VIRTUAL GPU SOFTWARE R410 FOR RED HAT ENTERPRISE LINUX WITH KVM

RN-08687-001 v7.0 through 7.3 Revision 02 | July 2019

Release Notes
TABLE OF CONTENTS

Chapter 1. Release Notes... 1
 1.1. Updates in Release 7.0... 2
 1.2. Updates in Release 7.1... 2
 1.3. Updates in Release 7.2... 2
 1.4. Updates in Release 7.3... 3

Chapter 2. Validated Platforms... 4
 2.1. Supported NVIDIA GPUs and Validated Server Platforms...................................... 4
 2.2. Hypervisor Software Releases... 5
 2.3. Guest OS Support... 6
 2.3.1. Windows Guest OS Support.. 6
 2.3.2. Linux Guest OS Support.. 7
 2.4. NVIDIA CUDA Toolkit Version Support.. 8
 2.5. Multiple vGPU Support... 8

Chapter 3. Known Product Limitations.. 10
 3.1. Issues may occur with graphics-intensive OpenCL applications on vGPU types with limited
 frame buffer... 10
 3.2. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head
 on Windows 10... 11
 3.3. NVENC requires at least 1 Gbyte of frame buffer... 11
 3.4. VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted............ 12
 3.5. Virtual GPU fails to start if ECC is enabled... 12
 3.6. Single vGPU benchmark scores are lower than pass-through GPU............................ 14
 3.7. nvidia-smi fails to operate when all GPUs are assigned to GPU pass-through mode...... 15

Chapter 4. Resolved Issues... 17

Chapter 5. Security Updates... 18
 5.1. Since 7.2: Restricting Access to GPU Performance Counters...................................... 18
 5.1.1. Windows: Restricting Access to GPU Performance Counters for One User by Using
 NVIDIA Control Panel... 18
 5.1.2. Windows: Restricting Access to GPU Performance Counters Across an Enterprise by
 Using a Registry Key.. 19
 5.1.3. Linux Guest VMs and Hypervisor Host: Restricting Access to GPU Performance
 Counters.. 19

Chapter 6. Known Issues... 21
 6.1. 7.0 Only: After a long stress test, a blue screen crash (BSOD) occurs....................... 21
 6.2. Vulkan applications crash in Windows 7 guest VMs configured with NVIDIA vGPU........ 22
 6.3. Host core CPU utilization is higher than expected for moderate workloads................ 22
 6.4. Frame capture while the interactive logon message is displayed returns blank screen.... 23
 6.5. RDS sessions do not use the GPU with some Microsoft Windows Server releases........ 23
 6.6. 7.0 Only: Blue Screen crash during guest driver installation.................................... 24
 6.7. Even when the scheduling policy is equal share, unequal GPU utilization is reported...... 25
6.8. When the scheduling policy is fixed share, GPU utilization is reported as higher than expected... 26
6.9. License is not acquired in Windows VMs... 27
6.10. nvidia-smi reports that vGPU migration is supported on all hypervisors.. 28
6.11. Hot plugging and unplugging vCPUs causes a blue-screen crash in Windows VMs........... 28
6.12. Luxmark causes a segmentation fault on an unlicensed Linux client.. 29
6.13. Resolution is not updated after a VM acquires a license and is restarted........................... 29
6.14. NVIDIA vGPU encoder and process utilization counters don't work with Windows
 Performance Counters.. 30
6.15. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise
 Linux and CentOS.. 30
6.16. No Manage License option available in NVIDIA X Server Settings by default................. 31
6.17. Licenses remain checked out when VMs are forcibly powered off.. 32
6.18. VM bug checks after the guest VM driver for Windows 10 RS2 is installed......................... 33
6.19. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS
 7.0.. 33
These Release Notes summarize current status, information on validated platforms, and known issues with NVIDIA vGPU software and associated hardware on Red Hat Enterprise Linux with KVM.

The releases in this release family of NVIDIA vGPU software include the software listed in the following table:

<table>
<thead>
<tr>
<th>Software</th>
<th>7.0</th>
<th>7.1</th>
<th>7.2</th>
<th>7.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA Virtual GPU Manager for the Red Hat Enterprise Linux with KVM releases listed in Hypervisor Software Releases</td>
<td>410.68</td>
<td>410.91</td>
<td>410.107</td>
<td>410.122</td>
</tr>
<tr>
<td>NVIDIA Windows driver</td>
<td>411.81</td>
<td>412.16</td>
<td>412.31</td>
<td>412.38</td>
</tr>
<tr>
<td>NVIDIA Linux driver</td>
<td>410.71</td>
<td>410.92</td>
<td>410.107</td>
<td>410.122</td>
</tr>
</tbody>
</table>

Caution

If you install the wrong NVIDIA vGPU software packages for the version of Red Hat Enterprise Linux with KVM you are using, NVIDIA Virtual GPU Manager will fail to load.

The releases of the vGPU Manager and guest VM drivers that you install must be compatible. Different versions of the vGPU Manager and guest VM driver from within the same main release branch can be used together. For example, you can use the vGPU Manager from release 7.1 with guest VM drivers from release 7.0. However, versions of the vGPU Manager and guest VM driver from different main release branches cannot be used together. For example, you cannot use the vGPU Manager from release 7.1 with guest VM drivers from release 6.2.

See VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted.

This requirement does not apply to the NVIDIA vGPU software license sever. All releases of NVIDIA vGPU software are compatible with all releases of the license server.
1.1. Updates in Release 7.0

New Features in Release 7.0

- Support for multiple vGPUs in a single VM
- vGPU support for NVIDIA frame buffer capture metrics
- vGPU support for render capture metrics from the hypervisor and guest VMs
- Support for NVIDIA GPU Cloud (NGC) containers with NVIDIA vGPU software
- Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 7.0

- Support for Red Hat Enterprise Linux with KVM 7.6
- Support for Red Hat Enterprise Linux 7.6 as a guest OS
- Support for CentOS 7.6 as a guest OS
- Support for Windows 10 Spring Creators Update (1803) as a guest OS

Feature Support Withdrawn in Release 7.0

- 32-bit Windows guest operating systems are no longer supported.

1.2. Updates in Release 7.1

New Features in Release 7.1

- Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 7.1

- Support for the Tesla T4 GPU

1.3. Updates in Release 7.2

New Features in Release 7.2

- Miscellaneous bug fixes
- Security updates - see Security Updates
1.4. Updates in Release 7.3

New Features in Release 7.3

‣ Security updates
‣ Miscellaneous bug fixes
This release family of NVIDIA vGPU software provides support for several NVIDIA GPUs on validated server hardware platforms, Red Hat Enterprise Linux with KVM hypervisor software versions, and guest operating systems. It also supports the version of NVIDIA CUDA Toolkit that is compatible with R410 drivers.

2.1. Supported NVIDIA GPUs and Validated Server Platforms

This release of NVIDIA vGPU software provides support for the following NVIDIA GPUs on Red Hat Enterprise Linux with KVM, running on validated server hardware platforms:

- GPUs based on the NVIDIA Maxwell™ graphic architecture:
 - Tesla M6
 - Tesla M10
 - Tesla M60

- GPUs based on the NVIDIA Pascal™ architecture:
 - Tesla P4
 - Tesla P6
 - Tesla P40
 - Tesla P100 PCIe 16 GB
 - Tesla P100 SXM2 16 GB
 - Tesla P100 PCIe 12GB

- GPUs based on the NVIDIA Volta™ architecture:
 - Tesla V100 SXM2
 - Tesla V100 SXM2 32GB
 - Tesla V100 PCIe
 - Tesla V100 PCIe 32GB
Validated Platforms

- Tesla V100 FHHL
- GPUs based on the NVIDIA Turing architecture:
 - Since 7.1: Tesla T4

For a list of validated server platforms, refer to NVIDIA GRID Certified Servers.

Tesla M60 and M6 GPUs support compute mode and graphics mode. NVIDIA vGPU requires GPUs that support both modes to operate in graphics mode.

Recent Tesla M60 GPUs and M6 GPUs are supplied in graphics mode. However, your GPU might be in compute mode if it is an older Tesla M60 GPU or M6 GPU, or if its mode has previously been changed.

To configure the mode of Tesla M60 and M6 GPUs, use the `gpumodeswitch` tool provided with NVIDIA vGPU software releases.

2.2. Hypervisor Software Releases

This release supports only the hypervisor software release listed in the table.

If a specific release, even an update release, is not listed, it’s not supported.

<table>
<thead>
<tr>
<th>Software</th>
<th>Releases Supported</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux with KVM</td>
<td>7.6, 7.5</td>
<td>All NVIDIA GPUs that NVIDIA vGPU software supports are supported with vGPU and in pass-through mode.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux with KVM</td>
<td>7.2 through 7.4</td>
<td>All NVIDIA GPUs that NVIDIA vGPU software supports are supported in pass-through mode only.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux with KVM</td>
<td>7.0, 7.1</td>
<td>Only the following NVIDIA GPUs are supported in pass-through mode only:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Tesla M6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Tesla M10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Tesla M60</td>
</tr>
<tr>
<td>Red Hat Virtualization (RHV)</td>
<td>4.2</td>
<td>All NVIDIA GPUs that NVIDIA vGPU software supports are supported with vGPU and in pass-through mode.</td>
</tr>
<tr>
<td>Red Hat Virtualization (RHV)</td>
<td>4.1</td>
<td>All NVIDIA GPUs that NVIDIA vGPU software supports are supported in pass-through mode only.</td>
</tr>
</tbody>
</table>
2.3. Guest OS Support

NVIDIA vGPU software supports several Windows releases and Linux distributions as a guest OS. The supported guest operating systems depend on the hypervisor software version.

Use only a guest OS release that is listed as supported by NVIDIA vGPU software with your virtualization software. To be listed as supported, a guest OS release must be supported not only by NVIDIA vGPU software, but also by your virtualization software. NVIDIA cannot support guest OS releases that your virtualization software does not support.

NVIDIA vGPU software supports only 64-bit guest operating systems. No 32-bit guest operating systems are supported.

2.3.1. Windows Guest OS Support

Red Hat Enterprise Linux with KVM and Red Hat Virtualization (RHV) support Windows guest operating systems only under specific Red Hat subscription programs. For details, see:

- Certified guest operating systems for Red Hat Enterprise Linux with KVM
- Certified Guest Operating Systems in Red Hat OpenStack Platform and Red Hat Enterprise Virtualization

NVIDIA vGPU software supports only the 64-bit Windows releases listed in the table as a guest OS on Red Hat Enterprise Linux with KVM. The releases of Red Hat Enterprise Linux with KVM for which a Windows release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

If a specific release, even an update release, is not listed, it’s not supported.

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Red Hat Enterprise Linux with KVM Releases</th>
<th>Pass-Through GPU - Red Hat Enterprise Linux with KVM Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2016 1607, 1709</td>
<td>RHEL KVM 7.6, 7.5 RHV 4.2</td>
<td>RHEL KVM 7.6, 7.5, 7.4, 7.3, 7.2, 7.1, 7.0 RHV 4.2, 4.1</td>
</tr>
<tr>
<td>Windows Server 2012 R2</td>
<td>RHEL KVM 7.6, 7.5 RHV 4.2</td>
<td>RHEL KVM 7.6, 7.5, 7.4, 7.3, 7.2, 7.1, 7.0 RHV 4.2, 4.1</td>
</tr>
<tr>
<td>Windows Server 2008 R2</td>
<td>RHEL KVM 7.6, 7.5 RHV 4.2</td>
<td>RHEL KVM 7.6, 7.5, 7.4, 7.3, 7.2, 7.1, 7.0</td>
</tr>
</tbody>
</table>
2.3.2. Linux Guest OS Support

NVIDIA vGPU software supports **only** the 64-bit Linux distributions listed in the table as a guest OS on Red Hat Enterprise Linux with KVM. The releases of Red Hat Enterprise Linux with KVM for which a Linux release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Red Hat Enterprise Linux with KVM Releases</th>
<th>Pass-Through GPU - Red Hat Enterprise Linux with KVM Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 10 RTM (1507), November Update (1511), Anniversary Update (1607), Creators Update (1703), Fall Creators Update (1709), Spring Creators Update (1803) (64-bit)</td>
<td>RHV 4.2</td>
<td>RHV 4.2, 4.1 Supported only on GPUs based on the Maxwell architecture</td>
</tr>
<tr>
<td>Windows 8.1 Update (64-bit)</td>
<td>RHV 4.2</td>
<td>RHV 4.2, 4.1</td>
</tr>
<tr>
<td>Windows 7 (64-bit)</td>
<td>RHV 4.2</td>
<td>RHV 4.2, 4.1 Supported only on GPUs based on the Maxwell architecture</td>
</tr>
</tbody>
</table>

If a specific release, even an update release, is not listed, it’s not supported.

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Red Hat Enterprise Linux with KVM Releases</th>
<th>Pass-Through GPU - Red Hat Enterprise Linux with KVM Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 7.0-7.6</td>
<td>RHEL KVM 7.6, 7.5 RHV 4.2</td>
<td>RHEL KVM 7.6, 7.5, 7.4, 7.3, 7.2, 7.1, 7.0 RHV 4.2, 4.1</td>
</tr>
<tr>
<td>CentOS 7.0-7.6 See Note (1)</td>
<td>RHEL KVM 7.6, 7.5 RHV 4.2</td>
<td>RHEL KVM 7.6, 7.5, 7.4, 7.3, 7.2, 7.1, 7.0 RHV 4.2, 4.1</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 6.6</td>
<td>RHEL KVM 7.6, 7.5 RHV 4.2</td>
<td>RHEL KVM 7.6, 7.5, 7.4, 7.3, 7.2, 7.1, 7.0 RHV 4.2, 4.1</td>
</tr>
<tr>
<td>CentOS 6.6 See Note (1)</td>
<td>RHEL KVM 7.6, 7.5 RHV 4.2</td>
<td>RHEL KVM 7.6, 7.5, 7.4, 7.3, 7.2, 7.1, 7.0</td>
</tr>
</tbody>
</table>
1. CentOS is not a certified guest OS for Red Hat Enterprise Linux with KVM or RHV.

2.4. NVIDIA CUDA Toolkit Version Support

The releases in this release family of NVIDIA vGPU software support NVIDIA CUDA Toolkit 10.0.

For more information about NVIDIA CUDA Toolkit, see CUDA Toolkit 10.0 Documentation.

2.5. Multiple vGPU Support

The assignment of more than one vGPU device to a VM is supported only on a subset of vGPUs and Red Hat Enterprise Linux with KVM releases.

Supported vGPUs

Only Q-series vGPUs that are allocated all of the physical GPU’s frame buffer are supported.

<table>
<thead>
<tr>
<th>GPU Architecture</th>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turing</td>
<td>T4</td>
<td>T4-16Q</td>
</tr>
<tr>
<td>Volta</td>
<td>V100 SXM2 32GB</td>
<td>V100DX-32Q</td>
</tr>
<tr>
<td></td>
<td>V100 PCIe 32GB</td>
<td>V100D-32Q</td>
</tr>
<tr>
<td></td>
<td>V100 SXM2</td>
<td>V100X-16Q</td>
</tr>
<tr>
<td></td>
<td>V100 PCIe</td>
<td>V100-16Q</td>
</tr>
<tr>
<td></td>
<td>V100 FHHL</td>
<td>V100L-16Q</td>
</tr>
<tr>
<td>Pascal</td>
<td>P100 SXM2</td>
<td>P100X-16Q</td>
</tr>
<tr>
<td></td>
<td>P100 PCIe 16GB</td>
<td>P100-16Q</td>
</tr>
<tr>
<td></td>
<td>P100 PCIe 12GB</td>
<td>P100C-12Q</td>
</tr>
<tr>
<td></td>
<td>P40</td>
<td>P40-24Q</td>
</tr>
<tr>
<td></td>
<td>P6</td>
<td>P6-8Q</td>
</tr>
</tbody>
</table>
Maximum vGPUs per VM

NVIDIA vGPU software supports up to a maximum of four vGPUs per VM on Red Hat Enterprise Linux with KVM.

Supported Hypervisor Releases

Red Hat Enterprise Linux with KVM 7.6 and 7.5 only.
Chapter 3.
KNOWN PRODUCT LIMITATIONS

Known product limitations for this release of NVIDIA vGPU software are described in the following sections.

3.1. Issues may occur with graphics-intensive OpenCL applications on vGPU types with limited frame buffer

Description
Issues may occur when graphics-intensive OpenCL applications are used with vGPU types that have limited frame buffer. These issues occur when the applications demand more frame buffer than is allocated to the vGPU.

For example, these issues may occur with the Adobe Photoshop and LuxMark OpenCL Benchmark applications:

» When the image resolution and size are changed in Adobe Photoshop, a program error may occur or Photoshop may display a message about a problem with the graphics hardware and a suggestion to disable OpenCL.

» When the LuxMark OpenCL Benchmark application is run, XID error 31 may occur.

Workaround
For graphics-intensive OpenCL applications, use a vGPU type with more frame buffer.
3.2. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10

Description
To reduce the possibility of memory exhaustion, vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on a Windows 10 guest OS.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q

Workaround
Use a profile that supports more than 1 virtual display head and has at least 1 Gbyte of frame buffer.

3.3. NVENC requires at least 1 Gbyte of frame buffer

Description
Using the frame buffer for the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) may cause memory exhaustion with vGPU profiles that have 512 Mbytes or less of frame buffer. To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer. Application GPU acceleration remains fully supported and available for all profiles, including profiles with 512 MBytes or less of frame buffer. NVENC support from both Citrix and VMware is a recent feature and, if you are using an older version, you should experience no change in functionality.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q
Workaround

If you require NVENC to be enabled, use a profile that has at least 1 Gbyte of frame buffer.

3.4. VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted

Description

A VM running a version of the NVIDIA guest VM drivers from a previous main release branch, for example release 4.4, will fail to initialize vGPU when booted on a Red Hat Enterprise Linux with KVM platform running the current release of Virtual GPU Manager.

In this scenario, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA virtual GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Depending on the versions of drivers in use, the Red Hat Enterprise Linux with KVM VM's /var/log/messages log file reports one of the following errors:

- An error message:

 vmiop_log: error: Unable to fetch Guest NVIDIA driver information

- A version mismatch between guest and host drivers:

 vmiop_log: error: Guest VGX version(1.1) and Host VGX version(1.2) do not match

- A signature mismatch:

 vmiop_log: error: VGPU message signature mismatch.

Resolution

Install the current NVIDIA guest VM driver in the VM.

3.5. Virtual GPU fails to start if ECC is enabled

Description

Tesla M60, Tesla M6, and GPUs based on the Pascal GPU architecture, for example Tesla P100 or Tesla P4, support error correcting code (ECC) memory for improved data integrity. Tesla M60 and M6 GPUs in graphics mode are supplied with ECC memory
disabled by default, but it may subsequently be enabled using \texttt{nvidia-smi}. GPUs based on the Pascal GPU architecture are supplied with ECC memory enabled.

However, NVIDIA vGPU does not support ECC memory. If ECC memory is enabled, NVIDIA vGPU fails to start.

The following error is logged in the Red Hat Enterprise Linux with KVM host’s \texttt{/var/log/messages} log file:

\begin{verbatim}
vmiop_log: error: Initialization: VGX not supported with ECC Enabled.
\end{verbatim}

\textbf{Resolution}

Ensure that ECC is disabled on all GPUs.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.

1. Use \texttt{nvidia-smi} to list the status of all GPUs, and check for ECC noted as enabled on GPUs.

\begin{verbatim}
nvidia-smi -q
==============NVSMI LOG==============
Timestamp : Tue Dec 19 18:36:45 2017
Driver Version : 384.99
Attached GPUs : 1
GPU 0000:02:00.0
(...]
 Ecc Mode
 Current : Enabled
 Pending : Enabled
[...]
\end{verbatim}

2. Change the ECC status to off on each GPU for which ECC is enabled.

\begin{itemize}
 \item If you want to change the ECC status to off for all GPUs on your host machine, run this command:

 \begin{verbatim}
 # nvidia-smi -e 0
 \end{verbatim}

 \item If you want to change the ECC status to off for a specific GPU, run this command:

 \begin{verbatim}
 # nvidia-smi -i \textit{id} -e 0
 \end{verbatim}

 \textit{id} is the index of the GPU as reported by \texttt{nvidia-smi}.

 This example disables ECC for the GPU with index \texttt{0000:02:00.0}.

 \begin{verbatim}
 # nvidia-smi -i 0000:02:00.0 -e 0
 \end{verbatim}

3. Reboot the host.
4. Confirm that ECC is now disabled for the GPU.
If you later need to enable ECC on your GPUs, run one of the following commands:

- If you want to change the ECC status to on for all GPUs on your host machine, run this command:

  ```bash
  # nvidia-smi -e 1
  ```

- If you want to change the ECC status to on for a specific GPU, run this command:

  ```bash
  # nvidia-smi -i id -e 1
  ```

 id is the index of the GPU as reported by *nvidia-smi*.

 This example enables ECC for the GPU with index 0000:02:00.0.

  ```bash
  # nvidia-smi -i 0000:02:00.0 -e 1
  ```

After changing the ECC status to on, reboot the host.

3.6. Single vGPU benchmark scores are lower than pass-through GPU

Description

A single vGPU configured on a physical GPU produces lower benchmark scores than the physical GPU run in pass-through mode.

Aside from performance differences that may be attributed to a vGPU’s smaller frame buffer size, vGPU incorporates a performance balancing feature known as Frame Rate Limiter (FRL). On vGPUs that use the best-effort scheduler, FRL is enabled. On vGPUs that use the fixed share or equal share scheduler, FRL is disabled.

FRL is used to ensure balanced performance across multiple vGPUs that are resident on the same physical GPU. The FRL setting is designed to give good interactive remote graphics experience but may reduce scores in benchmarks that depend on measuring frame rendering rates, as compared to the same benchmarks running on a pass-through GPU.
Resolution

FRL is controlled by an internal vGPU setting. On vGPUs that use the best-effort scheduler, NVIDIA does not validate vGPU with FRL disabled, but for validation of benchmark performance, FRL can be temporarily disabled by setting frame_rate_limiter=0 in the vGPU configuration file.

```
# echo "frame_rate_limiter=0" > /sys/bus/mdev/devices/vgpu-id/nvidia/vgpu_params
```

For example:

```
# echo "frame_rate_limiter=0" > /sys/bus/mdev/devices/aa618089-8b16-4d01-a136-25a0f3c73123/nvidia/vgpu_params
```

The setting takes effect the next time any VM using the given vGPU type is started.

With this setting in place, the VM's vGPU will run without any frame rate limit.

The FRL can be reverted back to its default setting as follows:

1. Clear all parameter settings in the vGPU configuration file.

   ```
   # echo " " > /sys/bus/mdev/devices/vgpu-id/nvidia/vgpu_params
   ```

 You cannot clear specific parameter settings. If your vGPU configuration file contains other parameter settings that you want to keep, you must reinstate them in the next step.

2. Set frame_rate_limiter=1 in the vGPU configuration file.

   ```
   # echo "frame_rate_limiter=1" > /sys/bus/mdev/devices/vgpu-id/nvidia/vgpu_params
   ```

 If you need to reinstate other parameter settings, include them in the command to set frame_rate_limiter=1. For example:

   ```
   # echo "frame_rate_limiter=1 disable_vnc=1" > /sys/bus/mdev/devices/aa618089-8b16-4d01-a136-25a0f3c73123/nvidia/vgpu_params
   ```

3.7. nvidia-smi fails to operate when all GPUs are assigned to GPU pass-through mode

Description

If all GPUs in the platform are assigned to VMs in pass-through mode, nvidia-smi will return an error:

```
[root@vgx-test ~]# nvidia-smi
Failed to initialize NVML: Unknown Error
```
This is because GPUs operating in pass-through mode are not visible to `nvidia-smi` and the NVIDIA kernel driver operating in the Red Hat Enterprise Linux with KVM host.

To confirm that all GPUs are operating in pass-through mode, confirm that the `vfio-pci` kernel driver is handling each device.

```bash
# lspci -s 05:00.0 -k
05:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev a1)
  Subsystem: NVIDIA Corporation Device 113a
  Kernel driver in use: vfio-pci
```

Resolution

N/A
Chapter 4.
RESOLVED ISSUES

Only resolved issues that have been previously noted as known issues or had a noticeable user impact are listed. The summary and description for each resolved issue indicate the effect of the issue on NVIDIA vGPU software before the issue was resolved.

Issues Resolved in Release 7.0
No resolved issues are reported in this release for Red Hat Enterprise Linux with KVM.

Issues Resolved in Release 7.1

<table>
<thead>
<tr>
<th>Bug ID</th>
<th>Summary and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2425350</td>
<td>After a long stress test, a blue screen crash (BSOD) occurs</td>
</tr>
<tr>
<td>200492702</td>
<td>After a long stress test, the GPU hangs, causing severe performance issues or a blue screen crash in the VM.</td>
</tr>
<tr>
<td>200461544</td>
<td>Blue Screen crash during guest driver installation</td>
</tr>
<tr>
<td></td>
<td>During installation of the NVIDIA vGPU software graphics driver in guest VMs running some Microsoft Windows 10 releases, a blue screen crash occurs with the error VIDEO_TDR_FAILURE 116.</td>
</tr>
</tbody>
</table>

Issues Resolved in Release 7.2
No resolved issues are reported in this release for Red Hat Enterprise Linux with KVM.

Issues Resolved in Release 7.3
No resolved issues are reported in this release for Red Hat Enterprise Linux with KVM.
5.1. Since 7.2: Restricting Access to GPU Performance Counters

The NVIDIA graphics driver contains a vulnerability (CVE-2018-6260) that may allow access to application data processed on the GPU through a side channel exposed by the GPU performance counters. To address this vulnerability, update the driver and restrict access to GPU performance counters to allow access only by administrator users and users who need to use CUDA profiling tools.

The GPU performance counters that are affected by this vulnerability are the hardware performance monitors used by the CUDA profiling tools such as CUPTI, Nsight Graphics, and Nsight Compute. These performance counters are exposed on the hypervisor host and in guest VMs only as follows:

- On the hypervisor host, they are always exposed. However, the Virtual GPU Manager does not access these performance counters and, therefore, is not affected.
- In Windows and Linux guest VMs, they are exposed only in VMs configured for GPU pass through. They are not exposed in VMs configured for NVIDIA vGPU.

5.1.1. Windows: Restricting Access to GPU Performance Counters for One User by Using NVIDIA Control Panel

Perform this task from the guest VM to which the GPU is passed through.

Ensure that you are running NVIDIA Control Panel version 8.1.950.

1. Open NVIDIA Control Panel:
 - Right-click on the Windows desktop and select NVIDIA Control Panel from the menu.
 - Open Windows Control Panel and double-click the NVIDIA Control Panel icon.
2. In NVIDIA Control Panel, select the Manage GPU Performance Counters task in the Developer section of the navigation pane.

3. Complete the task by following the instructions in the Manage GPU Performance Counters > Developer topic in the NVIDIA Control Panel help.

5.1.2. Windows: Restricting Access to GPU Performance Counters Across an Enterprise by Using a Registry Key

You can use a registry key to restrict access to GPU Performance Counters for all users who log in to a Windows guest VM. By incorporating the registry key information into a script, you can automate the setting of this registry for all Windows guest VMs across your enterprise.

Perform this task from the guest VM to which the GPU is passed through.

Caution Only enterprise administrators should perform this task. Changes to the Windows registry must be made with care and system instability can result if registry keys are incorrectly set.

1. Set the RmProfilingAdminOnly Windows registry key to 1.

 [HKLM\SYSTEM\CurrentControlSet\Services\nvlddmkm\Global\NVTweak]
 Value: "RmProfilingAdminOnly"
 Type: DWORD
 Data: 00000001

 The data value 1 restricts access, and the data value 0 allows access, to application data processed on the GPU through a side channel exposed by the GPU performance counters.

2. Restart the VM.

5.1.3. Linux Guest VMs and Hypervisor Host: Restricting Access to GPU Performance Counters

On systems where unprivileged users don’t need to use GPU performance counters, restrict access to these counters to system administrators, namely users with the CAP_SYS_ADMIN capability set. By default, the GPU performance counters are not restricted to users with the CAP_SYS_ADMIN capability.

Perform this task from the guest VM to which the GPU is passed through or from your hypervisor host machine.

In Linux guest VMs, this task requires sudo privileges. On your hypervisor host machine, this task must be performed as the root user on the machine.

1. Log in to the guest VM or open a command shell on your hypervisor host machine.

2. Set the kernel module parameter NVreg_RestrictProfilingToAdminUsers to 1 by adding this parameter to the /etc/modprobe.d/nvidia.conf file.
If you are setting only this parameter, add an entry for it to the `/etc/modprobe.d/nvidia.conf` file as follows:

```bash
options nvidia
    NVreg_RegistryDwords="NVreg_RestrictProfilingToAdminUsers=1"
```

If you are setting multiple parameters, set them in a single entry as in the following example:

```bash
options nvidia NVreg_RegistryDwords="RmPVMRL=0x0"
    "NVreg_RestrictProfilingToAdminUsers=1"
```

If the `/etc/modprobe.d/nvidia.conf` file does not already exist, create it.

3. Restart the VM or reboot your hypervisor host machine.
Chapter 6.
KNOWN ISSUES

6.1. 7.0 Only: After a long stress test, a blue screen crash (BSOD) occurs

Description
After a long stress test, the GPU hangs, causing severe performance issues or a blue screen crash in the VM.

This issue affects only supported GPUs based on the NVIDIA Pascal architecture or the NVIDIA Volta architecture.

The `nvidia-smi -q` command returns the following information, in which power readings and clocks data are shown as Unknown Error.

<table>
<thead>
<tr>
<th>Power Readings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Management</td>
<td>Supported</td>
</tr>
<tr>
<td>Power Draw</td>
<td>Unknown Error</td>
</tr>
<tr>
<td>Power Limit</td>
<td>250.00 W</td>
</tr>
<tr>
<td>Default Power Limit</td>
<td>250.00 W</td>
</tr>
<tr>
<td>Enforced Power Limit</td>
<td>250.00 W</td>
</tr>
<tr>
<td>Min Power Limit</td>
<td>125.00 W</td>
</tr>
<tr>
<td>Max Power Limit</td>
<td>250.00 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clocks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphics</td>
<td>Unknown Error</td>
</tr>
<tr>
<td>SM</td>
<td>Unknown Error</td>
</tr>
<tr>
<td>Memory</td>
<td>3615 MHz</td>
</tr>
<tr>
<td>Video</td>
<td>Unknown Error</td>
</tr>
</tbody>
</table>

Status
Resolved in release 7.1

Ref. #
- 2425350
6.2. Vulkan applications crash in Windows 7 guest VMs configured with NVIDIA vGPU

Description

In Windows 7 guest VMs configured with NVIDIA vGPU, applications developed with Vulkan APIs crash or throw errors when they are launched. Vulkan APIs require sparse texture support, but in Windows 7 guest VMs configured with NVIDIA vGPU, sparse textures are not enabled.

In Windows 10 guest VMs configured with NVIDIA vGPU, sparse textures are enabled and applications developed with Vulkan APIs run correctly in these VMs.

Status

Open

Ref. #

200381348

6.3. Host core CPU utilization is higher than expected for moderate workloads

Description

When GPU performance is being monitored, host core CPU utilization is higher than expected for moderate workloads. For example, host CPU utilization when only a small number of VMs are running is as high as when several times as many VMs are running.

Workaround

Disable monitoring of the following GPU performance statistics:

- vGPU engine usage by applications across multiple vGPUs
- Encoder session statistics
- Frame buffer capture (FBC) session statistics
- Statistics gathered by performance counters in guest VMs

Status

Open
6.4. Frame capture while the interactive logon message is displayed returns blank screen

Description
Because of a known limitation with NvFBC, a frame capture while the interactive logon message is displayed returns a blank screen.

An NvFBC session can capture screen updates that occur after the session is created. Before the logon message appears, there is no screen update after the message is shown and, therefore, a black screen is returned instead. If the NvFBC session is created after this update has occurred, NvFBC cannot get a frame to capture.

Workaround
Press Enter or wait for the screen to update for NvFBC to capture the frame.

Status
Not a bug

6.5. RDS sessions do not use the GPU with some Microsoft Windows Server releases

Description
When some releases of Windows Server are used as a guest OS, Remote Desktop Services (RDS) sessions do not use the GPU. With these releases, the RDS sessions by default use the Microsoft Basic Render Driver instead of the GPU. This default setting enables 2D DirectX applications such as Microsoft Office to use software rendering, which can be more efficient than using the GPU for rendering. However, as a result, 3D applications that use DirectX are prevented from using the GPU.

Version
- Windows Server 2016
Windows Server 2012

Solution

Change the local computer policy to use the hardware graphics adapter for all RDS sessions.

2. Set the Use the hardware default graphics adapter for all Remote Desktop Services sessions option.

6.6. 7.0 Only: Blue Screen crash during guest driver installation

Description

During installation of the NVIDIA vGPU software graphics driver in guest VMs running some Microsoft Windows 10 releases, a blue screen crash occurs with the error VIDEO_TDR_FAILURE 116.

Version

This issue affects the following Microsoft Windows 10 releases:

- RTM (1507)
- November Update (1511)

Workaround

1. Identify the NVIDIA GPU for which the Hardware Ids property contains values that start with PCI\VEN_10DE.
 a. Open Device Manager and expand Display adapters.
 b. For each NVIDIA GPU listed under Display adapters, double-click the GPU and in the Properties window that opens, click the Details tab and select Hardware Ids in the Property list.
2. For the device that you identified in the previous step, display the value of the Class Guid property.

 The value of this property is a string, for example, 4d36e968-e325-11ce-bfc1-08002be10318.
3. Open the Registry Editor and navigate to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\class-guid, where class-guid is the value of the Class Guid property that you displayed in the previous step.

Under class-guid, multiple adapters numbered as four-digit numbers starting from 0000 are listed, for example, 0000 and 0001.

4. For each adapter listed, create the EnableVGXFlipQueue Windows registry key with type REG_DWORD and a value of 0.

5. Install the NVIDIA vGPU software graphics driver.

Status

Resolved in NVIDIA vGPU software release 7.1.

Ref. #

200461544

6.7. Even when the scheduling policy is equal share, unequal GPU utilization is reported

Description

When the scheduling policy is equal share, unequal GPU engine utilization can be reported for the vGPUs on the same physical GPU.

For example, GPU engine usage for three P40-8Q vGPUs on a Tesla P40 GPU might be reported as follows:

```
[root@localhost:~] nvidia-smi vgpu
Wed Jun 27 10:33:18 2018
+-----------------------------------------------------------------------------+  
| NVIDIA-SMI 390.59 Driver Version: 390.59                                  |  
|-------------------------------+--------------------------------+-----------------------------+  
| GPU  Name                     | Bus-Id                         | GPU-Util   | vGPU-Util |  
| vGPU ID    Name          | VM ID    VM Name               | vGPU-Util  |          |  
|===============================+================================+============+----------|  
| Tesla P40                | 00000000:81:00.0               | 52%       |          |  
| 2122661    GRID P40-8Q   | 2122682 centos7.4-xmpl-211... | 19%       |          |  
| 2122663    GRID P40-8Q   | 2122692 centos7.4-xmpl-211... | 0%         |          |  
| 2122659    GRID P40-8Q   | 2122664 centos7.4-xmpl-211... | 25%       |          |  
|-------------------------------+--------------------------------+-----------------------------+  
| Tesla P40                | 00000000:85:00.0               | 58%       |          |  
| 2122662    GRID P40-8Q   | 2122689 centos7.4-xmpl-211... | 0%         |          |  
| 2122658    GRID P40-8Q   | 2122667 centos7.4-xmpl-211... | 59%       |          |  
| 2122660    GRID P40-8Q   | 2122670 centos7.4-xmpl-211... | 0%         |          |  
+-------------------------------+--------------------------------+-----------------------------+  
```

The vGPU utilization of the vGPU 2122658 is reported as 59%. However, the expected vGPU utilization should not exceed 33%.
This behavior is a result of the mechanism that is used to measure GPU engine utilization.

Status
Open

Ref. #
2175888

6.8. When the scheduling policy is fixed share, GPU utilization is reported as higher than expected

Description

When the scheduling policy is fixed share, GPU engine utilization can be reported as higher than expected for a vGPU.

For example, GPU engine usage for six P40-4Q vGPUs on a Tesla P40 GPU might be reported as follows:

```
[root@localhost:~] nvidia-smi vgpu
Mon Aug 20 10:33:18 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.42                 Driver Version: 390.42                    |
|-------------------------------+--------------------------------+------------|
| GPU  Name                     | Bus-Id                         | GPU-Util   |
|      vGPU ID    Name          | VM ID    VM Name               | vGPU-Util  |
|===============================+================================+============|
|   0  Tesla P40                | 00000000:81:00.0               |  99%       |
| 85109      GRID P40-4Q   | 85110    win7-xmpl-146048-1    |     32%    |
| 87195      GRID P40-4Q   | 87196    win7-xmpl-146048-2    |     39%    |
| 88095      GRID P40-4Q   | 88096    win7-xmpl-146048-3    |     26%    |
| 89170      GRID P40-4Q   | 89171    win7-xmpl-146048-4    |     0%     |
| 90475      GRID P40-4Q   | 90476    win7-xmpl-146048-5    |     0%     |
| 93363      GRID P40-4Q   | 93364    win7-xmpl-146048-6    |     0%     |
|   1  Tesla P40                | 00000000:85:00.0               |   0%       |
+-------------------------------+--------------------------------+------------|
```

The vGPU utilization of vGPU 85109 is reported as 32%. For vGPU 87195, vGPU utilization is reported as 39%. And for 88095, it is reported as 26%. However, the expected vGPU utilization of any vGPU should not exceed approximately 16.7%.

This behavior is a result of the mechanism that is used to measure GPU engine utilization.
6.9. License is not acquired in Windows VMs

Description
When a windows VM configured with a licensed vGPU is started, the VM fails to acquire a license.

Error messages in the following format are written to the NVIDIA service logs:

```
[000000020.860152600 sec] - [Logging.lib]   ERROR: [nvGridLicensing.FlexUtility] 353@FlexUtility::LogFneError : Error: Failed to add trusted storage. Server URL : license-server-url - [1,7E2,2,1[7000003F,0,9B00A7]]
System machine type does not match expected machine type..
```

Workaround
This workaround requires administrator privileges.

1. Stop the NVIDIA Display Container LS service.
2. Delete the contents of the folder %SystemDrive%\Program Files\NVIDIA Corporation\Grid Licensing.
3. Start the NVIDIA Display Container LS service.

Status
Closed

Ref. #
200407287
6.10. `nvidia-smi` reports that vGPU migration is supported on all hypervisors

Description

The command `nvidia-smi vgpu -m` shows that vGPU migration is supported on all hypervisors, even hypervisors or hypervisor versions that do not support vGPU migration.

Status

Closed

Ref. #

200407230

6.11. Hot plugging and unplugging vCPUs causes a blue-screen crash in Windows VMs

Description

Hot plugging or unplugging vCPUs causes a blue-screen crash in Windows VMs that are running NVIDIA vGPU software graphics drivers.

When the blue-screen crash occurs, one of the following error messages may also be seen:

- `SYSTEM_SERVICE_EXCEPTION(nvlddmkm.sys)`
- `DRIVER_IRQL_NOT_LESS_OR_EQUAL(nvlddmkm.sys)`

NVIDIA vGPU software graphics drivers do not support hot plugging and unplugging of vCPUs.

Status

Closed

Ref. #

2101499
6.12. Luxmark causes a segmentation fault on an unlicensed Linux client

Description
If the Luxmark application is run on a Linux guest VM configured with NVIDIA vGPU that is booted without acquiring a license, a segmentation fault occurs and the application core dumps. The fault occurs when the application cannot allocate a CUDA object on NVIDIA vGPUs where CUDA is disabled. On NVIDIA vGPUs that can support CUDA, CUDA is disabled in unlicensed mode.

Status
Not an NVIDIA bug.

Ref. #
200330956

6.13. Resolution is not updated after a VM acquires a license and is restarted

Description
In a Red Enterprise Linux 7.3 guest VM, an increase in resolution from 1024×768 to 2560×1600 is not applied after a license is acquired and the gridd service is restarted. This issue occurs if the multimonitor parameter is added to the xorg.conf file.

Version
Red Enterprise Linux 7.3

Status
Open

Ref. #
200275925
6.14. NVIDIA vGPU encoder and process utilization counters don't work with Windows Performance Counters

Description
GPU encoder and process utilization counter groups are listed in Windows Performance Counters, but no instances of the counters are available. The counters are disabled by default and must be enabled.

Workaround
Enable the counters by running the following sequence of commands from a command shell:

wmic /namespace:nv path System call enableProcessUtilizationPerfCounter
wmic /namespace:nv path System call enableEncoderSessionsPerfCounter

If you need to disable the counters, run the following sequence of commands from a command shell:

wmic /namespace:nv path System call disableProcessUtilizationPerfCounter
wmic /namespace:nv path System call disableEncoderSessionsPerfCounter

Status
Open

Ref. #
1971698

6.15. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS

Description
On Red Hat Enterprise Linux 6.8 and 6.9, and CentOS 6.8 and 6.9, a segmentation fault in DBus code causes the nvidia-gridd service to exit.
The `nvidia-gridd` service uses DBus for communication with NVIDIA X Server Settings to display licensing information through the Manage License page. Disabling the GUI for licensing resolves this issue.

To prevent this issue, the GUI for licensing is disabled by default. You might encounter this issue if you have enabled the GUI for licensing and are using Red Hat Enterprise Linux 6.8 or 6.9, or CentOS 6.8 and 6.9.

Version

Red Hat Enterprise Linux 6.8 and 6.9

CentOS 6.8 and 6.9

Status

Open

Ref. #

- 200358191
- 200319854
- 1895945

6.16. No Manage License option available in NVIDIA X Server Settings by default

Description

By default, the Manage License option is not available in NVIDIA X Server Settings. This option is missing because the GUI for licensing on Linux is disabled by default to work around the issue that is described in A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS.

Workaround

This workaround requires `sudo` privileges.

Do not use this workaround with Red Hat Enterprise Linux 6.8 and 6.9 or CentOS 6.8 and 6.9. To prevent a segmentation fault in DBus code from causing the `nvidia-gridd` service from exiting, the GUI for licensing must be disabled with these OS versions.

1. If NVIDIA X Server Settings is running, shut it down.
Known Issues

2. If the /etc/nvidia/gridd.conf file does not already exist, create it by copying the supplied template file /etc/nvidia/gridd.conf.template.

3. As root, edit the /etc/nvidia/gridd.conf file to set the EnableUI option to TRUE.

4. Start the nvidia-gridd service.

```bash
# sudo service nvidia-gridd start
```

When NVIDIA X Server Settings is restarted, the Manage License option is now available.

Status
Open

6.17. Licenses remain checked out when VMs are forcibly powered off

Description

NVIDIA vGPU software licenses remain checked out on the license server when non-persistent VMs are forcibly powered off.

The NVIDIA service running in a VM returns checked out licenses when the VM is shut down. In environments where non-persistent licensed VMs are not cleanly shut down, licenses on the license server can become exhausted. For example, this issue can occur in automated test environments where VMs are frequently changing and are not guaranteed to be cleanly shut down. The licenses from such VMs remain checked out against their MAC address for seven days before they time out and become available to other VMs.

Resolution

If VMs are routinely being powered off without clean shutdown in your environment, you can avoid this issue by shortening the license borrow period. To shorten the license borrow period, set the LicenseInterval configuration setting in your VM image. For details, refer to Virtual GPU Client Licensing User Guide.

Status
Closed

Ref. #
1694975
6.18. VM bug checks after the guest VM driver for Windows 10 RS2 is installed

Description
When the VM is rebooted after the guest VM driver for Windows 10 RS2 is installed, the VM bug checks. When Windows boots, it selects one of the standard supported video modes. If Windows is booted directly with a display that is driven by an NVIDIA driver, for example a vGPU on Citrix Hypervisor, a blue screen crash occurs.

This issue occurs when the screen resolution is switched from VGA mode to a resolution that is higher than 1920×1200.

Fix
Download and install Microsoft Windows Update KB4020102 from the Microsoft Update Catalog.

Workaround
If you have applied the fix, ignore this workaround.
Otherwise, you can work around this issue until you are able to apply the fix by not using resolutions higher than 1920×1200.

1. Choose a GPU profile in Citrix XenCenter that does not allow resolutions higher than 1920×1200.
2. Before rebooting the VM, set the display resolution to 1920×1200 or lower.

Status
Not an NVIDIA bug

Ref. #
200310861

6.19. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0

Description
GDM fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0 with the following error:
Oh no! Something has gone wrong!

Workaround

Permanently enable permissive mode for Security Enhanced Linux (SELinux).

1. As root, edit the `/etc/selinux/config` file to set `SELINUX` to `permissive`.

   ```
   SELINUX=permissive
   ```

2. Reboot the system.

   ```
   ~]# reboot
   ```

For more information, see **Permissive Mode** in *Red Hat Enterprise Linux 7 SELinux User’s and Administrator’s Guide*.

Status

Not an NVIDIA bug

Ref. #

200167868
Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCEBoARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA GRID, vGPU, Pascal, Quadro, and Tesla are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2013-2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com