VIRTUAL GPU SOFTWARE R440 FOR CITRIX HYPERVERSOR

RN-06927-001_v10.0 Revision 03 | December 2019

Release Notes
TABLE OF CONTENTS

Chapter 1. Release Notes.. 1
 1.1. Updates in Release 10.0... 2

Chapter 2. Validated Platforms.. 4
 2.1. Supported NVIDIA GPUs and Validated Server Platforms.......................... 4
 2.2. Hypervisor Software Releases.. 5
 2.3. Guest OS Support... 8
 2.3.1. Windows Guest OS Support.. 9
 2.3.2. Linux Guest OS Support.. 10
 2.4. NVIDIA CUDA Toolkit Version Support... 10
 2.6. Multiple vGPU Support... 11
 2.7. Peer-to-Peer CUDA Transfers over NVLink Support..................................... 13

Chapter 3. Known Product Limitations... 15
 3.1. Total frame buffer for vGPUs is less than the total frame buffer on the physical GPU... 15
 3.2. Issues may occur with graphics-intensive OpenCL applications on vGPU types with limited frame buffer.. 16
 3.3. In pass through mode, all GPUs connected to each other through NVLink must be assigned to the same VM... 16
 3.4. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10.. 17
 3.5. NVENC requires at least 1 Gbyte of frame buffer... 17
 3.6. VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted........ 18
 3.7. Single vGPU benchmark scores are lower than pass-through GPU............... 18
 3.8. nvidia-smi fails to operate when all GPUs are assigned to GPU pass-through mode... 19
 3.9. Windows Aero is disabled on Citrix Virtual Apps and Desktops session using 3 or 4 monitors in 2560x1600 resolution... 20
 3.10. VMs configured with large memory fail to initialize vGPU when booted............ 21
 3.11. vGPU host driver RPM upgrade fails... 22

Chapter 4. Resolved Issues.. 23

Chapter 5. Known Issues... 24
 5.1. The Desktop color depth list is empty... 24
 5.2. Citrix Virtual Apps and Desktops session freezes when the desktop is unlocked.... 24
 5.3. XID errors and TDR occur after vGPU migration... 25
 5.4. On Citrix Hypervisor, all vGPUs in a VM must be of the same type............. 25
 5.5. Console VGA cannot be disabled... 26
 5.6. Console VNC is unusable with Xorg on multiple vGPUs in a VM.................. 27
 5.7. Publisher not verified warning during Windows 7 driver installation.............. 27
 5.8. RAPIDS cuDF merge fails on NVIDIA vGPU.. 28
 5.9. Migration of VMs configured with vGPU stops before the migration is complete... 28
 5.10. ECC memory settings for a vGPU cannot be changed by using NVIDIA X Server Settings.. 29
 5.11. Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored.. 30
5.12. Incorrect GPU type shown for Quadro RTX 8000 GPUs in Citrix XenCenter...................... 30
5.13. NVIDIA Notification Icon prevents log off of Citrix Published Application user sessions... 30
5.14. Vulkan applications crash in Windows 7 guest VMs configured with NVIDIA vGPU......... 31
5.15. Host core CPU utilization is higher than expected for moderate workloads.................. 32
5.16. Frame capture while the interactive logon message is displayed returns blank screen.... 33
5.17. RDS sessions do not use the GPU with some Microsoft Windows Server releases......... 33
5.18. Even when the scheduling policy is equal share, unequal GPU utilization is reported...... 34
5.19. When the scheduling policy is fixed share, GPU utilization is reported as higher than expected.. 35
5.20. nvidia-smi reports that vGPU migration is supported on all hypervisors...................... 36
5.21. NVIDIA Control Panel Crashes in a VM connected to two 4K displays.......................... 36
5.22. vGPU guest VM driver not properly loaded on servers with more than 512 GB or 1 TB or more of system memory.. 37
5.23. Luxmark causes a segmentation fault on an unlicensed Linux client.......................... 38
5.24. Resolution is not updated after a VM acquires a license and is restarted...................... 38
5.25. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS... 39
5.26. No Manage License option available in NVIDIA X Server Settings by default.............. 39
5.27. Licenses remain checked out when VMs are forcibly powered off................................ 40
5.28. Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer.. 41
5.29. VM bug checks after the guest VM driver for Windows 10 RS2 is installed.................... 42
5.30. On Citrix Hypervisor 7.0, VMs unexpectedly reboot and Citrix Hypervisor crashes or freezes... 43
5.31. With no NVIDIA driver installed, Citrix Hypervisor misidentifies Tesla M10 cards........... 44
5.32. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0... 44
5.33. Video goes blank when run in loop in Windows Media Player.................................... 45
5.34. Local VGA console is momentarily unblanked when Citrix Virtual Apps and Desktops changes resolution of the VM desktop... 46
5.35. VM bugchecks on shutdown/restart when Citrix Virtual Apps and Desktops is installed and NVIDIA driver is uninstalled or upgraded... 46
5.36. Application frame rate may drop when running Citrix Virtual Apps and Desktops at 2560x1600 resolution... 47
5.37. Windows VM BSOD.. 47
5.38. Windows VM BSOD when upgrading NVIDIA drivers over a Citrix Virtual Apps and Desktops session.. 48
5.39. XenCenter does not allow vGPUs to be selected as a GPU type for Linux VMs.............. 49
5.40. If X server is killed on a RHEL7 VM running vGPU, XenCenter console may not automatically switch to text console... 50
5.41. Citrix Virtual Apps and Desktops shows only a black screen when connected to a vGPU VM50
Chapter 1.
RELEASE NOTES

These Release Notes summarize current status, information on validated platforms, and known issues with NVIDIA vGPU software and associated hardware on Citrix Hypervisor.

The most current version of the documentation for this release of NVIDIA vGPU software can be found online at NVIDIA Virtual GPU Software Documentation.

The releases in this release family of NVIDIA vGPU software include the software listed in the following table:

<table>
<thead>
<tr>
<th>Software</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA Virtual GPU Manager for the Citrix Hypervisor releases listed in Hypervisor Software Releases</td>
<td>440.43</td>
</tr>
<tr>
<td>NVIDIA Windows driver</td>
<td>441.66</td>
</tr>
<tr>
<td>NVIDIA Linux driver</td>
<td>440.43</td>
</tr>
</tbody>
</table>

Caution
If you install the wrong NVIDIA vGPU software packages for the version of Citrix Hypervisor you are using, NVIDIA Virtual GPU Manager will fail to load.

The vGPU Manager and guest VM drivers must be installed together. Older VM drivers will not function correctly with this release of vGPU Manager. Similarly, older releases of vGPU Manager will not function correctly with this release of the guest VM drivers.

See VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted.

This requirement does not apply to the NVIDIA vGPU software license sever. All releases of NVIDIA vGPU software are compatible with all releases of the license server.
1.1. Updates in Release 10.0

New Features in Release 10.0

- Support for NVIDIA® GRID™ Virtual PC and GRID Virtual Applications on Quadro RTX 6000 and Quadro RTX 8000 GPUs
- Increase in the maximum number of virtual display heads supported by -1Q, -2B, and -1B4 vGPUs:
 - All -1Q vGPUs now support 4 heads instead of 2 heads.
 - All -2B vGPUs now support 4 heads instead of 2 heads.
 - All -1B4 vGPUs now support 4 heads instead of 1 head.
- Flexible virtual display resolutions
 Instead of a fixed maximum resolution per head, vGPUs now support a maximum combined resolution based on their frame buffer size. This behavior allows the same number of lower resolution displays to be used as before, but alternatively allows a smaller number of higher resolution displays to be used.
- Virtual display resolutions greater than 4096×2160
- 10-bit color
- Support for multiple vGPUs in a single VM
- Changes to allow cross-branch driver support in future main release branches

This feature cannot be used until the next NVIDIA vGPU software main release branch is available.

The purpose of this change is to allow a release of the Virtual GPU Manager from a later main release branch to be used with the NVIDIA vGPU software graphics drivers for the guest VMs from the previous branch.

- Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 10.0

- Support for passively cooled Quadro RTX 6000 and Quadro RTX 8000 GPUs
- Support for Tesla V100S PCIe 32GB GPUs
- Support for Citrix Hypervisor 8.1
- Support for Red Hat Enterprise Linux 8.1 as a guest OS
- Support for Red Hat Enterprise Linux 8.0 and CentOS 8.0 as a guest OS
- Support for Windows 10 November 2019 Update (1909) as a guest OS
- Support for Citrix Virtual Apps and Desktops version 7 1912
Features Deprecated in Release 10.0

The following table lists features that are deprecated in this release of NVIDIA vGPU software. Although the features remain available in this release, they might be withdrawn in a future release. In preparation for the possible removal of these features, use the preferred alternative listed in the table.

<table>
<thead>
<tr>
<th>Deprecated Feature</th>
<th>Preferred Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1B4 vGPU types</td>
<td>-1B vGPU types</td>
</tr>
<tr>
<td>-2B4 vGPU types</td>
<td>-2B vGPU types</td>
</tr>
</tbody>
</table>
This release family of NVIDIA vGPU software provides support for several NVIDIA GPUs on validated server hardware platforms, Citrix Hypervisor hypervisor software versions, and guest operating systems. It also supports the version of NVIDIA CUDA Toolkit that is compatible with R440 drivers.

2.1. Supported NVIDIA GPUs and Validated Server Platforms

This release of NVIDIA vGPU software provides support for the following NVIDIA GPUs on Citrix Hypervisor, running on validated server hardware platforms:

- GPUs based on the NVIDIA Maxwell™ graphic architecture:
 - Tesla M6
 - Tesla M10
 - Tesla M60
- GPUs based on the NVIDIA Pascal™ architecture:
 - Tesla P4
 - Tesla P6
 - Tesla P40
 - Tesla P100 PCIe 16 GB (XenMotion with vGPU is not supported.)
 - Tesla P100 SXM2 16 GB (XenMotion with vGPU is not supported.)
 - Tesla P100 PCIe 12GB (XenMotion with vGPU is not supported.)
- GPUs based on the NVIDIA Volta architecture:
 - Tesla V100 SXM2
 - Tesla V100 SXM2 32GB
 - Tesla V100 PCIe
 - Tesla V100 PCIe 32GB
Validated Platforms

- Tesla V100S PCIe 32GB
- Tesla V100 FHHL
- GPUs based on the NVIDIA Turing™ architecture:
 - Tesla T4
 - Quadro RTX 6000 in displayless mode
 - Quadro RTX 6000 passive in displayless mode
 - Quadro RTX 8000 in displayless mode
 - Quadro RTX 8000 passive in displayless mode

In displayless mode, local physical display connectors are disabled.

For a list of validated server platforms, refer to NVIDIA GRID Certified Servers.

Tesla M60 and M6 GPUs support compute mode and graphics mode. NVIDIA vGPU requires GPUs that support both modes to operate in graphics mode.

Recent Tesla M60 GPUs and M6 GPUs are supplied in graphics mode. However, your GPU might be in compute mode if it is an older Tesla M60 GPU or M6 GPU, or if its mode has previously been changed.

To configure the mode of Tesla M60 and M6 GPUs, use the `gpumodeswitch` tool provided with NVIDIA vGPU software releases.

Even in compute mode, Tesla M60 and M6 GPUs do not support NVIDIA vComputeServer vGPU types. Furthermore, vComputeServer is not supported on any GPU on Citrix Hypervisor.

2.2. Hypervisor Software Releases

Changes to Citrix Product Names and Release Numbers

Citrix has changed the product names of its hypervisor and virtual desktop software.

<table>
<thead>
<tr>
<th>Old Name</th>
<th>New Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>XenServer</td>
<td>Citrix Hypervisor</td>
</tr>
<tr>
<td>XenApp and XenDesktop</td>
<td>Citrix Virtual Apps and Desktops</td>
</tr>
<tr>
<td>Citrix Receiver</td>
<td>Citrix Workspace App</td>
</tr>
</tbody>
</table>

The release number of Citrix Virtual Apps and Desktops releases after 7.18 is in the form 7 yyymm, where yyymm denotes the year and month that the product was released. For example, for a product released in August 2018, yyymm is 1808.

For more information, see these topics in the Citrix documentation:
Validated Platforms

- New product names
- New product and component version numbers

Supported Citrix Hypervisor Releases

This release family of NVIDIA vGPU software is supported on the Citrix Hypervisor releases listed in the table.

Support for NVIDIA vGPU software requires the Premium Edition (previously Enterprise Edition) of Citrix Hypervisor. For details, see Licensing in the Citrix documentation. Cumulative update releases for a base release of Citrix Hypervisor are compatible with the base release and can also be used with this version of NVIDIA vGPU software unless expressly stated otherwise.

<table>
<thead>
<tr>
<th>Software</th>
<th>Releases Supported</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Citrix Hypervisor 8.1 | RTM build and compatible cumulative update releases | In NVIDIA vGPU mode, all NVIDIA GPUs that support NVIDIA vGPU software are supported. vComputeServer is not supported. In GPU pass-through mode, the following GPUs are not supported:
 ➤ Quadro RTX 6000
 ➤ Quadro RTX 6000 passive
 ➤ Quadro RTX 8000
 ➤ Quadro RTX 8000 passive
 This release supports XenMotion with vGPU on suitable GPUs as listed in Supported NVIDIA GPUs and Validated Server Platforms. |
| Citrix Hypervisor 8.0 | RTM build and compatible cumulative update releases | In NVIDIA vGPU mode, all NVIDIA GPUs that support NVIDIA vGPU software are supported. Multiple vGPUs on a single VM are not supported. vComputeServer is not supported. |

www.nvidia.com
Virtual GPU Software R440 for Citrix Hypervisor
<table>
<thead>
<tr>
<th>Software</th>
<th>Releases Supported</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Citrix Hypervisor (XenServer) 7.6 | RTM build and compatible cumulative update releases | In GPU pass-through mode, the following GPUs are not supported:
 ▪ Quadro RTX 6000
 ▪ Quadro RTX 6000 passive
 ▪ Quadro RTX 8000
 ▪ Quadro RTX 8000 passive
This release supports XenMotion with vGPU on suitable GPUs as listed in Supported NVIDIA GPUs and Validated Server Platforms. |
| Citrix Hypervisor (XenServer) 7.1 | RTM build and compatible cumulative update releases | Not supported on the following GPUs:
 ▪ Tesla T4
 ▪ Quadro RTX 6000 passive
 ▪ Quadro RTX 8000 passive
Multiple vGPUs on a single VM are not supported.
vComputeServer is not supported.
XenMotion with vGPU is not supported. |
| Citrix Hypervisor (XenServer) 7.0 | RTM build 125380 and compatible cumulative update releases | Not supported on the following GPUs: |
Validated Platforms

www.nvidia.com
Virtual GPU Software R440 for Citrix Hypervisor

<table>
<thead>
<tr>
<th>Software</th>
<th>Releases Supported</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>❍ Tesla T4
 ❍ Quadro RTX 6000 passive
 ❍ Quadro RTX 8000 passive</td>
<td>Multiple vGPUs on a single VM are not supported.</td>
</tr>
<tr>
<td></td>
<td>❍ vComputeServer is not supported.</td>
<td>❍ XenMotion with vGPU is not supported.</td>
</tr>
</tbody>
</table>

Supported Virtual Desktop Software Releases

This release supports **only** the virtual desktop software releases listed in the table.
Except where otherwise stated, HDX 3D Pro mode is supported but not required.

<table>
<thead>
<tr>
<th>Software</th>
<th>Releases Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrix Virtual Apps and</td>
<td>Versions 7 1912, 7 1909, 7 1906, 7 1903, and 7 1808</td>
</tr>
<tr>
<td>Desksopss</td>
<td></td>
</tr>
<tr>
<td>XenApp/XenDesktop</td>
<td>Versions 7.18 and 7.17</td>
</tr>
<tr>
<td></td>
<td>7.15 in HDX 3D Pro mode (required to ensure that the NVIDIA GPU can be used restricted)</td>
</tr>
</tbody>
</table>

2.3. Guest OS Support

NVIDIA vGPU software supports several Windows releases and Linux distributions as a guest OS. The supported guest operating systems depend on the hypervisor software version.

Use only a guest OS release that is listed as supported by NVIDIA vGPU software with your virtualization software. To be listed as supported, a guest OS release must be supported not only by NVIDIA vGPU software, but also by your virtualization software. NVIDIA **cannot** support guest OS releases that your virtualization software does not support.

NVIDIA vGPU software supports **only** 64-bit guest operating systems. No 32-bit guest operating systems are supported.

In GPU pass-through mode, the following GPUs are **not** supported on Citrix Hypervisor 8.0:

- ❍ Quadro RTX 6000
- ❍ Quadro RTX 8000

2.3.1. Windows Guest OS Support

NVIDIA vGPU software supports **only** the 64-bit Windows releases listed in the table as a guest OS on Citrix Hypervisor. The releases of Citrix Hypervisor for which a Windows release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

- If a specific release, even an update release, is not listed, it’s **not** supported.
- XenMotion with vGPU is supported on supported Windows guest OS releases.

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Citrix Hypervisor Releases</th>
<th>Pass-Through GPU - Citrix Hypervisor Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2019</td>
<td>8.1, 8.0, 7.1 cumulative update 2</td>
<td>8.1, 8.0, 7.1 cumulative update 2</td>
</tr>
<tr>
<td>Windows Server 2016 1709, 1607</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>Windows Server 2012 R2</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>Windows Server 2008 R2</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0 Supported only on GPUs based on the Maxwell architecture</td>
</tr>
<tr>
<td>Windows 10:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‣ November 2019 Update (1909)</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>‣ May 2019 Update (1903)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‣ October 2018 Update (1809)</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>‣ Spring Creators Update (1803)</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>‣ Fall Creators Update (1709)</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>‣ Creators Update (1703)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‣ Anniversary Update (1607)</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>‣ November Update (1511)</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>‣ RTM (1507)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows 8.1 Update</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>Windows 8.1</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>-</td>
</tr>
<tr>
<td>Windows 8</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>-</td>
</tr>
<tr>
<td>Windows 7</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0 Supported only on GPUs based on the Maxwell architecture</td>
</tr>
</tbody>
</table>
2.3.2. Linux Guest OS Support

NVIDIA vGPU software supports only the Linux distributions listed in the table as a guest OS on Citrix Hypervisor. The releases of Citrix Hypervisor for which a Linux release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

If a specific release, even an update release, is not listed, it’s not supported.

XenMotion with vGPU is not supported on any Linux guest OS release.

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Citrix Hypervisor Releases</th>
<th>Pass-Through GPU - Citrix Hypervisor Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8.1, 8.0</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td>CentOS 8.0</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 7.0-7.7</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>CentOS 7.0-7.7</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>Ubuntu 18.04 LTS</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0, cumulative update 2</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0, cumulative update 2</td>
</tr>
<tr>
<td>Ubuntu 16.04 LTS</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
<tr>
<td>Ubuntu 14.04 LTS</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
<td>8.1, 8.0, 7.6, 7.1, 7.0</td>
</tr>
</tbody>
</table>

2.4. NVIDIA CUDA Toolkit Version Support

The releases in this release family of NVIDIA vGPU software support NVIDIA CUDA Toolkit 10.2.

For more information about NVIDIA CUDA Toolkit, see CUDA Toolkit 10.2 Documentation.

If you are using NVIDIA vGPU software with CUDA on Linux, avoid conflicting installation methods by installing CUDA from a distribution-independent runfile package. Do not install CUDA from distribution-specific RPM or Deb package.

To ensure that the NVIDIA vGPU software graphics driver is not overwritten when CUDA is installed, deselect the CUDA driver when selecting the CUDA components to install.

For more information, see NVIDIA CUDA Installation Guide for Linux.
2.5. XenMotion with vGPU Support

XenMotion with vGPU is supported only on a subset of supported GPUs, Citrix Hypervisor releases, and guest operating systems.

Supported GPUs:
- Tesla M6
- Tesla M10
- Tesla M60
- Tesla P4
- Tesla P6
- Tesla P40
- Tesla V100 SXM2
- Tesla V100 SXM2 32GB
- Tesla V100 PCIe
- Tesla V100 PCIe 32GB
- Tesla V100S PCIe 32GB
- Tesla V100 FHHL
- Tesla T4
- Quadro RTX 6000
- Quadro RTX 6000 passive
- Quadro RTX 8000
- Quadro RTX 8000 passive

Supported Citrix Hypervisor releases: 8.0 and 7.6 only.

Supported guest OS releases: Windows only. XenMotion with vGPU is **not** supported on Linux.

2.6. Multiple vGPU Support

To support applications and workloads that are compute or graphics intensive, multiple vGPUs can be added to a single VM. The assignment of more than one vGPU to a VM is supported only on a subset of vGPUs and Citrix Hypervisor releases.

Supported vGPUs

Only Q-series and C-series vGPUs that are allocated all of the physical GPU’s frame buffer are supported.

<table>
<thead>
<tr>
<th>GPU Architecture</th>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turing</td>
<td>Tesla T4</td>
<td>T4-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4-16C</td>
</tr>
<tr>
<td>GPU Architecture</td>
<td>Board</td>
<td>vGPU</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 6000</td>
<td>RTX6000-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX6000-24C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 6000 passive</td>
<td>RTX6000P-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX6000P-24C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 8000</td>
<td>RTX8000-48Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX8000-48C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 8000 passive</td>
<td>RTX8000P-48Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX8000P-48C</td>
</tr>
<tr>
<td>Volta</td>
<td>Tesla V100 SXM2 32GB</td>
<td>V100DX-32Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100D-32C</td>
</tr>
<tr>
<td></td>
<td>Tesla V100 PCIe 32GB</td>
<td>V100D-32Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100D-32C</td>
</tr>
<tr>
<td></td>
<td>Tesla V100S PCIe 32GB</td>
<td>V100S-32Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100S-32C</td>
</tr>
<tr>
<td></td>
<td>Tesla V100 SXM2</td>
<td>V100X-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100X-16C</td>
</tr>
<tr>
<td></td>
<td>Tesla V100 PCIe</td>
<td>V100-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100-16C</td>
</tr>
<tr>
<td></td>
<td>Tesla V100 FHHL</td>
<td>V100L-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100L-16C</td>
</tr>
<tr>
<td>Pascal</td>
<td>Tesla P100 SXM2</td>
<td>P100X-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P100X-16C</td>
</tr>
<tr>
<td></td>
<td>Tesla P100 PCIe 16GB</td>
<td>P100-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P100-16C</td>
</tr>
<tr>
<td></td>
<td>Tesla P100 PCIe 12GB</td>
<td>P100C-12Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P100C-12C</td>
</tr>
<tr>
<td></td>
<td>Tesla P40</td>
<td>P40-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P40-24C</td>
</tr>
</tbody>
</table>
GPU Architecture

<table>
<thead>
<tr>
<th>GPU Architecture</th>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tesla P6</td>
<td>P6-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P6-16C</td>
</tr>
<tr>
<td>Maxwell</td>
<td>Tesla M60</td>
<td>M60-8Q</td>
</tr>
<tr>
<td></td>
<td>Tesla M10</td>
<td>M10-8Q</td>
</tr>
<tr>
<td></td>
<td>Tesla M6</td>
<td>M6-8Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tesla P4</td>
<td>P4-8Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4-8C</td>
</tr>
</tbody>
</table>

Maximum vGPUs per VM

NVIDIA vGPU software supports up to a maximum of 16 vGPUs per VM on Citrix Hypervisor.

Supported Hypervisor Releases

Citrix Hypervisor 8.1 only.

2.7. Peer-to-Peer CUDA Transfers over NVLink Support

Peer-to-peer CUDA transfers enable device memory between vGPUs on different GPUs that are assigned to the same VM to be accessed from within the CUDA kernels. NVLink is a high-bandwidth interconnect that enables fast communication between such vGPUs. Peer-to-Peer CUDA Transfers over NVLink is supported only on a subset of vGPUs, Citrix Hypervisor releases, and guest OS releases.

Supported vGPUs

Only Q-series and C-series vGPUs that are allocated all of the physical GPU’s frame buffer on physical GPUs that support NVLink are supported.

<table>
<thead>
<tr>
<th>GPU Architecture</th>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quadro RTX 6000</td>
<td>RTX6000-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX6000-24C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 6000 passive</td>
<td>RTX6000P-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX6000P-24C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 8000</td>
<td>RTX8000-48Q</td>
</tr>
</tbody>
</table>
Validated Platforms

<table>
<thead>
<tr>
<th>GPU Architecture</th>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RTX8000-48C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 8000 passive</td>
<td>RTX8000P-48Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX8000P-48C</td>
</tr>
<tr>
<td>Volta</td>
<td>Tesla V100 SXM2 32GB</td>
<td>V100DX-32Q</td>
</tr>
<tr>
<td></td>
<td>Tesla V100 SXM2</td>
<td>V100X-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100X-16C</td>
</tr>
<tr>
<td>Pascal</td>
<td>Tesla P100 SXM2</td>
<td>P100X-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P100X-16C</td>
</tr>
</tbody>
</table>

Supported Hypervisor Releases

Peer-to-Peer CUDA Transfers over NVLink are supported on all hypervisor releases that support the assignment of more than one vGPU to a VM. For details, see Multiple vGPU Support.

Supported Guest OS Releases

Linux only. Peer-to-Peer CUDA Transfers over NVLink are not supported on Windows.

Limitations

- Only direct connections are supported. NVSwitch is not supported.
- PCIe is not supported.
- SLI is not supported.
Chapter 3.
KNOWN PRODUCT LIMITATIONS

Known product limitations for this release of NVIDIA vGPU software are described in the following sections.

3.1. Total frame buffer for vGPUs is less than the total frame buffer on the physical GPU

Some of the physical GPU’s frame buffer is used by the hypervisor on behalf of the VM for allocations that the guest OS would otherwise have made in its own frame buffer. The frame buffer used by the hypervisor is not available for vGPUs on the physical GPU. In NVIDIA vGPU deployments, frame buffer for the guest OS is reserved in advance, whereas in bare-metal deployments, frame buffer for the guest OS is reserved on the basis of the runtime needs of applications.

If error-correcting code (ECC) memory is enabled on a physical GPU that does not have HBM2 memory, the amount of frame buffer that is usable by vGPUs is further reduced. All types of vGPU are affected, not just vGPUs that support ECC memory.

The approximate amount of frame buffer that NVIDIA vGPU software reserves can be calculated from the following formula:

\[
\text{reserved-fb} = \frac{\text{vgpu-profile-size-in-mb}}{16} + 64 + \text{ecc-adjustments}
\]

- \(\text{reserved-fb}\): The total amount of reserved frame buffer in Mbytes that is not available for vGPUs.
- \(\text{vgpu-profile-size-in-mb}\): The amount of frame buffer in Mbytes allocated to a single vGPU. This amount depends on the vGPU type. For example, for the T4-16Q vGPU type, \(\text{vgpu-profile-size-in-mb}\) is 16384.
- \(\text{ecc-adjustments}\): The amount of frame buffer in Mbytes that is not usable by vGPUs when ECC is enabled on a physical GPU that does not have HBM2 memory. If ECC is disabled or the GPU has HBM2 memory, \(\text{ecc-adjustments}\) is 0.
3.2. Issues may occur with graphics-intensive OpenCL applications on vGPU types with limited frame buffer

Description

Issues may occur when graphics-intensive OpenCL applications are used with vGPU types that have limited frame buffer. These issues occur when the applications demand more frame buffer than is allocated to the vGPU.

For example, these issues may occur with the Adobe Photoshop and LuxMark OpenCL Benchmark applications:

- When the image resolution and size are changed in Adobe Photoshop, a program error may occur or Photoshop may display a message about a problem with the graphics hardware and a suggestion to disable OpenCL.
- When the LuxMark OpenCL Benchmark application is run, XID error 31 may occur.

Workaround

For graphics-intensive OpenCL applications, use a vGPU type with more frame buffer.

3.3. In pass through mode, all GPUs connected to each other through NVLink must be assigned to the same VM

Description

In pass through mode, all GPUs connected to each other through NVLink must be assigned to the same VM. If a subset of GPUs connected to each other through NVLink is passed through to a VM, unrecoverable error XID 74 occurs when the VM is booted. This error corrupts the NVLink state on the physical GPUs and, as a result, the NVLink bridge between the GPUs is unusable.

Workaround

Restore the NVLink state on the physical GPUs by resetting the GPUs or rebooting the hypervisor host.
3.4. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10

Description

To reduce the possibility of memory exhaustion, vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on a Windows 10 guest OS.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q

Workaround

Use a profile that supports more than 1 virtual display head and has at least 1 Gbyte of frame buffer.

3.5. NVENC requires at least 1 Gbyte of frame buffer

Description

Using the frame buffer for the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) may cause memory exhaustion with vGPU profiles that have 512 Mbytes or less of frame buffer. To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer. Application GPU acceleration remains fully supported and available for all profiles, including profiles with 512 MBytes or less of frame buffer. NVENC support from both Citrix and VMware is a recent feature and, if you are using an older version, you should experience no change in functionality.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q
Workaround
If you require NVENC to be enabled, use a profile that has at least 1 Gbyte of frame buffer.

3.6. VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted

Description
A VM running a version of the NVIDIA guest VM drivers from a previous main release branch, for example release 4.4, will fail to initialize vGPU when booted on a Citrix Hypervisor platform running the current release of Virtual GPU Manager.

In this scenario, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA virtual GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Depending on the versions of drivers in use, the Citrix Hypervisor VM's /var/log/messages log file reports one of the following errors:

- An error message:
 vmiop_log: error: Unable to fetch Guest NVIDIA driver information

- A version mismatch between guest and host drivers:
 vmiop_log: error: Guest VGX version(1.1) and Host VGX version(1.2) do not match

- A signature mismatch:
 vmiop_log: error: VGPU message signature mismatch.

Resolution
Install the current NVIDIA guest VM driver in the VM.

3.7. Single vGPU benchmark scores are lower than pass-through GPU

Description
A single vGPU configured on a physical GPU produces lower benchmark scores than the physical GPU run in pass-through mode.
Aside from performance differences that may be attributed to a vGPU’s smaller frame buffer size, vGPU incorporates a performance balancing feature known as Frame Rate Limiter (FRL). On vGPUs that use the best-effort scheduler, FRL is enabled. On vGPUs that use the fixed share or equal share scheduler, FRL is disabled.

FRL is used to ensure balanced performance across multiple vGPUs that are resident on the same physical GPU. The FRL setting is designed to give good interactive remote graphics experience but may reduce scores in benchmarks that depend on measuring frame rendering rates, as compared to the same benchmarks running on a pass-through GPU.

Resolution

FRL is controlled by an internal vGPU setting. On vGPUs that use the best-effort scheduler, NVIDIA does not validate vGPU with FRL disabled, but for validation of benchmark performance, FRL can be temporarily disabled by specifying `frame_rate_limiter=0` in the VM’s `platform:vgpu_extra_args` parameter:

```
[root@xenserver ~]# xe vm-param-set uuid=e71afda4-53f4-3a1b-6c92-a364a7f619c2 platform:vgpu_extra_args="frame_rate_limiter=0"
```

The setting takes effect the next time the VM is started or rebooted.

With this setting in place, the VM’s vGPU will run without any frame rate limit. The FRL can be reverted back to its default setting in one of the following ways:

- Removing the `vgpu_extra_args` key from the `platform` parameter
- Removing `frame_rate_limiter=0` from the `vgpu_extra_args` key
- Setting `frame_rate_limiter=1`. For example:

  ```
  [root@xenserver ~]# xe vm-param-set uuid=e71afda4-53f4-3a1b-6c92-a364a7f619c2 platform:vgpu_extra_args="frame_rate_limiter=1"
  ```

3.8. **nvidia-smi** fails to operate when all GPUs are assigned to GPU pass-through mode

Description

If all GPUs in the platform are assigned to VMs in pass-through mode, **nvidia-smi** will return an error:

```
[root@xenserver-vqx-test ~]# nvidia-smi
Failed to initialize NVML: Unknown Error
```

This is because GPUs operating in pass-through mode are not visible to **nvidia-smi** and the NVIDIA kernel driver operating in the Citrix Hypervisor dom0.
To confirm that all GPUs are operating in pass-through mode, use XenCenter’s GPU tab to review current GPU assignment:

![XenCenter GPU tab](image)

Resolution

N/A

3.9. Windows Aero is disabled on Citrix Virtual Apps and Desktops session using 3 or 4 monitors in 2560×1600 resolution

Description

Windows Aero may be disabled when Citrix Virtual Apps and Desktops is connected to a VM with a vGPU or passthrough GPU, with 3 or 4 monitors at 2560×1600 resolution.
This limitation is a limitation of Windows 7. For details, see the Microsoft knowledge base article Desktop background disappears with very large extended desktop on Windows 7.

3.10. VMs configured with large memory fail to initialize vGPU when booted

Description
When starting multiple VMs configured with large amounts of RAM (typically more than 32GB per VM), a VM may fail to initialize vGPU. In this scenario, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA vGPU software GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

The Citrix Hypervisor VM’s /var/log/messages log file contains these error messages:

```
vmiop_log: error: NVOS status 0x29
vmiop_log: error: Assertion Failed at 0x7620fd4b:179
vmiop_log: error: 8 frames returned by backtrace
... vmiop_log: error: VGPU message 12 failed, result code: 0x29
... vmiop_log: error: NVOS status 0x8
vmiop_log: error: Assertion Failed at 0x7620c8df:280
vmiop_log: error: 8 frames returned by backtrace
... vmiop_log: error: VGPU message 26 failed, result code: 0x8
```

Resolution
vGPU reserves a portion of the VM’s framebuffer for use in GPU mapping of VM system memory. The reservation is sufficient to support up to 32GB of system memory, and may be increased to accommodate up to 64GB by specifying `enable_large_sys_mem=1` in the VM’s `platform:vgpu_extra_args` parameter:

```
[root@xenserver ~]# xe vm-param-set uuid=e71afda4-53f4-3a1b-6c92-a364a7f619c2 platform:vgpu_extra_args="enable_large_sys_mem=1"
```

The setting takes effect the next time the VM is started or rebooted. With this setting in place, less GPU FB is available to applications running in the VM. To accommodate system memory larger than 64GB, the reservation can be further increased by specifying `extra_fb_reservation` in the VM’s `platform:vgpu_extra_args` parameter, and setting its value to the desired reservation size in megabytes. The default value of 64M is sufficient to support 64GB of RAM. We recommend adding 2M of reservation...
for each additional 1GB of system memory. For example, to support 96GB of RAM, set
extra_fb_reservation to 128:

```
platform:vgpu_extra_args="enable_large_sys_mem=1, extra_fb_reservation=128"
```

The reservation can be reverted back to its default setting in one of the following ways:

- Removing the `vgpu_extra_args` key from the `platform` parameter
- Removing `enable_large_sys_mem` from the `vgpu_extra_args` key
- Setting `enable_large_sys_mem=0`

3.11. vGPU host driver RPM upgrade fails

Description

Upgrading vGPU host driver RPM fails with an error message about failed dependencies on the console.

```
[root@xenserver ~]# rpm -U NVIDIA-vGPU-xenserver-6.5-352.46.x86_64.rpm
error: Failed dependencies:
  NVIDIA-vgx-xenserver conflicts with NVIDIA-vGPU-xenserver-6.5-352.46.x86_64
[root@xenserver ~]#
```

Resolution

Uninstall the older vGPU RPM before installing the latest driver.

Use the following command to uninstall the older vGPU RPM:

```
[root@xenserver ~]# rpm -e NVIDIA-vgx-xenserver
```
Chapter 4. RESOLVED ISSUES

Only resolved issues that have been previously noted as known issues or had a noticeable user impact are listed. The summary and description for each resolved issue indicate the effect of the issue on NVIDIA vGPU software before the issue was resolved.

Issues Resolved in Release 10.0

No resolved issues are reported in this release for Citrix Hypervisor.
Chapter 5. KNOWN ISSUES

5.1. The Desktop color depth list is empty

Description
The Desktop color depth list on the Change resolution page in NVIDIA Control Panel for the VM display NVIDIA VGX is empty. This list should include options such as SDR 24 bit and SDR 30 bit.

Status
Open

Ref. #
200555917

5.2. Citrix Virtual Apps and Desktops session freezes when the desktop is unlocked

Description
When a Citrix Virtual Apps and Desktops session that is locked is unlocked by pressing Ctrl+Alt+Del, the session freezes. This issue affects only VMs that are running Microsoft Windows 10 1809 as a guest OS.

Version
Microsoft Windows 10 1809 guest OS
Workaround
Restart the VM.

Status
Not an NVIDIA bug

Ref. #
2767012

5.3. XID errors and TDR occur after vGPU migration

Description
After several vGPU migrations, Direct X 12 applications might show corruption or crash with XID errors 13 or 32 and a TDR followed by XID error 43. This issue affects only GPUs based on the NVIDIA Turing™ architecture.

The Citrix Hypervisor /var/log/messages log file contains these error messages:

WARNING: NVRM: Xid (PCI:0000:05:00): 13, pid=2103457, Graphics Exception on GPC 0: 3D-2 KIND Violation. Coordinates: (0x0, 0x0)
WARNING: NVRM: Xid (PCI:0000:05:00): 13, pid=2103457, Graphics Exception: ESR 0x500420=0x80000080 0x500434=0x0 0x500438=0xd0000 0x50043c=0x10006
WARNING: NVRM: Xid (PCI:0000:05:00): 32, pid=2103457, Channel ID 00000036 intr0 00400000
WARNING: NVRM: Xid (PCI:0000:05:00): 43, pid=2103457, Ch 00000015

Status
Open

Ref. #
200556412

5.4. On Citrix Hypervisor, all vGPUs in a VM must be of the same type

Description
When a VM on Citrix Hypervisor is configured with multiple vGPUs, all vGPUs must be of the same type. Citrix Hypervisor does not support the assignment multiple vGPUs of different types to a single VM.
What happens when you try to assign a different type of vGPU than the vGPUs already assigned to a VM depends on the Citrix utility that you are using.

- If you are using Citrix XenCenter, only vGPUs of the same type as the vGPUs already assigned are available for selection.
- If you are using the `xe` command, the command fails and the following error message is displayed:

```
Cannot create a virtual GPU that is incompatible with the existing types on the VM.
```

Status

Not an NVIDIA bug.

Ref. #

200568154

5.5. Console VGA cannot be disabled

Description

In Citrix Hypervisor releases since 8.1, a VM's console VGA interface cannot be disabled by using the command `xe vm-param-set uuid=vm-uuid platform:vgpu_extra_args="disable_vnc=1"`.

This behavior is the result of the following changes that Citrix introduced in Citrix Hypervisor release 8.1:

- The command `xe vm-param-set` for assigning plugin configuration parameters has been withdrawn.
- Plugin parameters can no longer be set for vGPUs that were created by using Citrix XenCenter. They can be set only for vGPUs that were created from the command line by using the `xe` command.

Version

Since Citrix Hypervisor release 8.1

Workaround

Create the vGPU by using the `xe` command and specify plugin parameters for the group to which the vGPU belongs as explained in *Virtual GPU Software User Guide*.

Status

Not a bug
Ref. #
200569785

5.6. Console VNC is unusable with Xorg on multiple vGPUs in a VM

Description
If a Linux VM is configured with multiple vGPUs and the Xorg display server is running on more than one vGPU in the VM, severe corruption in console VNC is observed.

Workaround
Ensure that the Xorg display server is running on only one vGPU in the VM.

Status
Not an NVIDIA bug.

Ref. #
200568261

5.7. Publisher not verified warning during Windows 7 driver installation

Description
During installation of the NVIDIA vGPU software graphics driver for Windows on Windows 7, Windows warns that it can’t verify the publisher of the driver software. If Device Manager is used to install the driver, Device Manager warns that the driver is not digitally signed. If you install the driver, error 52 (CM_PROB_UNSIGNED_DRIVER) occurs.

This issue occurs because Microsoft is no longer dual signing WHQL-tested software binary files by using the SHA-1 and SHA-2 hash algorithms. Instead, WHQL-tested software binary files are signed only by using the SHA-2 hash algorithm. All NVIDIA vGPU software graphics drivers for Windows are WHQL tested.

By default, Windows 7 systems cannot recognize signatures that were created by using the SHA-2 hash algorithm. As a result, software binary files that are signed only by using the SHA-2 hash algorithm are considered unsigned.
For more information, see 2019 SHA-2 Code Signing Support requirement for Windows and WSUS on the Microsoft Windows support website.

Version

Windows 7

Workaround

If you experience this issue, install the following updates and restart the VM or host before installing the driver:

- Servicing stack update (SSU) (KB4490628)
- SHA-2 update (KB4474419)

Status

Not a bug

5.8. RAPIDS cuDF **merge** fails on NVIDIA vGPU

Description

The *merge* function of the RAPIDS cuDF GPU data frame library fails on NVIDIA vGPU. This function fails because RAPIDS uses the Unified Memory feature of CUDA, which NVIDIA vGPU does not support.

Status

Open

Ref. #

2642134

5.9. Migration of VMs configured with vGPU stops before the migration is complete

Description

When a VM configured with vGPU is migrated to another host, the migration stops before it is complete. After the migration stops, the VM is no longer accessible.
This issue occurs if the ECC memory configuration (enabled or disabled) on the source and destination hosts are different. The ECC memory configuration on both the source and destination hosts must be identical.

Workaround
Reboot the hypervisor host to recover the VM. Before attempting to migrate the VM again, ensure that the ECC memory configuration on both the source and destination hosts are identical.

Status
Not an NVIDIA bug

Ref. #
200520027

5.10. ECC memory settings for a vGPU cannot be changed by using NVIDIA X Server Settings

Description
The ECC memory settings for a vGPU cannot be changed from a Linux guest VM by using **NVIDIA X Server Settings**. After the ECC memory state has been changed on the **ECC Settings** page and the VM has been rebooted, the ECC memory state remains unchanged.

Workaround
Use the `nvidia-smi` command in the guest VM to enable or disable ECC memory for the vGPU as explained in **Virtual GPU Software User Guide**.

If the ECC memory state remains unchanged even after you use the `nvidia-smi` command to change it, use the workaround in Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored.

Status
Open

Ref. #
200523086
5.11. Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored

Description
After the ECC memory state for a Linux vGPU VM has been changed by using the nvidia-smi command and the VM has been rebooted, the ECC memory state might remain unchanged.

This issue occurs when multiple NVIDIA configuration files in the system cause the kernel module option for setting the ECC memory state RMGuestECCState in /etc/modprobe.d/nvidia.conf to be ignored.

When the nvidia-smi command is used to enable ECC memory, the file /etc/modprobe.d/nvidia.conf is created or updated to set the kernel module option RMGuestECCState. Another configuration file in /etc/modprobe.d/ that contains the keyword NVreg_RegistryDwordsPerDevice might cause the kernel module option RMGuestECCState to be ignored.

Workaround
This workaround requires administrator privileges.

1. Move the entry containing the keyword NVreg_RegistryDwordsPerDevice from the other configuration file to /etc/modprobe.d/nvidia.conf.
2. Reboot the VM.

Status
Open

Ref. #
200505777

5.12. Incorrect GPU type shown for Quadro RTX 8000 GPUs in Citrix XenCenter

Description
On the GPU tab in Citrix XenCenter, Quadro RTX 8000 GPUs are incorrectly shown as [QUADRO RTX 6000].

However, the virtual GPU types for a Quadro RTX 8000 GPU are listed correctly.
NVIDIA vGPU software does not support systems with a mixture of GPU types. Therefore, you can assume that any GPU in a system that you know to contain Quadro RTX 8000 GPUs that is shown as \[\text{QUADRO RTX 6000}\] is, in fact, a Quadro RTX 8000 GPU.

Status
Not an NVIDIA bug

Ref. #
200492607

5.13. NVIDIA Notification Icon prevents log off of Citrix Published Application user sessions

Description
By default on Windows Server operating systems, the NVIDIA Notification Icon application is started with every Citrix Published Application user session. This application might prevent the Citrix Published Application user session from being logged off even after the user has quit all other applications.

Resolution
Disable the NVIDIA Notification Icon application for Citrix Published Application user sessions as explained in *Virtual GPU Software User Guide*.

Status
Resolved by the provision of Windows registry keys for disabling the NVIDIA Notification Icon application for Citrix Published Application user sessions.

Ref. #
2206368

5.14. Vulkan applications crash in Windows 7 guest VMs configured with NVIDIA vGPU

Description
In Windows 7 guest VMs configured with NVIDIA vGPU, applications developed with Vulkan APIs crash or throw errors when they are launched. Vulkan APIs require sparse
Known Issues

texture support, but in Windows 7 guest VMs configured with NVIDIA vGPU, sparse textures are not enabled.

In Windows 10 guest VMs configured with NVIDIA vGPU, sparse textures are enabled and applications developed with Vulkan APIs run correctly in these VMs.

Status
Open

Ref. #
200381348

5.15. Host core CPU utilization is higher than expected for moderate workloads

Description
When GPU performance is being monitored, host core CPU utilization is higher than expected for moderate workloads. For example, host CPU utilization when only a small number of VMs are running is as high as when several times as many VMs are running.

Workaround
Disable monitoring of the following GPU performance statistics:

- vGPU engine usage by applications across multiple vGPUs
- Encoder session statistics
- Frame buffer capture (FBC) session statistics
- Statistics gathered by performance counters in guest VMs

Status
Open

Ref. #
2414897
5.16. Frame capture while the interactive logon message is displayed returns blank screen

Description
Because of a known limitation with NvFBC, a frame capture while the interactive logon message is displayed returns a blank screen.

An NvFBC session can capture screen updates that occur after the session is created. Before the logon message appears, there is no screen update after the message is shown and, therefore, a black screen is returned instead. If the NvFBC session is created after this update has occurred, NvFBC cannot get a frame to capture.

Workaround
See Black Screen at Logon with Nvidia HDX 3D Pro enabled in the Citrix knowledge base.

Status
Not a bug

Ref. #
2115733

5.17. RDS sessions do not use the GPU with some Microsoft Windows Server releases

Description
When some releases of Windows Server are used as a guest OS, Remote Desktop Services (RDS) sessions do not use the GPU. With these releases, the RDS sessions by default use the Microsoft Basic Render Driver instead of the GPU. This default setting enables 2D DirectX applications such as Microsoft Office to use software rendering, which can be more efficient than using the GPU for rendering. However, as a result, 3D applications that use DirectX are prevented from using the GPU.

Version
- Windows Server 2016
- Windows Server 2012
Solution

Change the local computer policy to use the hardware graphics adapter for all RDS sessions.

2. Set the Use the hardware default graphics adapter for all Remote Desktop Services sessions option.

5.18. Even when the scheduling policy is equal share, unequal GPU utilization is reported

Description

When the scheduling policy is equal share, unequal GPU engine utilization can be reported for the vGPUs on the same physical GPU.

For example, GPU engine usage for three P40-8Q vGPUs on a Tesla P40 GPU might be reported as follows:

```
[root@localhost:~] nvidia-smi vgpu
Wed Jun 27 10:33:18 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.59                 Driver Version: 390.59                    |
|-------------------------------+--------------------------------+------------|
| GPU  Name                     | Bus-Id                         | GPU-Util   |
|      vGPU ID    Name          | VM ID    VM Name               | vGPU-Util  |
|===============================+================================+============|
|   0  Tesla P40                | 00000000:81:00.0               |  52%       |
|      2122661    GRID P40-8Q   | 2122682  centos7.4-xmpl-211... |     19%    |
|      2122663    GRID P40-8Q   | 2122692  centos7.4-xmpl-211... |      0%    |
|      2122659    GRID P40-8Q   | 2122664  centos7.4-xmpl-211... |     25%    |
|   1  Tesla P40                | 00000000:85:00.0               |  58%       |
|      2122662    GRID P40-8Q   | 2122689  centos7.4-xmpl-211... |      0%    |
|      2122658    GRID P40-8Q   | 2122677  centos7.4-xmpl-211... |     59%    |
|      2122660    GRID P40-8Q   | 2122670  centos7.4-xmpl-211... |      0%    |
+-------------------------------+--------------------------------+------------+
```

The vGPU utilization of the vGPU 2122658 is reported as 59%. However, the expected vGPU utilization should not exceed 33%.

This behavior is a result of the mechanism that is used to measure GPU engine utilization.

Status

Open
5.19. When the scheduling policy is fixed share, GPU utilization is reported as higher than expected

Description

When the scheduling policy is fixed share, GPU engine utilization can be reported as higher than expected for a vGPU.

For example, GPU engine usage for six P40-4Q vGPUs on a Tesla P40 GPU might be reported as follows:

```
[root@localhost:~] nvidia-smi vgpu
Mon Aug 20 10:33:18 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.42                 Driver Version: 390.42                    |
|-------------------------------+--------------------------------+------------|
| GPU  Name                     | Bus-Id                         | GPU-Util   |
|      vGPU ID    Name          | VM ID    VM Name               | vGPU-Util  |
|===============================+================================+============|
|   0  Tesla P40                | 00000000:81:00.0               |  99%       |
|      85109      GRID P40-4Q   | 85110    win7-xmpl-146048-1    |     32%    |
|      87195      GRID P40-4Q   | 87196    win7-xmpl-146048-2    |     39%    |
|      88095      GRID P40-4Q   | 88096    win7-xmpl-146048-3    |     26%    |
|      89170      GRID P40-4Q   | 89171    win7-xmpl-146048-4    |      0%    |
|      90475      GRID P40-4Q   | 90476    win7-xmpl-146048-5    |      0%    |
|      93363      GRID P40-4Q   | 93364    win7-xmpl-146048-6    |      0%    |
|   1  Tesla P40                | 00000000:85:00.0               |   0%       |
+-------------------------------+--------------------------------+------------+
```

The vGPU utilization of vGPU 85109 is reported as 32%. For vGPU 87195, vGPU utilization is reported as 39%. And for 88095, it is reported as 26%. However, the expected vGPU utilization of any vGPU should not exceed approximately 16.7%.

This behavior is a result of the mechanism that is used to measure GPU engine utilization.

Status

Open

Ref. #

2227591
5.20. **nvidia-smi** reports that vGPU migration is supported on all hypervisors

Description

The command `nvidia-smi vgpu -m` shows that vGPU migration is supported on all hypervisors, even hypervisors or hypervisor versions that do not support vGPU migration.

Status

Closed

Ref. #

200407230

5.21. **NVIDIA Control Panel** Crashes in a VM connected to two 4K displays

Description

When **NVIDIA Control Panel** is started in a VM connected through a pass-through GPU to two 4K displays, a **Citrix HDX 3D Pro Warning** pop-up window opens containing the following error message:

```
Full screen applications are not supported on Citrix HDX 3D Pro. Press Ok to exit
```

NVIDIA Control Panel then crashes.

After the VM is rebooted, **NVIDIA Control Panel** is available again.

Version

Citrix Virtual Apps and Desktops 7.16

Status

Not an NVIDIA bug

Ref. #

200393766
5.22. vGPU guest VM driver not properly loaded on servers with more than 512 GB or 1 TB or more of system memory

Description
If PV IOMMU is enabled, support for vGPU is limited to servers with a maximum of 512 GB of system memory. On servers with more than 512 GB of system memory and PV IOMMU enabled, the guest VM driver is not properly loaded. Device Manager marks the vGPU with a yellow exclamation point.

If PV IOMMU is disabled, support for vGPU is limited to servers with less than 1 TB of system memory. This limitation applies only to systems with supported GPUs based on the Maxwell architecture: Tesla M6, Tesla M10, and Tesla M60. On servers with 1 TB or more of system memory, VMs configured with vGPU fail to power on. However, support for GPU pass through is not affected by this limitation.

Resolution
1. If PV IOMMU is enabled, disable it.

   ```
   [root@xenserver ~]# /opt/xensource/libexec/xen-cmdline --set-xen iommu=dom0-passthrough
   ```

2. If the server has 1 TB or more of system memory, limit the amount of system memory on the server to 1 TB minus 16 GB.

 If the server has less than 1 TB or more of system memory, omit this step.

3. Reboot the server.

Status
Not an NVIDIA bug

Ref. #
1799582
5.23. Luxmark causes a segmentation fault on an unlicensed Linux client

Description
If the Luxmark application is run on a Linux guest VM configured with NVIDIA vGPU that is booted without acquiring a license, a segmentation fault occurs and the application core dumps. The fault occurs when the application cannot allocate a CUDA object on NVIDIA vGPUs where CUDA is disabled. On NVIDIA vGPUs that can support CUDA, CUDA is disabled in unlicensed mode.

Status
Not an NVIDIA bug.

Ref. #
200330956

5.24. Resolution is not updated after a VM acquires a license and is restarted

Description
In a Red Enterprise Linux 7.3 guest VM, an increase in resolution from 1024×768 to 2560×1600 is not applied after a license is acquired and the gridd service is restarted. This issue occurs if the multimonitor parameter is added to the xorg.conf file.

Version
Red Enterprise Linux 7.3

Status
Open

Ref. #
200275925
5.25. A segmentation fault in DBus code causes \texttt{nvidia-gridd} to exit on Red Hat Enterprise Linux and CentOS

Description

On Red Hat Enterprise Linux 6.8 and 6.9, and CentOS 6.8 and 6.9, a segmentation fault in DBus code causes the \texttt{nvidia-gridd} service to exit.

The \texttt{nvidia-gridd} service uses DBus for communication with NVIDIA X Server \textbf{Settings} to display licensing information through the \textbf{Manage License} page. Disabling the GUI for licensing resolves this issue.

To prevent this issue, the GUI for licensing is disabled by default. You might encounter this issue if you have enabled the GUI for licensing and are using Red Hat Enterprise Linux 6.8 or 6.9, or CentOS 6.8 and 6.9.

Version

Red Hat Enterprise Linux 6.8 and 6.9

CentOS 6.8 and 6.9

Status

Open

Ref. #

- 200358191
- 200319854
- 1895945

5.26. No \textbf{Manage License} option available in \textbf{NVIDIA X Server Settings} by default

Description

By default, the \textbf{Manage License} option is not available in \textbf{NVIDIA X Server Settings}. This option is missing because the GUI for licensing on Linux is disabled by default to work around the issue that is described in \texttt{A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS}.
Workaround

This workaround requires `sudo` privileges.

Do not use this workaround with Red Hat Enterprise Linux 6.8 and 6.9 or CentOS 6.8 and 6.9. To prevent a segmentation fault in DBus code from causing the `nvidia-gridd` service from exiting, the GUI for licensing must be disabled with these OS versions.

If you are licensing a physical GPU for vComputeServer, you **must** use the configuration file `/etc/nvidia/gridd.conf`.

1. If NVIDIA X Server Settings is running, shut it down.
2. If the `/etc/nvidia/gridd.conf` file does not already exist, create it by copying the supplied template file `/etc/nvidia/gridd.conf.template`.
3. As root, edit the `/etc/nvidia/gridd.conf` file to set the `EnableUI` option to `TRUE`.
4. Start the `nvidia-gridd` service.

```
# sudo service nvidia-gridd start
```

When NVIDIA X Server Settings is restarted, the Manage License option is now available.

Status

Open

5.27. Licenses remain checked out when VMs are forcibly powered off

Description

NVIDIA vGPU software licenses remain checked out on the license server when non-persistent VMs are forcibly powered off.

The NVIDIA service running in a VM returns checked out licenses when the VM is shut down. In environments where non-persistent licensed VMs are not cleanly shut down, licenses on the license server can become exhausted. For example, this issue can occur in automated test environments where VMs are frequently changing and are not guaranteed to be cleanly shut down. The licenses from such VMs remain checked out against their MAC address for seven days before they time out and become available to other VMs.
Resolution

If VMs are routinely being powered off without clean shutdown in your environment, you can avoid this issue by shortening the license borrow period. To shorten the license borrow period, set the LicenseInterval configuration setting in your VM image. For details, refer to Virtual GPU Client Licensing User Guide.

Status

Closed

Ref. #

1694975

5.28. Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer

Description

Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer.

This issue typically occurs in the following situations:

‣ Full screen 1080p video content is playing in a browser. In this situation, the session hangs and session reconnection fails.
‣ Multiple display heads are used with Citrix Virtual Apps and Desktops or VMware Horizon on a Windows 10 guest VM.
‣ Higher resolution monitors are used.
‣ Applications that are frame-buffer intensive are used.
‣ NVENC is in use.

To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer.

When memory exhaustion occurs, the NVIDIA host driver reports Xid error 31 and Xid error 43 in the Citrix Hypervisor /var/log/messages file.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

‣ Tesla M6-0B, M6-0Q
‣ Tesla M10-0B, M10-0Q
‣ Tesla M60-0B, M60-0Q
The root cause is a known issue associated with changes to the way that recent Microsoft operating systems handle and allow access to overprovisioning messages and errors. If your systems are provisioned with enough frame buffer to support your use cases, you should not encounter these issues.

Workarounds

- Use an appropriately sized vGPU to ensure that the frame buffer supplied to a VM through the vGPU is adequate for your workloads.
- Monitor your frame buffer usage.
- If you are using Windows 10, consider these workarounds and solutions:
 - Use a profile that has 1 Gbyte of frame buffer.
 - Optimize your Windows 10 resource usage.

To obtain information about best practices for improved user experience using Windows 10 in virtual environments, complete the NVIDIA GRID vGPU Profile Sizing Guide for Windows 10 download request form.

For more information, see also Windows 10 Optimization for XenDesktop on the Citrix blog.

Status

Open

Ref. #

- 200130864
- 1803861

5.29. VM bug checks after the guest VM driver for Windows 10 RS2 is installed

Description

When the VM is rebooted after the guest VM driver for Windows 10 RS2 is installed, the VM bug checks. When Windows boots, it selects one of the standard supported video modes. If Windows is booted directly with a display that is driven by an NVIDIA driver, for example a vGPU on Citrix Hypervisor, a blue screen crash occurs.

This issue occurs when the screen resolution is switched from VGA mode to a resolution that is higher than 1920×1200.
Fix

Download and install Microsoft Windows Update KB4020102 from the Microsoft Update Catalog.

Workaround

If you have applied the fix, ignore this workaround.

Otherwise, you can work around this issue until you are able to apply the fix by not using resolutions higher than 1920×1200.

1. Choose a GPU profile in Citrix XenCenter that does not allow resolutions higher than 1920×1200.
2. Before rebooting the VM, set the display resolution to 1920×1200 or lower.

Status

Not an NVIDIA bug

Ref. #

200310861

5.30. On Citrix Hypervisor 7.0, VMs unexpectedly reboot and Citrix Hypervisor crashes or freezes

Description

On Citrix Hypervisor 7.0, VMs to which a vGPU is attached unexpectedly reboot and Citrix Hypervisor crashes or freezes.

The event log in the Citrix Hypervisor /var/log/crash/xen.log file lists the following errors:

- A fatal bus error on a component at the slot where the GPU card is installed
- A fatal error on a component at bus 0, device 2, function 0

This issue occurs when page-modification logging (PML) is enabled on Intel Broadwell CPUs running Citrix Hypervisor 7.0. Citrix is aware of this issue and is working on a permanent fix.

Workaround

Disable page-modification logging (PML) as explained in XenServer 7 host crash while starting multiple virtual machines in the Citrix Support Knowledge Center.
Status
Not an NVIDIA bug

Ref. #
1853248

5.31. With no NVIDIA driver installed, Citrix Hypervisor misidentifies Tesla M10 cards

Description
An erroneous entry in the pci.ids database causes Citrix Hypervisor to identify Tesla M10 cards as GRID M40 when no NVIDIA driver is installed.

Version
Citrix Hypervisor 6.5 and 7.0

Workaround
None

Status
Not an NVIDIA bug

Ref. #
NVIDIA-420/1792341

5.32. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0

Description
GDM fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0 with the following error:

Oh no! Something has gone wrong!

Workaround
Permanently enable permissive mode for Security Enhanced Linux (SELinux).
1. As root, edit the `/etc/selinux/config` file to set SELINUX to permissive.
 SELINUX=permissive
2. Reboot the system.
 ~]# reboot

For more information, see Permissive Mode in Red Hat Enterprise Linux 7 SELinux User’s and Administrator’s Guide.

Status

Not an NVIDIA bug

Ref. #

200167868

5.33. Video goes blank when run in loop in Windows Media Player

Description

When connected to a vGPU-enabled VM using Citrix Virtual Apps and Desktops, a video played back in looping mode on Windows Media Player goes blank or freezes after a few iterations.

Workaround

None

Status

Not an NVIDIA bug

Ref. #

1306623
5.34. Local VGA console is momentarily unblanked when Citrix Virtual Apps and Desktops changes resolution of the VM desktop

Description
When Citrix Virtual Apps and Desktops establishes a remote connection to a VM using vGPU, the VM's local VGA console display in XenCenter is blanked (assuming the VM local console has not been disabled by setting `platform:vgpu_extra_args="disable_vnc=1"`). If the Citrix Virtual Apps and Desktops session changes resolution of the VM's desktop, the local VGA console momentarily unblanks, allowing a XenCenter user to briefly view the desktop.

Workaround
Disable the VM's local VGA console

```
xe vm-param-set uuid=vm-uuid platform:vgpu_extra_args="disable_vnc=1"
```

Status
Open

Ref. #
NVIDIA-145/1375164

5.35. VM bugchecks on shutdown/restart when Citrix Virtual Apps and Desktops is installed and NVIDIA driver is uninstalled or upgraded.

Description
If the Citrix Virtual Apps and Desktops agent is installed in a VM before any NVIDIA GPU driver is installed, the VM will bugcheck (bluescreen) when the NVIDIA driver is subsequently upgraded or uninstalled. The bugcheck code is 0x7E, `SYSTEM_THREAD_EXCEPTION_NOT_HANDLED`.

Workaround
Use one of the following workarounds:
Known Issues

- Do a force shutdown of the VM and restart it.
- Install the NVIDIA driver in guest VMs before installing Citrix Virtual Apps and Desktops.

Status
Open

Ref. #
NVIDIA-295/200018125

5.36. Application frame rate may drop when running Citrix Virtual Apps and Desktops at 2560×1600 resolution.

Description
An application’s rendering frame rate may drop when running Citrix Virtual Apps and Desktops at 2560×1600 resolution, relative to the frame rate obtained at lower resolutions.

Fix
Using the Windows regedit utility within the VM, open the HKLM\SOFTWARE \Citrix\Graphics registry key and create a new DWORD value, EncodeSpeed, with a value of 2. Reboot the VM. This setting may improve the delivered frame rate at the expense of a reduction in image quality.

Status
Open

Ref. #
NVIDIA-190/1416336

5.37. Windows VM BSOD

Description
Windows VM bugchecks on Citrix Hypervisor when running a large number of vGPU based VMs.
The Citrix Hypervisor /var/log/messages file contains these error messages:

```
NVRM: Xid (PCI:0000:08:00): 31, Ch 0000000e, engmask 00000111, intr 10000000
NVRM: Xid (PCI:0000:08:00): 31, Ch 00000016, engmask 00000111, intr 10000000
...
vmiop_log: error: Assertion Failed at 0xb5b898d8:4184
vmiop_log: error: 8 frames returned by backtrace
vmiop_log: error: /usr/lib/libnvidia-vgx.so(_nv000793vgx+0x69d) [0xb5b8064d]
vmiop_log: error: /usr/lib/libnvidia-vgx.so(_nv000479vgx+0x118) [0xb5b898d8]
vmiop_log: error: /usr/lib/libnvidia-vgx.so(_nv000782vgx+0x59) [0xb5b85f49]
vmiop_log: error: /usr/lib/libnvidia-vgx.so(_nv000347vgx+0x3db) [0xb5b932db]
vmiop_log: error: /usr/lib/libnvidia-vgx.so [0xb5b78e4a]
vmiop_log: error: /usr/lib/xen/bin/vgpu [0x80554be]
vmiop_log: error: /lib/libpthread.so.0 [0xb7612912]
vmiop_log: error: /lib/libc.so.6(clone+0x5e) [0xb76fc5ee]
vmiop_log: error: failed to initialize guest PTE entries
vmiop_log: error: failed to fill up guest PTE entries 3
vmiop_log: error: VGPU message 27 failed, result code: 0xff000003
vmiop_log: error: 0x1c0d00001, 0xff010000, 0x1a77bab000, 0x0, 0x1,
vmiop_log: error: 0x1, 0x1000, 0x10202, 0xc1d00001, 0xff010000,
vmiop_log: error: 0xcaf00004, 0x0
vmiop_log: error: Timeout occurred, reset initiated.
```

Version

Citrix Hypervisor 6.2

Fix

Ensure that you are running the latest OEM firmware for your NVIDIA vGPU software boards.

Status

Closed

Ref. #

NVIDIA-327/1632120

5.38. Windows VM BSOD when upgrading NVIDIA drivers over a Citrix Virtual Apps and Desktops session

Description

Windows VM bugchecks when NVIDIA guest drivers are upgraded over a Citrix Virtual Apps and Desktops session.

If the VM is restarted after the bugcheck, the upgraded driver loads correctly and full functionality is available.
Fix
Upgrade Citrix Virtual Apps and Desktops to 7.6 Feature Pack 3

Status
Closed

Ref. #
NVIDIA-370/200130780

5.39. XenCenter does not allow vGPUs to be selected as a GPU type for Linux VMs

Description
When creating a new Linux VM or editing the properties of an existing Linux VM, XenCenter does not allow vGPUs to be selected as a GPU type.

vGPU on Linux VMs is supported as a technical preview on Citrix Hypervisor 6.5, and does include XenCenter integration.

Version
Affects the XenCenter integration with Citrix Hypervisor 6.5 only.
Resolved in the XenCenter integration with Citrix Hypervisor 7.0.

Workaround
Refer to XenServer vGPU Management in Virtual GPU Software User Guide for how to configure vGPU by using the xe CLI.

Status
Closed

Ref. #
NVIDIA-360
5.40. If X server is killed on a RHEL7 VM running vGPU, XenCenter console may not automatically switch to text console

Description

If X server is killed on a RHEL7 VM running vGPU, XenCenter console may display a corrupted image and fail to switchover to text console.

The failure to switchover to text console is due to a bug in RHEL7, which causes X server to not start correctly under certain configurations.

Workaround

Use **CTRL+ALT+F1, F2, or F3** to switch between Linux terminals.

Status

Closed

Ref. #

NVIDIA-350/200123378

5.41. Citrix Virtual Apps and Desktops shows only a black screen when connected to a vGPU VM

Description

Citrix Virtual Apps and Desktops sometimes displays only a black screen when it is connected to an NVIDIA vGPU VM. The probable cause is that the display that is connected to the NVIDIA vGPU is entering a lower power state.

Fix

Disable all display-related power management settings.

For detailed instructions, visit [Microsoft power plans frequently asked questions](#) and from the list, select your OS version.

Status

Not an NVIDIA bug
Ref. #
1719877
Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA GRID, vGPU, Pascal, Quadro, and Tesla are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2013-2019 NVIDIA Corporation. All rights reserved.