtual
functions:

> 0000:3d:00.4
» 0000:3d:00.5

The entries are added to the VM with the UUID ec5e8ee0-657c-4db6-8775-
da70e332co7e.

-device vfio-pci,sysfsdev=/sys/bus/pci/devices/0000\:3d\:00.4 \
-device vfio-pci,sysfsdev=/sys/bus/pci/devices/0000\:3d\:00.5 \
-uuid ec5e8ee0-657c-4db6-8775-da70e332c67e

2.10.5. Setting vGPU Plugin Parameters on a Linux
with KVM Hypervisor

Plugin parameters for a vGPU control the behavior of the vGPU, such as the frame rate
limiter (FRL) configuration in frames per second or whether console virtual network
computing (VNC) for the vGPU is enabled. The VM to which the vGPU is assigned is
started with these parameters. If parameters are set for multiple vGPUs assigned to the
same VM, the VM is started with the parameters assigned to each vGPU.

For each vGPU for which you want to set plugin parameters, perform this task in a Linux
command shell on the Linux with KVM hypervisor host.

1. Change to the directory in the sys£s file system that contains the vgpu_params file
for the vGPU for which you want to set vGPU plugin parameters.

The directory depends on whether the hypervisor uses a vendor-specific VFIO
framework for an NVIDIA vGPU that supports SR-IOV.

For GPUs that support SR-I0V, use of a vendor-specific VFIO framework is introduced
in Ubuntu release 24.04.

» For a hypervisor that uses the standard VFIO framework, change to the nvidia
subdirectory of the mdev device directory that represents the vGPU.
cd /sys/bus/mdev/devices/uuid/nvidia
uuid
The UUID of the vGPU, for example, 2a618089-8b16-4d01-a136-25a0f3c73123.
» For a hypervisor that uses a vendor-specific VFIO framework, change to the
directory in the sysfs file system that contains the files for vGPU management on
the virtual function on which the vGPU was created.
cd /sys/bus/pci/devices/domain\:bus\:vf-slot.v-function/nvidia
domain
bus
The domain and bus of the GPU, without the 0x prefix.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 63

Installing and Configuring NVIDIA Virtual GPU Manager

vf-slot

v-function
The slot and function of the virtual function that you noted in Preparing the
Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVYM

Hypervisor.

This example changes to the nvidia directory for the first virtual function
(virtfno0) for the GPU with the domain 0000 and bus 3d. The first virtual function
(virtf£no) has slot 00 and function 4.
cd /sys/bus/pci/devices/0000\:3d\:00.4/nvidia
2. Write the plugin parameters that you want to set to the vgpu params file in the
directory that you changed to in the previous step.
echo "plugin-config-params" > vgpu_params
plugin-config-params
A comma-separated list of parameter-value pairs, where each pair is of the form
parameter-name=value.

This example disables frame rate limiting and console VNC for a vGPU.

echo "frame rate_limiter=0, disable vnc=1" > vgpu_params
This example enables unified memory for a vGPU.

echo "enable uvm=1" > vgpu_params

This example enables NVIDIA CUDA Toolkit debuggers for a vGPU.
echo "enable_debugging=1" > vgpu_params

This example enables NVIDIA CUDA Toolkit profilers for a vGPU.

echo "enable profiling=1" > vgpu params

To clear any vGPU plugin parameters that were set previously, write a space to the
vgpu_params file for the vGPU.

echo " " > vgpu_params
2.10.6. Deleting a vGPU on a Linux with KVM
Hypervisor

How to delete a vGPU on a Linux with KVM hypervisor depends on whether the hypervisor
uses a vendor-specific VFIO framework for an NVIDIA vGPU that supports SR-IOV.

S Note: A hypervisor that uses a vendor-specific VFIO framework for an NVIDIA vGPU that
supports SR-IOV uses the standard VFIO framework for a legacy NVIDIA vGPU.

For GPUs that support SR-I0V, use of a vendor-specific VFIO framework is introduced in
Ubuntu release 24.04.

To determine which instructions to follow for the NVIDIA vGPU that you are deleting, refer
to the following table.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 64

Installing and Configuring NVIDIA Virtual GPU Manager

VFIO
NVIDIA vGPU Type Framework Instructions
Legacy: SR-IOV not Standard Deleting a vGPU on a Linux with KVM
supported Hypervisor that Uses the Standard VFIO
SR-I0V supported Standard Framework
SR-I0OV supported Vendor specific | Deleting a vGPU on a Linux with KVM

Hypervisor that Uses a Vendor-Specific VFIO
Framework

2.10.6.1. Deleting a vGPU on a Linux with KVM Hypervisor

that Uses the Standard VFIO Framework

For each vGPU that you want to delete, perform this task in a Linux command shell on the
Linux with KVM hypervisor host.

Before you begin, ensure that the following prerequisites are met:

>

You have the domain, bus, slot, and function of the GPU where the vGPU that you
want to delete resides. For instructions, see Getting the BDF and Domain of a GPU on
a Linux with KVM Hypervisor.

The VM to which the vGPU is assigned is shut down.

. Change to the mdev supported types directory for the physical GPU.

cd /sys/class/mdev_bus/domain\:bus\:slot.function/mdev_supported types/
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example changes to the mdev supported types directory for the GPU with the
PCl device BDF 06:00.0.

cd /sys/bus/pci/devices/0000\:06\:00.0/mdev_supported types/

. Change to the subdirectory of mdev supported types that contains registration

information for the vGPU.
cd “find . -type d -name uuid’
uuid
The UUID of the vGPU, for example, 2a618089-8b16-4d01-al36-25a0£3¢c73123.

. Write the value 1 to the remove file in the registration information directory for the

vGPU that you want to delete.

echo "1" > remove

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 65

Installing and Configuring NVIDIA Virtual GPU Manager

2.10.6.2. Deleting a vGPU on a Linux with KVM Hypervisor
that Uses a Vendor-Specific VFIO Framework

A hypervisor uses a vendor-specific VFIO framework only for an NVIDIA vGPU that
supports SR-IOV. For a legacy NVIDIA vGPU, the hypervisor uses the standard VFIO
framework. A vendor-specific VFIO framework does not support the mediated VFIO mdev
driver framework.

For GPUs that support SR-I0V, use of a vendor-specific VFIO framework is introduced in
Ubuntu release 24.04.

Before you begin, ensure that the following prerequisites are met:
» You have the following information:

» The domain and bus of the GPU where the vGPU that you want to delete resides.
For instructions, see Getting the BDF and Domain of a GPU on a Linux with KVM
Hypervisor.

» The slot and function of the virtual function on which the vGPU that you want to
delete was created.

» The VM to which the vGPU is assigned is shut down.

1. Change to the directory in the sysfs file system that contains the files for vGPU

management on the virtual function on which the vGPU was created.

cd /sys/bus/pci/devices/domain\:bus\:vf-slot.v-function/nvidia

domain

bus
The domain and bus of the GPU, without the 0x prefix.

vf-slot

v-function
The slot and function of the virtual function that you noted in Preparing the
Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM

Hypervisor.

This example changes to the nvidia directory for the first virtual function (virt£no)
for the GPU with the domain 0000 and bus 3d. The first virtual function (virt£no) has
slot 00 and function 4.

cd /sys/bus/pci/devices/0000\:3d\:00.4/nvidia

2. Confirm that the directory contains the files for vGPU management on the virtual
function, namely creatable vgpu types and current vgpu_type.

11
-r--r--r—-- 1 root root 4096 Aug 3 00:39 creatable vgpu types
-rw-r--r-- 1 root root 4096 Aug 3 00:39 current vgpu type

3. Confirm that the current vGPU type on the virtual function is the ID that represents
the type of the vGPU that you want to delete.

cat current vgpu_type
560

4. Write 0 to the current vgpu_type file.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 66

Installing and Configuring NVIDIA Virtual GPU Manager

echo 0 > current_vgpu_type
5. Confirm that current vGPU type on the virtual function is 0, signifying that the vGPU
has been deleted.

cat current_vgpu_type
0

6. Confirm that the creatable vgpu types file is no longer empty, signifying that the
vGPU has been deleted and that a vGPU can again be created on the virtual function.

cat creatable_vgpu_types

NVIDIA A40-1Q 557
NVIDIA A40-2Q 558
NVIDIA A40-3Q 559
NVIDIA A40-4Q 560
NVIDIA A40-6Q 561

2.10.7. Preparing a GPU Configured for Pass-
Through for Use with vGPU

The mode in which a physical GPU is being used determines the Linux kernel module to
which the GPU is bound. If you want to switch the mode in which a GPU is being used,
you must unbind the GPU from its current kernel module and bind it to the kernel module
for the new mode. After binding the GPU to the correct kernel module, you can then
configure it for vGPU.

A physical GPU that is passed through to a VM is bound to the vfio-pci kernel module.
A physical GPU that is bound to the vfio-pci kernel module can be used only for pass-
through. To enable the GPU to be used for vGPU, the GPU must be unbound from vfio-
pci kernel module and bound to the nvidia kernel module.

Before you begin, ensure that you have the domain, bus, slot, and function of the GPU
that you are preparing for use with vGPU. For instructions, see Getting the BDF and
Domain of a GPU on a Linux with KVM Hypervisor.

1. Determine the kernel module to which the GPU is bound by running the 1spci
command with the -k option on the NVIDIA GPUs on your host.
1lspci -d 10de: -k

The Kernel driver in use: field indicates the kernel module to which the GPU is
bound.

The following example shows that the NVIDIA Tesla M60 GPU with BDF 06:00.0 is
bound to the vfio-pci kernel module and is being used for GPU pass through.

06:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)
Subsystem: NVIDIA Corporation Device 115e
Kernel driver in use: vfio-pci

2. Unbind the GPU from vfio-pci kernel module.

a). Change to the sysfs directory that represents the vfio-pci kernel module.
cd /sys/bus/pci/drivers/vfio-pci

b). Write the domain, bus, slot, and function of the GPU to the unbind file in this
directory.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 67

Installing and Configuring NVIDIA Virtual GPU Manager

echo domain:bus:slot. function > unbind

domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example writes the domain, bus, slot, and function of the GPU with the
domain 0000 and PCI device BDF 06:00.0.
echo 0000:06:00.0 > unbind

3. Bind the GPU to the nvidia kernel module.

a). Change to the sysfs directory that contains the PCl device information for the
physical GPU.
cd /sys/bus/pci/devices/domain\:bus\:slot. function
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example changes to the sysfs directory that contains the PCI device
information for the GPU with the domain 0000 and PCI device BDF 06:00.0.
ecd /sys/bus/pci/devices/0000\:06\:00.0

b). Write the kernel module name nvidia to the driver override file in this
directory.
echo nvidia > driver override

c). Change to the sysfs directory that represents the nvidia kernel module.
cd /sys/bus/pci/drivers/nvidia

d). Write the domain, bus, slot, and function of the GPU to the bind file in this
directory.
echo domain:bus:slot.function > bind
domain
bus
slot
function

The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example writes the domain, bus, slot, and function of the GPU with the
domain 0000 and PCI device BDF 06:00.0.
echo 0000:06:00.0 > bind

You can now configure the GPU with vGPU as explained in Installing and Configuring the
NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 68

Installing and Configuring NVIDIA Virtual GPU Manager

2.10.8. NVIDIA vGPU Information in the systs File
System

Information about the NVIDIA vGPU types supported by each physical GPU in a Linux with
KVM hypervisor host is stored in the sysfs file system.

How NVIDIA vGPU information is stored in the sysfs file system depends on whether the
hypervisor uses a vendor-specific VFIO framework for an NVIDIA vGPU that supports SR-
IOV.

S Note: A hypervisor that uses a vendor-specific VFIO framework for an NVIDIA vGPU that
supports SR-IOV uses the standard VFIO framework for a legacy NVIDIA vGPU.

For GPUs that support SR-I0V, use of a vendor-specific VFIO framework is introduced in
Ubuntu release 24.04.

For more detailed information about how NVIDIA vGPU information is stored in the sysfs
file system, refer to the following topics:

» NVIDIA vGPU Information in the sysfs File System for Hypervisors that Use the
Standard VFIO Framework

» NVIDIA vGPU Information in the sysfs File System for Hypervisors that Use a Vendor-
Specific VFIO Framework

2.10.8.1. NVIDIA vGPU Information in the sysfs File
System for Hypervisors that Use the Standard
VFIO Framework

All physical GPUs on the host are registered with the mdev kernel module. Information
about the physical GPUs and the vGPU types that can be created on each physical GPU is
stored in directories and files under the /sys/class/mdev_bus/ directory.

The sysfs directory for each physical GPU is at the following locations:
» /sys/bus/pci/devices/

> /sys/class/mdev bus/

Both directories are a symbolic link to the real directory for PCl devices in the sysfs file
system.

The organization of the sysfs directory for each physical GPU is as follows:

/sys/class/mdev_bus/
|-parent-physical-device
| -mdev supported types
| -nvidia-vgputype-id
|-available instances
| -create
| -description
|-device api
| -devices
| —name

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 69

Installing and Configuring NVIDIA Virtual GPU Manager

parent-physical-device

Each physical GPU on the host is represented by a subdirectory of the /sys/class/
mdev_bus/ directory.

The name of each subdirectory is as follows:
domain\:bus\:slot.function

domain, bus, slot, function are the domain, bus, slot, and function of the GPU, for
example, 0000\:06\:00.0.

Each directory is a symbolic link to the real directory for PCl devices in the sysfs file
system. For example:

11 /sys/class/mdev_bus/

total O

1rwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:05:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:08.0/0000:05:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:06:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:09.0/0000:06:00.0
1rwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:07:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:10.0/0000:07:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:08:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:11.0/0000:08:00.0

mdev_supported types
A directory named mdev_supported types is required under the sysfs directory for
each physical GPU that will be configured with NVIDIA vGPU. How this directory is
created for a GPU depends on whether the GPU supports SR-IOV.

For a GPU that does not support SR-IOV, this directory is created automatically
after the Virtual GPU Manager is installed on the host and the host has been
rebooted.

For a GPU that supports SR-IQV, such as a GPU based on the NVIDIA Ampere
architecture, you must create this directory by enabling the virtual function for the
GPU as explained in Creating an NVIDIA vGPU on a Linux with KVM Hypervisor. The
mdev_supported_types directory itself is never visible on the physical function.

The mdev_supported types directory contains a subdirectory for each vGPU type that
the physical GPU supports. The name of each subdirectory is nvidia-vgputype-id,
where vgputype-id is an unsigned integer serial number. For example:

11 mdev_supported types/
total 0

drwxr-xr-x 3 root root 0 Dec 6 01:37 nvidia-35
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-36
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-37
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-38
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-39
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-40
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-41
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-42
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-43
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-44
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-45

nvidia-vgputype-id
Each directory represents an individual vGPU type and contains the following files and
directories:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 70

Installing and Configuring NVIDIA Virtual GPU Manager

available instances
This file contains the number of instances of this vGPU type that can still be
created. This file is updated any time a vGPU of this type is created on or removed
from the physical GPU.

Note: When a time-sliced vGPU is created, the content of the available instances
for all other time-sliced vGPU types on the physical GPU is set to 0. This behavior
enforces the requirement that all time-sliced vGPUs on a physical GPU must be of
the same type. However, this requirement does not apply to MIG-backed vGPUs.
Therefore, when a MIG-backed vGPU is created, available instances for all other
MIG-backed vGPU types on the physical GPU is not set to O

create
This file is used for creating a vGPU instance. A vGPU instance is created by writing

the UUID of the vGPU to this file. The file is write only.

description
This file contains the following details of the vGPU type:

» The maximum number of virtual display heads that the vGPU type supports
» The frame rate limiter (FRL) configuration in frames per second

» The frame buffer size in Mbytes

» The maximum resolution per display head

» The maximum number of vGPU instances per physical GPU

For example:

cat description
num_heads=4, frl config=60, framebuffer=2048M, max resolution=4096x2160,

max instance=4
device_api
This file contains the string vfio pci to indicate that a vGPU is a PCl device.
devices
This directory contains all the mdev devices that are created for the vGPU type. For
example:

11 devices
total O
lrwxrwxrwx 1 root root 0 Dec 6 01:52 aa618089-8b16-4d01-al36-25a0f3c73123 -

> ../../../aa618089-8b16-4d01-al36-25a0£3c73123

name
This file contains the name of the vGPU type. For example:

cat name
GRID M10-2Q

2.10.8.2. NVIDIA vGPU Information in the systs File
System for Hypervisors that Use a Vendor-
Specific VFIO Framework

A vendor-specific VFIO framework does not support the mediated VFIO mdev driver
framework. Information about the physical GPUs and the vGPU types that can be created

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 71

Installing and Configuring NVIDIA Virtual GPU Manager

on each physical GPU is stored in directories and files under the /sys/bus/pci/devices/
directory.

The organization of the sysfs directory for each virtual function on a physical GPU is as
follows:

/sys/bus/pci/devices/
|-virtual-function
|-nvidia
| -creatable vgpu types
| -current vgpu type
| -vgpu params

virtual-function

Each virtual function on each physical GPU on the host is represented by a
subdirectory of the /sys/bus/pci/devices/ directory.

The name of each subdirectory is as follows:
domain\:bus\:vf-slot.v-function

domain and bus are the domain and bus of the GPU. vf-slot and v-function are the slot
and function of the virtual function. For example: 0000\ :3d\:00.4.

You must create this directory by enabling the virtual function for the GPU as
explained in Creating an NVIDIA vGPU on a Linux with KVM Hypervisor. This directory is
not created automatically.

nvidia
The nvidia directory contains the files for vGPU management on the virtual function.
These files are as follows:
creatable vgpu_types
This file contains the NVIDIA vGPU types that can be created on the virtual function
and the integer ID that represents each vGPU type in the sysfs file system. For

example:

cat creatable vgpu_types
NVIDIA A40-1Q 557
NVIDIA A40-2Q 558
NVIDIA A40-3Q 559
NVIDIA A40-4Q 560
NVIDIA A40-6Q 561

This file is not a static list of all the NVIDIA vGPU types that the GPU supports. It is
updated dynamically in response to changes to the current vgpu_ type file for this
virtual function and for other virtual functions on the same GPU.

» If a vGPU has been created on this virtual function, this file is empty.

» If a vGPU has been created on another virtual function on the same GPU, this file
contains only the vGPU types that can reside on the same GPU as the existing
vGPU.

» If the maximum number of vGPUs that the GPU supports has been created on
other virtual functions for the GPU, this file is empty.

S Note: When a time-sliced vGPU is created on a GPU in equal-size mode, the content
of the creatable vgpu_ types for all virtual functions on the physical GPU is set
to only the vGPU types with the same amount of frame buffer as the vGPU that

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 72

Installing and Configuring NVIDIA Virtual GPU Manager

was created. This behavior enforces the requirement that all time-sliced vGPUs
on the physical GPU must have the same amount of frame buffer. However, this
requirement does not apply to time-sliced vGPUs created on a GPU in mixed-size
mode or to MIG-backed vGPUs.

current_vgpu_type
This file contains the integer ID that represents the vGPU type in the sysfs file
system of the vGPU that is created on this virtual function. For example, if an
NVIDIA A40-4Q vGPU has been created on this virtual function, this file contains the
integer 560:
cat current_vgpu_type
560
If no vGPU is created on the virtual function, this file contains the integer 0. When
this file is created, its contents are set to the default value of O.

This file is used for creating and deleting a vGPU on the virtual function.

» A vVGPU is created by writing the integer ID that represents the vGPU type in the
sysfs file system to this file.

» A VGPU is deleted by writing O to this file.

vgpu_params
This file is used for setting plugin parameters for the vGPU on the virtual function
to control its behavior. Plugin parameters are set by writing a list of parameter-value
pairs to this file. For more information, refer to Setting vGPU Plugin Parameters on a
Linux with KVM Hypervisor.

2.11. Putting a GPU Into Mixed-Size
Mode

By default, a GPU supports only vGPUs with the same amount of frame buffer and,
therefore, is in equal-size mode. To support vGPUs with different amounts of frame
buffer, the GPU must be put into mixed-size mode. When a GPU is in mixed-size mode,
the maximum number of some types of vGPU allowed on a GPU is less than when the
GPU is in equal-size mode.

@ Note:
» A GPU in mixed-size mode reverts to its default mode if the hypervisor host is
rebooted, the NVIDIA Virtual GPU Manager is reloaded, or the GPU is reset.

» When a GPU is in mixed-size mode, only the best effort and equal share schedulers are
supported. The fixed share scheduler is not supported.

Before performing this task, ensure that no vGPUs are running on the GPU and that the
GPU is not being used by any other processes, such as CUDA applications, monitoring
applications, or the nvidia-smi command.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 73

Installing and Configuring NVIDIA Virtual GPU Manager

If you are using a GPU that supports SR-IOV on a Linux with KVM hypervisor, also ensure
that the virtual functions for the physical GPU in the sysfs file system are enabled as
explained in Preparing the Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a
Linux with KVM Hypervisor.

1. Use nvidia-smi to list the status of all physical GPUs, and check that heterogeneous
time-sliced vGPU sizes are noted as supported.
nvidia-smi -q

Attached GPUs g 1
GPU 00000000:41:00.0

Heterogeneous Time-Slice Sizes : Supported

2. Put each GPU that you want to support vGPUs with different amounts of frame buffer
into mixed-size mode.
nvidia-smi vgpu -i id -shm 1
id
The index of the GPU as reported by nvidia-smi.
This example puts the GPU with index 00000000:41:00.0 into mixed-size mode.

nvidia-smi vgpu -i 0 -shm 1
Enabled vGPU heterogeneous mode for GPU 00000000:41:00.0

3. Confirm that the GPU is now in mixed-size mode by using nvidia-smi to check that
vGPU heterogeneous mode is enabled.

nvidia-smi -q

vGPU Heterogeneous Mode : Enabled

2.12. Placing a vGPU on a Physical GPU in
Mixed-Size Mode

By default, the Virtual GPU Manager determines where a vGPU is placed on a GPU. To
fit as many vGPUs as possible on the GPU, you can control the placement of vGPUs on
a GPU in mixed-size mode. By controlling the placement of vGPUs on the GPU, you can
ensure that no gaps that cannot be occupied by a vGPU are left in the placement region
on the GPU.

The vGPU placements that a GPU in mixed-size mode supports depend on the total
amount of frame buffer that the GPU has. For details, refer to vGPU Placements for GPUs
in Mixed-Size Mode.

Note: This task is optional. If you want the Virtual GPU Manager to determine where a
vGPU is placed on a GPU, omit this task.

Before performing this task, ensure that following prerequisites are met:

» The GPU has been put into mixed-size mode as explained in Putting a GPU Into Mixed-
Size Mode.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 74

Installing and Configuring NVIDIA Virtual GPU Manager

» The vGPU that you want to place on the physical GPU has been created as explained
in Creating an NVIDIA vGPU on a Linux with KVM Hypervisor.

Perform this task in a command shell on the hypervisor host.

1. Use nvidia-smi to list the placement size and available placement IDs for the type of
the vGPU.

nvidia-smi vgpu -c -v

vGPU Type ID : 0x392
Name : NVIDIA L4-6Q
Placement Size I
Creatable Placement IDs : 6 18
@ Note:

Some supported placement IDs for the vGPU type might be unavailable because
they are already in use by another vGPU. To list the placement size and all supported
placement IDs for the type of the vGPU, run the following command:

nvidia-smi vgpu -s -v

vGPU Type ID : 0x392

Name : NVIDIA L4-6Q
Placement Size HI
Supported Placement IDs : 06 12 18

The number of supported placement IDs is the maximum number of vGPUs of the
type that are allowed on the GPU in mixed-size mode.

2. Set the vgpu-placement-id vGPU plugin parameter for the vGPU to the placement ID
that you want.

For a Linux with KVM hypervisor, write the parameter to the vgpu params file in the
nvidia subdirectory of the mdev device directory that represents the vGPU.
echo "vgpu-placement-id=placement-id" > /sys/bus/mdev/devices/uuid/nvidia/vgpu_params
placement-id

The placement ID that you want to set for the vGPU.
uuid

The UUID of the vGPU, for example, aa618089-8b16-4d01-al36-25a0£3c73123.

This example sets the placement ID for the vGPU that has the UUID
2a618089-8b16-4d01-a136-25a0f3c73123 to 6.
echo "vgpu-placement-id=6" > \
/sys/bus/mdev/devices/aa618089-8b16-4d01-al36-25a0£3¢c73123/nvidia/vgpu_params
When the VM to which the vGPU is assigned is rebooted, the Virtual GPU Manager
validates the placement ID that you assigned to the vGPU. If the placement ID is invalid or
unavailable, the VM fails to boot.

After the VM to which the vGPU is assigned has been rebooted, you can confirm that the
vGPU has been assigned the correct placement ID.

nvidia-smi vgpu -gq
GPU 00000000:41:00.0

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 75

Installing and Configuring NVIDIA Virtual GPU Manager

Active vGPUs s 4
vGPU ID : 3251719533
VM ID : 2150987

Placement ID : 6

2.13. Disabling and Enabling ECC
Memory

Some GPUs that support NVIDIA vGPU software support error correcting code (ECC)
memory with NVIDIA vGPU. ECC memory improves data integrity by detecting and
handling double-bit errors. However, not all GPUs, vGPU types, and hypervisor software
versions support ECC memory with NVIDIA vGPU.

On GPUs that support ECC memory with NVIDIA vGPU, ECC memory is supported with C-
series and Q-series VGPUs, but not with A-series and B-series vGPUs. Although A-series
and B-series vGPUs start on physical GPUs on which ECC memory is enabled, enabling
ECC with vGPUs that do not support it might incur some costs.

On physical GPUs that do not have HBM2 memory, the amount of frame buffer that is
usable by vGPUs is reduced. All types of vGPU are affected, not just vGPUs that support
ECC memory.

The effects of enabling ECC memory on a physical GPU are as follows:
» ECC memory is exposed as a feature on all supported vGPUs on the physical GPU.

» In VMSs that support ECC memory, ECC memory is enabled, with the option to disable
ECC in the VM.

» ECC memory can be enabled or disabled for individual VMs. Enabling or disabling ECC
memory in a VM does not affect the amount of frame buffer that is usable by vGPUs.

GPUs based on the Pascal GPU architecture and later GPU architectures support ECC
memory with NVIDIA vGPU. To determine whether ECC memory is enabled for a GPU, run
nvidia-smi -q for the GPU.

Tesla MB0 and M6 GPUs support ECC memory when used without GPU virtualization, but
NVIDIA vGPU does not support ECC memory with these GPUs. In graphics mode, these
GPUs are supplied with ECC memory disabled by default.

Some hypervisor software versions do not support ECC memory with NVIDIA vGPU.

If you are using a hypervisor software version or GPU that does not support ECC memory
with NVIDIA vGPU and ECC memory is enabled, NVIDIA vGPU fails to start. In this
situation, you must ensure that ECC memory is disabled on all GPUs if you are using
NVIDIA vGPU.

2.13.1. Disabling ECC Memory

If ECC memory is unsuitable for your workloads but is enabled on your GPUs, disable it.
You must also ensure that ECC memory is disabled on all GPUs if you are using NVIDIA
vGPU with a hypervisor software version or a GPU that does not support ECC memory

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 76

Installing and Configuring NVIDIA Virtual GPU Manager

with NVIDIA vGPU. If your hypervisor software version or GPU does not support ECC
memory and ECC memory is enabled, NVIDIA vGPU fails to start.

Where to perform this task depends on whether you are changing ECC memory settings
for a physical GPU or a vGPU.

For a physical GPU, perform this task from the hypervisor host.

For a vGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.
If you are changing ECC memory settings for a vGPU, also ensure that the NVIDIA vGPU
software graphics driver is installed in the VM to which the vGPU is assigned.

1. Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC
noted as enabled.

nvidia-smi -gq

NVSMI LOG
Timestamp : Mon Jun 17 18:36:45 2024
Driver Version : 550.90.05
Attached GPUs : 1

GPU 0000:02:00.0

[oool

Ecc Mode
Current : Enabled
Pending : Enabled

[...]
2. Change the ECC status to off for each GPU for which ECC is enabled.

If you want to change the ECC status to off for all GPUs on your host machine or
vGPUs assigned to the VM, run this command:
nvidia-smi -e 0
If you want to change the ECC status to off for a specific GPU or vGPU, run this
command:
nvidia-smi -i id -e 0
id is the index of the GPU or vGPU as reported by nvidia-smi.
This example disables ECC for the GPU with index 0000:02:00.0.
nvidia-smi -i 0000:02:00.0 -e O

3. Reboot the host or restart the VM.

4. Confirm that ECC is now disabled for the GPU or vGPU.

nvidia—smi —q

NVSMI LOG

Timestamp : Mon Jun 17 18:37:53 2024
Driver Version : 550.90.05

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 77

Installing and Configuring NVIDIA Virtual GPU Manager

Attached GPUs : 1
GPU 0000:02:00.0
[...]

Ecc Mode
Current : Disabled
Pending : Disabled

[...]

If you later need to enable ECC on your GPUs or vGPUs, follow the instructions in Enabling
ECC Memory.

2.13.2. Enabling ECC Memory

If ECC memory is suitable for your workloads and is supported by your hypervisor
software and GPUs, but is disabled on your GPUs or vGPUs, enable it.

Where to perform this task depends on whether you are changing ECC memory settings
for a physical GPU or a vGPU.

» For a physical GPU, perform this task from the hypervisor host.

» For a vGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.
If you are changing ECC memory settings for a vGPU, also ensure that the NVIDIA vGPU
software graphics driver is installed in the VM to which the vGPU is assigned.

1. Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC
noted as disabled.

nvidia-smi -q

—————————————— NVSMI LOG==============

Timestamp : Mon Jun 17 18:36:45 2024
Driver Version : 550.90.05

Attached GPUs : 1

GPU 0000:02:00.0

[oool

Ecc Mode
Current : Disabled
Pending : Disabled

[...]
2. Change the ECC status to on for each GPU or vGPU for which ECC is enabled.

» If you want to change the ECC status to on for all GPUs on your host machine or
vGPUs assigned to the VM, run this command:
nvidia-smi -e 1

» If you want to change the ECC status to on for a specific GPU or vGPU, run this
command:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 78

Installing and Configuring NVIDIA Virtual GPU Manager

nvidia-smi -i id -e 1
id is the index of the GPU or vGPU as reported by nvidia-smi.
This example enables ECC for the GPU with index 0000:02:00.0.
nvidia-smi -i 0000:02:00.0 -e 1

3. Reboot the host or restart the VM.

4. Confirm that ECC is now enabled for the GPU or vGPU.

nvidia—smi —q

NVSMI LOG
Timestamp : Mon Jun 17 18:37:53 2024
Driver Version : 550.90.05
Attached GPUs g 1

GPU 0000:02:00.0
[oool

Ecc Mode
Current : Enabled
Pending : Enabled

[...]

If you later need to disable ECC on your GPUs or vGPUs, follow the instructions in
Disabling ECC Memory.

2.14. Configuring a vGPU VM for Use
with NVIDIA GPUDirect Storage
Technology

To use NVIDIA® GPUDirect Storage® technology with NVIDIA vGPU, you must install all the
required software in the VM that is configured with NVIDIA vGPU.
Ensure that the prerequisites in Prerequisites for Using NVIDIA vGPU are met.

1. Install and configure the NVIDIA Virtual GPU Manager as explained in Installing and
Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM.

2. Asroot, log in to the VM that you configured with NVIDIA vGPU in the previous step.

3. Install the Mellanox OpenFabrics Enterprise Distribution for Linux (MLNX_OFED) in the
VM as explained in Installation Procedure in Installing Mellanox OFED.

In the command to run the installation script, specify the following options:

» —--with-nvmf
> —--with-nfsrdma
» --enable-gds

» --add-kernel-support

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 79

https://docs.nvidia.com/networking/display/MLNXOFEDv461000/Installing+Mellanox+OFED#InstallingMellanoxOFED-InstallationProcedure

Installing and Configuring NVIDIA Virtual GPU Manager

4. Install the NVIDIA vGPU software graphics driver for Linux in the VM from a
distribution-specific package.

S Note: GPUDirect Storage technology does not support installation of the NVIDIA vGPU
software graphics driver for Linux from a . run file.

Follow the instructions for the Linux distribution that is installed in the VM:

» Installing the NVIDIA vGPU Software Graphics Driver on Ubuntu from a Debian

Package
» Installing the NVIDIA vGPU Software Graphics Driver on Red Hat Distributions
from an RPM Package

5. Install NVIDIA CUDA Toolkit from a . run file, deselecting the CUDA driver when
selecting the CUDA components to install.

Note: To avoid overwriting the NVIDIA vGPU software graphics driver that you installed
in the previous step, do not install NVIDIA CUDA Toolkit from a distribution-specific
package.

For instructions, refer to Runfile Installation in NVIDIA CUDA Installation Guide for Linux.

6. Use the package manager of the Linux distribution that is installed in the VM to install
the GPUDirect Storage technology packages, omitting the installation of the NVIDIA
CUDA Toolkit packages.

Follow the instructions in NVIDIA CUDA Installation Guide for Linux for the Linux
distribution that is installed in the VM:

» RHEL8/Rocky 8

In the step to install CUDA, execute only the command to include all GPUDirect
Storage technology packages:

sudo dnf install nvidia-gds

» Ubuntu

In the step to install CUDA, execute only the command to include all GPUDirect
Storage technology packages:
sudo apt-get install nvidia-gds

After you configure a vGPU VM for use with NVIDIA GPUDirect Storage technology,
you can license the NVIDIA vGPU software licensed products that you are using. For
instructions, refer to Virtual GPU Client Licensing User Guide.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 80

https://docs.nvidia.com/cuda/archive/12.1.0/cuda-installation-guide-linux/index.html#runfile-installation
https://docs.nvidia.com/cuda/archive/12.1.0/cuda-installation-guide-linux/index.html#rhel-8-rocky-8
https://docs.nvidia.com/cuda/archive/12.1.0/cuda-installation-guide-linux/index.html#ubuntu
http://docs.nvidia.com/grid/17.0/pdf/grid-licensing-user-guide.pdf

Chapter 3. Using GPU Pass-Through

GPU pass-through is used to directly assign an entire physical GPU to one VM, bypassing
the NVIDIA Virtual GPU Manager. In this mode of operation, the GPU is accessed
exclusively by the NVIDIA driver running in the VM to which it is assigned; the GPU is not
shared among VMs.

In pass-through mode, GPUs based on NVIDIA GPU architectures after the Maxwell
architecture support error-correcting code (ECC).

GPU pass-through can be used in a server platform alongside NVIDIA vGPU, with some
restrictions:

A physical GPU can host NVIDIA vGPUs, or can be used for pass-through, but cannot
do both at the same time. Some hypervisors, for example VMware vSphere ESXi,
require a host reboot to change a GPU from pass-through mode to vGPU mode.

A single VM cannot be configured for both vGPU and GPU pass-through at the same
time.

The performance of a physical GPU passed through to a VM can be monitored only
from within the VM itself. Such a GPU cannot be monitored by tools that operate
through the hypervisor, such as XenCenter or nvidia-smi (see Monitoring GPU
Performance).

The following BIOS settings must be enabled on your server platform:
VT-D/IOMMU
SR-IOV in Advanced Options

All GPUs directly connected to each other through NVLink must be assigned to the
same VM.

You can assign multiple physical GPUs to one VM. The maximum number of physical
GPUs that you can assign to a VM depends on the maximum number of PCle pass-
through devices per VM that your chosen hypervisor can support. For more information,
refer to the documentation for your hypervisor, for example:

Citrix Hypervisor: Configuration limits

Red Hat Enterprise Linux:

Red Hat Enterprise Linux 9 releases: Assigning a GPU to a virtual machine, Known
Issues

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 81

https://docs.citrix.com/en-us/citrix-hypervisor/system-requirements/configuration-limits.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/assembly_managing-gpu-devices-in-virtual-machines_configuring-and-managing-virtualization#proc_assigning-a-gpu-to-a-virtual-machine_assembly_managing-gpu-devices-in-virtual-machines

Using GPU Pass-Through

» Red Hat Enterprise Linux 8 releases: Assigning a GPU to a virtual machine, Known
Issues

» Red Hat Enterprise Linux 7 releases: GPU PCI Device Assignment

» VMware vSphere: vSphere 7.0 Configuration Limits

Note: If you intend to configure all GPUs in your server platform for pass-through, you do
not need to install the NVIDIA Virtual GPU Manager.

3.1. Display Resolutions for Physical
GPUs

The display resolutions supported by a physical GPU depend on the NVIDIA GPU
architecture and the NVIDIA vGPU software license that is applied to the GPU.

vWS Physical GPU Resolutions

GPUs that are licensed with a vWS license support a maximum combined resolution
based on the number of available pixels, which is determined by the NVIDIA GPU
architecture. You can choose between using a small number of high resolution displays or
a larger number of lower resolution displays with these GPUs.

The following table lists the maximum number of displays per GPU at each supported
display resolution for configurations in which all displays have the same resolution.

NVIDIA GPU Displays per
Architecture Available Pixels Display Resolution GPU

7680%x4320 2
Pascal and later 66355200

5120x2880 or lower 4

5120%2880 2
Maxwell 35389440

4096x2160 or lower 4

The following table provides examples of configurations with a mixture of display
resolutions.

NVIDIA GPU Available Available Pixel Maximum Sample Mixed Display

Architecture Pixels Basis Displays Configurations

Pascal and later | 66355200 @2 7680x4320 4 1 7680x4320 display plus
displays 2 5120%2880 displays

1 7680%x4320 display plus
3 4096x2160 displays

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 82

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/assembly_managing-gpu-devices-in-virtual-machines_configuring-and-managing-virtualization#proc_assigning-a-gpu-to-a-virtual-machine_assembly_managing-gpu-devices-in-virtual-machines
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-device-gpu#sect-device-GPU-asignment
https://configmax.esp.vmware.com/guest?vmwareproduct=vSphere&release=vSphere%207.0&categories=1-0

Using GPU Pass-Through

NVIDIA GPU Available Available Pixel Maximum Sample Mixed Display

Architecture Pixels Basis Displays Configurations

Maxwell 35389440 4 4096x2160 4 1 5120x2880 display plus
displays 2 4096x2160 displays

S Note: You cannot use more than four displays even if the combined resolution of the
displays is less than the number of available pixels from the GPU. For example, you cannot
use five 4096x2160 displays with a GPU based on the NVIDIA Pascal architecture even
though the combined resolution of the displays (44236800) is less than the number of
available pixels from the GPU (66355200).

vApps or vCS Physical GPU Resolutions

GPUs that are licensed with a vApps or a vCS license support a single display with a fixed
maximum resolution. The maximum resolution depends on the following factors:

» NVIDIA GPU architecture

» The NVIDIA vGPU software license that is applied to the GPU

» The operating system that is running in the on the system to which the GPU is

assigned
License NVIDIA GPU Operating Maximum Display Displays
Architecture System Resolution per GPU
vApps Pascal or later | Linux 2560% 1600 1
Pascal or later | Windows 1280x1024 1
Maxwell Windows and Linux | 2560x 1600 1

3.2. Using GPU Pass-Through on Citrix
Hypervisor

You can configure a GPU for pass-through on Citrix Hypervisor by using XenCenter or by
using the xe command.

The following additional restrictions apply when GPU pass-through is used in a server
platform alongside NVIDIA vGPU:

» The performance of a physical GPU passed through to a VM cannot be monitored
through XenCenter.

» nvidia-smiin domO no longer has access to the GPU.

» Pass-through GPUs do not provide console output through XenCenter’s VM Console
tab. Use a remote graphics connection directly into the VM to access the VM’s OS.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 83

Using GPU Pass-Through

3.2.1. Configuring a VM for GPU Pass Through by
Using XenCenter

Select the Pass-through whole GPU option as the GPU type in the VM'’s Properties:

Figure 14. Using XenCenter to configure a pass-through GPU

£ XenCenter = ER N
File View Pool Sever VM Storage Templates Tools Help

@ Back + () Forward - | [@ Add New Server New Pool 5 New Storage 1] NewvM | @) Start (3 Reboot ([} Suspend

Search. Q ‘ @ RS1-Server-RTM-NMOS on 'xs-72' Logged in as: Local root accou

= ¢ XenCenter -
SR i General | Memory | Storage | Networking | Console | Performance | Snapshots | search |
VI

[Rs1-Server-RT|
@ Rs1-Server-RT LASEIEEIEE) Rs1-Server-RTM-NMOS Properties o

5 DVD drives

Local storage General —
5 Removable st RS1-Server-RTM-NMOS >

B Rs1-Server-RT General Custom Fields
2@ xs72 <None> You can improve graphics performance by assigning a virtual graphics processing unit to this
cPU

L}

o .
@ Rs-Server-AT 4¥CPUG)
6@ Rs1-ServerRT Description: @ BootOptions GPU type: GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays) u
B Rs1-server-RT Tags: Sfa"r:’g;’(?;;f/ D-Drive, Hard GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays)
8 Rst-server-RT @ GRID M60-8A virtual GPU (1 per GPU, 1280x1024, 1 display)
[@ Rs1-server-RT Folder: HA is not available on stand. A Ttisessel —pted.
1B ror server 1|5 o Alers GRID M60-4Q virtual GPU (2 per GPU, 4096x2160, 4 displays)
Operating System: @ Iftherei; GRID M60-4A virtual GPU (2 per GPU, 1280x1024, 1 display) 1o start.
@ Rsi-server-AT None defined
@ Ubuntu Xenial Virtualization 5 Home Server GRID M60-2Q virtual GPU (4 per GPU, 4096x2160, 4 displays)
B win7x64_CUDY mode: None defined GRID M60-2A virtual GPU (4 per GPU, 1280x1024, 1 display) L
(B win7+64_CUDZ = GPU GRID M60-1Q virtual GPU (8 per GPU, 4096x2160, 2 displays) 1
[Windows10-RS BIOS strings GRID M60-8Q virtual GPU (1 GRID M60-18 virtual GPU (8 per GPU, 2560x1600, 4 displays)
{5 DVD drives copied: #, Advanced Options GRID M60-1A virtual GPU (8 per GPU, 1280x1024, 1 display)
Local storage Virtualization state| Optimize for general use GRID M60-0Q virtual GPU (16 per GPU, 2560x1600, 2 displays)
5 Removable stc GRID M60-08 virtual GPU (16 per GPU, 2560x1600, 2 displays)

9 RHELT3 uup: 86:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60]...

6D RS1-Server R Pass-through whole GPU

B Ubuntu Xenial

& Win7ss4.UDA Boot Options GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays)
) Windows10-RS GRID M60-8A virtual GPU (1 per GPU, 1280x1024, 1 display)
[Windows10-RS | CPUs GRID M60-4Q virtual GPU (2 per GPU, 4096x2160, 4 displays)
® localhost - GRID M60-4A virtual GPU (2 per GPU, 1280x1024, 1 display)
< » GRID M60-2Q virtual GPU (4 per GPU, 4096x2160, 4 displays)
GRID M60-2A virtual GPU (4 per GPU, 1280x1024, 1 display)
GRID M60-1Q virtual GPU (8 per GPU, 4096x2160, 2 displays) ~

A Infrastructure

 onecs

+2, Organization Views

O, saved Searches

A Notifications @)

After configuring a Citrix Hypervisor VM for GPU pass through, install the NVIDIA
graphics driver in the guest OS on the VM as explained in Installing the NVIDIA vGPU
Software Graphics Driver.

3.2.2. Configuring a VM for GPU Pass Through by
Using xe

Create a vgpu object with the passthrough vGPU type:

[root@xenserver ~]# xe vgpu-type-list model-name="passthrough"
uuid (RO) : £a50b0£f0-9705-6c59-689%e-ea62a3d35237
vendor-name (RO) :
model-name (RO): passthrough
framebuffer-size (RO): O

[root@xenserver ~]# xe vgpu-create vm-uuid=753e77a9-e10d-7679-£674-65c078abb2eb vgpu-type-
uuid=£fa50b0£0-9705-6c59-689e-ea62a3d35237 gpu-group-uuid=585877ef-5a6c-66af-£fc56-7bd525bdc2£f6
6aa530ec-8f27-86bd-b8ed-fedfde8f08£f9

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 84

Using GPU Pass-Through

[root@xenserver ~]#

CAUTION: Do not assign pass-through GPUs using the legacy other-config:pci
parameter setting. This mechanism is not supported alongside the XenCenter Ul and xe
vgpu mechanisms, and attempts to use it may lead to undefined results.

After configuring a Citrix Hypervisor VM for GPU pass through, install the NVIDIA
graphics driver in the guest OS on the VM as explained in Installing the NVIDIA vGPU
Software Graphics Driver.

3.3. Using GPU Pass-Through on Red
Hat Enterprise Linux KVM or
Ubuntu

You can configure a GPU for pass-through on Red Hat Enterprise Linux Kernel-based
Virtual Machine (KVM) or Ubuntu by using any of the following tools:

» The Virtual Machine Manager (virt-manager) graphical tool
» The virsh command
» The QEMU command line

Before configuring a GPU for pass-through on Red Hat Enterprise Linux KVM or Ubuntu,
ensure that the following prerequisites are met:

» Red Hat Enterprise Linux KVM or Ubuntu is installed.

» A virtual disk has been created.

Note: Do not create any virtual disks in /root.

» A virtual machine has been created.

3.3.1. Configuring a VM for GPU Pass-Through
by Using Virtual Machine Manager (virt-
manager)

For more information about using Virtual Machine Manager, see the following topics in
the documentation for Red Hat Enterprise Linux 7:

» Managing Guests with the Virtual Machine Manager (virt-manager)

» Starting virt-manager

» Assigning a PCI Device with virt-manager

1. Start virt-manager.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 85

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Managing_guests_with_the_Virtual_Machine_Manager_virt_manager.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Managing_guests_with_the_Virtual_Machine_Manager_virt_manager.html#sect-Managing_guests_with_the_Virtual_Machine_Manager_virt_manager-Starting_virt_manager
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Guest_virtual_machine_device_configuration.html#sect-PCI_devices-Assigning_a_PCI_device_with_virt_manager

Using GPU Pass-Through

2. In the virt-manager main window, select the VM that you want to configure for pass-
through.

3. From the Edit menu, choose Virtual Machine Details.
4. In the virtual machine hardware information window that opens, click Add Hardware.

5. In the Add New Virtual Hardware dialog box that opens, in the hardware list on the
left, select PCI Host Device.

6. From the Host Device list that appears, select the GPU that you want to assign to the
VM and click Finish.

If you want to remove a GPU from the VM to which it is assigned, in the virtual machine
hardware information window, select the GPU and click Remove.

After configuring the VM for GPU pass through, install the NVIDIA graphics driver in the
guest OS on the VM as explained in Installing the NVIDIA vGPU Software Graphics Driver.

3.3.2. Configuring a VM for GPU Pass-Through by
Using virsh

For more information about using virsh, see the following topics in the documentation
for Red Hat Enterprise Linux 7:

» Managing Guest Virtual Machines with virsh

» Assigning a PCl Device with virsh

1. Verify that the vfio-pci module is loaded.
1lsmod | grep vfio-pci

2. Obtain the PCI device bus/device/function (BDF) of the GPU that you want to assign in
pass-through mode to a VM.
1lspci | grep NVIDIA

The NVIDIA GPUs listed in this example have the PCI device BDFs 85:00.0 and
86:00.0.

lspci | grep NVIDIA
85:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)
86:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)

3. Obtain the full identifier of the GPU from its PCI device BDF.
virsh nodedev-list --cap pci| grep transformed-bdf
transformed-bdf
The PCI device BDF of the GPU with the colon and the period replaced with
underscores, for example, 85 00 0.

This example obtains the full identifier of the GPU with the PCI device BDF 85:00.0.

virsh nodedev-list --cap pci| grep 85_00_0
pci 0000 85 00 0

4. Obtain the domain, bus, slot, and function of the GPU.

virsh nodedev-dumpxml full-identifier| egrep 'domain|bus|slot|function'

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 86

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Managing_guest_virtual_machines_with_virsh.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-Guest_virtual_machine_device_configuration.html#sect-PCI_devices-Assigning_a_PCI_device_with_virsh

Using GPU Pass-Through

full-identifier
The full identifier of the GPU that you obtained in the previous step, for example,
pci 0000 85 00 0.

This example obtains the domain, bus, slot, and function of the GPU with the PCI
device BDF 85:00.0.

virsh nodedev-dumpxml pci_0000_85_ 00 0| egrep 'domain|bus|slot|function'
<domain>0x0000</domain>
<bus>0x85</bus>
<slot>0x00</slot>
<function>0x0</function>
<address domain='0x0000"' bus='0x85' slot='0x00' function='0x0"'/>

5. Invirsh, open for editing the XML file of the VM that you want to assign the GPU to.

virsh edit vm-name
vm-name

The name of the VM to that you want to assign the GPU to.

6. Add a device entry in the form of an address element inside the source element to
assign the GPU to the guest VM.

You can optionally add a second address element after the source element to set a
fixed PCI device BDF for the GPU in the guest operating system.

<hostdev mode='subsystem' type='pci' managed='yes'>
<source>
<address domain='domain' bus='bus' slot='slot' function='function'/>
</source>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05'" function='0x0"'/>
</hostdev>

domain

bus

slot

function
The domain, bus, slot, and function of the GPU, which you obtained in the previous
step.

This example adds a device entry for the GPU with the PCI device BDF 85:00.0 and
fixes the BDF for the GPU in the guest operating system.

<hostdev mode='subsystem' type='pci' managed='yes'>

<source>
<address domain='0x0000' bus='0x85"' slot='0x00"' function='0x0'/>
</source>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0"'/>
</hostdev>

7. Start the VM that you assigned the GPU to.

virsh start vm-name
vm-name

The name of the VM that you assigned the GPU to.

After configuring the VM for GPU pass through, install the NVIDIA graphics driver in the
guest OS on the VM as explained in Installing the NVIDIA vGPU Software Graphics Driver.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 87

Using GPU Pass-Through

3.3.3. Configuring a VM for GPU Pass-Through by
Using the QEMU Command Line

1. Obtain the PCI device bus/device/function (BDF) of the GPU that you want to assign in
pass-through mode to a VM.
lspci | grep NVIDIA
The NVIDIA GPUs listed in this example have the PCI device BDFs 85:00.0 and
86:00.0.

lspci | grep NVIDIA

85:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)

86:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)

2. Add the following option to the QEMU command line:
—device vfio-pci,host=bdf
bdf
The PCI device BDF of the GPU that you want to assign in pass-through mode to a
VM, for example, 85:00.0.

This example assigns the GPU with the PCl device BDF 85:00.0 in pass-through mode
toa VM.

—-device vfio-pci,host=85:00.0

After configuring the VM for GPU pass through, install the NVIDIA graphics driver in the
guest OS on the VM as explained in Installing the NVIDIA vGPU Software Graphics Driver.

3.3.4. Preparing a GPU Configured for vGPU for
Use in Pass-Through Mode

The mode in which a physical GPU is being used determines the Linux kernel module to
which the GPU is bound. If you want to switch the mode in which a GPU is being used,
you must unbind the GPU from its current kernel module and bind it to the kernel module
for the new mode. After binding the GPU to the correct kernel module, you can then
configure it for pass-through.

When the Virtual GPU Manager is installed on a Red Hat Enterprise Linux KVM or Ubuntu
host, the physical GPUs on the host are bound to the nvidia kernel module. A physical
GPU that is bound to the nvidia kernel module can be used only for vGPU. To enable
the GPU to be passed through to a VM, the GPU must be unbound from nvidia kernel
module and bound to the vfio-pci kernel module.

Before you begin, ensure that you have the domain, bus, slot, and function of the GPU

that you are preparing for use in pass-through mode. For instructions, see Getting the
BDF and Domain of a GPU on a Linux with KVM Hypervisor.

1. If you are using a GPU that supports SR-I0V, such as a GPU based on the NVIDIA
Ampere architecture, disable the virtual function for the GPU in the sysfs file system.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 88

Using GPU Pass-Through

If your GPU does not support SR-I0V, omit this step.

Note: Before performing this step, ensure that the GPU is not being used by any other
processes, such as CUDA applications, monitoring applications, or the nvidia-smi
command.

Use the custom script sriov-manage provided by NVIDIA vGPU software for this
purpose.
/usr/lib/nvidia/sriov-manage -d domain:bus:slot.function
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example disables the virtual function for the GPU with the domain 00, bus 06, slot
0000, and function o.
/usr/lib/nvidia/sriov-manage -d 00:06:0000.0

2. Determine the kernel module to which the GPU is bound by running the 1spci
command with the -k option on the NVIDIA GPUs on your host.
lspci -d 10de: -k

The Kernel driver in use: field indicates the kernel module to which the GPU is
bound.

The following example shows that the NVIDIA Tesla M60 GPU with BDF 06:00.0 is
bound to the nvidia kernel module and is being used for vGPU.

06:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev
al)
Subsystem: NVIDIA Corporation Device 115e
Kernel driver in use: nvidia

3. To ensure that no clients are using the GPU, acquire the unbind lock of the GPU.

a). Ensure that no VM is running to which a vGPU on the physical GPU is assigned and
that no process running on the host is using that GPU.

Processes on the host that use the GPU include the nvidia-smi command and all
processes based on the NVIDIA Management Library (NVML).

b). Change to the directory in the proc file system that represents the GPU.
cd /proc/driver/nvidia/gpus/domain\:bus\:slot. function
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example changes to the directory in the proc file system that represents the
GPU with the domain 0000 and PCl device BDF 06:00. 0.
ed /proc/driver/nvidia/gpus/0000\:06\:00.0
c). Write the value 1 to the unbindLock file in this directory.
echo 1 > unbindLock

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 89

Using GPU Pass-Through

d). Confirm that the unbindLock file now contains the value 1.
cat unbindLock
1
If the unbindLock file contains the value 0, the unbind lock could not be acquired
because a process or client is using the GPU.

4. Unbind the GPU from nvidia kernel module.

a). Change to the sysfs directory that represents the nvidia kernel module.
ecd /sys/bus/pci/drivers/nvidia
b). Write the domain, bus, slot, and function of the GPU to the unbind file in this
directory.
echo domain:bus:slot.function > unbind
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example writes the domain, bus, slot, and function of the GPU with the
domain 0000 and PCI device BDF 06:00.0.
echo 0000:06:00.0 > unbind

5. Bind the GPU to the vfio-pci kernel module.

a). Change to the sysfs directory that contains the PCI device information for the
physical GPU.
cd /sys/bus/pci/devices/domain\:bus\:slot. function
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

This example changes to the sysfs directory that contains the PCI device
information for the GPU with the domain 0000 and PCI device BDF 06:00.0.
cd /sys/bus/pci/devices/0000\:06\:00.0
b). Write the kernel module name vfio-pci to the driver override file in this
directory.
echo vfio-pci > driver_ override
c). Change to the sysfs directory that represents the nvidia kernel module.
ecd /sys/bus/pci/drivers/vfio-pci
d). Write the domain, bus, slot, and function of the GPU to the bind file in this
directory.
echo domain:bus:slot.function > bind
domain
bus
slot
function
The domain, bus, slot, and function of the GPU, without a 0x prefix.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 90

Using GPU Pass-Through

This example writes the domain, bus, slot, and function of the GPU with the
domain 0000 and PCI device BDF 06:00. 0.
echo 0000:06:00.0 > bind

e). Change back to the sysfs directory that contains the PCI device information for
the physical GPU.

cd /sys/bus/pci/devices/domain\:bus\:slot. function

f). Clear the content of the driver override file in this directory.

echo > driver override

You can now configure the GPU for use in pass-through mode as explained in Using GPU
Pass-Through on Red Hat Enterprise Linux KVM or Ubuntu.

3.4. Using GPU Pass-Through on
Microsoft Windows Server

On supported versons of Microsoft Windows Server with Hyper-V role, you can use
Discrete Device Assignment (DDA) to enable a VM to access a GPU directly.

3.4.1. Assigning a GPU to a VM on Microsoft
Windows Server with Hyper-V

Perform this task in Windows PowerShell. If you do not know the location path of the GPU
that you want to assign to a VM, use Device Manager to obtain it.

If you are using an actively cooled NVIDIA Quadro graphics card such as the RTX 8000 or
RTX 6000, you must also pass through the audio device on the graphics card.

Ensure that the following prerequisites are met:

» Windows Server with Desktop Experience and the Hyper-V role are installed and
configured on your server platform, and a VM is created.

For instructions, refer to the following articles on the Microsoft technical
documentation site:

Install Server with Desktop Experience

»
» |nstall the Hyper-V role on Windows Server
> Create a virtual switch for Hyper-V virtual machines

> Create a virtual machine in Hyper-V
» The guest OS is installed in the VM.
» The VM is powered off.

1. Obtain the location path of the GPU that you want to assign to a VM.

a). In the device manager, context-click the GPU and from the menu that pops up,
choose Properties.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 91

https://docs.microsoft.com/en-us/windows-server/get-started/getting-started-with-server-with-desktop-experience
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/get-started/install-the-hyper-v-role-on-windows-server
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/get-started/create-a-virtual-switch-for-hyper-v-virtual-machines
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/get-started/create-a-virtual-machine-in-hyper-v

Using GPU Pass-Through

b). In the Properties window that opens, click the Details tab and in the Properties
drop-down list, select Location paths.

An example location path is as follows:
PCTROOT (80) #PCT (0200) #PCT (0000) #PCT (1000) #PCT (0000)

2. If you are using an actively cooled NVIDIA Quadro graphics card, obtain the location
path of the audio device on the graphics card and disable the device.

a). In the device manager, from the View menu, choose Devices by connection.

b). Navigate to ACPI x64-based PC > Microsoft ACPI-Compliant System > PCI
Express Root Complex > PCI-to-PCI Bridge .

c). Context-click High Definition Audio Controller and from the menu that pops up,
choose Properties.

d). In the Properties window that opens, click the Details tab and in the Properties
drop-down list, select Location paths.

e). Context-click High Definition Audio Controller again and from the menu that pops
up, choose Disable device.

3. Dismount the GPU and, if present, the audio device from host to make them
unavailable to the host so that they can be used solely by the VM.

For each device that you are dismounting, type the following command:
Dismount-VMHostAssignableDevice -LocationPath gpu-device-location -force
gpu-device-location

The location path of the GPU or the audio device that you obtained previously.

This example dismounts the GPU at the location path
PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000)#PCI (0000).

Dismount-VMHostAssignableDevice -LocationPath
"PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000)" -force

4. Assign the GPU and, if present, the audio device that you dismounted in the previous
step to the VM.

For each device that you are assigning, type the following command:
Add-VMAssignableDevice -LocationPath gpu-device-location -VMName vm-name
gpu-device-location
The location path of the GPU or the audio device that you dismounted in the
previous step.
vm-name
The name of the VM to which you are attaching the GPU or the audio device.

Note: You can assign a pass-through GPU and, if present, its audio device to only one
virtual machine at a time.

This example assigns the GPU at the location path
PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000) to the VM vM1.

Add-VMAssignableDevice -LocationPath
"PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000)" -VMName VM1l

5. Power on the VM.
The guest OS should now be able to use the GPU and, if present, the audio device.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 92

Using GPU Pass-Through

After assigning a GPU to a VM, install the NVIDIA graphics driver in the guest OS on the
VM as explained in Installing the NVIDIA vGPU Software Graphics Driver.

Perform this task in the Windows PowerShell.

If you are using an actively cooled NVIDIA Quadro graphics card such as the RTX 8000 or
RTX 6000, you must also return the audio device on the graphics card.

1.

List the GPUs and, if present, the audio devices that are currently assigned to the
virtual machine (VM).
Get-VMAssignableDevice -VMName vm-name
vm-name
The name of the VM whose assigned GPUs and audio devices you want to list.

Shut down the VM to which the GPU and any audio devices are assigned.

Remove the GPU and, if present, the audio device from the VM to which they are
assigned.

For each device that you are removing, type the following command:
Remove-VMAssignableDevice -LocationPath gpu-device-location -VMName vm-name
gpu-device-location
The location path of the GPU or the audio device that you are removing, which you
obtained previously.
vm-name
The name of the VM from which you are removing the GPU or the audio device.

This example removes the GPU at the location path
PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000) from the VM vM1.

Remove-VMAssignableDevice -LocationPath
"PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000)" -VMName VM1l

After the GPU and, if present, its audio device are removed from the VM, they are
unavailable to the host operating system (OS) until you remount them on the host OS.

Remount the GPU and, if present, its audio device on the host OS.

For each device that you are remounting, type the following command:

Mount-VMHostAssignableDevice —-LocationPath gpu-device-location

gpu-device-location
The location path of the GPU or the audio device that you are remounting, which
you specified in the previous step to remove the GPU or the audio device from the
VM.

This example remounts the GPU at the location path
PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000) on the host OS.

Mount-VMHostAssignableDevice -LocationPath
"PCIROOT (80) #PCI (0200) #PCI (0000) #PCI (1000) #PCI (0000) "

The host OS should now be able to use the GPU and, if present, its audio device.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 93

3.5.

Using GPU Pass-Through

Using GPU Pass-Through on
VMware vSphere

On VMware vSphere, you can use Virtual Dedicated Graphics Acceleration (vDGA)
to enable a VM to access a GPU directly. vDGA is a feature of VMware vSphere that
dedicates a single physical GPU on an ESXi host to a single virtual machine.

Before configuring a vSphere VM with vDGA, ensure that these prerequisites are met

>

AW =

The VM and the ESXi host are configured as explained in Preparing for vDGA
Capabilities in the VMware Horizon documentation.

The VM is powered off.

Open the vCenter Web Ul.
In the vCenter Web Ul, right-click the ESXi host and choose Configure.
From the Hardware menu, choose PCI Devices.

On the PCI Devices page that opens, click ALL PCI DEVICES and in the table of
devices, select the GPU.

S

Note: When selecting the GPU to pass through, you must select only the physical
device. To list only NVIDIA physical devices, set the filter on the Vendor Name field to
NVIDIA and filter out any virtual function devices of the GPU by setting the filter on
the ID field to 00.0.

— local : ACTIONS

Summary Monitor Configure Permissions VMs Resource Pools Datastores Networks Updates

Swap File Location pc| Devices [m
System v [PASSTHROUGH-ENABLED DEVICES ‘ ALL PCI DEVICES
Licensing
HARDWARE LABEL
Host Profile
Time Configuration [j D @ Passthrough v SR-IOV L 4 Hardware Label Y Vendor Name @ | Device Name
Authentication Services @] Disabled Not Configurab. - NVIDIA Corporati. Tesla M60
Certificate @] “ Enabled Not Configurab.. - NVIDIA Corporati... Tesla M60
Power Management D Disabled Not Configurab... - NVIDIA Corporati... Tesla M60
Advanced System Settings O +=vvvusuwuw Disabled Not Configurab... - NVIDIA Corporati... Tesla M60
System Resource Reservati... [j L0000:DB:00.0 Disabled Disabled - NVIDIA Corporati... NVIDIA A40
Firewall
Services
Security Profile
System Swap m 5 items
Packages
Hardware v
Overview
Graphics
Firmware No items selected

5. Click TOGGLE PASSTHROUGH.
6. Reboot the ESXi host.
7. After the ESXi host has booted, right-click the VM and choose Edit Settings.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 94

https://docs.vmware.com/en/VMware-Horizon-7/7.12/horizon-virtual-desktops/GUID-41547581-2CAC-40D2-AC9F-962E8D649B5E.html
https://docs.vmware.com/en/VMware-Horizon-7/7.12/horizon-virtual-desktops/GUID-41547581-2CAC-40D2-AC9F-962E8D649B5E.html

Using GPU Pass-Through

8. From the New Device menu, choose PCI Device and click Add.

9. On the page that opens, from the New Device drop-down list, select the GPU.
10.Click Reserve all memory and click OK.

11.Start the VM.

For more information about vDGA, see the following topics in the VMware Horizon
documentation:

» Configuring 3D Rendering for Desktops
» Configure RHEL 6 for vDGA

After configuring a vSphere VM with vDGA, install the NVIDIA graphics driver in the guest
OS on the VM as explained in Installing the NVIDIA vGPU Software Graphics Driver.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 95

https://docs.vmware.com/en/VMware-Horizon-7/7.12/horizon-virtual-desktops/GUID-CD8B9D0B-36DC-4C48-82D2-FCE10F71D48F.html
https://docs.vmware.com/en/VMware-Horizon-7/7.12/linux-desktops-setup/GUID-20B2B9C1-690E-4B5C-A7FB-774C7B33BB8C.html

Chapter 4. Installing the NVIDIA vGPU
Software Graphics Driver

The process for installing the NVIDIA vGPU software graphics driver depends on the OS
that you are using. However, for any OS, the process for installing the driver is the same
in a VM configured with vGPU, in a VM that is running pass-through GPU, or on a physical
host in a bare-metal deployment.

After you install the NVIDIA vGPU software graphics driver, you can license any NVIDIA
vGPU software licensed products that you are using.

4.1. Installing the NVIDIA vGPU
Software Graphics Driver and
NVIDIA Control Panel on Windows

To fully enable GPU operation in a VM or on a bare-metal host, the NVIDIA vGPU software
graphics driver must be installed. If the NVIDIA Control Panel app is not installed when
the graphics driver is installed, you can install it separately from the graphics driver.

4.1.1. Installing the NVIDIA vGPU Software
Graphics Driver on Windows

Installation in a VM: After you create a Windows VM on the hypervisor and boot the VM,
the VM should boot to a standard Windows desktop in VGA mode at 800x600 resolution.
You can use the Windows screen resolution control panel to increase the resolution to
other standard resolutions, but to fully enable GPU operation, the NVIDIA vGPU software
graphics driver must be installed. Windows guest VMs are supported on all NVIDIA vGPU
types, namely: Q-series, B-series, and A-series NVIDIA vGPU types.

Installation on bare metal: When the physical host is booted before the NVIDIA vGPU
software graphics driver is installed, boot and the primary display are handled by an
on-board graphics adapter. To install the NVIDIA vGPU software graphics driver, access
the Windows desktop on the host by using a display connected through the on-board
graphics adapter.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 96

Installing the NVIDIA vGPU Software Graphics Driver

The procedure for installing the driver is the same in a VM and on bare metal.

1. Copy the NVIDIA Windows driver package to the guest VM or physical host where you
are installing the driver.

2. Execute the package to unpack and run the driver installer.

Figure 15. NVIDIA driver installation

nwviIDlAa

Installation options

Ophons

A s

3. Click through the license agreement.

4. Select Express Installation and click NEXT.
After the driver installation is complete, the installer may prompt you to restart the
platform.

5. If prompted to restart the platform, do one of the following:
» Select Restart Now to reboot the VM or physical host.

» Exit the installer and reboot the VM or physical host when you are ready.

After the VM or physical host restarts, it boots to a Windows desktop.
6. Verify that the NVIDIA driver is running.
a). Right-click on the desktop.
b). From the menu that opens, choose NVIDIA Control Panel.
c). In the NVIDIA Control Panel, from the Help menu, choose System Information.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 97

Installing the NVIDIA vGPU Software Graphics Driver

NVIDIA Control Panel reports the vGPU or physical GPU that is being used, its
capabilities, and the NVIDIA driver version that is loaded.

Figure 16. Verifying NVIDIA driver operation using NVIDIA
Control Panel

Installation in a VM: After you install the NVIDIA vGPU software graphics driver, you can
license any NVIDIA vGPU software licensed products that you are using. For instructions,
refer to Virtual GPU Client Licensing User Guide.

S Note: The graphics driver for Windows in this release of NVIDIA vGPU software is
distributed in a DCH-compliant package. A DCH-compliant package differs from a driver
package that is not DCH compliant in the following ways:

» The Windows registry key for license settings for a DCH-compliant package is
different than the key for a driver package that is not DCH compliant. If you are
upgrading from a driver package that is not DCH compliant in a VM that was
previously licensed, you must reconfigure the license settings for the VM. Existing
license settings are not propagated to the new Windows registry key for a DCH-
compliant package.

> NVIDIA System Management Interface, nvidia-smi, is installed in a folder that is in
the default executable path.

» The NVWMI binary files are installed in the Windows Driver Store under
$SystemDrive%: \Windows\System32\DriverStore\FileRepository\.

> NVWMI help information in Windows Help format is not installed with graphics driver
for Windows guest OSes.

Installation on bare metal: After you install the NVIDIA vGPU software graphics driver,
complete the bare-metal deployment as explained in Bare-Metal Deployment.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 98

http://docs.nvidia.com/grid/17.0/pdf/grid-licensing-user-guide.pdf

Installing the NVIDIA vGPU Software Graphics Driver

4.1.2. Installing the Standalone NVIDIA Control
Panel App

The NVIDIA Control Panel app is now distributed through the Microsoft Store. If your
system does not allow the installation apps from the Microsoft Store, the NVIDIA Control
Panel app is not installed when the NVIDIA vGPU software graphics driver for Windows is
installed.

Your system might not allow the installation apps from the Microsoft Store for any of the
following reasons:

» The Microsoft Store app is disabled.
» Your system is not connected to the Internet

» Installation of apps from the Microsoft Store is blocked by your system settings.

You can install the NVIDIA Control Panel app separately from the graphics driver by
downloading and running the standalone NVIDIA Control Panel installer that is available
from NVIDIA Licensing Portal.

1. Download and extract the standalone NVIDIA Control Panel installer from NVIDIA
Licensing Portal.

2. Copy the extracted standalone NVIDIA Control Panel installer to the guest VM or
physical host where you are installing the NVIDIA Control Panel app.

3. Double-click the installer executable file to start the installer.

4. When asked if you want to allow the installer app to make changes to your device,
click Yes.

5. Accept the NVIDA software license agreement.
6. Select the Express installation option and click NEXT.

7. When the installation is complete, click CLOSE to close the installer.
The NVIDIA Control Panel app opens.

4.2. Installing the NVIDIA vGPU
Software Graphics Driver on Linux

The NVIDIA vGPU software graphics driver for Linux is distributed as a . run file that can
be installed on all supported Linux distributions. The driver is also distributed as a Debian
package for Ubuntu distributions and as an RPM package for Red Hat distributions.

Installation in a VM: After you create a Linux VM on the hypervisor and boot the VM,
install the NVIDIA vGPU software graphics driver in the VM to fully enable GPU operation.
Linux guest VMs are supported on all NVIDIA vGPU types, namely: Q-series, B-series, and
A-series NVIDIA vGPU types.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 99

Installing the NVIDIA vGPU Software Graphics Driver

Installation on bare metal: When the physical host is booted before the NVIDIA vGPU
software graphics driver is installed, the vesa Xorg driver starts the X server. If a primary
display device is connected to the host, use the device to access the desktop. Otherwise,
use secure shell (SSH) to log in to the host from a remote host.

In addition to the proprietary release of the NVIDIA vGPU software graphics driver for
Linux, a release that is based on NVIDIA Linux open GPU kernel modules is also available.
The release that is based on NVIDIA Linux open GPU kernel modules is compatible with
the following NVIDIA vGPU software deployments:

» NVIDIA vGPU deployments on GPUs that are based on the NVIDIA Ada Lovelace GPU
architecture or later architectures

» Bare-metal deployments on GPUs that are based on the NVIDIA Turing GPU
architecture or later architectures

The release that is based on NVIDIA Linux open GPU kernel modules can be installed only
from the . run file, not from a Debian package or RPM package.

The procedure for installing the driver is the same in a VM and on bare metal.

Before installing the NVIDIA vGPU software graphics driver, ensure that the following
prerequisites are met:

» OpenSSL is installed in the VM. If OpenSSL is not installed, the VM will not be able to
obtain NVIDIA vGPU software licenses.

» NVIDIA Direct Rendering Manager Kernel Modesetting (DRM KMS) is disabled. By
default, DRM KMS is disabled. However, if it has been enabled, remove nvidia-
drm.modeset=1 from the kernel command-line options.

> If the VM uses UEFI boot, ensure that secure boot is disabled.

» If the Nouveau driver for NVIDIA graphics cards is present, disable it. For instructions,
refer to as explained in Disabling the Nouveau Driver for NVIDIA Graphics Cards.

» If you are using a Linux OS for which the Wayland display server protocol is enabled
by default, disable it as explained in Disabling the Wayland Display Server Protocol for
Red Hat Enterprise Linux.

How to install the NVIDIA vGPU softwaregraphics driver on Linux depends on the
distribution format from which you are installing the driver. For detailed instructions, refer
to:

> Installing the NVIDIA vGPU Software Graphics Driver on Linux from a .run File

> Installing the NVIDIA vGPU Software Graphics Driver on Ubuntu from a Debian
Package

» Installing the NVIDIA vGPU Software Graphics Driver on Red Hat Distributions from an
RPM Package

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 100

Installing the NVIDIA vGPU Software Graphics Driver

Installation in a VM: After you install the NVIDIA vGPU software graphics driver, you can
license any NVIDIA vGPU software licensed products that you are using. For instructions,
refer to Virtual GPU Client Licensing User Guide.

Installation on bare metal: After you install the NVIDIA vGPU software graphics driver,
complete the bare-metal deployment as explained in Bare-Metal Deployment.

4.2.1. Installing the NVIDIA vGPU Software
Graphics Driver on Linux from a . run File

You can use the . run file to install the NVIDIA vGPU software graphics driver on any
supported Linux distribution.

Installation of the NVIDIA vGPU software graphics driver for Linux from a . run file
requires:

» Compiler toolchain
> Kernel headers

If a driver has previously been installed on the guest VM or physical host from a Debian
package or RPM package, uninstall that driver before installing the driver from a . run file.

If Dynamic Kernel Module Support (DKMS) is enabled, ensure that the dkms package is
installed.

1. Copy the NVIDIA vGPU software Linux driver package, for example NVIDIA-
Linux x86 64-550.90.07-grid.run, to the guest VM or physical host where you are
installing the driver.

2. Before attempting to run the driver installer, exit the X server and terminate all
OpenGL applications.

» On Red Hat Enterprise Linux and CentOS systems, exit the X server by
transitioning to runlevel 3:
[nvidia@Rlocalhost ~]$ sudo init 3

» On Ubuntu platforms, do the following:
a). Switch to a console login prompt.

» If you have access to the terminal's function keys, press CTRL-ALT-F1.

» If you are accessing the guest VM or physical host through VNC or a web
browser and do not have access to the terminal’'s function keys, run the
chvt command of the OS as root.

[nvidia@localhost ~]$ sudo chvt 3

b). Log in and shut down the display manager:

» For Ubuntu 18 and later releases, stop the gdm service.

[nvidia@localhost ~]$ sudo service gdm stop

» For releases earlier than Ubuntu 18, stop the 1ightdm service.
[nvidia@localhost ~]$ sudo service lightdm stop
3. From a console shell, run the driver installer as the root user.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 101

http://docs.nvidia.com/grid/17.0/pdf/grid-licensing-user-guide.pdf

Installing the NVIDIA vGPU Software Graphics Driver

To install the proprietary release of the driver, run the driver installer without any
additional options.

sudo sh ./NVIDIA-Linux x86 64-550.90.07-grid.run

To install the release that is based on NVIDIA Linux open GPU kernel modules, run
the driver installer with the -m=kernel-open option.

sudo sh ./NVIDIA-Linux x86_ 64-550.90.07-grid.run -m=kernel-open

If DKMS is enabled, set the -dkms option. This option requires the dkms package to be
installed.

sudo sh ./NVIDIA-Linux x86_ 64-550.90.07-grid.run -dkms

In some instances, the installer may fail to detect the installed kernel headers and
sources. In this situation, rerun the installer, specifying the kernel source path with
the --kernel-source-path option.

sudo sh ./NVIDIA-Linux_ x86_64-550.90.07-grid.run \
-kernel-source-path=/usr/src/kernels/3.10.0-229.11.1.el7.x86_64

4. When prompted, accept the option to update the X configuration file (xorg.conf).

Figure 17. Update xorg.conf settings

Would you like to run the nvidia-xconfig utility to automatically update
your X configuration file so that the NVIDIA X driver will be used when you
restart X? Any pre-existing X configuration file will be backed up.

Yes| No

NUIDIA Software Installer for Unixs/Linux www . nvidia.com

5. After the installation is complete, select OK to exit the installer.
6. Verify that the NVIDIA driver is operational.

a). Reboot the system and log in.

b). Run nvidia-settings.

[nvidia@localhost ~]$ nvidia-settings
The NVIDIA X Server Settings dialog box opens to show that the NVIDIA driver is
operational.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 102

Installing the NVIDIA vGPU Software Graphics Driver

4.2.2. Installing the NVIDIA vGPU Software
Graphics Driver on Ubuntu from a Debian
Package

The NVIDIA vGPU software graphics driver for Ubuntu is distributed as a Debian package
file.

This task requires sudo privileges.

1. Copy the NVIDIA vGPU software Linux driver package, for example nvidia-linux-
grid-550 550.90.07 amdé64.deb, to the guest VM where you are installing the driver.

2. Login to the guest VM as a user with sudo privileges.

3. Open a command shell and change to the directory that contains the NVIDIA vGPU
software Linux driver package.

4. From the command shell, run the command to install the package.
$ sudo apt-get install ./nvidia-linux-grid-550_550.90.07_amdé64.deb

5. Verify that the NVIDIA driver is operational.
a). Reboot the system and log in.

b). After the system has rebooted, confirm that you can see your NVIDIA vGPU device
in the output from the nvidia-smi command.

S nvidia-smi

4.2.3. Installing the NVIDIA vGPU Software
Graphics Driver on Red Hat Distributions
from an RPM Package

The NVIDIA vGPU software graphics driver for Red Hat Distributions is distributed as an
RPM package file.
This task requires root user privileges.

1. Copy the NVIDIA vGPU software Linux driver package, for example nvidia-linux-
grid-550 550.90.07 amdé64.rpm, to the guest VM where you are installing the driver.

2. Login to the guest VM as a user with root user privileges.

3. Open a command shell and change to the directory that contains the NVIDIA vGPU
software Linux driver package.

4. From the command shell, run the command to install the package.
$ rpm -iv ./nvidia-linux-grid-550_550.90.07_amdé4.rpm

5. Verify that the NVIDIA driver is operational.
a). Reboot the system and log in.

b). After the system has rebooted, confirm that you can see your NVIDIA vGPU device
in the output from the nvidia-smi command.

$ nvidia-smi

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 103

Installing the NVIDIA vGPU Software Graphics Driver

4.2.4. Disabling the Nouveau Driver for NVIDIA
Graphics Cards

If the Nouveau driver for NVIDIA graphics cards is present, disable it before installing the
NVIDIA vGPU software graphics driver.

S Note: If you are using SUSE Linux Enterprise Server, you can skip this task because the
Nouveau driver is not present in SUSE Linux Enterprise Server.

Run the following command and if the command prints any output, the Nouveau driver is
present and must be disabled.

$ 1lsmod | grep nouveau

1. Create the file /etc/modprobe.d/blacklist-nouveau.conf with the following
contents:

blacklist nouveau
options nouveau modeset=0

2. Regenerate the kernel initial RAM file system (initramfs).

The command to run to regenerate the kernel initramfs depends on the Linux
distribution that you are using.

Linux Distribution Command

CentOS $ sudo dracut --force
Debian $ sudo update-initramfs -u
Red Hat Enterprise Linux $ sudo dracut --force
Ubuntu $ sudo update-initramfs -u

3. Reboot the host or guest VM.

4.2.5. Disabling the Wayland Display Server

Protocol for Red Hat Enterprise Linux

Starting with Red Hat Enterprise Linux Desktop 8.0, the Wayland display server protocol
is used by default on supported GPU and graphics driver configurations. However, the
NVIDIA vGPU software graphics driver for Linux requires the X Window System. Before
installing the driver, you must disable the Wayland display server protocol to revert to the
X Window System.

Perform this task from the host or guest VM that is running Red Hat Enterprise Linux
Desktop.

This task requires administrative access.

1. In a plain text editor, edit the file /etc/gdm/custom.conf and remove the comment
from the option waylandEnable=false.

2. Save your changes to /etc/gdm/custom.conf.
3. Reboot the host or guest VM.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 104

Installing the NVIDIA vGPU Software Graphics Driver

4.2.6. Disabling GSP Firmware

Some GPUs include a GPU System Processor (GSP), which may be used to offload GPU
initialization and management tasks. In GPU pass through and bare-metal deployments
on Linux, GSP is supported only for vCS. If you are using any other product in a GPU pass
through or bare-metal deployment on Linux, you must disable the GSP firmware.

@ Note:

For NVIDIA vGPU deployments on Linux and all NVIDIA vGPU software deployments on
Windows, omit this task.

GSP firmware is supported with NVIDIA vGPU deployments on GPUs that are based

on the NVIDIA Ada Lovelace GPU architecture. For NVIDIA vGPU deployments on Linux
and all NVIDIA vGPU software deployments on Windows on GPUs based on earlier GPU
architectures, GSP is also not supported but GSP firmware is already disabled.

For each NVIDIA vGPU software product, the following table lists whether GSP is
supported in deployments in which GSP firmware can be enabled. The table also
summarizes the behavior of NVIDIA vGPU software if a VM or host requests a license
when GSP firmware is enabled. The deployments in which GSP firmware can be enabled
are GPU pass through and bare-metal deployments on Linux.

Product GSP License Request Error Message
vCS Supported Allowed Not applicable
vApps Not supported Blocked Printed

vWS Not supported Blocked Printed

When a license request is blocked, the following error message is written to the licensing
event log file at the location given in Virtual GPU Client Licensing User Guide:

Invalid feature requested for the underlying GSP firmware configuration.
Disable GSP firmware to use this feature.

Perform this task on the VM to which the GPU is passed through or on the bare-metal
host.

Ensure that the NVIDIA vGPU software graphics driver for Linux is installed on the VM or
bare-metal host.

1. Log in to the VM or bare-metal host and open a command shell.
2. Determine whether GSP firmware is enabled.

$ nvidia-smi -q

» If GSP firmware is enabled, the command displays the GSP firmware version, for
example:
GSP Firmware Version : 550.90.07

» Otherwise, the command displays N/a as the GSP firmware version.

3. If GSP firmware is enabled, disable it by setting the NVIDIA module parameter
NVreg EnableGpuFirmware tO 0.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 105

http://docs.nvidia.com/grid/17.0/pdf/grid-licensing-user-guide.pdf

Installing the NVIDIA vGPU Software Graphics Driver

Set this parameter by adding the following entry to the /etc/modprobe.d/

nvidia.conf file:

options nvidia NVreg EnableGpuFirmware=0

If the /etc/modprobe.d/nvidia.conf file does not already exist, create it.
4. Reboot the VM or bare-metal host.

If you later need to enable GSP firmware, set the NVIDIA module parameter
NVreg EnableGpuFirmware tO 1.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 106

Chapter 5. Licensing an NVIDIA vGPU

NVIDIA vGPU is a licensed product. When booted on a supported GPU, a vGPU initially
operates at full capability but its performance is degraded over time if the VM fails to
obtain a license. If the performance of a vGPU has been degraded, the full capability
of the vGPU is restored when a license is acquired. For information about how the
performance of an unlicensed vGPU is degraded, see Virtual GPU Client Licensing User
Guide.

After you license NVIDIA vGPU, the VM that is set up to use NVIDIA vGPU is capable of
running the full range of DirectX and OpenGL graphics applications.

If licensing is configured, the virtual machine (VM) obtains a license from the license
server when a vGPU is booted on these GPUs. The VM retains the license until it is shut
down. It then releases the license back to the license server. Licensing settings persist
across reboots and need only be modified if the license server address changes, or the
VM is switched to running GPU pass through.

Note: For complete information about configuring and using NVIDIA vGPU software
licensed features, including vGPU, refer to Virtual GPU Client Licensing User Guide.

5.1. Prerequisites for Configuring a
Licensed Client of NVIDIA License
System

A client with a network connection obtains a license by leasing it from a NVIDIA License
System service instance. The service instance serves the license to the client over the
network from a pool of floating licenses obtained from the NVIDIA Licensing Portal. The
license is returned to the service instance when the licensed client no longer requires the
license.

Before configuring a licensed client, ensure that the following prerequisites are met:
» The NVIDIA vGPU software graphics driver is installed on the client.

» The client configuration token that you want to deploy on the client has been created
from the NVIDIA Licensing Portal or the DLS as explained in NVIDIA License System
User Guide.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 107

http://docs.nvidia.com/grid/17.0/pdf/grid-licensing-user-guide.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-licensing-user-guide.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-licensing-user-guide.pdf
http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf
http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf

Licensing an NVIDIA vGPU

» Ports 443 and 80 in your firewall or proxy must be open to allow HTTPS traffic
between a service instance and its the licensed clients. These ports must be open for
both CLS instances and DLS instances.

Note: For DLS releases before DLS 1.1, ports 8081 and 8082 were also required to be
open to allow HTTPS traffic between a DLS instance and its licensed clients. Although
these ports are no longer required, they remain supported for backward compatibility.

The graphics driver creates a default location in which to store the client configuration
token on the client.

The process for configuring a licensed client is the same for CLS and DLS instances but
depends on the OS that is running on the client.

5.2. Configuring a Licensed Client on
Windows with Default Settings

Perform this task from the client.

1. Copy the client configuration token to the $SystembDrive%:\Program Files\NVIDIA
Corporation\vGPU Licensing\ClientConfigToken folder.

2. Restart the NvDisplayContainer Service.

The NVIDIA service on the client should now automatically obtain a license from the CLS
or DLS instance.

5.3. Configuring a Licensed Client on
Linux with Default Settings

Perform this task from the client.

1. As root, open the file /etc/nvidia/gridd.conf in a plain-text editor, such as vi.

S sudo vi /etc/nvidia/gridd.conf

Note: You can create the /etc/nvidia/gridd.conf file by copying the supplied
template file /etc/nvidia/gridd.conf.template.

2. Add the FeatureType configuration parameter to the file /etc/nvidia/gridd.conf
on a new line as reatureType="value".

value depends on the type of the GPU assigned to the licensed client that you are

configuring.
GPU Type Value
NVIDIA vGPU 1. NVIDIA vGPU software automatically selects the

correct type of license based on the vGPU type.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 108

Licensing an NVIDIA vGPU

GPU Type Value

Physical GPU The feature type of a GPU in pass-through mode or a
bare-metal deployment:

» O: NVIDIA Virtual Applications
» 2:NVIDIA RTX Virtual Workstation

S Note: You can also perform this step from NVIDIA X Server Settings. Before using
NVIDIA X Server Settings to perform this step, ensure that this option has been
enabled as explained in Virtual GPU Client Licensing User Guide.

This example shows how to configure a licensed Linux client for NVIDIA RTX Virtual

Workstation.

/etc/nvidia/gridd.conf.template - Configuration file for NVIDIA Grid Daemon
Description: Set Feature to be enabled

Data type: integer

Possible values:

0 => for unlicensed state

1 => for NVIDIA vGPU

2 => for NVIDIA RTX Virtual Workstation

#
F

4 => for NVIDIA Virtual Compute Server
eatureType=2

3. Copy the client configuration token to the /etc/nvidia/ClientConfigToken
directory.

4. Ensure that the file access modes of the client configuration token allow the owner to
read, write, and execute the token, and the group and others only to read the token.
a). Determine the current file access modes of the client configuration token.

1ls -1 client-configuration-token-directory

b). If necessary, change the mode of the client configuration token to 744.
chmod 744 client-configuration-token-directory/client configuration_token *.tok
client-configuration-token-directory

The directory to which you copied the client configuration token in the previous
step.

5. Save your changes to the /etc/nvidia/gridd.conf file and close the file.
6. Restart the nvidia-gridd service.

The NVIDIA service on the client should now automatically obtain a license from the CLS
or DLS instance.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 109

http://docs.nvidia.com/grid/17.0/pdf/grid-licensing-user-guide.pdf

Licensing an NVIDIA vGPU

5.4. Verifying the NVIDIA vGPU
Software License Status of a

Licensed Client

After configuring a client with an NVIDIA vGPU software license, verify the license status
by displaying the licensed product name and status.

To verify the license status of a licensed client, run nvidia-smi with the -q or --query
optionfrom the licensed client, not the hypervisor host. If the product is licensed, the

expiration date is shown in the license status.

nvidia-smi -gq

NVSMI LOG

Timestamp
Driver Version
CUDA Version

Attached GPUs
GPU 00000000:02:03.0
Product Name
Product Brand
Product Architecture
Display Mode
Display Active
Persistence Mode
MIG Mode
Current
Pending
Accounting Mode
Accounting Mode Buffer Size
Driver Model
Current
Pending
Serial Number
GPU UUID
Minor Number
VBIOS Version
MultiGPU Board
Board ID
Board Part Number
GPU Part Number
Module ID
Inforom Version
Image Version
OEM Object
ECC Object
Power Management Object
GPU Operation Mode
Current
Pending
GSP Firmware Version
GPU Virtualization Mode
Virtualization Mode
Host VGPU Mode
vGPU Software Licensed Product
Product Name
License Status
GMT)

Virtual GPU Software

Wed Nov 23 10:52:589 2022
525.60.06
12.0

2

NVIDIA A2-8Q
NVIDIA RTX Virtual Workstation

: Ampere

Enabled
Disabled
Enabled

Disabled
Disabled
Disabled
4000

N/A

N/A

N/A
GPU-ba5bleSb-1dd3-11b2-bedf-98e£f552£f4216
0
00.00.00.00.00
No

0x203

N/A
25B6-890-Al1
N/A

N/A
N/A
N/A
N/A

N/A
N/A
N/A

: VGPU

N/A

: NVIDIA RTX Virtual Workstation

Licensed (Expiry: 2022-11-23 10:41:16

DU-06920-001 _v17.0 through 17.2 | 110

Licensing an NVIDIA vGPU

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 111

Chapter 6. Modifying a VM's NVIDIA
vGPU Configuration

You can modify a VM's NVIDIA vGPU configuration by removing the NVIDIA vGPU
configuration from a VM or by modifying GPU allocation policy.

6.1. Removing a VM’'s NVIDIA vGPU
Configuration

Remove a VM'’s NVIDIA vGPU configuration when you no longer require the VM to use a
virtual GPU.

6.1.1. Removing a Citrix Virtual Apps and
Desktops VM’s vGPU configuration

You can remove a virtual GPU assignment from a VM, such that it no longer uses a virtual
GPU, by using either XenCenter or the xe command.

Note: The VM must be in the powered-off state in order for its vGPU configuration to be
modified or removed.
6.1.1.1. Removing a VM’s vGPU configuration by using

XenCenter

1. Set the GPU type to None in the VM’s GPU Properties, as shown in Figure 18.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 112

Modifying a VM's NVIDIA vGPU Configuration

Figure 18. Using XenCenter to remove a vGPU configuration from a
VM

o XenCenter El@

File View Pool Server VM Storage Templates Tools Help
6 Back - O Forward - @ Add New Server New Pool T8 New Storage ﬁ New VM @ Start _\5 Reboot \) Suspend

;r;;x €3 Rs1-Server-RTM (1 Properties [e s
en
EIEE = General
q = Custom Fields
g T« None> You can improve graphics performance by assigning a virtual graphics processing unit to this
g | U se all
% 2vCPUGE)
@ Boot Options GPUtype: | None
EY Boot order: DVD-Drive, Hard...
B B Start Options Hong "
@ HA is not available on stand... NVIDIA Corporation GM204GL [Tesla M60] GPUs
Alerts Pass-through whole GPU
= None defined GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays)
B Home Server GRID M60-8A virtual GPU (1 per GPU, 1280x1024, 1 display)
None defined GRID M60-4Q virtual GPU (2 per GPU, 4096x2160, 4 displays)
== GPU GRID M60-4A virtual GPU (2 per GPU, 1280x1024, 1 display)
None GRID M60-2Q virtual GPU (4 per GPU, 4096x2160, 4 displays)
#, Advanced Options GRID M60-2A virtual GPU (4 per GPU, 1280x1024, 1 display)
Optimize for general use GRID M60-1Q virtual GPU (8 per GPU, 4096x2160, 2 displays)
GRID M60-1B virtual GPU (8 per GPU, 2560x1600, 4 displays)
GRID M60-1A virtual GPU (8 per GPU, 1280x1024, 1 display)
GRID M60-0Q virtual GPU (16 per GPU, 2560x1600, 2 displays)
GRID M60-0B virtual GPU (16 per GPU, 2560x1600, 2 displays)
4
ﬁ Infrasi
i Objed
rT—i Orgar|
O, saved
& o
2. Click OK.

6.1.1.2. Removing a VM'’s vGPU configuration by using

Xe

1. Use vgpu-1ist to discover the vGPU object UUID associated with a given VM:

[root@xenserver ~]# xe vgpu-list vm-uuid=e7lafda4-53f4-3alb-6c92-a364a7£619c2
uuid (RO) : clc7c43d-4c99-af76-5051-119f1c2b4188
vm-uuid (RO): e7lafdad4-53f4-3alb-6c92-a364a7f619c2
gpu-group-uuid (RO): d53526a9-3656-5c88-890b-5b24144c3d96

2. Use vgpu-destroy to delete the virtual GPU object associated with the VM:

[root@xenserver ~]# xe vgpu-destroy uuid=clc7c43d-4c99-af76-5051-119f1c2b4188
[root@xenserver ~]#

6.1.2. Removing a vSphere VM’s vGPU
Configuration

To remove a vSphere vGPU configuration from a VM:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 113

Modifying a VM's NVIDIA vGPU Configuration

1. Select Edit settings after right-clicking on the VM in the vCenter Web UL

2. Select the Virtual Hardware tab.

3. Mouse over the PCI Device entry showing NVIDIA GRID vGPU and click on the (X) icon
to mark the device for removal.

4. Click OK to remove the device and update the VM settings.

6.2. Modifying GPU Allocation Policy

Citrix Hypervisor and VMware vSphere both support the breadth first and depth-first GPU

allocation policies for vGPU-enabled VMs.

breadth-first
The breadth-first allocation policy attempts to minimize the number of vGPUs running
on each physical GPU. Newly created vGPUs are placed on the physical GPU that can
support the new vGPU and that has the fewest vGPUs already resident on it. This
policy generally leads to higher performance because it attempts to minimize sharing
of physical GPUs, but it may artificially limit the total number of vGPUs that can run.

depth-first
The depth-first allocation policy attempts to maximize the number of vGPUs running
on each physical GPU. Newly created vGPUs are placed on the physical GPU that can
support the new vGPU and that has the most vGPUs already resident on it. This policy
generally leads to higher density of vGPUs, particularly when different types of vGPUs
are being run, but may result in lower performance because it attempts to maximize
sharing of physical GPUs.

Each hypervisor uses a different GPU allocation policy by default.
» Citrix Hypervisor uses the depth-first allocation policy.
» VMware vSphere ESXi uses the breadth-first allocation policy.

If the default GPU allocation policy does not meet your requirements for performance or
density of vGPUs, you can change it.

6.2.1. Modifying GPU Allocation Policy on Citrix
Hypervisor

You can modify GPU allocation policy on Citrix Hypervisor by using XenCenter or the xe
command.

6.2.1.1. Modifying GPU Allocation Policy by Using xe

The allocation policy of a GPU group is stored in the allocation-algorithm parameter of
the gpu-group object.

To change the allocation policy of a GPU group, use gpu-group-param-set:

[root@xenserver ~]# xe gpu-group-param-get uuid=be825ba2-01d7-8d51-9780-£f82cfaa64924 param-

name=allocation-algorithmdepth-first
[root@xenserver ~]# xe gpu-group-param-set uuid=be825ba2-01d7-8d51-9780-£82cfaa64924

allocation-algorithm=breadth-first

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 114

Modifying a VM's NVIDIA vGPU Configuration

[root@xenserver ~]#

6.2.1.2. Modifying GPU Allocation Policy GPU by Using
XenCenter

You can modify GPU allocation policy from the GPU tab in XenCenter.

Figure 19. Modifying GPU placement policy in XenCenter

°Xen0entar ‘.‘:' = B |

File View Pool Server VM Storage Templates Tools Window Help

e Back - Q Forward - @ Add New Server New Pool @ Mew Storage E New VM @ Shut Down % Reboot u Suspend V Mo System Alerts

Views: [SEIVEI View '] E xenserver-vgx-test (VM IPs 10.31.223.0-49, dom0 .96, OOB .97) Logged in as: Local root account |

Search... -o Search GenemllMemmy Storage | Metworking | NICs GPU Console | Performance | Users | Logs

=] 6 KenCenter

EY Y enserver-vox-test (VM IPs 10.31.7 GPU

@ dx-base-image-win7-64 XDT t

@ vgx-base-image-win7-32 Placement policy: Maximurm density: put as many VMs as possible on the same GPU
@ vgx-base-image-win/-64

s n
5 DVD drives 6 'xenserver-vgx-test (VM IPs 10.31.223.0-49, dom0 96, OOB .97)' Properties — B

g Local storage

g Removable st
5 VM storage General i GPU
= EI\} xenserver-vgx-tes xenserver-vgx-test (VM IPs ..

@ cadalyst-win: = Custom Fields Set a placement policy for assigning VMs to GPUs to achieve either maximum density or maximum performance.
@ Copy of cadal =Mene>
@ dx-baze-ima s Alerts @ Maximum density: put as many VMs as possible on the same GPU
@ che base-img Hene defined) Maximum performance: put VMs on as many GPLUs as possible
[nvwmi-test-uy Email Options
[Oleg MvwWMI|, None defined
%:gxi:a“jm i g Multipathing
rnase !m i Not active
@ vgx-base-imal)|
[@ vor-base-imd)| | @ Power On
[win7-6d-test] | <Mone>
[DVD drives [, Log Destination
Local storage Local
EINFSTSO0 libral | | e GPU

% Remavable stf| Maximum density
@ VM Storage
E acurrid-testl

6.2.2. Modifying GPU Allocation Policy on
VMware vSphere

Before using the vSphere Web Client to change the allocation scheme, ensure that the
ESXi host is running and that all VMs on the host are powered off.

1. Log in to vCenter Server by using the vSphere Web Client.
2. In the navigation tree, select your ESXi host and click the Configure tab.
3. From the menu, choose Graphics and then click the Host Graphics tab.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 115

Modifying a VM's NVIDIA vGPU Configuration

4. On the Host Graphics tab, click Edit.

Figure 20. Breadth-first allocation scheme setting for vGPU-
enabled VMs

vmware® vSphere Web Client #= U | Administrator@PSG-HOME.LOCAL ~ | Help ~
Navigator X [3 192.168.11.30 | B [[[0y [| {ShActons ~ ="
4 Back Getting Started Summary Monitor | Configure | Permissions VMs Resource Pools Datastores Networks

g 8

[192.168.11.6 “ Host Graphics | Graphics Devices

Advanced -

+ [}z home Host Graphics Settings
w Virtual Machines

» [192.168.11.20

g 192.168.11.30 VM Startup/Shutdown Default graphics type: Shared

Agent VM Settings Shared passthrough GPU Spread VMs across GPUs (best performance)
assignment policy:

Swap file location
Default VM Compatibility

w System
Licensing
Time Configuration
Authentication Services
Certificate
Power Management
Advanced System Settings
System Resource Reservation
Security Profile
System Swap
Host Profile

+ Hardware
Processors
Memory

Lesim

Power Management
PCI Devices

w Virtual Flash v
< :: >

< i »

5. In the Edit Host Graphics Settings dialog box that opens, select these options and
click OK.

a). If not already selected, select Shared Direct.
b). Select Group VMs on GPU until full.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 116

Modifying a VM's NVIDIA vGPU Configuration

Figure 21. Host graphics settings for vGPU

[J 192.168.11.30 - Edit Host Graphics Settings 2

,ﬂ, Settings will take effect after restarting the host or "xorg" service.

(L) Shared
VMware shared virtual graphics

(®) Shared Direct
Vendor shared passthrough graphics

Shared passthrough GPU assignment policy:
(_) Spread VMs across GPUs (best performance)

(¢) Group VMs on GPU until full (GPU consolidation)

OK] [Cancel

\ i1

After you click OK, the default graphics type changes to Shared Direct and the
allocation scheme for vGPU-enabled VMs is breadth-first.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 117

Modifying a VM's NVIDIA vGPU Configuration

Figure 22. Depth-first allocation scheme setting for vGPU-enabled

VMs
vmware® vSphere Web Client fi= U | Administrator@PSG-HOME.LOCAL ~ | Help ~
L
Navigator X [1e2168.11.30 | B % [[[| {SActions - =-
4 Back Getting Started Summary Monitor | Configure | Permissions VMs Resource Pools Datastores Networks
o 8

[192.168.11.6 “ Host Graphics | Graphics Devices

w Storage -

~ [z home Host Graphics Settings -.m
Storage Adapters

» [3192.168.11.20

B 192.168.11.30 Storage Devices PRI e Shared Direct

Datastores Shared passthrough GPU Group VMs on GPU until full (GPU consolidation)
assignment policy:

Host Cache Configuration
Protocol Endpoints
+ Networking
Virtual switches
VMkernel adapters
Physical adapters
TCP/IP configuration
Advanced
w Virtual Machines
VM Startup/Shutdown
Agent VM Settings
Swap file location
Default VM Compatibility
System

4

Licensing

Time Configuration
Authentication Services
Certificate

Power Management

Advanced System Settings =

>

6. Restart the ESXi host or the Xorg service on the host.
See also the following topics in the VMware vSphere documentation:

» Login to vCenter Server by Using the vSphere Web Client

» Configuring Host Graphics

6.3. Migrating a VM Configured with
vGPU

On some hypervisors, NVIDIA vGPU software supports migration of VMs that are
configured with vGPU.

Before migrating a VM configured with vGPU, ensure that the following prerequisites are
met:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 118

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-CE128B59-E236-45FF-9976-D134DADC8178.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-E0862AED-BF69-4C85-A811-EEE626F63B48.html

Modifying a VM's NVIDIA vGPU Configuration

The VM is configured with vGPU.
The VM is running.
The VM obtained a suitable vGPU license when it was booted.

vV vV v Vv

The destination host has a physical GPU of the same type as the GPU where the vGPU
currently resides.

» ECC memory configuration (enabled or disabled) on both the source and destination
hosts must be identical.

» The GPU topologies (including NVLink widths) on both the source and destination
hosts must be identical.

S Note:
vGPU migration is disabled for a VM for which any of the following NVIDIA CUDA Toolkit

features is enabled:
» Unified memory
» Debuggers

» Profilers

How to migrate a VM configured with vGPU depends on the hypervisor that you are using.
After migration, the vGPU type of the vGPU remains unchanged.

The time required for migration depends on the amount of frame buffer that the vGPU
has. Migration for a vGPU with a large amount of frame buffer is slower than for a vGPU
with a small amount of frame buffer.

6.3.1. Migrating a VM Configured with vGPU on
Citrix Hypervisor

NVIDIA vGPU software supports XenMotion for VMs that are configured with vGPU.
XenMotion enables you to move a running virtual machine from one physical host
machine to another host with very little disruption or downtime. For a VM that is
configured with vGPU, the vGPU is migrated with the VM to an NVIDIA GPU on the other
host. The NVIDIA GPUs on both host machines must be of the same type.

For details about which Citrix Hypervisor versions, NVIDIA GPUs, and guest OS releases
support XenMotion with vGPU, see Virtual GPU Software for Citrix Hypervisor Release
Notes.

For best performance, the physical hosts should be configured to use the following:
» Shared storage, such as NFS, iSCSI, or Fiberchannel

If shared storage is not used, migration can take a very long time because vDISK must
also be migrated.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 119

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-citrix-xenserver.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-citrix-xenserver.pdf

Modifying a VM's NVIDIA vGPU Configuration

» 10 GB networking.

1. In Citrix XenCenter, context-click the VM and from the menu that opens, choose
Migrate.

2. From the list of available hosts, select the destination host to which you want to
migrate the VM.

The destination host must have a physical GPU of the same type as the GPU where
the vGPU currently resides. Furthermore, the physical GPU must be capable of hosting
the vGPU. If these requirements are not met, no available hosts are listed.

6.3.2. Since 17.2: Migrating a VM Configured with
vGPU on a Linux with KVM Hypervisor

NVIDIA vGPU software supports vGPU Migration for VMs that are configured with
vGPU. vGPU Migration enables you to move a running virtual machine from one physical
host machine to another host with very little disruption or downtime. For a VM that is
configured with vGPU, the vGPU is migrated with the VM to an NVIDIA GPU on the other
host. The NVIDIA GPUs on both host machines must be of the same type.

NVIDIA vGPU software supports the following Linux with KVM hypervisors: Red Hat
Enterprise Linux with KVM and Ubuntu.

For details about which Linux with KVM hypervisor versions, NVIDIA GPUs, and guest OS
releases support vGPU Migration, refer to the following documentation:

» Virtual GPU Software for Red Hat Enterprise Linux with KVM Release Notes
> Virtual GPU Software for Ubuntu Release Notes

Perform this task in a Linux command shell on the Linux with KVM hypervisor host on
which the VM to be migrated is running.

Before migrating a VM configured with vGPU on a Linux with KVM hypervisor, ensure that
the prerequisites listed for all supported hypervisors in Migrating a VM Configured with
vGPU are met.

Run the following virsh migrate command:

virsh migrate --live vm-name destination-url \
--tunnelled --unsafe --p2p --verbose

vm-name
The name of the VM on the local host that you want to migrate.

destination-url
The URL of the connection to the remote host to which you want to migrate the
VM. For example, to migrate the VM to the system connection of the remote host
at IP v4 address 192.0.2.12 by using an SSH tunnel, specify destination-url as gemu
+ssh://root@192.0.2.12/system.

This example uses an SSH tunnel to migrate the VM named guestvm on the local host
to the system connection of the remote host at IP v4 address 192.0.2.12.

virsh migrate --live guestvm gemu+ssh://root@192.0.2.12/system \
--tunnelled --unsafe --p2p --verbose

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 120

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-red-hat-el-kvm.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-ubuntu.pdf

Modifying a VM's NVIDIA vGPU Configuration

For more information, refer to Migrating virtual machines in the product documentation
for Red Hat Enterprise Linux 9.

6.3.3. Since 17.2: Suspending and Resuming a
VM Configured with vGPU on a Linux with
KVM Hypervisor

NVIDIA vGPU software supports suspend and resume for VMs that are configured with
vGPU.

NVIDIA vGPU software supports the following Linux with KVM hypervisors: Red Hat
Enterprise Linux with KVM and Ubuntu.

For details about which Linux with KVM hypervisor versions, NVIDIA GPUs, and guest OS
releases support suspend and resume, refer to the following documentation:

> Virtual GPU Software for Red Hat Enterprise Linux with KVM Release Notes
> Virtual GPU Software for Ubuntu Release Notes

Perform this task in a Linux command shell on the Linux with KVM hypervisor host on
which the VM to be suspended is running or on which the VM to be resumed will run.

> To suspend a VM, use the virsh save command to save the state of the VM to a file.
virsh save vm-name vm-state-file
vm-name

The name of the VM on the local host that you want to suspend.
vm-state-file
The name of the file to which you want to save the state of the VM.

This example suspends the VM named guestvm on the local host to by saving its state
to the file guestvm-state.save.
virsh save guestvm guestvm-state.save

» Toresume a VM, use the virsh restore command to restore the VM from a file to
which the state of the VM has previously been saved.

virsh restore vm-state-file
vm-state-file

The name of the file to which the state of the VM has previously been saved..

This example resumes the VM named guestvm on the local host to by restoring its
state from the file guestvm-state.save.

virsh restore guestvm-state.save

6.3.4. Migrating a VM Configured with vGPU on
VMware vSphere

NVIDIA vGPU software supports VMware vMotion for VMs that are configured with
vGPU. VMware vMotion enables you to move a running virtual machine from one physical

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 121

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/migrating-virtual-machines_configuring-and-managing-virtualization
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-red-hat-el-kvm.pdf
http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-ubuntu.pdf

Modifying a VM's NVIDIA vGPU Configuration

host machine to another host with very little disruption or downtime. For a VM that is
configured with vGPU, the vGPU is migrated with the VM to an NVIDIA GPU on the other
host. The NVIDIA GPUs on both host machines must be of the same type.

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support suspend and resume, see Virtual GPU Software for VMware vSphere Release Notes.

Perform this task in the VMware vSphere web client by using the Migration wizard.
Before migrating a VM configured with vGPU on VMware vSphere, ensure that the
following prerequisites are met:

» Your hosts are correctly configured for VMware vMotion. See Host Configuration for
vMotion in the VMware documentation.

» The prerequisites listed for all supported hypervisors in Migrating a VM Configured
with vGPU are met.

» NVIDIA vGPU migration is configured. See Configuring VMware vMotion with vGPU for
VMware vSphere.

1. Context-click the VM and from the menu that opens, choose Migrate.
2. For the type of migration, select Change compute resource only and click Next.

If you select Change both compute resource and storage, the time required for the
migration increases.

3. Select the destination host and click Next.

The destination host must have a physical GPU of the same type as the GPU where
the vGPU currently resides. Furthermore, the physical GPU must be capable of hosting
the vGPU. If these requirements are not met, no available hosts are listed.

4. Select the destination network and click Next.
5. Select the migration priority level and click Next.
6. Review your selections and click Finish.

For more information, see the following topics in the VMware documentation:

» Migrate a Virtual Machine to a New Compute Resource
» Using vMotion to Migrate vGPU Virtual Machines

If NVIDIA vGPU migration is not configured, any attempt to migrate a VM with an NVIDIA
vGPU fails and a window containing the following error message is displayed:

Compatibility Issue/Host

Migration was temporarily disabled due to another
migration activity.

vGPU hot migration is not enabled.

The window appears as follows:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 122

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-30FAA00F-D5F3-475D-820E-5D45517AC18E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-30FAA00F-D5F3-475D-820E-5D45517AC18E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-6068ECD7-E3FA-4155-A326-D996BDBDF00C.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-8FE6A0DA-49E9-472B-815B-D630CF2014AD.html

Modifying a VM's NVIDIA vGPU Configuration

Compatibility Issue / Host

@ Migration was temporarily disabled due to another
nigration activity
vGPU hot migration is not enabled

If you see this error, configure NVIDIA vGPU migration as explained in Configuring
VMware vMotion with vGPU for VMware vSphere.

If your version of VMware vSpehere ESXi does not support vMotion for VMs configured
with NVIDIA vGPU, any attempt to migrate a VM with an NVIDIA vGPU fails and a window
containing the following error message is displayed:

Compatibility Issues

A required migration feature is not supported on the "Source" host 'host-name'.

A warning or error occurred when migrating the virtual machine.

Virtual machine relocation, or power on after relocation or cloning can fail if

vGPU resources are not available on the destination host.

The window appears as follows:

Compatibility I1ssues

B n\Vidia-060
@ poc 2 hp.providence.org

& A required migration feature is not supported on the "Source” host
'‘poc 1 hp.providence.org'.

& Awarning or error occurred when migrating the virtual machine.
Virtual machine relocation, or power on after relocation or cloning can fail if
wGPU resources are not available on the destination host.

Close

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support suspend and resume, see Virtual GPU Software for VMware vSphere Release Notes.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 123

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf

Modifying a VM's NVIDIA vGPU Configuration

6.3.5. Suspending and Resuming a VM
Configured with vGPU on VMware vSphere

NVIDIA vGPU software supports suspend and resume for VMs that are configured with
vGPU.

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support suspend and resume, see Virtual GPU Software for VMware vSphere Release Notes.

Perform this task in the VMware vSphere web client.

» To suspend a VM, context-click the VM that you want to suspend, and from the
context menu that pops up, choose Power > Suspend .

> Toresume a VM, context-click the VM that you want to resume, and from the context
menu that pops up, choose Power > Power On .

6.4. Enabling Unified Memory for a
vGPU

Unified memory is disabled by default. If used, you must enable unified memory
individually for each vGPU that requires it by setting a vGPU plugin parameter. How to
enable unified memory for a vGPU depends on the hypervisor that you are using.

6.4.1. Enabling Unified Memory for a vGPU on
Citrix Hypervisor

On Citrix Hypervisor, enable unified memory by setting the enable_uvm vGPU plugin
parameter.
Perform this task for each vGPU that requires unified memory by using the xe command.

Set the enable_uvm VGPU plugin parameter for the vGPU to 1 as explained in Setting
vGPU Plugin Parameters on Citrix Hypervisor.

This example enables unified memory for the vGPU that has the UUID
dl15083£8-5¢c59-7474-d0cb-fbc3£f7284f1b.

[root@xenserver ~] xe vgpu-param-set uuid=d15083£8-5c59-7474-d0cb-fbc3£7284f1b
extra args='enable uvm=1'

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 124

http://docs.nvidia.com/grid/17.0/pdf/grid-vgpu-release-notes-vmware-vsphere.pdf

Modifying a VM's NVIDIA vGPU Configuration

6.4.2. Enabling Unified Memory for a vGPU on
Red Hat Enterprise Linux KVM

On Red Hat Enterprise Linux KVM, enable unified memory by setting the enable uvm
vGPU plugin parameter. B
Ensure that the mdev device file that represents the vGPU has been created as explained
in Creating an NVIDIA vGPU on a Linux with KVM Hypervisor.

Perform this task for each vGPU that requires unified memory.

Set the enable_uvm VGPU plugin parameter for the mdev device file that represents

the vGPU to 1 as explained in Setting vGPU Plugin Parameters on a Linux with KVM

Hypervisor.

6.4.3. Enabling Unified Memory for a vGPU on
VMware vSphere

On VMware vSphere, enable unified memory by setting the pciPassthruvgpu-
id.cfg.enable_uvm configuration parameter in advanced VM attributes.

Ensure that the VM to which the vGPU is assigned is powered off.

Perform this task in the vSphere Client for each vGPU that requires unified memory.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_uvm VGPU plugin
parameter for the vGPU to 1 as explained in Setting vGPU Plugin Parameters on VMware
vSphere.
vgpu-id
A positive integer that identifies the vGPU assigned to a VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you
are enabling unified memory for both vGPUs, set pciPassthru0.cfg.enable_uvmand
pciPassthrul.cfg.enable uvmto I.

6.5. Enabling NVIDIA CUDA Toolkit
Development Tools for NVIDIA
vGPU

By default, NVIDIA CUDA Toolkit development tools are disabled on NVIDIA vGPU. If
used, you must enable NVIDIA CUDA Toolkit development tools individually for each VM
that requires them by setting vGPU plugin parameters. One parameter must be set for
enabling NVIDIA CUDA Toolkit debuggers and a different parameter must be set for
enabling NVIDIA CUDA Toolkit profilers.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 125

Modifying a VM's NVIDIA vGPU Configuration

6.5.1. Enabling NVIDIA CUDA Toolkit Debuggers
for NVIDIA vGPU

By default, NVIDIA CUDA Toolkit debuggers are disabled. If used, you must enable them
for each vGPU VM that requires them by setting a vGPU plugin parameter. How to set

the parameter to enable NVIDIA CUDA Toolkit debuggers for a vGPU VM depends on the
hypervisor that you are using.

You can enable NVIDIA CUDA Toolkit debuggers for any number of VMs configured with
vGPUs on the same GPU. When NVIDIA CUDA Toolkit debuggers are enabled for a VM, the
VM cannot be migrated.

Perform this task for each VM for which you want to enable NVIDIA CUDA Toolkit
debuggers.

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on Citrix
Hypervisor

Set the enable_debugging VGPU plugin parameter for the vGPU that is assigned to the
VM to 1 as explained in Setting vGPU Plugin Parameters on Citrix Hypervisor.

This example enables NVIDIA CUDA Toolkit debuggers for the vGPU that has the UUID
dl15083£8-5¢c59-7474-d0cb-fbc3£7284f1b.

[root@xenserver ~] xe vgpu-param-set uuid=d15083£8-5c59-7474-d0cb-fbc3£7284f1b
extra args='enable debugging=1'

The setting of this parameter is preserved after a guest VM is restarted and after the
hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on Red Hat
Enterprise Linux KVM
Set the enable_debugging VGPU plugin parameter for the mdev device file that

represents the vGPU that is assigned to the VM to 1 as explained in Setting vGPU Plugin
Parameters on a Linux with KVM Hypervisor.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on on VMware
vSphere

Ensure that the VM for which you want to enable NVIDIA CUDA Toolkit debuggers is
powered off.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_debugging VGPU
plugin parameter for the vGPU that is assigned to the VM to 1 as explained in Setting
vGPU Plugin Parameters on VMware vSphere.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 126

Modifying a VM's NVIDIA vGPU Configuration

vgpu-id
A positive integer that identifies the vGPU assigned to the VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you
are enabling debuggers for both vGPUs, set pciPassthru0.cfg.enable debugging
and pciPassthrul.cfg. enable_debugging to 1.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

6.5.2. Enabling NVIDIA CUDA Toolkit Profilers for
NVIDIA vGPU

By default, only GPU workload trace is enabled. If you want to use all NVIDIA CUDA Toolkit
profiler features that NVIDIA vGPU supports, you must enable them for each vGPU VM
that requires them.

S Note: Enabling profiling for a VM gives the VM access to the GPU’s global performance
counters, which may include activity from other VMs executing on the same GPU. Enabling
profiling for a VM also allows the VM to lock clocks on the GPU, which impacts all other
VMs executing on the same GPU.

6.5.2.1. Supported NVIDIA CUDA Toolkit Profiler
Features

You can enable the following NVIDIA CUDA Toolkit profiler features for a vGPU VM:

» NVIDIA Nsight™ Compute

» NVIDIA Nsight Systems
» CUDA Profiling Tools Interface (CUPTI)

6.5.2.2. Clock Management for a vGPU VM for Which
NVIDIA CUDA Toolkit Profilers Are Enabled

Clocks are not locked for periodic sampling use cases such as NVIDIA Nsight Systems
profiling.

Clocks are locked for multipass profiling such as:
» NVIDIA Nsight Compute kernel profiling
» CUPTI range profiling

Clocks are locked automatically when profiling starts and are unlocked automatically
when profiling ends.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 127

Modifying a VM's NVIDIA vGPU Configuration

6.5.2.3. Limitations on the Use of NVIDIA CUDA Toolkit
Profilers with NVIDIA vGPU

The following limitations apply when NVIDIA CUDA Toolkit profilers are enabled for NVIDIA
vGPU:

» NVIDIA CUDA Toolkit profilers can be used on only one VM at a time.
» Multiple CUDA contexts cannot be profiled simultaneously.
» Profiling data is collected separately for each context.

» A VM for which NVIDIA CUDA Toolkit profilers are enabled cannot be migrated.
Because NVIDIA CUDA Toolkit profilers can be used on only one VM at a time, you should
enable them for only one VM assigned a vGPU on a GPU. However, NVIDIA vGPU software
cannot enforce this requirement. If NVIDIA CUDA Toolkit profilers are enabled on more

than one VM assigned a vGPU on a GPU, profiling data is collected only for the first VM to
start the profiler.

6.5.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a
vGPU VM

You enable NVIDIA CUDA Toolkit profilers for a vGPU VM by setting a vGPU plugin
parameter. How to set the parameter to enable NVIDIA CUDA Toolkit profilers for a vGPU
VM depends on the hypervisor that you are using.

Perform this task for the VM for which you want to enable NVIDIA CUDA Toolkit profilers.
Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on Citrix
Hypervisor

Set the enable_profiling VGPU plugin parameter for the vGPU that is assigned to the
VM to 1 as explained in Setting vGPU Plugin Parameters on Citrix Hypervisor.

This example enables NVIDIA CUDA Toolkit profilers for the vGPU that has the UUID
d15083f8-5c59-7474-d0cb-fbc3f7284f1b.

[root@xenserver ~] xe vgpu-param-set uuid=d15083£8-5c59-7474-d0cb-fbc3£7284£f1b
extra args='enable profiling=1'

The setting of this parameter is preserved after a guest VM is restarted and after the
hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on Red Hat
Enterprise Linux KVM
Set the enable_profiling VGPU plugin parameter for the mdev device file that

represents the vGPU that is assigned to the VM to 1 as explained in Setting vGPU Plugin
Parameters on a Linux with KVM Hypervisor.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 128

Modifying a VM's NVIDIA vGPU Configuration

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on on VMware
vSphere

Ensure that the VM for which you want to enable NVIDIA CUDA Toolkit profilers is
powered off.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_profiling VGPU
plugin parameter for the vGPU that is assigned to the VM to 1 as explained in Setting
vGPU Plugin Parameters on VMware vSphere.

vgpu-id
A positive integer that identifies the vGPU assigned to the VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you
are enabling profilers for the second vGPU, set pciPassthrul.cfg.enable profiling
to 1.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

6.6. Enabling the TCC Driver Model for a
vGPU

The Tesla Compute Cluster (TCC) driver model supports CUDA C/C++ applications.
This model is optimized for compute applications and reduces kernel launch times on
Windows. By default, the driver model of a vGPU that is assigned to a Windows VM is
Windows Display Driver Model (WDDM). If you want to use the TCC driver model, you
must enable it explicitly.

This task requires administrator privileges.

Perform this task from the VM to which the vGPU is assigned.

Note: Only Q-series vGPUs support the TCC driver model.

1. Log on to the VM to which the vGPU is assigned.
2. Set the driver model of the vGPU to the TCC driver model.

nvidia-smi -g vgpu-id -dm 1

vgpu-id
The ID of the vGPU for which you want to enable the TCC driver model. If the -g is
omitted, the TCC driver model is enabled for all vGPUs that are assigned to the VM.

3. Reboot the VM.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 129

Chapter 7. Monitoring GPU
Performance

NVIDIA vGPU software enables you to monitor the performance of physical GPUs and
virtual GPUs from the hypervisor and from within individual guest VMs.

You can use several tools for monitoring GPU performance:

» From any supported hypervisor, and from a guest VM that is running a 64-bit edition
of Windows or Linux, you can use NVIDIA System Management Interface, nvidia-smi.

» From Citrix Hypervisor, you can use Citrix XenCenter.

» From a Windows guest VM, you can use these tools:
» Windows Performance Monitor

» Windows Management Instrumentation (WMI)

/7.1. NVIDIA System Management
Interface nvidia-smi

NVIDIA System Management Interface, nvidia-smi, is @ command-line tool that reports
management information for NVIDIA GPUs.

The nvidia-smi toolis included in the following packages:
» NVIDIA Virtual GPU Manager package for each supported hypervisor
» NVIDIA driver package for each supported guest OS

The scope of the reported management information depends on where you run nvidia-
smi from:

» From a hypervisor command shell, such as the Citrix Hypervisor domO shell or VMware
ESXi host shell, nvidia-smi reports management information for NVIDIA physical
GPUs and virtual GPUs present in the system.

Note: When run from a hypervisor command shell, nvidia-smi will not list any GPU
that is currently allocated for GPU pass-through.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 130

Monitoring GPU Performance

» From a guest VM, nvidia-smi retrieves usage statistics for vGPUs or pass-through
GPUs that are assigned to the VM.

In a Windows guest VM, nvidia-smi is installed in a folder that is in the default
executable path. Therefore, you can run nvidia-smi from a command prompt from
any folder by running the nvidia-smi.exe command.

7.2. Monitoring GPU Performance from
a Hypervisor

You can monitor GPU performance from any supported hypervisor by using the NVIDIA
System Management Interface nvidia-smi command-line utility. On Citrix Hypervisor
platforms, you can also use Citrix XenCenter to monitor GPU performance.

Note: You cannot monitor from the hypervisor the performance of GPUs that are being
used for GPU pass-through. You can monitor the performance of pass-through GPUs only
from within the guest VM that is using them.

7.2.1. Using nvidia-smi to Monitor GPU
Performance from a Hypervisor

You can get management information for the NVIDIA physical GPUs and virtual GPUs
present in the system by running nvidia-smi from a hypervisor command shell such as
the Citrix Hypervisor domO shell or the VMware ESXi host shell.

Without a subcommand, nvidia-smi provides management information for physical
GPUs. To examine virtual GPUs in more detail, use nvidia-smi with the vgpu
subcommand.

From the command ling, you can get help information about the nvidia-smi tool and the
vgpu subcommand.

Help Information Command

A list of subcommands supported by the nvidia-smi tool. Note nvidia-smi -h
that not all subcommands apply to GPUs that support NVIDIA
vGPU software.

A list of all options supported by the vgpu subcommand. nvidia-smi vgpu -h

7.2.1.1. Getting a Summary of all Physical GPUs in the
System

To get a summary of all physical GPUs in the system, along with PCI bus IDs, power
state, temperature, current memory usage, and so on, run nvidia-smi without additional
arguments.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 131

Each vGPU instance is reported in the Compute processes section, together with its

Monitoring GPU Performance

physical GPU index and the amount of frame-buffer memory assigned to it.

In the example that follows, three vGPUs are running in the system: One vGPU is running
on each of the physical GPUs O, 1, and 2.

[root@vgpu ~]# nvidia-smi

Fri Jun 14 09:26:18 2024

e +
| NVIDIA-SMI 550.90.05 Driver Version: 550.90.05 |
|- o o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| + + |
| 0 Tesla M60 On | 0000:83:00.0 Off | Off |
| N/A 31C P8 23W / 150W | 1889MiB / 8191MiB | 7% Default |
B ettt it e e +
| 1 Tesla M60 On | 0000:84:00.0 Off | Off |
| N/A 26C P8 23W / 150W | 926MiB / 8191MiB | 9% Default |
- - o +
| 2 Tesla M10 On | 0000:8A:00.0 Ooff | N/A |
| N/A 23C P8 10w / 53W | 1882MiB / 8191MiB | 12% Default |
e et o o +
| 3 Tesla MI10 On | 0000:8B:00.0 Off | N/A |
| N/A 26C P8 10w / 53W | 10MiB / 8191MiB | 0% Default |
o o o +
| 4 Tesla MI10 On | 0000:8C:00.0 Off | N/A |
| N/A 34C P8 10w / 53W | 10MiB / 8191MiB | 0% Default |
B ettt it e e +
| 5 Tesla M10 On | 0000:8D:00.0 Ooff | N/A |
| N/A 32C P8 10w / 53W | 10MiB / 8191MiB | 0% Default |
- - o +
e +
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
| |
| 0 11924 C+G /usr/1lib64/xen/bin/vgpu 1856MiB |
| 1 11903 CH+G /usr/1lib64/xen/bin/vgpu 896MiB |
| 2 11908 C+G /usr/1lib64/xen/bin/vgpu 1856MiB |
- +

[root@vgpu ~]+#

7.2.1.2. Getting a Summary of all vGPUs in the System

To get a summary of the vGPUs currently that are currently running on each physical GPU
in the system, run nvidia-smi vgpu without additional arguments.

[root@vgpu ~]# nvidia-smi vgpu

Fri Jun 14 09:27:06 2024
ettt +
| NVIDIA-SMI 550.90.05 Driver Version: 550.90.05 |
| mmm e o fommm - +
| GPU Name | Bus-Id | GPU-Util |
| vGPU ID Name | VM ID VM Name | vGPU-Util |
[e——————— e t============ |
| 0 Tesla M60 | 0000:83:00.0 | 7% |
| 11924 GRID M60-2Q | 3 Win7-64 GRID test 2 | 6% |
o St e L L e e Fom - +
| 1 Tesla M60 | 0000:84:00.0 | 9% |
| 11903 GRID M60-1B | 1 Win8.1-64 GRID test 3 | 8% |
o it et e et +
| 2 Tesla M10 | 0000:8A:00.0 | 12% |
| 11908 GRID M10-2Q | 2 Win7-64 GRID test 1 | 10% |
o o fommm - +
| 3 Tesla MI10 | 0000:8B:00.0 | 0% |

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2

132

o e o +
| 4 Tesla M10 | 0000:8C:00.0 | 0%
o o Fmm +
| 5 Tesla M10 | 0000:8D:00.0 | 0%
o R ittt e e P o +

[root@vgpu ~]#

Monitoring GPU Performance

7.2.1.3. Getting Physical GPU Details

To get detailed information about all the physical GPUs on the platform, run nvidia-smi

with the —q or --query option.

[root@vgpu ~]# nvidia-smi -q
NVSMI LOG

Timestamp

Driver Version

CUDA Version

vGPU Driver Capability
Heterogenous Multi-vGPU

Attached GPUs
GPU 00000000:C1:00.0
Product Name
Product Brand
Product Architecture
Display Mode
Display Active
Persistence Mode
vGPU Device Capability
Fractional Multi-vGPU
Heterogeneous Time-Slice Profiles
Heterogeneous Time-Slice Sizes
MIG Mode
Current
Pending
Accounting Mode
Accounting Mode Buffer Size
Driver Model
Current
Pending
Serial Number
GPU UUID
Minor Number
VBIOS Version
MultiGPU Board
Board ID
Board Part Number
GPU Part Number
Module ID
Inforom Version
Image Version
OEM Object
ECC Object
Power Management Object
GPU Operation Mode
Current
Pending
GSP Firmware Version
GPU Virtualization Mode
Virtualization Mode
Host VGPU Mode
IBMNPU
Relaxed Ordering Mode
PCIT
Bus

Virtual GPU Software

Tue Nov 22 10:33:26 2022
525.60.06
Not Found

Supported
3

Tesla T4
NVIDIA
Turing
Enabled
Disabled
Enabled

Supported
Supported
Not Supported

N/A

N/A
Enabled
4000

N/A
N/A
1321120031291

GPU-9084c1b2-624£f-2267-4b66-345583fbd981

1

90.04.38.00.03

No

0xcl100
900-2G183-0000-001
1EB8-895-Al1

0

G183.0200.00.02
1.1
5.0
N/A

N/A
N/A
N/A

Host VGPU
Non SR-IOV

N/A

0xC1

DU-06920-001 _v17.0 through 17.

133

Device
Domain
Device Id
Bus Id
Sub System Id
GPU Link Info
PCIe Generation
Max
Current
Device Current
Device Max
Host Max
Link Width
Max
Current
Bridge Chip
Type
Firmware
Replays Since Reset
Replay Number Rollovers
Tx Throughput
Rx Throughput
Atomic Caps Inbound
Atomic Caps Outbound
Fan Speed
Performance State
Clocks Throttle Reasons
Idle
Applications Clocks Setting
SW Power Cap
HW Slowdown
HW Thermal Slowdown
HW Power Brake Slowdown
Sync Boost
SW Thermal Slowdown
Display Clock Setting
FB Memory Usage
Total
Reserved
Used
Free
BAR1 Memory Usage
Total
Used
Free
Compute Mode
Utilization
Gpu
Memory
Encoder
Decoder
Encoder Stats
Active Sessions
Average FPS
Average Latency
FBC Stats
Active Sessions
Average FPS
Average Latency
Ecc Mode
Current
Pending
ECC Errors
Volatile
SRAM Correctable
SRAM Uncorrectable
DRAM Correctable

Virtual GPU Software

Monitoring GPU Performance

0x00

0x0000
0x1EB810DE
00000000:C1:00.0
0x12A210DE

Z Wk EFEWw

/A

16x
16x

N/A
N/A

0

0

0 KB/s
0 KB/s
N/A
N/A
N/A

P8

Active

Not Active
Not Active
Not Active
Not Active
Not Active
Not Active
Not Active
Not Active

15360 MiB
0 MiB

3859 MiB
11500 MiB

256 MiB
17 MiB
239 MiB
Default

O O O O

0C o o° o

(@]

0
0
0

Enabled
Enabled

(@]

DU-06920-001 _v17.0 through 17.

134

Monitoring GPU Performance

DRAM Uncorrectable : 0
Aggregate
SRAM Correctable 0
SRAM Uncorrectable 0
DRAM Correctable 0
DRAM Uncorrectable 0
Retired Pages
Single Bit ECC : 0
Double Bit ECC : 0
Pending Page Blacklist : No
Remapped Rows : N/A
Temperature
GPU Current Temp : 35 C
GPU Shutdown Temp : 96 C
GPU Slowdown Temp : 93 C
GPU Max Operating Temp : 85 C
GPU Target Temperature : N/A
Memory Current Temp : N/A
Memory Max Operating Temp : N/A
Power Readings
Power Management : Supported
Power Draw : 16.57 W
Power Limit : 70.00 W
Default Power Limit : 70.00 W
Enforced Power Limit : 70.00 W
Min Power Limit : 60.00 W
Max Power Limit : 70.00 W
Clocks
Graphics : 300 MHz
SM : 300 MHz
Memory : 405 MHz
Video : 540 MHz
Applications Clocks
Graphics : 585 MHz
Memory : 5001 MHz
Default Applications Clocks
Graphics : 585 MHz
Memory : 5001 MHz
Deferred Clocks
Memory : N/A
Max Clocks
Graphics : 1590 MHz
SM : 1590 MHz
Memory : 5001 MHz
Video : 1470 MHz
Max Customer Boost Clocks
Graphics : 1590 MHz
Clock Policy
Auto Boost : N/A
Auto Boost Default : N/A
Voltage
Graphics : N/A
Fabric
State : N/A
Status : N/A
Processes
GPU instance ID : N/A
Compute instance ID : N/A
Process ID : 2103065
Type 8 C+G
Name : WinllSVv2 View87
Used GPU Memory : 3810 MiB

[root@vgpu ~]#

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 135

Monitoring GPU Performance

7.2.1.4. Getting vGPU Details

To get detailed information about all the vGPUs on the platform, run nvidia-smi vgpu
with the —q or --query option.

To limit the information retrieved to a subset of the GPUs on the platform, use the -1 or
--id option to select one or more GPUs.

[root@vgpu ~]# nvidia-smi vgpu -q -i 1
GPU 00000000:C1:00.0
Active vGPUs 3 1
vGPU ID : 3251634327
VM ID : 2103066
VM Name : Winllsv2 View87
vGPU Name GRID T4-4Q
vGPU Type 232
vGPU UUID afdcf724-1dd2-11b2-8534-624f22674b66

Guest Driver Version
License Status

527.15
Licensed (Expiry: 2022-11-23 5:2:12 GMT)

N/A

GPU Instance ID
Accounting Mode Disabled
ECC Mode Enabled
Accounting Buffer Size 4000
Frame Rate Limit 60 FPS
PCI
Bus Id 00000000:02:04.0
FB Memory Usage
Total 4096 MiB
Used : 641 MiB
Free : 3455 MiB
Utilization
Gpu 0 %
Memory 0 %
Encoder 0 %
Decoder 0 %
Encoder Stats
Active Sessions 0
Average FPS 0
Average Latency : 0
FBC Stats
Active Sessions : 0
Average FPS 0
Average Latency : 0

[root@vgpu ~]#

7.2.1.5. Monitoring vGPU engine usage

To monitor vGPU engine usage across multiple vGPUSs, run nvidia-smi vgpu with the —u
Or -—utilization option.

For each vGPU, the usage statistics in the following table are reported once every second.
The table also shows the name of the column in the command output under which each
statistic is reported.

Statistic Column
3D/Compute sm
Memory controller bandwidth mem

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 136

Monitoring GPU Performance

Statistic Column
Video encoder enc
Video decoder dec

Each reported percentage is the percentage of the physical GPU’s capacity that a vGPU
is using. For example, a vGPU that uses 20% of the GPU’s graphics engine’s capacity will
report 20%.

To modify the reporting frequency, use the -1 or --1oo0p option.

To limit monitoring to a subset of the GPUs on the platform, use the -i or --id option to
select one or more GPUs.

[root@vgpu ~]# nvidia-smi vgpu -u

gpu vgpu sm mem enc dec

Idx Id % % % %
0 11924 6 3 0 0
1 11903 8 3 0 0
2 11908 10 4 0 0
3 = —_ —_ —_ -
4 — = = _ —
5 — = = = —
0 11924 6 3 0 0
1 11903 9 3 0 0
2 11908 10 4 0 0
3 — = = = —
4 - = = = -
5 _ _ _ _ _
0 11924 6 3 0 0
1 11903 8 3 0 0
2 11908 10 4 0 0
3 = —_ —_ —_ -
4 — = = _ —
5 — = = = —

~"C[root@vgpu ~]#

7.2.1.6. Monitoring vGPU engine usage by applications

To monitor vGPU engine usage by applications across multiple vGPUs, run nvidia-smi
vgpu with the -p option.

For each application on each vGPU, the usage statistics in the following table are reported
once every second. Each application is identified by its process ID and process name.

The table also shows the name of the column in the command output under which each
statistic is reported.

Statistic Column
3D/Compute sm
Memory controller bandwidth mem
Video encoder enc
Video decoder dec

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 137

Monitoring GPU Performance

Each reported percentage is the percentage of the physical GPU’s capacity used by
an application running on a vGPU that resides on the physical GPU. For example, an
application that uses 20% of the GPU’s graphics engine’s capacity will report 20%.

To modify the reporting frequency, use the -1 or --1ocop option.

To limit monitoring to a subset of the GPUs on the platform, use the -i or --id option to
select one or more GPUs.

[root@vgpu ~]# nvidia-smi vgpu -p

GPU vGPU process process sm mem enc dec

Idx Id Id name % % % %
0 38127 1528 dwm.exe 0 0 0 0
1 37408 4232 DolphinVS.exe 32 25 0 0
1 257869 4432 FurMark.exe 16 12 0 0
1 257969 4552 FurMark.exe 48 37 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 37408 4232 DolphinVS.exe 16 12 0 0
1 257911 656 DolphinVS.exe 32 24 0 0
1 257969 4552 FurMark.exe 48 37 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 257869 4432 FurMark.exe 38 30 0 0
1 257911 656 DolphinVS.exe 19 14 0 0
1 257969 4552 FurMark.exe 38 30 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 257848 3220 Balls64.exe 16 12 0 0
1 257869 4432 FurMark.exe 16 12 0 0
1 257911 656 DolphinVS.exe 16 12 0 0
1 257969 4552 FurMark.exe 48 37 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 257911 656 DolphinVS.exe 32 25 0 0
1 257969 4552 FurMark.exe 64 50 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 37408 4232 DolphinVS.exe 16 12 0 0
1 257911 656 DolphinVS.exe 16 12 0 0
1 257969 4552 FurMark.exe 64 49 0 0
0 38127 1528 dwm.exe 0 0 0 0
1 37408 4232 DolphinVS.exe 16 12 0 0
1 257869 4432 FurMark.exe 16 12 0 0
1 257969 4552 FurMark.exe 64 49 0 0

[root@vgpu ~]#

7.2.1.7. Monitoring Encoder Sessions

S Note: Encoder sessions can be monitored only for vGPUs assigned to Windows VMs. No
encoder session statistics are reported for vGPUs assigned to Linux VMs.

To monitor the encoder sessions for processes running on multiple vGPUSs, run nvidia-
smi vgpu With the —es or -—encodersessions option.

For each encoder session, the following statistics are reported once every second:

» GPUID

» VvGPUID

» Encoder session ID

» PID of the process in the VM that created the encoder session
» Codec type, for example, H.264 or H.265

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 138

Monitoring GPU Performance

» Encode horizontal resolution

» Encode vertical resolution

» One-second trailing average encoded FPS

» One-second trailing average encode latency in microseconds

To modify the reporting frequency, use the -1 or --1o0p option.

To limit monitoring to a subset of the GPUs on the platform, use the -i or --id option to
select one or more GPUs.

[root@vgpu ~]# nvidia-smi vgpu -es

GPU vGPU Session Process Codec H V Average Average

Idx Id Id Id Type Res Res FPS Latency (us)
1 21211 2 2308 H.264 1920 1080 424 1977
1 21206 3 2424 H.264 1920 1080 0 0
1 22011 1 3676 H.264 1920 1080 374 1589
1 21211 2 2308 H.264 1920 1080 360 807
1 21206 3 2424 H.264 1920 1080 325 1474
1 22011 1 3676 H.264 1920 1080 313 1005
1 21211 2 2308 H.264 1920 1080 329 1732
1 21206 3 2424 H.264 1920 1080 352 1415
1 22011 1 3676 H.264 1920 1080 434 1894
1 21211 2 2308 H.264 1920 1080 362 1818
1 21206 3 2424 H.264 1920 1080 296 1072
1 22011 1 3676 H.264 1920 1080 416 1994
1 21211 2 2308 H.264 1920 1080 444 1912
1 21206 3 2424 H.264 1920 1080 330 1261
1 22011 1 3676 H.264 1920 1080 436 1644
1 21211 2 2308 H.264 1920 1080 344 1500
1 21206 3 2424 H.264 1920 1080 393 1727
1 22011 1 3676 H.264 1920 1080 364 1945
1 21211 2 2308 H.264 1920 1080 555 1653
1 21206 3 2424 H.264 1920 1080 295 925
1 22011 1 3676 H.264 1920 1080 372 1869
1 21211 2 2308 H.264 1920 1080 326 2206
1 21206 3 2424 H.264 1920 1080 318 1366
1 22011 1 3676 H.264 1920 1080 4604 2015
1 21211 2 2308 H.264 1920 1080 305 1167
1 21206 3 2424 H.264 1920 1080 445 1892
1 22011 1 3676 H.264 1920 1080 361 906
1 21211 2 2308 H.264 1920 1080 353 1436
1 21206 3 2424 H.264 1920 1080 354 1798
1 22011 1 3676 H.264 1920 1080 373 1310

~Clroot@vgpu ~]1#

7.2.1.8. Monitoring Frame Buffer Capture (FBC)
Sessions

To monitor the FBC sessions for processes running on multiple vGPUs, run nvidia-smi
vgpu With the -fs or --fbcsessions option.

For each FBC session, the following statistics are reported once every second:
GPU ID
vGPU ID

FBC session ID
PID of the process in the VM that created the FBC session

vV v v VY

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 139

Display ordinal associated with the FBC session.
FBC session type
FBC session flags

Capture mode

Maximum horizontal resolution supported by the session

Maximum vertical resolution supported by the session

Monitoring GPU Performance

Horizontal resolution requested by the caller in the capture call

Vertical resolution requested by the caller in the capture call

Moving average of new frames captured per second by the session

Moving average new frame capture latency in microseconds for the session

To modify the reporting frequency, use the -1 or --1oop option.

To limit monitoring to a subset of the GPUs on the platform, use the -i or --id option to
select one or more GPUs.

[root@vgpu ~]# nvidia-smi vgpu -fs
GPU vGPU Session Process
Capture Max H Max V H \Y%
Idx Id Id Id
Mode Res Res Res Res
O — — —
1 3251634178 - -
2 — — —
O = = =
1 3251634178 - -
2 = = =
O — — —
1 3251634178 - -
2 — — —
O = = =
1 3251634178 - -
2 = = =
O — — —
1 3251634178 - -
2 — — —
O = = =
1 3251634178 1 3984
Unknown 4096 2160 0 0
2 = = =
O — — —

Virtual GPU Software

Display
Average
Ordinal

EPS

Session Diff. Map
Average

Type

State

Latency (us)

ToSys

Disabled

Class. Map

State

Disabled

DU-06920-001 _v17.0 through 17.2

140

1 3251634178

Unknown 4096
2 =
GPU vGPU
Capture Max H
Idx Id
Mode Res

O —

1 3251634178
Unknown 4096
2 —

O =

1 3251634178
Unknown 4096
2 =

O —

1 3251634178
Unknown 4096
2 —

O =

1 3251634178
Unknown 4096
2 =

O —

1 3251634178
Unknown 4096
2 —

O =

1 3251634178
Unknown 4096
2 =

O —

1 3251634178
Unknown 4096
2 —

O =

1 3251634178
Blocking 4096
2 =

O —

1 3251634178
Blocking 4096
2 —

O =

1 3251634178
Blocking 4096

Virtual GPU Software

1 3984

2160 0 0
Session Process
Max V H \
Id Id

Res Res Res
1 3984

2160 0 0
1 3984

2160 0 0
1 3984

2160 0 0
1 3984

2160 0 0
1 3984

2160 0 0
1 3984

2160 0 0
1 3984

2160 0 0
1 3984

2160 1600 900
1 3984

2160 1600 900
1 3984

2160 0 0

I O

Display
Average
Ordinal

FPS

1 © O |

Monitoring GPU Performance

ToSys Disabled
0

Session Diff. Map
Average

Type State
Latency (us)

ToSys Disabled
0

ToSys Disabled
0

ToSys Disabled
0

ToSys Disabled
0

ToSys Disabled
0

ToSys Disabled
0

ToSys Disabled
0

ToSys Disabled
39964

ToSys Disabled
39964

ToSys Disabled
0

Disabled

Class. Map

State

Disabled

Disabled

Disabled

Disabled

Disabled

Disabled

Disabled

Disabled

Disabled

Disabled

DU-06920-001 _v17.0 through 17.2

Monitoring GPU Performance

2 — — — — — — —

GPU vGPU Session Process Display Session Diff. Map Class. Map
Capture Max H Max V H \Y Average Average

Idx Id Id Id Ordinal Type State State
Mode Res Res Res Res FPS Latency (us)

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 1600 900 135 7400

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 1600 900 227 4403

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 1600 900 227 4403

2 — — — — — — —

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O — — — — — — —

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 — — — — — — —

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 142

Monitoring GPU Performance

GPU vGPU Session Process Display Session Diff. Map Class. Map
Capture Max H Max V H \Y% Average Average

Idx Id Id Id Ordinal Type State State
Mode Res Res Res Res FPS Latency (us)

O —_ —_ —_ —_ —_ —_ —_

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 —_ —_ —_ —_ —_ —_ —_

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O —_ —_ —_ —_ —_ —_ —_

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 —_ —_ —_ —_ —_ —_ —_

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O —_ —_ —_ —_ —_ —_ —_

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 —_ —_ —_ —_ —_ —_ —_

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O —_ —_ —_ —_ —_ —_ —_

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 —_ —_ —_ —_ —_ —_ —_

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

O —_ —_ —_ —_ —_ —_ —_

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 —_ —_ —_ —_ —_ —_ —_

O = = = = = = =

1 3251634178 1 3984 0 ToSys Disabled Disabled
Blocking 4096 2160 0 0 0 0

2 = = = = = = =

~C[root@vgpu ~1#

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 143

Monitoring GPU Performance

7.2.1.9. Listing Supported vGPU Types

To list the virtual GPU types that the GPUs in the system support, run nvidia-smi vgpu

with the -s or --supported option.

To limit the retrieved information to a subset of the GPUs on the platform, use the -1 or

--id option to select one or more GPUs.

[root@vgpu ~]# nvidia-smi vgpu -s -i 0

GPU 0000:83:00.0
GRID M60-0B
GRID M60-0Q
GRID M60-1A
GRID M60-1B
GRID M60-1Q
GRID M60-2A
GRID M60-2Q
GRID M60-4A
GRID M60-4Q
GRID M60-8A
GRID M60-8Q

[root@vgpu ~]#

To view detailed information about the supported vGPU types, add the -v or --verbose

option:

[root@vgpu ~]# nvidia-smi vgpu -s -i 0 -v

GPU 00000000:40:00.0
vGPU Type ID
Name
Class
GPU Instance Profile ID
Max Instances
Max Instances Per VM
Multi vGPU Exclusive
vGPU Exclusive Type
vGPU Exclusive Size
Device ID
Sub System ID
FB Memory
Display Heads
Maximum X Resolution
Maximum Y Resolution
Frame Rate Limit
GRID License
WS,2.0;GRID-Virtual-WS-Ext,2.0
vGPU Type ID
Name
Class
GPU Instance Profile ID
Max Instances
Max Instances Per VM
Multi vGPU Exclusive
vGPU Exclusive Type
vGPU Exclusive Size
Device ID
Sub System ID
FB Memory
Display Heads
Maximum X Resolution
Maximum Y Resolution
Frame Rate Limit
GRID License
WS,2.0;GRID-Virtual-WS-Ext, 2.0

Virtual GPU Software

less

Oxc

GRID M60-0Q
Quadro

N/A

16

1

False

False

False
0x13f210de
0x13f2114c
512 MiB

2

2560

1600

60 FPS
Quadro-Virtual-DWS,5.0;GRID-Virtual-

Oxf

GRID M60-10Q
Quadro

N/A

8

1

False

False

False
0x13f210de
0x13f2114d
1024 MiB

4

5120

2880

60 FPS
Quadro-Virtual-DWS,5.0;GRID-Virtual-

DU-06920-001 _v17.0 through 17.2

144

Monitoring GPU Performance

vGPU Type ID : 0x12
Name : GRID M60-20
Class : Quadro
GPU Instance Profile ID : N/A
Max Instances H
Max Instances Per VM g 1
Multi vGPU Exclusive : False
vGPU Exclusive Type : False
vGPU Exclusive Size : False

froot@vgpu ~1#

7.2.1.10. Listing the vGPU Types that Can Currently Be
Created

To list the virtual GPU types that can currently be created on GPUs in the system, run
nvidia-smi vgpu with the -c or --creatable option.

This property is a dynamic property that reflects the number and type of vGPUs that are
already running on the GPU.

» If no vGPUs are running on the GPU, all vGPU types that the GPU supports are listed.

» If one or more vGPUs are running on the GPU, but the GPU is not fully loaded, only the
type of the vGPUs that are already running is listed.

» If the GPU is fully loaded, no vGPU types are listed.

To limit the retrieved information to a subset of the GPUs on the platform, use the -1 or
--id option to select one or more GPUs.

[root@vgpu ~]# nvidia-smi vgpu -c -i 0
GPU 0000:83:00.0

GRID M60-2Q
[root@vgpu ~]#

To view detailed information about the vGPU types that can currently be created, add the
-v Or —-verbose option.

7.2.2. Using Citrix XenCenter to monitor GPU
performance

If you are using Citrix Hypervisor as your hypervisor, you can monitor GPU performance in
XenCenter.

Click on a server’s Performance tab.

Right-click on the graph window, then select Actions and New Graph.
Provide a name for the graph.

In the list of available counter resources, select one or more GPU counters.

A W =

Counters are listed for each physical GPU not currently being used for GPU pass-through.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 145

Monitoring GPU Performance

Figure 23. Using Citrix XenCenter to monitor GPU performance

© XenCenter [e@=]
file View Pool Sever VM Storage Templates Tools Help

@ Back - @ Forward - | @ Add New Server New Pool 5 New Storage T New M | @) Shut Down &) Reboot ([} Suspend

a Q ‘ @ smé Logged in as: Local root account ‘

i Console | Performance |Users | Search
Performance Graphs

Searc
) € XenCenter
- REAE
1 Rs1-Server-RTM (|
1@ Rs1-Server-RTM (.

&3 DVD drives
9 Local storag Move Up [Zoom ~| | vMLifecycle Events
&9 Removable storag
0 Rs1-Server-RTM CPU Performance gjul 25,2017 333 PM
B localhost 100 [~ oo » Jul 25, 2017 3:27 PM
[xenserver -sm - CPUL E
B xs72 o — cPU2
U3
U4
—— N - CPUS ~
€ New Graph e 10:02AM 10:04 AM 10:06 AM
Name: Performance Graph 128 [~ Used Memory
GB
search Q|
ajADatasource Type i 1002 AM 1004 AM 1006 AM
[] cPU84-avg-freq Custom L]
-avg- 0]
[] cPu8s-avg-freq Custom] 100 —NIC O Receive =
[7] cPuB6-avg-freq Custom [} — NIC 0 Send
[[] cPu87-avg-freq Custom L] MBps |~ mg % gﬂsive H
7] GM204GL [Tesla M60] 0000:04:00.0 Free Memory GPU u — NI 2 Pecsive
GM204GL [Tesla M60] 0000:04:00.0 Memory Utilization GPU [m] .] — NIC 2 Send -
[C] GM204GL [Tesla M60] 0000:04:00.0 Power Usage GPU L] 1002 AM 1004 AM 10:06 AM
<[| |7 GM204GL [Tesla M60] 0000:04:00.0 Temperature GPU
] GM204GL [Tesla M60] 0000:04:00.0 Used Memory GPU m
[GM204GL [Tesla MG0) 0000:04:00.0 Utilization GPU (]
[C] GM204GL [Tesla M60] 0000:05:00.0 Free Memory GPU L]
| Infrasti |[7] GM204GL [Tesla M60] 0000:05:00.0 Memory Utilization GPU L]
@9 Object| |[J GM204GL [Tesla M60] 0000:05:000 Power Usage GPU L]
8, Organy || GM204GL [Tesla M0] 0000:05:000 Temperature GPU m
‘O‘ 7] GM204GL [Tesla M60] 0000:05:00.0 Used Memory GPU (]
Saved | |[7] GM204GL [Tesla M60] 0000:05:000 Utilization GPU LB
A Notifiq |71 IntelliCache Cache Hits Storage 1A 900 AM 930 AM 10:00 AM

7.3. Monitoring GPU Performance from
a Guest VM

You can use monitoring tools within an individual guest VM to monitor the performance
of vGPUs or pass-through GPUs that are assigned to the VM. The scope of these tools
is limited to the guest VM within which you use them. You cannot use monitoring tools
within an individual guest VM to monitor any other GPUs in the platform.

For a vGPU, only these metrics are reported in a guest VM:
» 3D/Compute

» Memory controller

» Video encoder

» Video decoder

» Frame buffer usage

Other metrics normally present in a GPU are not applicable to a vGPU and are reported as
zero or N/a, depending on the tool that you are using.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 146

Monitoring GPU Performance

In guest VMs, you can use the nvidia-smi command to retrieve statistics for the total
usage by all applications running in the VM and usage by individual applications of the
following resources:

GPU

Video encoder

Video decoder

Frame buffer
To use nvidia-smi to retrieve statistics for the total resource usage by all applications
running in the VM, run the following command:

nvidia-smi dmon

The following example shows the result of running nvidia-smi dmon from within a
Windows guest VM.

Figure 24. Using nvidia-smi from a Windows guest VM to get total
resource usage by all applications

B Command Prompt — O x

To use nvidia-smi to retrieve statistics for resource usage by individual applications
running in the VM, run the following command:

nvidia-smi pmon

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 147

Monitoring GPU Performance

Figure 25. Using nvidia-smi from a Windows guest VM to get
resource usage by individual applications

B C\Windowshsystem32icmd.exe = | 2

command

]
=
7]
=1
m
[x]

name
Dolphinls ._exe
chrome . exe
Ballzb4.exe
FurMark.exe
Ballzh4.exe
Dolphinls.exe
chrome .exe
Ballzh4.exe
FurMark.exe
Ballsb4.exe
Dolphinls _exe
chrome .exe
Ballsb4.exe
FurMark.exe
Ballz6t4d.exe
Dolphinls . exe
chrome . exe
Ballz6t4.exe
FurMark.exe
Ball=z64. exe
Dolphinls.exe
chrome .exe
Ball=zb4_exe
FurMark.exe
Ballsb4.exe
Dolphinls . exe
chrome .exe
Ballsb4.exe
FurMark.exe
Ballzb4.exe
Dolphinls . _exe
chrome .exe
Ball=zh4.exe
FurMark.exe
Ballzb4.exe
Dolphinls . exe
chrome .exe
Ballsb4.exe
FurMark.exe
Ballzbt4.exe
Dolphinls _exe
chrome . exe
Ballzb4.exe
FurMark.exe

B
B

]
=

=]
b

]
[

[
[

=Y
[

3]
=Y

]

NN YAV ARRANAIARVWARERMNERRR W REN 3
=Y

SNEEREEEREEEREENTREIEENTREEECIEARRERARCERREEE G EN
[l R kool ol ool oo oo ol oo o fofo o oo ool o ool fo oo g R
I IR NN DRI EEER @@ N

3]
=Y

In Windows VMs, GPU metrics are available as Windows Performance Counters through
the NVIDIA GPU object.

Any application that is enabled to read performance counters can access these metrics.
You can access these metrics directly through the Windows Performance Monitor
application that is included with the Windows OS.

The following example shows GPU metrics in the Performance Monitor application.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 148

https://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/cc749249%28v=ws.11%29.aspx

Monitoring GPU Performance

Figure 26. Using Windows Performance Monitor to monitor GPU
performance
@} Performance Monitor E\@
(%) File Action View Window Help - [=] =
| %E E e
(%) Performance 7H‘|“—ﬂixf|~alj|3..|"ﬂ|

4 [Monitoring Tools
B8 Performance Moniter

- \ANVIDIA-PC
» (3 Data Collector Sets NVIDIA GPU #0 GRID M10-2Q (id=1, NVAPI ID=11)
> g Reports % FB Usage 0.000
% GPU Memory Usage 10.000
% GPU Usage 1.000
% Video Decoder Usage 0.000
% Video Encoder Usage 0,000

On vGPUs, the following GPU performance counters read as O because they are not
applicable to vGPUs:

% Bus Usage

% Cooler rate

Core Clock MHz

Fan Speed

Memory Clock MHz

PCI-E current speed to GPU Mbps
PCI-E current width to GPU

PCI-E downstream width to GPU
Power Consumption mW

vV vV v v v vV v v Vv %

Temperature C

7.3.3. Using NVWMI to monitor GPU
performance

In Windows VMs, Windows Management Instrumentation (WMI) exposes GPU metrics
in the rRooT\C1IMV2\NV Nnamespace through NVWMI. NVWMI is included with the NVIDIA

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 149

https://msdn.microsoft.com/en-us/library/aa394582%28v=vs.85%29.aspx

Monitoring GPU Performance

driver package. The NVWMI API Reference in Windows Help format is available for
download from the NVIDIA website.

Any WMI-enabled application can access these metrics. The following example shows
GPU metrics in the third-party application WMI Explorer, which is available for download
from the from the CodePlex WMI Explorer page.

Figure 27. Using WMI Explorer to monitor GPU performance

- WMI Explorer 20 =0 ESR (=3
File Launch Help
Computer Mode Class Enumeration Options
@ Asynchronous 7] Include System Classes [] Include Perf Classes
) || -
() Synchronous = [Include CIM Classes [Include MSFT Classes i gases
Classes (28) | Search
Bl \NVIDIA-PC\ROOT =
Quick Fiter: Instances (1) | Properties (35) | Methods (5) | Query [Seript | Loaging |
A Classes Instance Options
- ROOT\CIMV2\Applications - o . [T Show Null Values
ROOT\CIMV2\ms_409 Name Sl Quick Fitter: 7] Show System Properti [Refresh Instances] [Refresh Ok
- ROOT\CIMVZ\NV Application
~ ROOTHCIMVZ\NWMEve ApplicationProfile Instances percentGpuMemoryUsage 10 -
ROOT\CIMV2\power Board Gpuid=1uname="GRID M10, percentGpulsage 8
ROOT\CIMVZ\Securty Cooler Pl e power 1
ROO.T.\C|M\I"2\TEITI1IHE|SEI'\ DesktopManager powerSampleCourt 4
- ROO T aitroc Displ))
ROOT\Cl play powerSamplingPeriod -1
! DisplayGrid = productName GRID M10-20
- ROOTWDEFAULT DisplayGridinf
' isplayGridinfo product Type 2
- ROOTdirectory DisplayManager > wver
- ROOTuInterop "
X DisplayMode = verVBIOS
[y - ROOTUcrosct splayPrfi 1
. ROOT\MicrasoftWrillet DisplayProfic e e
Ecc decoderSamplingPeriod 3000000
- ROO T nap . . i
X Gpu encoderSamplingPeriod 3000000 =
- ROOTPolicy
NamedObiect percentDecoderlJsage 0
- ROOTWRSOP d 8 rtEncoderUs 0
- ROOTVSECURITY OverapLimits percenttncodersage B
- ROOT\SecurityCenter PeieLink Doz 2
- ROOT\SecurtyCenter2 Profile videoCodec
- ROOTService Model ProfileManager Embedded object:VideoCodec
- ROOThsubscription Setting
- ROOTWMI SettingInfo
Setting Table k% 'l (1 +
LI T b
4 [| + —
WQL Query (Selected Object)
Query SELECT * FROM Gpu WHERE id=1 AND uname=GRID M10-29'
| Retrieved 28 classes from ROOT\CIMV2\NV that match specified criteria. | Retrieved 1 instances from Gpu Time to Enumerate Instances: 00:00.030 .

On vGPUs, some instance properties of the following classes do not apply to vGPUs:

> Gpu

> Pcielink

Gpu instance properties that do not apply to vGPUs

Gpu Instance Property Value reported on vGPU
gpuCoreClockCurrent -1
memoryClockCurrent -1
pciDownstreamilidth 0

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 150

https://developer.nvidia.com/designworks/nvwmi/downloads/2.27.3/api-reference/
https://wmie.codeplex.com/

Monitoring GPU Performance

Gpu Instance Property Value reported on vGPU
pcieGpu.curGen 0
pcieGpu.curSpeed 0
pcieGpu.curWidth 0]

pcieGpu.maxGen 1

pcieGpu.maxSpeed 2500
pcieGpu.maxWidth 0]
power -1

powerSampleCount -1

powerSamplingPeriod -1

verVBIOS.orderedvalue 0

verVBIOS.strValue -

verVBIOS.value 0

pPcieLink instance properties that do not apply to vGPUs

No instances of PcieLink are reported for vGPU.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 151

Chapter 8. Changing Scheduling
Behavior for Time-Sliced
vGPUs

NVIDIA GPUs based on the NVIDIA Maxwell™ graphic architecture implement a best
effort vGPU scheduler that aims to balance performance across vGPUs. The best effort
scheduler allows a vGPU to use GPU processing cycles that are not being used by other
vGPUs. Under some circumstances, a VM running a graphics-intensive application may
adversely affect the performance of graphics-light applications running in other VMs.

GPUs based on NVIDIA GPU architectures after the Maxwell architecture additionally
support equal share and fixed share vGPU schedulers. These schedulers impose a limit on
GPU processing cycles used by a vGPU, which prevents graphics-intensive applications
running in one VM from affecting the performance of graphics-light applications running
in other VMs. On GPUs that support multiple vGPU schedulers, you can select the vGPU
scheduler to use. You can also set the length of the time slice for the equal share and
fixed share vGPU schedulers.

S| Note: If you use the equal share or fixed share vGPU scheduler, the frame-rate limiter
(FRL) is disabled.

The best effort scheduler is the default scheduler for all supported GPU architectures.

If you are unsure of the NVIDIA GPU architecture of your GPU, consult the release notes
for your hypervisor at NVIDIA Virtual GPU Software Documentation.

8.1. Scheduling Policies for Time-Sliced
vGPUs

In addition to the default best effort scheduler, GPUs based on NVIDIA GPU architectures
after the Maxwell architecture support equal share and fixed share vGPU schedulers.
Equal share scheduler
The physical GPU is shared equally amongst the running vGPUs that reside on it. As
vGPUs are added to or removed from a GPU, the share of the GPU's processing cycles
allocated to each vGPU changes accordingly. As a result, the performance of a vGPU

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 152

https://docs.nvidia.com/grid/17.0/

Changing Scheduling Behavior for Time-Sliced vGPUs

may increase as other vGPUs on the same GPU are stopped, or decrease as other
vGPUs are started on the same GPU.

Fixed share scheduler
Each vGPU is given a fixed share of the physical GPU's processing cycles, the amount
of which depends on the vGPU type, which in turn determines the maximum number
of vGPUs per physical GPU. For example, the maximum number of T4-4Q vGPUs per
physical GPU is 4. When the scheduling policy is fixed share, each T4-4Q vGPU is given
one quarter, or 25%, the physical GPU's processing cycles. As vGPUs are added to or
removed from a GPU, the share of the GPU's processing cycles allocated to each vGPU
remains constant. As a result, the performance of a vGPU remains unchanged as other
vGPUs are stopped or started on the same GPU.

S Note: For time-sliced vGPUs with different amounts of frame buffer on the same physical
GPU, only the best effort and equal share schedulers are supported. The fixed share
scheduler is not supported.

By default, these schedulers impose a strict round-robin scheduling policy. When this
policy is enforced, the schedulers maintain scheduling fairness by adjusting the time

slice for each VM that is configured with NVIDIA vGPU. The strict round-robin scheduling
policy ensures more consistent scheduling of the work for VMs that are configured with
NVIDIA vGPU and restricts the impact of GPU-intensive applications running in one VM on
applications running in other VMs.

Instead of a strict round-robin scheduling policy, you can ensure scheduling fairness
by scheduling the work for the vGPU that has spent the least amount of time in the
scheduled state. This behavior was the default scheduling behavior in NVIDIA vGPU
software releases before 15.0.

When a strict round-robin scheduling policy is enforced, the adjustment to the time slice
is based on the scheduling frequency and an averaging factor.

Scheduling frequency
The number of times per second that work for a specific vGPU is scheduled. The
default scheduling frequency depends on the number of vGPUs that reside on the
physical GPU:

If fewer than eight vGPUs reside on the physical GPU, the default is 480 Hz.
If eight or more vGPUs reside on the physical GPU, the default is 960 Hz.

Averaging factor
A number that determines the moving average of time-slice overshoots accrued for
each vGPU. This average controls the strictness with which the scheduling frequency is
enforced. A high value for the averaging factor enforces the scheduling frequency less
strictly than a low value.

Deviations from the specified scheduling frequency occur because the actual amount
of time that a scheduler allocates to a VM might exceed, or overshoot, the time slice
specified for the VM. A scheduler enforces the scheduling frequency by shortening the
next time slice for each vGPU VM to compensate for the accrued overshoot time of
the VM.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 153

Changing Scheduling Behavior for Time-Sliced vGPUs

To calculate the amount by which to shorten the next time slice for a vGPU VM, the
scheduler maintains a running total of the accrued overshoot time for each vGPU
VM. This amount is equal to the running total divided by the averaging factor that you
specify. The calculated amount is also subtracted from the accrued overshoot time. A
high value for the averaging factor enforces the scheduling frequency less strictly by
spreading the compensation for the accrued overshoot time over a longer period.

8.2. Scheduler Time Slice for Time-
Sliced vGPUs

When multiple VMs access the vGPUs on a single GPU, the GPU performs the work for
each VM serially. The vGPU scheduler time slice represents the amount of time that the
work of a VM is allowed to run on the GPU before it is preempted and the work of the
next VM is performed.

For the equal share and fixed share vGPU schedulers, you can set the length of the time
slice. The length of the time slice affects latency and throughput. The optimal length of
the time slice depends the workload that the GPU is handling.

» For workloads that require low latency, a shorter time slice is optimal. Typically, these
workloads are applications that must generate output at a fixed interval, such as
graphics applications that generate output at a frame rate of 60 FPS. These workloads
are sensitive to latency and should be allowed to run at least once per interval. A
shorter time slice reduces latency and improves responsiveness by causing the
scheduler to switch more frequently between VMs.

» For workloads that require maximum throughput, a longer time slice is optimal.
Typically, these workloads are applications that must complete their work as quickly as
possible and do not require responsiveness, such as CUDA applications. A longer time
slice increases throughput by preventing frequent switching between VMs.

8.3. Getting Information about the
Scheduling Behavior of Time-Sliced
vGPUs

The nvidia-smi command provides options for getting detailed information about
the scheduling behavior of time-sliced vGPUs. You can also use the hypervisor's dmesg
command to get the current time-sliced vGPU scheduling policy for all GPUs.

8.3.1. Getting Time-Sliced vGPU Scheduler
Capabilities

The scheduler capabilities of a time-sliced vGPU are a set of values that define how you
can configure the vGPU to allocate the work for each VM that is configured with NVIDIA
vGPU. These capability values depend on the vGPU engine type and, for vGPUs that

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 154

Changing Scheduling Behavior for Time-Sliced vGPUs

support multiple scheduling policies, whether the vGPU supports and enforces a strict
round-robin scheduling policy.

» If the vGPU engine type is graphics, the vGPU scheduler capability values consist of
the supported scheduling policies and other values that affect how the work for each
VM that is configured with NVIDIA vGPU is allocated. The capability values that are
applicable depend on whether the vGPU supports and enforces a strict round-robin
scheduling policy.

» If the vGPU supports and enforces a strict round-robin scheduling policy, the
values for the scheduling frequency and averaging factor are applicable.
» Otherwiseg, the values for the supported time slice range applicable.

» If the vGPU engine type is any type other than graphics, the only vGPU scheduler
capability value indicates support for the best effort scheduling policy. All other
capability values are zero.

To get the scheduler capabilities of all time-sliced vGPUs on the platform, run nvidia-smi
vgpu With the -sc or --schedulercaps option.

To limit the information retrieved to a subset of the GPUs on the platform, use the -1 or
--id option to select one or more GPUs.

[root@vgpu ~]# nvidia-smi vgpu -sc
vGPU scheduler capabilities
Supported Policies : Best Effort
Equal Share
Fixed Share
ARR Mode : Supported
Supported Timeslice Range
Maximum Timeslice : 30000000 ns
Minimum Timeslice : 1000000 ns
Supported Scheduling Frequency
Maximum Frequency : 960
Minimum Frequency : 63
Supported ARR Averaging Factor
Maximum Avg Factor : 60
Minimum Avg Factor g 1
8.3.2. Getting Time-Sliced vGPU Scheduler State
Information

The scheduler state information for a time-sliced vGPU consists of the scheduling policy
set for the vGPU and the values of properties that control how the work for the VM

that is configured with the vGPU is allocated. The properties available depend on the
scheduling policy that is set for the vGPU.

The scheduler state information that can be retrieved for a vGPU depends on whether

the VM that is configured with the vGPU is running.

To get scheduler state information for all time-sliced vGPUs on the platform, run nvidia-
smi vgpu With the —ss or --schedulerstate option.

To limit the information retrieved to a subset of the GPUs on the platform, use the -1 or
--id option to select one or more GPUs.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 155

Changing Scheduling Behavior for Time-Sliced vGPUs

The following examples show the scheduler state information that is retrieved for a
vGPU when the VM that is configured with the vGPU is not running and is running. In
these examples, the scheduling policy is equal share scheduler with a strict round-robin
scheduling policy and the default time slice length, scheduling frequency, and averaging
factor.

vGPU Scheduler State Information for a VM that Is Not Running

S Note: For a VM that is not running, ARR Mode, Average Factor,and Time Slice are not

listed.
[root@vgpu ~]# nvidia-smi vgpu -ss
GPU 00000000:65:00.0
Active vGPUs : 0
Scheduler Policy : Equal Share

vGPU Scheduler State Information for a Running VM

[root@vgpu ~]# nvidia-smi vgpu -ss

GPU 00000000:65:00.0
Active vGPUs : 1
Scheduler Policy : Equal Share
ARR Mode : Enabled
Average Factor : 33
Time Slice(ns) : 2083333

8.3.3. Getting Time-Sliced vGPU Scheduler Work
Logs

The scheduler work logs for a time-sliced vGPU provide information about the allocation
at runtime of the work for the VM that is configured with the vGPU.

The information in the scheduler work logs that can be retrieved for a vGPU depends on
whether the VM that is configured with the vGPU is running.

To get scheduler work logs for all time-sliced vGPUs on the platform, run nvidia-smi
vgpu With the -s1 or --schedulerlogs option.

To limit the information retrieved to a subset of the GPUs on the platform, use the -1 or
--1id option to select one or more GPUs.

vGPU Scheduler Work Logs for a VM that Is Not Running
[root@vgpu ~]# nvidia-smi vgpu -sl

Engine Id 1
Scheduler Policy Equal Share
GPU at deviceIndex 0 has no active VM runlist.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 156

Changing Scheduling Behavior for Time-Sliced vGPUs

vGPU Scheduler Work Logs for a Running VM

[root@vgpu ~]# nvidia-smi vgpu -sl
+ ___
+
GPU Id 0
Engine Id 1
Scheduler Policy Equal Share
ARR Mode Enabled
Avg Factor 33
Time Slice 2083333
+ ___
+
GPU SW Runlist Time Cumulative Prev Timeslice
Target Time Cumulative
Idx Id Stamp Run Time Runtime
Slice Preempt Time
0 0 1673362687729708384 2619237216 2083840
2005425 2493060
0 0 1673362687731793472 2621322304 2085088
2005372 2494762
0 0 1673362687733877664 2623406496 2084192
2005346 2495595

8.3.4. Getting the Current Time-Sliced vGPU
Scheduling Policy for All GPUs

You can use the hypervisor's dmesg command to get the current time-sliced vGPU
scheduling policy for all GPUs. Get this information before changing the scheduling
behavior of one or more GPUs to determine if you need to change it or after changing it
to confirm the change.

Perform this task in your hypervisor command shell.

1. Open a command shell on your hypervisor host machine.

On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

2. Use the dmesg command to display messages from the kernel that contain the strings
NVRM and scheduler.
S dmesg | grep NVRM | grep scheduler

The scheduling policy is indicated in these messages by the following strings:
» BEST EFFORT
» EQUAL SHARE

> FIXED SHARE

If the scheduling policy is equal share or fixed share, the scheduler time slice in ms is
also displayed.

This example gets the scheduling policy of the GPUs in a system in which the policy
of one GPU is set to best effort, one GPU is set to equal share, and one GPU is set to
fixed share.

S dmesg | grep NVRM | grep scheduler

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 157

Changing Scheduling Behavior for Time-Sliced vGPUs

2020-10-05T02:58:08.928Z cpu79:2100753)NVRM: GPU at 0000:3d:00.0 has software
scheduler DISABLED with policy BEST EFFORT.

2020-10-05T02:58:09.818Z cpu79:2100753)NVRM: GPU at 0000:5e:00.0 has software
scheduler ENABLED with policy EQUAL SHARE.

NVRM: Software scheduler timeslice set to 1 ms.

2020-10-05T02:58:12.115Z cpu79:2100753)NVRM: GPU at 0000:88:00.0 has software
scheduler ENABLED with policy FIXED SHARE.

NVRM: Software scheduler timeslice set to 1 ms.

8.4. Tools for Changing Scheduling

Behavior for Time-Sliced vGPUs

To change the scheduling behavior for time-sliced vGPUs, you can use the nvidia-

smi command or the RmPVMRL registry key. The tool to use depends on whether you
require the changes to be applied immediately or whether you require the changes to be
persistent.

»

If you require the changes to be applied immediately, use the nvidia-smi command.

If you use the nvidia-smi command, you do not need to reload the driver or reboot
the hypervisor host to apply your changes. However, your changes are volatile and do
not persist in the following circumstances:

» The driveris reloaded.
» The hypervisor host is rebooted.

» The sriov-manage scriptis run to enable the virtual functions for the physical GPU
in the sysfs file system.
If you require the changes to be persistent, use the rRmPVMRL registry key.

However, if you use the rRmPVMRL registry key, you must reload the driver or reboot the
hypervisor host to apply your changes.

For information about how to use these tools to change the scheduling behavior for time-
sliced vGPUs, refer to the following topics:

»

Changing Scheduling Behavior for Time-Sliced vGPUs by Using the nvidia-smi
Command

Changing Scheduling Behavior for Time-Sliced vGPUs by Using the RmPVMRL
Registry Key

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 158

Changing Scheduling Behavior for Time-Sliced vGPUs

8.5. Changing Scheduling Behavior for
Time-Sliced vGPUs by Using the
nvidia-smi Command

The nvidia-smi command provides the vgpu set-scheduler-state subcommand and
associated options for changing the scheduling behavior of time-sliced vGPUs.

Ensure that no vGPUs exist on any physical GPU for which you want to change the
scheduling behavior for time-sliced vGPUs. Any change that you make affects vGPUs that
will be created on the physical GPU after you make the change.

If you try to change the scheduling behavior for time-sliced vGPUs on a physical GPU on
which a vGPU already exists, the attempt to change the scheduling behavior fails and the

nvidia-smi command displays an error message similar to the following example:

Unable to set the vGPU scheduler state on GPU "00000000:1A:00.0".
vGPU scheduler state cannot be configured, if vGPU instance is currently active on
the device.

To change the scheduling behavior for time-sliced vGPUs, run nvidia-smi vgpu set-
scheduler-state with its associated options.

For more information about these options, refer to Scheduling Policies for Time-Sliced
vGPUs.
-i gpu-id
--id gpu-id
gpu-id is the identifier of the GPU on which you want to change the scheduling
behavior of time-sliced vGPUs in one of the following formats:

» The GPU's O-based index in the natural enumeration returned by the driver
» The GPU's universally unique identifier (UUID)
» The GPU's PCl bus ID in the form domain:bus:device. function in hexadecimal.
This option is not mandatory. If it is omitted, the scheduling behavior of time-sliced
vGPUs for all GPUs on the platform is changed.
S
--policy S
S is a decimal integer in the range 1-3 that sets the scheduler to use:
» 1: Best effort scheduler (default)
» 2: Equal share scheduler
» 3: Fixed share scheduler

If Sis not a decimal integer in the range 1-3, the attempt to set the scheduler to use

fails and the nvidia-smi command displays the following error message:
Unable to set the vGPU scheduler state. Not supported

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 159

Changing Scheduling Behavior for Time-Sliced vGPUs

-a R

--arr-mode R
R is a Boolean parameter that enables or disables a strict round-robin scheduling policy
for the scheduler:

0: Disables a strict round-robin scheduling policy for the scheduler
1: Enables a strict round-robin scheduling policy for the scheduler

If a strict round-robin scheduling policy for the scheduler is enabled, the -asf and
-aavg options can also be used to set the scheduling frequency and averaging
factor.

For equal share and fixed share schedulers, this parameter is optional. If omitted, --
arr-mode is setto 1 to enable a strict round-robin scheduling policy for the scheduler.
For best effort schedulers, this parameter is not applicable.

If Ris not 0 or 1, the attempt to enable or disable a strict round-robin scheduling policy
fails and the nvidia-smi command displays the following error message:
Option passed to set Adaptive Round Robin scheduler is invalid.

-asf frequency

--arr-sched-frequency frequency
frequency is a decimal integer in the range 63 to 960 that sets the scheduling
frequency in Hz for the equal share and fixed share schedulers with a strict round-
robin scheduling policy.

If frequency is outside the range 63 to 960, the scheduling frequency is set as follows:
If frequency is not set, the scheduling frequency is set to the default scheduling
frequency for the vGPU type as listed in Table 1.
If frequency is less than 63, the scheduling frequency is raised to 63.
If frequency is greater than 960, the scheduling frequency is capped at 960.
-aavg averaging-factor
--arr-avg-factor averaging-factor
averaging-factor is a decimal integer in the range 1 to 60 that sets the averaging factor

to ensure scheduling fairness for the equal share and fixed share schedulers with a
strict round-robin scheduling policy.

The number of time slices over which the compensation for the accrued overshoot
time is applied depends on the value of averaging-factor:

If averaging-factor is 1, the compensation for the accrued overshoot time is applied
in a single time slice.

If averaging-factor is 60, the compensation for the accrued overshoot time is
spread over 60 time slices.

If averaging-factor is not set, the default value of 33 is used.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 160

Changing Scheduling Behavior for Time-Sliced vGPUs

If averaging-factor is greater than 60, the number of time slices over which the
compensation is applied is capped at 60.

-ts time-slice-length

--time-slice time-slice-length
time-slice-length is a decimal integer in the range 1,000,000 to 30,000,000 that
sets the length of the time slice in nanoseconds (ns) for equal share and fixed share
schedulers without a strict round-robin scheduling policy. Set this parameter only
if -—arr-mode is set to 0 to disable a strict round-robin scheduling policy for the
scheduler.

The minimum length is 1,000,000 ns (1 ms) and the maximum length is 30,000,000 ns
(30 ms). If time-slice-length is outside the range 1,000,000 to 30,000,000, the length is
set as follows:

If time-slice-length is not set, the length is set to the default time slice length for
the vGPU type as listed in Table 1.

If time-slice-length is less than 1,000,000, the length is raised to 1,000,000 ns (1
ms).

If time-slice-length is greater than 30,000,000, the length is capped at 30,000,000
ns (30 ms).

Setting the Scheduling Policy for a Single GPU

This example sets the scheduling policy of the GPU at PCl domain 0000 and BDF 15:00.0
to fixed share scheduler without a strict round-robin scheduling policy and with the
default time slice length.

nvidia-smi vgpu set-scheduler-state -i 0000:15:00.0 -p 3 -a 0

Setting the Scheduling Policy and Time Slice for a Single GPU

This example sets the scheduling policy of the GPU at PCI domain 0000 and BDF 86:00.0
to fixed share scheduler without a strict round-robin scheduling policy and with a time
slice that is 24 ms (24,000,000 ns) long.

nvidia-smi vgpu set-scheduler-state -i 0000:86:00.0 -p 3 -a 0 -ts 24,000,000

Setting the Scheduling Policy and Time Slice for All GPUs

This example sets the vGPU scheduler to equal share scheduler without a strict round-
robin scheduling policy and with a time slice that is 3 ms (3,000,000 ns) long for all GPUs
on the platform.

nvidia-smi vgpu set-scheduler-state -p 2 -a 0 -ts 3,000,000

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 161

Changing Scheduling Behavior for Time-Sliced vGPUs

Enabling a Strict Round-Robin Scheduling Policy for an Equal Share
Scheduler for All GPUs

This example sets the vGPU scheduler to equal share scheduler with a strict round-robin
scheduling policy and the default time slice length, scheduling frequency, and averaging
factor for all GPUs on the platform.

nvidia-smi vgpu set-scheduler-state -p 2 -a 1

Enabling a Strict Round-Robin Scheduling Policy for a Fixed Share
Scheduler for All GPUs

This example sets the vGPU scheduler to fixed share scheduler with a strict round-robin
scheduling policy and the default time slice length, scheduling frequency, and averaging
factor for all GPUs on the platform.

nvidia-smi vgpu set-scheduler-state -p 3 -a 1

Disabling a Strict Round-Robin Scheduling Policy for a Fixed Share
Scheduler and Setting the Time Slice for All GPUs

This example sets the vGPU scheduler to fixed share scheduler without a strict round-
robin scheduling policy and with a time slice that is 24 ms (24,000,000 ns) ms long for all
GPUs on the platform.

nvidia-smi vgpu set-scheduler-state -p 3 -a 0 -ts 24,000,000

Enabling a Strict Round-Robin Scheduling Policy for an Equal Share
Scheduler with Custom Properties for All GPUs

This example sets the vGPU scheduler to equal share scheduler with a strict round-robin
scheduling policy, an averaging factor of 60, and a scheduling frequency of 960 Hz for all
GPUs on the platform.

nvidia-smi vgpu set-scheduler-state -p 2 -a 1 -aavg 60-asf 960

Enabling a Strict Round-Robin Scheduling Policy for a Fixed Share
Scheduler with Custom Properties for All GPUs

This example sets the vGPU scheduler to fixed share scheduler with a strict round-robin
scheduling policy, an averaging factor of 60, and a scheduling frequency of 960 Hz for all
GPUs on the platform.

nvidia-smi vgpu set-scheduler-state -p 3 -a 1 -aavg 60-asf 960

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 162

Changing Scheduling Behavior for Time-Sliced vGPUs

Restoring Default Time-Sliced vGPU Scheduler Settings

This example restores default time-sliced vGPU scheduler settings by setting the vGPU
scheduler to best effort scheduler.

nvidia-smi vgpu set-scheduler-state -p 1

8.6. Changing Scheduling Behavior for
Time-Sliced vGPUs by Using the
RmPVMRL Registry Key

To use the rmPVMRL registry key to change the scheduling behavior of time-sliced vGPUs,
use the standard interfaces of your hypervisor to set the RmPVMRL registry key value. The
RmPVMRL registry key controls the scheduling behavior for NVIDIA vGPUs by setting the
scheduling policy, the averaging factor and scheduling frequency for schedulers with

a strict round-robin scheduling policy, and the length of the time slice for schedulers
without a strict round-robin scheduling policy.

8.6.1. Changing the Time-Sliced vGPU
Scheduling Behavior for All GPUs by Using
the rRmPVMRL Regqistry Key

S Note: You can change the vGPU scheduling behavior only on GPUs that support multiple
vGPU schedulers, that is, GPUs based on NVIDIA GPU architectures after the Maxwell
architecture.

Perform this task in your hypervisor command shell.

1. Open a command shell on your hypervisor host machine.

On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

2. Set the rRmPVMRL registry key to the value that sets the GPU scheduling policy and the
length of the time slice that you want.

» On Citrix Hypervisor or Red Hat Enterprise Linux KVM, add the following entry to
the /etc/modprobe.d/nvidia.conf file.
options nvidia NVreg RegistryDwords="RmPVMRL=value"
If the /etc/modprobe.d/nvidia.conf file does not already exist, create it.

» On VMware vSphere, use the esxcli set command.

esxcli system module parameters set -m nvidia -p
"NVreg_RegistryDwords=RmPVMRL=value"

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 163

Changing Scheduling Behavior for Time-Sliced vGPUs

value

The value that sets the GPU scheduling policy and the length of the time slice that
you want, for example:

0x01
Sets the vGPU scheduling policy to equal share scheduler with the default time
slice length.

0x00030001
Sets the GPU scheduling policy to equal share scheduler with a time slice that is
3 ms long.

0x11
Sets the vGPU scheduling policy to fixed share scheduler with the default time
slice length.

0x00180011
Sets the GPU scheduling policy to fixed share scheduler with a time slice that is
24 (0x18) ms long.

For all supported values, see RmPVMRL Registry Key.
3. Reboot your hypervisor host machine.

Confirm that the scheduling behavior was changed as required as explained in Getting
the Current Time-Sliced vGPU Scheduling Policy for All GPUs.

8.6.2. Changing the Time-Sliced vGPU
Scheduling Behavior for Select GPUs by
Using the rmPVMRL Registry Key

=|| Note: You can change the vGPU scheduling behavior only on GPUs that support multiple
vGPU schedulers, that is, GPUs based on NVIDIA GPU architectures after the Maxwell
architecture.

Perform this task in your hypervisor command shell.

1. Open a command shell on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

2. Use the 1spci command to obtain the PCl domain and bus/device/function (BDF) of
each GPU for which you want to change the scheduling behavior.

» On Citrix Hypervisor or Red Hat Enterprise Linux KVM, add the -p option to display
the PCl domain and the -d 10de: option to display information only for NVIDIA
GPUs.

lspci -D -d 1l0de:

» On VMware vSphere, pipe the output of 1spci to the grep command to display

information only for NVIDIA GPUs.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 164

Changing Scheduling Behavior for Time-Sliced vGPUs

1lspci | grep NVIDIA

The NVIDIA GPU listed in this example has the PCI domain 0000 and BDF 86:00.0.
0000:86:00.0 3D controller: NVIDIA Corporation GP104GL [Tesla P4] (rev al)

3. Use the module parameter NVreg RegistryDwordsPerDevice to set the pci and
RmPVMRL registry keys for each GPU.

On Citrix Hypervisor or Red Hat Enterprise Linux KVM, add the following entry to
the /etc/modprobe.d/nvidia.conf file.

options nvidia NVreg RegistryDwordsPerDevice="pci=pci-domain:pci-
bdf; RmPVMRL=value
[;pci=pci-domain:pci-bdf; RmPVMRL=value...]"

If the /etc/modprobe.d/nvidia.conf file does not already exist, create it.
On VMware vSphere, use the esxcli set command.

esxcli system module parameters set -m nvidia \
-p "NVreg_RegistryDwordsPerDevice=pci=pci-domain:pci-bdf;RmPVMRL=value\
[;pci=pci-domain:pci-bdf;RmPVMRL=value...]"

For each GPU, provide the following information:
pci-domain
The PCl domain of the GPU.
pci-bdf
The PCI device BDF of the GPU.
value

The value that sets the GPU scheduling policy and the length of the time slice that

you want, for example:

0x01
Sets the GPU scheduling policy to equal share scheduler with the default time
slice length.

0x00030001
Sets the GPU scheduling policy to equal share scheduler with a time slice that is
3 ms long.

0x11
Sets the GPU scheduling policy to fixed share scheduler with the default time
slice length.

0x00180011
Sets the GPU scheduling policy to fixed share scheduler with a time slice that is
24 (0x18) ms long.

For all supported values, see RmPVMRL Registry Key.

This example adds an entry to the /etc/modprobe.d/nvidia.conf file to change the
scheduling behavior of a single GPU. The entry sets the GPU scheduling policy of the
GPU at PCl domain 0000 and BDF 86:00.0 to fixed share scheduler with the default
time slice length.

options nvidia NVreg RegistryDwordsPerDevice=

"pci=0000:86:00.0; RmPVMRL=0x11"

This example adds an entry to the /etc/modprobe.d/nvidia.conf file to change the
scheduling behavior of a single GPU. The entry sets the scheduling policy of the GPU

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 165

Changing Scheduling Behavior for Time-Sliced vGPUs

at PCl domain 0000 and BDF 86:00.0 to fixed share scheduler with a time slice that is
24 (0x18) ms long.

options nvidia NVreg RegistryDwordsPerDevice=

"pci=0000:86:00.0; RmPVMRL=0x00180011"

This example changes the scheduling behavior of a single GPU on a hypervisor host
that is running VMware vSphere. The command sets the scheduling policy of the GPU
at PCl domain 0000 and BDF 15:00.0 to fixed share scheduler with the default time
slice length.

esxcli system module parameters set -m nvidia -p \

"NVreg_ RegistryDwordsPerDevice=pci=0000:15:00.0;RmPVMRL=0x11[;pci=0000:15:00.0;RmPVMRL=0x11]"
This example changes the scheduling behavior of a single GPU on a hypervisor host
that is running VMware vSphere. The command sets the scheduling policy of the GPU
at PCl domain 0000 and BDF 15:00.0 to fixed share scheduler with a time slice that is
24 (0x18) ms long.

esxcli system module parameters set -m nvidia -p \
"NVreg RegistryDwordsPerDevice=pci=0000:15:00.0;RmPVMRL=0x11[;pci=0000:15:00.0;RmPVMRL=0x00180011]"

4. Reboot your hypervisor host machine.

Confirm that the scheduling behavior was changed as required as explained in Getting
the Current Time-Sliced vGPU Scheduling Policy for All GPUs.

8.6.3. Restoring Default Time-Sliced vGPU
Scheduler Settings by Using the RmPVMRL
Registry Key

Perform this task in your hypervisor command shell.

1. Open a command shell on your hypervisor host machine.

On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

2. Unset the RmPVMRL registry key.

» On Citrix Hypervisoror Red Hat Enterprise Linux KVM, comment out the entries in
the /etc/modprobe.d/nvidia.conf file that set rmPVMRL by prefixing each entry
with the # character.

» On VMware vSphere, set the module parameter to an empty string.

esxcli system module parameters set -m nvidia -p "module-parameter="

module-parameter
The module parameter to set, which depends on whether the scheduling
behavior was changed for all GPUs or select GPUs:

» Forall GPUs, set the Nvreg RegistrybDwords module parameter.

» For select GPUs, set the NVreg RegistryDwordsPerDevice module
parameter.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 166

Changing Scheduling Behavior for Time-Sliced vGPUs

For example, to restore default vGPU scheduler settings after they were changed
for all GPUs, enter this command:

esxcli system module parameters set -m nvidia -p "NVreg RegistryDwords="

3. Reboot your hypervisor host machine.

8.6.4. RmPVMRL Registry Key

The rRmPVMRL registry key controls the scheduling behavior for NVIDIA vGPUs by setting
the scheduling policy, the averaging factor and scheduling frequency for schedulers with
a strict round-robin scheduling policy, and the length of the time slice for schedulers
without a strict round-robin scheduling policy.

Note: You can change the vGPU scheduling behavior only on GPUs that support multiple
vGPU schedulers, that is, GPUs based on NVIDIA GPU architectures after the Maxwell

architecture.

Type

Dword

Contents

Value
0x00 (default)

0x01
0x03
O0xAAFFFO01
0x00TT0003

O0x11

Virtual GPU Software

Meaning
Best effort scheduler

Equal share scheduler with a strict round-robin scheduling policy and the
default time slice length, scheduling frequency, and averaging factor

Equal share scheduler without a strict round-robin scheduling policy and the
default time slice length

Equal share scheduler with a strict round-robin scheduling policy and a user-
defined averaging factor AA and a user-defined scheduling frequency FFF

Equal share scheduler without a strict round-robin scheduling policy and
with a user-defined time slice length 7T

Fixed share scheduler with a strict round-robin scheduling policy and the
default time slice length, scheduling frequency, and averaging factor

Note: This value cannot be set for time-sliced vGPUs on a physical
GPU in mixed-size mode.

DU-06920-001 _v17.0 through 17.2 | 167

Value

0x13

0xAAFFF011

0x00TT0013

Changing Scheduling Behavior for Time-Sliced vGPUs

Meaning

Fixed share scheduler without a strict round-robin scheduling policy and with
the default time slice length

Note: This value cannot be set for time-sliced vGPUs on a physical
GPU in mixed-size mode.

Fixed share scheduler with a strict round-robin scheduling policy and a user-
defined averaging factor AA and a user-defined scheduling frequency FFF

Note: This value cannot be set for time-sliced vGPUs on a physical
GPU in mixed-size mode.

Fixed share scheduler without a strict round-robin scheduling policy and with
a user-defined time slice length TT

Note: This value cannot be set for time-sliced vGPUs on a physical
GPU in mixed-size mode.

The default time slice length and scheduling frequency depend on the maximum number
of vGPUs per physical GPU allowed for the vGPU type.

Table 1. Default Time Slice Length and Scheduling Frequency by
vGPU Density
Maximum Number of Default Scheduling
vGPUs Default Time Slice Length Frequency
Less than or equal to 8 2 ms 480 Hz

Greater than 8

AA

1 ms 960 Hz

Two hexadecimal digits in the range OxO1 to Ox3C (decimal 1-60) that set the
averaging factor for the equal share and fixed share schedulers with a strict round-
robin scheduling policy.

The number of time slices over which the compensation for the accrued overshoot
time is applied depends on the value of AA:

> If AAis OxO1, the compensation for the accrued overshoot time is applied in a
single time slice.

> If AAis Ox3C, the compensation for the accrued overshoot time is spread over 60
(0x3C) time slices.

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2 | 168

Changing Scheduling Behavior for Time-Sliced vGPUs

If AA is Ox00, the default value of 33 is used.
If AA is greater than Ox3C, the value is capped at Ox3C.

FFF
Three hexadecimal digits in the range Ox3F to 0x3CO (decimal 63-960) that set the
scheduling frequency for the equal share and fixed share schedulers with a strict
round-robin scheduling policy. The time slice is the inverse of scheduling frequency. For
example, a frequency of Ox3F (63 Hz) yields a time slice of 1/63 s, or 15.873 ms.

A value of Ox100 for FFF sets the scheduling frequency to 256.
If FFF is outside the range Ox3F to Ox3CO, the scheduling frequency is set as follows:

If FFF is 000, the scheduling frequency is set to the default scheduling frequency
for the vGPU type as listed in Table 1.

If FFF is greater than 000 but less than Ox3F, the scheduling frequency is raised to
Ox3F (decimal 63).

If FFF is greater than 0x3CO, the scheduling frequency is capped at 0x3CO (decimal
960).

TT
Two hexadecimal digits in the range OxO1 to Ox1E (decimal 1-30) that set the length of
the time slice in milliseconds (ms) for the equal share and fixed share schedulers. The
minimum length is T ms and the maximum length is 30 ms.

If TT is outside the range O1 to 1E, the length is set as follows:

If TT is OO0, the length is set to the default time slice length for the vGPU type as
listed in Table 1.

If TT is greater than Ox1E (decimal 30), the length is capped at 30 ms.

This example sets the vGPU scheduler to equal share scheduler with a strict round-robin
scheduling policy and the default time slice length, scheduling frequency, and averaging
factor.

RmPVMRL=0x01

This example sets the vGPU scheduler to equal share scheduler without a strict round-
robin scheduling policy and with a time slice that is 3 ms long.
RMPVMRL=0x00030003

This example sets the vGPU scheduler to fixed share scheduler with a strict round-robin
scheduling policy and the default time slice length, scheduling frequency, and averaging
factor.

RmPVMRL=0x11

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 169

Changing Scheduling Behavior for Time-Sliced vGPUs

This example sets the vGPU scheduler to fixed share scheduler without a strict round-
robin scheduling policy and with a time slice that is 24 (0x18) ms long.
RmPVMRL=0x00180011

This example sets the vGPU scheduler to equal share scheduler with a strict round-robin
scheduling policy, an averaging factor of 60 (0x3C), and a scheduling frequency of 960
(Ox3CO0) Hz.

RmPVMRL=0x3c3c0001

This example sets the vGPU scheduler to fixed share scheduler with a strict round-robin
scheduling policy, an averaging factor of 60 (0x3C), and a scheduling frequency of 960
(Ox3CO0) Hz.

RmPVMRL=0x3c3c0011

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 170

Chapter 9. Troubleshooting

This chapter describes basic troubleshooting steps for NVIDIA vGPU on Linux-style
hypervisors and how to collect debug information when filing a bug report.

O.1. Known issues

Before troubleshooting or filing a bug report, review the release notes that accompany
each driver release, for information about known issues with the current release, and
potential workarounds.

9.2. Troubleshooting steps

If a vGPU-enabled VM fails to start, or doesn’t display any output when it does start,
follow these steps to narrow down the probable cause.

9.2.1. Verifying the NVIDIA Kernel Driver Is
Loaded

1. Use the command that your hypervisor provides to verify that the kernel driver is
loaded:

» On Linux-style hypervisors except VMware vSphere, use 1smod:

[root@xenserver ~]# lsmod|grep nvidia
nvidia 9604895 84
i2c _core 20294 2 nvidia,i2c 1801
[root@xenserver ~]#

» On VMware vSphere, use vmkload mod:
[root@esxi:~] vmkload mod -1 | grep nvidia
nvidia 5 8420

2. If the nvidia driver is not listed in the output, check dmesg for any load-time errors
reported by the driver (see Examining NVIDIA kernel driver output).

3. On Citrix Hypervisor and Red Hat Enterprise Linux KVM, also use the rpm -q
command to verify that the NVIDIA GPU Manager package is correctly installed.

rpm -q vgpu-manager-rpm-package-name

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 |

171

Troubleshooting

vgpu-manager-rpm-package-name
The RPM package name of the NVIDIA GPU Manager package, for example NvIDIA-
vGPU-NVIDIA-vGPU-CitrixHypervisor-8.2-550.90.05 for Citrix Hypervisor.

This example verifies that the NVIDIA GPU Manager package for Citrix Hypervisor is
correctly installed.

[root@xenserver ~]# rpm —q NVIDIA-vGPU-NVIDIA-vGPU-CitrixHypervisor-8.2-550.90.05
[root@xenserver ~]#

If an existing NVIDIA GRID package is already installed and you don’t select the
upgrade (-U) option when installing a newer GRID package, the rpm command will
return many conflict errors.

Preparing packages for installation...

file /usr/bin/nvidia-smi from install of NVIDIA-vGPU-NVIDIA-vGPU-
CitrixHypervisor-8.2-550.90.05.x86 64 conflicts with file from package NVIDIA-
vGPU-xenserver—-8.2-550.54.16.x86_ 64

file /usr/lib/libnvidia-ml.so from install of NVIDIA-vGPU-NVIDIA-vGPU-
CitrixHypervisor-8.2-550.90.05.x86 64 conflicts with file from package NVIDIA-
vGPU-xenserver-8.2-550.54.16.x86_ 64

9.2.2. Verifying that nvidia-smi works

If the NVIDIA kernel driver is correctly loaded on the physical GPU, run nvidia-smi and

verify that all physical GPUs not currently being used for GPU pass-through are listed in
the output. For details on expected output, see NVIDIA System Management Interface

nvidia-smi.

If nvidia-smi fails to report the expected output, check dmesg for NVIDIA kernel driver
messages.

9.2.3. Examining NVIDIA kernel driver output

Information and debug messages from the NVIDIA kernel driver are logged in kernel logs,
prefixed with NVRM or nvidia.

Run dmesg on a supported Linux-style hypervisor and check for the NvRM and nvidia
prefixes:

[root@xenserver ~]# dmesg | grep -E "NVRM|nvidia"

[22.054928] nvidia: module license 'NVIDIA' taints kernel.

22.390414] NVRM: loading

22.829226] nvidia 0000:04:00.0: enabling device (0000 -> 0003)

22.829236] nvidia 0000:04:00.0: PCI INT A -> GSI 32 (level, low) -> IRQ 32
22.829240] NVRM: This PCI I/O region assigned to your NVIDIA device is invalid:
22.829241] NVRM: BARO is OM @ 0xO (PCI:0000:00:04.0)

22.829243] NVRM: The system BIOS may have misconfigured your GPU.

9.2.4. Examining NVIDIA Virtual GPU Manager
Messages

Information and debug messages from the NVIDIA Virtual GPU Manager are logged to the
hypervisor’s log files, prefixed with vmiop.

—

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 172

9.2.4.1.

Messages

Troubleshooting

Examining Citrix Hypervisor vGPU Manager

For Citrix Hypervisor, NVIDIA Virtual GPU Manager messages are written to /var/log/

messages.

Look in the /var/log/messages file for the vmiop prefix:

[root@xenserver ~]# grep vmiop /var/log/messages
notice:

Jun 17 10:34:03
0000:05:00.0
Jun 17 10:34:03
Jun 17 10:34:03
Jun 17 10:34:03
0x13F2:0x114E
Jun 17 10:34:03 localhost

Information: ########
Jun 17 10:34:03 localhost
Version: 550.90.05
Jun 17 10:34:03 localhost
syncing...
Jun 17 10:35:31 localhost
Driver Information:
Jun 17 10:35:31
Jun 17 10:35:36
O0x11lbc84!
Jun 17 10:35:40
0Ox1lleff0!
[root@xenserver

9.2.4.2.

localhost
localhost

localhost
localhost

localhost
localhost

localhost

~1#

vgpu-11[25698] :
vgpu-11[25698] :
vgpu-11[25698] :
vgpu-11[25698] :
vgpu-11[25698] :
vgpu-11[25698] :
vgpu-11[25698] :
vgpu-11[25698] :
FHHHHHHH
vgpu-11[25698] :
vgpu-11[25698] :

vgpu-11[25698] :

notice:
notice:
notice:

notice:

notice:

notice:

notice:

notice:
notice:

notice:

vmiop log:
vmiop log:
vmiop log:
vmiop log:
vmiop log:
vmiop log:
vmiop log:
vmiop log:

vmiop log:
vmiop log:

vmiop log:

gpu-pci-id :
vgpu_type quadro
Framebuffer: 0x74000000

Virtual Device Id:
######## vGPU Manager
Driver

Init frame copy engine:
######## Guest NVIDIA

Driver Version: 552.55
Current max guest pfn =

Current max guest pfn =

Examining Red Hat Enterprise Linux KVM vGPU
Manager Messages

For Red Hat Enterprise Linux KVM , NVIDIA Virtual GPU Manager messages are written to

/var/log/messages.

Look in these files for the vmiop log: prefix:

grep vmiop log: /var/log/messages

[2024-06-14 04:46:12] vmiop log: [2024-06-14 04:46:12] notice:

guest max gpfn:0x11f7ff

[2024-06-14 04:46:12] vmiop log: [2024-06-14 04:46:12] notice:

vmiop-env:

/usr/

share/nvidia/vgx/grid m60-1qg.conf, gpu-pci-id=0000:06:00.0
[2024-06-14 04:46:12]

[2024-06-14 04:46:12]
libnvidia-vgpu
[2024-06-14 04:46:
the env symbols!
[2024-06-14 04:46:

12]

12]

vmiop log:

vmiop log:

vmiop log:

id : 0000:06:00.0

[2024-06-14 04:46:12] vmiop_ log:
vgpu_type quadro

[2024-06-14 04:46:12] vmiop log:
Framebuffer: 0x38000000

[2024-06-14 04:46:12]
Device Id:
[2024-06-14 04:46:12]

vGPU Manager Information:

vmiop log:

0x13F2:0x114D
vmiop log:

i

[2024-06-14 04:46:12] vmiop_ log:

Version: 550.90.05

[2024-06-14 04:46:12] vmiop log:

copy engine:

Virtual GPU Software

syncing...

[2024-06-14
[2024-06-14
[2024-06-14
[2024-06-14
[2024-06-14

[2024-06-14

i

[2024-06-14

[2024-06-14

04:46:12]

04:

04:

04:

04:

04:

04:

04:

46:

46:

46:

46:

46:

46:

46:

12]
12]
12]
12]
12]
12]

12]

DU-06920-001 _v17.0 through 17.2 |

notice:

notice:

notice:

notice:

notice:

notice:

notice:

notice:

notice:

pluginconfig:

Loading PluginO:

Successfully update

vmiop log:
vmiop log:
vmiop log:
vmiop log:
vmiop log:
vmiop log:

vmiop log:

gpu-pci-

Virtual
HHHHfHHH
Driver

Init frame

173

Troubleshooting

[2024-06-14 05:09:14] vmiop log: [2024-06-14 05:09:14] notice: vmiop log: #######4#
Guest NVIDIA Driver Information: #######4#

[2024-06-14 05:09:14] vmiop log: [2024-06-14 05:09:14] notice: vmiop log: Driver
Version: 552.55

[2024-06-14 05:09:14] vmiop log: [2024-06-14 05:09:14] notice: vmiop log: Current
max guest pfn = 0x11la71f!

[2024-06-14 05:12:09] vmiop log: [2024-06-14 05:12:09] notice: vmiop log: vGPU
license state: (0x00000001)

#

9.2.4.3. Examining VMware vSphere vGPU Manager

Messages

For VMware vSphere, NVIDIA Virtual GPU Manager messages are written to the
vmware. log file in the guest VM'’s storage directory.

Look in the vmware. log file for the vmiop prefix

[root@esxi:~] grep vmiop /vmfs/volumes/datastorel/win7-vgpu-testl/vmware.log
2024-06-14T14:02:21.275Z2| vmx| I120: DICT pciPassthrul.virtualDev = "vmiop"
2024-06-14T14:02:21.3447| vmx| I120: GetPluginPath testing /usr/lib64/vmware/plugin/
libvmx-vmiop.so
2024-06-14T14:02:21.3447| vmx| I120: PluginLdr LoadShared: Loaded shared plugin
libvmx-vmiop.so from /usr/lib64/vmware/plugin/libvmx-vmiop.so
2024-06-14T14:02:21.344Z| vmx| I120: VMIOP: Loaded plugin libvmx-
vmiop.so:VMIOP InitModule
2024-06-14T714:02:21.359Z| vmx| I120: VMIOP: Initializing plugin vmiop-display
2024-06-14T14:02:21.365Z| vmx| I120: vmiop log: gpu-pci-id : 0000:04:00.0
2024-06-14T14:02:21.365Z| vmx| I120: vmiop log: vgpu type : quadro
2024-06-14T14:02:21.365Z| vmx| I120: vmiop log: Framebuffer: 0x74000000
2024-06-14T14:02:21.365Z| vmx| I120: vmiop log: Virtual Device Id: 0x11B0:0x101B
2024-06-14T14:02:21.365Z2| vmx| I120: vmiop log: ######## vGPU Manager Information:
#HEHHEEHA
2024-06-14T14:02:21.365Z| vmx| I120: vmiop log: Driver Version: 550.90.05
2024-06-14T14:02:21.365Z| vmx| I120: vmiop log: VGX Version: 17.2
2024-06-14T14:02:21.4452| vmx| I120: vmiop log: Init frame copy engine: syncing...
2024-06-14T14:02:37.031Z| vthread-12| I120: vmiop log: ######## Guest NVIDIA Driver
Information: ########
2024-06-14T14:02:37.0317Z| vthread-12| I120: vmiop log: Driver Version: 552.55
2024-06-14T14:02:37.0312| vthread-12| I120: vmiop log: VGX Version: 17.2
2024-06-14T14:02:37.093%Z| vthread-12| I120: vmiop log: Clearing BARl mapping
2024-06-17T23:39:55.7262| vmx| I120: VMIOP: Shutting down plugin vmiop-display
[root@esxi:~]

9.3. Capturing configuration data for
filing a bug report

When filing a bug report with NVIDIA, capture relevant configuration data from the

platform exhibiting the bug in one of the following ways:

» Onany supported hypervisor, run nvidia-bug-report. sh.

» On Citrix Citrix Hypervisor, create a Citrix Hypervisor server status report.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 174

Troubleshooting

9.3.1. Capturing configuration data by running
nvidia-bug-report.sh

The nvidia-bug-report.sh script captures debug information into a gzip-compressed
log file on the server.

Run nvidia-bug-report.sh from the Citrix Hypervisor domO shell, the host shell of a
supported Linux with KVM hypervisor, or the VMware ESXi host shell.

This example runs nvidia-bug-report.sh on Citrix Hypervisor, but the procedure is the
same on any supported Linux with KVM hypervisoror or VMware vSphere ESXi.

[root@xenserver ~]# nvidia-bug-report.sh

nvidia-bug-report.sh will now collect information about your

system and create the file 'nvidia-bug-report.log.gz' in the current
directory. It may take several seconds to run. In some

cases, it may hang trying to capture data generated dynamically

by the Linux kernel and/or the NVIDIA kernel module. While

the bug report log file will be incomplete if this happens, it

may still contain enough data to diagnose your problem.

For Xen open source/XCP users, if you are reporting a domain issue,
please run: nvidia-bug-report.sh --domain-name <"domain name">

Please include the 'nvidia-bug-report.log.gz' log file when reporting
your bug via the NVIDIA Linux forum (see devtalk.nvidia.com)
or by sending email to 'linux-bugs@nvidia.com'.

Running nvidia-bug-report.sh...

If the bug report script hangs after this point consider running with
--safe-mode command line argument.

complete

[root@xenserver ~]#

9.3.2. Capturing Configuration Data by Creating a
Citrix Hypervisor Status Report

In XenCenter, from the Tools menu, choose Server Status Report.
Select the Citrix Hypervisor instance from which you want to collect a status report.
Select the data to include in the report.

To include NVIDIA vGPU debug information, select NVIDIA-logs in the Report Content
Item list.

5. Generate the report.

AW =

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 175

Figure 28.

€3 XenCenter

Troubleshooting

Including NVIDIA logs in a Citrix Hypervisor status report
- ‘.. “

i B

(2| B o]

| view

File

View Pool Server VM

Storage

! Q) Back + () Forward - [Add New Server

Templ

lastes Tools Window

New Pool 5] New Storage (1] New vM

Help

(@) ShutDown 3 Reboot ([} Suspend

QSEem Alerts: 33

s [Server View v

rch...

)
f

[ER|

= €3 XenCenter

] E acurrid-testl
EY Y xenserver-vau-test2 (VM IPs10.31]
[test-image-win7-32
[vgx-base-image-win7-32
@ vgx-base-image-win7-54
[DVD drives
g Local storage
E=d Removable storage
[VM Storage
[xenserver-vgx-test (VM IPs 1031

i [

E xenserver-vgx-test2 (VM IPs 10.31.213.50-95, dom0 .98, QOB .99)

Logged in as: Local root account

Search | Gel

neral

Memory | Storage | Netwarking | NICs

Console | Performance | Users

Logs

Expand all _Collapse all

Gener:

Descripti
Tags:
Folder:
Enabled:
iSCSIIQ
Log dest
Server ug
Teolstad

UuI;
Manag
Memo|
Versiol

Licens

€9 Server Status Report

= =]}

I Select the data you wish to include in your report

L7

Select Servers

Select Report Contents

Compile Report

Report Destination

Choose which items you would like to include in your status report. You can see the size and estimated
retrieval time of your report, as well as specific details on each item to the right of the item list.

Report Content ftem

Confidentiality Rating

["] Changed files
Device model

[Tl First-boot scripts

[7] Metwork status
NVIDIA-logs

[¥] Process listing

(] XenCenter logs
XenServer daemon internal logs
[7] XenServer database
Crash dump logs

[C] Disk information
Hardware information
[7] High availability

[Tl High availability liveset

Q-

m

1

PCCO00OOO0R00Qe

Clear All Select All C

Description
Size
< 20 MB

Time

< 2 minutes

Total Size:

Citrix Privacy Statement

<1193 MB

< 8 minutes

| [cancel

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2 |

176

Appendix A. Virtual GPU Types
Reference

A.1. Virtual GPU Types for Supported
GPUs

NVIDIA vGPU is available as a licensed product on supported NVIDIA GPUs. For a list
of recommended server platforms and supported GPUs, consult the release notes for
supported hypervisors at NVIDIA Virtual GPU Software Documentation.

A.1.1. NVIDIA A40 Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Q-Series Virtual GPU Types for NVIDIA A40

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 177

https://docs.nvidia.com/grid/17.0/

Virtual
GPU Type

A40-48Q

A40-24Q

A40-16Q

A40-12Q

A40-8Q

A40-6Q

A40-4Q

A40-3Q

A40-2Q

A40-1Q

Frame
Buffer
(MB)

49152

24576

16384

12288

8192

6144

4096

3072

2048

1024

Virtual GPU Software

Maximum Maximum

vGPUs
per GPU
in Equal-

vGPUs per
GPU in
Mixed-

Size Mode Size Mode

24

32°

30

Available
Pixels

66355200

66355200

66355200

66355200

66355200

58982400

58982400

36864000

36864000

18432000

The maximum vGPUs per GPU is limited to 32.

Virtual GPU Types Reference

Display
Resolution

7680%x4320

5120x2880 or
lower

7680%x4320

5120x2880 or
lower

7680%x4320

5120x2880 or
lower

7680x4320

5120x2880 or
lower

7680x4320

5120x%2880 or
lower

7680x4320

5120x%2880 or
lower

7680x4320

5120x%2880 or
lower

7680%x4320
5120x2880

3840%x2400 or
lower

7680%x4320
5120x2880

3840%x2400 or
lower

5120x2880

Virtual
Displays
per
vGPU

DU-06920-001 _v17.0 through 17.2 | 178

Maximum
Frame vGPUs
Virtual
GPU Type Buffer per GPU

(MB) in Equal-
Size Mode

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Virtual GPU Types Reference

Maximum .
Virtual
vGPUs per . . .
GPU in Available Display Displays
. Pixels Resolution per
Mixed- VGPU
Size Mode
3840%x2400 2
3840x2160 2
2560x 1600 or
lower

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between

using a small number of high resolution displays or a larger number of lower resolution

displays with these vGPU types. The maximum number of displays per vGPU is based
on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for

B-Series and Q-Series vGPUs.

Maximum
. Frame vGPUs
G\;:;t_:_lal o Buffer per GPU
yp (MB) in Equal-
Size Mode
A40-2B 2048 24
A40-1B 1024 32

Virtual GPU Software

Maximum .
Virtual
vGPUs per . . .
GPU in Available Display Displays
. Pixels Resolution per
Mixed- VGPU
Size Mode
5120x2880 1
3840%x2400 2
16 18432000 | 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840%2400 1
32 16384000 3840x2160 1
2560x 1600 or 3
47

lower

DU-06920-001 _v17.0 through 17.2 |

179

Virtual GPU Types Reference

Intended use case: Virtual Applications
Required license edition: vApps

These vGPU types support a single display with a fixed maximum resolution.

4 BRI Maximum
) Frame vGPUs Maximum Virtual
Virtual vGPUs per . .
Buffer per GPU . . Display Displays
GPU Type . GPU in Mixed- .
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
A40-48A 49152 1 1 1280x 10244 14
A40-24A 24576 2 2 1280x 10244 14
A40-16A 16384 3 2 1280x 10244 14
A40-12A 12288 4 4 1280x 10244 14
A40-8A 8192 6 4 1280x 10244 14
A40-6A 6144 8 8 1280x 10244 14
A40-4A 4096 12 8 1280x 10244 14
A40-3A 3072 16 16 1280x 10244 14
A40-2A 2048 24 16 1280x 10244 14
A40-1A 1024 3p° 32 1280x 10244 14

Physical GPUs per board: 4

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Intended use case: Virtual Workstations
Required license edition: vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based
on a configuration in which all displays have the same resolution. For examples of

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 180

Virtual GPU Types Reference

configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . . .
Virtual . Available Display Displays
Buffer per GPU GPU in . ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode Size Mode
7680x4320 2
Al6-16Q 16384 1 1 66355200 | 5120x2880 or
4
lower
7680%x4320 2
A16-8Q 8192 2 2 66355200 | 5120%2880 or
4
lower
7680%x4320 1
A16-4Q 4096 4 4 58982400 | 5120x2880 or
4
lower
7680x4320 1
5120x2880 2
A16-2Q 2048 8 8 36864000
3840%2400 or 4
lower
5120x2880 1
3840x2400 2
Al6-1Q 1024 16 16 18432000 | 3840x2160 2
2560x 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 181

Virtual GPU Types Reference

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . , .
Virtual . Available Display Displays
Buffer per GPU GPU in , ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode @ Size Mode
5120x2880 1
3840x2400 2
A16-2B 2048 8 8 18432000 | 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840%x2400 1
Al16-1B 1024 16 16 16384000 3840x2160 1
2560x 1600 or .
47
lower
Intended use case: Virtual Applications
Required license edition: VApps
These vGPU types support a single display with a fixed maximum resolution.
Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per , .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed- .
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
A16-16A 16384] 1 1280x1024% 1
AT6-8A 8192 2 2 1280%x1024% 14
A16-4A 4096 4 4 1280x1024* 1
A16-2A 2048 8 8 1280x1024* 1
ATB-TA 1024 16 16 1280%x1024% 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 182

Intended use case: Virtual Workstations

Required license edition: VWS

Virtual GPU Types Reference

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual
GPU Type

A10-24Q

A10-12Q

A10-8Q

A10-6Q

A10-4Q

A10-3Q

A10-2Q

Frame
Buffer
(MB)

24576

12288

8192

6144

4096

3072

2048

Virtual GPU Software

Maximum Maximum

vGPUs vGPUs per
per GPU GPU in
in Equal- Mixed-

Size Mode Size Mode

2 2
3 2
4 4
6 4
8 8
12 8

Available
Pixels

66355200

66355200

66355200

58982400

58982400

36864000

36864000

Display
Resolution

7680%x4320

5120x2880 or
lower

7680%x4320

5120x2880 or
lower

7680x4320

5120x2880 or
lower

7680x4320

5120x%2880 or
lower

7680x4320

5120x%2880 or
lower

7680x4320
5120x2880

3840x2400 or
lower

7680x4320
5120x2880

Virtual
Displays
per
vGPU

DU-06920-001 _v17.0 through 17.2 | 183

Maximum
. Frame vGPUs
G\;'l;t;‘a' . Buffer perGPU
yp (MB) in Equal-
Size Mode
A10-1Q 1024 24

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Maximum
VGPUs per| , ilable
P T Pixels
Mixed-
Size Mode
16 18432000

Virtual GPU Types Reference

Display
Resolution

3840x%2400 or
lower

5120x2880
3840%2400
3840x2160

2560x 1600 or
lower

Virtual
Displays
per
vGPU

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for

B-Series and Q-Series vGPUs.

Maximum
. Frame vGPUs
G\;'l;t;‘a' . Buffer perGPU
yp (MB) in Equal-
Size Mode
A10-2B 2048 12
A10-1B 1024 24

Virtual GPU Software

Maximum
VGPUs per| , ilable
P T Pixels
Mixed-
Size Mode
8 18432000
16 16384000

DU-06920-001 _v17.0 through 17.2 |

Display
Resolution

5120%x2880
3840x2400
3840%2160

2560x 1600 or
lower

5120x2880
3840%2400
3840x2160

Virtual
Displays
per
vGPU

184

Maximum Maximum

Virtual GPU Types Reference

Virtual
. Frame vGPUs vGPUs per . , .
Virtual . Available Display Displays
Buffer per GPU GPU in , ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode @ Size Mode
2560x 1600 or 3
47
lower
Intended use case: Virtual Applications
Required license edition: vVApps
These vGPU types support a single display with a fixed maximum resolution.
Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per \ .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed- .
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
AT0-24A 24576 1 1 1280%x1024% 14
A10-12A 12288 2 2 1280x1024% 1
A10-8A 8192 3 2 1280x1024% 1
A10-6A 6144 4 4 1280x1024% 1
A10-4A 4096 6 4 1280x1024% 1
A10-3A 3072 8 8 1280x1024% 1
AT0-2A 2048 12 8 1280%x1024% 14
ATO-TA 1024 24 16 1280%x1024% 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Intended use case: Virtual Workstations

Required license edition: VWS

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2 |

185

Virtual GPU Types Reference

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . . .
Virtual . Available Display Displays
Buffer per GPU GPU in . ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode Size Mode
7680x4320 2
A2-16Q 16384 1 1 66355200 | 5120x2880 or
4
lower
7680%x4320 2
A2-8Q 8192 2 2 66355200 | 5120x2880 or
4
lower
7680%x4320 1
A2-4Q 4096 4 4 58982400 | 5120x2880 or
4
lower
7680x4320 1
5120%2880 2
A2-2Q 2048 8 8 36864000
3840x2400 or 4
lower
5120%x2880 1
3840%2400 2
A2-1Q 1024 16 16 18432000 | 3840x2160 2
2560x 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 186

Virtual GPU Types Reference

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . . .
Virtual . Available Display Displays
Buffer per GPU GPU in . ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode Size Mode
5120x2880 1
3840x2400 2
A2-2B 2048 8 8 18432000 | 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840x2400 1
A2-1B 1024 16 16 16384000 | 3840x2160 1
2560x 1600 or 3
47
lower
Required license edition: vApps
These vGPU types support a single display with a fixed maximum resolution.
AR Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per , .
Buffer per GPU . . Display Displays
GPU Type . GPU in Mixed- ;
(MB) in Equal- i Resolution per vGPU
. Size Mode
Size Mode
A2-16A 16384 1 1 1280x 1024 14
A2-8A 8192 2 2 1280x 1024 14
A2-4A 4096 4 4 1280x1024" 14
A2-2A 2048 8 8 1280x1024" 14
A2-1A 1024 16 16 1280x1024% 14

Physical GPUs per board: 1

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 187

Virtual GPU Types Reference

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Intended use case: Virtual Workstations

Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual
GPU Type

L40-48Q

L40-24Q

L40-16Q

L40-12Q

L40-8Q

L40-6Q

L40-4Q

Frame
Buffer
(MB)

49152

24576

16384

12288

8192

6144

4096

Virtual GPU Software

Maximum Maximum

vGPUs vGPUs per
per GPU GPU in
in Equal- Mixed-

Size Mode Size Mode

2 2
3 2
4 4
6 4
8 8
12 8

Available
Pixels

66355200

66355200

66355200

66355200

66355200

58982400

58982400

Display
Resolution

7680%x4320

5120x2880 or
lower

7680%x4320

5120x2880 or
lower

7680x4320

5120x2880 or
lower

7680x4320

5120x%2880 or
lower

7680x4320

5120x%2880 or
lower

7680x4320

5120x%2880 or
lower

7680%x4320

Virtual
Displays
per
vGPU

DU-06920-001 _v17.0 through 17.2 | 188

Virtual
GPU Type

L40-3Q

L40-2Q

L40-1Q

Frame
Buffer
(MB)

3072

2048

1024

Maximum
vGPUs
per GPU
in Equal-
Size Mode

24

(&}

32

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Maximum
vGPUs per
GPU in
Mixed-
Size Mode

16

16

16

Available
Pixels

36864000

36864000

18432000

Virtual GPU Types Reference

Display
Resolution

5120x2880 or
lower

7680x4320
5120%x2880

3840x%2400 or
lower

7680%x4320
5120%x2880

3840x%2400 or
lower

5120x2880
3840x2400
3840%2160

2560x 1600 or
lower

Virtual
Displays
per
vGPU

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual GPU Software

The maximum vGPUs per GPU is limited to 32.

DU-06920-001 _v17.0 through 17.2 | 189

Virtual GPU Types Reference

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . , .
Virtual . Available Display Displays
Buffer per GPU GPU in , ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode @ Size Mode
5120x2880 1
3840x2400 2
L40-2B 2048 24 16 18432000 | 3840x2160 P
2560x 1600 or 4
lower
5120x2880 1
3840x2400 1
L40-1B 1024 32 16 16384000 | 3840x2160 1
2560x 1600 or .
47
lower
Intended use case: Virtual Applications
Required license edition: VApps
These vGPU types support a single display with a fixed maximum resolution.
Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per , .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed- .
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
L40-48A 49152 1 1 1280x1024% 14
L40-24A 24576 2 2 1280x1024% 14
L40-16A 16384 3 2 1280x1024% 14
L40-12A 12288 4 4 1280x1024% 14
L40-8A 8192 6 4 1280x1024% 14
L40-6A 6144 8 8 1280x1024% 14
L40-4A 4096 12 8 1280x1024% 14
L40-3A 3072 16 16 1280x1024% 14
L40-2A 2048 24 16 1280x1024% 14

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 190

Virtual GPU Types Reference

Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per \ .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed- .

(MB) in Equal- . Resolution per vGPU

. Size Mode

Size Mode
L40-1A 1024 306 16 1280x 10244 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . . .
Virtual . Available Display Displays
Buffer per GPU GPU in \ ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode @ Size Mode
7680%x4320 2
L40S-48Q 49152 1 1 66355200 | 5120x2880 or
4
lower
7680%x4320 2
L40S-24Q 24576 2 2 66355200 | 5120x2880 or
4
lower
7680x4320 2
L40S-16Q 16384 3 2 66355200 | 5120x2880 or
4
lower
L40S-12Q 12288 4 4 66355200 | 7680x4320 2

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 191

Virtual GPU Types Reference

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . , .
Virtual . Available Display Displays
Buffer per GPU GPU in , ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- vGPU
Size Mode @ Size Mode
5120%x2880 or 4
lower
7680%x4320 2
L40S-8Q 8192 6 4 66355200 5120%x2880 or
4
lower
7680x4320 1
L40S-6Q 6144 8 8 58982400 | 5120x2880 or
4
lower
7680x4320 1
L40S-4Q 4096 12 8 58982400 5120x2880 or
4
lower
7680x4320 1
5120x2880 2
L40S-3Q 3072 16 16 36864000
3840x2400 or 4
lower
7680x4320 1
5120x2880 2
L40S-2Q 2048 24 16 36864000
3840%2400 or 4
lower
5120x2880 1
3840x2400 2
L40S-1Q 1024 327 16 18432000 3840x2160 2
2560x 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between

The maximum vGPUs per GPU is limited to 32.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 192

Virtual GPU Types Reference

using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . . .
Virtual . Available Display Displays
Buffer per GPU GPU in \ ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode @ Size Mode
5120x2880 1
3840x2400 2
L40S-2B 2048 24 16 18432000 | 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840x2400 1
L40S-1B 1024 32 16 16384000 | 3840x2160 1
2560x 1600 or 3
47
lower
Intended use case: Virtual Applications
Required license edition: vApps
These vGPU types support a single display with a fixed maximum resolution.
Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per . .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed- .
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
L40S-48A 49152 1 1 1280x 10244 14
L40S-24A 24576 2 2 1280x1024% 14
L40S-16A 16384 3 2 1280x1024% 14
L40S-12A 12288 4 4 1280x1024% 14
L40S-8A 8192 6 4 1280x1024% 14

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 193

Virtual GPU Types Reference

A EPITAT Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per . .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed-)
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
L40S-6A 6144 8 8 1280x 10244 14
L40S-4A 4096 12 8 1280x 10244 14
L40S-3A 3072 16 16 1280x 10244 14
L40S-2A 2048 24 16 1280x 10244 14
L40S-1A 1024 307 16 1280x 10244 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

The virtual GPU types for the NVIDIA L20 and NVIDIA L20 liquid cooled GPUs are identical.

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual

F P P
Virtual rame VGPUs vG Us.per Available Display Displays
Buffer per GPU GPU in , ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- vGPU
Size Mode Size Mode
7680x4320 2
L20-48Q 49152 1 1 66355200 | 5120x2880 or

lower

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 194

Virtual
GPU Type

L20-24Q

L20-16Q

L20-12Q

L20-8Q

L20-6Q

L20-4Q

L20-3Q

L20-2Q

L20-1Q

Frame
Buffer
(MB)

24576

16384

12288

8192

6144

4096

3072

2048

1024

Virtual GPU Software

vGPUs
per GPU
in Equal-
Size Mode Size Mode

24

|co

32

Maximum @« Maximum
vGPUs per
GPU in
Mixed-

Available
Pixels

66355200

66355200

66355200

66355200

58982400

58982400

36864000

36864000

18432000

The maximum vGPUs per GPU is limited to 32.

Virtual GPU Types Reference

Display
Resolution

7680%x4320

5120x2880 or
lower

7680%x4320

5120x2880 or
lower

7680%x4320

5120x2880 or
lower

7680x4320

5120x2880 or
lower

7680x4320

5120x%2880 or
lower

7680x4320

5120x%2880 or
lower

7680x4320
5120x2880

3840%x2400 or
lower

7680x4320
5120x2880

3840x2400 or
lower

5120x2880
3840%x2400
3840x2160

Virtual
Displays
per
vGPU

DU-06920-001 _v17.0 through 17.2 | 195

Virtual
GPU Type

Maximum Maximum
Frame vGPUs vGPUs per .
Buffer perGPU GPUin A\;?:::e
(MB) in Equal- Mixed-
Size Mode Size Mode

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Virtual GPU Types Reference

Display
Resolution

2560x 1600 or

lower

Virtual
Displays
per
vGPU

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual
GPU Type

L20-2B

L20-1B

Maximum Maximum

Frame vGPUs vGPUs per

Buffer perGPU GPUin A‘S)‘(’:ge
(MB) in Equal- Mixed-
Size Mode Size Mode
2048 24 16 18432000
1024 32 16 16384000

Intended use case: Virtual Applications

Required license edition: vApps

Virtual GPU Software

Display
Resolution

5120x2880
3840%2400
3840x2160

2560x 1600 or
lower

5120%x2880
3840x2400
3840%2160

2560x 1600 or
lower

Virtual
Displays
per
vGPU

DU-06920-001 _v17.0 through 17.2 | 196

Virtual GPU Types Reference

These vGPU types support a single display with a fixed maximum resolution.

24 BRI Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per . .
Buffer per GPU . . Display Displays
GPU Type . GPU in Mixed- .
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
L20-48A 49152 1 1 1280x] 0244 1 4
L20-24A 24576 2 2 1280x] 0244 1 4
L20-16A 16384 3 2 1280x 10244 14
L20-12A 12288 4 4 1280x 10244 14
L20-8A 8192 6 4 1280x 10244 14
L20-6A 6144 8 8 1280x 10244 14
L20-4A 4096 12 8 1280x 10244 14
L20-3A 3072 16 16 1280x] 0244 1 4
L20-2A 2048 24 16 1280x] 0244 1 4
L20-1A 1024 308 16 1280x 10244 14

Physical GPUs per board: 1

Intended use case: Virtual Workstations
Required license edition: vVWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 197

Virtual
GPU Type

L4-24Q

L4-12Q

L4-8Q

L4-6Q

L4-4Q

L4-3Q

L4-2Q

L4-1Q

Maximum
Frame vGPUs
Buffer per GPU
(MB) in Equal-
Size Mode
24576 1
12288 2
8192 3
6144 4
4096 6
3072 8
2048 12
1024 24

Intended use case: Virtual Desktops

Virtual GPU Software

Maximum
vGPUs per
GPU in
Mixed-
Size Mode

Available
Pixels

66355200

66355200

66355200

58982400

58982400

36864000

36864000

18432000

DU-06920-001 _v17.0 through 17.2 |

Virtual GPU Types Reference

Display
Resolution

7680%x4320

5120x2880 or
lower

7680%x4320

5120x2880 or
lower

7680%x4320

5120x2880 or
lower

7680x4320

5120x2880 or
lower

7680x4320

5120x%2880 or
lower

7680x4320
5120x2880

3840x2400 or
lower

7680x4320
5120x2880

3840x%2400 or
lower

5120x2880
3840x2400
3840x2160

2560x 1600 or
lower

Virtual
Displays
per
vGPU

198

Required license edition: vPC or vWS

Virtual GPU Types Reference

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum Virtual
Virtual Frame VGPUs VGPUS.per Available Display Displays
Buffer per GPU GPU in) .
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode @ Size Mode
5120x2880 1
3840x2400 2
L4-2B 2048 12 8 18432000 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840x2400 1
L4-1B 1024 24 16 16384000 3840x2160 1
2560x 1600 or 3
lower 4
Intended use case: Virtual Applications
Required license edition: vVApps
These vGPU types support a single display with a fixed maximum resolution.
LBl Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per . .
Buffer per GPU . . Display Displays
GPU Type . GPU in Mixed- .
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
L4-24A 24576 1 1 1280x1024" 14
L4-12A 12288 2 2 1280%x1024% 14
L4-8A 8192 3 2 1280x1024% 14

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 199

Virtual GPU Types Reference

A EPITAT Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per . .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed-)
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
L4-BA 6144 4 4 1280x 10244 14
L4-4A 4096 6 4 1280x 10244 14
L4-3A 3072 8 8 1280x 10244 14
L4-2A 2048 12 8 1280x 10244 14
L4-1A 1024 24 16 1280x 10244 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

. Frame vGPUs vGPUs per . . \{|rtual
Virtual . Available Display Displays
Buffer per GPU GPU in \ ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode @ Size Mode
7680x4320 2
L2-24Q 24576 1 1 66355200 5120%x2880 or
4
lower
7680x4320 2
L2-12Q 12288 2 2 66355200 5120x2880 or
lower 4

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 200

Virtual
GPU Type

L2-8Q

L2-6Q

L2-4Q

L2-3Q

L2-2Q

L2-1Q

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Frame
Buffer
(MB)

8192

6144

4096

3072

2048

1024

vGPUs
per GPU
in Equal-
Size Mode Size Mode

24

Maximum @« Maximum
vGPUs per
GPU in
Mixed-

Available
Pixels

66355200

58982400

58982400

36864000

36864000

18432000

Virtual GPU Types Reference

Display
Resolution

7680%x4320

5120x2880 or
lower

7680%x4320

5120x2880 or
lower

7680%x4320

5120x2880 or
lower

7680x4320
5120x2880

3840x%2400 or
lower

7680x4320
5120x2880

3840x%2400 or
lower

5120x2880
3840x2400
3840x2160

2560x% 1600 or
lower

Virtual
Displays
per
vGPU

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based
on a configuration in which all displays have the same resolution. For examples of

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2 | 201

Virtual GPU Types Reference

configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . . .
Virtual . Available Display Displays
Buffer per GPU GPU in . ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode @ Size Mode
5120x2880 1
3840x2400 2
L2-2B 2048 12 8 18432000 | 3840x2160 2
2560x 1600 or 4
lower
51202880 1
3840x2400 1
L2-1B 1024 24 16 16384000 3840x2160 1
2560x 1600 or .
4
lower
Intended use case: Virtual Applications
Required license edition: vApps
These vGPU types support a single display with a fixed maximum resolution.
Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per , .
Buffer per GPU . . Display Displays
GPU Type . GPU in Mixed- ;
(MB) in Equal- i Resolution per vGPU
. Size Mode
Size Mode
L2-24A 24576 1 1 1280x 1024 14
L2-12A 12288 2 2 1280x 1024 14
L2-8A 8192 3 2 1280x1024" 14
L2-6A 6144 4 4 1280x 1024 14
L2-4A 4096 6 4 1280x1024" 14
L2-3A 3072 8 8 1280x1024" 14
L2-2A 2048 12 8 1280x 1024 14

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 202

Virtual GPU Types Reference

Ll Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per \ .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed- ,

(MB) in Equal- . Resolution per vGPU

. Size Mode

Size Mode
L2-1A 1024 24 16 1280x 10244 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . . .
Virtual . Available Display Displays
Buffer per GPU GPU in \ ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode Size Mode

7680%x4320 2
RTXE000 49152 1 1 66355200
Ada-48Q 5120x2880 or

lower

7680%x4320 2
RTX6000 24576 2 2 66355200
Ada-24Q 51202880 or

lower

7680x4320 2
RTX 6000 16384 3 2 66355200
Ada-16Q 5120%x2880 or

lower
RTX 6000

12288 4 4 66355200 | 7680x4320 2

Ada-12Q

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 203

Virtual GPU Types Reference

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . , .
Virtual . Available Display Displays
Buffer per GPU GPU in , ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- vGPU
Size Mode Size Mode
5120x2880 or 4
lower
7680%x4320 2
RTX 6000
8192 6 4 66355200
Ada-8Q 51202880 or 4
lower
7680%x4320 1
RTX 6000 6144 8 8 58982400
Ada-60 51202880 or 4
lower
7680%x4320 1
RTX 6000 4096 12 8 58982400
Ada-4Q 5120%2880 or 4
lower
7680%x4320 1
RTX 6000 5120%x2880 2
3072 16 16 36864000 g
Ada-3Q 3840x2400 or 4
lower
7680%x4320 1
RTX 6000 5120%x2880 2
2048 24 16 36864000 g
Ada-2Q 3840x%2400 or 4
lower
5120%x2880 1
3840%x2400 2
RTX 6000
1024 9 16 18432000
Ada-1Q 32 3840x2160 p)
2560x 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between

The maximum vGPUs per GPU is limited to 32.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 204

Virtual GPU Types Reference

using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual
GPU Type

RTX 6000
Ada-2B

RTX 6000
Ada-1B

Intended use case: Virtual Applications

Frame
Buffer
(MB)

2048

1024

Maximum
vGPUs
per GPU
in Equal-
Size Mode

24

32

Required license edition: vVApps

Maximum
VGPUs per |, ailable
SRR Pixels
Mixed-
Size Mode
16 18432000
16 16384000

Display
Resolution

5120%x2880
3840%2400
3840x2160

2560x 1600 or
lower

5120x2880
3840%2400
3840x2160

2560x 1600 or
lower

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

RTX 6000
Ada-48A

RTX 6000
Ada-24A

RTX 6000
Ada-16A

Frame
Buffer
(MB)

49152

24576

16384

Virtual GPU Software

Maximum .
Maximum
vGPUs
or GPU vGPUs per
ir': fqual- | GPUin Mixed-
Size Mode SiEE el
1 1
2 2
3 2

Maximum
Display

Resolution

1280x1024%

1280%1024*

1280x 10244

Virtual
Displays
per
vGPU

N
|w

Virtual
Displays
per vGPU

[

DU-06920-001 _v17.0 through 17.2 | 205

Virtual GPU Types Reference

Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per \ .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed- ;
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
R1X 6000 12288 4 4 4 4
Ada-12A 1280% 1024 1
RTX 6000 8192 5 4 . .
Ada-8A 1280%x1024 1
RTX 6000 5144 g 5 4 4
Ada-GA 1280%1024 1
RTX 6000 4096 12 3 4 4
Ada-dA 1280% 1024 1
RTX 6000 3072 16 16 4 4
Ada-3A 12801024 1
RTX 6000 5048 o4 16 4 4
Ada-2A 1280%1024 1
RTX 6000 1024 o 6 4 .
Ada-1A 32 1280% 1024 1

A.1.11. NVIDIA RTX 5880 Ada Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Q-Series Virtual GPU Types for NVIDIA RTX 5880 Ada

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 206

Virtual GPU Types Reference

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . , .
Virtual . Available Display Displays
Buffer per GPU GPU in , ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- vGPU
Size Mode Size Mode
7680x4320 2
RTX 5880 49152 1 1 66355200
Ada-48Q 5120x2880 or 4
lower
7680%x4320 2
RTX 5880 24576 2 2 66355200
Ada-24Q 5120x2880 or 4
lower
7680%x4320 2
RTX 5880 16384 3 2 66355200
Ada-16Q 5120%2880 or 4
lower
7680%x4320 2
RTX 5880 12288 4 4 66355200
Ada-12Q 51202880 or 4
lower
7680%x4320 2
RTX 5880 8192 6 4 66355200
Ada-8Q 51202880 or 4
lower
7680%x4320 1
RTX 5880 6144 8 8 58982400
Ada-6Q 51202880 or 4
lower
7680%x4320 1
RTX 5880 4096 12 8 58982400
Ada-4Q 5120%x2880 or 4
lower
7680x4320 1
RTX 5880 5120%x2880 2
3072 16 16 36864000
Ada-3Q 3840%2400 or 4
lower
7680x4320 1
RTX 5880 5120%x2880 2
2048 24 16 36864000
Ada-2Q 3840x2400 or 4
lower
1024 3210 16 18432000 | 5120%x2880 1

The maximum vGPUs per GPU is limited to 32.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 207

Virtual
GPU Type

RTX 5880
Ada-1Q

Maximum
Frame vGPUs
Buffer per GPU
(MB) in Equal-

Size Mode

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Maximum
vGPUs per
GPU in
Mixed-
Size Mode

Available
Pixels

Virtual GPU Types Reference

Display
Resolution

3840x2400
3840x2160

2560x1600 or

lower

Virtual
Displays

per
vGPU

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of

configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual
GPU Type

RTX 5880
Ada-2B

RTX 5880
Ada-1B

Virtual GPU Software

Maximum
Frame vGPUs
Buffer per GPU
(MB) in Equal-
Size Mode
2048 24
1024 32

Maximum
vGPUs per
GPU in
Mixed-
Size Mode

16

16

Available

Pixels

18432000

16384000

Display
Resolution

5120%x2880
3840%2400
3840%2160

2560x 1600 or
lower

5120x2880
3840%2400
3840x2160

2560x 1600 or
lower

Virtual
Displays

per
vGPU

DU-06920-001 _v17.0 through 17.2 | 208

Virtual GPU Types Reference

A-Series Virtual GPU Types for NVIDIA RTX 5880 Ada

Intended use case: Virtual Applications

Required license edition: vApps

These vGPU types support a single display with a fixed maximum resolution.

. Frame
Virtual
GPU Tvpe Buffer

RTX 5880

49152
Ada-48A
RTX 5880

24576
Ada-24A
RTX 5880 16384
Ada-16A
RTX 5880

12288
Ada-12A
RTX 5880

8192
Ada-8A
RTX 5880 6144
Ada-6A
RTX 5880

4096
Ada-4A
RTX 5880

3072
Ada-3A
RTX 5880 5048
Ada-2A
RTX 5880

1024
Ada-1A

Maximum
vGPUs
per GPU
in Equal-
Size Mode

16

24

3210

Maximum

vGPUs per MEL LTI Virtual
GPUin Mixed- _DisPlay - Displays
Size Mode Resolution per vGPU
1 1280x1024* 14
2 1280x1024" 14
2 1280x1024" 14
4 1280x1024" 14
4 1280%1024" 14
8 1280x1024" 14
8 1280x1024" 14
16 1280x1024" 14
16 1280x%1024* 14
16 1280x1024" 14

A.1.12. NVIDIA RTX 5000 Ada Virtual GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2 | 209

Virtual GPU Types Reference

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . , .
Virtual . Available Display Displays
Buffer per GPU GPU in . ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- vGPU
Size Mode @ Size Mode
7680%x4320 2
RTX5000 32768 1 1 66355200
Ada-32Q 5120x2880 or 4
lower
7680%x4320 2
RTX'5000 16384 2 2 66355200
Ada-16Q 5120%x2880 or 4
lower
7680%x4320 2
RTX'S000 8192 4 4 66355200
Ada-8Q 5120%2880 or 4
lower
7680%x4320 1
RTX'5000 4096 8 8 58982400
Ada-4Q 5120%2880 or 4
lower
7680x4320 1
RTX 5000 5120x2880 2
d 2048 16 16 36864000
Ada-2Q 3840x%2400 or 4
lower
5120x2880 1
3840x2400 2
RTX'5000 1024 32 32 18432000
Ada-1Q 3840x2160 2
2560x 1600 or 4

lower

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 210

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Virtual GPU Types Reference

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual
GPU Type

RTX 5000
Ada-2B

RTX 5000
Ada-1B

Maximum
Frame vGPUs
Buffer per GPU
(MB) in Equal-
Size Mode
2048 16
1024 32

Required license edition: vApps

Required license edition: VApps

Maximum
VGPUs per| , ilable
P T Pixels
Mixed-
Size Mode
16 18432000
32 16384000

Display
Resolution

5120%x2880
3840x2400
3840%2160

2560x 1600 or
lower

5120x2880
3840%2400
3840x2160

2560x 1600 or
lower

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Software

Virtual
Displays
per
vGPU

DU-06920-001 _v17.0 through 17.2 | 211

Virtual GPU Types Reference

Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per \ .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed- ;
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
R1X5000 32768 1 1 4 4
Ada-32A 1280% 1024 1
RTX 5000 16384 2 2 4 4
Ada-16A 1280%x1024 1
RTX 5000 8102 4 4 4 4
Ada-8A 1280%1024 1
RTX 5000 4096 g g 4 .
Ada-dA 1280% 1024 1
RTX 5000 5048 16 16 4 4
Ada-2A 12801024 1
RTX'5000 1024 32 32 4 4
Ada-1A 1280x1024 1

A.1.13. NVIDIA RTX A6000 Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Q-Series Virtual GPU Types for NVIDIA RTX A6000

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 212

Virtual GPU Types Reference

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . , .
Virtual . Available Display Displays
Buffer per GPU GPU in , ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- vGPU
Size Mode Size Mode
7680%x4320 2
RTXAB000-48Q 49152 1 1 66355200 | 5120x2880 or
4
lower
7680%x4320 2
RTXAB000-24Q | 24576 2 2 66355200 | 5120x2880 or
4
lower
7680%x4320 2
RTXAB000-16Q @ 16384 3 2 66355200 | 5120x2880 or
4
lower
7680%x4320 2
RTXAB000-12Q 12288 4 4 66355200 | 5120x2880 or
4
lower
7680%x4320 2
RTXAB000-8Q 8192 6 4 66355200 | 5120x2880 or
4
lower
7680%x4320 1
RTXAB000-6Q 6144 8 8 58982400 5120x2880 or
4
lower
7680%x4320 1
RTXAB000-4Q 4096 12 8 58982400 | 5120x2880 or
4
lower
7680%x4320 1
5120%x2880 2
RTXAB000-3Q 3072 16 16 36864000
3840%x2400 or 4
lower
7680%x4320 1
5120%x2880 2
RTXAB000-2Q 2048 24 16 36864000
3840%x2400 or 4
lower
RTXAB000-1Q | 1024 301 30 18432000 ' 5120x2880 1

The maximum vGPUs per GPU is limited to 32.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 213

Maximum
Frame vGPUs
Virtual
GPU Type Buffer per GPU

(MB) in Equal-
Size Mode

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Virtual GPU Types Reference

Maximum .
Virtual
vGPUs per . . .
GPU in Available Display Displays
. Pixels Resolution per
Mixed- VGPU
Size Mode
3840%x2400 2
3840x2160 2
2560x 1600 or
lower

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for

B-Series and Q-Series vGPUs.

Maximum
. Frame vGPUs
G\;:;t_:_lal o Buffer per GPU
yp (MB) in Equal-
Size Mode
RTXAB000-2B 2048 24
RTXAB000-1B 1024 32

Virtual GPU Software

Maximum .
Virtual
vGPUs per . . .
GPU in Available Display Displays
. Pixels Resolution per
Mixed- VGPU
Size Mode
5120x2880 1
3840%x2400 2
16 18432000 | 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840%2400 1
30 16384000 3840x2160 1
2560x 1600 or 3
47

lower

DU-06920-001 _v17.0 through 17.2 | 214

Virtual GPU Types Reference

A-Series Virtual GPU Types for NVIDIA RTX A6000
Intended use case: Virtual Applications
Required license edition: vApps

These vGPU types support a single display with a fixed maximum resolution.

Rl Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per . .
Buffer per GPU . . Display Displays
GPU Type . GPU in Mixed- .
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
RTXAB000-48A 49152 1 1 1280x 10244 14
RTXAB000-24A 24576 2 2 1280x 10244 14
RTXAB000-16A 16384 3 2 1280x 10244 14
RTXAB000-12A 12288 4 4 1280x 10244 14
RTXAB6000-8A 8192 6 4 1280x 10244 14
RTXAB000-6A 6144 8 8 1280x 10244 14
RTXAB000-4A 4096 12 8 1280x 10244 14
RTXAB000-3A 3072 16 16 1280x 10244 14
RTXAB000-2A 2048 24 16 1280x 10244 14
RTXAB000-1A 1024 3o 30 1280x 10244 14

A.1.14. NVIDIA RTX A5500 Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Q-Series Virtual GPU Types for NVIDIA RTX A5500

Intended use case: Virtual Workstations
Required license edition: vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based
on a configuration in which all displays have the same resolution. For examples of

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 215

Virtual GPU Types Reference

configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . . .
Virtual . Available Display Displays
Buffer per GPU GPU in . ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode Size Mode
7680%x4320 2
RTXA5500-24Q 24576 1 1 66355200 | 5120x2880 or
4
lower
7680%x4320 2
RTXA5500-12Q | 12288 2 2 66355200 | 5120x2880 or
4
lower
7680%x4320 2
RTXA5500-8Q 8192 3 2 66355200 5120x2880 or
4
lower
7680%x4320 1
RTXA5500-6Q 6144 4 4 58982400 | 5120x2880 or
4
lower
7680%x4320 1
RTXA5500-4Q 4096 6 4 58982400 5120x2880 or
4
lower
7680%x4320 1
5120x2880 2
RTXA5500-3Q 3072 8 8 36864000
3840x2400 or 4
lower
7680%x4320 1
5120x2880 2
RTXA5500-2Q 2048 12 8 36864000
3840x2400 or 4
lower
5120x2880 1
3840x2400 2
RTXA5500-1Q 1024 24 16 18432000 | 3840x2160 2
2560x 1600 or 4

lower

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 216

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Virtual GPU Types Reference

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum Virtual
. Frame vGPUs vGPUs per . , .
Virtual . Available Display Displays
Buffer per GPU GPU in \ ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode Size Mode
5120x2880 1
3840x2400 2
RTXA5500-2B 2048 12 8 18432000 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840%x2400 1
RTXA5500-1B | 1024 24 16 16384000 3840x2160 1
2560x 1600 or 3
lower 4
Intended use case: Virtual Applications
Required license edition: VApps
These vGPU types support a single display with a fixed maximum resolution.
Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per , .
Buffer per GPU . . Display Displays
GPU Type . GPU in Mixed- .
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
RTXAS5500-24A 24576 1 1 1280x 10244 14

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 217

Virtual GPU Types Reference

A EPITAT Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per . .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed-)
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
RTXAS5500-12A | 12288 2 2 1280x 10244 14
RTXA5500-8A 8192 3 2 1280x 10244 14
RTXA5500-6A 6144 4 4 1280x 10244 14
RTXA5500-4A 4096 6 4 1280x 10244 14
RTXA5500-3A 3072 8 8 1280x 10244 14
RTXA5500-2A 2048 12 8 1280x 10244 14
RTXA5500-1A 1024 24 16 1280x 10244 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum

Virtual
F P P
Virtual rame VGPUs vG Us.per Available Display Displays
Buffer per GPU GPU in \ ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode @ Size Mode
RTXA5000-24Q | 24576 1 1 66355200 | 7680x4320 2

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 218

Virtual GPU Types Reference

Maximum Maximum

Virtual
. Frame vGPUs vGPUs per . , .
Virtual . Available Display Displays
Buffer per GPU GPU in , ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- vGPU
Size Mode Size Mode
5120%x2880 or 4
lower
7680%x4320 2
RTXA5000-12Q | 12288 2 2 66355200 5120%x2880 or
4
lower
7680x4320 2
RTXA5000-8Q 8192 3 2 66355200 5120%x2880 or
4
lower
7680x4320 1
RTXA5000-6Q 6144 4 4 58982400 5120x2880 or
4
lower
7680x4320 1
RTXA5000-4Q 4096 6 4 58982400 5120x2880 or
4
lower
7680%x4320 1
5120x2880 2
RTXA5000-3Q 3072 8 8 36864000
3840x2400 or 4
lower
7680x4320 1
5120x2880 2
RTXA5000-2Q 2048 12 8 36864000
3840x2400 or 4
lower
5120x2880 1
3840x2400 2
RTXA5000-1Q | 1024 24 16 18432000 | 3840x2160 p)
2560x 1600 or 4

lower

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 219

Virtual GPU Types Reference

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Maximum Maximum .
Virtual
. Frame vGPUs vGPUs per . . .
Virtual . Available Display Displays
Buffer per GPU GPU in \ ;
GPU Type . . Pixels Resolution per
(MB) in Equal- Mixed- VGPU
Size Mode @ Size Mode
51202880 1
3840%x2400 2
RTXA5000-2B 2048 12 8 18432000 | 3840x2160 p)
2560x 1600 or 4
lower
5120x2880 1
3840%2400 1
RTXA5000-1B | 1024 24 16 16384000 3840x2160 1
2560x 1600 or .
47
lower
Intended use case: Virtual Applications
Required license edition: vApps
These vGPU types support a single display with a fixed maximum resolution.
Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per , .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed- .
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
RTXA5000-24A 24576] 1 1280x1024% 1
RTXA5000-12A 12288 2 2 1280%x1024% 14
RTXA5000-8A 8192 3 2 1280x1024% 14
RTXA5000-6A 6144 4 4 1280x1024% 1

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 220

Virtual GPU Types Reference

Maximum Maximum
. Frame vGPUs Maximum Virtual
Virtual vGPUs per . .
Buffer per GPU s Display Displays
GPU Type . GPU in Mixed-)
(MB) in Equal- . Resolution per vGPU
. Size Mode
Size Mode
RTXA5000-4A 4096 6 4 1280x1024% 14
RTXA5000-3A 3072 8 8 1280x1024% 14
RTXA5000-2A 2048 12 8 1280x 10244 14
RTXA5000-1A 1024 24 16 1280x 10244 14

Physical GPUs per board: 4

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available Display \{irtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
5120x2880 2
M10-8Q 8192 1 36864000 3840x2400 or
lower 4
5120x2880 2
M10-4Q 4096 2 36864000 3840x2400 or
lower 4
M10-2Q 2048 4 36864000 5120x2880 2

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 221

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIF:Jti}(I)n Displays
(MB) per GPU per vGPU
3840%x2400 or 4
lower
5120x2880 1
3840%x2400 2
M10-1Q 1024 8 18432000 3840x2160 2
2560x 1600 or 4
lower
M10-0Q 512 16 8192000 2560x 1600 ol

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels Resoﬁjti}:)n Displays
(MB) per GPU per vGPU
5120%x2880 1
3840x2400 2
M10-2B 2048 4 18432000 | 3840x2160 p)
2560x 1600 or 4
lower
5120%x2880 1
3840x2400 2
M10-2B4° 2048 4 18432000 | 3840x2160 2
2560x% 1600 or 4
lower
M10-1B 1024 8 16384000 5120x2880 1

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 222

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIF:Jti}(I)n Displays
(MB) per GPU per vGPU
3840x2400 1
3840x2160 1
2560x% 1600 or 3
4
lower
5120x2880 1
3840x2400 1
M10-1B4° 1024 8 16384000 3840x2160 1
2560x 1600 or .
4>
lower
M10-0B 512 16 8192000 2560x 1600 0!
Intended use case: Virtual Applications
Required license edition: VApps
These vGPU types support a single display with a fixed maximum resolution.
. . . Virtual
Virtual GPU Type Frame Maximum Maximum Display Displavs
YP€ Buffer (MB) VGPUs per GPU Resolution pay
per vGPU
M10-8A 8192 1 1280x1024% 14
M10-4A 4096 2 1280x 10244 14
M10-2A 2048 4 1280x1024% 14
M10-1A 1024 8 1280% 10244 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Intended use case; Virtual Workstations

Required license edition: VWS

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 223

Virtual GPU Types Reference

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available el Yirtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU

7680x4320 2
T4-16Q 16384 1 66355200 5120x2880 or

lower 4

7680x4320 2
T4-8Q 8192 2 66355200 5120x2880 or

lower 4

7680%x4320 1
T4-4Q 4096 4 58982400 5120x2880 or

lower 4

7680%x4320 1
T4-2Q 2048 8 36864000) 0*e880 e

3840x2400 or 4

lower

5120x2880 1

3840x2400 2
T4-1Q 1024 16 18432000 3840x2160 2

2560x% 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based
on a configuration in which all displays have the same resolution. For examples of

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 224

Virtual GPU Types Reference

configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels Resoﬁjtizm Displays
(MB) per GPU per vGPU
5120x2880 1
3840x2400 2
T4-2B 2048 8 18432000 3840x2160 2
2560x% 1600 or 4
lower
5120x2880 1
3840x2400 2
T4-2B4° 2048 8 18432000 | 3840x2160 2
2560x% 1600 or 4
lower
5120x2880 1
3840x2400 1
T4-1B 1024 16 16384000 3840x2160 1
2560x 1600 or 3
lower 4
5120x2880 1
3840x%2400 1
T4-1B4% 1024 16 16384000 3840%2160]
2560x% 1600 or 3
lower 4
Intended use case: Virtual Applications
Required license edition: vApps
These vGPU types support a single display with a fixed maximum resolution.
. . . Virtual
Virtual GPU Tvpe Frame Maximum Maximum Display Displavs
yp Buffer (MB) vGPUs per GPU Resolution play
per vGPU
T4-16A 16384 1 1280x1024% 14
T4-8A 8192 2 1280x1024% 14

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 225

Virtual GPU Types Reference

. . . Virtual
Virtual GPU Tvpe Frame Maximum Maximum Display Displavs
yp Buffer (MB) vGPUs per GPU Resolution play
per vGPU
T4-4A 4096 4 1280x 10244 14
T4-2A 2048 8 1280x 10244 14
T4-1A 1024 16 1280x 10244 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available Display Yirtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
7680%x4320 2
V100X-16Q 16384 1 66355200 5120x2880 or
lower 4
7680x4320 2
V100X-8Q 8192 2 66355200 5120x2880 or
lower 4
7680x4320 1
V100X-4Q 4096 4 58982400 5120x2880 or
lower 4
V100X-2Q 2048 8 36864000 7680x4320 1

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 226

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIF:Jti}(I)n Displays
(MB) per GPU per vGPU
5120x2880 2
3840%x2400 or 4
lower
5120%x2880 1
3840x2400 2
V100X-1Q 1024 16 18432000 | 3840x2160 p)
2560x% 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer VGPUs ol Resoﬁjti‘(’) _ Displays
(MB) per GPU per vGPU
5120%x2880 1
3840%x2400 2
V100X-2B 2048 8 18432000 3840x2160 2
2560x% 1600 or 4
lower
5120%x2880 1
3840%x2400 2
V100X-2B4° 2048 8 18432000 3840%x2160 2
2560x 1600 or 4
lower
V100X-1B 1024 16 16384000 5120x2880 1

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 227

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIFLti}:)n Displays
(MB) per GPU per vGPU
3840x2400 1
3840x2160 1
2560x% 1600 or 3
lower 4
5120x2880 1
3840x2400 1
V100X-1B4° 1024 16 16384000 3840x2160 1
2560x 1600 or ;
lower 4
A-Series Virtual GPU Types for Tesla V100 SXM2
Intended use case: Virtual Applications
Required license edition: VApps
These vGPU types support a single display with a fixed maximum resolution.
. . . Virtual
Virtual GPU Type Frame Maximum Maximum Display Displavs
YP® Buffer (MB) VvGPUs per GPU Resolution pay
per vGPU
V100X-16A 16384 1 1280x1024% 14
V100X-8A 8192 2 1280% 10244 14
V100X-4A 4096 4 1280% 10244 14
V100X-2A 2048 8 1280% 10244 14
V100X-1A 1024 16 1280x 10244 14

A.1.19. Tesla V100 SXM2 32GB Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Q-Series Virtual GPU Types for Tesla V100 SXM2 32GB

Intended use case; Virtual Workstations

Required license edition: VWS

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 228

Virtual GPU Types Reference

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available el Yirtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU

7680x4320 2
V100DX-32Q 32768 1 66355200 5120x2880 or

lower 4

7680x4320 2
V100DX-16Q 16384 2 66355200 5120%x2880 or

lower 4

7680%x4320 2
V100DX-8Q 8192 4 66355200 5120%2880 or

lower 4

7680%x4320 1
V100DX-4Q 4096 8 58982400 5120%x2880 or

lower 4

7680%x4320 1
V100DX-2Q 2048 16 36864000) 0*e880 e

3840x2400 or 4

lower

5120x2880 1

3840x2400 2
V100DX-1Q 1024 32 18432000 3840x2160 2

2560x% 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 229

Virtual GPU Types Reference

using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available Display \{irtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
5120x2880 1
3840x2400 2
V100DX-2B 2048 16 18432000 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840x2400 2
V100DX-2B4° 2048 16 18432000 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840x2400 1
V100DX-1B 1024 32 16384000 3840x2160 1
2560x% 1600 or 3
lower 4
5120x2880 1
3840x2400 1
V100DX-1B4% 1024 32 16384000 3840x2160 1
2560x 1600 or 43

lower

Intended use case: Virtual Applications
Required license edition: VApps

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 230

Virtual GPU Types Reference

. .] Virtual
Virtual GPU Tvpe Frame Maximum Maximum Display Displavs
yp Buffer (MB) vGPUs per GPU Resolution play
per vGPU
V100DX-32A 32768 1 1280x1024% 14
V100DX-16A 16384 2 1280x1024% 14
V100DX-8A 8192 4 1280x 10244 14
V100DX-4A 4096 8 1280x1024% 14
V100DX-2A 2048 16 1280x1024% 14
V100DX-TA 1024 32 1280x1024% 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available Display Yirtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
7680%x4320 2
V100-16Q 16384 1 66355200 5120x2880 or
lower 4
7680x4320 2
V100-8Q 8192 2 66355200 5120x2880 or
lower 4
V100-4Q 4096 4 58982400 7680x4320]

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 231

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIF:Jti}(I)n Displays
(MB) per GPU per vGPU
5120%x2880 or 4
lower
7680%x4320 1
5120%x2880 2
V100-2Q 2048 8 36864000
3840%x2400 or 4
lower
5120x2880 1
3840%x2400 2
V100-1Q 1024 16 18432000 3840%2160 2
2560x 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs ol Resolr:Jti)(IJ _ Displays
(MB) per GPU per vGPU
5120x2880 1
3840%x2400 2
V100-2B 2048 8 18432000 3840x2160 2
2560x 1600 or 4
lower
5120%x2880 1
V100-2B4° 2048 8 18432000 3840%x2400 2
3840x2160 2

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 232

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIF:Jti}(I)n Displays
(MB) per GPU per vGPU
2560x 1600 or 4
lower
5120x2880 1
3840x%2400 1
V100-1B 1024 16 16384000 3840x2160 1
2560x 1600 or 3
47
lower
5120%x2880 1
3840x2400 1
V100-1B4° 1024 16 16384000 3840x2160 1
2560x 1600 or ;
4
lower
Intended use case: Virtual Applications
Required license edition: vVApps
These vGPU types support a single display with a fixed maximum resolution.
. . . Virtual
Virtual GPU Tvpe Frame Maximum Maximum Display Displavs
YP® Buffer (MB) VvGPUs per GPU Resolution pay
per vGPU
V100-16A 16384 1 1280% 1024 14
V100-8A 8192 2 1280% 1024 14
V100-4A 4096 4 1280x1024% 14
V100-2A 2048 8 1280% 1024 14
V100-1A 1024 16 1280% 1024 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 233

Virtual GPU Types Reference

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available el \{irtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU

7680x4320 2
V100D-32Q 32768 1 66355200 5120x2880 or

lower 4

7680%x4320 2
V100D-16Q 16384 2 66355200 5120%2880 or

lower 4

7680%x4320 2
V100D-8Q 8192 4 66355200 5120%x2880 or

lower 4

7680%x4320 1
V100D-4Q 4096 8 58982400 5120x2880 or

lower 4

7680%x4320 1
V100D-2Q 2048 16 36864000 1 0*e880 e

3840x%2400 or 4

lower

5120x2880 1

3840x2400 2
V100D-1Q 1024 32 18432000 3840%2160 2

2560x 1600 or 4

lower

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 234

Virtual GPU Types Reference

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available el \{irtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
5120x2880 1
3840x2400 2
V100D-2B 2048 16 18432000 | 3840x2160 p)
2560x% 1600 or 4
lower
5120x2880 1
3840x2400 2
V100D-2B4° 2048 16 18432000 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840x2400 1
V100D-1B 1024 32 16384000 3840%x2160 1
2560x 1600 or 3
lower 4
5120x2880 1
3840x2400 1
V100D-1B4% 1024 32 16384000 3840x2160 1
2560% 1600 or 43

lower

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 235

Virtual GPU Types Reference

A-Series Virtual GPU Types for Tesla V100 PCle 32GB
Intended use case: Virtual Applications
Required license edition: vApps

These vGPU types support a single display with a fixed maximum resolution.

. . . Virtual
Virtual GPU Tvpe Frame Maximum Maximum Display Displavs
yp Buffer (MB) vGPUs per GPU Resolution play
per vGPU
V100D-32A 32768 1 1280x10244]4
V100D-16A 16384 2 1280x10244]4
V100D-8A 8192 4 1280x1024% 14
V100D-4A 4096 8 1280x% 1 0244 14
V100D-2A 2048 16 1280x 1 0244]4
V100D-TA 1024 32 1280x10244]4

A.1.22. Tesla V100S PCle 32GB Virtual GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Q-Series Virtual GPU Types for Tesla V100S PCle 32GB

Intended use case: Virtual Workstations
Required license edition: vVWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer VGPUs ol Resoﬁjtiﬁ _ Displays

(MB) per GPU per vGPU
V100S-32Q 32768 1 66355200 7680x4320 2

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 236

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIF:Jti}(I)n Displays
(MB) per GPU per vGPU
5120x2880 or 4
lower
7680%x4320 2
V100S-16Q 16384 2 66355200 5120x2880 or
4
lower
7680%x4320 2
V100S-8Q 8192 4 66355200 5120x2880 or
4
lower
7680%x4320 1
V100S-4Q 4096 8 58982400 5120x2880 or
4
lower
7680%x4320 1
5120%x2880 2
V100S-2Q 2048 16 36864000
3840x2400 or 4
lower
5120%x2880 1
3840%x2400 2
V100S-1Q 1024 32 18432000 3840x2160 p)
2560x 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 237

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIF:Jti}(I)n Displays
(MB) per GPU per vGPU
5120x2880 1
3840x2400 2
V100S-2B 2048 16 18432000 | 3840x2160 p)
2560x% 1600 or 4
lower
5120x2880 1
3840x2400 1
V100S-1B 1024 32 16384000 | 3840x2160 1
2560x 1600 or 3
47
lower
Intended use case: Virtual Applications
Required license edition: vApps
These vGPU types support a single display with a fixed maximum resolution.
. . . Virtual
Virtual GPU Tvpe Frame Maximum Maximum Display Displavs
yp Buffer (MB) vGPUs per GPU Resolution play
per vGPU
V100S-32A 32768 1 1280x 10244 14
V100S-16A 16384 2 1280x 10244 14
V100S-8A 8192 4 1280% 10244 14
V100S-4A 4096 8 1280% 10244 14
V100S-2A 2048 16 1280x 10244 14
V100S-1A 1024 32 1280x 10244 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 238

Virtual GPU Types Reference

Q-Series Virtual GPU Types for Tesla V100 FHHL

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels Resolrilti}:)n Displays
(MB) per GPU per vGPU
7680%x4320 2
V100L-16Q 16384 T 66355200 5120%2880 or
4
lower
7680%x4320 2
V100L-8Q 8192 2 66355200 5120%2880 or
4
lower
7680%x4320 1
V100L-4Q 4096 4 58982400 5120%x2880 or
4
lower
7680x4320]
5120%2880 2
V100L-2Q 2048 8 36864000
3840%x2400 or 4
lower
5120%2880 1
3840x2400 2
V100L-1Q 1024 16 18432000 3840%x2160 2

2560x% 1600 or
lower

B-Series Virtual GPU Types for Tesla V100 FHHL

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 239

Virtual GPU Types Reference

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available el Yirtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
5120x2880 1
3840x2400 2
V100L-2B 2048 8 18432000 | 3840x2160 p)
2560x 1600 or 4
lower
5120x2880 1
3840x2400 2
V100L-2B4* 2048 8 18432000 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840x2400 1
V100L-1B 1024 16 16384000 3840%x2160 1
2560x% 1600 or 3
lower 4
5120x2880 1
3840x2400 1
V100L-1B4* 1024 16 16384000 3840x2160 1
2560x1600 or 43

lower

Intended use case: Virtual Applications
Required license edition: vApps

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 240

Virtual GPU Types Reference

. .] Virtual
Virtual GPU Tvpe Frame Maximum Maximum Display Displavs
yp Buffer (MB) vGPUs per GPU Resolution play
per vGPU
V100L-16A 16384 1 1280x1024% 14
V100L-8A 8192 2 1280x1024% 14
V100L-4A 4096 4 1280x 10244 14
V100L-2A 2048 8 1280x1024% 14
V100L-1A 1024 16 1280x1024% 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available Display Yirtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
7680%x4320 2
RTX8000-48Q 49152 1 66355200 5120x2880 or
lower 4
7680x4320 2
RTX8000-24Q 24576 2 66355200 5120x2880 or
lower 4
RTX8000-16Q 16384 3 66355200 7680x4320 2

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 241

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIF:Jti}(I)n Displays
(MB) per GPU per vGPU
5120x2880 or 4
lower
7680%x4320 2
RTX8000-12Q 12288 4 66355200 5120x2880 or
4
lower
7680%x4320 2
RTX8000-8Q 8192 6 66355200 51202880 or
4
lower
7680%x4320 1
RTX8000-6Q 6144 8 58982400 5120x2880 or
4
lower
7680%x4320 1
RTX8000-4Q 4096 12 58982400 | 5120x2880 or
4
lower
7680%x4320 1
5120%x2880 2
RTX8000-3Q 3072 16 36864000
3840%x2400 or 4
lower
7680%x4320 1
5120%x2880 2
RTX8000-2Q 2048 24 36864000
3840%x2400 or 4
lower
5120%x2880 1
3840%x2400 2
RTX8000-1Q 1024 3212 18432000 3840x2160 2
2560x 1600 or 4

lower

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

The maximum vGPUs per GPU is limited to 32.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 242

Virtual GPU Types Reference

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels Resoﬁjti}:)n Displays
(MB) per GPU per vGPU
5120x2880 1
3840x2400 2
RTX8000-2B 2048 24 18432000 | 3840x2160 p)
2560x% 1600 or 4
lower
5120x2880 1
3840x2400 1
RTX8000-1B 1024 32 16384000 3840x2160 1
2560x 1600 or 3
47
lower
Intended use case: Virtual Applications
Required license edition: vApps
These vGPU types support a single display with a fixed maximum resolution.
. . . Virtual
Virtual GPU Type Frame Maximum Maximum Display Displavs
yp Buffer (MB) vGPUs per GPU Resolution play
per vGPU
RTX8000-48A 49152 1 1280x 10244 14
RTX8000-24A 24576 2 1280x 10244 14
RTX8000-16A 16384 3 1280x1024% 14
RTX8000-12A 12288 4 1280x1024% 14
RTX8000-8A 8192 6 1280x1024% 14
RTX8000-6A 6144 8 1280x 10244 14
RTX8000-4A 4096 12 1280x 10244 14

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 243

Virtual GPU Types Reference

. . . Virtual
Virtual GPU Tvpe Frame Maximum Maximum Display Displavs
yp Buffer (MB) vGPUs per GPU Resolution play
per vGPU
RTX8000-3A 3072 16 1280x1024% 14
RTX8000-2A 2048 24 1280x1024% 14
RTX8000-1A 1024 3012 1280x 10244 14

A.1.25. Quadro RTX 8000 Passive Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Q-Series Virtual GPU Types for Quadro RTX 8000 Passive

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available Display \{irtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
7680x4320 2
RTX8000P-48Q 49152 1 66355200 5120%x2880 or
lower 4
7680x4320 2
RTX8000P-24Q 24576 2 66355200 5120%x2880 or
lower 4
7680%x4320 2
RTX8000P-16Q 16384 3 66355200 5120%2880 or
lower 4

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 244

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIF:Jti}(I)n Displays
(MB) per GPU per vGPU
7680x4320 2
RTX8000P-12Q 12288 4 66355200 5120x2880 or
4
lower
7680%x4320 2
RTX8000P-8Q 8192 6 66355200 5120x2880 or
4
lower
7680%x4320 1
RTX8000P-6Q 6144 8 58982400 5120x2880 or
4
lower
7680%x4320 1
RTX8000P-4Q 4096 12 58982400 5120x2880 or
4
lower
7680%x4320 1
5120x2880 2
RTX8000P-3Q 3072 16 36864000
3840x2400 or 4
lower
7680%x4320 1
5120x2880 2
RTX8000P-2Q 2048 24 36864000
3840x2400 or 4
lower
5120x2880 1
3840%x2400 2
RTX8000P-1Q 1024 3013 18432000 3840x2160 2
2560x% 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution

The maximum vGPUs per GPU is limited to 32.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 245

Virtual GPU Types Reference

displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available Display \{irtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
5120x2880]
3840x2400 2
RTX8000P-2B 2048 24 18432000 3840x2160 2
2560x 1600 or 4
lower
5120x2880 1
3840x2400 1
RTX8000P-1B 1024 32 16384000 | 3840x2160 1
2560% 1600 or 5
lower 4
Intended use case: Virtual Applications
Required license edition: vVApps
These vGPU types support a single display with a fixed maximum resolution.
Virtual GPU Type Frame Maximum Maximum [_)isplay D\g;;::\?/ls
Buffer (MB) vGPUs per GPU Resolution per vGPU
RTX8000P-48A 49152 1 1280x1024% 14
RTX8000P-24A 24576 2 1280x1024% 14
RTX8000P-16A 16384 3 1280x1024% 14
RTX8000P-12A 12288 4 1280x 10244 14
RTX8000P-8A 8192 6 1280%1024% 14
RTX8000P-6A 6144 8 1280%1024% 14
RTX8000P-4A 4096 12 1280%1024% 14
RTX8000P-3A 3072 16 1280%1024% 14
RTX8000P-2A 2048 24 1280x1024% 14

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 246

Virtual GPU Types Reference

Frame Maximum Maximum Display Virtual
Virtual GPU T Displ
irtual GPU Type Buffer (MB) vGPUs per GPU Resolution 'sprays
per vGPU
RTX8000P-1A 1024 3013 1280x 10244 14

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Intended use case: Virtual Workstations
Required license edition: VWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available Display Yirtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
7680%x4320 2
RTX6000-24Q 24576 1 66355200 5120x2880 or
lower 4
7680x4320 2
RTX6000-12Q 12288 2 66355200 5120x2880 or
lower 4
7680x4320 2
RTX6000-8Q 8192 3 66355200 5120%x2880 or
lower 4
7680%x4320 1
RTX6000-6Q 6144 4 58982400 5120%x2880 or
lower 4
RTX6000-4Q 4096 6 58982400 7680%x4320 1

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 247

Virtual GPU Types Reference

Frame Maximum Available Displa Virtual
Virtual GPU Type Buffer vGPUs Pixels ResoIF:Jti}(I)n Displays
(MB) per GPU per vGPU
5120x2880 or 4
lower
7680%x4320 1
5120%x2880 2
RTX6000-3Q 3072 8 36864000
3840x2400 or 4
lower
7680%x4320 1
5120x2880 2
RTX6000-2Q 2048 12 36864000
3840%x2400 or 4
lower
5120%x2880 1
3840x2400 2
RTX6000-1Q 1024 24 18432000 | 3840x2160 p)
2560x% 1600 or 4

lower

Intended use case: Virtual Desktops
Required license edition: vPC or vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

Frame Maximum Available Displa Virtual
Virtual GPU Type ~ Buffer VGPUs ol Resoﬁ;tif; _ Displays
(MB) per GPU per vGPU
5120%x2880 1
3840%x2400 2
RTX6000-2B 2048 12 18432000 | 3840x2160 p)

2560x 1600 or
lower

4

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 248

Virtual GPU Types Reference

. Frame Maximum Available el \{irtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU
5120x2880 1
3840x2400 1
RTX6000-1B 1024 24 16384000 3840x2160 1
2560x 1600 or 5
lower 4
A-Series Virtual GPU Types for Quadro RTX 6000
Intended use case: Virtual Applications
Required license edition: vVApps
These vGPU types support a single display with a fixed maximum resolution.
Virtual GPU Type Frame Maximum Maximum [?isplay D\?isr;;z;ls
Buffer (MB) vGPUs per GPU Resolution per VGPU
RTX6000-24A 24576 1 1280x1024% 14
RTX6000-12A 12288 2 1280x 10244 14
RTX6000-8A 8192 3 1280%1024* 14
RTX6000-6A 6144 4 1280x1024% 14
RTX6000-4A 4096 6 1280x 10244 14
RTX6000-3A 3072 8 1280%1024* 14
RTX6000-2A 2048 12 1280x1024% 14
RTX6000-1A 1024 24 1280x 1024 14
A.1.27. Quadro RTX 6000 Passive Virtual GPU

Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Q-Series Virtual GPU Types for Quadro RTX 6000 Passive

Intended use case: Virtual Workstations

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 249

Virtual GPU Types Reference

Required license edition: vWS

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for
B-Series and Q-Series vGPUs.

. Frame Maximum Available Display \{irtual
Virtual GPU Type Buffer vGPUs Pixels Resolution Displays
(MB) per GPU per vGPU

7680%x4320 2
RTX6000P-24Q 24576 1 66355200 5120x2880 or

lower 4

7680%x4320 2
RTX6000P-12Q 12288 2 66355200 5120x2880 or

lower 4

7680%x4320 2
RTX6000P-8Q 8192 3 66355200 5120x2880 or

lower 4

7680x4320 1
RTX6000P-6Q 6144 4 58982400 5120x2880 or

lower 4

7680%x4320]
RTX6000P-4Q 4096 6 58982400 5120x2880 or

lower 4

7680%x4320 1
RTX6000P-3Q 3072 8 36864000 > 1202880 e

3840x2400 or 4

lower

7680%x4320]
RTX6000P-2Q 2048 12 36864000 > 1202880 e

3840x2400 or 4

lower

5120x2880 1
RTX6000P-1Q 1024 24 18432000 3840x2400 2

3840x2160 2

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 250

Frame Maximum
Virtual GPU Type Buffer vGPUs
(MB) per GPU

Intended use case: Virtual Desktops

Required license edition: vPC or vWS

Virtual GPU Types Reference

. . Virtual
Available Display .Ir ua
Pixels Resolution Displays
per vGPU
2560x% 1600 or
4

lower

These vGPU types support a maximum combined resolution based on the number of
available pixels, which is determined by their frame buffer size. You can choose between
using a small number of high resolution displays or a larger number of lower resolution
displays with these vGPU types. The maximum number of displays per vGPU is based

on a configuration in which all displays have the same resolution. For examples of
configurations with a mixture of display resolutions, see Mixed Display Configurations for

B-Series and Q-Series vVGPUs.

Frame Maximum
Virtual GPU Type Buffer vGPUs

(MB) per GPU
RTX6000P-2B 2048 12
RTX6000P-1B 1024 24

Intended use case: Virtual Applications

Required license edition: vVApps

. . Virtual
Available Display .
. ; Displays
Pixels Resolution
per vGPU
5120x2880 1
3840%x2400 2
18432000 3840x2160 2
2560x 1600 or 4
lower
5120%x2880 1
3840x2400 1
16384000 3840x2160 1
2560x 1600 or 4

lower

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2 | 251

Virtual GPU Type

RTX6000P-24A

RTX6000P-12A

RTX6000P-8A

RTX6000P-6A

RTX6000P-4A

RTX6000P-3A

RTX6000P-2A

RTX6000P-1A

A.2.

vGPUs

Virtual

GPU Available Available Pixel

Type Pixels Basis

-2B 17694720 2 4096x2160
displays

-2B4 17694720 2 4096x2160
displays

-1B 16384000 4 2560x 1600
displays

-1B4 16384000 4 2560x 1600
displays

-0B 8192000 | 2 2560x1600
displays

Frame
Buffer (MB)

24576
12288
8192
6144
4096
3072
2048

1024

Virtual GPU Types Reference

Maximum Maximum Display D\:Lr;g;ls
vGPUs per GPU Resolution per VGPU

1 1280x1024* 14

2 1280x1024* 14

3 1280x1024* 14

4 1280x1024* 14

6 1280x1024* 14

8 1280x1024* 14

12 1280x1024* 14

24 1280x1024% 1?

Mixed Display Configurations for B-
Series and Q-Series vGPUs

Mixed Display Configurations for B-Series

Virtual GPU Software

Maximum Sample Mixed Display
Displays Configurations

4

1 4096x2160 display plus 2 2560x 1600
displays

1 4096x2160 display plus 2 2560x 1600
displays

1 4096x2160 display plus 1 25601600
display

1 4096%2160 display plus 1 25601600
display

1 2560x% 1600 display plus 1 1280x1024
display

DU-06920-001 _v17.0 through 17.2 | 252

A.2.2.

Virtual
GPU

Type
-8Q

-4Q

-2Q

Virtual
GPU

Type
-8Q and
above

-6Q

Virtual GPU Types Reference

Mixed Display Configurations for Q-Series
vGPUs Based on the NVIDIA Maxwell

Architecture

Available Available Pixel

Pixels
35389440

35389440

35389440

17694720

8192000

Basis

4 4096x2160
displays

4 4096%2160
displays

4 4096%2160
displays

2 4096x2160
displays

2 2560x1600
displays

Maximum Sample Mixed Display
Displays Configurations

4

1 5120x2880 display plus 2 4096x2160
displays
1 5120=2880 display plus 2 4096x2160
displays
1 5120x2880 display plus 2 4096x2160
displays
1 4096%2160 display plus 2 25601600
displays

1 2560x 1600 display plus 1 1280x 1024
display

Mixed Display Configurations for Q-Series
vGPUs Based on Architectures after

NVIDIA Maxwell

Available
Pixels

66355200

58982400

58982400

35389440

35389440

17694720

Virtual GPU Software

Available Pixel

Basis

2 7680x4320
displays

4 5120%2880
displays
4 5120%x2880
displays
4 4096x2160
displays
4 4096%2160
displays

2 4096x2160
displays

Maximum Sample Mixed Display
Displays Configurations

4

1 7680x4320 display plus 2 5120x2880
displays

1 7680%x4320 display plus 3 4096x2160
displays

1 7680%x4320 display plus 1 5120x2880
display

1 7680x4320 display plus 1 5120x2880
display

1 5120x%2880 display plus 2 4096x2 160
displays

1 5120x2880 display plus 2 4096x2160
displays

1 4096%2160 display plus 2 25601600
displays

DU-06920-001 _v17.0 through 17.2 | 253

Virtual GPU Types Reference

A.3. VvGPU Placements for GPUs in
Mixed-Size Mode

The vGPU placements that a GPU in mixed-size mode supports depend on the total
amount of frame buffer that the GPU has.

A.3.1. vGPU Placements for GPUs with 94 GB of
Frame Buffer

Placement region size: 94

vGPU Size . .
Maximum vGPUs Maximum vGPUs
(MB of Placement , . Supported
. per GPU in per GPU in
Frame Size . . . Placement IDs
Equal-Size Mode Mixed-Size Mode
Buffer)
96246 94 1 1 0
48128 47 2 2 0, 47
23552 23 4 4 0,24,47,71
15360 15 6 4 0,32,47,79
0, 12,23,36,47,59, 70,
11264 11 8 8
83
0,17,23,41,47,64, 70,
6,144 6 15 8
88
0,7,11,19, 23,31, 35,
4,096 4 23 16 43, 47,54, 58, 66, 70, 78,
82,90

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 94 GB of frame buffer in mixed-size mode.

olsfzlz]slslslrl=]slnluilszfisluelislas) irlielin okaa) o2 frs |alos | aslarlzn) ol anle |az |53 ssfss |os |57 |sm |so | anfaa Jaz Loz | sa|as] asl o7 | ssbanlsn |51 |52 salse s |56 | sl ss) s Jon | fe [e s s || sl m |51 | v2 |3 s | 75 sl | v | s bom | [z [a) el s Vs |7 fom s 3 o [

A.3.2. VvGPU Placements for GPUs with 80 GB of
Frame Buffer

Placement region size: 80

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 254

Virtual GPU Types Reference

vGPU Size . .
Maximum vGPUs Maximum vGPUs
(MBof Placement . . Supported
Frame Size e e el EIAU L Placement IDs
Equal-Size Mode Mixed-Size Mode
Buffer)
81920 80 1 1 0
40960 40 2 2 0, 40
20480 20 4 4 0, 20, 40, 60
16384 16 5 4 0, 24, 40, 64
10 0, 10, 20, 30, 40, 50, 60,
10240 8 8
70
8 0, 12, 20, 32, 40, 52, 60,
8192 10 8
72
0,5, 10, 15, 20, 25, 30,
5120 5 16 16 35, 40, 45, 50, 55, 60, 65,
70,75
4 0,6, 10, 16, 20, 26, 30,
4096 20 16 36, 40, 46, 50, 56, 60, 66,
70,76

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 80 GB of frame buffer in mixed-size mode.

4GB 4GB 4GB 4GB AGE AGE 4GB 4GB 4GB 4GB 4GB AGE 4GB 4GB 4GB 4GB

A.3.3. VvGPU Placements for GPUs with 48 GB of
Frame Buffer

Placement region size: 48

%] Note: When in mixed-size mode, the maximum number of vGPUs with 1024 MB of frame
buffer allowed on GPUs based on the Ada Lovelace GPU architecture is lower than for
other GPU architectures. As a result, the supported placement IDs for these vGPUs on
GPUs based on the Ada Lovelace GPU architecture are different than for other GPU
architectures.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 255

Virtual GPU Types Reference

vGPU Size . .
Maximum vGPUs Maximum vGPUs
(MBof Placement . . Supported
Frame Size per GPUin per GPU in Placement IDs
Equal-Size Mode Mixed-Size Mode
Buffer)
49152 48 1 1 0
24576 24 2 2 0, 24
16384 16 3 2 0,32
12288 12 4 4 0, 12,24, 36
8192 8 6 4 0, 16, 24, 40
6 0,6, 12,18, 24, 30, 36,
6144 8 8
42
4 0,8, 12,20, 24, 32, 36,
4096 12 8
44
3 0,3,6,9 12,15,18, 21,
3072 16 16 24,27, 30, 33, 36, 39, 42,
45
2 0,4,6,10, 12,16, 18, 22,
2048 24 16 24,28, 30, 34, 36, 40, 42,
46
GPU architectures
_ except Ada Lovelace: O,
GPU architectures
2,3,56,9 11,12, 14,
except Ada
Lovelace: 30 15,17, 18, 20, 21, 23, 24,
V .
26, 27, 29, 30, 33, 35, 36,
1024 1 32

38, 39,41, 42,44, 45, 47

Ada Lovelace GPU
Ada Lovelace GPU | architecture: 0, 5, 6, 11,
architecture: 16 12,17, 18, 23, 24, 29, 30,
35, 36,41, 42, 47

The following diagram shows the supported placements for each size of vGPU on a GPU
based on a GPU architecture except Ada Lovelace with a total of 48 GB of frame buffer in
mixed-size mode.

0]1]2]3 |2]5]6] 78] [10]11]12]13]12]15][16]17 |18 18] 20]21]22]23 2225 26|27 |28]23]30 31 32 |33 34|35 36|57 |38 | 30 |20 21 |42 | 43 22 |25 | 25 |47
| — || | || |] [L

| 48GE]

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 256

Virtual GPU Types Reference

The following diagram shows the supported placements for each size of vGPU on a GPU
based on the Ada Lovelace GPU architecture with a total of 48 GB of frame buffer in
mixed-size mode.

[olalalsJalslel71s]a[0]as]aa]1s]2a]as 162728 10]20]21]22]23 2425 2627 28] 2030313233 3a]35]36]37 38 [30 [0 41[aa]a3as]as]as]ar]
1 1cehic 1cehic 1cefic hcslics| 1G8l1c] 16816 1G816 1

3GB 3GB 3GB 3GB 3GB 3GB 3GB 3GB 3GB 368 3GB 3GB 3GB 3GB 3GB 3GB
4GB | | 268 4GB | | 4GB 468 | | 4GB 4GB | | 4GB

| 48GB |

A.3.4. vGPU Placements for GPUs with 40 GB of
Frame Buffer

Placement region size: 40

vGPU Size . .
Maximum vGPUs Maximum vGPUs
(MB of Placement , . Supported
Frame Size S e I Sl EIA L Placement IDs
Equal-Size Mode Mixed-Size Mode
Buffer)
40960 40 1 1 0]
20480 20 2 2 0, 20
10240 10 4 4 0, 10, 20, 30
8192 8 5 4 0, 12,20, 32
5 0, 5,10, 15, 20, 25, 30,
5120 8 8
35
4 0,6, 10, 16, 20, 26, 30,
4096 10 8 36

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 40 GB of frame buffer in mixed-size mode.

lolalalslals el 7l slw][aafazfas]1alas] a6 278120 212223 [2al 25 26 27 2e2s 30303233 [3a[35[36]37 3838
4GB 4GB 4GB 4GB 4GB 4GB 4GB 4GB

8GB 8GB 8GB 8GB
10GB I 1068 10GB I 1068
2068 2068
40GB

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 257

A.3.5.

Placement region size: 32

Virtual GPU Types Reference

vGPU Placements for GPUs with 32 GB of
Frame Buffer

vGPU Size . .
Maximum vGPUs Maximum vGPUs
(MBof Placement . . Supported
. per GPU in per GPU in
Frame Size . . . Placement IDs
Equal-Size Mode Mixed-Size Mode
Buffer)
32768 32 1 1 0
16384 16 2 2 0,16
8192 8 4 4 0,8, 16, 24
4096 4 8 8 0,4,8,12,16, 20, 24, 28
2 0,2,4,6,8,10, 12, 14,
2048 16 16 16, 18, 20, 22, 24, 26, 28,
30
1 0,1,273,456,7,8,9,
10, 11,12,13, 14, 15, 16,
1024 32 32 17,18, 19,20, 21, 22, 23,
24,25, 26, 27, 28, 29, 30,
31

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 32 GB of frame buffer in mixed-size mode.

|0|l|2|3|4|5|5|?IB‘9|10‘11|12|13|l4|]5|15|17|].B|19|20‘21|22‘23'14'25|25|27|23|29|30|31|
1GB | 1GB | 1GB | 1GB | 1GB | 1GB | 1GB | 1GB | 168 | 1GB

4GB 4GB 4GB 4GB 4GB 4GB 4GB 4GB
BGB I BGB 8GB I BGB.

16GB 16GE

vGPU Placements for GPUs with 24 GB of
Frame Buffer

Placement region size: 24

A.3.6.

MR SrE Maximum vGPUs Maximum vGPUs
(MBof Placement . . Supported
Frame Size 22 e I P EIPL I Placement IDs
Equal-Size Mode Mixed-Size Mode
Buffer)
24576 24 1 1 0]

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2 | 258

Sl T Maximum vGPUs
(MB of Placement .
. per GPU in

AL RS Equal-Size Mode
Buffer) 9

12288 12 2

8192 8 3

6144 6 4

4096 4 6

3072 3 8

2048 2 12

1024] 24

Virtual GPU Types Reference

Maximum vGPUs
per GPU in
Mixed-Size Mode

Supported
Placement IDs

0,12

0,16

0,6,12,18

0,8, 12,20

0,3,6,9 12,15, 18,21
0,4,6,10,12,16, 18, 22

0,2,356,89 11,12,
14,15,17,18, 20, 21, 23

w oo M~ b~ M

16

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 24 GB of frame buffer in mixed-size mode.

ol1l2]l3lals]|e]l7]e]lolaof1a]2]13]1a]as]a6]17]18]19]20]21]22]023
1GB 168|168 168|168 168|168 168[168 168|168 168|168 168|168 1GB
3GB 3GB 3GB 3GB 3GB 3GB 3GB 3GB
4GB | 4GB 4GB | 4GB
6GB 6GB 6GB 6GB
3GB | | 3GB
12GB 12GB
24GB

A.3.7.
Frame Buffer

Placement region size: 20

Vel S Maximum vGPUs
(MB of Placement .
. per GPU in

ACILS SIS Equal-Size Mode
Buffer) q

20480 20 1

10240 10 2

5120 5 4

4096 4 5

2048 2 10

Virtual GPU Software

vGPU Placements for GPUs with 20 GB of

Maximum vGPUs
per GPU in
Mixed-Size Mode

Supported
Placement IDs

1 0

2 0,10

4 0,510, 15

4 0,6,10,16

8 0,358 10,13,15,18

DU-06920-001 _v17.0 through 17.2 | 259

Virtual GPU Types Reference

WEIRD SIP Maximum vGPUs Maximum vGPUs
(MBof Placement . . Supported
Frame Size P ERU P ERU T Placement IDs
Equal-Size Mode Mixed-Size Mode
Buffer)
1 0,1,2,4,56,7,9, 10,
1024 20 16

11,12, 14,15,16, 17,19

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 20 GB of frame buffer in mixed-size mode.

o |1l 2] slalsle]l7]8]l 9 lw]ufln]z3la]ls]ic]|]iz]is]as
168 | 168 | 168 168 | 168 | 168 | 168 168 | 168 | 168 | 168 168 | 168 | 168 | 168 1GB
4GB 4GB 4GB 4GB
5GB | 5GB 5GB | 5GB
10GB 10GB
20GB

A.3.8. vGPU Placements for GPUs with 16 GB of
Frame Buffer

Placement region size: 16

PU Si
Rl SrE Maximum vGPUs Maximum vGPUs
(MBof Placement . . Supported
Frame Size Z2r eI P EPL I Placement IDs
Equal-Size Mode Mixed-Size Mode
Buffer)
16384 16 1 1 0
8192 8 2 2 0,8
4096 4 4 4 0,4,8 12
2048 2 8 8 0,2,4,6,8,10,12, 14
] 0,1,2,3,45,6,7,8,9,
1024 16 16

10, 11,12,13, 14,15

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 16 GB of frame buffer in mixed-size mode.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 260

Virtual GPU Types Reference

16GB

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 261

Appendix B. Allocation Strategies

Strategies for allocating physical hardware resources to VMs and vGPUs can improve
the performance of VMs running with NVIDIA vGPU. They include strategies for pinning
VM CPU cores to physical cores on Non-Uniform Memory Access (NUMA) platforms,
allocating VMs to CPUs, and allocating vGPUs to physical GPUs. These allocation
strategies are supported by Citrix Hypervisor and VMware vSphere.

Server platforms typically implement multiple CPU sockets, with system memory and PCI
Express expansion slots local to each CPU socket, as illustrated in Figure 29:

Figure 29. A NUMA Server Platform

i f:

PCle CPU Socket 0 CPU Socket 1 PCle

GPU O <:—:> Core | | Care <—h Core | [Core <#> GPU 2
GPU 1 <'1::> Core | [Core Care | | Core ;1 D CPU 3

CPU
Interconnect

These platforms are typically configured to operate in Non-Uniform Memory Access
(NUMA) mode; physical memory is arranged sequentially in the address space, with all the
memory attached to each socket appearing in a single contiguous block of addresses.
The cost of accessing a range of memory from a CPU or GPU varies; memory attached

to the same socket as the CPU or GPU is accessible at lower latency than memory on
another CPU socket, because accesses to remote memory must additionally traverse the
interconnect between CPU sockets.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 262

Allocation Strategies

B.1.1. Obtaining Best Performance on a NUMA
Platform with Citrix Hypervisor

To obtain best performance on a NUMA platform, NVIDIA recommends pinning VM vCPU
cores to physical cores on the same CPU socket to which the physical GPU hosting the
VM'’s vGPU is attached. For example, using as a reference, a VM with a vGPU allocated on
physical GPU O or 1 should have its vCPUs pinned to CPU cores on CPU socket O. Similarly,
a VM with a vGPU allocated on physical GPU 2 or 3 should have its vCPUs pinned to CPU
cores on socket 1.

See Pinning VMs to a specific CPU socket and cores for guidance on pinning vCPUs, and
How GPU locality is determined for guidance on determining which CPU socket a GPU is
connected to. Controlling the vGPU types enabled on specific physical GPUs describes
how to precisely control which physical GPU is used to host a vGPU, by creating GPU
groups for specific physical GPUs.

B.1.2. Obtaining Best Performance on a NUMA
Platform with VMware vSphere ESXi

For some types of workloads or system configurations, you can optimize performance
by specifying the placement of VMs explicitly. For best performance, pin each VM to the
NUMA node to which the physical GPU hosting the VM’'s vGPU is attached.

The following types of workloads and system configurations benefit from explicit
placement of VMs:

» Memory-intensive workloads, such as an in-memory database or an HPC application
with a large data set
» A hypervisor host configured with a small number of virtual machines

VMware vSphere ESXi provides the NUMA Node Affinity option for specifying the
placement of VMs explicitly. For general information about the options in VMware
vSphere ESXi for NUMA placement, see Specifying NUMA Controls in the VMware
documentation.

Before setting the NUMA Node Affinity option, run the nvidia-smi topo -m command in
the ESXi host shell to determine the NUMA affinity of the GPU device.

After determining the NUMA affinity of the GPU device, set the NUMA Node Affinity
option as explained in Associate Virtual Machines with Specified NUMA Nodes in the
VMware documentation.

B.2. Maximizing Performance

To maximize performance as the number of vGPU-enabled VMs on the platform
increases, NVIDIA recommends adopting a breadth-first allocation: allocate new VMs on

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 263

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-68817061-CAA9-4997-8384-3C1A0DF7F3E9.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-A80A6337-7B99-48C8-B024-EE47E2366C1B.html

Allocation Strategies

the least-loaded CPU socket, and allocate the VM’s vGPU on an available, least-loaded,
physical GPU connected via that socket.

Citrix Hypervisor and VMware vSphere ESXi use a different GPU allocation policy by
default.

» Citrix Hypervisor creates GPU groups with a default allocation policy of depth-first.

See Modifying GPU Allocation Policy on Citrix Hypervisor for details on switching the
allocation policy to breadth-first.

» VMware vSphere ESXi creates GPU groups with a default allocation policy of breadth-
first.

See Modifying GPU Allocation Policy on VMware vSphere for details on switching the
allocation policy to depth-first.

S Note: Due to vGPU’s requirement that only one type of vGPU can run on a physical GPU at

any given time, not all physical GPUs may be available to host the vGPU type required by
the new VM.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 264

Appendix C. Configuring x11vnc for
Checking the GPU in a
Linux Server

x11vnc is a virtual network computing (VNC) server that provides remote access to an
existing X session with any VNC viewer. You can use x11vnc to confirm that the NVIDIA
GPU in a Linux server to which no display devices are directly connected is working as
expected. Examples of servers to which no display devices are directly connected include
a VM that is configured with NVIDIA vGPU, a VM that is configured with a pass-through
GPU, and a headless physical host in a bare-metal deployment.

Before you begin, ensure that the following prerequisites are met:

The NVIDIA vGPU software software graphics driver for Linux is installed on the server.
A secure shell (SSH) client is installed on your local system:

On Windows, you must use a third-party SSH client such as PuTTY.

On Linux, you can run the SSH client that is included with the OS from a shell or
terminal window.

Configuring x11vnc involves following the sequence of instructions in these sections:

1. Configuring the Xorg Server on the Linux Server

2. Installing and Configuring x11vnc on the Linux Server

3. Using a VNC Client to Connect to the Linux Server

After connecting to the server, you can use NVIDIA X Server Settings to confirm that the
NVIDIA GPU is working as expected.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 265

Configuring x11vnc for Checking the GPU in a Linux Server

C.1. Configuring the Xorg Server on the
Linux Server

You must configure the Xorg server to specify which GPU or vGPU is to be used by the
Xorg server if multiple GPUs are installed in your server and to allow the Xorg server to
start even if no connected display devices can be detected.

1. Log in to the Linux server.
2. Determine the PCI bus identifier of the GPUs or vGPUs on the server.

nvidia-xconfig --query-gpu-info
Number of GPUs: 1

GPU #0:
Name : GRID T4-2Q
UUID : GPU-ea80de2d-1dd8-11b2-8305-c955f034e718

PCI BusID : PCI:2:2:0

Number of Display Devices: 0

3. In a plain text editor, edit the /etc/x11/xorg.conf file to specify the GPU is to be
used by the Xorg server and allow the Xorg server to start even if no connected
display devices can be detected.

a). In the pevice section, add the PCI bus identifier of GPU to be used by the Xorg

server.
Section "Device"
Identifier "DeviceQ"
Driver "nvidia"
VendorName "NVIDIA Corporation"
BusID "PCI:2:2:0"
EndSection

S Note: The three numbers in the pcI BusID obtained by nvidia-xconfig in the
previous step are hexadecimal numbers. They must be converted to decimal
numbers in the PCl bus identifier in the Device section. For example, if the PCI
bus identifier obtained in the previous step is pc1:2A:10:0, it must be specified as
PCI:10:16:0 in the PCl bus identifier in the bevice section.

b). In the screen section, ensure that the AllowEmptyInitialConfiguration option
is set to True

Section "Screen"

Identifier "ScreenO"

Device "DeviceQ"

Option "AllowEmptyInitialConfiguration" "True"
EndSection

4. Restart the Xorg server in one of the following ways:
» Restart the server.
» Runthe startx command.

» |If the Linux serverisin run level 3, run the init 5 command to run the server in
graphical mode.

5. Confirm that the Xorg server is running.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 266

Configuring x11vnc for Checking the GPU in a Linux Server

ps -ef | grep X
On Ubuntu, this command displays output similar to the following example.

root 16500 16499 2 03:01 tty2 00:00:00 /usr/lib/xorg/Xorg -nolisten
tcp :0 -—auth /tmp/serverauth.s7CE4mMelz
root 1140 1126 0 18:46 ttyl 00:00:00 /usr/lib/xorg/Xorg vtl -displayfd
3 -auth /run/user/121/gdm/Xauthority -background none -noreset -keeptty -verbose
3
root 17011 17108 0 18:50 pts/0 00:00:00 grep --color=auto X

On Red Hat Enterprise Linux, this command displays output similar to the following

example.

root 5285 5181 0 16:29 pts/0 00:00:00 grep --color=auto X

root 5880 1 0 Junl3 ? 00:00:00 /usr/bin/abrt-watch-log -F
Backtrace /var/log/Xorg.0.log -- /usr/bin/abrt-dump-xorg -xD

root 7039 6289 0 Junl3 ttyl 00:00:03 /usr/bin/X :0 -background none -
noreset -audit 4 -verbose -auth /run/gdm/auth-for-gdm-vr4MFC/database -seat seatO
vtl

C.2. Installing and Configuring x11vnc
on the Linux Server

Unlike other VNC servers, such as TigerVNC or Vino, x11vnc does not create an extra
X session for remote access. Instead, x11vnc provides remote access to the existing X
session on the Linux server.

1. Install the required x11vnc package and any dependent packages.

» For distributions based on Red Hat, use the yum package manager to install the
x1llvnc package.
yum install xllvnc

» For distributions based on Debian, use the apt package manager to install the
x11vnc package.

sudo apt install xllvnc

» For SUSE Linux distributions, install x11vnc from the x11vnc openSUSE Software

page.
2. Get the display numbers of the servers for the Xorg server.
cat /proc/*/environ 2>/dev/null | tr '\0' '\n' | grep '~DISPLAY=:' | uniq
DISPLAY=:0

DISPLAY=:100
3. Start the x11vnc server, specifying the display number to use.

The following example starts the x11vnc server on display O on a Linux server that is
running the Gnome desktop.

xllvnc -display :0 -auth /run/user/121/gdm/Xauthority -forever \
-shared -ncache -bg

Note: If you are using a C-series VGPU, omit the -ncache option.

The x11vnc server starts on display hostname:0, for example, my-1inux-host: 0.

26/03/20200 04:23:13
The VNC desktop is: my-linux-host:0

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 267

https://software.opensuse.org/package/x11vnc

Configuring x11vnc for Checking the GPU in a Linux Server

PORT=5900

C.3. Using a VNC Client to Connect to
the Linux Server

. Onyour client computer, install a VNC client such as TightVNC.
2. Start the VNC client and connect to the Linux server.

New TightVNC Connection
Connection

Remote Host: | NN v| | connect |

Enter a name or an IP address. To spedify a port number, |
append it after two colons (for example, mypc::5902). ~ Options...

Reverse Connections
Listening mode allows people to attach your viewer to
their desktops. Viewer will wait for incoming connections. Ustening mode
TightVNC Viewer
TightVNC is cross-platform remote control software.
. - Its source code is available to everyone, either freely
: g (GNU GPL license) or commerdally (with no GPL restrictions).

The X session on the server opens in the VNC client.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 268

Configuring x11vnc for Checking the GPU in a Linux Server

- TightVNC Viewer

BEHED N S @A QaeREHE

Troubleshooting: If your VNC client cannot connect to the server, change permissions on
the Linux server as follows:

1. Allow the VNC client to connect to the server by making one of the following changes:

» Disable the firewall and the iptables service.
» Open the VNC port in the firewall.

2. Ensure that permissive mode is enabled for Security Enhanced Linux (SELinux).

After connecting to the server, you can use NVIDIA X Server Settings to confirm that the
NVIDIA GPU is working as expected.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 269

Configuring x11vnc for Checking the GPU in a Linux Server

- TightVNC Viewer
=

BPAED| N S| o Qe aae|E
Y

NVIDIA X Server Settings

[, |

RvIDIA

¥ GPUO-(GRID

Pows

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 270

Appendix D. Disabling NVIDIA
Notification Icon for Citrix
Published Application User
Sessions

By default on Windows Server operating systems, the NVIDIA Notification Icon
application is started with every Citrix Published Application user session. This application
might prevent the Citrix Published Application user session from being logged off even
after the user has quit all other applications.

The NVIDIA Notification Icon application appears in Citrix Connection Center on the
endpoint client that is running Citrix Receiver or Citrix Workspace.

The following image shows the NVIDIA Notification Icon in Citrix Connection Center for a
user session in which the Adobe Acrobat Reader DC and Google Chrome applications are

published.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 271

Disabling NVIDIA Notification Icon for Citrix Published Application User Sessions

@ Citrix Connection Cente
Connections
=-#E Active
-5 XENAPP
Adobe Acrobat Reader DC - \Remot:
(& Google - Google Chrome - \\Remote
£ >

1 Server used, 3 Remote Applications

Session

Disconnect

Full Screen

Log Cff

Preferences

Devices

Properties

Application

Teminate

Close

Administrators can disable the NVIDIA Notification Icon application for all users'
sessions as explained in Disabling NVIDIA Notification Icon for All Users' Citrix Published

Application Sessions.

Individual users can disable the NVIDIA Notification Icon application for their own
sessions as explained in Disabling NVIDIA Notification Icon for your Citrix Published

Application User Sessions.

Note: If an administrator has enabled the NVIDIA Notification Icon application for the
administrator's own session, the application is enabled for all users' sessions, even the
sessions of users who have previously disabled the application.

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2 | 272

Disabling NVIDIA Notification Icon for Citrix Published Application User Sessions

D.1. Disabling NVIDIA Notification
Icon for All Users' Citrix Published
Application Sessions

Administrators can set a registry key to disable the NVIDIA Notification Icon application
for all users' Citrix Published Application sessions on a VM. To ensure that the NVIDIA
Notification Icon application is disabled on any virtual delivery agent (VDA) that is created
from a master image, set this key in the master image.

Perform this task from the VM on which the Citrix Published Application sessions will be
created.

Before you begin, ensure that the NVIDIA vGPU software graphics driver is installed in the
VM.

1. Set the system-level startoOnLogin Windows registry key to O.

[HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\nvlddmkm\NvTray]
Value: "StartOnLogin"

Type: DWORD

Data: 00000000

The data value O disables the NVIDIA Notification Icon, and the data value 1 enables
it.
2. Restart the VM.

You must restart the VM to ensure that the registry key is set before the NVIDIA
service in the user session starts.

D.2. Disabling NVIDIA Notification Icon
for your Citrix Published Application
User Sessions

Individual users can disable the NVIDIA Notification Icon for their own Citrix Published
Application sessions.
Before you begin, ensure that you are logged on to a Citrix Published Application session.

1. Set the current user's startOnLogin Windows registry key to O.

[HKEY CURRENT USER\SOFTWARE\NVIDIA Corporation\NvTray\]
Value: "StartOnLogin"

Type: DWORD

Data: 00000000

The data value O disables the NVIDIA Notification Icon, and the data value 1 enables
it.
2. Log off and log on again or restart the VM.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 273

Disabling NVIDIA Notification Icon for Citrix Published Application User Sessions

You must log on and log off again or restart the VM to ensure that the registry key is
set before the NVIDIA service in the user session starts.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 274

Appendix E. Citrix Hypervisor Basics

To install and configure NVIDIA vGPU software and optimize Citrix Hypervisor operation
with vGPU, some basic operations on Citrix Hypervisor are needed.

E.1. Opening a domO shell

Most configuration commands must be run in a command shell in the Citrix Hypervisor

domO domain. You can open a shell in the Citrix Hypervisor domO domain in any of the
following ways:

» Using the console window in XenCenter

» Using a standalone secure shell (SSH) client

E.1.1. Accessing the domO shell through
XenCenter

1. In the left pane of the XenCenter window, select the Citrix Hypervisor host that you
want to connect to.

2. Click on the Console tab to open the Citrix Hypervisor console.
3. Press Enter to start a shell prompt.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 275

Citrix Hypervisor Basics

Figure 30. Connecting to the domO shell by using XenCenter

o XenCenter =8 =
File View Pool Server VM Storage Templates Tools Window Help
@ Back - () Forward - | [Add New Server | BT NewPool T3 New Storage] New VM | (@) Shut Down) Reboot () Suspend @ System Alerts: 2

Views: | Server View " B xenserver-vgx-test2 (VM IPs 10.31.213.50-95, dom0 .98, QOB .99) Logged in as: Local root account

¢O Search | General | Memory | Storage | Metworking | NICs Console | Performance | Users | Logs

= XenCent
?IBM xenserver-vgx-test2 (VM IPs 10.31.213.50-95, dom0 .98, OOB .99) server console
@ test-image-win7-32

[vgr-base-image-win7-32 ast login: Thu Jun 20 17:59:59 from dhcp-172-20-44-3.nvidia.con
@vgx-base-lmage-wm?-&ft | R - . . f it

% DVD drives enServer dom0@ configuration is tuned for maximum performance and reliability.
@ Local storage onfiguration changes which are not explicitly documented or approved by Citrix
%? Removable storage echnical Support, may not have been tested and are therefore not supported. In
=1 VM Storage hddition, configuration changes may not persist after installation of a hotfix

pbr- upgrade, and could also cause a hotfix or upgrade to fail.

hird party tools, which require modification to dom® configuration, or
installation into dom@, may cease to function correctly after upgrade or hotfix
installation. Please consult Citrix Technical Support for advice regarding
Epecific tools.

ype "xsconsole” for access to the management comsole.
[root@xenserver-vgx-testZ ~ 14

Send Ctrl+ Alt+ Del (Ctrl+ Alt+Insert) Scale @l: Undock (Alt+Shift+ U] | | Fullscreen (Ctrl+Enter)

1. Ensure that you have an SSH client suite such as PuTTY on Windows, or the SSH client
from OpenSSH on Linux.

2. Connect your SSH client to the management IP address of the Citrix Hypervisor host.
3. Log in as the root user.

You can easily copy files to and from Citrix Hypervisor domO in any of the following ways:

Using a Secure Copy Protocol (SCP) client

Using a network-mounted file system

The SCP client to use for copying files to domO depends on where you are running the
client from.

If you are running the client from domO, use the secure copy command scp.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 276

Citrix Hypervisor Basics

The scp command is part of the SSH suite of applications. It is implemented in domO
and can be used to copy from a remote SSH-enabled server:

[root@xenserver ~]# scp root@l0.31.213.96:/tmp/somefile .

The authenticity of host '10.31.213.96 (10.31.213.96)' can't be established.
RSA key fingerprint is 26:2d:9b:b9:bf:6c:81:70:36:76:13:02:c1:82:3d:3c.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.31.213.96' (RSA) to the list of known hosts.
root@10.31.213.96's password:

somefile 100% 532 0.5KB/s 00:00
[root@xenserver ~]1#

» If you are running the client from Windows, use the pscp program.

The pscp program is part of the PUTTY suite and can be used to copy files from a
remote Windows system to Citrix Hypervisor:

C:\Users\nvidia>pscp somefile root@10.31.213.98:/tmp
root@10.31.213.98's password:
somefile | 80 kB | 80.1 kB/s | ETA: 00:00:00 | 100%

C:\Users\nvidia>

E.2.2. Copying files by using a CIFS-mounted file
system

You can copy files to and from a CIFS/SMB file share by mounting the share from domoO.

The following example shows how to mount a network share \\myserver.example.com
\myshare at /mnt/myshare on domO and how to copy files to and from the share.

The example assumes that the file share is part of an Active Directory domain called
example.com and that user myuser has permissions to access the share.

1. Create the directory /mnt/myshare on domO.

[root@xenserver ~]# mkdir /mnt/myshare

2. Mount the network share \\myserver.example.com\myshare at /mnt/myshare on
domO.

[root@xenserver ~]# mount -t cifs -o username=myuser,workgroup=example.com //
myserver.example.com/myshare /mnt/myshare
Password:
[root@xenserver ~]#

3. When prompted for a password, enter the password for myuser in the example.com
domain.

4. After the share has been mounted, copy files to and from the file share by using the
cp command to copy them to and from /mnt /myshare:

[root@xenserver ~]# cp /mnt/myshare/NVIDIA-vGPU-NVIDIA-vGPU-
CitrixHypervisor-8.2-550.90.05.x86_ 64.rpm .
[root@xenserver ~]#

E.3. Determining a VM’'s UUID

You can determine a virtual machine’s UUID in any of the following ways:

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 277

Citrix Hypervisor Basics

» Using the xe vm-1ist command in a domO shell

» Using XenCenter

E.3.1. Determining a VM's UUID by using xe vm-
list

Use the xe vm-1ist command to list all VMs and their associated UUIDs or to find the
UUID of a specific named VM.

» Tolist all VMs and their associated UUIDs, use xe vm-1ist without any parameters:

[root@xenserver ~]# xe vm-list
uuid (RO) : 6b5585f6-bd74-2e3e-0el11-03b9281c3ade
name-label (RW): vgx-base-image-win7-64

power-state (RO): halted

uuid (RO) : fa3dl5c7-7e88-4886-c36a-cdb23ed8e275
name-label (RW): test-image-win7-32
power-state (RO): halted

uuid (RO) : 501bb598-a9b3-4afc-9143-f£85635d5dc3
name-label (RW): Control domain on host: xenserver
power-state (RO): running

uuid (RO) : 8495adf7-be9d-eeel-327f-02e4£f40714fc
name-label (RW): vgx-base-image-win7-32
power-state (RO): halted

» To find the UUID of a specific named VM, use the name-1label parameter to xe vm-

list:
[root@xenserver ~]# xe vm-list name-label=test-image-win7-32
uuid (RO) : fa3dl5c7-7e88-4886-c36a-cdb23ed8e275

name-label (RW): test-image-win7-32
power-state (RO): halted

E.3.2. Determining a VM’s UUID by using
XenCenter

1. In the left pane of the XenCenter window, select the VM whose UUID you want to
determine.

2. In the right pane of the XenCenter window, click the General tab.

The UUID is listed in the VM'’s General Properties.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 278

Citrix Hypervisor Basics

Figure 31. Using XenCenter to determine a VM's UUID
°)(enCenter - Exr 3 - I!

File View Pool Server VM Storage Templates Tools Window Help

e Back - O Forward = @ Add Mew Server Mew Pool @ New Storage EI Mew Wi @ Start g‘é Reboot 0 Suspend

Views: [Sewel View '] @ test-image-win7-32 on xenserver-vgx-test2 (VM IPs 10.31.213.50-95, dom0 .98, OOB .99)’

|559|"Cf"--- p| General | Memory | Storage | Networking | Console | Performance | Snapshots | Logs
€ [

= Q HenCenter
E acurrid-testl
E nenserver-vgx-test (VM IPs 10,317

= E xenserver-vgx-test? (WM IPs 10,31
B

[vgx-base-image-win7-32 General
@ vgx-base-image-win7-64 , 1
Local storage Description:
% Removable storage
% VM Storage Tags: <MNonex
E localhost.localdoemain Folder <None»
E xenserver-testing0l)) .
Operating System: Windows 7 Enterprise
BIOS strings copied: No
UuID: fa3dl5c7-7eB8-4886-c36a-cdb23edBe2T5

E.4. Using more than two vCPUs with
Windows client VMs

Windows client operating systems support a maximum of two CPU sockets. When
allocating vCPUs to virtual sockets within a guest VM, Citrix Hypervisor defaults to
allocating one vCPU per socket. Any more than two vCPUs allocated to the VM won’t be
recognized by the Windows client OS.

To ensure that all allocated vCPUs are recognized, set platform:cores-per-socket to
the number of vCPUs that are allocated to the VM:

[root@xenserver ~]# xe vm-param-set uuid=vm-uuid platform:cores-per-socket=4 VCPUs-max=4
VCPUs-at-startup=4

vm-uuid is the VM’s UUID, which you can obtain as explained in Determining a VM’s UUID.

E.5. Pinning VMs to a specific CPU
socket and cores

1. Use xe host-cpu-info to determine the number of CPU sockets and logical CPU
cores in the server platform.
In this example the server implements 32 logical CPU cores across two sockets:

[root@xenserver ~]# xe host-cpu-info
cpu_count i 32
socket count: 2

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 279

Citrix Hypervisor Basics

vendor: Genuinelntel
speed: 2600.064
modelname: Intel (R) Xeon(R) CPU E5-2670 0 @ 2.060GHz
family: 6
model: 45
stepping: 7
flags: fpu de tsc msr pae mce cx8 apic sep mtrr mca cmov pat
clflush acpi mmx fxsr sse sse2 ss ht nx constant tsc nonstop tsc aperfmperf
pni pclmulgdg vmx est ssse3 ssed4 1 ssed4 2 x2apic popcnt aes hypervisor ida arat
tpr shadow vnmi flexpriority ept vpid
features: 17bee3ff-bfebfbff-00000001-2c100800
features after reboot: 17bee3ff-bfebfbff-00000001-2c100800
physical features: 17bee3ff-bfebfbff-00000001-2c100800
maskable: full

2. Set vCcPUs-params:mask to pin a VM'’s vCPUs to a specific socket or to specific cores
within a socket.
This setting persists over VM reboots and shutdowns. In a dual socket platform with
32 total cores, cores 0-15 are on socket O, and cores 16-31 are on socket 1.

In the examples that follow, vm-uuid is the VM’s UUID, which you can obtain as
explained in Determining a VM'’s UUID.

» To restrict a VM to only run on socket 0, set the mask to specify cores 0-15:

[root@xenserver ~]# xe vm-param-set uuid=vm-uuid VCPUs-
params:mask=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

» To restrict a VM to only run on socket 1, set the mask to specify cores 16-31:
[root@xenserver ~]# xe vm-param-set uuid=vm-uuid VCPUs-
params :mask=16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

» To pin vCPUs to specific cores within a socket, set the mask to specify the cores

directly:
[root@xenserver ~]# xe vm-param-set uuid=vm-uuid VCPUs-params:mask=16,17,18,19
3. Use x1 vcpu-1list to list the current assignment of vCPUs to physical CPUs:

[root@xenserver ~]# x1 vcpu-list
Name ID VCPU CPU State Time (s) CPU Affinity
Domain-0 0 0 25 =lo= 9188.4 any cpu
Domain-0 0 1 19 = 8908.4 any cpu
Domain-0 0 2 30 =lo= 6815.1 any cpu
Domain-0 0 3 17 =lo= 4881.4 any cpu
Domain-0 0 4 22 =lo= 4956.9 any cpu
Domain-0 0 5 20 =lo= 4319.2 any cpu
Domain-0 0 6 28 =lo= 5720.0 any cpu
Domain-0 0 7 26 =lo= 5736.0 any cpu
test-image-win7-32 34 0 9 =lo= 17.0 4-15
test-image-win7-32 34 1 4 =lo= 13.7 4-15

E.6. Changing domO vCPU Default
configuration

By default, dom0O vCPUs are configured as follows:
» The number of vCPUs assigned to domO is 8.

» The domO shell's vCPUs are unpinned and able to run on any physical CPU in the
system.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 280

Citrix Hypervisor Basics

E.6.1. Changing the number of domO vCPUs

The default number of vCPUs assigned to domO is 8.

1. Modify the dom0_max_vcpus parameter in the Xen boot line.

For example:
[root@xenserver ~]# /opt/xensource/libexec/xen-cmdline --set-xen dom0_max_ vcpus=4

2. After applying this setting, reboot the system for the setting to take effect by doing
one of the following:

» Run the following command:

shutdown -r

» Reboot the system from XenCenter.

E.6.2. Pinning domO vCPUs

By default, dom0Q’s vCPUs are unpinned, and able to run on any physical CPU in the
system.

1. To pin domO vCPUs to specific physical CPUs, use x1 vcpu-pin.

For example, to pin dom0’s vCPU 0O to physical CPU 18, use the following command:

[root@xenserver ~]# x1 vcpu-pin Domain-0 0 18
CPU pinnings applied this way take effect immediately but do not persist over
reboots.

2. To make settings persistent, add x1 vcpu-pin commands into /etc/rc.local.

For example:

x1 vcpu-pin 0 0 0-15
x1 vcpu-pin 0 1 0-15
x1 vcpu-pin 0 2 0-15
x1 vcpu-pin 0 3 0-15
x1 vcpu-pin 0 4 16-31
x1 vcpu-pin 0 5 16-31
x1 vcpu-pin 0 6 16-31
x1 vcpu-pin 0 7 16-31

E.7. How GPU locality is determined

As noted in NUMA Considerations, current multi-socket servers typically implement PCle
expansion slots local to each CPU socket and it is advantageous to pin VMs to the same
socket that their associated physical GPU is connected to.

For current Intel platforms, CPU socket O typically has its PCle root ports located on bus
0, so any GPU below a root port located on bus O is connected to socket 0. CPU socket 1
has its root ports on a higher bus number, typically bus 0x20 or bus 0x80 depending on

the specific server platform.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 281

Appendix F. Citrix Hypervisor vGPU
Management

You can perform Citrix Hypervisor advanced vGPU management techniques by using
XenCenter and by using xe command line operations.

F.1. Management objects for GPUs

Citrix Hypervisor uses four underlying management objects for GPUs: physical GPUs,
vGPU types, GPU groups, and vGPUs. These objects are used directly when managing
vGPU by using xe, and indirectly when managing vGPU by using XenCenter.

F.1.1. pgpu - Physical GPU

A pgpu object represents a physical GPU, such as one of the multiple GPUs present on a
Tesla M6B0 or M 10 card. Citrix Hypervisor automatically creates pgpu objects at startup to
represent each physical GPU present on the platform.

F.1.1.1. Listing the pgpu Objects Present on a Platform

To list the physical GPU objects present on a platform, use xe pgpu-1list.

For example, this platform contains a Tesla P40 card with a single physical GPU and a
Tesla M60 card with two physical GPUs:

[root@xenserver ~]# xe pgpu-list
uuid (RO) : £76d1c90-e443-4bfc-8£26-7959a7c85¢c68
vendor-name (RO): NVIDIA Corporation
device-name (RO): GP102GL [Tesla P40]
gpu-group-uuid (RW): 134a7b71-5ceb-8066-eflb-3b319fb2bef3

uuid (RO) : 4c5e05d9-60fa-4fe5-9cfc-c641e95c8e85
vendor-name (RO): NVIDIA Corporation
device-name (RO): GM204GL [Tesla M60]

gpu-group-uuid (RW): 3df80574-c303-£f020-efb3-342£f969dabde

uuid (RO) : 4960e63c-c9fe-4a25-add4-ee697263e04c
vendor-name (RO): NVIDIA Corporation
device-name (RO): GM204GL [Tesla M60]
gpu-group-uuid (RW): d32560£2-2158-42£9-d201-511691elcb2b
[root@xenserver ~]1#

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 282

Citrix Hypervisor vGPU Management

F.1.1.2. Viewing Detailed Information About a pgpu

Object

To view detailed information about a pgpu, use xe pgpu-param-list:
[root@xenserver ~]# xe pgpu—param-llst uuid=4960e63c-c9fe-4a25-add4-ee697263e04c

uuid (RO)
vendor-name
device-name
domO-access
is-system-display-device
gpu-group-uuid
gpu-group-name-label

~ e~~~ —~ —~

host-uuid (RO
host-name-label (RO
pci-id (RO
dependencies (SRO

RO)
)
0)
)
RW)
RO) :
Corporation GM204GL [Tesla M60]
)
)
)
)
)

other-config (MRW) :
supported-VGPU-types (RO) :

4960e63c-c9fe-4a25-add4-ee697263e04c
NVIDIA Corporation

GM204GL [Tesla M60]

enabled

false
d32560£2-2158-42£f9-d201-511691elcb2b
86:00.0 VGA compatible controller: NVIDIA
(rev al)
b55452df-1eed-4ede-bd97-3aee97b2123a
xs7.1

0000:86:00.0

5b9%acd25-06fa-43el1-8b53-c35bceb8515¢c;

16326fcb-543f-4473-a4ae-2d30516a2779; 0f9fc39a-0758-43c8-88cc-54c8491aadds;
cecb2033-3b4a-437c-a0c0-c9dfdb692d9b; 095d8939-5f84-405d-a39a-684738f9b957;
56c335be-4036-4a38-816c-c246a60556ac; ef0a94fd-2230-4fd4-aee0-d6d3feceddef;
11615f73-4708-4494-806e-2a7b5eld7bea; dbd8f2ac-f548-4c40-804b-9133cfda8090;
a33189f1-1417-4593-aa7d-978c4£25b953; 3f437337-3682-4897-a7ba-6334519f4c19;
99900aab-42b0-4cc4-8832-560ff6b60231

enabled-VGPU-types (SRW) :

5b9%acd25-06fa-43el-8b53-c35bceb8515¢c;

16326fcb-543f-4473-a4ae-2d30516a2779; 0f9fc39a-0758-43c8-88cc-54c8491aadds;
cecb2033-3b4a-437c-a0c0-c9dfdb692d9b; 095d8939-5£84-405d-a39a-684738£f9b957;
56c335be-4036-4a38-816c—-c246a60556ac; ef0a%94fd-2230-4fd4d-aee0-d6d3f6ceddef;
11615£73-47b8-4494-806e-2a7b5eld7bea; dbd8f2ac-£f548-4c40-804b-9133cfda8090;
a33189f1-1417-4593-aa7d-978c4£f25b953; 3f437337-3682-4897-a7ba-6334519f4c19;
99900aab-42b0-4ccd-8832-560ff6b60231

resident-VGPUs (RO):

[root@xenserver ~]#

F.1.1.3. Viewing physical GPUs in XenCenter

To view physical GPUs in XenCenter, click on the server’'s GPU tab:

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2

283

Citrix Hypervisor vGPU Management

Figure 32. Physical GPU display in XenCenter

€ XenCenter [@][=]
file View Pool Sever VM Storage Templates Tools Help

@ Back - @ Forward - | @ Add New Server New Pool 5 New Storage T New VM | @) Shut Down &) Reboot ([} Suspend

Search Q ‘ ® xs7.1-krish Logged in as: Local ract account ‘

(= €& XenCenter -
GPU
© R PEEEE General | Memory | Storage | Networking | NICs Console | Performance | Users | Search
3 Red Hat Enterpr GPU
B ubuntu-16.04-1

B ubuntu-16.04-2 =l
@ ubuntu-16.04-bz Placement policy: Maximum density: put as many VMs as possible on the same GPU
@ win 7 (64-bit) (1
@ Win 7 (64-bit) (2

|

B Win10-RSLAU | B8 GM204GL [Tesla M60) Virtual GPU types:

@ Winl0-RS1-AU { Pass-through whole GPU

& wnionpen . [EMiukee

@ Winl0RS2664(1¢ +/ GRID M60-8A virtual GPU (.

2 XS7.0-RHEL7.26; / GRID M60-4Q virtual GPU (.

-1 fovczlftg’f;ge / GRID M60-4A virtual GPU (..

sewee | o .

© RHEL71 / GRID MG0-2A virtual GPU (.

) RHEL7.3-X57.1 /' GRID M60-1Q virtual GPU (.

g m:;fzﬁfu / GRID M60-18 virtual GPU (. L
/ GRID ME0-1A virtual GPU (.

1 Win10RS2x64(1¢

18 Windows 7 (64-1 ¥ GRID M60-0Q virtual GPU (...

+/ GRID M60-08 virtual GPU (.

Edit Selected GPUs...
Select All Clear All

" Gp102GL [Tesla P40] Virtual GPU types:
+ Pass-through whole GPU
+ GRID P40-24Q virtual GPU
S / GRID P40-24A virtual GPU
+ GRID P40-12Q virtual GPU
 objects GRID PA0-12A virtual GPU .
4% Organization Views GRID P40-8Q virtual GPU (.
+ GRID P40-8A virtual GPU (.
‘ Notifications e + GRID P40-6Q virtual GPU (.
+ GRID P40-6A virtual GPU (.
+ GRID P40-4Q virtual GPU (.
 GRID P40-4A virtual GPU (. i

O, saved Searches

F.1.2. vgpu-type - Virtual GPU Type

A vgpu-type represents a type of virtual GPU, such as M60-0B, P40-8A, and P100-16Q.
An additional, pass-through vGPU type is defined to represent a physical GPU that is
directly assignable to a single guest VM.

Citrix Hypervisor automatically creates vgpu-type objects at startup to represent each
virtual type supported by the physical GPUs present on the platform.

F.1.2.1. Listing the vgpu-type Objects Present on a
Platform

To list the vgpu-type objects present on a platform, use xe vgpu-type-1list.

For example, as this platform contains Tesla P100, Tesla P40, and Tesla M60 cards, the
vGPU types reported are the types supported by these cards:

[root@xenserver ~]# xe vgpu-type-list
uuid (RO) : d27f84a2-53f8-4430-adl15-0eca225cd974

vendor-name (RO): NVIDIA Corporation
model-name (RO): GRID P40-12A
max—-heads (RO) 1
max-resolution (RO) 1280x1024

uuid (RO) : 57bb231£f-f61b-408e-a0c0-106bddd91019
vendor—-name NVIDIA Corporation

()
model-name (RO): GRID P40-3Q
max—heads (RO) 4
max—-resolution (RO) 4096x2160

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 284

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads

Virtual GPU Software

—~ o~~~ —~ o~~~ —~ e~~~ —~ o~~~ —~ o~~~ —~ e~~~ —~ e~~~ —~ o~~~

—~ o~~~

Citrix Hypervisor vGPU Management

9b2eabab-565f-4cb4-ad9b-6347cfb03e93

NVIDIA Corporation
GRID P40-20Q

4

4096x2160

af593219-0800-42da-a51d-d13b35£589%el

NVIDIA Corporation
GRID P40-4A

1

1280x1024

5b9%acd25-06fa-43el-8b53-c35bceb8515¢c

passthrough
0
0x0

afl121387-0b58-498a-8d04-£fe0305e4308f

NVIDIA Corporation
GRID P40-3A

1

1280x1024

3b28a628-fd6c-4cda-b0fb-80165699229%e

NVIDIA Corporation
GRID P100-4Q

4

4096x2160

99900aab-42b0-4cc4-8832-560££6b60231

NVIDIA Corporation
GRID M60-1Q

2

4096x2160

0£9fc39a-0758-43c8-88cc-54c8491aadd4

NVIDIA Corporation
GRID M60-4A

1

1280x1024

4017c9dd-373f-431a-b36£f-50e4e5c9£0c0

NVIDIA Corporation
GRID P40-6A

1

1280x1024

125fbbdf-406e-4d7c-9de8-a7536aala838

NVIDIA Corporation
GRID P40-24A

1

1280x1024

88162a34-1151-49d3-98ae-afcd963£3105

NVIDIA Corporation
GRID P40-2A
1

DU-06920-001 _v17.0 through 17.2

285

max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)
vendor-name
model-name
max-heads
max-resolution

uuid (RO)

Virtual GPU Software

—~ o~~~ —~ o~~~ —~ o~~~ —~ e~~~ —~ o~~~ —~ o~~~ —~ e~~~ —~ e~~~

—~ e~~~

RO) :

1280x1024

Citrix Hypervisor vGPU Management

ad00a95¢c-d066-4158-b361-487abf57dd30

NVIDIA Corporation
GRID P40-1A

1

1280x1024

11615£73-47b8-4494-806e-2a7b5eld7bea

NVIDIA Corporation
GRID M60-0Q

2

2560x1600

6ealcd56-526c-4966-8f53-7e1721b9%5a5c

NVIDIA Corporation
GRID P40-40Q

4

4096x2160

095d8939-5£84-405d-a3%9a-684738£9b957

NVIDIA Corporation
GRID M60-40Q

4

4096x2160

9626e649-6802-4396-976d-94c0eadl£835

NVIDIA Corporation
GRID P40-12Q

4

4096x2160

a33189£f1-1417-4593-aa7d-978c4£25b953

NVIDIA Corporation
GRID M60-0B

2

2560x1600

dbd8f2ac-£548-4c40-804b-9133cfda8090

NVIDIA Corporation
GRID M60-1A

1

1280x1024

ef0a94fd-2230-4fd4-aeel0-d6d3fo6ceddef

NVIDIA Corporation
GRID M60-80Q

4

4096x2160

67fal06ab-554e-452b-a66e-a4048abbfdf7

NVIDIA Corporation
GRID P40-6Q

4

4096x2160

739d7b8e-50e2-48al-ae0d-5047aa490£f0e

DU-06920-001 _v17.0 through 17.2

286

Citrix Hypervisor vGPU Management

vendor-name (RO) NVIDIA Corporation
model-name (RO): GRID P40-8A
max-heads (RO): 1
max-resolution (RO) 1280x1024
uuid (RO) : 9fb62f31-7dfb-46f8-ad4a9-cca8db48l4e
vendor-name (RO): NVIDIA Corporation
model-name (RO): GRID P100-8Q
max—-heads (RO) 4
max-resolution (RO) 4096x2160
uuid (RO) : 56c335be-4036-4a38-81l6c-c246a60556ac
vendor-name (RO): NVIDIA Corporation
model-name (RO): GRID M60-1B
max-heads (RO): 4
max-resolution (RO) 2560x1600
uuid (RO) : 3f437337-3682-4897-a7ba-6334519f4c19
vendor-name (RO) NVIDIA Corporation
model-name (RO): GRID Mo60-8A
max-heads (RO): 1
max-resolution (RO): 1280x1024
uuid (RO) : 25dbb2d3-a074-4£9f-92ce-b42d8b3dlde2
vendor-name (RO) NVIDIA Corporation
model-name (RO): GRID P40-1B
max-heads (RO): 4
max-resolution (RO) 2560x1600
uuid (RO) : cecb2033-3b4a-437c-a0c0-c9dfdb692d9%b
vendor-name (RO): NVIDIA Corporation
model-name (RO): GRID M60-2Q
max—-heads (RO) 4
max-resolution (RO) 4096x2160
uuid (RO) : 16326fcb-543f-4473-a4ae-2d30516a2779
vendor-name (RO): NVIDIA Corporation
model-name (RO): GRID M60-2A
max-heads (RO): 1
max—-resolution (RO) 1280x1024
uuid (RO) : 7ca2399f-89ab-49dd-bf96-75071ced28fc
vendor-name (RO) NVIDIA Corporation
model-name (RO): GRID P40-24Q
max-heads (RO): 4
max-resolution (RO): 4096x2160
uuid (RO) : 9611a3f4-d130-4a66-a6lb-21d4a2cad663
vendor-name (RO) NVIDIA Corporation
model-name (RO): GRID P40-8Q
max-heads (RO): 4
max-resolution (RO) 4096x2160
uuid (RO) : dO0edallob-a944-42ef-a8dc-62a54c4d2d77
vendor-name (RO): NVIDIA Corporation
model-name (RO): GRID P40-1Q
max-heads (RO) 2
max-resolution (RO) 4096x2160

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 287

Citrix Hypervisor vGPU Management

[root@xenserver ~]#

F.1.2.2. Viewing Detailed Information About a vgpu-type
Object

To see detailed information about a vgpu-type, USe xe vgpu-type-param-list:

[root@xenserver ~]# xe xe vgpu- type param-list uuid=7ca2399f-89ab-49dd-b£f96-75071ced28fc
uuid (RO) 7ca2399f-89ab-49dd-bf96-75071ced28fc
vendor—-name (RO): NVIDIA Corporation
model-name (RO): GRID P40-24Q
framebuffer-size (RO): 24092082176
max-heads (RO): 4
max-resolution (RO): 4096x2160
supported-on-PGPUs (RO): £76d1c90-e443-4bfc-8£26-7959a7¢c85c68
enabled-on-PGPUs (RO): £76d1c90-e443-4bfc-8£f26-7959a7c85c68
supported-on-GPU-groups (RO): 134a7b71-5ceb-8066-eflb-3b319fb2bef3
enabled-on-GPU-groups (RO): 134a7b71-5ceb-8066-eflb-3b319fb2bef3
(
(

VGPU-uuids RO) :
experimental RO) : false
[root@xenserver ~]#

F.1.3. gpu-group - collection of physical GPUs

A gpu-group is a collection of physical GPUs, all of the same type. Citrix Hypervisor
automatically creates gpu-group objects at startup to represent the distinct types of
physical GPU present on the platform.

F.1.3.1. Listing the gpu-group Objects Present on a
Platform

To list the gpu-group objects present on a platform, use xe gpu-group-1list.

For example, a system with a single Tesla P100 card, a single Tesla P40 card, and two Tesla
M60 cards contains a single GPU group of type Tesla P100, a single GPU group of type
Tesla P40, and two GPU groups of type Tesla M60:

[root@xenserver ~]# xe gpu-group-list
uuid (RO) : 3d652a59-beaf-ddb3-3b19-c8c77ef60605
name-label (RW): Group of NVIDIA Corporation GP100GL [Tesla P100 PCIe
16GB] GPUs
name-description (RW):

uuid (RO) : 3df80574-c303-£020-efb3-342£969dab5de
name-label (RW): 85:00.0 VGA compatible controller: NVIDIA Corporation
GM204GL [Tesla M60] (rev al)
name-description (RW): 85:00.0 VGA compatible controller: NVIDIA Corporation
GM204GL [Tesla M60] (rev al)

uuid (RO) : 134a7b71-5ceb-8066-ef1b-3b319fb2bef3
name-label (RW): 87:00.0 3D controller: NVIDIA Corporation GP102GL [TESLA
P40] (rev al)
name-description (RW): 87:00.0 3D controller: NVIDIA Corporation GP102GL [TESLA
P40] (rev al)

uuid (RO) : d32560£2-2158-42£9-d201-511691elcb2b

name-label (RW): 86:00.0 VGA compatible controller: NVIDIA Corporation
GM204GL [Tesla M60] (rev al)

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 288

Citrix Hypervisor vGPU Management

name-description
GM204GL [Tesla M60]
[root@xenserver ~]#

F.1.3.2.

(RW): 86:00.0 VGA compatible controller:
(rev al)

NVIDIA Corporation

Viewing Detailed Information About a gpu-group
Object

To view detailed information about a gpu-group, Use xe gpu-group-param-list:
[root@xenserver ~]# xe gpu- group param-list uuid=134a7b71-5ceb-8066-eflb-3b319fb2bef3

uuid (RO) 134a7b71-5ceb-8066-ef1b-3b319fb2bef3
name-label (RW): 87:00.0 3D controller: NVIDIA Corporation GP102GL
[TESLA P40] (rev al)
name—-description (RW): 87:00.0 3D controller: NVIDIA Corporation GP102GL
[TESLA P40] (rev al)
VGPU-uuids (SRO): 101fb062-427f-1999-9e90-5a914075e9ca
PGPU-uuids (SRO): £76d1c90-e443-4bfc-8£f26-7959%9a7c85c68
other-config (MRW) :
enabled-VGPU-types (RO): dOedall6-a944-42ef-a8dc-62a54c4d2d77;

9611a3f4-d130-4a66-a6lb-21d4a2cad663;

25dbb2d3-a074-4£9f-92ce-b42d8b3dlde2;
67fal0bab-554e-452b-a66e-a4048a5bfdf7;
6ealcd56-526c-4966-8f53-7e1721b9%5a5c;
88162a34-1151-49d3-98ae-afcd963£3105;
4017¢c9dd-373f-431a-b36f-50e4e5c9£f0c0;
5b9%acd25-06fa-43el1-8b53-c35bceb8515¢c;
9b2eaba5-565f-4cb4-ad9b-6347cfb03e93;

d27£84a2-53£8-4430-adl15-0eca225cd974
supported-VGPU-types (RO) :

9611a3f4-d130-4a66-a6lb-21d4a2cad663;
25dbb2d3-a074-4f9f-92ce-b42d8b3dlde2;
67fal6ab-554e-452b-a66e-a4048abbfdf7;
6ealcd56-526c-4966-8f53-7e1721b95abc;
88162a34-1151-49d3-98ae-afcd963£3105;
4017¢c9dd-373f-431a-b36f-50e4e5c9f0c0;
5b9%acd25-06fa-43e1-8b53-c35bceb8515¢c;
9b2eaba5-565f-4cb4-ad9b-6347cfb03e93;

d27f84a2-53f8-4430-adl5-0eca225cd974
allocation-algorithm (RW) :
[root@xenserver ~]

F.1.4.

follows:

7ca2399f-89%ab-49dd-bf96-75071ced28fc;
739d7b8e-50e2-48al-ae0d-5047aa490£f0e;
9626e649-6802-4396-976d-94c0eadl£835;
ad00a95¢c-d066-4158-b361-487abf57dd30;
125fbbdf-406e-4d7c-9de8-a7536aala838;
afl121387-0b58-498a-8d04-fe0305e4308f;
af593219-0800-42da-a51d-d13b35f589%¢e1;
57bb231f-f61b-408e-a0c0-106bddd91019;

dOedall6b-a944-42ef-a8dc-62a54c4d2d77;

7ca2399f-89ab-49dd-b£f96-75071ced28fc;
739d7b8e-50e2-48al-ae0d-5047aa490f0e;
9626e649-6802-4396-976d-94c0eadl1£835;
ad00a95¢c-d066-4158-b361-487abf57dd30;
125fbbdf-406e-4d7c-9de8-a7536aalald38;
af121387-0058-498a-8d04-fe0305e4308¢f;
af593219-0800-42da-a51d-d13b35f589e1;
57bb231f-£f61b-408e-a0c0-106bddd91019;

depth-first

vgpu - Virtual GPU

A vgpu object represents a virtual GPU. Unlike the other GPU management objects, vgpu
objects are not created automatically by Citrix Hypervisor. Instead, they are created as

» When a VM is configured through XenCenter or through xe to use a vGPU

» By cloning a VM that is configured to use vGPU, as explained in Cloning vGPU-Enabled

VMs

F.2.

Creating a vGPU Using xe

Use xe vgpu-create to create a vgpu object, specifying the type of vGPU required, the

GPU group it will be allocated from, and the VM it is associated with:

Virtual GPU Software

DU-06920-001

_v17.0through 17.2

Citrix Hypervisor vGPU Management

[root@xenserver ~]# xe vgpu-create vm-uuid=e7lafdad4-53f4-3alb-6c92-a364a7£619c2
gpu-group-uuid=be825ba2-01d7-8d51-9780-£f82cfaa64924 vgpu-type-uuid=3£318889-7508-

c9fd-7134-003d4d05ae56b73cbd30-096£-8a9a-523e-a800062f4ca’

[root@xenserver ~]#

Creating the vgpu object for a VM does not immediately cause a virtual GPU to be created

on a physical GPU. Instead, the vgpu object is created whenever its associated VM is

started. For more details on how vGPUs are created at VM startup, see Controlling vGPU

allocation.

@ Note:

The owning VM must be in the powered-off state in order for the vgpu-create command
to succeed.

A vgpu object’s owning VM, associated GPU group, and vGPU type are fixed at creation and
cannot be subsequently changed. To change the type of vGPU allocated to a VM, delete
the existing vgpu object and create another one.

F.3. Controlling vGPU allocation

Configuring a VM to use a vGPU in XenCenter, or creating a vgpu object for a VM using xe,
does not immediately cause a virtual GPU to be created; rather, the virtual GPU is created
at the time the VM is next booted, using the following steps:

» The GPU group that the vgpu object is associated with is checked for a physical GPU
that can host a vGPU of the required type (i.e. the vgpu object’s associated vgpu-
type). Because VGPU types cannot be mixed on a single physical GPU, the new vGPU
can only be created on a physical GPU that has no vGPUs resident on it, or only vGPUs
of the same type, and less than the limit of vGPUs of that type that the physical GPU
can support.

» If no such physical GPUs exist in the group, the vgpu creation fails and the VM startup
is aborted.

» Otherwise, if more than one such physical GPU exists in the group, a physical GPU is
selected according to the GPU group’s allocation policy, as described in Modifying GPU
Allocation Policy.

F.3.1. Determining the Physical GPU on Which a
Virtual GPU is Resident

The vgpu object’s resident-on parameter returns the UUID of the pgpu object for the
physical GPU the vGPU is resident on.

To determine the physical GPU that a virtual GPU is resident on, use vgpu-param-get:

[root@xenserver ~]# xe vgpu-param-get uuid=101fb062-427£-1999-9e90-5a914075e9ca param-
name=resident-on
£76d1c90-e443-4bfc-8£26-7959a7c85c68

[root@xenserver ~]# xe pgpu-param-list uuid=£76d1c90-e443-4bfc-8£26-7959a7c85c68

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 290

uuid (RO)

vendor-name
device-name
gpu-group-uuid
gpu-group-name-label
[TESLA P40] (rev al)
host-uuid (
host-name-label (
pci-id (
dependencies
other-config 3
supported-VGPU-types (RO) :
88162a34-1151-49d3-98ae-afcd963£3105;
739d7b8e-50e2-48al-ae0d-5047aa490f0e;
7ca2399f-89ab-49dd-bf96-75071ced28fc;
9611a3f4-d130-4a66-a61b-21d4a2cad663;
125fbbdf-406e-4d7c-9de8-a7536aala838;
6ealcd56-526c-4966-8f53-7e1721b9%5a5c;
9626e649-6802-4396-976d-94c0eadl1£835;
af593219-0800-42da-a51d-d13b35£f589%e1;
57bb231f-f61b-408e-a0c0-106bddd91019
enabled-VGPU-types (SRW) :
88162a34-1151-49d3-98ae-afcd963£3105;
739d7b8e-50e2-48al-ae0d-5047aa490£f0e;
7ca2399f£-89ab-49dd-b£f96-75071ced28fc;
9611a3f4-d130-4a66-a6lb-21d4a2cad663;
125fbbdf-406e-4d7c-9de8-a7536aala838;
6ealcdb6-526c-4966-8£f53-7e1721b95a5c;
9626e649-6802-4396-976d-94c0eadlf835;
af593219-0800-42da-a51d-d13b35f589¢e1;
57bb231f-f61b-408e-a0c0-106bddd91019
resident-VGPUs (RO) :

[root@xenserver ~]#

GP102GL

Citrix Hypervisor vGPU Management

£76d1c90-e443-4bfc-8£26-7959a7c85¢c68
NVIDIA Corporation

GP102GL [Tesla P40]
134a7b71-5ceb-8066-eflb-3b319fb2bef3
87:00.0 3D controller: NVIDIA Corporation

b55452df-leed-4ede-bd97-3aee97b2123a

xs7.1l-krish
0000:87:00.0

5b9%acd25-06fa-43el1-8b53-c35bceb8515¢c;

9b2eabab-565f-4cb4-ad9b-6347cfb03e93;
dOedall6-a944-42ef-a8dc-62a54c4d2d77;
67fal06ab-554e-452b-a66e-a4048abbfdf7;
d27£84a2-53f8-4430-adl15-0eca225cd974;
4017c9dd-373f-431a-b36£f-50e4e5c9f0c0;
afl121387-0b58-498a-8d04-fe0305e4308f;
ad00a95¢c-d066-4158-b361-487abf57dd30;
25dbb2d3-a074-4f9f-92ce-b42d8b3dlde2;

5b9%acd25-06fa-43el-8b53-c35bceb8515¢c;

9b2eaba5-565f-4cb4-ad9b-6347cfb03e93;
dOedall6-a944-42ef-a8dc-62a54c4d2d77;
67fal6ab-554e-452b-a66e-a4048a5bfdf7;
d27f84a2-53f8-4430-adl5-0eca225cd974;
4017c9dd-373f-431a-b36f-50e4e5c9f0c0;
afl121387-0b58-498a-8d04-fe0305e4308¢f;
ad00a95c-d066-4158-b361-487abf57dd30;
25dbb2d3-a074-4f9f-92ce-b42d8b3dlde2;

101£fb062-427£-1999-9e€90-5a914075e9ca

S Note: If the vGPU is not currently running, the resident-on parameter is not instantiated
for the vGPU, and the vgpu-param-get operation returns:

<not in database>

F.3.2.

Controlling the vGPU types enabled on

specific physical GPUs

Physical GPUs support several vGPU types, as defined in Virtual GPU Types for Supported
GPUs and the “pass-through” type that is used to assign an entire physical GPU to a VM
(see Using GPU Pass-Through on Citrix Hypervisor).

F.3.2.1.

Controlling vGPU types enabled on specific

physical GPUs by using XenCenter

To limit the types of vGPU that may be created on a specific physical GPU:

1. Open the server’'s GPU tab in XenCenter.
2. Select the box beside one or more GPUs on which you want to limit the types of vGPU.

3. Select Edit Selected GPUs.

Virtual GPU Software

DU-06920-001 _v17.0 through 17.2 | 291

Citrix Hypervisor vGPU Management

Figure 33. Editing a GPU’s enabled vGPU types using XenCenter

€ XenCenter o [@=
File View Pool Sever VM Storage Templates Tools Help (
@ Back -) Forward - | [Zh Add New Server | I New Pool 5 New Storage T New VM | @ Shut Down &) Reboot ([} Suspend
QB xs-72 Logged in as: Local root account
& i XenC
2 ":E'"S;g'” General | Memory | torage | Networking [NiCs | GPU | Console | Performance | Users | search
Bl 2] GPU
B rs:
3 rs: / GRID M60-84 virtual GPU (. B
g b / GRID M60-4Q virtual GPU (.
@ rs: / GRID M60-4A virtual GPU (.
@ Rs1-se

@ ﬁ / GRID ME0-2Qvirtual GPU (.
@7‘ +/ GRID M60-2A virtual GPU (.

€ GP1026L [Tesla P40] (1 GPU) ¥ GRID ME0-1Qvirtual GPU (i
@ Wi cuoa 0| Select which virtual GPU types are allowed on this GPU: ¥/ GRID MEO-18 virtual GPU .
[Win7x64_CUDA OF +/ GRID M60-1A virtual GPU (.
[Name Virtual GPUs ner GPLI_Max resalutionMay disnlavs_Video RAM_ / GRID M60-0Q virtual GPU (..
7] Pass-through whole GPU / GRID M60-08 virtual GPU (.
[¥] GRID P40-24Q 1 40962160 4 2468
7] GRID P40-24A 1 128001024 1 22468 [[Esitseected Gpus.. |
seiectAll | [Cearal] 7] GRID P40-12Q 2 4096x2160 4 112068
7] GRID P40-12A 2 1280x1024 1 112GB
=8 GP102GL [Tesla P40] 7] GRID P40-8Q 3 4006x2160 4 7468 Virtual GPU types:
[¥] GRID P40-8A 3 1280x1024 1 7468 Pass-through whole GPU
7] GRID P40-6Q 4 4096x2160 4 56G8 / GRID P40-24Q virtual GPU ..
_ [¥] GRID P40-6A 4 1280x1024 1 56GB _ +/ GRID P40-24A virtual GPU ..
[¥] GRID P40-4Q 6 4096x2160 4 3768 + GRID P40-12Q virtual GPU ..
7] GRID P40-4A 6 1280x1024 1 376G8 GRID P40-12A virtual GPU . L
[¥] GRID P40-3Q 8 4096x2160 4 2868 _ / GRID P40-8Q virtual GPU (.. 1
semmnanan o et . S / GRID P40-8A virtual GPU (..
o ; / GRD PA0-6Q virtal GPU (.
/ GRID P40-6A virtual GPU (..

/ GRID P40-4Q virtual GPU (..
+/ GRID P40-4A virtual GPU (...

4 Infrastructure / GRID P40-3Q virtual GPU (...

+/ GRID P40-3A virtual GPU (...

¥ Objects

/ GRID P40-2Q virtual GPU (..
% Orgaization Views / GRID P40-2A virtual GPU (..
O, saved Searches V/ GRID P40-1Q virtual GPU (..
A Notifications € / GRID P40-18 virtual GPU (2.

/ GRID P40-1A virtual GPU (...

Edit...

F.3.2.2. Controlling vGPU Types Enabled on Specific
Physical GPUs by Using xe

The physical GPU’s pgpu object’s enabled-vGPU-types parameter controls the vGPU
types enabled on specific physical GPUs.

To modify the pgpu object’s enabled-vGPU-types parameter, use xe pgpu-param-set:

[root@xenserver ~]# xe pgpu-param-list uuid=cb08aaae-8e5a-47cb-888e-60dcc73c01d3
uuid (RO) : cb08aaae-8e5a-47cb-888e-60dcc73c01d3
vendor-name (RO): NVIDIA Corporation
device-name (RO): GP102GL [Tesla P40]
domO-access (RO): enabled
is-system-display-device (RO): false
gpu-group-uuid (RW): bfel603d-c526-05£3-e64f-951485ef3b49
gpu-group-name-label (RO): 87:00.0 3D controller: NVIDIA Corporation GP102GL
[Tesla P40] (rev al)
host-uuid (RO): fdebobbb-e460-4cfl-ad43-49ac81c20540
host-name-label (RO): xs-72
pci-id (RO): 0000:87:00.0
dependencies (SRO) :
other-config (MRW) :
supported-VGPU-types (RO): 23e6b80b-le5e-4c33-bedb-ecdlaed72fec;
£5583e39-2540-440d-alee-dde9f0783abf; al8edo6ff-4d05-4322-b040-667ce77d78a8;
adel19a9-84el1-435f-b0e9-14cl62e212fb; 2560d066-054a-48a9-a44d-3£3£90493a00;
47858£38-045d-4a05-9b1c-9128feebblab; Ifb527f6-493f-442b-abe2-94a6fafd49ce;
78b8e044-09%9ae-4a4c-8a96-b20c7a585842; 18ed7e7e-£f8b7-496e-9784-8bade35acaal;
48681d88-cd4e5-4e39-85ff-c9bal2eB8ed84 ; cc3dbbfb-4b83-400d-8c52-811948b7f8c4;
8elad75a-ed5f-4609-83ff-5f9%ca%aaca?2; 840389a0-f511-4f90-8153-8a749d85b09%¢e;
a2042742-da67-4613-a538-1d17d30dccb9; 299e47c2-8fcl-4edf-aa31-e29db84168c6;
e95c636e-06e6-4 47e-8b49-14b37d308922; 0524a5d0-7160-48c5-a%el-cc33e76dc0de;
09043fb2-6d67-4443-0312-25688f13e012

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 292

Citrix Hypervisor vGPU Management

enabled-VGPU-types (SRW): 23e6b80b-le5e-4c33-bedb-e6dlaed72fec;
£5583e39-2540-440d-alee-dde9f0783abf; al8edo6ff-4d05-4322-b040-667ce77d78a8;
adell9a9-84el1-435f-b0e9-14cl62e212fb; 2560d066-054a-48a9-a44d-3£3£90493a00;
47858f38-045d-4a05-9b1c-9128feebblab; Ifb527f6-493f-442b-abe2-94a6fafd49ce;
78b8e044-09%ae-4a4c-8a96-b20c7a585842; 18ed7e7e-f8b7-496e-9784-8badel3bacaal;
48681d88-cd4e5-4e39-85ff-c9bal2eB8e484 ; cc3dbbfb-4b83-400d-8c52-811948b7f8c4;
8elad75a-ed5f-4609-83ff-5f9%ca%aaca?2; 840389a0-f511-4f90-8153-8a749d85b09%¢e;
a2042742-da67-4613-a538-1d17d30dccb9; 299e47c2-8fcl-4edf-aa31-e29db84168c6;
e95c636e-06e6-4 47e-8b49-14b37d308922; 0524a5d0-7160-48c5-a9%el-cc33e76dc0de;
09043fb2-6d67-4443-0312-25688f13e012
resident-VGPUs (RO):

[root@xenserver-vgx-test ~]# xe pgpu-param-set uuid=cb08aaae-8e5a-47cb-888e-60dcc73c01d3
enabled-VGPU-types=23e6b80b-le5e-4c33-bedb-e6dlaed72fec

F.3.3. Creating vGPUs on Specific Physical GPUs

To precisely control allocation of vGPUs on specific physical GPUs, create separate GPU
groups for the physical GPUs you wish to allocate vGPUs on. When creating a virtual GPU,
create it on the GPU group containing the physical GPU you want it to be allocated on.

For example, to create a new GPU group for the physical GPU at PCl bus ID 0000:87:00.0,
follow these steps:

1. Create the new GPU group with an appropriate name:

[root@xenserver ~]# xe gpu-group-create name-label="GRID P40 87:0.0"
3£870244-41da-469f-71£3-22bc6d700e71
[root@xenserver ~]#

2. Find the UUID of the physical GPU at 0000:87:0.0 that you want to assign to the new

GPU group:
[root@xenserver ~]# xe pgpu-list pci-id=0000:87:00.0
uuid (RO) : £76d1c90-e443-4bfc-8£26-7959a7c85¢c68

vendor-name (RO): NVIDIA Corporation
device-name (RO): GP102GL [Tesla P40]
gpu-group-uuid (RW): 134a7b71-5ceb-8066-efl1b-3b319fb2bef3
[root@xenserver ~]

Note: The pci-id parameter passed to the pgpu-1ist command must be in the exact
format shown, with the PCI domain fully specified (for example, 0000) and the PCI bus
and devices numbers each being two digits (for example, 87:00.0).

3. Ensure that no vGPUs are currently operating on the physical GPU by checking the
resident-VGPUs parameter:

[root@xenserver ~]# xe pgpu-param-get uuid=£76d1c90-e443-4bfc-8£26-7959a7c85c68 param-
name=resident-VGPUs
[root@xenserver ~]#

4. If any vGPUs are listed, shut down the VMs associated with them.

5. Change the gpu-group-uuid parameter of the physical GPU to the UUID of the newly-
created GPU group:

[root@xenserver ~]# xe pgpu-param-set uuid=7cle3cff-1429-0544-df3d-bf8a086fb70a gpu-
group-uuid=585877ef-5a6c-66af-fc56-7bd525bdc2£f6
[root@xenserver ~]#

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 293

Citrix Hypervisor vGPU Management

Any vgpu object now created that specifies this GPU group UUID will always have its
vGPUs created on the GPU at PCl bus ID 0000:05:0.0.

S Note: You can add more than one physical GPU to a manually-created GPU group - for
example, to represent all the GPUs attached to the same CPU socket in a multi-socket
server platform - but as for automatically-created GPU groups, all the physical GPUs in the
group must be of the same type.

In XenCenter, manually-created GPU groups appear in the GPU type listing in a VM'’s
GPU Properties. Select a GPU type within the group from which you wish the vGPU to be
allocated:

Figure 34. Using a custom GPU group within XenCenter

€ XenCenter [&@]C
File View Pool Sever VM Storage Templates Tools Help

@ Back + @ Forward - | [@h Add New Server New Pool T New Storage T NewvM | @ start & Reboot ([} Suspend

search Q/[B RS1-Server-RTM-NMOS on 'xs-72' Logged n as: Local root accot

Xencent
EEE"S;;E’ General | Memory | Storage | Networking | Console | Performance | snapshots | search |
B xs72

I3 Rs1-Server-RTM (,
(i RS1-Server-RTM (. General = Gpu
(i RS1-Server-RTM General = Custom Fields
[Rs1-Server-RTM ¢ <None> You can improve graphics performance by assigning a virtual graphics processing unit to this
4vCPU(s)
erl Description: @ Boot Options GPU type: GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays) ~
N Boot order: DVD-Drive, Hard s
ags: @ Start Options
i Pass-through whole GPU
Folder: HA is not available on stand A s essel ted.
o Aers GRID M60-8Q virtual GPU (1 per GPU, 4096x2160, 4 displays)
Operating System: None defined @ Iftherei: GRID M60-8A virtual GPU (1 per GPU, 1280x1024, 1 display) 1o start,
Virualization F Home Server GRID M60-4Q virtual GPU (2 per GPU, 4096x2160, 4 displays)
mode: None defined GRID M60-4A virtual GPU (2 per GPU, 1280x1024, 1 display)
s GPU GRID M60-2Q virtual GPU (4 per GPU, 4096x2160, 4 displays) —
BIOS strings GRID M60-8Q virtual GPU (1 GRID M60-2A virtual GPU (4 per GPU, 1280x1024, 1 display)
copied #, Advanced Options GRID M60-1Q virtual GPU (8 per GPU, 4096x2160, 2 displays)
Virtualization state| Optimize for general use GRID M60-18B virtual GPU (8 per GPU, 2560x1600, 4 displays)
GRID M60-1A virtual GPU (8 per GPU, 1280x1024, 1 display) E
i GRID M60-0Q virtual GPU (16 per GPU, 2560x1600, 2 displays)
GRID M60-08 virtual GPU (16 per GPU, 2560x1600, 2 displays)
Boot Options 87:00.0 3D controller: NVIDIA Corporation GP102GL [Tesla P40] (rev al)
[
Pass-through whole GPU
CPUS GRID P40-24Q virtual GPU (1 per GPU, 4096x2160, 4 displays)
GRID P40-24A virtual GPU (1 per GPU, 1280x1024, 1 display)
< » GRID P40-12Q virtual GPU (2 per GPU, 4096x2160, 4 displays)
GRID P40-12A virtual GPU (2 per GPU, 1280x1024, 1 display)
GRID P40-8Q virtual GPU (3 per GPU, 4096x2160, 4 displays) ~
4 Infrastructure
 ovecs
+2, Organization Views
O, saved searches
A Notifications @)

F.4. Cloning vGPU-Enabled VMs

The fast-clone or copying feature of Citrix Hypervisor can be used to rapidly create new
VMs from a “golden” base VM image that has been configured with NVIDIA vGPU, the
NVIDIA driver, applications, and remote graphics software.

When a VM is cloned, any vGPU configuration associated with the base VM is copied to
the cloned VM. Starting the cloned VM will create a vGPU instance of the same type as
the original VM, from the same GPU group as the original vGPU.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 294

Citrix Hypervisor vGPU Management

F.4.1. Cloning a vGPU-enabled VM by using xe

To clone a vGPU-enabled VM from the domO shell, use vm-clone:

[root@xenserver ~]# xe vm-clone new-name-label="new-vm" vm="base-vm-name"
7£7035cb-388d-1537-1465-1857£fb6498e7
[root@xenserver ~]#

F.4.2. Cloning a vGPU-enabled VM by using

XenCenter

To clone a vGPU-enabled VM by using XenCenter, use the VM’s Copy VM command as
shown in Figure 35.

Figure 35. Cloning a VM using XenCenter
. L] - e v A I E N ' . — E@g

&

File View Pool Server VM Storage Templates Tools Window Help
e Back - Forward - @ Add New Server MNew Pool @ Mew Storage E MNew VM @ Start Reboot Q System Alerts: 50 _
Views: [Server View V] [@ test-image-win7-32 on ‘xenserver-vgx-test2 (VM IPs 10.31.213.50-95, ... Loggedinas: Local root account |
Search p General | Memaory | Storage | Networking | Console | Performance | Snapshots | Logs
"0 e oo I
el y . - i Switch to Remote Deskt
E acurrid-testl DVD Drive 1 xs-tools.iso Eject witch to Remote Desktop
B xenserver-vgx-test (VM IPs 10,312 -
=] B xenserver-vgx-test? (VM IPs 1031 ° Copy Virtual Machine ? £
[ficmose vz
@ wgx-base-imag @ start MName: Copy of test-image-win7-32
@ wgx-base-imag Copy VM... 2
% DVD drives y Py " Description:
Eg Local storage OVE Vs Copy made
% Removable stg Export... @ Fast clone
[l % VM Storage Take a Snapshot... Clone the existing VM, using a storage-level fast disk clone
Convert to Template... operation
Assign to vApp 4 () Full copy
Delete YM... .:_e='=.=". copy of the e g VM on this storage reposito
- Eg Local storage on xenserver-vgu-test? (VM IPs 10.31.213.50-95
[Properties 5 VM Storage 180.04 GB free of 220.05 GB
] [| +
[Copy J [Cancel]
] |F—— . Send Ctrl+Alt+Del (Ctrl+Alt+Insert) [Scale Lﬁ Undock (Alt+Shift+L) ‘ | l Fullscreen (Ctrl+Enter)

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 295

Appendix G. Citrix Hypervisor
Performance Tuning

This chapter provides recommendations on optimizing performance for VMs running with
NVIDIA vGPU on Citrix Hypervisor.

G.1. Citrix Hypervisor Tools

To get maximum performance out of a VM running on Citrix Hypervisor, regardless of
whether you are using NVIDIA vGPU, you must install Citrix Hypervisor tools within the
VM. Without the optimized networking and storage drivers that the Citrix Hypervisor
tools provide, remote graphics applications running on NVIDIA vGPU will not deliver
maximum performance.

G.2. Using Remote Graphics

NVIDIA vGPU implements a console VGA interface that permits the VM’s graphics output
to be viewed through XenCenter’s console tab. This feature allows the desktop of a vVGPU-
enabled VM to be visible in XenCenter before any NVIDIA graphics driver is loaded in the
virtual machine, but it is intended solely as a management convenience; it only supports
output of vGPU’s primary display and isn't designed or optimized to deliver high frame
rates.

To deliver high frames from multiple heads on vGPU, NVIDIA recommends that you install
a high-performance remote graphics stack such as Citrix Virtual Apps and Desktops with
HDX 3D Pro remote graphics and, after the stack is installed, disable vGPU’s console VGA.

G.2.1. Disabling Console VGA

The console VGA interface in vGPU is optimized to consume minimal resources, but
when a system is loaded with a high number of VMs, disabling the console VGA interface
entirely may yield some performance benefit.

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 296

Citrix Hypervisor Performance Tuning

Once you have installed an alternate means of accessing a VM (such as Citrix Virtual Apps
and Desktops or a VNC server), its vGPU console VGA interface can be disabled as follows,
depending on the version of Citrix Hypervisor that you are using:

» Citrix Hypervisor 8.1 or later: Create the vGPU by using the xe command, and specify
plugin parameters for the group to which the vGPU belongs:

1. Create the vGPU.

[root@xenserver ~]# xe vgpu-create gpu-group-uuid=gpu-group-uuid vgpu-type-
uuid=vgpu-type-uuid vm-uuid=vm-uuid

This command returns vgpu-uuid as stored in XAPI.
2. Specify plugin parameters for the group to which the vGPU belongs.
[root@xenserver ~]# xe vgpu-param-set uuid=vgpu-uuid extra_args=disable_vnc=1
» Citrix Hypervisor earlier than 8.1: Specify disable vnc=1 in the VM’s
platform:vgpu extra args parameter:

[root@xenserver ~]# xe vm-param-set uuid=vm-uuid
platform:vgpu_extra args="disable vnc=1"

The new console VGA setting takes effect the next time the VM is started or
rebooted. With console VGA disabled, the Citrix Hypervisor console will display the
Windows boot splash screen for the VM, but nothing beyond that.

CAUTION:

If you disable console VGA before you have installed or enabled an alternate mechanism to
access the VM (such as Citrix Virtual Apps and Desktops), you will not be able to interact
with the VM once it has booted.

You can recover console VGA access by making one of the following changes:

» Removing the vGPU plugin's parameters:

» Citrix Hypervisor 8.1 or later: Removing the extra args key the from group to
which the vGPU belongs

» Citrix Hypervisor earlier than 8.1: Removing the vgpu_extra_ args key from the
platform parameter

» Removing disable wvnc=1 from the extra args Or vgpu extra args key

» Setting disable vnc=0, for example:

» Citrix Hypervisor 8.1 or later:

[root@xenserver ~]# xe vgpu-param-set uuid=vgpu-uuid extra_args=disable_vnc=0
» Citrix Hypervisor earlier than 8.1:
[root@xenserver ~]# xe vm-param-set uuid=vm-uuid

platform:vgpu_extra_args="disable vnc=0"

Virtual GPU Software DU-06920-001 _v17.0 through 17.2 | 297

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained
in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information
or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or
deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related
to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this
document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA GRID, NVIDIA GRID vGPU, NVIDIA Maxwell, NVIDIA Pascal, NVIDIA Turing, NVIDIA Volta, GPUDirect, Quadro, and Tesla are
trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright
©2013-2024 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @Dz

http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Introduction to NVIDIA vGPU Software
	1.1. How NVIDIA vGPU Software Is Used
	1.1.1. NVIDIA vGPU
	1.1.2. GPU Pass-Through
	1.1.3. Bare-Metal Deployment

	1.2. Primary Display Adapter Requirements for NVIDIA vGPU Software Deployments
	1.3. NVIDIA vGPU Software Features
	1.3.1. API Support on NVIDIA vGPU
	1.3.2. NVIDIA CUDA Toolkit and OpenCL Support on NVIDIA vGPU Software
	1.3.3. Additional vWS Features
	1.3.4. NVIDIA GPU Cloud (NGC) Containers Support on NVIDIA vGPU Software
	1.3.5. NVIDIA GPU Operator Support

	1.4. How this Guide Is Organized

	Installing and Configuring NVIDIA Virtual GPU Manager
	2.1. About NVIDIA Virtual GPUs
	2.1.1. NVIDIA vGPU Architecture
	2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture

	2.1.2. About Virtual GPU Types
	2.1.3. Virtual Display Resolutions for Q-series and B-series vGPUs
	2.1.4. Valid Time-Sliced Virtual GPU Configurations on a Single GPU
	2.1.5. Guest VM Support
	2.1.5.1. Windows Guest VM Support
	2.1.5.2. Linux Guest VM support

	2.2. Prerequisites for Using NVIDIA vGPU
	2.3. Switching the Mode of a GPU that Supports Multiple Display Modes
	2.4. Installing and Configuring the NVIDIA Virtual GPU Manager for Citrix Hypervisor
	2.4.1. Installing and Updating the NVIDIA Virtual GPU Manager for Citrix Hypervisor
	2.4.1.1. Installing the RPM package for Citrix Hypervisor
	2.4.1.2. Updating the RPM Package for Citrix Hypervisor
	2.4.1.3. Installing or Updating the Supplemental Pack for Citrix Hypervisor
	2.4.1.4. Verifying the Installation of the NVIDIA vGPU Software for Citrix Hypervisor Package

	2.4.2. Configuring a Citrix Hypervisor VM with Virtual GPU
	2.4.3. Setting vGPU Plugin Parameters on Citrix Hypervisor

	2.5. Installing the Virtual GPU Manager Package for Linux KVM
	2.6. Installing and Configuring the NVIDIA Virtual GPU Manager for Microsoft Azure Stack HCI
	2.6.1. Installing the NVIDIA Virtual GPU Manager for Microsoft Azure Stack HCI
	2.6.2. Setting the vGPU Series Allowed on a GPU
	2.6.3. Adding a vGPU to a Microsoft Azure Stack HCI VM
	2.6.4. Uninstalling the NVIDIA Virtual GPU Manager for Microsoft Azure Stack HCI

	2.7. Installing and Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM
	2.7.1. Installing the Virtual GPU Manager Package for Red Hat Enterprise Linux KVM
	2.7.2. Verifying the Installation of the NVIDIA vGPU Software for Red Hat Enterprise Linux KVM

	2.8. Installing and Configuring the NVIDIA Virtual GPU Manager for Ubuntu
	2.8.1. Installing the NVIDIA Virtual GPU Manager for Ubuntu
	2.8.1.1. Installing the Virtual GPU Manager Package for Ubuntu
	2.8.1.2. Verifying the Installation of the NVIDIA vGPU Software for Ubuntu

	2.9. Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere
	2.9.1. Installing and Updating the NVIDIA Virtual GPU Manager for VMware vSphere
	2.9.1.1. Installing the NVIDIA Virtual GPU Manager on VMware vSphere
	2.9.1.2. Updating the NVIDIA Virtual GPU Manager for VMware vSphere
	2.9.1.3. Verifying the Installation of the NVIDIA vGPU Software Package for vSphere
	2.9.1.4. Managing the NVIDIA GPU Management Daemon for VMware vSphere

	2.9.2. Configuring VMware vMotion with vGPU for VMware vSphere
	2.9.3. Changing the Default Graphics Type in VMware vSphere
	2.9.4. Configuring a vSphere VM with NVIDIA vGPU
	2.9.4.1. Configuring a vSphere 8 VM with NVIDIA vGPU
	2.9.4.2. Configuring a vSphere 7 VM with NVIDIA vGPU

	2.9.5. Setting vGPU Plugin Parameters on VMware vSphere

	2.10. Configuring the vGPU Manager for a Linux with KVM Hypervisor
	2.10.1. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor
	2.10.2. Preparing the Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor
	2.10.3. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor
	2.10.3.1. Creating a Legacy NVIDIA vGPU on a Linux with KVM Hypervisor
	2.10.3.2. Creating an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor
	2.10.3.3. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor that Uses a Vendor-Specific VFIO Framework

	2.10.4. Adding One or More vGPUs to a Linux with KVM Hypervisor VM
	2.10.4.1. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using virsh
	2.10.4.2. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using the QEMU Command Line

	2.10.5. Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor
	2.10.6. Deleting a vGPU on a Linux with KVM Hypervisor
	2.10.6.1. Deleting a vGPU on a Linux with KVM Hypervisor that Uses the Standard VFIO Framework
	2.10.6.2. Deleting a vGPU on a Linux with KVM Hypervisor that Uses a Vendor-Specific VFIO Framework

	2.10.7. Preparing a GPU Configured for Pass-Through for Use with vGPU
	2.10.8. NVIDIA vGPU Information in the sysfs File System
	2.10.8.1. NVIDIA vGPU Information in the sysfs File System for Hypervisors that Use the Standard VFIO Framework
	2.10.8.2. NVIDIA vGPU Information in the sysfs File System for Hypervisors that Use a Vendor-Specific VFIO Framework

	2.11. Putting a GPU Into Mixed-Size Mode
	2.12. Placing a vGPU on a Physical GPU in Mixed-Size Mode
	2.13. Disabling and Enabling ECC Memory
	2.13.1. Disabling ECC Memory
	2.13.2. Enabling ECC Memory

	2.14. Configuring a vGPU VM for Use with NVIDIA GPUDirect Storage Technology

	Using GPU Pass-Through
	3.1. Display Resolutions for Physical GPUs
	3.2. Using GPU Pass-Through on Citrix Hypervisor
	3.2.1. Configuring a VM for GPU Pass Through by Using XenCenter
	3.2.2. Configuring a VM for GPU Pass Through by Using xe

	3.3. Using GPU Pass-Through on Red Hat Enterprise Linux KVM or Ubuntu
	3.3.1. Configuring a VM for GPU Pass-Through by Using Virtual Machine Manager (virt-manager)
	3.3.2. Configuring a VM for GPU Pass-Through by Using virsh
	3.3.3. Configuring a VM for GPU Pass-Through by Using the QEMU Command Line
	3.3.4. Preparing a GPU Configured for vGPU for Use in Pass-Through Mode

	3.4. Using GPU Pass-Through on Microsoft Windows Server
	3.4.1. Assigning a GPU to a VM on Microsoft Windows Server with Hyper-V
	3.4.2. Returning a GPU to the Host OS from a VM on Windows Server with Hyper-V

	3.5. Using GPU Pass-Through on VMware vSphere

	Installing the NVIDIA vGPU Software Graphics Driver
	4.1. Installing the NVIDIA vGPU Software Graphics Driver and NVIDIA Control Panel on Windows
	4.1.1. Installing the NVIDIA vGPU Software Graphics Driver on Windows
	4.1.2. Installing the Standalone NVIDIA Control Panel App

	4.2. Installing the NVIDIA vGPU Software Graphics Driver on Linux
	4.2.1. Installing the NVIDIA vGPU Software Graphics Driver on Linux from a .run File
	4.2.2. Installing the NVIDIA vGPU Software Graphics Driver on Ubuntu from a Debian Package
	4.2.3. Installing the NVIDIA vGPU Software Graphics Driver on Red Hat Distributions from an RPM Package
	4.2.4. Disabling the Nouveau Driver for NVIDIA Graphics Cards
	4.2.5. Disabling the Wayland Display Server Protocol for Red Hat Enterprise Linux
	4.2.6. Disabling GSP Firmware

	Licensing an NVIDIA vGPU
	5.1. Prerequisites for Configuring a Licensed Client of NVIDIA License System
	5.2. Configuring a Licensed Client on Windows with Default Settings
	5.3. Configuring a Licensed Client on Linux with Default Settings
	5.4. Verifying the NVIDIA vGPU Software License Status of a Licensed Client

	Modifying a VM's NVIDIA vGPU Configuration
	6.1. Removing a VM’s NVIDIA vGPU Configuration
	6.1.1. Removing a Citrix Virtual Apps and Desktops VM’s vGPU configuration
	6.1.1.1. Removing a VM’s vGPU configuration by using XenCenter
	6.1.1.2. Removing a VM’s vGPU configuration by using xe

	6.1.2. Removing a vSphere VM’s vGPU Configuration

	6.2. Modifying GPU Allocation Policy
	6.2.1. Modifying GPU Allocation Policy on Citrix Hypervisor
	6.2.1.1. Modifying GPU Allocation Policy by Using xe
	6.2.1.2. Modifying GPU Allocation Policy GPU by Using XenCenter

	6.2.2. Modifying GPU Allocation Policy on VMware vSphere

	6.3. Migrating a VM Configured with vGPU
	6.3.1. Migrating a VM Configured with vGPU on Citrix Hypervisor
	6.3.2. Since 17.2: Migrating a VM Configured with vGPU on a Linux with KVM Hypervisor
	6.3.3. Since 17.2: Suspending and Resuming a VM Configured with vGPU on a Linux with KVM Hypervisor
	6.3.4. Migrating a VM Configured with vGPU on VMware vSphere
	6.3.5. Suspending and Resuming a VM Configured with vGPU on VMware vSphere

	6.4. Enabling Unified Memory for a vGPU
	6.4.1. Enabling Unified Memory for a vGPU on Citrix Hypervisor
	6.4.2. Enabling Unified Memory for a vGPU on Red Hat Enterprise Linux KVM
	6.4.3. Enabling Unified Memory for a vGPU on VMware vSphere

	6.5. Enabling NVIDIA CUDA Toolkit Development Tools for NVIDIA vGPU
	6.5.1. Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU
	6.5.2. Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU
	6.5.2.1. Supported NVIDIA CUDA Toolkit Profiler Features
	6.5.2.2. Clock Management for a vGPU VM for Which NVIDIA CUDA Toolkit Profilers Are Enabled
	6.5.2.3. Limitations on the Use of NVIDIA CUDA Toolkit Profilers with NVIDIA vGPU
	6.5.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vGPU VM

	6.6. Enabling the TCC Driver Model for a vGPU

	Monitoring GPU Performance
	7.1. NVIDIA System Management Interface nvidia-smi
	7.2. Monitoring GPU Performance from a Hypervisor
	7.2.1. Using nvidia-smi to Monitor GPU Performance from a Hypervisor
	7.2.1.1. Getting a Summary of all Physical GPUs in the System
	7.2.1.2. Getting a Summary of all vGPUs in the System
	7.2.1.3. Getting Physical GPU Details
	7.2.1.4. Getting vGPU Details
	7.2.1.5. Monitoring vGPU engine usage
	7.2.1.6. Monitoring vGPU engine usage by applications
	7.2.1.7. Monitoring Encoder Sessions
	7.2.1.8. Monitoring Frame Buffer Capture (FBC) Sessions
	7.2.1.9. Listing Supported vGPU Types
	7.2.1.10. Listing the vGPU Types that Can Currently Be Created

	7.2.2. Using Citrix XenCenter to monitor GPU performance

	7.3. Monitoring GPU Performance from a Guest VM
	7.3.1. Using nvidia-smi to Monitor GPU Performance from a Guest VM
	7.3.2. Using Windows Performance Counters to monitor GPU performance
	7.3.3. Using NVWMI to monitor GPU performance

	Changing Scheduling Behavior for Time-Sliced vGPUs
	8.1. Scheduling Policies for Time-Sliced vGPUs
	8.2. Scheduler Time Slice for Time-Sliced vGPUs
	8.3. Getting Information about the Scheduling Behavior of Time-Sliced vGPUs
	8.3.1. Getting Time-Sliced vGPU Scheduler Capabilities
	8.3.2. Getting Time-Sliced vGPU Scheduler State Information
	8.3.3. Getting Time-Sliced vGPU Scheduler Work Logs
	8.3.4. Getting the Current Time-Sliced vGPU Scheduling Policy for All GPUs

	8.4. Tools for Changing Scheduling Behavior for Time-Sliced vGPUs
	8.5. Changing Scheduling Behavior for Time-Sliced vGPUs by Using the nvidia-smi Command
	8.6. Changing Scheduling Behavior for Time-Sliced vGPUs by Using the RmPVMRL Registry Key
	8.6.1. Changing the Time-Sliced vGPU Scheduling Behavior for All GPUs by Using the RmPVMRL Registry Key
	8.6.2. Changing the Time-Sliced vGPU Scheduling Behavior for Select GPUs by Using the RmPVMRL Registry Key
	8.6.3. Restoring Default Time-Sliced vGPU Scheduler Settings by Using the RmPVMRL Registry Key
	8.6.4. RmPVMRL Registry Key

	Troubleshooting
	9.1. Known issues
	9.2. Troubleshooting steps
	9.2.1. Verifying the NVIDIA Kernel Driver Is Loaded
	9.2.2. Verifying that nvidia-smi works
	9.2.3. Examining NVIDIA kernel driver output
	9.2.4. Examining NVIDIA Virtual GPU Manager Messages
	9.2.4.1. Examining Citrix Hypervisor vGPU Manager Messages
	9.2.4.2. Examining Red Hat Enterprise Linux KVM vGPU Manager Messages
	9.2.4.3. Examining VMware vSphere vGPU Manager Messages

	9.3. Capturing configuration data for filing a bug report
	9.3.1. Capturing configuration data by running nvidia-bug-report.sh
	9.3.2. Capturing Configuration Data by Creating a Citrix Hypervisor Status Report

	Virtual GPU Types Reference
	A.1. Virtual GPU Types for Supported GPUs
	A.1.1. NVIDIA A40 Virtual GPU Types
	A.1.2. NVIDIA A16 Virtual GPU Types
	A.1.3. NVIDIA A10 Virtual GPU Types
	A.1.4. NVIDIA A2 Virtual GPU Types
	A.1.5. NVIDIA L40 Virtual GPU Types
	A.1.6. NVIDIA L40S Virtual GPU Types
	A.1.7. NVIDIA L20 and NVIDIA L20 Liquid Cooled Virtual GPU Types
	A.1.8. NVIDIA L4 Virtual GPU Types
	A.1.9. NVIDIA L2 Virtual GPU Types
	A.1.10. NVIDIA RTX 6000 Ada Virtual GPU Types
	A.1.11. NVIDIA RTX 5880 Ada Virtual GPU Types
	A.1.12. NVIDIA RTX 5000 Ada Virtual GPU Types
	A.1.13. NVIDIA RTX A6000 Virtual GPU Types
	A.1.14. NVIDIA RTX A5500 Virtual GPU Types
	A.1.15. NVIDIA RTX A5000 Virtual GPU Types
	A.1.16. Tesla M10 Virtual GPU Types
	A.1.17. Tesla T4 Virtual GPU Types
	A.1.18. Tesla V100 SXM2 Virtual GPU Types
	A.1.19. Tesla V100 SXM2 32GB Virtual GPU Types
	A.1.20. Tesla V100 PCIe Virtual GPU Types
	A.1.21. Tesla V100 PCIe 32GB Virtual GPU Types
	A.1.22. Tesla V100S PCIe 32GB Virtual GPU Types
	A.1.23. Tesla V100 FHHL Virtual GPU Types
	A.1.24. Quadro RTX 8000 Virtual GPU Types
	A.1.25. Quadro RTX 8000 Passive Virtual GPU Types
	A.1.26. Quadro RTX 6000 Virtual GPU Types
	A.1.27. Quadro RTX 6000 Passive Virtual GPU Types

	A.2. Mixed Display Configurations for B-Series and Q-Series vGPUs
	A.2.1. Mixed Display Configurations for B-Series vGPUs
	A.2.2. Mixed Display Configurations for Q-Series vGPUs Based on the NVIDIA Maxwell Architecture
	A.2.3. Mixed Display Configurations for Q-Series vGPUs Based on Architectures after NVIDIA Maxwell

	A.3. vGPU Placements for GPUs in Mixed-Size Mode
	A.3.1. vGPU Placements for GPUs with 94 GB of Frame Buffer
	A.3.2. vGPU Placements for GPUs with 80 GB of Frame Buffer
	A.3.3. vGPU Placements for GPUs with 48 GB of Frame Buffer
	A.3.4. vGPU Placements for GPUs with 40 GB of Frame Buffer
	A.3.5. vGPU Placements for GPUs with 32 GB of Frame Buffer
	A.3.6. vGPU Placements for GPUs with 24 GB of Frame Buffer
	A.3.7. vGPU Placements for GPUs with 20 GB of Frame Buffer
	A.3.8. vGPU Placements for GPUs with 16 GB of Frame Buffer

	Allocation Strategies
	B.1. NUMA Considerations
	B.1.1. Obtaining Best Performance on a NUMA Platform with Citrix Hypervisor
	B.1.2. Obtaining Best Performance on a NUMA Platform with VMware vSphere ESXi

	B.2. Maximizing Performance

	Configuring x11vnc for Checking the GPU in a Linux Server
	C.1. Configuring the Xorg Server on the Linux Server
	C.2. Installing and Configuring x11vnc on the Linux Server
	C.3. Using a VNC Client to Connect to the Linux Server

	Disabling NVIDIA Notification Icon for Citrix Published Application User Sessions
	D.1. Disabling NVIDIA Notification Icon for All Users' Citrix Published Application Sessions
	D.2. Disabling NVIDIA Notification Icon for your Citrix Published Application User Sessions

	Citrix Hypervisor Basics
	E.1. Opening a dom0 shell
	E.1.1. Accessing the dom0 shell through XenCenter
	E.1.2. Accessing the dom0 shell through an SSH client

	E.2. Copying files to dom0
	E.2.1. Copying files by using an SCP client
	E.2.2. Copying files by using a CIFS-mounted file system

	E.3. Determining a VM’s UUID
	E.3.1. Determining a VM’s UUID by using xe vm-list
	E.3.2. Determining a VM’s UUID by using XenCenter

	E.4. Using more than two vCPUs with Windows client VMs
	E.5. Pinning VMs to a specific CPU socket and cores
	E.6. Changing dom0 vCPU Default configuration
	E.6.1. Changing the number of dom0 vCPUs
	E.6.2. Pinning dom0 vCPUs

	E.7. How GPU locality is determined

	Citrix Hypervisor vGPU Management
	F.1. Management objects for GPUs
	F.1.1. pgpu - Physical GPU
	F.1.1.1. Listing the pgpu Objects Present on a Platform
	F.1.1.2. Viewing Detailed Information About a pgpu Object
	F.1.1.3. Viewing physical GPUs in XenCenter

	F.1.2. vgpu-type - Virtual GPU Type
	F.1.2.1. Listing the vgpu-type Objects Present on a Platform
	F.1.2.2. Viewing Detailed Information About a vgpu-type Object

	F.1.3. gpu-group - collection of physical GPUs
	F.1.3.1. Listing the gpu-group Objects Present on a Platform
	F.1.3.2. Viewing Detailed Information About a gpu-group Object

	F.1.4. vgpu - Virtual GPU

	F.2. Creating a vGPU Using xe
	F.3. Controlling vGPU allocation
	F.3.1. Determining the Physical GPU on Which a Virtual GPU is Resident
	F.3.2. Controlling the vGPU types enabled on specific physical GPUs
	F.3.2.1. Controlling vGPU types enabled on specific physical GPUs by using XenCenter
	F.3.2.2. Controlling vGPU Types Enabled on Specific Physical GPUs by Using xe

	F.3.3. Creating vGPUs on Specific Physical GPUs

	F.4. Cloning vGPU-Enabled VMs
	F.4.1. Cloning a vGPU-enabled VM by using xe
	F.4.2. Cloning a vGPU-enabled VM by using XenCenter

	Citrix Hypervisor Performance Tuning
	G.1. Citrix Hypervisor Tools
	G.2. Using Remote Graphics
	G.2.1. Disabling Console VGA

