TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Release Notes</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Validated Platforms</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Supported NVIDIA GPUs and Validated Server Platforms</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>Hypervisor Software Versions</td>
<td>2</td>
</tr>
<tr>
<td>2.3</td>
<td>Guest OS Support</td>
<td>3</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Windows Guest OS Support</td>
<td>3</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Linux Guest OS Support</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Known Product Limitations</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>NVENC requires at least 1 Gbyte of frame buffer</td>
<td>5</td>
</tr>
<tr>
<td>3.3</td>
<td>VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted</td>
<td>5</td>
</tr>
<tr>
<td>3.4</td>
<td>Virtual GPU fails to start if ECC is enabled</td>
<td>6</td>
</tr>
<tr>
<td>3.5</td>
<td>Single vGPU benchmark scores are lower than passthrough GPU</td>
<td>7</td>
</tr>
<tr>
<td>3.6</td>
<td>Virtual GPU fails to start when GPUs are mapped above 4G</td>
<td>8</td>
</tr>
<tr>
<td>3.7</td>
<td>nvidia-smi fails to operate when all GPUs are assigned to GPU passthrough mode</td>
<td>9</td>
</tr>
<tr>
<td>3.8</td>
<td>GRID K1 and GRID K2 cards do not support monitoring of vGPU engine usage</td>
<td>10</td>
</tr>
<tr>
<td>3.9</td>
<td>Windows Aero is disabled on XenDesktop session using 3 or 4 monitors in 2560×1600 resolution</td>
<td>10</td>
</tr>
<tr>
<td>3.10</td>
<td>VMs configured with large memory fail to initialize vGPU when booted</td>
<td>10</td>
</tr>
<tr>
<td>3.11</td>
<td>vGPU host driver RPM upgrade fails</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Resolved Issues</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>Known Issues</td>
<td>14</td>
</tr>
<tr>
<td>5.1</td>
<td>Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer</td>
<td>14</td>
</tr>
<tr>
<td>5.2</td>
<td>With no NVIDIA driver installed, XenServer misidentifies Tesla M10 cards</td>
<td>15</td>
</tr>
<tr>
<td>5.3</td>
<td>GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0</td>
<td>16</td>
</tr>
<tr>
<td>5.4</td>
<td>Video goes blank when run in loop in Windows Media Player</td>
<td>17</td>
</tr>
<tr>
<td>5.5</td>
<td>Local VGA console is momentarily unblanked when XenDesktop changes resolution of the VM desktop</td>
<td>17</td>
</tr>
<tr>
<td>5.6</td>
<td>VM bugchecks on shutdown/restart when XenDesktop is installed and NVIDIA driver is uninstalled or upgraded</td>
<td>18</td>
</tr>
<tr>
<td>5.7</td>
<td>Application frame rate may drop when running XenDesktop at 2560×1600 resolution</td>
<td>18</td>
</tr>
<tr>
<td>5.8</td>
<td>Windows VM BSOD</td>
<td>19</td>
</tr>
<tr>
<td>5.9</td>
<td>Windows VM BSOD when upgrading NVIDIA drivers over a XenDesktop session</td>
<td>20</td>
</tr>
<tr>
<td>5.10</td>
<td>XenCenter does not allow vGPUs to be selected as a GPU type for Linux VMs</td>
<td>20</td>
</tr>
<tr>
<td>5.11</td>
<td>If X server is killed on a RHEL7 VM running vGPU, XenCenter console may not automatically switch to text console</td>
<td>21</td>
</tr>
<tr>
<td>5.12</td>
<td>Multiple WebGL tabs in Microsoft Internet Explorer may trigger TDR on Windows VMs</td>
<td>21</td>
</tr>
</tbody>
</table>
5.13. XenDesktop shows only a black screen when connected to a vGPU VM.------------------22
These Release Notes summarize current status, information on validated platforms, and known issues with NVIDIA GRID™ vGPU™ software and hardware on Citrix XenServer.

This release includes the following software:

- NVIDIA GRID Virtual GPU Manager version 367.64 for the following Citrix XenServer releases:
 - Citrix XenServer 7.0
 - Citrix XenServer 6.5 SP1
- NVIDIA Windows drivers for vGPU version 369.71
- NVIDIA Linux drivers for vGPU version 367.64

Caution

If you install the wrong package for the version of Citrix XenServer you are using, GRID vGPU Manager will fail to load.

The GRID vGPU Manager and Windows guest VM drivers must be installed together. Older VM drivers will not function correctly with this release of GRID vGPU Manager. Similarly, older GRID vGPU Managers will not function correctly with this release of Windows guest drivers. See [VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted](#).

Updates in this release:

- Miscellaneous bug fixes
- Support for only 1 virtual display head by vGPU types with less than 1 Gbyte of frame buffer when used with a Windows 10 guest OS
Chapter 2.
VALIDATED PLATFORMS

This release of virtual GPU provides support for several NVIDIA GPUs on validated server hardware platforms, Citrix XenServer hypervisor software versions, and guest operating systems.

2.1. Supported NVIDIA GPUs and Validated Server Platforms

This release of virtual GPU provides support for the following NVIDIA GPUs on Citrix XenServer, running on validated server hardware platforms:

- GRID K1
- GRID K2
- Tesla M6
- Tesla M10
- Tesla M60

For a list of validated server platforms, refer to NVIDIA GRID Certified Servers.

Tesla M60 and M6 GPUs support compute and graphics modes, which can be configured by using the `gpumodeswitch` tool provided with GRID software releases. GRID vGPU requires that M60 and M6 GPUs are configured in graphics mode.

2.2. Hypervisor Software Versions

This release has been tested with the following hypervisor software versions:

<table>
<thead>
<tr>
<th>Software</th>
<th>Version tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrix XenServer 6.5</td>
<td>Version 6.5 with XS65ESP1. The GRID vGPU Manager included in this release will not install without XenServer 6.5 SP1.</td>
</tr>
<tr>
<td>Citrix XenServer 7.0</td>
<td>RTM build 125380 is supported.</td>
</tr>
</tbody>
</table>
2.3. Guest OS Support

GRID vGPU supports several Windows releases and Linux distributions as a guest OS.

Use only a guest OS release that is listed as supported by GRID vGPU with your virtualization software. To be listed as supported, a guest OS release must be supported not only by GRID vGPU, but also by your virtualization software. NVIDIA cannot support guest OS releases that your virtualization software does not support.

2.3.1. Windows Guest OS Support

GRID vGPU supports the following Windows releases as a guest OS on Citrix XenServer:

- Windows 7 (32/64-bit)
- Windows 8 (32/64-bit)
- Windows 8.1 (32/64-bit)
- Windows 10 (32/64-bit)
- Windows Server 2008 R2
- Windows Server 2012 R2
- Windows Server 2016

2.3.2. Linux Guest OS Support

GRID vGPU supports the following Linux distributions as a guest OS only on Tesla M60, Tesla M10, and Tesla M6 on Citrix XenServer:

- Red Hat Enterprise Linux 7.0-7.2
- CentOS 7.0-7.2
- Ubuntu 14.04 LTS

GRID K1 and GRID K2 do not support vGPU on a Linux guest OS.
Chapter 3.
KNOWN PRODUCT LIMITATIONS

Known product limitations for this release of NVIDIA GRID are described in the following sections.

3.1. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10

Description
To reduce the possibility of memory exhaustion, vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on a Windows 10 guest OS.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q
- GRID K100, K120Q
- GRID K200, K220Q

Workaround
Use a profile that supports more than 1 virtual display head and has at least 1 Gbyte of frame buffer.
3.2. NVENC requires at least 1 Gbyte of frame buffer

Description

Using the frame buffer for the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) may cause memory exhaustion with vGPU profiles that have 512 Mbytes or less of frame buffer. To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer. Application GPU acceleration remains fully supported and available for all profiles, including profiles with 512 MBytes or less of frame buffer. NVENC support from both Citrix and VMware is a recent feature and, if you are using an older version, you should experience no change in functionality.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q
- GRID K100, K120Q
- GRID K200, K220Q

Workaround

If you require NVENC to be enabled, use a profile that has at least 1 Gbyte of frame buffer.

3.3. VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted

Description

A VM running older NVIDIA drivers, such as those from a previous vGPU release, will fail to initialize vGPU when booted on a Citrix XenServer platform running the current release of GRID Virtual GPU Manager.

In this scenario, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA GRID GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)
Depending on the versions of drivers in use, the Citrix XenServer VM's /var/log/messages log file reports one of the following errors:

- An error message:
  ```
  vmiop_log: error: Unable to fetch Guest NVIDIA driver information
  ```

- A version mismatch between guest and host drivers:
  ```
  vmiop_log: error: Guest VGX version(1.1) and Host VGX version(1.2) do not match
  ```

- A signature mismatch:
  ```
  vmiop_log: error: VGPU message signature mismatch.
  ```

Resolution

Install the latest NVIDIA vGPU release drivers in the VM.

3.4. Virtual GPU fails to start if ECC is enabled

Description

GRID K2, Tesla M60, and Tesla M6 support error correcting code (ECC) for improved data integrity. If ECC is enabled, virtual GPU fails to start. The following error is logged in the Citrix XenServer VM's /var/log/messages log file:

```
vmiop_log: error: Initialization: VGX not supported with ECC Enabled.
```

Virtual GPU is not currently supported with ECC active. GRID K2 cards and Tesla M60, M6 cards in graphics mode ship with ECC disabled by default, but ECC may subsequently be enabled using `nvidia-smi`.

Resolution

Ensure that ECC is disabled on all GPUs.

1. Use `nvidia-smi` to list the status of all GPUs, and check for ECC noted as enabled on GPUs.
2. Change the ECC status to off on each GPU for which ECC is enabled by executing the following command:
   ```
   nvidia-smi -i id -e 0
   ```

 `id` is the index of the GPU as reported by `nvidia-smi`.
3.5. Single vGPU benchmark scores are lower than passthrough GPU

Description
A single vGPU configured on a physical GPU produces lower benchmark scores than the physical GPU run in passthrough mode.

Aside from performance differences that may be attributed to a vGPU’s smaller framebuffer size, vGPU incorporates a performance balancing feature known as Frame Rate Limiter (FRL), which is enabled on all vGPUs. FRL is used to ensure balanced performance across multiple vGPUs that are resident on the same physical GPU. The FRL setting is designed to give good interactive remote graphics experience but may reduce scores in benchmarks that depend on measuring frame rendering rates, as compared to the same benchmarks running on a passthrough GPU.

Resolution
FRL is controlled by an internal vGPU setting. NVIDIA does not validate vGPU with FRL disabled, but for validation of benchmark performance, FRL can be temporarily disabled by specifying `frame_rate_limiter=0` in the VM’s `platform:vgpu_extra_args` parameter:

```
[root@xenserver ~]# xe vm-param-set uuid=e71afda4-53f4-3a1b-6c92-a364a7f619c2 platform:vgpu_extra_args="frame_rate_limiter=0"
[root@xenserver ~]# 
```

The setting takes effect the next time the VM is started or rebooted.

With this setting in place, the VM’s vGPU will run without any frame rate limit. The FRL can be reverted back to its default setting in one of the following ways:

- Removing the `vgpu_extra_args` key from the `platform` parameter
- Removing `frame_rate_limiter=0` from the `vgpu_extra_args` key
- Setting `frame_rate_limiter=1`. For example:

```
[root@xenserver ~]# xe vm-param-set uuid=e71afda4-53f4-3a1b-6c92-a364a7f619c2 platform:vgpu_extra_args="frame_rate_limiter=1"
[root@xenserver ~]#
```
3.6. Virtual GPU fails to start when GPUs are mapped above 4G

Version
XenServer 6.2

Status
Fixed in XenServer 6.5

Description
GRID vGPU on Citrix XenServer 6.2 does not support operation with GPUs mapped above the 4 gigabyte (4G) boundary in the system's physical address space.

If GPUs are mapped above 4G, the GRID vGPU Manager rpm will warn at the time of installation:

```
Warning: vGPU does not support GPUs mapped in 64-bit address space. Please disable 64-bit MMIO from the system's BIOS. Refer to vGPU release notes for details.
```

Also, the NVIDIA kernel driver will fail to load in XenServer's dom0, so the nvidia module won't appear in the module listing produced by `lsmod`. Additionally, the following warning messages will be present in the output of `dmesg`:

```
NVRM: This PCI I/O region assigned to your NVIDIA device is invalid:
NVRM: BAR1 is 128M @ 0xf800000000000000 (PCI:03ff:00:07.0)
NVRM: This is a 64-bit BAR mapped above 4GB by the system
NVRM: BIOS or the Linux kernel. The NVIDIA Linux/x86 NVRM: graphics driver and other system software components
NVRM: do not support this configuration.
```

Resolution
Ensure that GPUs are mapped below the 4G boundary by disabling your server's SBIOS option that controls 64-bit memory-mapped I/O support. This option may be labeled `Enable4G>Decode` or `Enable 64-bit MMIO`.
3.7. **nvidia-smi** fails to operate when all GPUs are assigned to GPU passthrough mode

Description

If all GPUs in the platform are assigned to VMs in passthrough mode, **nvidia-smi** will return an error:

```
[root@xenserver-vgx-test ~]# nvidia-smi
Failed to initialize NVML: Unknown Error
```

This is because GPUs operating in passthrough mode are not visible to **nvidia-smi** and the NVIDIA kernel driver operating in the Citrix XenServer dom0.

To confirm that all GPUs are operating in passthrough, use XenCenter’s GPU tab to review current GPU assignment:
3.8. GRID K1 and GRID K2 cards do not support monitoring of vGPU engine usage

Description
GRID K1 and GRID K2 cards do not support monitoring of vGPU engine usage. All tools and APIs for any vGPU running on GRID K1 or GRID K2 cards report 0 for the following usage statistics:

- 3D/Compute
- Memory controller bandwidth
- Video encoder
- Video decoder

3.9. Windows Aero is disabled on XenDesktop session using 3 or 4 monitors in 2560×1600 resolution

Description
Windows Aero may be disabled when XenDesktop is connected to a VM with a vGPU or passthrough GPU, with 3 or 4 monitors at 2560×1600 resolution.

This limitation is a limitation of Windows 7. For details, see the Microsoft knowledge base article Desktop background disappears with very large extended desktop on Windows 7.

3.10. VMs configured with large memory fail to initialize vGPU when booted

Description
When starting multiple VMs configured with large amounts of RAM (typically more than 32GB per VM), a VM may fail to initialize vGPU. In this scenario, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA GRID GPU is present in Windows Device Manager but displays a warning sign, and the following device status:
Windows has stopped this device because it has reported problems. (Code 43)

The Citrix XenServer VM's /var/log/messages log file contains these error messages:

```
vmiop_log: error: NVOS status 0x29
vmiop_log: error: Assertion Failed at 0x7620fd4b:179
vmiop_log: error: 8 frames returned by backtrace
... vmiop_log: error: VGPU message 12 failed, result code: 0x29
... vmiop_log: error: NVOS status 0x8
vmiop_log: error: Assertion Failed at 0x7620c8df:280
vmiop_log: error: 8 frames returned by backtrace
... vmiop_log: error: VGPU message 26 failed, result code: 0x8
```

Resolution

vGPU reserves a portion of the VM’s framebuffer for use in GPU mapping of VM system memory. The reservation is sufficient to support up to 32GB of system memory, and may be increased to accommodate up to 64GB by specifying `enable_large_sys_mem=1` in the VM’s `platform:vgpu_extra_args` parameter:

```
[root@xenserver ~]# xe vm-param-set uuid=e71afda4-53f4-3a1b-6c92-a364a7f619c2 platform:vgpu_extra_args="enable_large_sys_mem=1"
```

The setting takes effect the next time the VM is started or rebooted. With this setting in place, less GPU FB is available to applications running in the VM. To accommodate system memory larger than 64GB, the reservation can be further increased by specifying `extra_fb_reservation` in the VM’s `platform:vgpu_extra_args` parameter, and setting its value to the desired reservation size in megabytes. The default value of 64M is sufficient to support 64GB of RAM. We recommend adding 2M of reservation for each additional 1GB of system memory. For example, to support 96GB of RAM, set `extra_fb_reservation to 128`:

```
platform:vgpu_extra_args="enable_large_sys_mem=1, extra_fb_reservation=128"
```

The reservation can be reverted back to its default setting in one of the following ways:

- Removing the `vgpu_extra_args` key from the `platform` parameter
- Removing `enable_large_sys_mem` from the `vgpu_extra_args` key
- Setting `enable_large_sys_mem=0`

3.11. vGPU host driver RPM upgrade fails

Description

Upgrading vGPU host driver RPM fails with the following message on the console:

```
[root@xenserver ~]# rpm -U NVIDIA-vGPU-xenserver-6.5-352.46.x86_64.rpm
error: Failed dependencies:
  NVIDIA-vgx-xenserver conflicts with NVIDIA-vGPU-xenserver-6.5-352.46.x86_64
[root@xenserver ~]#
```
Resolution

Uninstall the older vGPU RPM before installing the latest driver.

Use the following command to uninstall the older vGPU RPM:

[root@xenserver ~]# rpm -e NVIDIA-vgx-xenserver
Chapter 4. RESOLVED ISSUES

<table>
<thead>
<tr>
<th>Bug ID</th>
<th>Summary and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200236828</td>
<td>In a guest VM, <code>nvidia-smi</code> reports No running processes found. When <code>nvidia-smi</code> is run in a guest VM, no running processes are listed but the GPU utilization values are reported correctly.</td>
</tr>
</tbody>
</table>
5.1. Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer

Description
Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer.

This issue typically occurs in the following situations:

- Full screen 1080p video content is playing in a browser. In this situation, the session hangs and session reconnection fails.
- Multiple display heads are used with Citrix XenDesktop or VMware Horizon on a Windows 10 guest VM.
- Higher resolution monitors are used.
- Applications that are frame-buffer intensive are used.
- NVENC is in use.

To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer.

When memory exhaustion occurs, the NVIDIA host driver reports Xid error 31 and Xid error 43 in XenServer's `/var/log/messages` file.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q
Known Issues

GRID K100, K120Q
GRID K200, K220Q

The root cause is a known issue associated with changes to the way that recent Microsoft operating systems handle and allow access to overprovisioning messages and errors. If your systems are provisioned with enough frame buffer to support your use cases, you should not encounter these issues.

Workaround

- Use an appropriately sized vGPU to ensure that the frame buffer supplied to a VM through the vGPU is adequate for your workloads.
- Monitor your frame buffer usage.
- If you are using Windows 10, consider these workarounds and solutions:
 - Use a profile that has 1 Gbyte of frame buffer.
 - Optimize your Windows 10 resource usage.

To obtain information about best practices for improved user experience using Windows 10 in virtual environments, complete the NVIDIA GRID vGPU Profile Sizing Guide for Windows 10 download request form.

For more information, see also Windows 10 Optimization for XenDesktop on the Citrix blog.

Status

Open

Ref. #

- 200130864
- 1803861

5.2. With no NVIDIA driver installed, XenServer misidentifies Tesla M10 cards

Description

An erroneous entry in the pci.ids database causes Citrix XenServer to identify Tesla M10 cards as GRID M40 when no NVIDIA driver is installed.

Version

Citrix XenServer 6.5 and 7.0
5.3. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0

Description
GDM fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0 with the following error:

```
Oh no! Something has gone wrong!
```

Workaround
Permanently enable permissive mode for Security Enhanced Linux (SELinux).

1. As root, edit the `/etc/selinux/config` file to set SELINUX to permissive.
   ```bash
   SELINUX=permissive
   ```
2. Reboot the system.
   ```bash
   ~]# reboot
   ```

For more information, see Permissive Mode in Red Hat Enterprise Linux 7 SELinux User’s and Administrator’s Guide.

Status
Not an NVIDIA bug

Ref. #
200167868
5.4. Video goes blank when run in loop in Windows Media Player

Description
When connected to a vGPU-enabled VM using Citrix XenDesktop, a video played back in looping mode on Windows Media Player goes blank or freezes after a few iterations.

Workaround
None

Status
Not an NVIDIA bug

Ref. #
1306623

5.5. Local VGA console is momentarily unblanked when XenDesktop changes resolution of the VM desktop

Description
When XenDesktop establishes a remote connection to a VM using vGPU, the VM's local VGA console display in XenCenter is blanked (assuming the VM local console has not been disabled by setting platform:vgpu_extra_args="disable_vnc=1"). If the XenDesktop session changes resolution of the VM's desktop, the local VGA console momentarily unblanks, allowing a XenCenter user to briefly view the desktop.

Workaround
Disable the VM's local VGA console

```
xe vm-param-set uuid=vm-uuid platform:vgpu_extra_args="disable_vnc=1"
```

Status
Open
5.6. VM bugchecks on shutdown/restart when XenDesktop is installed and NVIDIA driver is uninstalled or upgraded.

Description
If the XenDesktop agent is installed in a VM before any NVIDIA GPU driver is installed, the VM will bugcheck (bluescreen) when the NVIDIA driver is subsequently upgraded or uninstalled. The bugcheck code is 0x7E, SYSTEM_THREAD_EXCEPTION_NOT_HANDLED.

Workaround
Use one of the following workarounds:
- Do a force shutdown of the VM and restart it.
- Install the NVIDIA driver in guest VMs before installing XenDesktop.

Status
Open

5.7. Application frame rate may drop when running XenDesktop at 2560×1600 resolution.

Description
An application’s rendering frame rate may drop when running XenDesktop at 2560×1600 resolution, relative to the frame rate obtained at lower resolutions.

Fix
Using the Windows regedit utility within the VM, open the HKLM\SOFTWARE\Citrix\Graphics registry key and create a new DWORD value, EncodeSpeed, with a value of 2. Reboot the VM. This setting may improve the delivered frame rate at the expense of a reduction in image quality.
5.8. Windows VM BSOD

Description
Windows VM bugchecks on XenServer when running a large number of vGPU based VMs.

XenServer’s /var/log/messages file contains these error messages:

```
NVRM: Xid (PCI:0000:08:00): 31, Ch 0000001e, engmask 00000111, intr 10000000
NVRM: Xid (PCI:0000:08:00): 31, Ch 00000016, engmask 00000111, intr 10000000
...
vmio_log: error: Assertion Failed at 0xb5b8064d:4184
vmio_log: error: 8 frames returned by backtrace
vmio_log: error: /usr/lib/libnvidia-vgx.so(_nv000793vgx+0x69d) [0xb5b8064d]
vmio_log: error: /usr/lib/libnvidia-vgx.so(_nv000479vgx+0x118) [0xb5b898d8]
vmio_log: error: /usr/lib/libnvidia-vgx.so(_nv000782vgx+0x59) [0xb5b85f49]
vmio_log: error: /usr/lib/libnvidia-vgx.so(_nv000347vgx+0x3db) [0xb5b932db]
vmio_log: error: /usr/lib/libnvidia-vgx.so [0xb5b78e4a]
vmio_log: error: /usr/lib/xen/bin/vgpu [0x80554be]
vmio_log: error: /lib/libpthread.so.0 [0xb7612912]
vmio_log: error: /lib/libc.so.6(clone+0x5e) [0xb76fc5ee]
vmio_log: error: failed to initialize guest PTE entries
vmio_log: error: failed to fill up guest PTE entries 3
vmio_log: error: VGPU message 27 failed, result code: 0xff000003
vmio_log: error: 0xc1d00001, 0xff010000, 0x1a77ba000, 0x0, 0x1,
vmio_log: error: 0x1, 0x1000, 0x10202, 0xc1d00001, 0xff010000,
vmio_log: error: 0xc000004, 0x0
vmio_log: error: Timeout occurred, reset initiated.
```

Version
XenServer 6.2

Fix
Ensure that you are running the latest OEM firmware for your GRID boards.

Status
Closed

Ref. #
NVIDIA-327/1632120
5.9. Windows VM BSOD when upgrading NVIDIA drivers over a XenDesktop session

Description
Windows VM bugchecks when NVIDIA guest drivers are upgraded over a XenDesktop session.

If the VM is restarted after the bugcheck, the upgraded driver loads correctly and full functionality is available.

Fix
Upgrade XenDesktop to 7.6 Feature Pack 3

Status
Closed

Ref. #
NVIDIA-370/200130780

5.10. XenCenter does not allow vGPUs to be selected as a GPU type for Linux VMs

Description
When creating a new Linux VM or editing the properties of an existing Linux VM, XenCenter does not allow vGPUs to be selected as a GPU type.

vGPU on Linux VMs is supported as a technical preview on XenServer 6.5, and does include XenCenter integration.

Version
Affects the XenCenter integration with XenServer 6.5 only.

Resolved in the XenCenter integration with XenServer 7.0.

Workaround
Refer to XenServer vGPU Management in *GRID Virtual GPU User Guide* for how to configure vGPU by using the `xe` CLI.
5.11. If X server is killed on a RHEL7 VM running vGPU, XenCenter console may not automatically switch to text console

Description
If X server is killed on a RHEL7 VM running vGPU, XenCenter console may display a corrupted image and fail to switchover to text console.
The failure to switchover to text console is due to a bug in RHEL7, which causes X server to not start correctly under certain configurations.

Workaround
Use CTRL+ALT+F1, F2, or F3 to switch between Linux terminals.

5.12. Multiple WebGL tabs in Microsoft Internet Explorer may trigger TDR on Windows VMs

Description
Running intensive WebGL applications in multiple IE tabs may trigger a TDR on Windows VMs.

Workaround
Disable hardware acceleration in IE.
To enable software rendering in IE, refer to the Microsoft knowledge base article How to enable or disable software rendering in Internet Explorer.

Status
Open

Ref. #
200148377

5.13. XenDesktop shows only a black screen when connected to a vGPU VM

Description
XenDesktop sometimes displays only a black screen when it is connected to an NVIDIA vGPU VM. The probable cause is that the display that is connected to the NVIDIA vGPU is entering a lower power state.

Fix
Disable all display-related power management settings.

For detailed instructions, visit Microsoft power plans frequently asked questions and from the list, select your OS version.

Status
Not an NVIDIA bug

Ref. #
1719877
Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2013-2016 NVIDIA Corporation. All rights reserved.