Virtual GPU Software R535 for Citrix Hypervisor

Release Notes
Table of Contents

Chapter 1. Release Notes

1.1. NVIDIA vGPU Software Driver Versions

1.2. Compatibility Requirements for the NVIDIA vGPU Manager and Guest VM Driver

1.3. Updates in Release 16.2

1.4. Updates in Release 16.1

1.5. Updates in Release 16.0

Chapter 2. Validated Platforms

2.1. Supported NVIDIA GPUs and Validated Server Platforms

2.1.1. Support for a Mixture of Time-Sliced vGPU Types on the Same GPU

2.1.2. Switching the Mode of a GPU that Supports Multiple Display Modes

2.1.3. Switching the Mode of a Tesla M60 or M6 GPU

2.2. Hypervisor Software Releases

2.3. Guest OS Support

2.3.1. Windows Guest OS Support

2.3.1.1. Windows Guest OS Support in Release 16.2

2.3.1.2. Windows Guest OS Support in Release 16.1

2.3.1.3. Windows Guest OS Support in Release 16.0

2.3.2. Linux Guest OS Support

2.3.2.1. Linux Guest OS Support in Release 16.2

2.3.2.2. Linux Guest OS Support in Release 16.1

2.3.2.3. Linux Guest OS Support in Release 16.0

2.4. NVIDIA CUDA Toolkit Version Support

2.5. XenMotion with vGPU Support

2.6. Multiple vGPU Support

2.6.1. vGPUs that Support Multiple vGPUs Assigned to a VM

2.6.2. Maximum Number of vGPUs Supported per VM

2.6.3. Hypervisor Releases that Support Multiple vGPUs Assigned to a VM

2.7. Peer-to-Peer CUDA Transfers over NVLink Support

2.7.1. vGPUs that Support Peer-to-Peer CUDA Transfers

2.7.2. Hypervisor Releases that Support Peer-to-Peer CUDA Transfers

2.7.3. Guest OS Releases that Support Peer-to-Peer CUDA Transfers

2.7.4. Limitations on Support for Peer-to-Peer CUDA Transfers

2.8. Unified Memory Support

2.8.1. vGPUs that Support Unified Memory

2.8.2. Guest OS Releases that Support Unified Memory
Chapter 3. Known Product Limitations

3.1. vGPUs of different types on the same GPU are not supported.
3.2. NVENC does not support resolutions greater than 4096×4096.
3.3. Nested Virtualization is not supported by NVIDIA vGPU.
3.4. Issues occur when the channels allocated to a vGPU are exhausted.
3.5. Total frame buffer for vGPUs is less than the total frame buffer on the physical GPU.
3.6. Issues may occur with graphics-intensive OpenCL applications on vGPU types with limited frame buffer.
3.7. In pass through mode, all GPUs connected to each other through NVLink must be assigned to the same VM.
3.8. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10.
3.9. NVENC requires at least 1 Gbyte of frame buffer.
3.10. VM running an incompatible NVIDIA vGPU guest driver fails to initialize vGPU when booted.
3.11. Single vGPU benchmark scores are lower than pass-through GPU.
3.12. nvidia-smi fails to operate when all GPUs are assigned to GPU pass-through mode.
3.13. Windows Aero is disabled on Citrix Virtual Apps and Desktops session using 3 or 4 monitors in 2560×1600 resolution.
3.14. VMs configured with large memory fail to initialize vGPU when booted.
3.15. vGPU host driver RPM upgrade fails.

Chapter 4. Resolved Issues

4.1. Issues Resolved in Release 16.2.
4.3. Issues Resolved in Release 16.0.

Chapter 5. Known Issues

5.1. Pixelation occurs on a Windows VM configured with a Tesla T4 vGPU.
5.2. NVIDIA Control Panel is not available in multiuser environments.
5.3. 16.0, 16.1 Only: NVWMI functions for faking EDID have no effect.
5.4. 16.0, 16.1 Only: Windows Server 2022 VMs support only a maximum of nine RDP sessions.
5.5. 16.0 Only: Benign No such file or directory message during capture of configuration data for a bug report.
5.6. 16.0 Only: The NVIDIA L40 GPU brand is incorrectly identified if GSP firmware is disabled.
5.7. NVIDIA Control Panel crashes if a user session is disconnected and reconnected...
5.8. Remote desktop connection is lost and the NVIDIA vGPU software graphics driver is unloaded...
5.9. 16.0 Only: Graphics applications are corrupted on some Windows vGPU VMs......
5.10. CUDA profilers cannot gather hardware metrics on NVIDIA vGPU..................
5.11. NVIDIA vGPU software graphics driver for Windows sends a remote call to
 ngx.download.nvidia.com...
5.12. Multiple RDP session reconnections on Windows Server 2022 can consume all
 frame buffer..
5.13. NLS client fails to acquire a license with the error The allowed time to process
 response has expired..
5.14. With multiple active sessions, NVIDIA Control Panel incorrectly shows that the
 system is unlicensed...
5.15. VP9 and AV1 decoding with web browsers are not supported on Microsoft
 Windows Server 2019...
5.16. Ubuntu guest driver initialization fails with vGPUs and GPUs that support SR-IOV.
5.17. nvidia-smi ignores the second NVIDIA vGPU device added to a Microsoft Windows
 Server 2016 VM..
5.18. After an upgrade of the Linux graphics driver from an RPM package in a licensed
 VM, licensing fails...
5.19. After an upgrade of the Linux graphics driver from a Debian package, the driver
 is not loaded into the VM..
5.20. Desktop session freezes when a VM is migrated to or from a host running an
 NVIDIA vGPU software 14 release..
5.21. The reported NVENC frame rate is double the actual frame rate....................
5.22. Hypervisor host reboots when multiple cloned VMs are simultaneously powered
 on or migrated...
5.23. NVENC does not work with Teradici Cloud Access Software on Windows........
5.24. A licensed client might fail to acquire a license if a proxy is set........................
5.25. Session connection fails with four 4K displays and NVENC enabled on a 2Q, 3Q,
 or 4Q vGPU...
5.26. Disconnected sessions cannot be reconnected or might be reconnected very
 slowly with NVWMI installed..
5.27. Linux VM hangs after vGPU migration to a host running a newer vGPU manager
 version..
5.28. Idle Teradici Cloud Access Software session disconnects from Linux VM........
5.29. No virtual GPU types are listed in Citrix XenCenter...................................
5.30. NVIDIA vGPU software graphics driver fails to load after upgrade on Citrix
 Hypervisor..
5.31. Windows guest VMs with vGPUs or GPUs with large BAR memory settings fail to boot to the desktop in UEFI mode .. 67
5.32. Migrated VM with more than two vGPUs crashes on destination host .. 68
5.33. Driver upgrade in a Linux guest VM with multiple vGPUs might fail .. 68
5.34. NVIDIA Control Panel fails to start if launched too soon from a VM without licensing information ... 69
5.35. VNC client session goes blank and console VNC is corrupted when the guest driver is uninstalled ... 69
5.37. Suspend and resume between hosts running different versions of the vGPU manager fails .. 70
5.38. On Linux, the frame rate might drop to 1 after several minutes .. 71
5.39. Citrix XenCenter displays misleading information about vGPU types 72
5.40. Citrix Virtual Apps and Desktops connection freezes initially .. 73
5.41. DWM crashes randomly occur in Windows VMs .. 74
5.42. NVIDIA Control Panel fails to launch in a platform layer or published image 74
5.43. Remote desktop session freezes with assertion failure and XID error 43 after migration 75
5.44. Citrix Virtual Apps and Desktops session freezes when the desktop is unlocked 75
5.45. NVIDIA vGPU software graphics driver fails after Linux kernel upgrade with DKMS enabled .. 76
5.46. On Citrix Hypervisor, all vGPUs in a VM must be of the same type .. 77
5.47. Console VGA cannot be disabled .. 78
5.48. Console VNC is unusable with Xorg on multiple vGPUs in a VM .. 78
5.49. Migration of VMs configured with vGPU stops before the migration is complete 79
5.50. ECC memory settings for a vGPU cannot be changed by using NVIDIA X Server Settings ... 80
5.51. Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored 80
5.52. Incorrect GPU type shown for Quadro RTX 8000 GPUs in Citrix XenCenter......................... 81
5.53. NVIDIA Notification Icon prevents log off of Citrix Published Application user sessions ... 82
5.54. Host core CPU utilization is higher than expected for moderate workloads 82
5.55. Frame capture while the interactive logon message is displayed returns blank screen 83
5.56. RDS sessions do not use the GPU with some Microsoft Windows Server releases 84
5.57. When the scheduling policy is fixed share, GPU utilization is reported as higher than expected .. 84
5.58. nvidia-smi reports that vGPU migration is supported on all hypervisors 85
5.59. NVIDIA Control Panel Crashes in a VM connected to two 4K displays 86
5.60. vGPU guest VM driver not properly loaded on servers with more than 512 GB or 1 TB or more of system memory.. 86
5.61. Luxmark causes a segmentation fault on an unlicensed Linux client............... 87
5.62. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS... 88
5.63. No Manage License option available in NVIDIA X Server Settings by default...... 89
5.64. Licenses remain checked out when VMs are forcibly powered off.......................90
5.65. Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer... 90
5.66. VM bug checks after the guest VM driver for Windows 10 RS2 is installed.......... 92
5.67. On Citrix Hypervisor 7.0, VMs unexpectedly reboot and Citrix Hypervisor crashes or freezes.. 93
5.68. With no NVIDIA driver installed, Citrix Hypervisor misidentifies Tesla M10 cards... 93
5.69. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0.. 94
5.70. Video goes blank when run in loop in Windows Media Player......................... 95
5.71. Local VGA console is momentarily unblanked when Citrix Virtual Apps and Desktops changes resolution of the VM desktop... 95
5.72. VM bug checks on shutdown/restart when Citrix Virtual Apps and Desktops is installed and NVIDIA driver is uninstalled or upgraded... 96
5.73. Application frame rate may drop when running Citrix Virtual Apps and Desktops at 2560×1600 resolution.. 97
5.74. Windows VM BSOD.. 97
5.75. Windows VM BSOD when upgrading NVIDIA drivers over a Citrix Virtual Apps and Desktops session... 98
5.76. XenCenter does not allow vGPUs to be selected as a GPU type for Linux VMs...... 99
5.77. If X server is killed on a RHEL7 VM running vGPU, XenCenter console may not automatically switch to text console.. 100
5.78. Citrix Virtual Apps and Desktops shows only a black screen when connected to a vGPU VM.. 100
Chapter 1. Release Notes

These Release Notes summarize current status, information on validated platforms, and known issues with NVIDIA vGPU software and associated hardware on Citrix Hypervisor.

Note: The most current version of the documentation for this release of NVIDIA vGPU software can be found online at NVIDIA Virtual GPU Software Documentation.

1.1. NVIDIA vGPU Software Driver Versions

Each release in this release family of NVIDIA vGPU software includes a specific version of the NVIDIA Virtual GPU Manager, NVIDIA Windows driver, and NVIDIA Linux driver.

<table>
<thead>
<tr>
<th>NVIDIA vGPU Software Version</th>
<th>NVIDIA Virtual GPU Manager Version</th>
<th>NVIDIA Windows Driver Version</th>
<th>NVIDIA Linux Driver Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>535.129.03</td>
<td>537.70</td>
<td>535.129.03</td>
</tr>
<tr>
<td>16.1</td>
<td>535.104.06</td>
<td>537.13</td>
<td>535.104.05</td>
</tr>
<tr>
<td>16.0</td>
<td>535.54.06</td>
<td>536.25</td>
<td>535.54.03</td>
</tr>
</tbody>
</table>

For details of which Citrix Hypervisor releases are supported, see Hypervisor Software Releases.
1.2. Compatibility Requirements for the NVIDIA vGPU Manager and Guest VM Driver

The releases of the NVIDIA vGPU Manager and guest VM drivers that you install must be compatible. If you install an incompatible guest VM driver release for the release of the vGPU Manager that you are using, the NVIDIA vGPU fails to load.

See [VM running an incompatible NVIDIA vGPU guest driver fails to initialize vGPU when booted](#).

Note: You must use [NVIDIA License System](#) with every release in this release family of NVIDIA vGPU software. All releases in this release family of NVIDIA vGPU software are incompatible with all releases of the NVIDIA vGPU software license server.

Compatible NVIDIA vGPU Manager and Guest VM Driver Releases

The following combinations of NVIDIA vGPU Manager and guest VM driver releases are compatible with each other.

- NVIDIA vGPU Manager with guest VM drivers from the same release
- NVIDIA vGPU Manager with guest VM drivers from different releases within the same major release branch
- NVIDIA vGPU Manager from a later major release branch with guest VM drivers from the previous branch
- NVIDIA vGPU Manager from a later long-term support branch with guest VM drivers from the previous long-term support branch

Note:

When NVIDIA vGPU Manager is used with guest VM drivers from a different release within the same branch or from the previous branch, the combination supports only the features, hardware, and software (including guest OSes) that are supported on both releases.

For example, if vGPU Manager from release 16.2 is used with guest drivers from release 13.1, the combination does not support Red Hat Enterprise Linux 8.1 because NVIDIA vGPU software release 16.2 does not support Red Hat Enterprise Linux 8.1.

The following table lists the specific software releases that are compatible with the components in the NVIDIA vGPU software 16 major release branch.
Virtual GPU Software R535 for Citrix Hypervisor

RN-06927-001 _v16.0 through 16.2

NVIDIA vGPU Software Component

<table>
<thead>
<tr>
<th>Component</th>
<th>Releases</th>
<th>Compatible Software Releases</th>
</tr>
</thead>
</table>
| NVIDIA vGPU Manager | 16.0 through 16.2 | ‣ Guest VM driver releases 16.0 through 16.2
› All guest VM driver 15.x releases
› All guest VM driver 13.x releases |
| Guest VM drivers | 16.0 through 16.2 | NVIDIA vGPU Manager releases 16.0 through 16.2 |

Incompatible NVIDIA vGPU Manager and Guest VM Driver Releases

The following combinations of NVIDIA vGPU Manager and guest VM driver releases are incompatible with each other.

› NVIDIA vGPU Manager from a later major release branch with guest VM drivers from a production branch two or more major releases before the release of the vGPU Manager

› NVIDIA vGPU Manager from an earlier major release branch with guest VM drivers from a later branch

The following table lists the specific software releases that are incompatible with the components in the NVIDIA vGPU software 16 major release branch.

<table>
<thead>
<tr>
<th>NVIDIA vGPU Software Component</th>
<th>Releases</th>
<th>Incompatible Software Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA vGPU Manager</td>
<td>16.0 through 16.2</td>
<td>All guest VM driver releases 14.x and earlier, except 13.x releases</td>
</tr>
<tr>
<td>Guest VM drivers</td>
<td>16.0 through 16.2</td>
<td>All NVIDIA vGPU Manager releases 15.x and earlier</td>
</tr>
</tbody>
</table>

1.3. Updates in Release 16.2

New Features in Release 16.2

› Security updates - see *Security Bulletin: NVIDIA GPU Display Driver - October 2023*, which is posted shortly after the release date of this software and is listed on the [NVIDIA Product Security](https://www.nvidia.com/page/security.html) page

› Miscellaneous bug fixes
Hardware and Software Support Introduced in Release 16.2

- Newly supported remoting solutions:
 - Citrix Virtual Apps and Desktops version 7 2308

1.4. Updates in Release 16.1

New Features in Release 16.1

- New options in the NVML API and the `nvidia-smi` command for getting the scheduling behavior of time-sliced vGPUs
- Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 16.1

- Support for the following GPUs:
 - NVIDIA L40S
 - NVIDIA RTX 5000 Ada
- Support for XenServer 8 hypervisor

1.5. Updates in Release 16.0

New Features in Release 16.0

- Support for 4K displays with an aspect ratio of 16:10
- Options in the NVML API and the `nvidia-smi` command for controlling the scheduling behavior of time-sliced vGPUs
- Security updates - see Security Bulletin: NVIDIA GPU Display Driver - June 2023, which is posted shortly after the release date of this software and is listed on the NVIDIA Product Security page
- Miscellaneous bug fixes

Newly Supported Hardware and Software in Release 16.0

- Newly supported guest OSes:
 - Red Hat Enterprise Linux 9.2 and 8.8
- Newly supported remoting solutions:
 - Citrix Virtual Apps and Desktops version 7 2305
Feature Support Withdrawn in Release 16.0

- Graphics cards no longer supported:
 - Graphics cards that support only C-series vGPUs, namely:
 - NVIDIA H800 PCIe 80GB
 - NVIDIA H100 PCIe 80GB
 - NVIDIA A800 PCIe 80GB
 - NVIDIA A800 PCIe 80GB liquid cooled
 - NVIDIA A800 HGX 80GB
 - NVIDIA A100 PCIe 80GB
 - NVIDIA A100 PCIe 80GB liquid cooled
 - NVIDIA A100X
 - NVIDIA A100 HGX 80GB
 - NVIDIA A100 PCIe 40GB
 - NVIDIA A100 HGX 40GB
 - NVIDIA A30
 - NVIDIA A30X

 Instead, these graphics cards are supported with NVIDIA AI Enterprise.

- Guest OSes no longer supported:
 - Red Hat Enterprise Linux 9.1, 8.7, and 8.4
 - Ubuntu 18.04
Chapter 2. Validated Platforms

This release family of NVIDIA vGPU software provides support for several NVIDIA GPUs on validated server hardware platforms, Citrix Hypervisor hypervisor software versions, and guest operating systems. It also supports the version of NVIDIA CUDA Toolkit that is compatible with R535 drivers.

2.1. Supported NVIDIA GPUs and Validated Server Platforms

This release of NVIDIA vGPU software on Citrix Hypervisor provides support for several NVIDIA GPUs running on validated server hardware platforms.

For a list of validated server platforms, refer to NVIDIA GRID Certified Servers.

The supported products for each type of NVIDIA vGPU software deployment depend on the GPU.

GPUs Based on the NVIDIA Ada Lovelace Architecture

<table>
<thead>
<tr>
<th>GPU</th>
<th>Supported NVIDIA vGPU Software Products</th>
<th>GPU Pass Through</th>
</tr>
</thead>
</table>
| **Since 16.1: NVIDIA L40S** | ▶ vWS
▶ vPC
▶ vApps | ▶ vWS
▶ vApps |
| NVIDIA L40 | ▶ vWS
▶ vPC
▶ vApps | ▶ vWS
▶ vApps |
| NVIDIA L4 | ▶ vWS
▶ vPC
▶ vApps | ▶ vWS
▶ vApps |
Supported NVIDIA vGPU Software Products

<table>
<thead>
<tr>
<th>GPU</th>
<th>NVIDIA vGPU</th>
<th>GPU Pass Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA RTX 6000 Ada</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
</tbody>
</table>

Since 16.1: NVIDIA RTX 5000 Ada
- vWS
- vPC
- vApps

GPUs Based on the NVIDIA Ampere Architecture

<table>
<thead>
<tr>
<th>GPU</th>
<th>NVIDIA vGPU</th>
<th>GPU Pass Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA A404</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
<tr>
<td>NVIDIA A16</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
<tr>
<td>NVIDIA A10</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
<tr>
<td>NVIDIA A2</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
<tr>
<td>NVIDIA RTX A60004</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
<tr>
<td>NVIDIA RTX A55004</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
</tbody>
</table>
GPUs Based on the NVIDIA Turing Architecture

<table>
<thead>
<tr>
<th>GPU</th>
<th>Supported NVIDIA vGPU Software Products(^1,!^2,!^3)</th>
<th>GPU Pass Through</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NVIDIA vGPU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vWS</td>
<td>vWS</td>
</tr>
<tr>
<td></td>
<td>vPC</td>
<td>vApps</td>
</tr>
<tr>
<td></td>
<td>vApps</td>
<td></td>
</tr>
<tr>
<td>NVIDIA RTX A5000(^4)</td>
<td>vWS, vPC, vApps</td>
<td></td>
</tr>
</tbody>
</table>

GPUs Based on the NVIDIA Volta Architecture

<table>
<thead>
<tr>
<th>GPU</th>
<th>Supported NVIDIA vGPU Software Products(^1,!^2,!^3)</th>
<th>GPU Pass Through</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NVIDIA vGPU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vWS</td>
<td>vWS</td>
</tr>
<tr>
<td></td>
<td>vPC</td>
<td>vApps</td>
</tr>
<tr>
<td></td>
<td>vApps</td>
<td></td>
</tr>
<tr>
<td>Tesla V100 SXM2</td>
<td>vWS, vPC</td>
<td></td>
</tr>
</tbody>
</table>

1. vWS = Virtual Workspace
2. vPC = Virtual Private Cloud
3. vApps = Virtual Applications

Virtual GPU Software R535 for Citrix Hypervisor

RN-06927-001 _v16.0 through 16.2_ | 8
Validated Platforms

Supported NVIDIA vGPU Software Products

<table>
<thead>
<tr>
<th>GPU</th>
<th>NVIDIA vGPU</th>
<th>GPU Pass Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla V100 SXM2 32GB</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
<tr>
<td>Tesla V100 PCIe</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
<tr>
<td>Tesla V100 PCIe 32GB</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
<tr>
<td>Tesla V100S PCIe 32GB</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
<tr>
<td>Tesla V100 FHHL</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
</tbody>
</table>

GPUs Based on the NVIDIA Pascal™ Architecture

Note: XenMotion with vGPU is not supported on any variant of the Tesla P100 GPU.

<table>
<thead>
<tr>
<th>GPU</th>
<th>NVIDIA vGPU</th>
<th>GPU Pass Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla P4</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
<tr>
<td>Tesla P6</td>
<td>vWS, vPC, vApps</td>
<td>vWS, vApps</td>
</tr>
</tbody>
</table>
Validated Platforms

<table>
<thead>
<tr>
<th>GPU</th>
<th>Supported NVIDIA vGPU Software Products</th>
<th>GPU Pass Through</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NVIDIA vGPU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vWS</td>
<td>vPC</td>
</tr>
<tr>
<td>Tesla P40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tesla P100 PCIe 16 GB</td>
<td>vWS</td>
<td>vPC</td>
</tr>
<tr>
<td>Tesla P100 SXM2 16 GB</td>
<td>vWS</td>
<td>vPC</td>
</tr>
<tr>
<td>Tesla P100 PCIe 12GB</td>
<td>vWS</td>
<td>vPC</td>
</tr>
</tbody>
</table>

GPUs Based on the NVIDIA Maxwell Graphic Architecture

<table>
<thead>
<tr>
<th>GPU</th>
<th>Supported NVIDIA vGPU Software Products</th>
<th>GPU Pass Through</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NVIDIA vGPU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vWS</td>
<td>vPC</td>
</tr>
<tr>
<td>Tesla M6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tesla M10</td>
<td>vWS</td>
<td>vPC</td>
</tr>
<tr>
<td>Tesla M60</td>
<td>vWS</td>
<td>vPC</td>
</tr>
</tbody>
</table>

1 The supported products are as follows:
- vWS: NVIDIA RTX Virtual Workstation
2.1.1. Support for a Mixture of Time-Sliced vGPU Types on the Same GPU

Citrix Hypervisor does not support different time-sliced vGPU types on the same GPU. For example, A40-2B and A40-2Q are not supported on the same GPU. All vGPUs on a single GPU must be of the same type. This restriction doesn’t extend across physical GPUs on the same card. Different physical GPUs on the same card may host different types of virtual GPUs at the same time, provided that the vGPUs on any one physical GPU are all of the same type.

2.1.2. Switching the Mode of a GPU that Supports Multiple Display Modes

Some GPUs support display-off and display-enabled modes but must be used in NVIDIA vGPU software deployments in display-off mode.

The GPUs listed in the following table support multiple display modes. As shown in the table, some GPUs are supplied from the factory in display-off mode, but other GPUs are supplied in a display-enabled mode.

<table>
<thead>
<tr>
<th>GPU</th>
<th>Mode as Supplied from the Factory</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA A40</td>
<td>Display-off</td>
</tr>
<tr>
<td>NVIDIA L40</td>
<td>Display-off</td>
</tr>
<tr>
<td>Since 16.1: NVIDIA L40S</td>
<td>Display-off</td>
</tr>
<tr>
<td>Since 16.1: NVIDIA RTX 5000 Ada</td>
<td>Display enabled</td>
</tr>
<tr>
<td>NVIDIA RTX 6000 Ada</td>
<td>Display enabled</td>
</tr>
<tr>
<td>NVIDIA RTX A5000</td>
<td>Display enabled</td>
</tr>
<tr>
<td>NVIDIA RTX A5500</td>
<td>Display enabled</td>
</tr>
<tr>
<td>NVIDIA RTX A6000</td>
<td>Display enabled</td>
</tr>
</tbody>
</table>

A GPU that is supplied from the factory in display-off mode, such as the NVIDIA A40 GPU, might be in a display-enabled mode if its mode has previously been changed.

To change the mode of a GPU that supports multiple display modes, use the displaymodeselector tool, which you can request from the NVIDIA Display Mode Selector Tool page on the NVIDIA Developer website.

Note: Only the GPUs listed in the table support the displaymodeselector tool. Other GPUs that support NVIDIA vGPU software do not support the displaymodeselector tool and, unless otherwise stated, do not require display mode switching.

- vPC: NVIDIA Virtual PC
- vApps: NVIDIA Virtual Applications

2 N/A indicates that the deployment is not supported.
3 vApps is supported only on Windows operating systems.
4 This GPU is supported only in displayless mode. In displayless mode, local physical display connectors are disabled.
2.1.3. **Switching the Mode of a Tesla M60 or M6 GPU**

Tesla M60 and M6 GPUs support compute mode and graphics mode. NVIDIA vGPU requires GPUs that support both modes to operate in graphics mode.

Recent Tesla M60 GPUs and M6 GPUs are supplied in graphics mode. However, your GPU might be in compute mode if it is an older Tesla M60 GPU or M6 GPU or if its mode has previously been changed.

To configure the mode of Tesla M60 and M6 GPUs, use the `gpumodeswitch` tool provided with NVIDIA vGPU software releases. If you are unsure which mode your GPU is in, use the `gpumodeswitch` tool to find out the mode.

Note: Only Tesla M60 and M6 GPUs support the `gpumodeswitch` tool. Other GPUs that support NVIDIA vGPU do not support the `gpumodeswitch` tool and, except as stated in Switching the Mode of a GPU that Supports Multiple Display Modes, do not require mode switching. Even in compute mode, Tesla M60 and M6 GPUs do not support NVIDIA Virtual Compute Server vGPU types. Furthermore, vCS is not supported on any GPU on Citrix Hypervisor.

For more information, refer to [gpumodeswitch User Guide](#).

2.2. **Hypervisor Software Releases**

Reversion to the XenServer Name for Hypervisor Software

Citrix has reverted the name of its hypervisor software for releases after Citrix Hypervisor 8.2 to XenServer. All XenServer updates are identified by the single product name and release number XenServer 8.

For more information, visit the [XenServer](#) website.

Note: The name of the Citrix virtual desktop software product and the format of its release numbers remain unchanged.

Supported Citrix Hypervisor Releases

This release family of NVIDIA vGPU software is supported on the Citrix Hypervisor releases listed in the table.

Note: Support for NVIDIA vGPU software requires the Premium Edition (previously Enterprise Edition) of Citrix Hypervisor. For details, see [Licensing](#) in the Citrix documentation.
Cumulative update releases for a base release of Citrix Hypervisor are compatible with the base release and can also be used with this version of NVIDIA vGPU software unless expressly stated otherwise.

<table>
<thead>
<tr>
<th>Software</th>
<th>Releases Supported</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Since 16.1 : XenServer 8</td>
<td>XenServer 8 and all updates to XenServer 8.</td>
<td>This release supports XenMotion with vGPU on suitable GPUs as listed in XenMotion with vGPU Support.</td>
</tr>
<tr>
<td>Citrix Hypervisor 8.2</td>
<td>RTM build and compatible cumulative update releases</td>
<td>This release supports XenMotion with vGPU on suitable GPUs as listed in XenMotion with vGPU Support.</td>
</tr>
</tbody>
</table>

Supported Virtual Desktop Software Releases

This release supports only the virtual desktop software releases listed in the table. Except where otherwise stated, HDX 3D Pro mode is supported but not required.

<table>
<thead>
<tr>
<th>Software</th>
<th>Releases Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrix Virtual Apps and Desktops</td>
<td>CLU: All versions supported by earlier NVIDIA vGPU software 16 releases are also supported.</td>
</tr>
<tr>
<td>Since 16.2: Version 7 2308</td>
<td>Version 7 2308</td>
</tr>
<tr>
<td></td>
<td>Versions 7 2305, 7 2303, 7 2212, 7 2209, 7 2206, 7 2203, 7 2112, 7 2109, 7 2106, 7 2103, 7 2012, 7 2009, 7 2006, 7 2003, 7 1912, 7 1909, 7 1906, and 7 1903</td>
</tr>
<tr>
<td>XenApp/XenDesktop</td>
<td>Version 7.15</td>
</tr>
<tr>
<td>Note: Version 7.15 is supported only in HDX 3D Pro mode. HDX 3D Pro mode is required to ensure that the NVIDIA GPU can be used unrestricted.</td>
<td></td>
</tr>
</tbody>
</table>
2.3. Guest OS Support

NVIDIA vGPU software supports several Windows releases and Linux distributions as a guest OS. The supported guest operating systems depend on the hypervisor software version.

Note:

Use only a guest OS release that is listed as supported by NVIDIA vGPU software with your virtualization software. To be listed as supported, a guest OS release must be supported not only by NVIDIA vGPU software, but also by your virtualization software. NVIDIA cannot support guest OS releases that your virtualization software does not support.

NVIDIA vGPU software supports only 64-bit guest operating systems. No 32-bit guest operating systems are supported.

2.3.1. Windows Guest OS Support

NVIDIA vGPU software supports only the 64-bit Windows releases listed as a guest OS on Citrix Hypervisor. The releases of Citrix Hypervisor for which a Windows release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

Note:

If a specific release, even an update release, is not listed, it’s not supported.

XenMotion with vGPU is supported on supported Windows guest OS releases.

2.3.1.1. Windows Guest OS Support in Release 16.2

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Citrix Hypervisor Releases</th>
<th>Pass-Through GPU - Citrix Hypervisor Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2022</td>
<td>Citrix Hypervisor 8.2 XenServer 8</td>
<td>Citrix Hypervisor 8.2 XenServer 8</td>
</tr>
<tr>
<td>Windows Server 2019</td>
<td>Citrix Hypervisor 8.2 XenServer 8</td>
<td>Citrix Hypervisor 8.2 XenServer 8</td>
</tr>
<tr>
<td>Windows 11 22H2 and all Windows 11 releases supported by Microsoft up to and including this release</td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Windows 10 2022 Update (22H2) and all Windows 10 releases supported by Microsoft up to and including this release</td>
<td>Citrix Hypervisor 8.2 XenServer 8</td>
<td>Citrix Hypervisor 8.2 XenServer 8</td>
</tr>
</tbody>
</table>
Validated Platforms

2.3.1.2. Windows Guest OS Support in Release 16.1

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Citrix Hypervisor Releases</th>
<th>Pass-Through GPU - Citrix Hypervisor Releases</th>
</tr>
</thead>
</table>
| Windows Server 2022 | Citrix Hypervisor 8.2
XenServer 8 | Citrix Hypervisor 8.2
XenServer 8 |
| Windows Server 2019 | Citrix Hypervisor 8.2
XenServer 8 | Citrix Hypervisor 8.2
XenServer 8 |
| Windows 11 22H2 and all Windows 11 releases supported by Microsoft up to and including this release | XenServer 8 | XenServer 8 |
| Windows 10 2022 Update (22H2) and all Windows 10 releases supported by Microsoft up to and including this release | Citrix Hypervisor 8.2
XenServer 8 | Citrix Hypervisor 8.2
XenServer 8 |

Note:
1. The hardware-accelerated GPU scheduling feature introduced in Windows 10 May 2020 Update (2004) is not supported on GPUs based on the Maxwell architecture and is supported only in pass-through mode on GPUs based on later architectures.

2.3.1.3. Windows Guest OS Support in Release 16.0

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Citrix Hypervisor Releases</th>
<th>Pass-Through GPU - Citrix Hypervisor Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2022</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Windows Server 2019</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Windows 10 2022 Update (22H2) and all Windows 10 releases supported by Microsoft up to and including this release</td>
<td>8.2</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Note:
1. The hardware-accelerated GPU scheduling feature introduced in Windows 10 May 2020 Update (2004) is not supported on GPUs based on the Maxwell architecture and is supported only in pass-through mode on GPUs based on later architectures.
2.3.2. Linux Guest OS Support

NVIDIA vGPU software supports **only** the Linux distributions listed as a guest OS on Citrix Hypervisor. The releases of Citrix Hypervisor for which a Linux release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

Note:

If a specific release, even an update release, is not listed, it’s **not** supported.

XenMotion with vGPU is **not** supported on any Linux guest OS release.

2.3.2.1. Linux Guest OS Support in Release 16.2

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Citrix Hypervisor Releases</th>
<th>Pass-Through GPU - Citrix Hypervisor Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8.8</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8.6</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Rocky Linux 8.4</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Deprecated: CentOS Linux 8 (2105)</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 7.9</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Deprecated: CentOS 7.6-7.8</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Ubuntu 20.04 LTS</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
</tbody>
</table>

1. The hardware-accelerated GPU scheduling feature introduced in Windows 10 May 2020 Update (2004) is **not** supported on GPUs based on the Maxwell architecture and is supported only in pass-through mode on GPUs based on later architectures.
2.3.2.2. Linux Guest OS Support in Release 16.1

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Citrix Hypervisor Releases</th>
<th>Pass-Through GPU - Citrix Hypervisor Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8.8</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8.6</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Rocky Linux 8.4</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Deprecated: CentOS Linux 8 (2105)</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 7.9</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Deprecated: CentOS 7.6-7.8</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
<tr>
<td>Ubuntu 20.04 LTS</td>
<td>Citrix Hypervisor 8.2</td>
<td>Citrix Hypervisor 8.2</td>
</tr>
<tr>
<td></td>
<td>XenServer 8</td>
<td>XenServer 8</td>
</tr>
</tbody>
</table>

2.3.2.3. Linux Guest OS Support in Release 16.0

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Citrix Hypervisor Releases</th>
<th>Pass-Through GPU - Citrix Hypervisor Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8.8</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8.6</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Rocky Linux 8.4</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Deprecated: CentOS Linux 8 (2105)</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 7.9</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Deprecated: CentOS 7.6-7.8</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Ubuntu 20.04 LTS</td>
<td>8.2</td>
<td>8.2</td>
</tr>
</tbody>
</table>
2.4. NVIDIA CUDA Toolkit Version Support

The releases in this release family of NVIDIA vGPU software support NVIDIA CUDA Toolkit 12.1.

To build a CUDA application, the system must have the NVIDIA CUDA Toolkit and the libraries required for linking. For details of the components of NVIDIA CUDA Toolkit, refer to [NVIDIA CUDA Toolkit Release Notes for CUDA 12.1.0](#).

To run a CUDA application, the system must have a CUDA-enabled GPU and an NVIDIA display driver that is compatible with the NVIDIA CUDA Toolkit release that was used to build the application. If the application relies on dynamic linking for libraries, the system must also have the correct version of these libraries.

For more information about NVIDIA CUDA Toolkit, refer to [CUDA Toolkit 12.1 Documentation](#).

Note:

If you are using NVIDIA vGPU software with CUDA on Linux, avoid conflicting installation methods by installing CUDA from a distribution-independent runfile package. Do not install CUDA from a distribution-specific RPM or Deb package.

To ensure that the NVIDIA vGPU software graphics driver is not overwritten when CUDA is installed, deselect the CUDA driver when selecting the CUDA components to install.

For more information, see [NVIDIA CUDA Installation Guide for Linux](#).

2.5. XenMotion with vGPU Support

XenMotion with vGPU is supported only on a subset of supported GPUs, Citrix Hypervisor releases, and guest operating systems.

Note: vGPU migration is disabled for a VM for which any of the following NVIDIA CUDA Toolkit features is enabled:

- Unified memory
- Debuggers
- Profilers

Supported GPUs

- Tesla M6
- Tesla M10
- Tesla M60
Validated Platforms

- Tesla P4
- Tesla P6
- Tesla P40
- Tesla V100 SXM2
- Tesla V100 SXM2 32GB
- Tesla V100 PCIe
- Tesla V100 PCIe 32GB
- Tesla V100S PCIe 32GB
- Tesla V100 FHHL
- Tesla T4
- Quadro RTX 6000
- Quadro RTX 6000 passive
- Quadro RTX 8000
- Quadro RTX 8000 passive
- NVIDIA A2
- NVIDIA A10
- NVIDIA A16
- NVIDIA A40
- NVIDIA RTX A5000
- NVIDIA RTX A5500
- NVIDIA RTX A6000
- NVIDIA L4
- NVIDIA L40
- Since 16.1: NVIDIA L40S
- Since 16.1: NVIDIA RTX 5000 Ada
- NVIDIA RTX 6000 Ada

Supported Hypervisor Software Releases

Citrix Hypervisor 8.2

Since 16.1 : XenServer 8

Supported Guest OS Releases

Windows only. XenMotion with vGPU is not supported on Linux.
Known Issues with XenMotion with vGPU Support

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Affected GPUs</th>
<th>Issue</th>
</tr>
</thead>
</table>
| Migration to or from a host running an NVIDIA vGPU software 14 release | ▶ Tesla T4
▶ Tesla V100 | Desktop session freezes when a VM is migrated to or from a host running an NVIDIA vGPU software 14 release |
| Simultaneous migration of multiple VMs | All GPUs that support XenMotion with vGPU | Hypervisor host reboots when multiple cloned VMs are simultaneously powered on or migrated |
| Migration between hosts with different ECC memory configuration | All GPUs that support XenMotion with vGPU | Migration of VMs configured with vGPU stops before the migration is complete |

2.6. Multiple vGPU Support

To support applications and workloads that are compute or graphics intensive, multiple vGPUs can be added to a single VM. The assignment of more than one vGPU to a VM is supported only on a subset of vGPUs and hypervisor software releases.

2.6.1. vGPUs that Support Multiple vGPUs Assigned to a VM

Only Q-series vGPUs that are allocated all of the physical GPU's frame buffer are supported.

Multiple vGPU Support on the NVIDIA Ada Lovelace Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Since 16.1: NVIDIA L40S</td>
<td>L40S-48Q</td>
</tr>
<tr>
<td>NVIDIA L40</td>
<td>L40-48Q</td>
</tr>
<tr>
<td>NVIDIA L4</td>
<td>L4-24Q</td>
</tr>
<tr>
<td>NVIDIA RTX 6000 Ada</td>
<td>RTX 6000 Ada-48Q</td>
</tr>
<tr>
<td>Since 16.1: NVIDIA RTX 5000 Ada</td>
<td>RTX 5000 Ada-32Q</td>
</tr>
</tbody>
</table>

Multiple vGPU Support on the NVIDIA Ampere GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA A40</td>
<td>A40-48Q See Note (1).</td>
</tr>
</tbody>
</table>
Validated Platforms

Virtual GPU Software R535 for Citrix Hypervisor

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA A16</td>
<td>A16-16Q See Note (1).</td>
</tr>
<tr>
<td>NVIDIA A10</td>
<td>A10-24Q See Note (1).</td>
</tr>
<tr>
<td>NVIDIA A2</td>
<td>A2-16Q See Note (1).</td>
</tr>
<tr>
<td>NVIDIA RTX A6000</td>
<td>A6000-48Q See Note (1).</td>
</tr>
<tr>
<td>NVIDIA RTX A5500</td>
<td>A5500-24Q See Note (1).</td>
</tr>
<tr>
<td>NVIDIA RTX A5000</td>
<td>A5000-24Q See Note (1).</td>
</tr>
</tbody>
</table>

Multiple vGPU Support on the NVIDIA Turing GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla T4</td>
<td>T4-16Q</td>
</tr>
<tr>
<td>Quadro RTX 6000</td>
<td>RTX6000-24Q</td>
</tr>
<tr>
<td>Quadro RTX 6000 passive</td>
<td>RTX6000P-24Q</td>
</tr>
<tr>
<td>Quadro RTX 8000</td>
<td>RTX8000-48Q</td>
</tr>
<tr>
<td>Quadro RTX 8000 passive</td>
<td>RTX8000P-48Q</td>
</tr>
</tbody>
</table>

Multiple vGPU Support on the NVIDIA Volta GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla V100 SXM2 32GB</td>
<td>V100DX-32Q</td>
</tr>
<tr>
<td>Tesla V100 PCIe 32GB</td>
<td>V100D-32Q</td>
</tr>
<tr>
<td>Tesla V100S PCIe 32GB</td>
<td>V100S-32Q</td>
</tr>
<tr>
<td>Tesla V100 SXM2</td>
<td>V100X-16Q</td>
</tr>
<tr>
<td>Tesla V100 PCIe 16GB</td>
<td>V100-16Q</td>
</tr>
<tr>
<td>Tesla V100 FHHL</td>
<td>V100L-16Q</td>
</tr>
</tbody>
</table>

Multiple vGPU Support on the NVIDIA Pascal GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla P100 SXM2</td>
<td>P100X-16Q</td>
</tr>
<tr>
<td>Tesla P100 PCIe 16GB</td>
<td>P100-16Q</td>
</tr>
<tr>
<td>Tesla P100 PCIe 12GB</td>
<td>P100C-12Q</td>
</tr>
<tr>
<td>Tesla P40</td>
<td>P40-24Q</td>
</tr>
<tr>
<td>Tesla P6</td>
<td>P6-16Q</td>
</tr>
<tr>
<td>Tesla P4</td>
<td>P4-8Q</td>
</tr>
</tbody>
</table>
Multiple vGPU Support on the NVIDIA Maxwell GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla M60</td>
<td>M60-8Q</td>
</tr>
<tr>
<td>Tesla M10</td>
<td>M10-8Q</td>
</tr>
<tr>
<td>Tesla M6</td>
<td>M6-8Q</td>
</tr>
</tbody>
</table>

Note:
1. This type of vGPU cannot be assigned with other types of vGPU to the same VM.

2.6.2. Maximum Number of vGPUs Supported per VM

For Citrix Hypervisor, NVIDIA vGPU software supports up to a maximum of 16 vGPUs per VM.

2.6.3. Hypervisor Releases that Support Multiple vGPUs Assigned to a VM

All hypervisor releases that support NVIDIA vGPU software are supported.

2.7. Peer-to-Peer CUDA Transfers over NVLink Support

Peer-to-peer CUDA transfers enable device memory between vGPUs on different GPUs that are assigned to the same VM to be accessed from within the CUDA kernels. NVLink is a high-bandwidth interconnect that enables fast communication between such vGPUs. Peer-to-Peer CUDA transfers over NVLink are supported only on a subset of vGPUs, Citrix Hypervisor releases, and guest OS releases.

2.7.1. vGPUs that Support Peer-to-Peer CUDA Transfers

Only Q-series vGPUs that are allocated all of the physical GPU's frame buffer on physical GPUs that support NVLink are supported.
Peer-to-Peer CUDA Transfer Support on the NVIDIA Ampere GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA A800 PCIe 40GB active cooled</td>
<td>A800-40C</td>
</tr>
<tr>
<td>NVIDIA A40</td>
<td>A40-48Q</td>
</tr>
<tr>
<td>NVIDIA A10</td>
<td>A10-24Q</td>
</tr>
<tr>
<td>NVIDIA RTX A6000</td>
<td>A6000-48Q</td>
</tr>
<tr>
<td>NVIDIA RTX A5500</td>
<td>A5500-24Q</td>
</tr>
<tr>
<td>NVIDIA RTX A5000</td>
<td>A5000-24Q</td>
</tr>
</tbody>
</table>

Peer-to-Peer CUDA Transfer Support on the NVIDIA Turing GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadro RTX 6000</td>
<td>RTX6000-24Q</td>
</tr>
<tr>
<td>Quadro RTX 6000 passive</td>
<td>RTX6000P-24Q</td>
</tr>
<tr>
<td>Quadro RTX 8000</td>
<td>RTX8000-48Q</td>
</tr>
<tr>
<td>Quadro RTX 8000 passive</td>
<td>RTX8000P-48Q</td>
</tr>
</tbody>
</table>

Peer-to-Peer CUDA Transfer Support on the NVIDIA Volta GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla V100 SXM2 32GB</td>
<td>V100DX-32Q</td>
</tr>
<tr>
<td>Tesla V100 SXM2</td>
<td>V100X-16Q</td>
</tr>
</tbody>
</table>

Peer-to-Peer CUDA Transfer Support on the NVIDIA Pascal GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla P100 SXM2</td>
<td>P100X-16Q</td>
</tr>
</tbody>
</table>

2.7.2. Hypervisor Releases that Support Peer-to-Peer CUDA Transfers

Peer-to-Peer CUDA transfers over NVLink are supported on all hypervisor releases that support the assignment of more than one vGPU to a VM. For details, see Multiple vGPU Support.
2.7.3. Guest OS Releases that Support Peer-to-Peer CUDA Transfers

Linux only. Peer-to-Peer CUDA transfers over NVLink are not supported on Windows.

2.7.4. Limitations on Support for Peer-to-Peer CUDA Transfers

- NVSwitch is not supported. Only direct connections are supported.
- PCIe is not supported.
- SLI is not supported.

2.8. Unified Memory Support

Unified memory is a single memory address space that is accessible from any CPU or GPU in a system. It creates a pool of managed memory that is shared between the CPU and GPU to provide a simple way to allocate and access data that can be used by code running on any CPU or GPU in the system. Unified memory is supported only on a subset of vGPUs and guest OS releases.

Note: Unified memory is disabled by default. If used, you must enable unified memory individually for each vGPU that requires it by setting a vGPU plugin parameter. NVIDIA CUDA Toolkit profilers are supported and can be enabled on a VM for which unified memory is enabled.

2.8.1. vGPUs that Support Unified Memory

Only Q-series vGPUs that are allocated all of the physical GPU’s frame buffer on physical GPUs that support unified memory are supported.

Unified Memory Support on the NVIDIA Ada Lovelace GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA L40</td>
<td>L40-48Q</td>
</tr>
<tr>
<td>Since 16.1: NVIDIA L40S</td>
<td>L40S-48Q</td>
</tr>
<tr>
<td>NVIDIA L4</td>
<td>L4-24Q</td>
</tr>
<tr>
<td>NVIDIA RTX 6000 Ada</td>
<td>RTX 6000 Ada-48Q</td>
</tr>
<tr>
<td>Since 16.1: NVIDIA RTX 5000 Ada</td>
<td>RTX 5000 Ada-32Q</td>
</tr>
</tbody>
</table>
Unified Memory Support on the NVIDIA Ampere GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA A800 PCIe 40GB active cooled</td>
<td>A800-40C</td>
</tr>
<tr>
<td></td>
<td>All MIG-backed vGPUs</td>
</tr>
<tr>
<td>NVIDIA A40</td>
<td>A40-48Q</td>
</tr>
<tr>
<td>NVIDIA A16</td>
<td>A16-16Q</td>
</tr>
<tr>
<td>NVIDIA A10</td>
<td>A10-24Q</td>
</tr>
<tr>
<td>NVIDIA A2</td>
<td>A2-16Q</td>
</tr>
<tr>
<td>NVIDIA RTX A6000</td>
<td>A6000-48Q</td>
</tr>
<tr>
<td>NVIDIA RTX A5500</td>
<td>A5500-24Q</td>
</tr>
<tr>
<td>NVIDIA RTX A5000</td>
<td>A5000-24Q</td>
</tr>
</tbody>
</table>

2.8.2. Guest OS Releases that Support Unified Memory

Linux only. Unified memory is not supported on Windows.

2.8.3. Limitations on Support for Unified Memory

- Only Q-series vGPUs that are allocated all of the physical GPU’s frame buffer on physical GPUs that support unified memory are supported. Fractional time-sliced vGPUs are not supported.
- When unified memory is enabled for a VM, XenMotion with vGPU is disabled for the VM.

2.9. NVIDIA Deep Learning Super Sampling (DLSS) Support

NVIDIA vGPU software supports NVIDIA DLSS on NVIDIA RTX Virtual Workstation.

Supported DLSS versions: 2.0. Version 1.0 is not supported.

Supported GPUs:

- NVIDIA L40
- Since 16.1: NVIDIA L40S
- NVIDIA L4
- NVIDIA RTX 6000 Ada
Since 16.1: NVIDIA RTX 5000 Ada

- NVIDIA A40
- NVIDIA A16
- NVIDIA A2
- NVIDIA A10
- NVIDIA RTX A6000
- NVIDIA RTX A5500
- NVIDIA RTX A5000
- Tesla T4
- Quadro RTX 8000
- Quadro RTX 8000 passive
- Quadro RTX 6000
- Quadro RTX 6000 passive

Note: NVIDIA graphics driver components that DLSS requires are installed only if a supported GPU is detected during installation of the driver. Therefore, if the creation of VM templates includes driver installation, the template should be created from a VM that is configured with a supported GPU while the driver is being installed.

Supported applications: only applications that use nvngx_dlss.dll version 2.0.18 or newer
Chapter 3. Known Product Limitations

Known product limitations for this release of NVIDIA vGPU software are described in the following sections.

3.1. vGPUs of different types on the same GPU are not supported

Citrix Hypervisor does not support different time-sliced vGPU types on the same GPU. For example, A40-2B and A40-2Q are not supported on the same GPU. All vGPUs on a single GPU must be of the same type. This restriction doesn’t extend across physical GPUs on the same card. Different physical GPUs on the same card may host different types of virtual GPUs at the same time, provided that the vGPUs on any one physical GPU are all of the same type.

3.2. NVENC does not support resolutions greater than 4096×4096

Description

The NVIDIA hardware-based H.264 video encoder (NVENC) does not support resolutions greater than 4096×4096. This restriction applies to all NVIDIA GPU architectures and is imposed by the GPU encoder hardware itself, not by NVIDIA vGPU software. The maximum supported resolution for each encoding scheme is listed in the documentation for NVIDIA Video Codec SDK. This limitation affects any remoting tool where H.264 encoding is used with a resolution greater than 4096×4096. Most supported remoting tools fall back to software encoding in such scenarios.
Known Product Limitations

Workaround
If your GPU is based on a GPU architecture later than the NVIDIA Maxwell® architecture, use H.265 encoding. H.265 is more efficient than H.264 encoding and has a maximum resolution of 8192×8192. On GPUs based on the NVIDIA Maxwell architecture, H.265 has the same maximum resolution as H.264, namely 4096×4096.

Note: Resolutions greater than 4096×4096 are supported only by the H.265 decoder that 64-bit client applications use. The H.265 decoder that 32-bit applications use supports a maximum resolution of 4096×4096.

Because the client-side Workspace App on Windows is a 32-bit application, resolutions greater than 4096×4096 are not supported for Windows clients of Citrix Virtual Apps and Desktops. Therefore, if you are using a Windows client with Citrix Virtual Apps and Desktops, ensure that you are using H.264 hardware encoding with the default Use video codec for compression Citrix graphics policy setting, namely Actively Changing Regions. This policy setting encodes only actively changing regions of the screen (for example, a window in which a video is playing). Provided that the number of pixels along any edge of the actively changing region does not exceed 4096, H.264 encoding is offloaded to the NVENC hardware encoder.

3.3. Nested Virtualization Is Not Supported by NVIDIA vGPU

NVIDIA vGPU deployments do not support nested virtualization, that is, running a hypervisor in a guest VM. For example, enabling the Hyper-V role in a guest VM running the Windows Server OS is not supported because it entails enabling nested virtualization. Similarly, enabling Windows Hypervisor Platform is not supported because it requires the Hyper-V role to be enabled.

3.4. Issues occur when the channels allocated to a vGPU are exhausted

Description
Issues occur when the channels allocated to a vGPU are exhausted and the guest VM to which the vGPU is assigned fails to allocate a channel to the vGPU. A physical GPU has a fixed number of channels and the number of channels allocated to each vGPU is inversely proportional to the maximum number of vGPUs allowed on the physical GPU.
When the channels allocated to a vGPU are exhausted and the guest VM fails to allocate a channel, the following errors are reported on the hypervisor host or in an NVIDIA bug report:

```
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): Guest attempted to allocate channel above its max channel limit 0xfb
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): VGPU message 6 failed, result code: 0x1a
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): 0xc1d004a1, 0xff0e0000, 0xff0400fb, 0xc36f,
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): 0x1, 0xff1fe314, 0xff1fe038, 0x100b6f000, 0x1000,
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): 0x80000000, 0xff0e0200, 0x0, 0x0, (Not logged),
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): 0x1, 0x0
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): , 0x0
```

Workaround

Use a vGPU type with more frame buffer, thereby reducing the maximum number of vGPUs allowed on the physical GPU. As a result, the number of channels allocated to each vGPU is increased.

3.5. Total frame buffer for vGPUs is less than the total frame buffer on the physical GPU

Some of the physical GPU’s frame buffer is used by the hypervisor on behalf of the VM for allocations that the guest OS would otherwise have made in its own frame buffer. The frame buffer used by the hypervisor is not available for vGPUs on the physical GPU. In NVIDIA vGPU deployments, frame buffer for the guest OS is reserved in advance, whereas in bare-metal deployments, frame buffer for the guest OS is reserved on the basis of the runtime needs of applications.

If error-correcting code (ECC) memory is enabled on a physical GPU that does not have HBM2 memory, the amount of frame buffer that is usable by vGPUs is further reduced. All types of vGPU are affected, not just vGPUs that support ECC memory.

On all GPUs that support ECC memory and, therefore, dynamic page retirement, additional frame buffer is allocated for dynamic page retirement. The amount that is allocated is inversely proportional to the maximum number of vGPUs per physical GPU. All GPUs that support ECC memory are affected, even GPUs that have HBM2 memory or for which ECC memory is disabled.

The approximate amount of frame buffer that NVIDIA vGPU software reserves can be calculated from the following formula:

\[
\text{max-reserved-fb} = \frac{\text{vgpu-profile-size-in-mb}}{16} + 16 + \text{ecc-adjustments} + \text{page-retirement-allocation} + \text{compression-adjustment}
\]
max-reserved-fb
The maximum total amount of reserved frame buffer in Mbytes that is not available for vGPUs.

vgpu-profile-size-in-mb
The amount of frame buffer in Mbytes allocated to a single vGPU. This amount depends on the vGPU type. For example, for the T4-16Q vGPU type, **vgpu-profile-size-in-mb** is 16384.

ecc-adjustments
The amount of frame buffer in Mbytes that is not usable by vGPUs when ECC is enabled on a physical GPU that does not have HBM2 memory.

- If ECC is enabled on a physical GPU that does not have HBM2 memory **ecc-adjustments** is \(fb\text{-without-ecc}/16 \), which is equivalent to 64 Mbytes for every Gbyte of frame buffer assigned to the vGPU. **fb\text{-without-ecc}** is total amount of frame buffer with ECC disabled.
- If ECC is disabled or the GPU has HBM2 memory, **ecc-adjustments** is 0.

page-retirement-allocation
The amount of frame buffer in Mbytes that is reserved for dynamic page retirement.

- On GPUs based on the NVIDIA Maxwell GPU architecture, **page-retirement-allocation** = \(4/\text{max-vgpus-per-gpu} \).
- On GPUs based on NVIDIA GPU architectures after the Maxwell architecture, **page-retirement-allocation** = \(128/\text{max-vgpus-per-gpu} \)

max-vgpus-per-gpu
The maximum number of vGPUs that can be created simultaneously on a physical GPU. This number varies according to the vGPU type. For example, for the T4-16Q vGPU type, **max-vgpus-per-gpu** is 1.

compression-adjustment
The amount of frame buffer in Mbytes that is reserved for the higher compression overhead in vGPU types with 12 Gbytes or more of frame buffer on GPUs based on the Turing architecture.

compression-adjustment depends on the vGPU type as shown in the following table.

<table>
<thead>
<tr>
<th>vGPU Type</th>
<th>Compression Adjustment (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4-16Q</td>
<td>28</td>
</tr>
<tr>
<td>T4-16C</td>
<td>28</td>
</tr>
<tr>
<td>T4-16A</td>
<td>28</td>
</tr>
<tr>
<td>RTX6000-12Q</td>
<td>32</td>
</tr>
<tr>
<td>RTX6000-12C</td>
<td>32</td>
</tr>
<tr>
<td>RTX6000-12A</td>
<td>32</td>
</tr>
<tr>
<td>RTX6000-24Q</td>
<td>104</td>
</tr>
<tr>
<td>RTX6000-24C</td>
<td>104</td>
</tr>
<tr>
<td>RTX6000-24A</td>
<td>104</td>
</tr>
<tr>
<td>vGPU Type</td>
<td>Compression Adjustment (MB)</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>RTX6000P-12Q</td>
<td>32</td>
</tr>
<tr>
<td>RTX6000P-12C</td>
<td></td>
</tr>
<tr>
<td>RTX6000P-12A</td>
<td></td>
</tr>
<tr>
<td>RTX6000P-24Q</td>
<td>104</td>
</tr>
<tr>
<td>RTX6000P-24C</td>
<td></td>
</tr>
<tr>
<td>RTX6000P-24A</td>
<td></td>
</tr>
<tr>
<td>RTX8000-12Q</td>
<td>32</td>
</tr>
<tr>
<td>RTX8000-12C</td>
<td></td>
</tr>
<tr>
<td>RTX8000-12A</td>
<td></td>
</tr>
<tr>
<td>RTX8000-16Q</td>
<td>64</td>
</tr>
<tr>
<td>RTX8000-16C</td>
<td></td>
</tr>
<tr>
<td>RTX8000-16A</td>
<td></td>
</tr>
<tr>
<td>RTX8000-24Q</td>
<td>96</td>
</tr>
<tr>
<td>RTX8000-24C</td>
<td></td>
</tr>
<tr>
<td>RTX8000-24A</td>
<td></td>
</tr>
<tr>
<td>RTX8000-48Q</td>
<td>238</td>
</tr>
<tr>
<td>RTX8000-48C</td>
<td></td>
</tr>
<tr>
<td>RTX8000-48A</td>
<td></td>
</tr>
<tr>
<td>RTX8000P-12Q</td>
<td>32</td>
</tr>
<tr>
<td>RTX8000P-12C</td>
<td></td>
</tr>
<tr>
<td>RTX8000P-12A</td>
<td></td>
</tr>
<tr>
<td>RTX8000P-16Q</td>
<td>64</td>
</tr>
<tr>
<td>RTX8000P-16C</td>
<td></td>
</tr>
<tr>
<td>RTX8000P-16A</td>
<td></td>
</tr>
<tr>
<td>RTX8000P-24Q</td>
<td>96</td>
</tr>
<tr>
<td>RTX8000P-24C</td>
<td></td>
</tr>
<tr>
<td>RTX8000P-24A</td>
<td></td>
</tr>
<tr>
<td>RTX8000P-48Q</td>
<td>238</td>
</tr>
<tr>
<td>RTX8000P-48C</td>
<td></td>
</tr>
<tr>
<td>RTX8000P-48A</td>
<td></td>
</tr>
</tbody>
</table>
For all other vGPU types, *compression-adjustment* is 0.

Note: In VMs running Windows Server 2012 R2, which supports Windows Display Driver Model (WDDM) 1.x, an additional 48 Mbytes of frame buffer are reserved and not available for vGPUs.

3.6. Issues may occur with graphics-intensive OpenCL applications on vGPU types with limited frame buffer

Description

Issues may occur when graphics-intensive OpenCL applications are used with vGPU types that have limited frame buffer. These issues occur when the applications demand more frame buffer than is allocated to the vGPU.

For example, these issues may occur with the Adobe Photoshop and LuxMark OpenCL Benchmark applications:

- When the image resolution and size are changed in Adobe Photoshop, a program error may occur or Photoshop may display a message about a problem with the graphics hardware and a suggestion to disable OpenCL.
- When the LuxMark OpenCL Benchmark application is run, XID error 31 may occur.

Workaround

For graphics-intensive OpenCL applications, use a vGPU type with more frame buffer.

3.7. In pass through mode, all GPUs connected to each other through NVLink must be assigned to the same VM

Description

In pass through mode, all GPUs connected to each other through NVLink must be assigned to the same VM. If a subset of GPUs connected to each other through NVLink is passed through to a VM, unrecoverable error XID 74 occurs when the VM is booted. This
error corrupts the NVLink state on the physical GPUs and, as a result, the NVLink bridge between the GPUs is unusable.

Workaround

Restore the NVLink state on the physical GPUs by resetting the GPUs or rebooting the hypervisor host.

3.8. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10

Description

To reduce the possibility of memory exhaustion, vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on a Windows 10 guest OS.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q

Workaround

Use a profile that supports more than 1 virtual display head and has at least 1 Gbyte of frame buffer.

3.9. NVENC requires at least 1 Gbyte of frame buffer

Description

Using the frame buffer for the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) may cause memory exhaustion with vGPU profiles that have 512 Mbytes or less of frame buffer. To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer. Application GPU acceleration remains fully supported and available for all profiles, including profiles with 512 MBytes or less of frame buffer. NVENC support from both Citrix and VMware is a recent feature and, if you are using an older version, you should experience no change in functionality.

The following vGPU profiles have 512 Mbytes or less of frame buffer:
Known Product Limitations

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q

Workaround

If you require NVENC to be enabled, use a profile that has at least 1 Gbyte of frame buffer.

3.10. VM running an incompatible NVIDIA vGPU guest driver fails to initialize vGPU when booted

Description

A VM running a version of the NVIDIA guest VM driver that is incompatible with the current release of Virtual GPU Manager will fail to initialize vGPU when booted on a Citrix Hypervisor platform running that release of Virtual GPU Manager.

A guest VM driver is incompatible with the current release of Virtual GPU Manager in either of the following situations:

- The guest driver is from a release in a branch two or more major releases before the current release, for example release 9.4.

 In this situation, the Citrix Hypervisor VM’s /var/log/messages log file reports the following error:

 `vmiop_log: (0x0): Incompatible Guest/Host drivers: Guest VGX version is older than the minimum version supported by the Host. Disabling vGPU.`

- The guest driver is from a later release than the Virtual GPU Manager.

 In this situation, the Citrix Hypervisor VM’s /var/log/messages log file reports the following error:

 `vmiop_log: (0x0): Incompatible Guest/Host drivers: Guest VGX version is newer than the maximum version supported by the Host. Disabling vGPU.`

In either situation, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA virtual GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

`Windows has stopped this device because it has reported problems. (Code 43)`

Resolution

Install a release of the NVIDIA guest VM driver that is compatible with current release of Virtual GPU Manager.
3.11. Single vGPU benchmark scores are lower than pass-through GPU

Description

A single vGPU configured on a physical GPU produces lower benchmark scores than the physical GPU run in pass-through mode.

Aside from performance differences that may be attributed to a vGPU’s smaller frame buffer size, vGPU incorporates a performance balancing feature known as Frame Rate Limiter (FRL). On vGPUs that use the best-effort scheduler, FRL is enabled. On vGPUs that use the fixed share or equal share scheduler, FRL is disabled.

FRL is used to ensure balanced performance across multiple vGPUs that are resident on the same physical GPU. The FRL setting is designed to give good interactive remote graphics experience but may reduce scores in benchmarks that depend on measuring frame rendering rates, as compared to the same benchmarks running on a pass-through GPU.

Resolution

FRL is controlled by an internal vGPU setting. On vGPUs that use the best-effort scheduler, NVIDIA does not validate vGPU with FRL disabled, but for validation of benchmark performance, FRL can be temporarily disabled by specifying frame_rate_limiter=0 in the vGPU’s plugin parameters.

- **Citrix Hypervisor 8.1 or later:** Specify frame_rate_limiter=0 in the extra_args parameter for the group to which the vGPU belongs:

  ```
  [root@xenserver ~]# xe vgpu-param-set uuid=vgpu-uuid extra_args=frame_rate_limiter=0
  ```

- **Citrix Hypervisor earlier than 8.1:** Specify frame_rate_limiter=0 in the VM’s platform:vgpu_extra_args parameter:

  ```
  [root@xenserver ~]# xe vm-param-set uuid=vm-uuid platform:vgpu_extra_args="frame_rate_limiter=0"
  ```

The setting takes effect the next time the VM is started or rebooted.

With this setting in place, the VM’s vGPU will run without any frame rate limit. The FRL can be reverted back to its default setting in one of the following ways:

- Removing the vGPU plugin’s parameters:
 - **Citrix Hypervisor 8.1 or later:** Removing the extra_args key the from group to which the vGPU belongs
 - **Citrix Hypervisor earlier than 8.1:** Removing the vgpu_extra_args key from the platform parameter
3.12. **nvidia-smi fails to operate when all GPUs are assigned to GPU pass-through mode**

Description

If all GPUs in the platform are assigned to VMs in pass-through mode, `nvidia-smi` will return an error:

```
[root@xenserver-vgx-test ~]# nvidia-smi
Failed to initialize NVML: Unknown Error
```

This is because GPUs operating in pass-through mode are not visible to `nvidia-smi` and the NVIDIA kernel driver operating in the Citrix Hypervisor dom0.

To confirm that all GPUs are operating in pass-through mode, use XenCenter’s GPU tab to review current GPU assignment:

- Removing `frame_rate_limiter=0` from the `extra_args` or `vgpu_extra_args` key
- Setting `frame_rate_limiter=1`. For example:

 - **Citrix Hypervisor 8.1 or later:**

    ```bash
    [root@xenserver ~]# xe vgpu-param-set uuid=vgpu-uuid
e extra_args=frame_rate_limiter=1
    ```

 - **Citrix Hypervisor earlier than 8.1:**

    ```bash
    [root@xenserver ~]# xe vm-param-set uuid=vm-uuid
platform:vgpu_extra_args="frame_rate_limiter=1"
    ```
Resolution

N/A
3.13. Windows Aero is disabled on Citrix Virtual Apps and Desktops session using 3 or 4 monitors in 2560×1600 resolution

Description

Windows Aero may be disabled when Citrix Virtual Apps and Desktops is connected to a VM with a vGPU or passthrough GPU, with 3 or 4 monitors at 2560×1600 resolution.

This limitation is a limitation of Windows 7. For details, see the Microsoft knowledge base article Desktop background disappears with very large extended desktop on Windows 7.

3.14. VMs configured with large memory fail to initialize vGPU when booted

Description

When starting multiple VMs configured with large amounts of RAM (typically more than 32GB per VM), a VM may fail to initialize vGPU. In this scenario, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA vGPU software GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

The Citrix Hypervisor VM’s /var/log/messages log file contains these error messages:

```bash
vmiop_log: error: NVOS status 0x29
vmiop_log: error: Assertion Failed at 0x7620fd4b:179
vmiop_log: error: 8 frames returned by backtrace
...
vmiop_log: error: VGPU message 12 failed, result code: 0x29
...
vmiop_log: error: NVOS status 0x8
vmiop_log: error: Assertion Failed at 0x7620c8df:280
vmiop_log: error: 8 frames returned by backtrace
...
vmiop_log: error: VGPU message 26 failed, result code: 0x8
```

Resolution

vGPU reserves a portion of the VM’s framebuffer for use in GPU mapping of VM system memory. The reservation is sufficient to support up to 32GB of system memory, and may
be increased to accommodate up to 64GB by specifying `enable_large_sys_mem=1` in the vGPU's plugin parameters:

- **Citrix Hypervisor 8.1 or later:** Specify `enable_large_sys_mem=1` in the `extra_args` parameter for the group to which the vGPU belongs:

  ```
  [root@xenserver ~]# xe vgpu-param-set uuid=vgpu-uuid extra_args=enable_large_sys_mem=1
  ```

- **Citrix Hypervisor earlier than 8.1:** Specify `enable_large_sys_mem=1` in the VM's `platform:vgpu_extra_args` parameter:

  ```
  [root@xenserver ~]# xe vm-param-set uuid=vm-uuid platform:vgpu_extra_args="enable_large_sys_mem=1"
  ```

The setting takes effect the next time the VM is started or rebooted. With this setting in place, less GPU FB is available to applications running in the VM. To accommodate system memory larger than 64GB, the reservation can be further increased by specifying `extra_fb_reservation` in the VM's `platform:vgpu_extra_args` parameter, and setting its value to the desired reservation size in megabytes. The default value of 64M is sufficient to support 64GB of RAM. We recommend adding 2M of reservation for each additional 1GB of system memory. For example, to support 96GB of RAM, set `extra_fb_reservation` to 128:

- **Citrix Hypervisor 8.1 or later:**

  ```
  extra_args="enable_large_sys_mem=1,extra_fb_reservation=128"
  ```

- **Citrix Hypervisor earlier than 8.1:**

  ```
  platform:vgpu_extra_args="enable_large_sys_mem=1,extra_fb_reservation=128"
  ```

The reservation can be reverted back to its default setting in one of the following ways:

- Removing the vGPU plugin's parameters:

 - **Citrix Hypervisor 8.1 or later:** Removing the `extra_args` key from the group to which the vGPU belongs

  ```
  [root@xenserver ~]# xe vgpu-param-set uuid=vgpu-uuid extra_args
  ```

 - **Citrix Hypervisor earlier than 8.1:** Removing the `vgpu_extra_args` key from the `platform` parameter

  ```
  [root@xenserver ~]# xe vm-param-set uuid=vm-uuid platform:vgpu_extra_args
  ```

 - Removing `enable_large_sys_mem` from the `extra_args` or `vgpu_extra_args` key

  ```
  [root@xenserver ~]# xe vgpu-param-set uuid=vgpu-uuid extra_args=enable_large_sys_mem
  ```

 - Setting `enable_large_sys_mem=0`

3.15. vGPU host driver RPM upgrade fails

Description

Upgrading vGPU host driver RPM fails with an error message about failed dependencies on the console.

```
[root@xenserver ~]# rpm -U NVIDIA-vGPU-xenserver-6.5-352.46.x86_64.rpm
error: Failed dependencies:
  NVIDIA-vgx-xenserver conflicts with NVIDIA-vGPU-xenserver-6.5-352.46.x86_64
[root@xenserver ~]#
```
Resolution

Uninstall the older vGPU RPM before installing the latest driver.

Use the following command to uninstall the older vGPU RPM:

```
[root@xenserver ~]# rpm -e NVIDIA-vgx-xserver
```
Chapter 4. Resolved Issues

Only resolved issues that have been previously noted as known issues or had a noticeable user impact are listed. The summary and description for each resolved issue indicate the effect of the issue on NVIDIA vGPU software before the issue was resolved.

4.1. Issues Resolved in Release 16.2

<table>
<thead>
<tr>
<th>Bug ID</th>
<th>Summary and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4309888</td>
<td>16.0, 16.1 Only: NVWMI functions for faking EDID have no effect</td>
</tr>
<tr>
<td></td>
<td>The NVIDIA Enterprise Management Toolkit (NVWMI) functions for faking Extended Display Identification Data (EDID), namely, fakeEDID, fakeEDIDAll, and fakeEDIDOnPort have no effect. This issue affects only Windows guest VMs and can prevent a VM from being enabled with multiple displays. When this issue occurs, unable to fake EDID events can be seen in Event Viewer.</td>
</tr>
<tr>
<td>4242693</td>
<td>16.0, 16.1 Only: Windows Server 2022 VMs support only a maximum of nine RDP sessions</td>
</tr>
<tr>
<td></td>
<td>Windows Server 2022 guest VMs support only a maximum of nine Remote Desktop Protocol (RDP) sessions. An attempt to launch a 10th session on a Windows Server 2022 guest VM fails. When this issue occurs, the following error messages are logged.</td>
</tr>
</tbody>
</table>
| | 2023-08-21T22:55:40.279Z Er(02) vthread-3390694 - vmiop_log: (0x0): Cannot use virtual context buffers in sysmem
2023-08-21T22:55:40.279Z Er(02) vthread-3390694 - vmiop_log: (0x0): Invalid promote context input
2023-08-21T22:55:40.279Z Er(02) vthread-3390694 - vmiop_log: (0x0): VGPU message 111 failed, result code: 0x1f |
4.2. Issues Resolved in Release 16.1

<table>
<thead>
<tr>
<th>Bug ID</th>
<th>Summary and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4142288</td>
<td>16.0 Only: The NVIDIA L40 GPU brand is incorrectly identified if GSP firmware is disabled
If GPU System Processor (GSP) firmware is disabled, the NVIDIA Virtual GPU Manager incorrectly identifies the brand of the NVIDIA L40 GPU. This incorrect identification of the GPU brand might cause performance degradation with some applications that are optimised for features of the NVIDIA L40 that are not available in the incorrect brand. However, the output from the <code>nvidia-smi</code> command is not affected.</td>
</tr>
<tr>
<td>4052185</td>
<td>16.0 Only: Benign No such file or directory message during capture of configuration data for a bug report
While the <code>nvidia-bug-report.sh</code> script on is running on the hypervisor host to capture configuration data for a bug report, the following error message is displayed:
<code>sysctl: cannot stat /proc/sys/vm/compaction_proactiveness: No such file or directory</code></td>
</tr>
<tr>
<td>3641947</td>
<td>16.0 Only: Graphics applications are corrupted on some Windows vGPU VMs
Graphics applications are corrupted on Windows VMs that are configured with one or more vGPUs that are based on the NVIDIA Ampere or NVIDIA Ada Lovelace GPU architecture.</td>
</tr>
</tbody>
</table>

4.3. Issues Resolved in Release 16.0

<table>
<thead>
<tr>
<th>Bug ID</th>
<th>Summary and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096848</td>
<td>Optical Flow object allocation fails on VMs configured with vGPUs based on the NVIDIA Ampere architecture
Optical Flow object allocation fails on VMs configured with vGPUs that reside on GPUs based on the NVIDIA Ampere GPU architecture. This issue has been observed as the failure of the Omniverse Kit container on a VM configured with NVIDIA vGPU.</td>
</tr>
<tr>
<td>3936030</td>
<td>CUDA applications fail on any VM configured with multiple vGPUs when unified memory is enabled</td>
</tr>
<tr>
<td>Bug ID</td>
<td>Summary and Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 3334310 | **CUDA applications fail on any VM configured with multiple vGPUs based on the NVIDIA Ada Lovelace GPU architecture when unified memory is enabled for the VM. Whenever a CUDA application fails, the following message is observed on the hypervisor host:**

VGPU message 2 failed, result code: 0xff100004

NVIDIA Control Panel is started only for the RDP user that logs on first

On all supported Windows Server guest OS releases, **NVIDIA Control Panel** is started only for the RDP user that logs on first. Other users cannot start **NVIDIA Control Panel**. If more than one RDP user is logged on when **NVIDIA Control Panel** is started, it always opens in the session of the RDP user that logged on first, irrespective of which user started **NVIDIA Control Panel**. Furthermore, on Windows Server 2016, **NVIDIA Control Panel** crashes if a user session is disconnected and then reconnected while **NVIDIA Control Panel** is open. |
Chapter 5. Known Issues

5.1. Pixelation occurs on a Windows VM configured with a Tesla T4 vGPU

Description

Users might experience poor graphics quality on a Windows VM that is configured with a vGPU on a Tesla T4 GPU. This issue can cause random pixelation on the entire screen, or only on some patches of the screen. No errors are reported or written to the log files when this issue occurs.

Workaround

Contact NVIDIA Enterprise Support for assistance with a workaround for this issue.

Status

Open

Ref. #

3973158

5.2. NVIDIA Control Panel is not available in multiuser environments

Description

After the NVIDIA vGPU software graphics driver for Windows is installed, the NVIDIA Control Panel app might be missing from the system. This issue typically occurs when multiple users connect to virtual machines by using remote desktop applications such as Microsoft RDP, VMware Horizon, and Citrix Virtual Apps and Desktops.
This issue occurs because the NVIDIA Control Panel app is now distributed through the Microsoft Store. The NVIDIA Control Panel app might fail to be installed when the NVIDIA vGPU software graphics driver for Windows is installed if the Microsoft Store app is disabled, the system is not connected to the Internet, or installation of apps from the Microsoft Store is blocked by your system settings.

To determine whether the NVIDIA Control Panel app is installed on your system, use the Windows Settings app or the Get-AppxPackage Windows PowerShell command.

To use the Windows Settings app:

1. From the Windows Start menu, choose Settings > Apps > Apps & features.
2. In the Apps & features window, type nvidia control panel in the search box and confirm that the NVIDIA Control Panel app is found.

To use the Get-AppxPackage Windows PowerShell command:

1. Run Windows PowerShell as Administrator.
2. Determine whether the NVIDIA Control Panel app is installed for the current user.

   ```powershell
   PS C:\> Get-AppxPackage -Name NVIDIACorp.NVIDIAControlPanel
   ```

3. Determine whether the NVIDIA Control Panel app is installed for all users.

   ```powershell
   PS C:\> Get-AppxPackage -AllUsers -Name NVIDIACorp.NVIDIAControlPanel
   ```

This example shows that the NVIDIA Control Panel app is installed for the users Administrator, pliny, and trajan.

```powershell
Name                      : NVIDIACorp.NVIDIAControlPanel
Publisher                 : CN=D6816951-877F-493B-B4EE-41AB9419C326
Architecture             : X64
ResourceId               :
Version                  : 8.1.964.0
PackageFullName          : NVIDIACorp.NVIDIAControlPanel_8.1.964.0_x64_56jybvy8sckqj
InstallLocation          : C:\Program Files\WindowsApps\NVIDIACorp.NVIDIAControlPanel_8.1.964.0_x64_56jybvy8sckqj
IsFramework              : False
PackageFamilyName        : NVIDIACorp.NVIDIAControlPanel_56jybvy8sckqj
PublisherId              : 56jybvy8sckqj
PackageUserInformation   :
S-1-12-1-530092550-1307989247-1105462437-500 [Administrator]: Installed,
S-1-12-1-530092550-1307989247-1105462437-1002 [pliny]: Installed,
S-1-12-1-530092550-1307989247-1105462437-1003 [trajan]: Installed
```

Preventing this Issue

To prevent this issue from occurring, ensure that:
Known Issues

- The Microsoft Store app is enabled.
- Installation of Microsoft Store apps is not blocked by your system settings.
- No local or group policies are set to block Microsoft Store apps.

Workaround

If the NVIDIA Control Panel app is missing from a system that is running Windows 11 or a modern version of Windows 10, you can install the NVIDIA Control Panel app by using the winget command-line tool of Windows Package Manager.

Note: The winget command-line tool is not available on the Windows Server OS.

Before using the winget command-line tool to install the NVIDIA Control Panel app, ensure that the following prerequisites are met:

- Your system is connected to the Internet.
- The Microsoft Store app is enabled.
- Packages on which winget depends, such as Microsoft.UI.Xaml and Microsoft.VCLibs.x64, are installed.

To use the winget command-line tool to install the NVIDIA Control Panel app, run the following command:

```plaintext
PS C:\> winget install "NVIDIA Control Panel" --id 9NF8H0H7WMLT -s msstore --accept-package-agreements --accept-source-agreements
```

For information about how to download and use the latest winget version, refer to Use the winget tool to install and manage applications on the Microsoft documentation site.

If the issue persists, contact NVIDIA Enterprise Support for further assistance.

Status
Open

Ref. #
3999308

5.3. 16.0, 16.1 Only: NVWMI functions for faking EDID have no effect

Description

The NVIDIA Enterprise Management Toolkit (NVWMI) functions for faking Extended Display Identification Data (EDID), namely, fakeEDID, fakeEDIDAll, and fakeEDIDOnPort
have no effect. This issue affects only Windows guest VMs and can prevent a VM from being enabled with multiple displays. When this issue occurs, unable to fake EDID events can be seen in Event Viewer.

Status
Resolved in NVIDIA vGPU software 16.2

Ref. #
4309888

5.4. 16.0, 16.1 Only: Windows Server 2022 VMs support only a maximum of nine RDP sessions

Description
Windows Server 2022 guest VMs support only a maximum of nine Remote Desktop Protocol (RDP) sessions. An attempt to launch a 10th session on a Windows Server 2022 guest VM fails. When this issue occurs, the following error messages are logged.

2023-08-21T22:55:40.279Z Er(02) vthread-3390694 - vmiop_log: (0x0): Cannot use virtual context buffers in sysmem
2023-08-21T22:55:40.279Z Er(02) vthread-3390694 - vmiop_log: (0x0): Invalid promote context input
2023-08-21T22:55:40.279Z Er(02) vthread-3390694 - vmiop_log: (0x0): VGPU message 111 failed, result code: 0x1f

Version
This issue affects only Windows Server 2022 guest VMs that are configured with NVIDIA vGPU.

Status
Resolved in NVIDIA vGPU software 16.2

Resolution of this issue increases the maximum number of RDP sessions to 16. Issues similar to this issue might still occur if the channels allocated to a vGPU are exhausted. For more information, refer to Issues occur when the channels allocated to a vGPU are exhausted.

Ref. #
4242693
5.5. 16.0 Only: Benign No such file or directory message during capture of configuration data for a bug report

Description

While the nvidia-bug-report.sh script on is running on the hypervisor host to capture configuration data for a bug report, the following error message is displayed:

sysctl: cannot stat /proc/sys/vm/compaction_proactiveness: No such file or directory

Workaround

Ignore this message as it is benign. The bug report is generated correctly.

Status

Resolved in NVIDIA vGPU software 16.1

Ref. #

4052185

5.6. 16.0 Only: The NVIDIA L40 GPU brand is incorrectly identified if GSP firmware is disabled

Description

If GPU System Processor (GSP) firmware is disabled, the NVIDIA Virtual GPU Manager incorrectly identifies the brand of the NVIDIA L40 GPU. This incorrect identification of the GPU brand might cause performance degradation with some applications that are optimised for features of the NVIDIA L40 that are not available in the incorrect brand. However, the output from the nvidia-smi command is not affected.

This issue occurs only if GPU System Processor (GSP) firmware is disabled. It does not occur if GSP firm is enabled.
5.7. **NVIDIA Control Panel crashes if a user session is disconnected and reconnected**

Description

On all supported Windows Server guest OS releases, **NVIDIA Control Panel** crashes if a user session is disconnected and then reconnected while **NVIDIA Control Panel** is open.

Version

This issue affects all supported Windows Server guest OS releases.

Status

Open

Ref. #

4086605

5.8. **Remote desktop connection is lost and the NVIDIA vGPU software graphics driver is unloaded**

Description

The remote desktop connection is lost and the NVIDIA vGPU software graphics driver is unloaded after an attempt to access a VM over RDP and VMware Horizon agent direct connect. After an attempt to log in again, a black screen is displayed.

When this issue occurs, the following errors are written to the log files on the guest VM:

- A timeout detection and recovery (TDR) error:
Known Issues

Virtual GPU Software R535 for Citrix Hypervisor

RN-06927-001 _v16.0 through 16.2

- **5.9. 16.0 Only: Graphics applications are corrupted on some Windows vGPU VMs**

Description

Graphics applications are corrupted on Windows VMs that are configured with one or more vGPUs that are based on the NVIDIA Ampere or NVIDIA Ada Lovelace GPU architecture.

Status

Resolved in NVIDIA vGPU software 16.1

```text
vmiop_log: (0x0): Timeout occurred, reset initiated.
vmiop_log: (0x0): TDR_DUMP:0x52445456 0x006907d0 0x000001cc 0x00000001

▶ XID error 43:
vmiop_log: (0x0): XID 43 detected on physical_chid

▶ vGPU error 22:
vmiop_log: (0x0): VGPU message 22 failed

▶ Guest driver unloaded error:
vmiop_log: (0x0): Guest driver unloaded!
```

Workaround

To recover from this issue, reboot the VM.

To prevent this issue from occurring, disable translation lookaside buffer (TLB) invalidation by setting the vGPU plugin parameter `tlb_invalidate_enabled` to 0.

Status

Open

Ref. #

3596327

Ref. #

3641947
5.10. CUDA profilers cannot gather hardware metrics on NVIDIA vGPU

Description
NVIDIA CUDA Toolkit profilers cannot gather hardware metrics on NVIDIA vGPU. This issue affects only traces that gather hardware metrics. Other traces are not affected by this issue and work normally.

Version
This issue affects NVIDIA vGPU software releases starting with 15.2.

Status
Open

Ref. #
4041169

5.11. NVIDIA vGPU software graphics driver for Windows sends a remote call to ngx.download.nvidia.com

Description
After the NVIDIA vGPU software graphics for Windows has been installed in the guest VM, the driver sends a remote call to ngx.download.nvidia.com to download and install additional components. Such a remote call might be a security issue.

Workaround
Before running the NVIDIA vGPU software graphics driver installer, disable the remote call to ngx.download.nvidia.com by setting the following Windows registry key:

[HKEY_LOCAL_MACHINE\SOFTWARE\NVIDIA Corporation\Global\NGXCore]
"EnableOTA"=dword:00000000

Note: If this Windows registry key is set to 1 or deleted, the remote call to ngx.download.nvidia.com is enabled again.
5.12. Multiple RDP session reconnections on Windows Server 2022 can consume all frame buffer

Description
Multiple RDP session reconnections in a Windows Server 2022 guest VM can consume all the frame buffer of a vGPU or physical GPU. When this issue occurs, users' screens become black, their sessions are disconnected but left intact, and they cannot log on again. The following error message is written to the event log on the hypervisor host:
The Desktop Window Manager process has exited.
(Process exit code: 0xe0464645, Restart count: 1, Primary display device ID:)

Version
This issue affects only the Windows Server 2022 guest OS.

Workaround
Periodically restart the Windows Server 2022 guest VM to prevent all frame buffer from being consumed.

Ref. #
3583766
5.13. **NLS client fails to acquire a license with the error** "The allowed time to process response has expired"

Description

A licensed client of NVIDIA License System (NLS) fails to acquire a license with the error "The allowed time to process response has expired." This error can affect clients of a Cloud License Service (CLS) instance or a Delegated License Service (DLS) instance.

This error occurs when the time difference between the system clocks on the client and the server that hosts the CLS or DLS instance is greater than 10 minutes. A common cause of this error is the failure of either the client or the server to adjust its system clock when daylight savings time begins or ends. The failure to acquire a license is expected to prevent clock windback from causing licensing errors.

Workaround

Ensure that system clock time of the client and any server that hosts a DLS instance match the current time in the time zone where they are located.

To prevent this error from occurring when daylight savings time begins or ends, enable the option to automatically adjust the system clock for daylight savings time:

- **Windows**: Set the *Adjust for daylight saving time automatically* option.
- **Linux**: Use the *hwclock* command.

Status

Not a bug

Ref. #

3859889
5.14. With multiple active sessions, **NVIDIA Control Panel** incorrectly shows that the system is unlicensed

Description

In an environment with multiple active desktop sessions, the **Manage License** page of **NVIDIA Control Panel** shows that a licensed system is unlicensed. However, the `nvidia-smi` command and the management interface of the NVIDIA vGPU software license server correctly show that the system is licensed. When an active session is disconnected and reconnected, the **NVIDIA Display Container** service crashes.

The **Manage License** page incorrectly shows that the system is unlicensed because of stale data in **NVIDIA Control Panel** in an environment with multiple sessions. The data is stale because **NVIDIA Control Panel** fails to get and update the settings for remote sessions when multiple sessions or no sessions are active in the VM. The **NVIDIA Display Container** service crashes when a session is reconnected because the session is not active at the moment of reconnection.

Status

Open

Ref. #

3761243

5.15. VP9 and AV1 decoding with web browsers are not supported on Microsoft Windows Server 2019

Description

VP9 and AV1 decoding with web browsers are not supported on Microsoft Windows Server 2019 and later supported releases. This issue occurs because starting with Windows Server 2019, the required codecs are not included with the OS and are not available through the **Microsoft Store** app. As a result, hardware decoding is not available
for viewing YouTube videos or using collaboration tools such as Google Meet in a web browser.

Version
This issue affects Microsoft Windows Server releases starting with Windows Server 2019.

Status
Not an NVIDIA bug

Ref. #
200756564

5.16. Ubuntu guest driver initialization fails with vGPUs and GPUs that support SR-IOV

Description
Initialization of the NVIDIA vGPU software graphics driver fails for Ubuntu guest VMs configured with NVIDIA vGPUs or pass-through GPUs that support SR-IOV. An NVIDIA vGPU that supports SR-IOV resides on a physical GPU that supports SR-IOV with NVIDIA vGPU software, such as a GPU based on the NVIDIA Ampere architecture. This issue affects only guest VMs running a version of the Ubuntu OS with kernel version 5.13 or later, such as Ubuntu 20.04.

The failure of the driver to initialize is caused by an issue with extended Message Signaled Interrupts (MSI-X). When this issue occurs, the following error message is written to the kernel log file /var/log/kern.log in the guest VM:

RmInitAdapter failed!

Status
Open

Ref. #
3660894
5.17. nvidia-smi ignores the second NVIDIA vGPU device added to a Microsoft Windows Server 2016 VM

Description

After a second NVIDIA vGPU device is added to a Microsoft Windows Server 2016 VM, the device does not appear in the output from the nvidia-smi command. This issue occurs only if the VM is already running NVIDIA vGPU software for the existing NVIDIA vGPU device when the second device is added to the VM.

The nvidia-smi command cannot retrieve the guest driver version, license status, and accounting mode of the second NVIDIA vGPU device.

```
nvidia-smi vgpu --query
GPU 00000000:37:00.0
  Active vGPUs : 1
  vGPU ID : 3251695793
  VM Name : SVR-Reg-W(P)-KuIn
  vGPU Name : GRID V100D-32Q
  vGPU Type : 185
  vGPU UUID : 29097249-2359-11b2-8a5b-8e89686496b
  Guest Driver Version : 537.13
  License Status : Licensed
  Accounting Mode : Disabled
...
GPU 00000000:86:00.0
  Active vGPUs : 1
  vGPU ID : 3251695797
  VM Name : SVR-Reg-W(P)-KuIn
  vGPU Name : GRID V100D-32Q
  vGPU Type : 185
  vGPU UUID : 2926dd83-2359-11b2-8b13-5f22f0f74801
  Guest Driver Version : Not Available
  License Status : N/A
  Accounting Mode : N/A
```

Version

This issue affects only VMs that are running Microsoft Windows Server 2016 as a guest OS.

Workaround

To avoid this issue, configure the guest VM with both NVIDIA vGPU devices before installing the NVIDIA vGPU software graphics driver.
If you encounter this issue after the VM is configured, use one of the following workarounds:

- Reinstall the NVIDIA vGPU software graphics driver.
- Forcibly uninstall the Microsoft Basic Display Adapter and reboot the VM.
- Upgrade the guest OS on the VM to Microsoft Windows Server 2019.

Status

Not an NVIDIA bug

Ref. #

3562801

5.18. After an upgrade of the Linux graphics driver from an RPM package in a licensed VM, licensing fails

Description

After the NVIDIA vGPU software graphics driver for Linux is upgraded from an RPM package in a licensed VM, licensing fails. The `nvidia-smi vgpu -q` command shows the driver version and license status as N/A. Restarting the `nvidia-gridd` service fails with a `Unit not found` error.

Workaround

Perform a clean installation of the NVIDIA vGPU software graphics driver for Linux from an RPM package.

1. Remove the currently installed driver.
2. Install the new version of the driver.

```
rpm -iv nvidia-linux-grid-525_535.129.03_amd64.rpm
```

Status

Open

Ref. #

3512766
5.19. After an upgrade of the Linux graphics driver from a Debian package, the driver is not loaded into the VM

Description

After the NVIDIA vGPU software graphics driver for Linux is upgraded from a Debian package, the driver is not loaded into the VM.

Workaround

Use one of the following workarounds to load the driver into the VM:

- Reboot the VM.
- Remove the `nvidia` module from the Linux kernel and reinsert it into the kernel.

1. Remove the `nvidia` module from the Linux kernel.

   ```
   sudo rmmod nvidia
   ```
2. Reinsert the `nvidia` module into the Linux kernel.

   ```
   sudo modprobe nvidia
   ```

Status

Not a bug

Ref. #

200748806

5.20. Desktop session freezes when a VM is migrated to or from a host running an NVIDIA vGPU software 14 release

Description

When a VM configured with a Tesla V100 or Tesla T4 vGPU is migrated between a host running an NVIDIA vGPU software 14 release and a host running a an NVIDIA vGPU
Known Issues

Virtual GPU Software R535 for Citrix Hypervisor

RN-06927-001_v16.0 through 16.2

5.21. The reported NVENC frame rate is double the actual frame rate

Description

The frame rate in frames per second (FPS) for the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) reported by the nvidia-smi encodersessions command and NVWMI is double the actual frame rate. Only the reported frame rate is incorrect. The actual encoding of frames is not affected.

This issue affects only Windows VMs that are configured with NVIDIA vGPU.

Status

Open

Ref. #

2997564
5.22. Hypervisor host reboots when multiple cloned VMs are simultaneously powered on or migrated

Description
When multiple cloned VMs are simultaneously powered on or migrated, the hypervisor host reboots. No crash dump is generated and no error messages related to the reboot are written to the log files `daemon.log` or `kern.log`.

Version
This issue affects only Citrix Hypervisor 8.2.

Status
Open

Ref. #
200726850

5.23. NVENC does not work with Teradici Cloud Access Software on Windows

Description
The NVIDIA hardware-based H.264/HEVC video encoder (NVENC) does not work with Teradici Cloud Access Software on Windows. This issue affects NVIDIA vGPU and GPU pass through deployments.

This issue occurs because the check that Teradici Cloud Access Software performs on the DLL signer name is case sensitive and NVIDIA recently changed the case of the company name in the signature certificate.

Status
Not an NVIDIA bug
This issue is resolved in the latest 21.07 and 21.03 Teradici Cloud Access Software releases.

Ref. #
200749065

5.24. A licensed client might fail to acquire a license if a proxy is set

Description
If a proxy is set with a system environment variable such as HTTP_PROXY or HTTPS_PROXY, a licensed client might fail to acquire a license.

Workaround
Perform this workaround on each affected licensed client.

1. Add the address of the NVIDIA vGPU software license server to the system environment variable NO_PROXY.

 The address must be specified exactly as it is specified in the client's license server settings either as a fully-qualified domain name or an IP address. If the NO_PROXY environment variable contains multiple entries, separate the entries with a comma (,).

 If high availability is configured for the license server, add the addresses of the primary license server and the secondary license server to the system environment variable NO_PROXY.

2. Restart the NVIDIA driver service that runs the core NVIDIA vGPU software logic.

 ▶ On Windows, restart the NVIDIA Display Container service.
 ▶ On Linux, restart the nvidia-gridd service.

Status
Closed

Ref. #
200704733
5.25. **Session connection fails with four 4K displays and NVENC enabled on a 2Q, 3Q, or 4Q vGPU**

Description

Desktop session connections fail for a 2Q, 3Q, or 4Q vGPU that is configured with four 4K displays and for which the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) is enabled. This issue affects only Teradici Cloud Access Software sessions on Linux guest VMs.

This issue is accompanied by the following error message:

This Desktop has no resources available or it has timed out

This issue is caused by insufficient frame buffer.

Workaround

Ensure that sufficient frame buffer is available for all the virtual displays that are connected to a vGPU by changing the configuration in one of the following ways:

- Reducing the number of virtual displays. The number of 4K displays supported with NVENC enabled depends on the vGPU.

<table>
<thead>
<tr>
<th>vGPU</th>
<th>4K Displays Supported with NVENC Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Q</td>
<td>1</td>
</tr>
<tr>
<td>3Q</td>
<td>2</td>
</tr>
<tr>
<td>4Q</td>
<td>3</td>
</tr>
</tbody>
</table>

- Disabling NVENC. The number of 4K displays supported with NVENC disabled depends on the vGPU.

<table>
<thead>
<tr>
<th>vGPU</th>
<th>4K Displays Supported with NVENC Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Q</td>
<td>2</td>
</tr>
<tr>
<td>3Q</td>
<td>2</td>
</tr>
<tr>
<td>4Q</td>
<td>4</td>
</tr>
</tbody>
</table>

- Using a vGPU type with more frame buffer. Four 4K displays with NVENC enabled on any Q-series vGPU with at least 6144 MB of frame buffer are supported.

Status

Not an NVIDIA bug
5.26. **Disconnected sessions cannot be reconnected or might be reconnected very slowly with NVWMI installed**

Description
Disconnected sessions cannot be reconnected or might be reconnected very slowly when the NVIDIA Enterprise Management Toolkit (NVWMI) is installed. This issue affects Citrix Virtual Apps and Desktops and VMware Horizon sessions on Windows guest VMs.

Workaround
Uninstall NVWMI.

Status
Open

Ref. #
200701959

5.27. **Linux VM hangs after vGPU migration to a host running a newer vGPU manager version**

Description
When a Linux VM configured with a Tesla V100 or Tesla T4 vGPU is migrated from a host that is running a vGPU manager 11 release before 11.6 to a host that is running a vGPU manager 13 release, the VM hangs. After the migration, the destination host and VM become unstable. When this issue occurs, XID error 31 is written to the log files on the destination hypervisor host.
Known Issues

Version
This issue affects migration from a host that is running a vGPU manager 11 release before 11.6 to a host that is running a vGPU manager 13 release.

Workaround
If the VM is configured with a Tesla T4 vGPU, perform the following sequence of steps before attempting the migration:

1. Upgrade the host that is running a vGPU manager 11 release to release 11.6 or a later vGPU manager 11 release.
2. Disconnect any remoting tool that is using NVENC.

Note: You cannot use this workaround for a VM that is configured with a Tesla V100 vGPU.

Status
Open

Ref. #
200691445

5.28. Idle Teradici Cloud Access Software session disconnects from Linux VM

Description
After a Teradici Cloud Access Software session has been idle for a short period of time, the session disconnects from the VM. When this issue occurs, the error messages NVOS status 0x19 and vGPU Message 21 failed are written to the log files on the hypervisor host. This issue affects only Linux guest VMs.

Status
Open

Ref. #
200689126
5.29. No virtual GPU types are listed in Citrix XenCenter

Description
No virtual GPU (vGPU) types are listed on the Select virtual GPU type drop-down list in Citrix XenCenter. However, the command `nvidia-smi vgpu -s` lists all supported vGPU types. This issue occurs because the driver version number of the Virtual GPU Manager contains multiple decimal points and is misinterpreted by Citrix XenCenter.

Version
Citrix Hypervisor 8.2

Resolution
Apply Hotfix XS82E002 - For Citrix Hypervisor 8.2 from Citrix.

Status
Not an NVIDIA bug. Resolved by Citrix in hotfix XS82E002 for Citrix Hypervisor 8.2

Ref. #
200653755
5.30. **NVIDIA vGPU software graphics driver fails to load after upgrade on Citrix Hypervisor**

Description

NVIDIA vGPU software graphics driver fails to load after an upgrade of NVIDIA vGPU software from an 11.x release to a 12.x release on Citrix Hypervisor. This issue occurs because the hypervisor name in the RPM package name has changed from `xenserver` to `CitrixHypervisor`.

The attempted upgrade fails its dependency checks as follows:

```
[root@localhost ~]# rpm -Uvh NVIDIA-vGPU-CitrixHypervisor-8.2-535.129.03.x86_64.rpm
error: Failed dependencies:
NVIDIA-vGPU-xenserver conflicts with NVIDIA-vGPU-CitrixHypervisor-1:8.2-535.129.03.x86_64
```

Workaround

1. Determine the full name of the installed RPM package for the Virtual GPU Manager.

   ```
   [root@localhost ~]# rpm -qa | grep NV
   NVIDIA-vGPU-xenserver-8.2-525.125.03.x86_64
   ```

2. Remove the installed RPM package for the Virtual GPU Manager.

   ```
   [root@localhost ~]# rpm -ev NVIDIA-vGPU-xenserver-8.2-525.125.03.x86_64
   Preparing packages...
   NVIDIA-vGPU-xenserver-1:8.2-525.125.03.x86_64
   ```

3. Perform a fresh installation of the latest RPM package for the Virtual GPU Manager.

   ```
   [root@localhost ~]# rpm -ivh NVIDIA-vGPU-CitrixHypervisor-8.2-535.129.03.x86_64.rpm
   Preparing...                                               ################################# [100%]
   Updating / installing...                                 1:NVIDIA-vGPU-CitrixHypervisor-1:8.8-535.129.03.x86_64[100%]
   ```

4. Reboot the hypervisor host.

   ```
   [root@localhost ~]# reboot
   ```

Status

Open

Ref. #

200682984
5.31. Windows guest VMs with vGPUs or GPUs with large BAR memory settings fail to boot to the desktop in UEFI mode

Description

Windows guest VMs configured with vGPUs or physical GPUs that have large BAR memory settings fail to boot to the desktop in UEFI mode. The VM can be reached through its IP address but the desktop session is blank after the connection to the VM is established.

By default, Citrix Hypervisor creates a VM in UEFI boot mode and the boot mode of a VM cannot be changed after the VM is created.

Version

Citrix Hypervisor 8.2

Workaround

Delete the VM and re-create it, selecting BIOS Boot mode when you specify the installation method for the OS software on the new VM.

Status

Open

Ref. #

200676622
5.32. Migrated VM with more than two vGPUs crashes on destination host

Description
When a VM that is configured with more than two vGPUs is migrated, the VM crashes on the destination host. When this issue occurs, the log file on the hypervisor host is flooded with NVOS status messages 0x23, 0x33, 0x5, and 0x21 and vGPU failure messages 4, 6, 7, 9, 12, 14, 19, 21, 23, 26, 32, 43, 54, and 56.

Status
Open

Ref. #
200660221

5.33. Driver upgrade in a Linux guest VM with multiple vGPUs might fail

Description
Upgrading the NVIDIA vGPU software graphics driver in a Linux guest VM with multiple vGPUs might fail. This issue occurs if the driver is upgraded by overinstalling the new release of the driver on the current release of the driver while the nvidia-gridd service is running in the VM.

Workaround
1. Stop the nvidia-gridd service.
2. Try again to upgrade the driver.

Status
Open

Ref. #
200633548
5.34. **NVIDIA Control Panel** fails to start if launched too soon from a VM without licensing information

Description

If NVIDIA licensing information is not configured on the system, any attempt to start **NVIDIA Control Panel** by right-clicking on the desktop within 30 seconds of the VM being started fails.

Workaround

Restart the VM and wait at least 30 seconds before trying to launch **NVIDIA Control Panel**.

Status

Open

Ref. #

200623179

5.35. **VNC client session goes blank and console VNC is corrupted when the guest driver is uninstalled**

Description

When the NVIDIA vGPU software graphics driver is uninstalled from a Windows 10 guest VM for which the boot mode is UEFI, the VNC client session goes blank and console VNC is corrupted.

This issue affects only Windows 10 guest VMs for which the boot mode is UEFI. It does **not** affect Windows 10 guest VMs for which the boot mode is BIOS.

Workaround

Reboot the VM by using Citrix XenCenter.
5.36. Citrix Virtual Apps and Desktops session corruption occurs in the form of residual window borders

Description
When a window is dragged across the desktop in a Citrix Virtual Apps and Desktops session, corruption of the session in the form of residual window borders occurs.

Version
This issue affects only Citrix Virtual Apps and Desktops version 7 2003

Workaround
Use Citrix Virtual Apps and Desktops version 7 1912 or 2006.

5.37. Suspend and resume between hosts running different versions of the vGPU manager fails

Description
Suspending a VM configured with vGPU on a host running one version of the vGPU manager and resuming the VM on a host running a version from an older main release
Known Issues

Virtual GPU Software R535 for Citrix Hypervisor

RN-06927-001 _v16.0 through 16.2 | 71

branch fails. For example, suspending a VM on a host that is running the vGPU manager from release 16.2 and resuming the VM on a host running the vGPU manager from release 15.4 fails. When this issue occurs, the error There were no servers available to complete the specified operation is reported on Citrix XenCenter.

Status
Not an NVIDIA bug

Ref. #
200602087

5.38. On Linux, the frame rate might drop to 1 after several minutes

Description
On Linux, the frame rate might drop to 1 frame per second (FPS) after NVIDIA vGPU software has been running for several minutes. Only some applications are affected, for example, glxgears. Other applications, such as Unigine Heaven, are not affected. This behavior occurs because Display Power Management Signaling (DPMS) for the Xorg server is enabled by default and the display is detected to be inactive even when the application is running. When DPMS is enabled, it enables power saving behavior of the display after several minutes of inactivity by setting the frame rate to 1 FPS.

Workaround

1. If necessary, stop the Xorg server.

 # /etc/init.d/xorg stop

2. In a plain text editor, edit the /etc/X11/xorg.conf file to set the options to disable DPMS and disable the screen saver.

 a). In the Monitor section, set the DPMS option to false.

 Option "DPMS" "false"

 b). At the end of the file, add a ServerFlags section that contains option to disable the screen saver.

 Section "ServerFlags"
 Option "BlankTime" "0"
 EndSection

 c). Save your changes to /etc/X11/xorg.conf file and quit the editor.

3. Start the Xorg server.

 # etc/init.d/xorg start
Status
Open

Ref. #
200605900

5.39. Citrix XenCenter displays misleading information about vGPU types

Description
The GPU type drop-down list in the Citrix XenCenter management GUI displays misleading information about the maximum combined resolution supported by Q-series and B-series vGPU types. The GUI lists the maximum number of displays supported and the highest resolution supported in a manner that implies a maximum combined resolution higher than is actually supported. These vGPU types support the number of displays listed only at resolutions lower than the resolution listed and support the resolution listed only with fewer displays than the number listed.

For example, as shown in the following screen capture, the GUI lists a resolution of 5120×2880 and four displays for the V100-1Q vGPU type. However, this vGPU type supports only one display at a resolution of 5120×2880 and supports a maximum of four displays only at resolutions of 2560×1600 and lower.

Version
All supported Citrix Hypervisor versions.
Workaround

For information about display configurations supported by Q-series and B-series vGPU types, see Virtual GPU Software User Guide.

Status

Not an NVIDIA bug

Ref. #

200556224

5.40. Citrix Virtual Apps and Desktops connection freezes initially

Description

When -0B and -0Q vGPU types are used with Citrix Virtual Apps and Desktops version 7 1903 and later versions, the session freezes or a black screen is seen when the connection is first made. When this issue occurs, the error message DXGI_ERROR_DEVICE_REMOVED is displayed. The affected versions of Citrix Virtual Apps and Desktops use Microsoft DDAPI.

Version

Citrix Virtual Apps and Desktops version 7 1903 and later versions

Workaround

Disable the use hardware encoding for video codec Citrix policy, which is enabled by default.

Status

Open

Ref. #

200494400
5.41. **DWM crashes randomly occur in Windows VMs**

Description
Desktop Windows Manager (DWM) crashes randomly occur in Windows VMs, causing a blue-screen crash and the bug check `CRITICAL_PROCESS_DIED`. Computer Management shows problems with the primary display device.

Version
This issue affects Windows 10 1809, 1903 and 1909 VMs.

Status
Not an NVIDIA bug

Ref. #
2730037

5.42. **NVIDIA Control Panel fails to launch in a platform layer or published image**

Description
When NVIDIA vGPU software is used with Citrix App Layering and a platform layer for a vGPU is being configured, **NVIDIA Control Panel** might fail to launch. The driver might be working normally or it might fail with code 31 or code 43.

For more information and a workaround for this issue, see [NVIDIA Control Panel fails to launch in platform layer or published image](#) in the Citrix Support Knowledge Center.
5.43. Remote desktop session freezes with assertion failure and XID error 43 after migration

Description

After multiple VMs configured with vGPU on a single hypervisor host are migrated simultaneously, the remote desktop session freezes with an assertion failure and XID error 43. This issue affects only GPUs that are based on the Volta GPU architecture. It does not occur if only a single VM is migrated.

When this error occurs, the following error messages are logged to the Citrix Hypervisor log file /var/log/messages:

```
Jan  3 14:35:48 ch81-m1 vgpu-12[8050]: error: vmiop_log: NVOS status 0x1f
Jan  3 14:35:48 ch81-m1 vgpu-12[8050]: error: vmiop_log: Assertion Failed at 0x4b8cacf6:286
...  
Jan  3 14:35:59 ch81-m1 vgpu-12[8050]: error: vmiop_log: (0x0): XID 43 detected on physical_chid:0x174, guest_chid:0x14
```

Status

Open

Ref. #

200581703

5.44. Citrix Virtual Apps and Desktops session freezes when the desktop is unlocked

Description

When a Citrix Virtual Apps and Desktops session that is locked is unlocked by pressing `Ctrl+Alt+Del`, the session freezes. This issue affects only VMs that are running Microsoft Windows 10 1809 as a guest OS.

Version

Microsoft Windows 10 1809 guest OS
Workaround

Restart the VM.

Status

Not an NVIDIA bug

Ref. #

2767012

5.45. NVIDIA vGPU software graphics driver fails after Linux kernel upgrade with DKMS enabled

Description

After the Linux kernel is upgraded (for example by running `sudo apt full-upgrade`) with Dynamic Kernel Module Support (DKMS) enabled, the `nvidia-smi` command fails to run. If DKMS is enabled, an upgrade to the Linux kernel triggers a rebuild of the NVIDIA vGPU software graphics driver. The rebuild of the driver fails because the compiler version is incorrect. Any attempt to reinstall the driver fails because the kernel fails to build.

When the failure occurs, the following messages are displayed:

```
-> Installing DKMS kernel module:
   ERROR: Failed to run '/usr/sbin/dkms build -m nvidia -v 535.54.03 -k 5.3.0-28-generic':
   Kernel preparation unnecessary for this kernel. Skipping...
   Building module:
   cleaning build area...
   'make' -j8 NV_EXCLUDE_BUILD_MODULES='' KERNEL_UNAME=5.3.0-28-generic
   IGNORE_CC_MISMATCH='' modules... (bad exit status: 2)
   ERROR (dkms apport): binary package for nvidia: 535.54.03 not found
   Error! Bad return status for module build on kernel: 5.3.0-28-generic
   (x86_64)
   Consult /var/lib/dkms/nvidia/ 535.54.03/build/make.log for more information.
   -> error.
   ERROR: Failed to install the kernel module through DKMS. No kernel module
   was installed;
   please try installing again without DKMS, or check the DKMS logs for more
   information.
   ERROR: Installation has failed. Please see the file '/var/log/nvidia-installer.log' for details.
   You may find suggestions on fixing installation problems in the README
```
Workaround
When installing the NVIDIA vGPU software graphics driver with DKMS enabled, use one of
the following workarounds:

‣ Before running the driver installer, install the `dkms` package, then run the driver
 installer with the `-dkms` option.
‣ Run the driver installer with the `--no-cc-version-check` option.

Status
Not a bug.

Ref. #
2836271

5.46. On Citrix Hypervisor, all vGPUs in a VM must be of the same type

Description
When a VM on Citrix Hypervisor is configured with multiple vGPUs, all vGPUs must be
of the same type. Citrix Hypervisor does not support the assignment of multiple vGPUs of
different types to a single VM.

What happens when you try to assign a different type of vGPU than the vGPUs already
assigned to a VM depends on the Citrix utility that you are using.

‣ If you are using Citrix XenCenter, only vGPUs of the same type as the vGPUs already
 assigned are available for selection.
‣ If you are using the `xe` command, the command fails and the following error message is displayed:

 Cannot create a virtual GPU that is incompatible with the existing types on the
 VM.

Status
Not an NVIDIA bug.

Ref. #
200568154
5.47. Console VGA cannot be disabled

Description

In Citrix Hypervisor releases since 8.1, a VM’s console VGA interface cannot be disabled by using the command `xe vm-param-set uuid=vm-uuid platform:vgpu_extra_args="disable_vnc=1"`. This behavior is the result of the following changes that Citrix introduced in Citrix Hypervisor release 8.1:

- The command `xe vm-param-set` for assigning plugin configuration parameters has been withdrawn.
- Plugin parameters can no longer be set for vGPUs that were created by using Citrix XenCenter. They can be set only for vGPUs that were created from the command line by using the `xe` command.

Version

Since Citrix Hypervisor release 8.1

Workaround

Create the vGPU by using the `xe` command and specify plugin parameters for the group to which the vGPU belongs as explained in Virtual GPU Software User Guide.

Status

Not a bug

Ref. #

200569785

5.48. Console VNC is unusable with Xorg on multiple vGPUs in a VM

Description

If a Linux VM is configured with multiple vGPUs and the Xorg display server is running on more than one vGPU in the VM, severe corruption in console VNC is observed.
Workaround

Ensure that the Xorg display server is running on only one vGPU in the VM.

Status

Not an NVIDIA bug.

Ref. #

200568261

5.49. Migration of VMs configured with vGPU stops before the migration is complete

Description

When a VM configured with vGPU is migrated to another host, the migration stops before it is complete. When this issue occurs, the message The VGPU is not compatible with any PGPU in the destination. appears in the Citrix XenCenter management GUI.

This issue occurs if the ECC memory configuration (enabled or disabled) on the source and destination hosts are different. The ECC memory configuration on both the source and destination hosts must be identical.

Workaround

Before attempting to migrate the VM again, ensure that the ECC memory configuration on both the source and destination hosts are identical.

Status

Not an NVIDIA bug

Ref. #

200520027
5.50. **ECC memory settings for a vGPU cannot be changed by using NVIDIA X Server Settings**

Description

The ECC memory settings for a vGPU cannot be changed from a Linux guest VM by using **NVIDIA X Server Settings**. After the ECC memory state has been changed on the **ECC Settings** page and the VM has been rebooted, the ECC memory state remains unchanged.

Workaround

Use the `nvidia-smi` command in the guest VM to enable or disable ECC memory for the vGPU as explained in [Virtual GPU Software User Guide](#).

If the ECC memory state remains unchanged even after you use the `nvidia-smi` command to change it, use the workaround in [Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored](#).

Status

Open

Ref. #

200523086

5.51. **Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored**

Description

After the ECC memory state for a Linux vGPU VM has been changed by using the `nvidia-smi` command and the VM has been rebooted, the ECC memory state might remain unchanged.

This issue occurs when multiple NVIDIA configuration files in the system cause the kernel module option for setting the ECC memory state `RMGuestECCState` in `/etc/modprobe.d/nvidia.conf` to be ignored.
When the `nvidia-smi` command is used to enable ECC memory, the file `/etc/modprobe.d/nvidia.conf` is created or updated to set the kernel module option `RMGuestECCState`. Another configuration file in `/etc/modprobe.d/` that contains the keyword `NVreg_RegistryDwordsPerDevice` might cause the kernel module option `RMGuestECCState` to be ignored.

Workaround

This workaround requires administrator privileges.

1. Move the entry containing the keyword `NVreg_RegistryDwordsPerDevice` from the other configuration file to `/etc/modprobe.d/nvidia.conf`.
2. Reboot the VM.

Status

Open

Ref. #

200505777

5.52. Incorrect GPU type shown for Quadro RTX 8000 GPUs in Citrix XenCenter

Description

On the **GPU** tab in **Citrix XenCenter**, Quadro RTX 8000 GPUs are incorrectly shown as `[QUADRO RTX 6000]`.

However, the virtual GPU types for a Quadro RTX 8000 GPU are listed correctly.

NVIDIA vGPU software does not support systems with a mixture of GPU types. Therefore, you can assume that any GPU in a system that you know to contain Quadro RTX 8000 GPUs that is shown as `[QUADRO RTX 6000]` is, in fact, a Quadro RTX 8000 GPU.

Status

Not an NVIDIA bug

Ref. #

200492607
5.53. **NVIDIA Notification Icon prevents log off of Citrix Published Application user sessions**

Description

By default on Windows Server operating systems, the **NVIDIA Notification Icon** application is started with every Citrix Published Application user session. This application might prevent the Citrix Published Application user session from being logged off even after the user has quit all other applications.

Resolution

Disable the **NVIDIA Notification Icon** application for Citrix Published Application user sessions as explained in *Virtual GPU Software User Guide*.

Status

Resolved by the provision of Windows registry keys for disabling the **NVIDIA Notification Icon** application for Citrix Published Application user sessions.

Ref. #

2206368

5.54. **Host core CPU utilization is higher than expected for moderate workloads**

Description

When GPU performance is being monitored, host core CPU utilization is higher than expected for moderate workloads. For example, host CPU utilization when only a small number of VMs are running is as high as when several times as many VMs are running.

Workaround

Disable monitoring of the following GPU performance statistics:

- vGPU engine usage by applications across multiple vGPUs
5.55. **Frame capture while the interactive logon message is displayed returns blank screen**

Description

Because of a known limitation with NvFBC, a frame capture while the interactive logon message is displayed returns a blank screen.

An NvFBC session can capture screen updates that occur after the session is created. Before the logon message appears, there is no screen update after the message is shown and, therefore, a blank screen is returned instead. If the NvFBC session is created after this update has occurred, NvFBC cannot get a frame to capture.

Workaround

See [Black Screen at Logon with Nvidia HDX 3D Pro enabled](#) in the Citrix knowledge base.

Status

Not a bug

Ref. #

2115733
5.56. RDS sessions do not use the GPU with some Microsoft Windows Server releases

Description

When some releases of Windows Server are used as a guest OS, Remote Desktop Services (RDS) sessions do not use the GPU. With these releases, the RDS sessions by default use the Microsoft Basic Render Driver instead of the GPU. This default setting enables 2D DirectX applications such as Microsoft Office to use software rendering, which can be more efficient than using the GPU for rendering. However, as a result, 3D applications that use DirectX are prevented from using the GPU.

Version

- Windows Server 2019
- Windows Server 2016
- Windows Server 2012

Solution

Change the local computer policy to use the hardware graphics adapter for all RDS sessions.

2. Set the **Use the hardware default graphics adapter for all Remote Desktop Services sessions** option.

5.57. When the scheduling policy is fixed share, GPU utilization is reported as higher than expected

Description

When the scheduling policy is fixed share, GPU engine utilization can be reported as higher than expected for a vGPU.
For example, GPU engine usage for six P40-4Q vGPUs on a Tesla P40 GPU might be reported as follows:

```
[root@localhost:~] nvidia-smi vgpu
Mon Aug 20 10:33:18 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.42                 Driver Version: 390.42                    |
|-------------------------------+--------------------------------+------------|
| GPU  Name                     | Bus-Id                         | GPU-Util   |
|      vGPU ID    Name          | VM ID    VM Name               | vGPU-Util  |
|===============================+================================+============|
|   0  Tesla P40                | 00000000:81:00.0               |  99%       |
| 85109      GRID P40-4Q   | 85110    win7-xmpl-146048-1    |     32%    |
| 87195      GRID P40-4Q   | 87196    win7-xmpl-146048-2    |     39%    |
| 88095      GRID P40-4Q   | 88096    win7-xmpl-146048-3    |     26%    |
| 89170      GRID P40-4Q   | 89171    win7-xmpl-146048-4    |      0%    |
| 90475      GRID P40-4Q   | 90476    win7-xmpl-146048-5    |      0%    |
| 93363      GRID P40-4Q   | 93364    win7-xmpl-146048-6    |      0%    |
+-------------------------------+--------------------------------+------------+
|   1  Tesla P40                | 00000000:85:00.0               |   0%       |
+-------------------------------+--------------------------------+------------+
```

The vGPU utilization of vGPU 85109 is reported as 32%. For vGPU 87195, vGPU utilization is reported as 39%. And for 88095, it is reported as 26%. However, the expected vGPU utilization of any vGPU should not exceed approximately 16.7%.

This behavior is a result of the mechanism that is used to measure GPU engine utilization.

Status

Open

Ref. #

2227591

5.58. **nvidia-smi reports that vGPU migration is supported on all hypervisors**

Description

The command `nvidia-smi vgpu -m` shows that vGPU migration is supported on all hypervisors, even hypervisors or hypervisor versions that do not support vGPU migration.

Status

Closed

Ref. #

200407230
5.59. **NVIDIA Control Panel Crashes in a VM connected to two 4K displays**

Description

When **NVIDIA Control Panel** is started in a VM connected through a pass-through GPU to two 4K displays, a **Citrix HDX 3D Pro Warning** pop-up window opens containing the following error message:

Full screen applications are not supported on Citrix HDX 3D Pro. Press Ok to exit

NVIDIA Control Panel then crashes.

After the VM is rebooted, **NVIDIA Control Panel** is available again.

Version

Citrix Virtual Apps and Desktops 7.16

Status

Not an NVIDIA bug

Ref. #

200393766

5.60. **vGPU guest VM driver not properly loaded on servers with more than 512 GB or 1 TB or more of system memory**

Description

If PV IOMMU is enabled, support for vGPU is limited to servers with a maximum of 512 GB of system memory. On servers with more than 512 GB of system memory and PV IOMMU enabled, the guest VM driver is not properly loaded. **Device Manager** marks the vGPU with a yellow exclamation point.

If PV IOMMU is disabled, support for vGPU is limited to servers with less than 1 TB of system memory. This limitation applies only to systems with supported GPUs based on the Maxwell architecture: Tesla M6, Tesla M10, and Tesla M60. On servers with 1 TB or
more of system memory, VMs configured with vGPU fail to power on. However, support for GPU pass through is not affected by this limitation.

Resolution

1. If PV IOMMU is enabled, disable it.

 `[root@xenserver ~]# /opt/xensource/libexec/xen-cmdline --set-xen iommu=dom0-passthrough`

2. If the server has 1 TB or more of system memory, limit the amount of system memory on the server to 1 TB minus 16 GB.

 If the server has less than 1 TB or more of system memory, omit this step.

3. Reboot the server.

Status

Not an NVIDIA bug

Ref. #

1799582

5.61. Luxmark causes a segmentation fault on an unlicensed Linux client

Description

If the Luxmark application is run on a Linux guest VM configured with NVIDIA vGPU that is booted without acquiring a license, a segmentation fault occurs and the application core dumps. The fault occurs when the application cannot allocate a CUDA object on NVIDIA vGPUs where CUDA is disabled. On NVIDIA vGPUs that can support CUDA, CUDA is disabled in unlicensed mode.

Status

Not an NVIDIA bug.

Ref. #

200330956
5.62. A segmentation fault in DBus code causes `nvidia-gridd` to exit on Red Hat Enterprise Linux and CentOS

Description

On Red Hat Enterprise Linux 6.8 and 6.9, and CentOS 6.8 and 6.9, a segmentation fault in DBus code causes the `nvidia-gridd` service to exit.

The `nvidia-gridd` service uses DBus for communication with NVIDIA X Server Settings to display licensing information through the Manage License page. Disabling the GUI for licensing resolves this issue.

To prevent this issue, the GUI for licensing is disabled by default. You might encounter this issue if you have enabled the GUI for licensing and are using Red Hat Enterprise Linux 6.8 or 6.9, or CentOS 6.8 and 6.9.

Version

Red Hat Enterprise Linux 6.8 and 6.9
CentOS 6.8 and 6.9

Status

Open

Ref. #

- 200358191
- 200319854
- 1895945
5.63. No **Manage License** option available in **NVIDIA X Server Settings** by default

Description

By default, the **Manage License** option is not available in **NVIDIA X Server Settings**. This option is missing because the GUI for licensing on Linux is disabled by default to work around the issue that is described in [A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS](#).

Workaround

This workaround requires `sudo` privileges.

```
Note: Do not use this workaround with Red Hat Enterprise Linux 6.8 and 6.9 or CentOS 6.8 and 6.9. To prevent a segmentation fault in DBus code from causing the nvidia-gridd service from exiting, the GUI for licensing must be disabled with these OS versions.
```

If you are licensing a physical GPU for vCS, you **must** use the configuration file `/etc/nvidia/gridd.conf`.

1. If **NVIDIA X Server Settings** is running, shut it down.
2. If the `/etc/nvidia/gridd.conf` file does not already exist, create it by copying the supplied template file `/etc/nvidia/gridd.conf.template`.
3. As root, edit the `/etc/nvidia/gridd.conf` file to set the `EnableUI` option to `TRUE`.
   ```bash
   # sudo service nvidia-gridd start
   ``
4. Start the `nvidia-gridd` service.

When **NVIDIA X Server Settings** is restarted, the **Manage License** option is now available.

**Status**

Open
5.64. Licenses remain checked out when VMs are forcibly powered off

Description
NVIDIA vGPU software licenses remain checked out on the license server when non-persistent VMs are forcibly powered off.

The NVIDIA service running in a VM returns checked out licenses when the VM is shut down. In environments where non-persistent licensed VMs are not cleanly shut down, licenses on the license server can become exhausted. For example, this issue can occur in automated test environments where VMs are frequently changing and are not guaranteed to be cleanly shut down. The licenses from such VMs remain checked out against their MAC address for seven days before they time out and become available to other VMs.

Resolution
If VMs are routinely being powered off without clean shutdown in your environment, you can avoid this issue by shortening the license borrow period. To shorten the license borrow period, set the LicenseInterval configuration setting in your VM image. For details, refer to Virtual GPU Client Licensing User Guide.

Status
Closed

Ref. #
1694975

5.65. Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer

Description
Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer.

This issue typically occurs in the following situations:
Known Issues

- Full screen 1080p video content is playing in a browser. In this situation, the session hangs and session reconnection fails.
- Multiple display heads are used with Citrix Virtual Apps and Desktops or VMware Horizon on a Windows 10 guest VM.
- Higher resolution monitors are used.
- Applications that are frame-buffer intensive are used.
- NVENC is in use.

To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer.

When memory exhaustion occurs, the NVIDIA host driver reports Xid error 31 and Xid error 43 in the Citrix Hypervisor /var/log/messages file.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q

The root cause is a known issue associated with changes to the way that recent Microsoft operating systems handle and allow access to overprovisioning messages and errors. If your systems are provisioned with enough frame buffer to support your use cases, you should not encounter these issues.

Workaround

- Use an appropriately sized vGPU to ensure that the frame buffer supplied to a VM through the vGPU is adequate for your workloads.
- Monitor your frame buffer usage.
- If you are using Windows 10, consider these workarounds and solutions:
  - Use a profile that has 1 Gbyte of frame buffer.
  - Optimize your Windows 10 resource usage.

To obtain information about best practices for improved user experience using Windows 10 in virtual environments, complete the NVIDIA GRID vGPU Profile Sizing Guide for Windows 10 download request form.

For more information, see also Windows 10 Optimization for XenDesktop on the Citrix blog.

Status

Open
Ref. #

- 200130864
- 1803861

5.66. VM bug checks after the guest VM driver for Windows 10 RS2 is installed

Description

When the VM is rebooted after the guest VM driver for Windows 10 RS2 is installed, the VM bug checks. When Windows boots, it selects one of the standard supported video modes. If Windows is booted directly with a display that is driven by an NVIDIA driver, for example a vGPU on Citrix Hypervisor, a blue screen crash occurs.

This issue occurs when the screen resolution is switched from VGA mode to a resolution that is higher than 1920×1200.

Fix

Download and install Microsoft Windows Update KB4020102 from the Microsoft Update Catalog.

Workaround

If you have applied the fix, ignore this workaround.

Otherwise, you can work around this issue until you are able to apply the fix by not using resolutions higher than 1920×1200.

1. Choose a GPU profile in Citrix XenCenter that does not allow resolutions higher than 1920×1200.
2. Before rebooting the VM, set the display resolution to 1920×1200 or lower.

Status

Not an NVIDIA bug

Ref. #

200310861
5.67. On Citrix Hypervisor 7.0, VMs unexpectedly reboot and Citrix Hypervisor crashes or freezes

Description
On Citrix Hypervisor 7.0, VMs to which a vGPU is attached unexpectedly reboot and Citrix Hypervisor crashes or freezes.
The event log in the Citrix Hypervisor /var/log/crash/xen.log file lists the following errors:
- A fatal bus error on a component at the slot where the GPU card is installed
- A fatal error on a component at bus 0, device 2, function 0
This issue occurs when page-modification logging (PML) is enabled on Intel Broadwell CPUs running Citrix Hypervisor 7.0. Citrix is aware of this issue and is working on a permanent fix.

Workaround
Disable page-modification logging (PML) as explained in XenServer 7 host crash while starting multiple virtual machines in the Citrix Support Knowledge Center.

Status
Not an NVIDIA bug

Ref. #
1853248

5.68. With no NVIDIA driver installed, Citrix Hypervisor misidentifies Tesla M10 cards

Description
An erroneous entry in the pci.ids database causes Citrix Hypervisor to identify Tesla M10 cards as GRID M40 when no NVIDIA driver is installed.
Version
Citrix Hypervisor 6.5 and 7.0

Workaround
None

Status
Not an NVIDIA bug

Ref. #
NVIDIA-420/1792341

5.69. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0

Description
GDM fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0 with the following error:
Oh no! Something has gone wrong!

Workaround
Permanently enable permissive mode for Security Enhanced Linux (SELinux).

1. As root, edit the /etc/selinux/config file to set SELINUX to permissive.
   SELINUX=permissive
2. Reboot the system.
   ~]$ # reboot

For more information, see Permissive Mode in Red Hat Enterprise Linux 7 SELinux User’s and Administrator’s Guide.

Status
Not an NVIDIA bug

Ref. #
200167868
5.70. Video goes blank when run in loop in Windows Media Player

Description
When connected to a vGPU-enabled VM using Citrix Virtual Apps and Desktops, a video played back in looping mode on Windows Media Player goes blank or freezes after a few iterations.

Workaround
None

Status
Not an NVIDIA bug

Ref. #
1306623

5.71. Local VGA console is momentarily unblanked when Citrix Virtual Apps and Desktops changes resolution of the VM desktop

Description
When Citrix Virtual Apps and Desktops establishes a remote connection to a VM using vGPU, the VM's local VGA console display in XenCenter is blanked (assuming the VM local console has not been disabled by setting disable_vnc=1 in the vGPU plugin's parameters). If the Citrix Virtual Apps and Desktops session changes resolution of the VM's desktop, the local VGA console momentarily unblanks, allowing a XenCenter user to briefly view the desktop.

Workaround
Disable the VM's local VGA console.

- **Citrix Hypervisor 8.1 or later:**
  
  ```bash
 [root@xenserver ~]# xe vgpu-param-set uuid=vgpu-uuid extra_args=disable_vnc=1
  ```
Known Issues

- **Citrix Hypervisor earlier than 8.1:**
  
  `xe vm-param-set uuid=vm-uuid platform:vgpu_extra_args="disable_vnc=1"`

  **Status**
  Open

  **Ref. #**
  NVIDIA-145/1375164

5.72. **VM bugchecks on shutdown/restart when Citrix Virtual Apps and Desktops is installed and NVIDIA driver is uninstalled or upgraded.**

**Description**

If the Citrix Virtual Apps and Desktops agent is installed in a VM before any NVIDIA GPU driver is installed, the VM will bugcheck (bluescreen) when the NVIDIA driver is subsequently upgraded or uninstalled. The bugcheck code is 0x7E, `SYSTEM_THREAD_EXCEPTION_NOT_HANDLED`.

**Workaround**

Use one of the following workarounds:

- Do a force shutdown of the VM and restart it.
- Install the NVIDIA driver in guest VMs before installing Citrix Virtual Apps and Desktops.

**Status**
Open

**Ref. #**
NVIDIA-295/200018125
5.73. Application frame rate may drop when running Citrix Virtual Apps and Desktops at 2560×1600 resolution.

Description
An application’s rendering frame rate may drop when running Citrix Virtual Apps and Desktops at 2560×1600 resolution, relative to the frame rate obtained at lower resolutions.

Fix
Using the Windows `regedit` utility within the VM, open the `HKLM\SOFTWARE\Citrix\Graphics` registry key and create a new DWORD value, `EncodeSpeed`, with a value of 2. Reboot the VM. This setting may improve the delivered frame rate at the expense of a reduction in image quality.

Status
Open

Ref. #
NVIDIA-190/1416336

5.74. Windows VM BSOD

Description
Windows VM bugchecks on Citrix Hypervisor when running a large number of vGPU based VMs.

The Citrix Hypervisor `/var/log/messages` file contains these error messages:

```
NVRM: Xid (PCI:0000:08:00): 31, Ch 0000001e, engmask 00000111, intr 10000000
NVRM: Xid (PCI:0000:08:00): 31, Ch 00000016, engmask 00000111, intr 10000000
...
vmiop_log: error: Assertion Failed at 0xb5b898d8:4184
vmiop_log: error: 8 frames returned by backtrace
vmiop_log: error: /usr/lib/libnvidia-vgx.so (_nv000793vgx+0x69d) [0xb5b8064d]
vmiop_log: error: /usr/lib/libnvidia-vgx.so (_nv000479vgx+0x118) [0xb5b898d8]
vmiop_log: error: /usr/lib/libnvidia-vgx.so (_nv000782vgx+0x59) [0xb5b932db]
vmiop_log: error: /usr/lib/libnvidia-vgx.so (_nv000347vgx+0x3db) [0xb5b898d8]
vmiop_log: error: /usr/lib/libnvidia-vgx.so [0xb5b78e4a]
```
Known Issues

Virtual GPU Software R535 for Citrix Hypervisor

RN-06927-001 _v16.0 through 16.2   |   98

vmiop_log: error: /usr/lib/xen/bin/vgpu [0x80554be]
vmiop_log: error: /lib/libpthread.so.0 [0xb7612912]
vmiop_log: error: /lib/libc.so.6(clone+0x5e) [0xb76fc5ee]
vmiop_log: error: failed to initialize guest PTE entries
vmiop_log: error: failed to fill up guest PTE entries 3
vmiop_log: error: VGPU message 27 failed, result code: 0xff000003
vmiop_log: error: 0xc1d00001, 0xff010000, 0x1a77ba000, 0x0, 0x1,
vmiop_log: error: 0x1, 0x1000, 0x10202, 0xc1d00001, 0xff010000,
vmiop_log: error: 0xc0af0004, 0x0
vmiop_log: error: Timeout occurred, reset initiated.

Version

Citrix Hypervisor 6.2

Fix

Ensure that you are running the latest OEM firmware for your NVIDIA vGPU software boards.

Status

Closed

Ref. #

NVIDIA-327/1632120

5.75. Windows VM BSOD when upgrading NVIDIA drivers over a Citrix Virtual Apps and Desktops session

Description

Windows VM bugchecks when NVIDIA guest drivers are upgraded over a Citrix Virtual Apps and Desktops session.

If the VM is restarted after the bugcheck, the upgraded driver loads correctly and full functionality is available.

Fix

Upgrade Citrix Virtual Apps and Desktops to 7.6 Feature Pack 3

Status

Closed
5.76. **XenCenter does not allow vGPUs to be selected as a GPU type for Linux VMs**

**Description**

When creating a new Linux VM or editing the properties of an existing Linux VM, XenCenter does not allow vGPUs to be selected as a GPU type.

vGPU on Linux VMs is supported as a technical preview on Citrix Hypervisor 6.5, and does include XenCenter integration.

**Version**

Affects the XenCenter integration with Citrix Hypervisor 6.5 only.

Resolved in the XenCenter integration with Citrix Hypervisor 7.0.

**Workaround**

Refer to XenServer vGPU Management in *Virtual GPU Software User Guide* for how to configure vGPU by using the `xe` CLI.

**Status**

Closed

**Ref. #**

NVIDIA-360
5.77. If X server is killed on a RHEL7 VM running vGPU, XenCenter console may not automatically switch to text console

Description
If X server is killed on a RHEL7 VM running vGPU, XenCenter console may display a corrupted image and fail to switchover to text console.
The failure to switchover to text console is due to a bug in RHEL7, which causes X server to not start correctly under certain configurations.

Workaround
Use **CTRL+ALT+F1, F2, or F3** to switch between Linux terminals.

Status
Closed

Ref. #
NVIDIA-350/200123378

5.78. Citrix Virtual Apps and Desktops shows only a black screen when connected to a vGPU VM

Description
Citrix Virtual Apps and Desktops sometimes displays only a black screen when it is connected to an NVIDIA vGPU VM. The probable cause is that the display that is connected to the NVIDIA vGPU is entering a lower power state.

Fix
Disable all display-related power management settings.
For detailed instructions, visit Microsoft power plans frequently asked questions and from the list, select your OS version.

**Status**

Not an NVIDIA bug

**Ref. #**

1719877