

DU-06920-001 | April 2016

User Guide

GRID VIRTUAL GPU

GRID Virtual GPU DU-06920-001 | ii

DOCUMENT CHANGE HISTORY

DU-06920-001

Version Date Authors Description of Change
0.3 7/1/2013 AC Initial release for vGPU private beta

0.9 9/1/2013 AC Updated for vGPU Tech Preview.

0.95 11/8/2013 AC vGPU Tech Preview R2

1.0 12/13/2013 AC vGPU 1.0 RTM

1.1 3/31/2014 AC vGPU 1.1 RTM

1.15 7/1/2014 AC vGPU 1.2 Tech Preview

1.2 9/30/2014 AC vGPU 1.2 RTM

1.4 5/11/2015 Avi vGPU 1.4 RTM

1.45 7/10/2015 Avi vGPU 1.4 RTM R2

2.0 9/1/2015 AC vGPU 2.0

3.0 4/4/2016 PD vGPU 3.0

GRID Virtual GPU DU-06920-001 | iii

Chapter 1. Introduction.. 1
1.1 Architecture ... 1
1.2 Supported GPUs .. 3

1.2.1 Virtual GPU types .. 3
1.2.2 Homogeneous virtual GPUs .. 5

1.3 Guest OS Support .. 6
1.3.1 Windows .. 6
1.3.2 Linux ... 6

1.4 Features ... 6
Chapter 2. Getting Started .. 7

2.1 Citrix XenServer .. 7
2.1.1 Prerequisites.. 7
2.1.2 Installing Citrix XenServer and XenCenter ... 8
2.1.3 Installing the NVIDIA Virtual GPU Manager for XenServer 8
2.1.4 Configuring a VM with Virtual GPU .. 12
2.1.5 Changing the Mode of a Tesla M60 or M6 GPU ... 13
2.1.6 Booting the VM and Installing Drivers .. 13
2.1.7 Applying a vGPU license ... 15
2.1.8 Removing a VM’s vGPU configuration ... 15

2.2 VMware vSphere .. 17
2.2.1 Prerequisites... 17
2.2.2 Installing VMware vSphere.. 17
2.2.3 Installing the NVIDIA Virtual GPU Manager for vSphere 17
2.2.4 Configuring a VM with Virtual GPU .. 20
2.2.5 Changing the Mode of a Tesla M60 or M6 GPU ... 21
2.2.6 Booting the VM and Installing Drivers .. 22
2.2.7 Applying a vGPU license ... 23
2.2.8 Removing a VM’s vGPU configuration ... 23
2.2.9 Modifying GPU assignment for vGPU-Enabled VMs 23

2.3 vGPU Licensing on Windows .. 24
Chapter 3. Using vGPU on Linux .. 25

3.1 Installing vGPU drivers ... 25
3.1.1 Prerequisites... 25
3.1.2 Running the driver installer ... 26

3.2 vGPU Licensing on Linux... 28
Chapter 4. Performance monitoring ... 30

4.1 Using nvidia-smi .. 30
4.2 Using Citrix XenCenter ... 32

Chapter 5. XenServer vGPU Management ... 33
5.1 Management objects for GPUs ... 33

5.1.1 pgpu .. 33
5.1.2 vgpu-type .. 35
5.1.3 gpu-group ... 36
5.1.4 vgpu .. 37

5.2 Creating a vGPU using xe ... 37

GRID Virtual GPU DU-06920-001 | iv

5.3 Controlling vGPU allocation ... 38
5.3.1 GPU allocation policy ... 38
5.3.2 Determining the physical GPU that a virtual GPU is resident on 39
5.3.3 Controlling the vGPU types enabled on specific physical GPUs 40
5.3.4 Creating vGPUs on specific physical GPUs .. 42

5.4 Cloning vGPU-enabled VMs ... 44
5.5 Using GPU pass-through ... 44

Chapter 6. XenServer Performance Tuning .. 47
6.1 XenServer tools ... 47
6.2 Using remote graphics ... 47

6.2.1 Disabling console VGA ... 48
6.4 Allocation strategies .. 49

6.4.1 NUMA considerations .. 49
6.4.2 Maximizing performance .. 50

Chapter 7. Troubleshooting .. 51
7.1 Known issues .. 51
7.2 Troubleshooting steps ... 51

7.2.1 Verify the NVIDIA kernel driver is loaded .. 51
7.2.2 Verify that nvidia-smi works .. 52
7.2.3 NVIDIA kernel driver output .. 52
7.2.4 GRID Virtual GPU Manager messages ... 52

7.3 Filing a bug report .. 54
7.3.1 nvidia-bug-report.sh ... 54
7.3.2 XenServer status report ... 54

 XenServer Basics .. 56 Appendix A.
A.1 Opening a dom0 shell .. 56

A.1.1 Accessing the dom0 shell via XenCenter ... 56
A.1.2 Accessing the dom0 shell using ssh ... 57

A.2 Copying files to dom0 .. 57
A.2.1 Copying files using scp .. 57
A.2.2 Copying files via a CIFS-mounted filesystem .. 58

A.3 Determining a VM’s UUID ... 58
A.3.1 Using xe vm-list ... 59
A.3.2 Using XenCenter .. 59

A.4 Using more than two vCPUs with Windows client VMs 60
A.5 Pinning VMs to a specific CPU socket and cores ... 60
A.6 Changing dom0 vCPUs and pinning ... 62
A.7 Determining GPU locality .. 63

GRID Virtual GPU DU-06920-001 | v

LIST OF FIGURES

Figure 1 GRID vGPU System Architecture .. 2

Figure 2 GRID vGPU Internal Architecture .. 2

Figure 3 Example vGPU configurations on GRID K2 ... 5

Figure 4 GRID vGPU Manager supplemental pack selected in XenCenter 10

Figure 5 Successful installation of GRID vGPU Manager supplemental pack 11

Figure 6 Using XenCenter to configure a VM with a vGPU 13

Figure 7 NVIDIA driver installation in the guest VM .. 14

Figure 8 Verifying NVIDIA driver operation using NVIDIA Control Panel 15

Figure 9 Using XenCenter to remove a vGPU configuration from a VM 16

Figure 10 VM settings for vGPU ... 21

Figure 11 Verifying NVIDIA driver operation using NVIDIA Control Panel 22

Figure 12 NVIDIA Linux driver installer .. 26

Figure 13 Update xorg.conf settings ... 27

Figure 14 Verifying operation with nvidia-settings .. 28

Figure 15 Sample gridd.conf for GRID vGPU .. 29

Figure 16 Using XenCenter to monitor GPU performance 32

Figure 17 Physical GPU display in XenCenter.. 34

Figure 18 Modifying GPU placement policy in XenCenter 39

Figure 19 Editing a GPU’s enabled vGPU types using XenCenter 41

Figure 20 Using a custom GPU group within XenCenter 43

Figure 21 Cloning a VM using XenCenter .. 44

Figure 22 Using XenCenter to configure a passthrough GPU................................ 45

Figure 23 A NUMA server platform ... 49

Figure 24 Including NVIDIA logs in server status report 55

Figure 25 Connecting to the dom0 shell via XenCenter 57

Figure 26 Using XenCenter to determine a VM's UUID 60

GRID Virtual GPU DU-06920-001 | vi

LIST OF TABLES

Table 1 GRID K1 and K2 Virtual GPU types .. 3

Table 2 Tesla M60 and M6 Virtual GPU types .. 4

Table 3 Virtual GPUs supporting Linux .. 6

Table 4 Virtual GPUs supporting Linux ... 25

GRID Virtual GPU DU-06920-001 | 1

Chapter 1. INTRODUCTION

NVIDIA GRIDTM vGPUTM enables multiple virtual machines (VMs) to have
simultaneous, direct access to a single physical GPU, using the same NVIDIA graphics
drivers that are deployed on non-virtualized Operating Systems. By doing this, GRID
vGPU provides VMs with unparalleled graphics performance and application
compatibility, together with the cost-effectiveness and scalability brought about by
sharing a GPU among multiple workloads.

This chapter introduces the architecture and features of vGPU. Chapter 2 provides a
step-by-step guide to getting started with vGPU on Citrix XenServer and VMware ESXi.
Chapter 3 describes using vGPU with Linux VMs. Chapters 4 and 5 cover vGPU
management and performance optimization on XenServer, and Chapter 6 provides
guidance on troubleshooting.

1.1 ARCHITECTURE

GRID vGPU’s high-level architecture is illustrated in Figure 1. Under the control of
NVIDIA’s GRID Virtual GPU Manager running under the hypervisor, GRID physical
GPUs are capable of supporting multiple virtual GPU devices (vGPUs) that can be
assigned directly to guest VMs.

Guest VMs use GRID virtual GPUs in the same manner as a physical GPU that has been
passed through by the hypervisor: an NVIDIA driver loaded in the guest VM provides
direct access to the GPU for performance-critical fast paths, and a paravirtualized
interface to the GRID Virtual GPU Manager is used for non-performant management
operations.

Introduction

GRID Virtual GPU DU-06920-001 | 2

Figure 1 GRID vGPU System Architecture

GRID vGPUs are analogous to conventional GPUs, having a fixed amount of GPU
framebuffer, and one or more virtual display outputs or “heads”. The vGPU’s
framebuffer is allocated out of the physical GPU’s framebuffer at the time the vGPU is
created, and the vGPU retains exclusive use of that framebuffer until it is destroyed.

All vGPUs resident on a physical GPU share access to the GPU’s engines including the
graphics (3D), video decode, and video encode engines.

Figure 2 GRID vGPU Internal Architecture

NVIDIA GRID
Physical GPU

Hypervisor

NVIDIA GRID
Virtual GPU

Manager

Guest VM

NVIDIA
Driver

Applications

Guest VM

NVIDIA
Driver

Applications

Guest VM

NVIDIA
Driver

Applications

Virtual GPU

Hypervisor

NVIDIA GRID
Virtual GPU

Manager

Guest VM

NVIDIA
Driver

Applications

Paravirtualized

Interface

Direct GPU
Access

Dedicated Framebuffer

Graphics Video Decode Video Encode

Scheduling

…
E

Virtual GPU Virtual GPU Virtual GPU

Introduction

GRID Virtual GPU DU-06920-001 | 3

1.2 SUPPORTED GPUS

GRID vGPU is supported on NVIDIA GRID K1, K2, and is available as a licensed feature
on Tesla M60, M6. Refer to the release notes for a list of recommended server platforms
to use with GRID GPUs.

1.2.1 Virtual GPU types
GRID K1, K2, and Tesla M60 each implement multiple physical GPUs; K2 and M60 have
2 GPUs onboard; GRID K1 has 4 GPUs. Tesla M6 implements a single physical GPU.

Each physical GPU can support several different types of virtual GPU. Virtual GPU
types have a fixed amount of framebuffer, number of supported display heads and
maximum resolutions, and are targeted at different classes of workload

The virtual GPU types supported by GRID GPUs are defined in Table 1 and Table 2.

Due to their differing resource requirements, the maximum number of vGPUs that can
be created simultaneously on a physical GPU varies according to the vGPU type. For
example, a GRID K2 physical GPU can support up to 4 K240Q vGPUs on each of its two
physical GPUs, for a total of 8 vGPUs, but only 2 K260Qs vGPUs, for a total of 4 vGPUs.

Card
Physical

GPUs

GRID
Virtual

GPU
Intended Use Case

Frame
Buffer
(Mbytes)

Virtual
Display
Heads

Max
Resolution
per Display

Head

Maximum
vGPUs

Per
GPU

Per
Board

GRID K1 4

K180Q Power User 4096 4 2560x1600 1 4

K160Q Power User 2048 4 2560x1600 2 8

K140Q Power User 1024 2 2560x1600 4 16

K120Q Power User 512 2 2560x1600 8 32

K100 Knowledge Worker 256 2 1920x1200 8 32

GRID K2 2

K280Q Designer 4096 4 2560x1600 1 2

K260Q Power User,
Designer 2048 4 2560x1600 2 4

K240Q Power User,
Designer 1024 2 2560x1600 4 8

K220Q Power User,
Designer 512 2 2560x1600 8 16

K200 Knowledge Worker 256 2 1920x1200 8 16

Table 1 GRID K1 and K2 Virtual GPU types

Introduction

GRID Virtual GPU DU-06920-001 | 4

Card
Physical

GPUs

GRID
Virtual

GPU
Intended Use Case

Frame
Buffer
(Mbytes)

Virtual
Display
Heads

Max
Resolution
per Display

Head

Maximum
vGPUs

Per
GPU

Per
Board

Tesla
M60 2

M60-8Q Designer 8192 4 4096x2160 1 2

M60-4Q Designer 4096 4 4096x2160 2 4

M60-2Q Designer 2048 4 4096x2160 4 8

M60-1Q Power User, Designer 1024 2 4096x2160 8 16

M60-0Q Power User, Designer 512 2 2560x1600 16 32

M60-1B Power User 1024 4 2560x1600 8 16

M60-0B Power User 512 2 2560x1600 16 32

M60-8A Virtual Application
User 8192 1 1280x1024 1 2

M60-4A Virtual Application
User 4096 1 1280x1024 2 4

M60-2A Virtual Application
User 2048 1 1280x1024 4 8

M60-1A Virtual Application
User 1024 1 1280x1024 8 16

Tesla
M6 1

M6-8Q Designer 8192 4 4096x2160 1 1

M6-4Q Designer 4096 4 4096x2160 2 2

M6-2Q Designer 2048 4 4096x2160 4 4

M6-1Q Power User, Designer 1024 2 4096x2160 8 8

M6-0Q Power User, Designer 512 2 2560x1600 16 16

M6-1B Power User 1024 4 2560x1600 8 8

M6-0B Power User 512 2 2560x1600 16 16

M6-8A Virtual Application
User 8192 1 1280x1024 1 1

M6-4A Virtual Application
User 4096 1 1280x1024 2 2

M6-2A Virtual Application
User 2048 1 1280x1024 4 4

M6-1A Virtual Application
User 1024 1 1280x1024 8 8

Table 2 Tesla M60 and M6 Virtual GPU types

 Note: GRID vGPU is a licensed feature on Tesla M6/M60. A software license is
required to use full vGPU features within the guest VM. For more details, see
sections 2.3, 3.2, and the GRID Licensing User Guide.

Virtualized applications are rendered in an off-screen buffer. Therefore, the
maximum resolution for the A series of GRID vGPUs is independent of the maximum
resolution of the display head.

Introduction

GRID Virtual GPU DU-06920-001 | 5

1.2.2 Homogeneous virtual GPUs
This release of GRID vGPU supports homogeneous virtual GPUs: at any given time, the
virtual GPUs resident on a single physical GPU must be all of the same type. However,
this restriction doesn’t extend across physical GPUs on the same card. Each physical
GPU on a K1 or K2 may host different types of virtual GPU at the same time.

For example, a GRID K2 card has two physical GPUs, and can support five types of
virtual GPU; GRID K200, K220Q, K240Q, K260Q, and K280Q. Figure 3 shows some
example virtual GPU configurations on K2:

GRID K2

Physical GPU 0 Physical GPU 1

Valid configuration with K240Q vGPUs on GPU 0, K260Q vGPUs on GPU 1:

K240Q K240Q K240Q K240Q K260Q K260Q

Valid configuration with K200 vGPUs on GPU 0, K240Q vGPUs on GPU 1:

K200 K200 K200 K200 K200 K200 K200 K240Q K240Q K240Q K240Q

Invalid configuration with mixed vGPU types on GPU 0:

K240Q K240Q K260Q K200 K200 K200 K200 K200

Figure 3 Example vGPU configurations on GRID K2

Introduction

GRID Virtual GPU DU-06920-001 | 6

1.3 GUEST OS SUPPORT

This release of GRID vGPU includes support for the following guest VM operating
systems. Refer to the driver release notes for further information on supported
configurations:

1.3.1 Windows
 Windows 7 (32/64-bit)
 Windows 8 (32/64-bit), Windows 8.1 (32/64-bit)
 Windows 10 (32/64-bit)
 Windows Server 2008 R2
 Windows Server 2012 R2

1.3.2 Linux
64-bit Linux guest VMs are supported on the following virtual GPU types:

Tesla M60

M60-8Q

Tesla M6

M6-8Q

M60-4Q M6-4Q

M60-2Q M6-2Q

M60-1Q M6-1Q

M60-0Q M6-0Q

Table 3 Virtual GPUs supporting Linux

1.4 FEATURES

This release of GRID vGPU includes support for:

 DirectX 12, Direct2D, and DirectX Video Acceleration (DXVA)
 OpenGL 4.5.
 NVIDIA GRID SDK (remote graphics acceleration).

CUDA and OpenCL are supported on these virtual GPUs:

 GRID M60-8Q, M6-8Q

GRID Virtual GPU DU-06920-001 | 7

Chapter 2. GETTING STARTED

This chapter provides a step-by-step guide to booting a Windows VM on Citrix
XenServer and VMware vSphere with NVIDIA Virtual GPU.

2.1 CITRIX XENSERVER

These setup steps assume familiarity with the XenServer skills covered in Appendix A.

2.1.1 Prerequisites
Before proceeding, ensure that you have these prerequisites:

 NVIDIA GRID K1,K2, or Tesla M6, M60 cards.
 A server platform capable of hosting XenServer and the NVIDIA GRID or Tesla

cards. Refer to the release notes for a list of recommended servers.
 The NVIDIA GRID vGPU software package for Citrix XenServer, consisting of the

GRID Virtual GPU Manager for XenServer, and NVIDIA GRID vGPU drivers for
Windows, 32- and 64-bit.

 Citrix XenServer 6.2 SP1 with applicable hotfixes, or later, obtainable from Citrix.
 An installed Windows VM to be enabled with vGPU.

To run Citrix XenDesktop with virtual machines running NVIDIA Virtual GPU, you will
also need:

 Citrix XenDesktop 7.1 or later, obtainable from Citrix.

 Note: Earlier versions of Citrix XenServer and XenDesktop are not supported for
use with NVIDIA Virtual GPU.

Getting Started

GRID Virtual GPU DU-06920-001 | 8

Review the release notes and known issues for GRID Virtual GPU before proceeding
with installation.

2.1.2 Installing Citrix XenServer and XenCenter
Install Citrix XenServer and any applicable patches, following Citrix’s installation
instructions. Install the Citrix XenCenter management GUI on a PC.

2.1.3 Installing the NVIDIA Virtual GPU Manager for
XenServer

The NVIDIA Virtual GPU Manager runs in XenServer’s dom0. It is provided as a RPM
file for XenServer 6.2 SP1 and as a Supplemental Pack for XenServer 6.5 SP1.

 Note: there are separate Virtual GPU Manager files for different versions of
XenServer. Consult the release notes for guidance on which package to use for
each version of XenServer.

2.1.3.1 RPM package installation

The RPM file must be copied to XenServer’s dom0 prior to installation (see A.2, Copying
files to dom0). Use the rpm command to install the package:

[root@xenserver ~]# rpm -iv NVIDIA-vGPU-xenserver-6.2-361.40.i386.rpm

Preparing packages for installation...

NVIDIA-vGPU-xenserver-6.2-361.40

[root@xenserver ~]#

Reboot the XenServer platform:

[root@xenserver ~]# shutdown –r now

Broadcast message from root (pts/1) (Fri Dec 6 14:24:11 2013):

The system is going down for reboot NOW!

[root@xenserver ~]#

2.1.3.2 Update RPM package

If an existing GRID Virtual GPU Manager is already installed on the system and you
wish to upgrade, follow these steps:

 Shut down any VMs that are using GRID vGPU.

Getting Started

GRID Virtual GPU DU-06920-001 | 9

 Install the new package using the –U option to the rpm command, to upgrade from
the previously installed package:

[root@xenserver ~]# rpm -Uv NVIDIA-vGPU-xenserver-6.2-361.40.i386.rpm

Preparing packages for installation...

NVIDIA-vGPU-xenserver-6.2-361.40

[root@xenserver ~]#

 Note: You can query the version of the current GRID package using the rpm –q
command:

[root@xenserver ~]# rpm –q NVIDIA-vGPU-xenserver
NVIDIA-vGPU-xenserver-6.2-361.40
[root@xenserver ~]#

If an existing NVIDIA GRID package is already installed and you don’t select the
upgrade (-U) option when installing a newer GRID package, the rpm command will
return many conflict errors.

Preparing packages for installation...

 file /usr/bin/nvidia-smi from install of NVIDIA-vGPU-
xenserver-6.2-361.40.i386 conflicts with file from package
NVIDIA-vGPU-xenserver-6.2-331.59.i386

 file /usr/lib/libnvidia-ml.so from install of NVIDIA-
vGPU-xenserver-6.2-361.40.i386 conflicts with file from
package NVIDIA-vGPU-xenserver-6.2-331.59.i386

 ...

Reboot the XenServer platform:

[root@xenserver ~]# shutdown –r now

Broadcast message from root (pts/1) (Fri Dec 6 14:24:11 2013):

The system is going down for reboot NOW!

[root@xenserver ~]#

! Note: GRID Virtual GPU Manager and Guest VM drivers must be matched from the
same release. After updating vGPU Manager, guest VMs will boot with vGPU
disabled until their guest vGPU driver is updated to match the vGPU Manager
version. Consult the release notes for further details.

Getting Started

GRID Virtual GPU DU-06920-001 | 10

2.1.3.3 Supplemental Pack installation / update

XenCenter can be used to install / update Supplemental Packs on XenServer hosts. The
NVIDIA GRID Virtual GPU Manager supplemental pack is provided as an ISO.

 Note: NVIDIA GRID Virtual GPU Manager supplemental pack installation / update is
supported from XenServer 6.5 SP1 and XenCenter version 6.5 (build 6.5.2.2477)
onwards.

 Select Install Update… from the Tools menu
 Click Next after going through the instructions on the Before You Start section
 Click Add on the Select Update section and open NVIDIA’s XenServer

Supplemental Pack ISO

 Figure 4 GRID vGPU Manager supplemental pack selected in XenCenter

 Click Next on the Select Update section
 In the Select Servers section select all the XenServer hosts on which the

Supplemental Pack should be installed on and click Next
 Click Next on the Upload section once the Supplemental Pack has been uploaded to

all the XenServer hosts

Getting Started

GRID Virtual GPU DU-06920-001 | 11

 Click Next on the Prechecks section
 Click Install Update on the Update Mode section
 Click Finish on the Install Update section

Figure 5 Successful installation of GRID vGPU Manager supplemental pack

2.1.3.4 Verifying installation

After the XenServer platform has rebooted, verify that the GRID package installed and
loaded correctly by checking for the NVIDIA kernel driver in the list of kernel loaded
modules.

[root@xenserver ~]# lsmod | grep nvidia

nvidia 9522927 0

i2c_core 20294 2 nvidia,i2c_i801

[root@xenserver ~]#

Verify that the NVIDIA kernel driver can successfully communicate with the GRID
physical GPUs in your system by running the nvidia-smi command, which should
produce a listing of the GPUs in your platform:

[root@xenserver ~]# nvidia-smi

Getting Started

GRID Virtual GPU DU-06920-001 | 12

Mon Nov 10 18:46:50 2014
+--+
| NVIDIA-SMI 361.40 Driver Version: 361.40 |
|-------------------------------+----------------------+----------------------+
| GPU Name | Bus-Id Disp. | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GRID K1 | 0000:04:00.0 Off | N/A |
| N/A 27C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 GRID K1 | 0000:05:00.0 Off | N/A |
| N/A 25C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 GRID K1 | 0000:06:00.0 Off | N/A |
| N/A 21C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 GRID K1 | 0000:07:00.0 Off | N/A |
| N/A 23C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 4 GRID K1 | 0000:86:00.0 Off | N/A |
| N/A 24C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 5 GRID K1 | 0000:87:00.0 Off | N/A |
| N/A 24C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 6 GRID K1 | 0000:88:00.0 Off | N/A |
| N/A 25C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 7 GRID K1 | 0000:89:00.0 Off | N/A |
| N/A 25C P0 12W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Compute processes: GPU Memory |
| GPU PID Process name Usage |
|===|
| No running compute processes found |
+---+
[root@xenserver ~]#

The nvidia-smi command is described in more detail in section 4.1.

If nvidia-smi fails to run or doesn’t produce the expected output for all the NVIDIA
GPUs in your system, see Chapter 6 for troubleshooting steps.

2.1.4 Configuring a VM with Virtual GPU
XenServer supports configuration and management of virtual GPUs using XenCenter, or
the xe command line tool that is run in a XenServer dom0 shell. Basic configuration
using XenCenter is described in the following sections. Command line management
using xe is described in Chapter 6.

To configure a VM to use virtual GPU, first ensure the VM is powered off, then right-
click on the VM in XenCenter, select “Properties” to open the VM’s properties, and

Getting Started

GRID Virtual GPU DU-06920-001 | 13

select the “GPU” property. The available GPU types are listed in the GPU type
dropdown:

Figure 6 Using XenCenter to configure a VM with a vGPU

2.1.5 Changing the Mode of a Tesla M60 or M6 GPU
Tesla M60 GPUs and M6 GPUs support compute mode and graphics mode. GRID vGPU
requires that the Tesla M60 GPUs and M6 GPUs operate in graphics mode. However, by
default, these GPUs are supplied in compute mode.

If you are using a Tesla M6 or M60 GPU, you must change the mode of GPU to graphics
mode. To change the mode of a GPU, use the gpumodeswitch tool as explained in
gpumodeswitch User Guide.

2.1.6 Booting the VM and Installing Drivers
Once you have configured a VM with a vGPU, start the VM, either from XenCenter or
by using xe vm-start in a dom0 shell.

Viewing the VM’s console in XenCenter, the VM should boot to a standard Windows
desktop in VGA mode at 800x600 resolution. The Windows screen resolution control
panel may be used to increase the resolution to other standard resolutions, but to fully

Getting Started

GRID Virtual GPU DU-06920-001 | 14

enable vGPU operation, as for a physical NVIDIA GPU, the NVIDIA driver must be
installed.

 Copy the 32- or 64-bit NVIDIA Windows driver package to the guest VM and execute
it to unpack and run the driver installer:

Figure 7 NVIDIA driver installation in the guest VM

 Click through the license agreement
 Select Express Installation
 Once driver installation completes, the installer may prompt you to restart the

platform. Select Restart Now to reboot the VM, or exit the installer and reboot the VM
when ready.

Once the VM restarts, it will boot to a Windows desktop. Verify that the NVIDIA driver
is running by right-clicking on the desktop. The NVIDIA Control Panel will be listed in
the menu; select it to open the control panel. Selecting “System Information” in the

Getting Started

GRID Virtual GPU DU-06920-001 | 15

NVIDIA control panel will report the Virtual GPU that the VM is using, its capabilities,
and the NVIDIA driver version that is loaded.

Figure 8 Verifying NVIDIA driver operation using NVIDIA Control Panel

This completes the process of setting up a single VM to use GRID vGPU. The VM is now
capable of running the full range of DirectX and OpenGL graphics applications.

2.1.7 Applying a vGPU license
GRID vGPU is a licensed feature on Tesla M6, M60. When booted on these GPUs, a
vGPU runs at full capability even without a license. However, until a license is acquired,
users are warned each time a vGPU tries and fails to obtain a license. You may
optionally configure a license server to provide licenses to a vGPU. See section 2.3 for
details on how to configure licensing on Windows.

2.1.8 Removing a VM’s vGPU configuration
To remove a virtual GPU assignment from a VM, such that it no longer uses a virtual
GPU, set the GPU type to ‘None’ in the VM’s GPU Properties, as shown in Figure 9.

Alternatively, use vgpu-destroy to delete the virtual GPU object associated with the
VM. To discover the vGPU object UUID associated with a given VM, use vgpu-list:

[root@xenserver ~]# xe vgpu-list vm-uuid=e71afda4-53f4-3a1b-6c92-a364a7f619c2

uuid (RO) : c1c7c43d-4c99-af76-5051-119f1c2b4188

 vm-uuid (RO): e71afda4-53f4-3a1b-6c92-a364a7f619c2

 gpu-group-uuid (RO): d53526a9-3656-5c88-890b-5b24144c3d96

Getting Started

GRID Virtual GPU DU-06920-001 | 16

[root@xenserver ~]# xe vgpu-destroy uuid=c1c7c43d-4c99-af76-5051-119f1c2b4188

[root@xenserver ~]#

 Note: the VM must be in the powered-off state in order for its vGPU configuration
to be modified or removed.

Figure 9 Using XenCenter to remove a vGPU configuration from a VM

Getting Started

GRID Virtual GPU DU-06920-001 | 17

2.2 VMWARE VSPHERE

2.2.1 Prerequisites
Before proceeding, ensure that you have these prerequisites:

 NVIDIA GRID K1,K2, or Tesla M60, M6 cards.
 A server platform capable of hosting VMware vSphere Hypervisor (ESXi) and the

NVIDIA GRID or Tesla cards. Refer to the release notes for a list of recommended
servers.

 The NVIDIA GRID vGPU software package for VMware vSphere, consisting of the
GRID Virtual GPU Manager for ESXi, and NVIDIA GRID vGPU drivers for
Windows, 32- and 64-bit.

 VMware vSphere 2015 or later, obtainable from VMware.
 An installed Windows VM to be enabled with vGPU.

To run VMware Horizon with virtual machines running NVIDIA Virtual GPU, you will
also need:

 VMware Horizon 6.1 or later, obtainable from VMware.

 Note: Earlier versions of VMware vSphere and Horizon are not supported for use
with NVIDIA Virtual GPU.

Review the release notes and known issues for GRID Virtual GPU before proceeding
with installation.

2.2.2 Installing VMware vSphere
Install VMware vSphere Hypervisor (ESXi), following VMware’s installation
instructions. Install VMware vCenter Server, following VMware’s installation
instructions.

2.2.3 Installing the NVIDIA Virtual GPU Manager for
vSphere

The NVIDIA Virtual GPU Manager runs on ESXi host. It is provided as a VIB file, which
must be copied to the ESXi host and then installed.

2.2.3.1 Package installation

To install the vGPU Manager VIB you need to access the ESXi host via the ESXi Shell or
SSH. Refer to VMware’s documentation on how to enable ESXi Shell or SSH for an ESXi
host.

Getting Started

GRID Virtual GPU DU-06920-001 | 18

 Note: Before proceeding with the vGPU Manager installation make sure that all
VMs are powered off and the ESXi host is placed in maintenance mode. Refer to
VMware’s documentation on how to place an ESXi host in maintenance mode.

Use the esxcli command to install the vGPU Manager package:

[root@esxi:~] esxcli software vib install -v /NVIDIA-vGPU-
VMware_ESXi_6.0_Host_Driver_361.40-1OEM.600.0.0.2159203.vib

Installation Result

 Message: Operation finished successfully.

 Reboot Required: false

 VIBs Installed: NVIDIA_bootbank_NVIDIA-vGPU-
VMware_ESXi_6.0_Host_Driver_361.40-1OEM.600.0.0.2159203

 VIBs Removed:

 VIBs Skipped:

Reboot the ESXi host and remove it from maintenance mode.

! Note: GRID Virtual GPU Manager and Guest VM drivers must be matched from the
same release. After updating vGPU Manager, guest VMs will boot with vGPU
disabled until their guest vGPU driver is updated to match the vGPU Manager
version. Consult the release notes for further details.

2.2.3.2 Update package

Update the vGPU Manager VIB package if you want to install a new version of GRID
Virtual GPU Manager on a system where an existing version is already installed.

To update the vGPU Manager VIB you need to access the ESXi host via the ESXi Shell or
SSH. Refer to VMware’s documentation on how to enable ESXi Shell or SSH for an ESXi
host.

 Note: Before proceeding with the vGPU Manager update, make sure that all VMs
are powered off and the ESXi host is placed in maintenance mode. Refer to
VMware’s documentation on how to place an ESXi host in maintenance mode.

Use the esxcli command to update the vGPU Manager package:

[root@esxi:~] esxcli software vib update -v /NVIDIA-vGPU-
VMware_ESXi_6.0_Host_Driver_361.40-1OEM.600.0.0.2159203.vib

Installation Result

 Message: Operation finished successfully.

 Reboot Required: false

 VIBs Installed: NVIDIA_bootbank_NVIDIA-vGPU-
VMware_ESXi_6.0_Host_Driver_361.40-1OEM.600.0.0.2159203

Getting Started

GRID Virtual GPU DU-06920-001 | 19

 VIBs Removed: NVIDIA_bootbank_NVIDIA-vGPU-
VMware_ESXi_6.0_Host_Driver_352.70-1OEM.600.0.0.2494585

 VIBs Skipped:

Reboot the ESXi host and remove it from maintenance mode.

! Note: GRID Virtual GPU Manager and Guest VM drivers must be matched from the
same release. After updating vGPU Manager, guest VMs will boot with vGPU
disabled until their guest vGPU driver is updated to match the vGPU Manager
version. Consult the release notes for further details.

2.2.3.3 Verifying installation

After the ESXi host has rebooted, verify that the GRID package installed and loaded
correctly by checking for the NVIDIA kernel driver in the list of kernel loaded modules.

[root@esxi:~] vmkload_mod -l | grep nvidia

nvidia 5 8420

If the nvidia driver is not listed in the output, check dmesg for any load-time errors
reported by the driver.

Verify that the NVIDIA kernel driver can successfully communicate with the GRID
physical GPUs in your system by running the nvidia-smi command, which should
produce a listing of the GPUs in your platform:

[root@esxi:~] nvidia-smi

Tue Mar 10 17:56:22 2015

+--+

| NVIDIA-SMI 361.40 Driver Version: 361.40 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

|===============================+======================+======================|

| 0 GRID K2 On | 0000:04:00.0 Off | Off |

| N/A 27C P8 27W / 117W | 11MiB / 4095MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

| 1 GRID K2 On | 0000:05:00.0 Off | Off |

| N/A 27C P8 27W / 117W | 10MiB / 4095MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

| 2 GRID K2 On | 0000:08:00.0 Off | Off |

| N/A 32C P8 27W / 117W | 10MiB / 4095MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

| 3 GRID K2 On | 0000:09:00.0 Off | Off |

| N/A 32C P8 27W / 117W | 10MiB / 4095MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

| 4 GRID K2 On | 0000:86:00.0 Off | Off |

| N/A 24C P8 27W / 117W | 10MiB / 4095MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

Getting Started

GRID Virtual GPU DU-06920-001 | 20

+---+

| Processes: GPU Memory |

| GPU PID Type Process name Usage |

|===|

| No running processes found |

+---+

The nvidia-smi command is described in more detail in section 4.1.

If nvidia-smi fails to report the expected output for all the NVIDIA GPUs in your
system, see Chapter 7 for troubleshooting steps.

2.2.4 Configuring a VM with Virtual GPU

! Note: VMware vSphere does not support VM console in vSphere Web Client for VMs
configured with vGPU. Make sure that you have installed an alternate means of
accessing the VM (such as VMware Horizon or a VNC server) before you configure
vGPU.

VM console in vSphere Web Client will become active again once the vGPU
parameters are removed from the VM’s configuration.

To configure vGPU for a VM:

 Select Edit Settings after right-clicking on the VM in the vCenter Web UI
 Select the Virtual Hardware tab
 In the New device selection, select Shared PCI Device and hit Add

This should auto-populate NVIDIA GRID vGPU in the PCI device field, as shown in
Figure 10. In the GPU Profile dropdown menu, select the type of vGPU you wish to
configure.

Getting Started

GRID Virtual GPU DU-06920-001 | 21

Figure 10 VM settings for vGPU

VMs running vGPU should have all their memory reserved:

 Select Edit virtual machine settings from vCenter Web UI
 Expand Memory section and click Reserve all guest memory (All locked)

2.2.5 Changing the Mode of a Tesla M60 or M6 GPU
Tesla M60 GPUs and M6 GPUs support compute mode and graphics mode. GRID vGPU
requires that the Tesla M60 GPUs and M6 GPUs operate in graphics mode. However, by
default, these GPUs are supplied in compute mode.

If you are using a Tesla M6 or M60 GPU, you must change the mode of GPU to graphics
mode. To change the mode of a GPU, use the gpumodeswitch tool as explained in
gpumodeswitch User Guide.

Getting Started

GRID Virtual GPU DU-06920-001 | 22

2.2.6 Booting the VM and Installing Drivers
Once you have configured a VM with a vGPU, start the VM. VM console in vSphere
Web Client is not supported in this vGPU release; use VMware Horizon or VNC to
access the VM’s desktop.

The VM should boot to a standard Windows desktop in VGA mode at 800x600
resolution. The Windows screen resolution control panel may be used to increase the
resolution to other standard resolutions, but to fully enable vGPU operation, as for a
physical NVIDIA GPU, the NVIDIA driver must be installed.

 Copy the 32- or 64-bit NVIDIA Windows driver package to the guest VM and execute
it to unpack and run the driver installer.

 Click through the license agreement
 Select Express Installation
 Once driver installation completes, the installer may prompt you to restart the

platform. Select Restart Now to reboot the VM, or exit the installer and reboot the
VM when ready.

Once the VM restarts, it will boot to a Windows desktop. Verify that the NVIDIA driver
is running by right-clicking on the desktop. The NVIDIA Control Panel will be listed in
the menu; select it to open the control panel. Selecting “System Information” in the
NVIDIA control panel will report the Virtual GPU that the VM is using, its capabilities,
and the NVIDIA driver version that is loaded.

Figure 11 Verifying NVIDIA driver operation using NVIDIA Control Panel

Getting Started

GRID Virtual GPU DU-06920-001 | 23

This completes the process of setting up a single VM to use GRID vGPU. The VM is now
capable of running the full range of DirectX and OpenGL graphics applications.

2.2.7 Applying a vGPU license
GRID vGPU is a licensed feature on Tesla M6, M60. When booted on these GPUs, a
vGPU runs at full capability even without a license. However, until a license is acquired,
users are warned each time a vGPU tries and fails to obtain a license. You may
optionally configure a license server to provide licenses to a vGPU. See section 2.3 for
details on how to configure licensing on Windows.

2.2.8 Removing a VM’s vGPU configuration
To remove a vGPU configuration from a VM:

 Select Edit settings after right-clicking on the VM in the vCenter Web UI
 Select the Virtual Hardware tab
 Mouse over the PCI Device entry showing NVIDIA GRID vGPU and click on the

(X) icon to mark the device for removal.
 Click OK to remove the device and update the VM settings.

2.2.9 Modifying GPU assignment for vGPU-Enabled VMs
VMware vSphere Hypervisor (ESXi) by default uses a breadth-first allocation scheme for
vGPU-enabled VMs; allocating new vGPU-enabled VMs on an available, least loaded
physical GPU. This policy generally leads to higher performance because it attempts to
minimize sharing of physical GPUs, but in doing so it may artificially limit the total
number of vGPUs that can run.

ESXi also provides a depth-first allocation scheme for vGPU-enabled VMs. The depth-
first allocation policy attempts to maximize the number of vGPUs running on each
physical GPU, by placing newly-created vGPUs on the physical GPU that can support
the new vGPU and that has the most number of vGPUs already resident. This policy
generally leads to higher density of vGPUs, particularly when different types of vGPUs
are being run, but may result in lower performance because it attempts to maximize
sharing of physical GPUs.

To switch to depth-first allocation scheme add the following parameter to
/etc/vmware/config:

vGPU.consolidation = true

Getting Started

GRID Virtual GPU DU-06920-001 | 24

2.3 VGPU LICENSING ON WINDOWS

GRID vGPU is a licensed feature on Tesla M6, M60. When booted on these GPUs, a
vGPU runs at full capability even without a license. However, until a license is acquired,
users are warned each time a vGPU tries and fails to obtain a license.

These warnings cease after a license is acquired.

Full information on configuring and using GRID licensed features, including vGPU, is
given in the GRID Licensing User Guide. Basic configuration information is given here:

To configure licensing, open NVIDIA Control Panel and select Manage License task in
the Licensing section of the navigation pane. Enter the address of your local GRID
License Server in the License Server field. The address can be a fully-qualified domain
name such as gridlicense.mycompany.com, or an IP address such as 10.31.20.45.

The Port Number field can be left unset and will default to 7070, which is the default
port number used by NVIDIA GRID License Server.

Select Apply to assign the settings. The system will request the appropriate license for
the current vGPU from the configured license server. If the system fails to obtain a
license, refer to the GRID Licensing User Guide for guidance on troubleshooting.

GRID Virtual GPU DU-06920-001 | 25

Chapter 3. USING VGPU ON LINUX

Tesla M6/M60 GPUs support vGPU on Linux VMs. 64-bit Linux guest VMs are
supported on the following virtual GPU types:

Tesla M60

M60-8Q

Tesla M6

M6-8Q

M60-4Q M6-4Q

M60-2Q M6-2Q

M60-1Q M6-1Q

M60-0Q M6-0Q

Table 4 Virtual GPUs supporting Linux

 Note: Refer to the driver release notes for further information on supported
hypervisor and Linux VM configurations.

3.1 INSTALLING VGPU DRIVERS

After creating and booting a Linux VM on the hypervisor, the steps to install NVIDIA
Linux vGPU drivers are largely the same as those for installing NVIDIA GPU drivers on
a VM running passthrough GPU, or on baremetal Linux.

3.1.1 Prerequisites
Installation of the NVIDIA Linux driver requires:

 Compiler toolchain
 Kernel headers

Using vGPU on Linux

GRID Virtual GPU DU-06920-001 | 26

3.1.2 Running the driver installer

 Copy the NVIDIA GRID Linux driver package, for example,
NVIDIA-Linux_x86_64-352.47-grid.run, to the Linux VM.

 Before the driver installer can be run, you must exit the X server and terminate all
OpenGL applications. On Red Hat Enterprise Linux / CentOS systems, this can
typically be achieved by transitioning to runlevel 3:

[nvidia@localhost ~]$ sudo init 3

On Ubuntu platforms, use CTRL-ALT-F1 to switch to a console login prompt. Log in
and shut down the display manager:

[nvidia@localhost ~]$ sudo service lightdm stop

 From a console shell, run the driver installer as the root user. The installer should
launch and display the driver license agreement (Figure 12):

sudo sh ./ NVIDIA-Linux_x86_64-352.47-grid.run

Figure 12 NVIDIA Linux driver installer

 Accept the license agreement to continue with the driver installation. In some
instances the installer may fail to detect the installed kernel headers / sources, in
which case the installer should be re-run with the kernel source path specified using
the --kernel-source-path option:

sudo sh ./ NVIDIA-Linux_x86_64-352.47-grid.run \
–kernel-source-path=/usr/src/kernels/3.10.0-229.11.1.el7.x86_64

Using vGPU on Linux

GRID Virtual GPU DU-06920-001 | 27

 When prompted, accept the option to update the X configuration file (xorg.conf)
settings (Figure 13):



Figure 13 Update xorg.conf settings

 Once installation has completed, select OK to exit the installer.
 Reboot the system, log in, and run nvidia-settings to verify that the NVIDIA is

operational with vGPU (Figure 14):
[nvidia@localhost ~]$ nvidia-settings

Using vGPU on Linux

GRID Virtual GPU DU-06920-001 | 28

Figure 14 Verifying operation with nvidia-settings

3.2 VGPU LICENSING ON LINUX

GRID vGPU is a licensed feature on Tesla M6, M60. When booted on these GPUs, a
vGPU runs at full capability even without a license. However, until a license is acquired,
users are warned each time a vGPU tries and fails to obtain a license.

These warnings cease after a license is acquired.

Full information on configuring and using GRID licensed features, including vGPU, is
given in the GRID Licensing User Guide. Basic configuration information is given here:

To license GRID vGPU, edit /etc/nvidia/gridd.conf:

[nvidia@localhost ~]$ sudo vi /etc/nvidia/gridd.conf

 Note: You can create the /etc/nvidia/gridd.conf file by copying the supplied
template file /etc/nvidia/gridd.conf.template.

Set ServerURL to the address and port number of your local NVIDIA GRID License
Server. The address can be a fully-qualified domain name such as
gridlicense.mycompany.com, or an IP address such as 10.31.20.45. The port number
is appended to the address with a colon, for example :7070.

Using vGPU on Linux

GRID Virtual GPU DU-06920-001 | 29

Set FeatureType to 1, to license vGPU:

/etc/nvidia/gridd.conf - Configuration file for NVIDIA Grid Daemon

Description: Set License Server URL

Data type: string

Format: "<address>:<port>"

ServerUrl=hqdvls01.nvidia.com:7070

Description: Set Feature to be enabled

Data type: integer

Possible values:

1 => for GRID vGPU

2 => for GRID Virtual Workstation

FeatureType=1

Description: Parameter to enable or disable Grid Licensing tab in nvidia-
settings

Data type: boolean

Possible values: TRUE or FALSE, default is TRUE
#EnableUI=TRUE

Figure 15 Sample gridd.conf for GRID vGPU

Restart the nvidia-gridd service:

[nvidia@localhost ~]$ sudo service nvidia-gridd restart

The service should automatically obtain a license. This can be confirmed with log
messages written to /var/log/messages:

[nvidia@localhost ~]$ sudo grep gridd /var/log/messages

…

Sep 13 15:40:06 localhost nvidia-gridd: Started (10430)

Sep 13 15:40:24 localhost nvidia-gridd: License acquired successfully.

Once configured in gridd.conf, licensing settings persist across reboots and need only
be modified if the license server address changes, or the VM is switched to running GPU
passthrough.

If the system fails to obtain a license, refer to the GRID Licensing User Guide for
guidance on troubleshooting.

GRID Virtual GPU DU-06920-001 | 30

Chapter 4. PERFORMANCE MONITORING

Physical GPU performance monitoring can be done using the nvidia-smi command
line utility and, on Citrix XenServer platforms, using Citrix XenCenter.

 Note: It is not currently possible to monitor the performance of GPUs being used
for GPU passthrough.

4.1 USING NVIDIA-SMI

NVIDIA System Management Interface, nvidia-smi, is a command line tool that
reports management information for NVIDIA physical GPUs present in the system.
nvidia-smi is run from the XenServer dom0 or ESXi host shells and, when invoked
without additional arguments, it provides a summary of all GPUs in the system, along
with PCI bus IDs, power state, temperature, current memory usage, and so on.

 Note: nvidia-smi will not list any GPU currently allocated for GPU passthrough.

In this release of GRID vGPU, nvidia-smi provides basic reporting of vGPU instances
running on physical GPUs; each vGPU instance is reported in the “Compute processes”
section, together with its physical GPU index and the amount of framebuffer memory
assigned to it. In the example that follows, five vGPUs are running; one on physical GPU
0, and four on physical GPU 1:

Performance monitoring

GRID Virtual GPU DU-06920-001 | 31

[root@xenserver ~]# nvidia-smi
Mon Nov 10 18:46:50 2014
+--+
| NVIDIA-SMI 361.40 Driver Version: 361.40 |
|-------------------------------+----------------------+----------------------+
| GPU Name | Bus-Id Disp. | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GRID K1 | 0000:04:00.0 Off | N/A |
| N/A 27C P8 8W / 31W | 7% 270MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 GRID K1 | 0000:05:00.0 Off | N/A |
| N/A 26C P8 8W / 31W | 26% 1048MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 GRID K1 | 0000:06:00.0 Off | N/A |
| N/A 22C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 GRID K1 | 0000:07:00.0 Off | N/A |
| N/A 25C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 4 GRID K1 | 0000:86:00.0 Off | N/A |
| N/A 27C P0 14W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 5 GRID K1 | 0000:87:00.0 Off | N/A |
| N/A 27C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 6 GRID K1 | 0000:88:00.0 Off | N/A |
| N/A 29C P0 13W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 7 GRID K1 | 0000:89:00.0 Off | N/A |
| N/A 28C P0 12W / 31W | 0% 9MB / 4095MB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Compute processes: GPU Memory |
| GPU PID Process name Usage |
|===|
| 0 10300 /usr/lib/xen/bin/vgpu 256MB |
| 1 10350 /usr/lib/xen/bin/vgpu 256MB |
| 1 10321 /usr/lib/xen/bin/vgpu 256MB |
| 1 11512 /usr/lib/xen/bin/vgpu 256MB |
| 1 10210 /usr/lib/xen/bin/vgpu 256MB |
+---+
[root@xenserver ~]#

For a list of commands supported by nvidia-smi, run nvidia-smi -h. Note that not all
commands apply to GRID supported GPUs.

Performance monitoring

GRID Virtual GPU DU-06920-001 | 32

4.2 USING CITRIX XENCENTER

To monitor GPU performance in XenCenter, click on a server’s Performance Tab, then
right-click on the graph window, select Actions, then select New Graph. Provide a name
for the graph, and in the list of available counter resources, select one or more GPU
counters. Counters are listed for each physical GPU not currently being used for GPU
passthrough.

Figure 16 Using XenCenter to monitor GPU performance

GRID Virtual GPU DU-06920-001 | 33

Chapter 5. XENSERVER VGPU
MANAGEMENT

This chapter describes Citrix XenServer advanced vGPU management techniques using
XenCenter and xe command line operations.

5.1 MANAGEMENT OBJECTS FOR GPUS

XenServer uses four underlying management objects for GPUs: physical GPUs, GPU
groups, vGPU types, and vGPUs. These objects are used directly when managing vGPU
via xe, and indirectly when managing vGPU via XenCenter.

5.1.1 pgpu
A pgpu object represents a physical GPU, such as one of the multiple GPUs present on a
GRID K1 or K2 card. XenServer automatically creates pgpu objects at startup to
represent each physical GPU present on the platform.

To list the physical GPU objects present on a platform, use xe pgpu-list. For
example, this platform contains a single GRID K2 card with two physical GPUs:

[root@xenserver ~]# xe pgpu-list

uuid (RO) : 7c1e3cff-1429-0544-df3d-bf8a086fb70a

 vendor-name (RO): NVIDIA Corporation

 device-name (RO): GK104GL [GRID K2]

 gpu-group-uuid (RW): be825ba2-01d7-8d51-9780-f82cfaa64924

uuid (RO) : d07fa627-7dc9-f625-92be-ce5d2655e830

 vendor-name (RO): NVIDIA Corporation

 device-name (RO): GK104GL [GRID K2]

 gpu-group-uuid (RW): be825ba2-01d7-8d51-9780-f82cfaa64924

[root@xenserver ~]#

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 34

To see detailed information about a pgpu, use xe pgpu-param-list:

[root@xenserver ~]# xe pgpu-param-list uuid=d07fa627-7dc9-f625-92be-
ce5d2655e830
uuid (RO) : d07fa627-7dc9-f625-92be-ce5d2655e830
 vendor-name (RO): NVIDIA Corporation
 device-name (RO): GK104GL [GRID K2]
 gpu-group-uuid (RW): 315a1e1e-6d0c-1cb3-7903-1602d236a33a
 gpu-group-name-label (RO): Group of NVIDIA Corporation GK104GL [GRID K2]
GPUs
 host-uuid (RO): 2305cc32-c2d8-4fbd-b1aa-d0b0121ba454
 host-name-label (RO): acurrid-vgpu-2 (VM IPs 10.31.223.0 -
10.31.223.19)
 pci-id (RO): 0000:0a:00.0
 dependencies (SRO):
 other-config (MRW):
 supported-VGPU-types (RO): c18ab767-ba72-b286-9350-d8010bab4f30; 7cd190db-
e4fe-e824-cf4a-ff1604882323; 24a7baa3-a70a-8c7b-ee7d-f437e0857eca; bfcfb8cd-
c01b-2691-272c-8e908937922d; 0d581f02-c601-a9b1-f440-f852f31f583e; 2c210411-
7de3-37f5-c58c-9635b40d50f6
 enabled-VGPU-types (SRW): c18ab767-ba72-b286-9350-d8010bab4f30; 7cd190db-
e4fe-e824-cf4a-ff1604882323; 24a7baa3-a70a-8c7b-ee7d-f437e0857eca; bfcfb8cd-
c01b-2691-272c-8e908937922d; 0d581f02-c601-a9b1-f440-f852f31f583e; 2c210411-
7de3-37f5-c58c-9635b40d50f6
 resident-VGPUs (RO):
[root@xenserver ~]#

To view physical GPUs in XenCenter, click on the server’s GPU tab:

Figure 17 Physical GPU display in XenCenter

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 35

5.1.2 vgpu-type
A vgpu-type represents a type of virtual GPU, such as GRID K100, K140Q, K200, etc.
An additional, passthrough vGPU type is defined to represent a physical GPU that is
directly assignable to a single guest VM.

XenServer automatically creates vgpu-type objects at startup to represent each virtual
type supported by the physical GPUs present on the platform.

To list the vgpu-type objects present on a platform, use xe vgpu-type-list. For
example, this platform contains multiple GRID K2 cards, therefore the vGPU types
reported are solely those supported by GRID K2:

[root@xenserver ~]# xe vgpu-type-list
uuid (RO) : 7cd190db-e4fe-e824-cf4a-ff1604882323
 vendor-name (RO): NVIDIA Corporation
 model-name (RO): GRID K240Q
 max-heads (RO): 2
 max-resolution (RO): 2560x1600

uuid (RO) : 2c210411-7de3-37f5-c58c-9635b40d50f6
 vendor-name (RO): NVIDIA Corporation
 model-name (RO): GRID K220Q
 max-heads (RO): 2
 max-resolution (RO): 2560x1600

uuid (RO) : 24a7baa3-a70a-8c7b-ee7d-f437e0857eca
 vendor-name (RO): NVIDIA Corporation
 model-name (RO): GRID K260Q
 max-heads (RO): 4
 max-resolution (RO): 2560x1600

uuid (RO) : 0d581f02-c601-a9b1-f440-f852f31f583e
 vendor-name (RO): NVIDIA Corporation
 model-name (RO): GRID K200
 max-heads (RO): 2
 max-resolution (RO): 1920x1200

uuid (RO) : c18ab767-ba72-b286-9350-d8010bab4f30
 vendor-name (RO):
 model-name (RO): passthrough
 max-heads (RO): 0
 max-resolution (RO): 0x0

uuid (RO) : bfcfb8cd-c01b-2691-272c-8e908937922d
 vendor-name (RO): NVIDIA Corporation
 model-name (RO): GRID K280Q
 max-heads (RO): 4
 max-resolution (RO): 2560x1600

[root@xenserver ~]#

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 36

To see detailed information about a vgpu-type, use xe vgpu-type-param-list:

[root@xenserver ~]# xe vgpu-type-param-list uuid=7cd190db-e4fe-e824-cf4a-
ff1604882323
uuid (RO) : 7cd190db-e4fe-e824-cf4a-ff1604882323
 vendor-name (RO): NVIDIA Corporation
 model-name (RO): GRID K240Q
 framebuffer-size (RO): 939524096
 max-heads (RO): 2
 max-resolution (RO): 2560x1600
 supported-on-PGPUs (RO): d72b9b0d-ae86-a1fa-4432-a46bcef4a4ab;
f17f00fc-dff2-ecb0-5bdb-8f050da2fd8b; 13cfa311-93fe-79e5-f94f-1e8c38a88486;
a9474d47-ddba-ab3a-8f44-58163ffa49f8; 8d147385-40a5-7305-95ea-de92ed4bcfc8;
d3984345-f8e1-c5fe-c5fc-78d2225f0382; 50493ce6-f3b1-1bd9-c012-2457472f2a92;
4778208a-97a9-cbf0-cedf-a20cd28f91f3
 enabled-on-PGPUs (RO): d72b9b0d-ae86-a1fa-4432-a46bcef4a4ab;
f17f00fc-dff2-ecb0-5bdb-8f050da2fd8b; 13cfa311-93fe-79e5-f94f-1e8c38a88486;
a9474d47-ddba-ab3a-8f44-58163ffa49f8; 8d147385-40a5-7305-95ea-de92ed4bcfc8;
d3984345-f8e1-c5fe-c5fc-78d2225f0382; 50493ce6-f3b1-1bd9-c012-2457472f2a92;
4778208a-97a9-cbf0-cedf-a20cd28f91f3
 supported-on-GPU-groups (RO): 315a1e1e-6d0c-1cb3-7903-1602d236a33a
 enabled-on-GPU-groups (RO): 315a1e1e-6d0c-1cb3-7903-1602d236a33a
 VGPU-uuids (RO): b6242c9c-87ad-92e9-5a24-a6bd1a3d8950
[root@xenserver ~]#

5.1.3 gpu-group
A gpu-group is a collection of physical GPUs, all of the same type. XenServer
automatically creates gpu-group objects at startup to represent the distinct types of
physical GPU present on the platform.

To list the gpu-group objects present on a platform, use xe gpu-group-list. For
example, a system with a single GRID K2 card contains a single GPU group of type
GRID K2:

[root@xenserver ~]# xe gpu-group-list

uuid (RO) : be825ba2-01d7-8d51-9780-f82cfaa64924

 name-label (RW): Group of NVIDIA Corporation GK104GL [GRID K2] GPUs

 name-description (RW):

[root@xenserver ~]#

To see detailed information about a gpu-group, use xe gpu-group-param-list:

[root@xenserver ~]# xe gpu-group-param-list uuid=be825ba2-01d7-8d51-9780-
f82cfaa64924

uuid (RO) : be825ba2-01d7-8d51-9780-f82cfaa64924

 name-label (RW): Group of NVIDIA Corporation GK104GL [GRID K2]
GPUs

 name-description (RW):

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 37

 VGPU-uuids (SRO): 6493ff45-d895-764c-58d8-96f1bc0307aa; 8481cb68-
66e5-25e6-a0c0-bd691df682b3; b73cbd30-096f-8a9a-523e-a800062f4ca7

 PGPU-uuids (SRO): a4a4df34-4e5f-de9f-82d6-2134d9e339dc; 84c76e93-
555c-5ffa-e9a9-0d6fcb9ff48d; d07fa627-7dc9-f625-92be-ce5d2655e830; 7c1e3cff-
1429-0544-df3d-bf8a086fb70a

 other-config (MRW):

 enabled-VGPU-types (RO): d1fb00dd-02e6-e7df-ccd5-1944965ece55; 1a312df9-
5397-bd44-c447-c6da804d2fe7; fa50b0f0-9705-6c59-689e-ea62a3d35237; 3f318889-
7508-c9fd-7134-003d4d05ae56

 supported-VGPU-types (RO): d1fb00dd-02e6-e7df-ccd5-1944965ece55; 1a312df9-
5397-bd44-c447-c6da804d2fe7; fa50b0f0-9705-6c59-689e-ea62a3d35237; 3f318889-
7508-c9fd-7134-003d4d05ae56

 allocation-algorithm (RW): depth-first

[root@xenserver ~]

5.1.4 vgpu
A vgpu object represents a virtual GPU. Unlike the other GPU management objects,
vGPUs are not created automatically by XenServer; they are created when a VM is
configured via XenCenter or via xe to use a vGPU, or by cloning a VM that is
configured to use vGPU (see section 5.4).

5.2 CREATING A VGPU USING XE

Use xe vgpu-create to create a vgpu object, specifying the type of vGPU required,
the GPU group it will be allocated from, and the VM it is associated with:

[root@xenserver ~]# xe vgpu-create vm-uuid=e71afda4-53f4-3a1b-6c92-a364a7f619c2
gpu-group-uuid=be825ba2-01d7-8d51-9780-f82cfaa64924 vgpu-type-uuid=3f318889-
7508-c9fd-7134-003d4d05ae56
b73cbd30-096f-8a9a-523e-a800062f4ca7

[root@xenserver ~]#

Creating the vGPU object for a VM does not immediately cause a virtual GPU to be
created on a physical GPU. Instead, the vGPU is created whenever its associated VM is
started. For more details on how vGPUs are created at VM startup, see section 5.3.

 Note: the owning VM must be in the powered-off state in order for the vgpu-
create command to succeed.

A vgpu object’s owning VM, associated GPU group, and vGPU type are fixed at
creation and cannot be subsequently changed. To change the type of vGPU
allocated to a VM, delete the existing vgpu object and create another one.

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 38

5.3 CONTROLLING VGPU ALLOCATION

Configuring a VM to use a vGPU in XenCenter, or creating a vgpu object for a VM using
xe, does not immediately cause a virtual GPU to be created; rather, the virtual GPU is
created at the time the VM is next booted, using the following steps:

 The GPU group that the vgpu object is associated with is checked for a physical GPU
that can host a vGPU of the required type (i.e. the vgpu object’s associated vgpu-
type). Because vGPU types cannot be mixed on a single physical GPU, the new
vGPU can only be created on a physical GPU that has no vGPUs resident on it, or
only vGPUs of the same type, and less than the limit of vGPUs of that type that the
physical GPU can support.

 If no such physical GPUs exist in the group, the vgpu creation fails and the VM
startup is aborted.

 Otherwise, if more than one such physical GPU exists in the group, a physical GPU is
selected according to the GPU group’s allocation policy, as described here:

5.3.1 GPU allocation policy
XenServer creates GPU groups with a default allocation policy of depth-first. The depth-
allocation policy attempts to maximize the number of vGPUs running on each physical
GPU within the group, by placing newly-created vGPUs on the physical GPU that can
support the new vGPU and that has the most number of vGPUs already resident. This
policy generally leads to higher density of vGPUs, particularly when different types of
vGPUs are being run, but may result in lower performance because it attempts to
maximize sharing of physical GPUs.

Conversely, a breadth-first allocation policy attempts to minimize the number of vGPUs
running on each physical GPU within the group, by placing newly-created vGPUs on
the physical GPU that can support the new vGPU and that has the least number of
vGPUs already resident. This policy generally leads to higher performance because it
attempts to minimize sharing of physical GPUs, but in doing so it may artificially limit
the total number of vGPUs that can run.

The allocation policy of a GPU group is stored in the allocation-algorithm
parameter of the gpu-group object, and can be changed using gpu-group-param-
set:

[root@xenserver ~]# xe gpu-group-param-get uuid=be825ba2-01d7-8d51-9780-
f82cfaa64924 param-name=allocation-algorithm
depth-first

[root@xenserver ~]# xe gpu-group-param-set uuid=be825ba2-01d7-8d51-9780-
f82cfaa64924 allocation-algorithm=breadth-first

[root@xenserver ~]#

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 39

Allocation policy can also be controlled from the GPU tab in XenCenter:

Figure 18 Modifying GPU placement policy in XenCenter

5.3.2 Determining the physical GPU that a virtual GPU
is resident on

The vgpu object’s resident-on parameter returns the UUID of the pgpu object for the
physical GPU the vGPU is resident on:

[root@xenserver ~]# xe vgpu-param-get uuid=8481cb68-66e5-25e6-a0c0-bd691df682b3
param-name=resident-on

a4a4df34-4e5f-de9f-82d6-2134d9e339dc

[root@xenserver ~]# xe pgpu-param-list uuid=a4a4df34-4e5f-de9f-82d6-
2134d9e339dc

uuid (RO) : a4a4df34-4e5f-de9f-82d6-2134d9e339dc

 vendor-name (RO): NVIDIA Corporation

 device-name (RO): GK104GL [GRID K2]

 gpu-group-uuid (RW): be825ba2-01d7-8d51-9780-f82cfaa64924

 gpu-group-name-label (RO): Group of NVIDIA Corporation GK104GL [GRID K2]
GPUs

 host-uuid (RO): 6f6209a6-0f11-4c51-b12d-2bce361e9639

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 40

 host-name-label (RO): xenserver (VM IPs 10.31.213.50-95, dom0 .98,
OOB .99)

 pci-id (RO): 0000:09:00.0

 dependencies (SRO):

 other-config (MRW):

 supported-VGPU-types (RO): fa50b0f0-9705-6c59-689e-ea62a3d35237; 1a312df9-
5397-bd44-c447-c6da804d2fe7; d1fb00dd-02e6-e7df-ccd5-1944965ece55; 3f318889-
7508-c9fd-7134-003d4d05ae56

 enabled-VGPU-types (SRW): fa50b0f0-9705-6c59-689e-ea62a3d35237; 1a312df9-
5397-bd44-c447-c6da804d2fe7; d1fb00dd-02e6-e7df-ccd5-1944965ece55; 3f318889-
7508-c9fd-7134-003d4d05ae56

 resident-VGPUs (RO): 8481cb68-66e5-25e6-a0c0-bd691df682b3

[root@xenserver ~]#

 Note: If the vGPU is not currently running, the resident-on parameter is not
instantiated for the vGPU, and the vgpu-param-get operation returns
 <not in database>.

5.3.3 Controlling the vGPU types enabled on specific
physical GPUs

Physical GPUs support several vGPU types, as defined in Table 1 on page 3, and the
“passthrough” type that is used to assign an entire physical GPU to a VM (see section
5.5). To limit the types of vGPU that may be created on a specific vGPU, open the
server’s GPU tab in XenCenter, check the box beside one or more GPUs, and select Edit
Selected GPUs:

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 41

Figure 19 Editing a GPU’s enabled vGPU types using XenCenter

Alternatively, modify the physical GPU’s pgpu object’s enabled-vGPU-types
parameter use xe pgpu-param-set:

[root@xenserver ~]# xe pgpu-param-list uuid=f2607117-5b4c-d6cc-3900-
00bf712e33f4

uuid (RO) : f2607117-5b4c-d6cc-3900-00bf712e33f4

 vendor-name (RO): NVIDIA Corporation

 device-name (RO): GK104GL [GRID K2]

 gpu-group-uuid (RW): f4662c69-412c-abc5-6d02-f74b7703cccd

 gpu-group-name-label (RO): GRID K2 Socket 0

 host-uuid (RO): d9eb9118-a5c5-49fb-970e-80e6a8f7ff98

 host-name-label (RO): xenserver-vgx-test (VM IPs 10.31.223.0-49, dom0
.96, OOB .97)

 pci-id (RO): 0000:08:00.0

 dependencies (SRO):

 other-config (MRW):

 supported-VGPU-types (RO): a724b756-d108-4c9f-0ea3-8f3a1553bfbc; 63d9d912-
3454-b020-8519-58dedb3b0117; 0bdf4715-e035-19c3-a57d-5ead20b3e5cd; a7838abe-
0d73-1918-7d29-fd361d3e411f

 enabled-VGPU-types (SRW): a724b756-d108-4c9f-0ea3-8f3a1553bfbc; 63d9d912-
3454-b020-8519-58dedb3b0117; 0bdf4715-e035-19c3-a57d-5ead20b3e5cd; a7838abe-
0d73-1918-7d29-fd361d3e411f

 resident-VGPUs (RO):

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 42

[root@xenserver-vgx-test ~]# xe pgpu-param-set uuid=f2607117-5b4c-d6cc-3900-
00bf712e33f4 enabled-VGPU-types=a724b756-d108-4c9f-0ea3-8f3a1553bfbc

5.3.4 Creating vGPUs on specific physical GPUs
To precisely control allocation of vGPUs on specific physical GPUs, create separate GPU
groups for the physical GPUs you wish to allocate vGPUs on. When creating a virtual
GPU, create it on the GPU group containing the physical GPU you want it to be
allocated on.

For example, to create a new GPU group for the physical GPU at PCI bus ID
0000:05:0.0, start by creating the new GPU group with an appropriate name:

[root@xenserver ~]# xe gpu-group-create name-label="GRID K2 5:0.0"

585877ef-5a6c-66af-fc56-7bd525bdc2f6

[root@xenserver ~]#

Next, find the UUID of the physical GPU at 0000:05:0.0 that you wish to assign to
the new GPU group

[root@xenserver ~]# xe pgpu-list pci-id=0000:05:00.0

uuid (RO) : 7c1e3cff-1429-0544-df3d-bf8a086fb70a

 vendor-name (RO): NVIDIA Corporation

 device-name (RO): GK104GL [GRID K2]

 gpu-group-uuid (RW): be825ba2-01d7-8d51-9780-f82cfaa64924

[root@xenserver ~]

 Note: the pci-id parameter passed to the pgpu-list command must be in the exact
format shown, with the PCI domain fully specified (e.g. 0000) and the PCI bus and
devices numbers each being two digits (e.g. 05:00.0).

Ensure that no vGPUs are currently operating on the physical GPU by checking the
resident-VGPUs parameter:

[root@xenserver ~]# xe pgpu-param-get uuid=7c1e3cff-1429-0544-df3d-bf8a086fb70a
param-name=resident-VGPUs

[root@xenserver ~]#

If any vGPUs are listed, shut down the VMs associated with them.

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 43

Now change the gpu-group-uuid parameter of the physical GPU to the UUID of the
newly-created GPU group:

[root@xenserver ~]# xe pgpu-param-set uuid=7c1e3cff-1429-0544-df3d-bf8a086fb70a
gpu-group-uuid=585877ef-5a6c-66af-fc56-7bd525bdc2f6

[root@xenserver ~]#

Any vgpu object now created that specifies this GPU group UUID will always have its
vGPUs created on the GPU at PCI bus ID 0000:05:0.0.

 Note: you can add more than one physical GPU to a manually-created GPU group –
for example, to represent all the GPUs attached to the same CPU socket in a multi-
socket server platform - but as for automatically-created GPU groups, all the
physical GPUs in the group must of the same type.

In XenCenter, manually-created GPU groups appear in the GPU type listing in a VM’s
GPU Properties. Select a GPU type within the group from which you wish the vGPU to
be allocated:

Figure 20 Using a custom GPU group within XenCenter

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 44

5.4 CLONING VGPU-ENABLED VMS

XenServer’s fast-clone or copying feature can be used to rapidly create new VMs from a
“golden” base VM image that has been configured with GRID vGPU, the NVIDIA
driver, applications, and remote graphics software. Cloning/copying can be initiated via
XenCenter (see Figure 21) or from the dom0 shell:

[root@xenserver ~]# xe vm-clone new-name-label="new-vm" vm="base-vm-name"

7f7035cb-388d-1537-1465-1857fb6498e7

[root@xenserver ~]#

When a VM is cloned, any vGPU configuration associated with the base VM is copied to
the cloned VM. Starting the cloned VM will create a vGPU instance of the same type as
the original VM, from the same GPU group as the original vGPU.

Figure 21 Cloning a VM using XenCenter

5.5 USING GPU PASS-THROUGH

GPU pass-through is used to directly assign an entire physical GPU to one VM,
bypassing the GRID Virtual GPU Manager. In this mode of operation, the GPU is

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 45

accessed exclusively by the NVIDIA driver running in the VM to which it is assigned;
the GPU is not shared among VMs.

GPU pass-through can be used in a server platform alongside GRID vGPU, with some
restrictions:

 A physical GPU can host GRID vGPUs, or can be used for pass-through, but cannot
do both at the same time.

 A physical GPU passed through to a VM cannot be performance-monitored via
XenCenter or nvidia-smi (see Chapter 4).

 Passthrough GPUs do not provide console output via XenCenter’s VM Console tab.
Use a remote graphics connection directly into the VM to access the VM’s OS.

To configure a VM for GPU pass-through, select the “Pass-through whole GPU” option
as the GPU type in the VM’s Properties:

Figure 22 Using XenCenter to configure a passthrough GPU

Alternatively, create a vgpu object with the “passthrough” vGPU type:

[root@xenserver ~]# xe vgpu-type-list model-name="passthrough"

uuid (RO) : fa50b0f0-9705-6c59-689e-ea62a3d35237

 vendor-name (RO):

 model-name (RO): passthrough

XenServer vGPU Management

GRID Virtual GPU DU-06920-001 | 46

 framebuffer-size (RO): 0

[root@xenserver ~]# xe vgpu-create vm-uuid=753e77a9-e10d-7679-f674-65c078abb2eb
vgpu-type-uuid=fa50b0f0-9705-6c59-689e-ea62a3d35237 gpu-group-uuid=585877ef-
5a6c-66af-fc56-7bd525bdc2f6

6aa530ec-8f27-86bd-b8e4-fe4fde8f08f9

[root@xenserver ~]#

! CAUTION: Do not assign passthrough GPUs using the legacy other-config:pci
parameter setting. This mechanism is not supported alongside the XenCenter UI
and xe vgpu mechanisms, and attempts to use it may lead to undefined results.

GRID Virtual GPU DU-06920-001 | 47

Chapter 6. XENSERVER PERFORMANCE
TUNING

This chapter provides recommendations on optimizing performance for VMs running
with GRID vGPU on Citrix XenServer.

6.1 XENSERVER TOOLS

To get maximum performance out of a VM running on Citrix XenServer, regardless of
whether you are using GRID vGPU, you must install Citrix XenServer tools within the
VM. Without the optimized networking and storage drivers that the XenServer tools
provide, remote graphics applications running on GRID vGPU will not deliver
maximum performance.

6.2 USING REMOTE GRAPHICS

GRID vGPU implements a console VGA interface that permits the VM’s graphics output
to be viewed via XenCenter’s console tab. This feature allows the desktop of a vGPU-
enabled VM to be visible in XenCenter before any NVIDIA graphics driver is loaded in
the virtual machine, but it is intended solely as a management convenience; it only
supports output of vGPU’s primary display and isn’t designed or optimized to deliver
high frame rates.

To deliver high frames from multiple heads on vGPU, we recommend installation of a
high-performance remote graphics stack such as Citrix XenDesktop® with HDX 3D Pro
remote graphics and, once this is done, disable vGPU’s console VGA.

XenServer Performance Tuning

GRID Virtual GPU DU-06920-001 | 48

! CAUTION: Using Windows Remote Desktop (RDP) to access Windows 7 / Windows
Server 2008 VMs running GRID vGPU will cause the NVIDIA driver in the VM to be
unloaded. GPU-accelerated DirectX, OpenGL, and the NVIDIA control panel will be
unavailable whenever RDP is active. Installing a VNC server in the VM will allow for
basic, low-performance remote access while leaving the NVIDIA driver loaded and
vGPU active, but for high performance remote accesses, use an accelerated stack
such as XenDesktop.

6.2.1 Disabling console VGA
The console VGA interface in vGPU is optimized to consume minimal resources, but
when a system is loaded with a high number of VMs, disabling the console VGA
interface entirely may yield some performance benefit.

Once you have installed an alternate means of accessing a VM (such as XenDesktop or a
VNC server), its vGPU console VGA interface can be disabled by specifying
disable_vnc=1 in the VM’s platform:vgpu_extra_args parameter:

[root@xenserver ~]# xe vm-param-set uuid=e71afda4-53f4-3a1b-6c92-a364a7f619c2
platform:vgpu_extra_args="disable_vnc=1"

[root@xenserver ~]#

The new console VGA setting takes effect the next time the VM is started or rebooted.
With console VGA disabled, the XenCenter console will display the Windows boot
splash screen for the VM, but nothing beyond that.

! CAUTION: If you disable console VGA before you have installed/enabled an
alternate mechanism to access the VM (such as XenDesktop), you will not be able
to interact with the VM once it has booted.

You can recover console VGA access by removing the vgpu_extra_args key from
the platform parameter, or by removing disable_vnc=1 from the
vgpu_extra_args key, or by setting disable_vnc=0. For example:

[root@xenserver ~]# xe vm-param-set uuid=e71afda4-53f4-3a1b-6c92-a364a7f619c2
platform:vgpu_extra_args="disable_vnc=0"

XenServer Performance Tuning

GRID Virtual GPU DU-06920-001 | 49

6.4 ALLOCATION STRATEGIES

6.4.1 NUMA considerations
Server platforms typically implement multiple CPU sockets, with system memory and
PCI Express expansion slots local to each CPU socket, as illustrated in Figure 23:

Figure 23 A NUMA server platform

These platforms are typically configured to operate in Non-Uniform Memory Access
(NUMA) mode; physical memory is arranged sequentially in the address space, with all
the memory attached to each socket appearing in a single contiguous block of addresses.
The cost of accessing a range of memory from a CPU or GPU varies; memory attached to
the same socket as the CPU or GPU is accessible at lower latency than memory on
another CPU socket, because accesses to remote memory must additionally traverse the
interconnect between CPU sockets.

To obtain best performance on a NUMA platform, we recommend pinning VM vCPU
cores to physical cores on the same CPU socket to which the physical GPU hosting the
VM’s vGPU is attached. For example, using as a reference, a VM with a vGPU allocated
on physical GPU 0 or 1 should have its vCPUs pinned to CPU cores on CPU socket 0.
Similarly, a VM with a vGPU allocated on physical GPU 2 or 3 should have its vCPUs
pinned to CPU cores on socket 1.

See Appendix A.5 for guidance on pinning vCPUs, and A.7 for guidance on determining
which CPU socket a GPU is connected to. Section 5.3.3 describes how to precisely
control which physical GPU is used to host a vGPU, by creating GPU groups for specific
physical GPUs.

CPU Socket 0
GPU 0

 Memory A

Core

Core

Core

Core GPU 1

CPU Socket 1

 Memory B

Core

Core

Core

Core

GPU 2

GPU 3

PCIe PCIe

CPU
Interconnect

XenServer Performance Tuning

GRID Virtual GPU DU-06920-001 | 50

6.4.2 Maximizing performance
To maximize performance as the number of vGPU-enabled VMs on the platform
increases, we recommend adopting a breadth-first allocation: allocate new VMs on the
least-loaded CPU socket, and allocate the VM’s vGPU on an available, least-loaded,
physical GPU connected via that socket.

XenServer’s creates GPU groups with a default allocation policy of depth-first. See section
5.3.1 for details on switching the allocation policy to breadth-first.

 Note: Due to vGPU’s requirement that only one type of vGPU can run on a physical
GPU at any given time, not all physical GPUs may be available to host the vGPU
type required by the new VM.

GRID Virtual GPU DU-06920-001 | 51

Chapter 7. TROUBLESHOOTING

This chapter describes basic troubleshooting steps for GRID vGPU on Citrix XenServer
and VMware vSphere, and how to collect debug information when filing a bug report.

7.1 KNOWN ISSUES

Before troubleshooting or filing a bug report, review the release notes that accompany
each driver release, for information about known issues with the current release, and
potential workarounds.

7.2 TROUBLESHOOTING STEPS

If a vGPU-enabled VM fails to start, or doesn’t display any output when it does start,
follow these steps to narrow down the probable cause.

7.2.1 Verify the NVIDIA kernel driver is loaded
On Citrix XenServer, use lsmod to verify that the kernel driver is loaded:

[root@xenserver ~]# lsmod|grep nvidia

nvidia 9604895 84

i2c_core 20294 2 nvidia,i2c_i801

[root@xenserver ~]#

On VMware vSphere, use vmkload_mod:

Troubleshooting

GRID Virtual GPU DU-06920-001 | 52

[root@esxi:~] vmkload_mod -l | grep nvidia

nvidia 5 8420

If the nvidia driver is not listed in the output, check dmesg for any load-time errors
reported by the driver (see section 7.2.3). On XenServer, also use the ‘rpm -q’
command to verify that the NVIDIA GPU Manager package is correctly installed (see
section 2.1.3.2).

7.2.2 Verify that nvidia-smi works
If the NVIDIA kernel driver is correctly loaded on the physical GPU, run nvidia-smi
and verify that all physical GPUs not currently being used for GPU passthrough are
listed in the output. For details on expected output, see section 4.1.

If nvidia-smi fails to report the expected output, check dmesg for NVIDIA kernel
driver messages.

7.2.3 NVIDIA kernel driver output
Information and debug messages from the NVIDIA kernel driver are logged in kernel
logs, prefixed with “NVRM” or ‘nvidia’. Run dmesg on both Citrix XenServer and
VMware vSphere to check for these:

[root@xenserver ~]# dmesg | grep -E "NVRM|nvidia"

[22.054928] nvidia: module license 'NVIDIA' taints kernel.

[22.390414] NVRM: loading

[22.829226] nvidia 0000:04:00.0: enabling device (0000 -> 0003)

[22.829236] nvidia 0000:04:00.0: PCI INT A -> GSI 32 (level, low) -> IRQ 32

[22.829240] NVRM: This PCI I/O region assigned to your NVIDIA device is
invalid:

[22.829241] NVRM: BAR0 is 0M @ 0x0 (PCI:0000:00:04.0)

[22.829243] NVRM: The system BIOS may have misconfigured your GPU.

7.2.4 GRID Virtual GPU Manager messages
Information and debug messages from the GRID Virtual GPU Manager are logged to the
hypervisor’s log files, prefixed with ‘vmiop’:

7.2.4.1 Citrix XenServer

GRID Virtual GPU Manager are written to /var/log/messages:

[root@xenserver ~]# grep vmiop /var/log/messages

Troubleshooting

GRID Virtual GPU DU-06920-001 | 53

Nov 8 09:17:44 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: vmiop-env:

guest_max_gpfn:0x10efff

Nov 8 09:17:44 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: pluginconfig:

/usr/share/nvidia/vgx/grid_k100.conf,disable_vnc=0,gpu-pci-id=0000:88:00.0

Nov 8 09:17:44 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: Loading Plugin0: libnvidia-

vgx

Nov 8 09:17:45 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: vgpu_type : vdi

Nov 8 09:17:45 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: Framebuffer: 0x10000000

Nov 8 09:17:45 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: Virtual Device Id:

0x0FE7:0x101E

Nov 8 09:17:45 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: ######## vGPU Manager

Information: ########

Nov 8 09:17:45 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: Driver Version: 331.59

Nov 8 09:17:45 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: VGX Version: 1.1

Nov 8 09:17:45 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: Init frame copy engine:

syncing...

Nov 8 09:18:03 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: ######## Guest NVIDIA

Driver Information: ########

Nov 8 09:18:03 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: Driver Version: 331.82

Nov 8 09:18:03 xenserver-vgx-test2 fe: vgpu-2[14901]: vmiop_log: notice: VGX Version: 0.5

[root@xenserver ~]#

7.2.4.2 VMware vSphere

GRID Virtual GPU Manager are written to vmware.log in the guest VM’s storage
directory:

[root@esxi:~] grep vmiop /vmfs/volumes/datastore1/win7-vgpu-test1/vmware.log

2015-04-28T14:02:21.275Z| vmx| I120: DICT pciPassthru0.virtualDev = "vmiop"

2015-04-28T14:02:21.344Z| vmx| I120: GetPluginPath testing /usr/lib64/vmware/plugin/libvmx-vmiop.so

2015-04-28T14:02:21.344Z| vmx| I120: PluginLdr_LoadShared: Loaded shared plugin libvmx-vmiop.so from

/usr/lib64/vmware/plugin/libvmx-vmiop.so

2015-04-28T14:02:21.344Z| vmx| I120: VMIOP: Loaded plugin libvmx-vmiop.so:VMIOP_InitModule

2015-04-28T14:02:21.359Z| vmx| I120: VMIOP: Initializing plugin vmiop-display

2015-04-28T14:02:21.365Z| vmx| I120: vmiop_log: gpu-pci-id : 0000:04:00.0

2015-04-28T14:02:21.365Z| vmx| I120: vmiop_log: vgpu_type : quadro

2015-04-28T14:02:21.365Z| vmx| I120: vmiop_log: Framebuffer: 0x74000000

2015-04-28T14:02:21.365Z| vmx| I120: vmiop_log: Virtual Device Id: 0x11B0:0x101B

2015-04-28T14:02:21.365Z| vmx| I120: vmiop_log: ######## vGPU Manager Information: ########

2015-04-28T14:02:21.365Z| vmx| I120: vmiop_log: Driver Version: 361.40

2015-04-28T14:02:21.365Z| vmx| I120: vmiop_log: VGX Version: 2.0

2015-04-28T14:02:21.445Z| vmx| I120: vmiop_log: Init frame copy engine: syncing...

2015-04-28T14:02:37.031Z| vthread-12| I120: vmiop_log: ######## Guest NVIDIA Driver Information:

########

2015-04-28T14:02:37.031Z| vthread-12| I120: vmiop_log: Driver Version: 347.52

2015-04-28T14:02:37.031Z| vthread-12| I120: vmiop_log: VGX Version: 2.0

2015-04-28T14:02:37.093Z| vthread-12| I120: vmiop_log: Clearing BAR1 mapping

2015-07-06T23:39:55.726Z| vmx| I120: VMIOP: Shutting down plugin vmiop-display

[root@esxi:~]

Troubleshooting

GRID Virtual GPU DU-06920-001 | 54

7.3 FILING A BUG REPORT

When filing a bug report with NVIDIA, capture relevant configuration data from the
platform exhibiting the bug, using nvidia-bug-report.sh. On Citrix XenServer, a
server status report may be used as an alternative.

7.3.1 nvidia-bug-report.sh
Run nvidia-bug-report.sh from Citrix XenServer’s dom0 shell or VMware ESXi’s
host shell to capture debug information into a gzip’d log file on the server. The example
shows execution on Citrix XenServer, but the procedure is the same on vSphere ESXi:

[root@xenserver ~]# nvidia-bug-report.sh

nvidia-bug-report.sh will now collect information about your
system and create the file 'nvidia-bug-report.log.gz' in the current
directory. It may take several seconds to run. In some
cases, it may hang trying to capture data generated dynamically
by the Linux kernel and/or the NVIDIA kernel module. While
the bug report log file will be incomplete if this happens, it
may still contain enough data to diagnose your problem.

For Xen open source/XCP users, if you are reporting a domain issue,
please run: nvidia-bug-report.sh --domain-name <"domain_name">

Please include the 'nvidia-bug-report.log.gz' log file when reporting
your bug via the NVIDIA Linux forum (see devtalk.nvidia.com)
or by sending email to 'linux-bugs@nvidia.com'.

Running nvidia-bug-report.sh...

If the bug report script hangs after this point consider running with
--safe-mode command line argument.

 complete.

[root@xenserver ~]#

7.3.2 XenServer status report
From XenCenter, select the Tools menu, Server Status Report, then select the XenServer
instance from which you wish to collect a status report. Select the data to include in the
report, check “NVIDIA-logs” to include GRID vGPU debug information, then generate
the report.

Troubleshooting

GRID Virtual GPU DU-06920-001 | 55

Figure 24 Including NVIDIA logs in server status report

GRID Virtual GPU DU-06920-001 | 56

This appendix outlines basic operations on XenServer that are needed in order to install
and configure GRID vGPU, and optimize XenServer operation with vGPU.

A.1 OPENING A DOM0 SHELL

Most configuration commands must be run in a command shell on XenServer’s dom0.
There are two ways to open a shell on XenServer’s dom0; using the console window in
XenCenter, or using a standalone secure shell (ssh) client:

A.1.1 Accessing the dom0 shell via XenCenter
To access the dom0 shell via XenCenter, in the left-hand pane click on the XenServer
host you wish to connect to. Then click on the Console tab to open the XenServer’s
console, and press enter to start a shell prompt:

 XENSERVER BASICS Appendix A.

Troubleshooting

GRID Virtual GPU DU-06920-001 | 57

Figure 25 Connecting to the dom0 shell via XenCenter

A.1.2 Accessing the dom0 shell using ssh
To access the dom0 shell via an ssh client, you will need an ssh client suite such as putty
on Windows, or the ssh client from OpenSSH on Linux.

Connect your ssh client to the management IP address of the XenServer, and log in as
the root user.

A.2 COPYING FILES TO DOM0

Files can be easily copied to/from XenServer dom0 using an scp client or using a
network-mounted filesystem.

A.2.1 Copying files using scp
Copying files using scp

scp is a secure copy program that is part of the ssh suite of applications. scp is
implemented in dom0 and can be used to copy from a remote ssh-enabled server:

[root@xenserver ~]# scp root@10.31.213.96:/tmp/somefile .

The authenticity of host '10.31.213.96 (10.31.213.96)' can't be established.

RSA key fingerprint is 26:2d:9b:b9:bf:6c:81:70:36:76:13:02:c1:82:3d:3c.

Troubleshooting

GRID Virtual GPU DU-06920-001 | 58

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.31.213.96' (RSA) to the list of known hosts.

root@10.31.213.96's password:

somefile 100% 532 0.5KB/s 00:00

[root@xenserver ~]#

Alternatively, scp can be used to copy files from a remote system to XenServer. Using
the pscp program from the putty suite on Windows:

C:\Users\nvidia>pscp somefile root@10.31.213.98:/tmp

root@10.31.213.98's password:

somefile | 80 kB | 80.1 kB/s | ETA: 00:00:00 | 100%

C:\Users\nvidia>

A.2.2 Copying files via a CIFS-mounted filesystem
Files can be copied to/from a CIFS/SMB file share by mounting the share from dom0.

The following example assumes that the fileshare is part of an Active Directory domain
called domain.com, and user myuser has permissions to access the share. To mount a
network share \\myserver.domain.com\myshare at /mnt/myshare on dom0,

[root@xenserver ~]# mkdir /mnt/myshare

[root@xenserver ~]# mount -t cifs -o username=myuser,workgroup=domain.com
//myserver.domain.com/myshare /mnt/myshare

Password:

[root@xenserver ~]#

When prompted for a password, enter the password for myuser in the domain.com
domain. After completion, files can be copied to/from the fileshare by copying to/from
/mnt/myshare:

[root@xenserver ~]# cp /mnt/myshare/NVIDIA-vGPU-xenserver-6.2-331.59.i386.rpm .

[root@xenserver ~]#

A.3 DETERMINING A VM’S UUID

To determine a virtual machine’s UUID, use the xe vm-list command in a dom0
shell, or XenCenter:

Troubleshooting

GRID Virtual GPU DU-06920-001 | 59

A.3.1 Using xe vm-list
To list all VMs and their associated UUIDs, use xe vm-list:

[root@xenserver ~]# xe vm-list

uuid (RO) : 6b5585f6-bd74-2e3e-0e11-03b9281c3ade

 name-label (RW): vgx-base-image-win7-64

 power-state (RO): halted

uuid (RO) : fa3d15c7-7e88-4886-c36a-cdb23ed8e275

 name-label (RW): test-image-win7-32

 power-state (RO): halted

uuid (RO) : 501bb598-a9b3-4afc-9143-ff85635d5dc3

 name-label (RW): Control domain on host: xenserver

 power-state (RO): running

uuid (RO) : 8495adf7-be9d-eee1-327f-02e4f40714fc

 name-label (RW): vgx-base-image-win7-32

 power-state (RO): halted

To find the UUID of a specific named VM, use the name-label parameter to xe vm-
list:

[root@xenserver ~]# xe vm-list name-label=test-image-win7-32

uuid (RO) : fa3d15c7-7e88-4886-c36a-cdb23ed8e275

 name-label (RW): test-image-win7-32

 power-state (RO): halted

A.3.2 Using XenCenter
In the left-hand pane click on the VM, then click on the General tab . The UUID is listed
in the VM’s General Properties.

Troubleshooting

GRID Virtual GPU DU-06920-001 | 60

Figure 26 Using XenCenter to determine a VM's UUID

A.4 USING MORE THAN TWO VCPUS WITH
WINDOWS CLIENT VMS

Window client operating systems support a maximum of two CPU sockets. When
allocating vCPUs to virtual sockets within a guest VM, XenServer defaults to allocating
one vCPU per socket; any more than two vCPUs allocated to the VM won’t be
recognized by the Windows client OS.

To fix this, set platform:cores-per-socket to the number of vCPUs allocated to
the VM:

[root@xenserver ~]# xe vm-param-set uuid=<vm-uuid> platform:cores-per-socket=4
VCPUs-max=4 VCPUs-at-startup=4

A.5 PINNING VMS TO A SPECIFIC CPU SOCKET
AND CORES

Use xe host-cpu-info to determine the number of CPU sockets and logical CPU
cores in the server platform. In this example the server implements 32 logical CPU cores
across two sockets:

[root@xenserver ~]# xe host-cpu-info

cpu_count : 32

Troubleshooting

GRID Virtual GPU DU-06920-001 | 61

 socket_count: 2

 vendor: GenuineIntel

 speed: 2600.064

 modelname: Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz

 family: 6

 model: 45

 stepping: 7

 flags: fpu de tsc msr pae mce cx8 apic sep mtrr mca cmov
pat clflush acpi mmx fxsr sse sse2 ss ht nx constant_tsc nonstop_tsc aperfmperf
pni pclmulqdq vmx est ssse3 sse4_1 sse4_2 x2apic popcnt aes hypervisor ida arat
tpr_shadow vnmi flexpriority ept vpid

 features: 17bee3ff-bfebfbff-00000001-2c100800

 features_after_reboot: 17bee3ff-bfebfbff-00000001-2c100800

 physical_features: 17bee3ff-bfebfbff-00000001-2c100800

 maskable: full

To pin a VM’s vCPUs to a specific socket, set VCPUs-params:mask. This setting
persists over VM reboots and shutdowns. In a dual socket platform with 32 total cores,
cores 0-15 are on socket 0, and cores 16-31 are on socket 1. To restrict a VM to only run
on socket 0:

[root@xenserver ~]# xe vm-param-set uuid=<vm-uuid> VCPUs-
params:mask=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Similarly, to restrict a VM to only run on socket 1:

[root@xenserver ~]# xe vm-param-set uuid=<vm-uuid> VCPUs-
params:mask=16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

To pin vCPUs to specific cores within a socket, specify the cores directly:

[root@xenserver ~]# xe vm-param-set uuid=<vm-uuid> VCPUs-
params:mask=16,17,18,19

Use xl vcpu-list to list the current assignment of vCPUs to physical CPUs:

[root@xenserver ~]# xl vcpu-list

Name ID VCPU CPU State Time(s) CPU Affinity

Domain-0 0 0 25 -b- 9188.4 any cpu

Domain-0 0 1 19 r-- 8908.4 any cpu

Domain-0 0 2 30 -b- 6815.1 any cpu

Domain-0 0 3 17 -b- 4881.4 any cpu

Domain-0 0 4 22 -b- 4956.9 any cpu

Domain-0 0 5 20 -b- 4319.2 any cpu

Domain-0 0 6 28 -b- 5720.0 any cpu

Troubleshooting

GRID Virtual GPU DU-06920-001 | 62

Domain-0 0 7 26 -b- 5736.0 any cpu

test-image-win7-32 34 0 9 -b- 17.0 4-15

test-image-win7-32 34 1 4 -b- 13.7 4-15

A.6 CHANGING DOM0 VCPUS AND PINNING

The default number of vCPUs assigned to dom0 is 8. To change this number, modify
the dom0_max_vcpus parameter in the Xen bootline. For example:

[root@xenserver ~]# /opt/xensource/libexec/xen-cmdline --set-xen
dom0_max_vcpus=4

 Note: After applying this setting, you must reboot the system for it to take effect.
Use shutdown –r now to reboot the server, or reboot it from XenCenter.

By default, dom0’s vCPUs are unpinned, and able to run on any physical CPU in the
system. To pin dom0 vCPUs to specific physical CPUs, use xl vcpu-pin. For example,
to pin dom0’s vCPU 0 to physical CPU 18, use:

[root@xenserver ~]# xl vcpu-pin Domain-0 0 18

CPU pinnings applied this way take effect immediately but do not persist over reboots.
To make settings persistent, add xl vcpu-pin commands into /etc/rc.local, for
example:

xl vcpu-pin 0 0 0-15

xl vcpu-pin 0 1 0-15

xl vcpu-pin 0 2 0-15

xl vcpu-pin 0 3 0-15

xl vcpu-pin 0 4 16-31

xl vcpu-pin 0 5 16-31

xl vcpu-pin 0 6 16-31

xl vcpu-pin 0 7 16-31

Troubleshooting

GRID Virtual GPU DU-06920-001 | 63

A.7 DETERMINING GPU LOCALITY

As noted in section 6.4.1, current multi-socket, servers typically implement PCIe
expansion slots local to each CPU socket and it is advantageous to pin VMs to the same
socket that their associated physical GPU is connected to.

For current Intel platforms, CPU socket 0 typically has its PCIe root ports located on bus
0, so any GPU below a root port located on bus 0 is connected to socket 0. CPU socket 1
has its root ports on a higher bus number, typically bus 0x20 or bus 0x80 depending on
the specific server platform.

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright
© 2016 NVIDIA Corporation. All rights reserved.

	Chapter 1. Introduction
	1.1 Architecture
	1.2 Supported GPUs
	1.2.1 Virtual GPU types
	1.2.2 Homogeneous virtual GPUs

	1.3 Guest OS Support
	1.3.1 Windows
	1.3.2 Linux

	1.4 Features

	Chapter 2. Getting Started
	2.1 Citrix XenServer
	2.1.1 Prerequisites
	2.1.2 Installing Citrix XenServer and XenCenter
	2.1.3 Installing the NVIDIA Virtual GPU Manager for XenServer
	2.1.3.1 RPM package installation
	2.1.3.2 Update RPM package
	2.1.3.3 Supplemental Pack installation / update
	2.1.3.4 Verifying installation

	2.1.4 Configuring a VM with Virtual GPU
	2.1.5 Changing the Mode of a Tesla M60 or M6 GPU
	2.1.6 Booting the VM and Installing Drivers
	2.1.7 Applying a vGPU license
	2.1.8 Removing a VM’s vGPU configuration

	2.2 VMware vSphere
	2.2.1 Prerequisites
	2.2.2 Installing VMware vSphere
	2.2.3 Installing the NVIDIA Virtual GPU Manager for vSphere
	2.2.3.1 Package installation
	2.2.3.2 Update package
	2.2.3.3 Verifying installation

	2.2.4 Configuring a VM with Virtual GPU
	2.2.5 Changing the Mode of a Tesla M60 or M6 GPU
	2.2.6 Booting the VM and Installing Drivers
	2.2.7 Applying a vGPU license
	2.2.8 Removing a VM’s vGPU configuration
	2.2.9 Modifying GPU assignment for vGPU-Enabled VMs

	2.3 vGPU Licensing on Windows

	Chapter 3. Using vGPU on Linux
	3.1 Installing vGPU drivers
	3.1.1 Prerequisites
	3.1.2 Running the driver installer

	3.2 vGPU Licensing on Linux

	Chapter 4. Performance monitoring
	4.1 Using nvidia-smi
	4.2 Using Citrix XenCenter

	Chapter 5. XenServer vGPU Management
	5.1 Management objects for GPUs
	5.1.1 pgpu
	5.1.2 vgpu-type
	5.1.3 gpu-group
	5.1.4 vgpu

	5.2 Creating a vGPU using xe
	5.3 Controlling vGPU allocation
	5.3.1 GPU allocation policy
	5.3.2 Determining the physical GPU that a virtual GPU is resident on
	5.3.3 Controlling the vGPU types enabled on specific physical GPUs
	5.3.4 Creating vGPUs on specific physical GPUs

	5.4 Cloning vGPU-enabled VMs
	5.5 Using GPU pass-through

	Chapter 6. XenServer Performance Tuning
	6.1 XenServer tools
	6.2 Using remote graphics
	6.2.1 Disabling console VGA

	6.3
	6.4 Allocation strategies
	6.4.1 NUMA considerations
	6.4.2 Maximizing performance

	Chapter 7. Troubleshooting
	7.1 Known issues
	7.2 Troubleshooting steps
	7.2.1 Verify the NVIDIA kernel driver is loaded
	7.2.2 Verify that nvidia-smi works
	7.2.3 NVIDIA kernel driver output
	7.2.4 GRID Virtual GPU Manager messages
	7.2.4.1 Citrix XenServer
	7.2.4.2 VMware vSphere

	7.3 Filing a bug report
	7.3.1 nvidia-bug-report.sh
	7.3.2 XenServer status report

	Appendix A. XenServer Basics
	A.1 Opening a dom0 shell
	A.1.1 Accessing the dom0 shell via XenCenter
	A.1.2 Accessing the dom0 shell using ssh

	A.2 Copying files to dom0
	A.2.1 Copying files using scp
	A.2.2 Copying files via a CIFS-mounted filesystem

	A.3 Determining a VM’s UUID
	A.3.1 Using xe vm-list
	A.3.2 Using XenCenter

	A.4 Using more than two vCPUs with Windows client VMs
	A.5 Pinning VMs to a specific CPU socket and cores
	A.6 Changing dom0 vCPUs and pinning
	A.7 Determining GPU locality

