Virtual GPU Software R510 for Ubuntu

Release Notes
Table of Contents

Chapter 1. Release Notes .. 1
 1.1. NVIDIA vGPU Software Driver Versions ... 1
 1.2. Compatibility Requirements for the NVIDIA vGPU Manager and Guest VM Driver 1
 1.3. Updates in Release 14.0 ... 3

Chapter 2. Validated Platforms .. 5
 2.1. Supported NVIDIA GPUs and Validated Server Platforms 5
 2.1.1. Switching the Mode of a GPU that Supports Multiple Display Modes 7
 2.1.2. Switching the Mode of a Tesla M60 or M6 GPU ... 7
 2.2. Hypervisor Software Releases .. 8
 2.3. Guest OS Support .. 8
 2.3.1. Linux Guest OS Support .. 9
 2.4. NVIDIA CUDA Toolkit Version Support .. 9
 2.5. Multiple vGPU Support .. 9
 2.6. Peer-to-Peer CUDA Transfers over NVLink Support ... 12
 2.7. GPUDirect Technology Support .. 13
 2.8. Unified Memory Support ... 15
 2.9. NVIDIA Deep Learning Super Sampling (DLSS) Support ... 16

Chapter 3. Known Product Limitations .. 17
 3.1. vGPUs of different types on the same GPU are not supported 17
 3.2. NVENC does not support resolutions greater than 4096×4096 17
 3.3. Issues occur when the channels allocated to a vGPU are exhausted 18
 3.4. Virtual GPU hot plugging is not supported .. 19
 3.5. Total frame buffer for vGPUs is less than the total frame buffer on the physical GPU ... 19
 3.6. Issues may occur with graphics-intensive OpenCL applications on vGPU types with limited frame buffer ... 21
 3.7. In pass through mode, all GPUs connected to each other through NVLink must be assigned to the same VM .. 22
 3.8. NVENC requires at least 1 Gbyte of frame buffer .. 22
 3.9. VM running an incompatible NVIDIA vGPU guest driver fails to initialize vGPU when booted ... 23
 3.10. Single vGPU benchmark scores are lower than pass-through GPU 24
 3.11. nvidia-smi fails to operate when all GPUs are assigned to GPU pass-through mode ... 25

Chapter 4. Resolved Issues ... 26

Chapter 5. Known Issues .. 27
5.1. For some license deployments, GSP firmware remains enabled with unsupported products.. 27
5.2. After an upgrade of the Linux graphics driver from a Debian package, the driver is not loaded into the VM.. 28
5.3. A licensed client might fail to acquire a license if a proxy is set.. 29
5.4. Session connection fails with four 4K displays and NVENC enabled on a 2Q, 3Q, or 4Q vGPU... 30
5.5. NVIDIA A100 HGX 80GB vGPU names shown as Graphics Device by nvidia-smi.. 31
5.6. Idle Teradici Cloud Access Software session disconnects from Linux VM.. 32
5.7. GPU Operator doesn't support vGPU on GPUs based on architectures before NVIDIA Turing.. 32
5.8. Idle NVIDIA A100, NVIDIA A40, and NVIDIA A10 GPUs show 100% GPU utilization... 33
5.9. Guest VM frame buffer listed by nvidia-smi for vGPUs on GPUs that support SRIOV is incorrect.. 34
5.10. Driver upgrade in a Linux guest VM with multiple vGPUs might fail.. 35
5.11. On Linux, the frame rate might drop to 1 after several minutes.. 35
5.12. RAPIDS cuDF merge fails on NVIDIA vGPU... 36
5.13. ECC memory settings for a vGPU cannot be changed by using NVIDIA X Server Settings.. 37
5.14. Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored.. 37
5.15. Host core CPU utilization is higher than expected for moderate workloads.. 38
5.16. Frame capture while the interactive logon message is displayed returns blank screen.. 39
5.17. When the scheduling policy is fixed share, GPU utilization is reported as higher than expected.. 39
5.18. nvidia-smi reports that vGPU migration is supported on all hypervisors.. 40
5.19. Luxmark causes a segmentation fault on an unlicensed Linux client.. 41
5.20. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS.. 41
5.21. No Manage License option available in NVIDIA X Server Settings by default.. 42
5.22. Licenses remain checked out when VMs are forcibly powered off.. 43
Chapter 1. Release Notes

These Release Notes summarize current status, information on validated platforms, and known issues with NVIDIA vGPU software and associated hardware on Ubuntu.

Note: The most current version of the documentation for this release of NVIDIA vGPU software can be found online at NVIDIA Virtual GPU Software Documentation.

1.1. NVIDIA vGPU Software Driver Versions

Each release in this release family of NVIDIA vGPU software includes a specific version of the NVIDIA Virtual GPU Manager, NVIDIA Windows driver, and NVIDIA Linux driver.

<table>
<thead>
<tr>
<th>NVIDIA vGPU Software Version</th>
<th>NVIDIA Virtual GPU Manager Version</th>
<th>NVIDIA Windows Driver Version</th>
<th>NVIDIA Linux Driver Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.0</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

For details of which Ubuntu releases are supported, see Hypervisor Software Releases.

1.2. Compatibility Requirements for the NVIDIA vGPU Manager and Guest VM Driver

The releases of the NVIDIA vGPU Manager and guest VM drivers that you install must be compatible. If you install an incompatible guest VM driver release for the release of the vGPU Manager that you are using, the NVIDIA vGPU fails to load.

See VM running an incompatible NVIDIA vGPU guest driver fails to initialize vGPU when booted.

Note: This requirement does not apply to the NVIDIA vGPU software license server. All releases in this release family of NVIDIA vGPU software are compatible with all releases of the license server.
Compatible NVIDIA vGPU Manager and Guest VM Driver Releases

The following combinations of NVIDIA vGPU Manager and guest VM driver releases are compatible with each other.

- NVIDIA vGPU Manager with guest VM drivers from the same release
- NVIDIA vGPU Manager from a later major release branch with guest VM drivers from the previous branch

Note:

When NVIDIA vGPU Manager is used with guest VM drivers from the previous branch, the combination supports only the features, hardware, and software (including guest OSes) that are supported on both releases.

For example, if vGPU Manager from release 14.0 is used with guest drivers from release 13.1, the combination does not support Red Hat Enterprise Linux 8.1 because NVIDIA vGPU software release 14.0 does not support Red Hat Enterprise Linux 8.1.

The following table lists the specific software releases that are compatible with the components in the NVIDIA vGPU software 14 major release branch.

<table>
<thead>
<tr>
<th>NVIDIA vGPU Software Component</th>
<th>Release</th>
<th>Compatible Software Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA vGPU Manager</td>
<td>14.0</td>
<td>Guest VM driver release 14.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All guest VM driver 13.x releases</td>
</tr>
<tr>
<td>Guest VM drivers</td>
<td>14.0</td>
<td>NVIDIA vGPU Manager release 14.0</td>
</tr>
</tbody>
</table>

Incompatible NVIDIA vGPU Manager and Guest VM Driver Releases

The following combinations of NVIDIA vGPU Manager and guest VM driver releases are incompatible with each other.

- NVIDIA vGPU Manager from a later major release branch with guest VM drivers from a production branch two or more major releases before the release of the vGPU Manager
- NVIDIA vGPU Manager from an earlier major release branch with guest VM drivers from a later branch

The following table lists the specific software releases that are incompatible with the components in the NVIDIA vGPU software 14 major release branch.

<table>
<thead>
<tr>
<th>NVIDIA vGPU Software Component</th>
<th>Release</th>
<th>Incompatible Software Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA vGPU Manager</td>
<td>14.0</td>
<td>All guest VM driver releases 11.x and earlier</td>
</tr>
<tr>
<td>Guest VM drivers</td>
<td>14.0</td>
<td>All NVIDIA vGPU Manager releases 13.x and earlier</td>
</tr>
</tbody>
</table>
1.3. Updates in Release 14.0

New Features in Release 14.0

- Support for NVIDIA GPUDirect® Storage technology
- Support for GPUDirect technology on all C-series vGPUs on GPUs that support SR-IOV
- Support for GPU System Processor (GSP) in GPU pass through and bare-metal configurations on Linux with vCS

Note: If you are using a product other than vCS, you must disable GSP as explained in Virtual GPU Software User Guide.

- Enhanced NVIDIA CUDA Toolkit support:
 - NVIDIA CUDA Toolkit profilers can be enabled when unified memory is enabled.
 - Nsight Systems GPU context switch trace is supported.
- Enhancements to the NVIDIA Management Library (NVML) to determine whether a vGPU type supports GPUDirect technology and peer-to-peer CUDA transfers over NVLink
- Addition of RPM and Debian packages for the NVIDIA vGPU software graphics drivers for Linux
- Security updates - see Security Bulletin: NVIDIA GPU Display Driver - February 2022, which is posted shortly after the release date of this software and is listed on the NVIDIA Product Security page
- Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 14.0

- Support for the following GPUs:
 - NVIDIA A2
 - NVIDIA A30X
 - NVIDIA A100X

Features Deprecated in Release 14.0

The following table lists features that are deprecated in this release of NVIDIA vGPU software. Although the features remain available in this release, they might be withdrawn in a future release. In preparation for the possible removal of these features, use the preferred alternative listed in the table.
<table>
<thead>
<tr>
<th>Deprecated Feature</th>
<th>Preferred Alternative</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy NVIDIA vGPU software license server</td>
<td>NVIDIA License System</td>
<td>NVIDIA Virtual GPU Software License Server End of Life Notice</td>
</tr>
</tbody>
</table>
Chapter 2. Validated Platforms

This release family of NVIDIA vGPU software provides support for several NVIDIA GPUs on validated server hardware platforms, Ubuntu hypervisor software versions, and guest operating systems. It also supports the version of NVIDIA CUDA Toolkit that is compatible with R510 drivers.

2.1. Supported NVIDIA GPUs and Validated Server Platforms

This release of NVIDIA vGPU software provides support for the following NVIDIA GPUs on Ubuntu, running on validated server hardware platforms:

- GPUs based on the NVIDIA Maxwell™ graphic architecture:
 - Tesla M6 (NVIDIA Virtual Compute Server [vCS] is not supported.)
 - Tesla M10 (vCS is not supported.)
 - Tesla M60 (vCS is not supported.)

- GPUs based on the NVIDIA Pascal™ architecture:
 - Tesla P4
 - Tesla P6
 - Tesla P40
 - Tesla P100 PCIe 16 GB
 - Tesla P100 SXM2 16 GB
 - Tesla P100 PCIe 12GB

- GPUs based on the NVIDIA Volta architecture:
 - Tesla V100 SXM2
 - Tesla V100 SXM2 32GB
 - Tesla V100 PCIe
 - Tesla V100 PCIe 32GB
 - Tesla V100S PCIe 32GB
Validated Platforms

- Tesla V100 FHHL
- GPUs based on the NVIDIA Turing™ architecture:
 - Tesla T4
 - Quadro RTX 6000 in displayless mode
 - Quadro RTX 6000 passive in displayless mode
 - Quadro RTX 8000 in displayless mode
 - Quadro RTX 8000 passive in displayless mode

In displayless mode, local physical display connectors are disabled.

- GPUs based on the NVIDIA Ampere architecture:
 - NVIDIA A100 PCIe 80GB (supports only compute workloads on Linux with NVIDIA Virtual Compute Server and GPU pass through; graphics acceleration is not supported)
 - NVIDIA A100X (supports only compute workloads on Linux with NVIDIA Virtual Compute Server and GPU pass through; graphics acceleration is not supported)
 - NVIDIA A100 HGX 80GB (supports only compute workloads on Linux with NVIDIA Virtual Compute Server and GPU pass through; graphics acceleration is not supported)
 - NVIDIA A100 PCIe 40GB (supports only compute workloads on Linux with NVIDIA Virtual Compute Server and GPU pass through; graphics acceleration is not supported)
 - NVIDIA A100 HGX 40GB (supports only compute workloads on Linux with NVIDIA Virtual Compute Server and GPU pass through; graphics acceleration is not supported)
 - NVIDIA A40 in displayless mode
 - NVIDIA A30 (supports only compute workloads on Linux with NVIDIA Virtual Compute Server and GPU pass through; graphics acceleration is not supported)
 - NVIDIA A30X (supports only compute workloads on Linux with NVIDIA Virtual Compute Server and GPU pass through; graphics acceleration is not supported)
 - NVIDIA A16
 - NVIDIA A10
 - NVIDIA A2
 - NVIDIA RTX A6000 in displayless mode
 - NVIDIA RTX A5000 in displayless mode

In displayless mode, local physical display connectors are disabled.

For a list of validated server platforms, refer to NVIDIA GRID Certified Servers.
2.1.1. Switching the Mode of a GPU that Supports Multiple Display Modes

Some GPUs support displayless and display-enabled modes but must be used in NVIDIA vGPU software deployments in displayless mode.

The GPUs listed in the following table support multiple display modes. As shown in the table, some GPUs are supplied from the factory in displayless mode, but other GPUs are supplied in a display-enabled mode.

<table>
<thead>
<tr>
<th>GPU</th>
<th>Mode as Supplied from the Factory</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA A40</td>
<td>Displayless</td>
</tr>
<tr>
<td>NVIDIA RTX A5000</td>
<td>Display enabled</td>
</tr>
<tr>
<td>NVIDIA RTX A6000</td>
<td>Display enabled</td>
</tr>
</tbody>
</table>

A GPU that is supplied from the factory in displayless mode, such as the NVIDIA A40 GPU, might be in a display-enabled mode if its mode has previously been changed.

To change the mode of a GPU that supports multiple display modes, use the `displaymodeselector` tool, which you can request from the NVIDIA Display Mode Selector Tool page on the NVIDIA Developer website.

Note:
Only the following GPUs support the `displaymodeselector` tool:
- NVIDIA A40
- NVIDIA RTX A5000
- NVIDIA RTX A6000

Other GPUs that support NVIDIA vGPU software do not support the `displaymodeselector` tool and, unless otherwise stated, do not require display mode switching.

2.1.2. Switching the Mode of a Tesla M60 or M6 GPU

Tesla M60 and M6 GPUs support compute mode and graphics mode. NVIDIA vGPU requires GPUs that support both modes to operate in graphics mode.

Recent Tesla M60 GPUs and M6 GPUs are supplied in graphics mode. However, your GPU might be in compute mode if it is an older Tesla M60 GPU or M6 GPU or if its mode has previously been changed.

To configure the mode of Tesla M60 and M6 GPUs, use the `gpumodeswitch` tool provided with NVIDIA vGPU software releases. If you are unsure which mode your GPU is in, use the `gpumodeswitch` tool to find out the mode.

Note:
Only Tesla M60 and M6 GPUs support the gpumodeswitch tool. Other GPUs that support NVIDIA vGPU do not support the gpumodeswitch tool and, except as stated in Switching the Mode of a GPU that Supports Multiple Display Modes, do not require mode switching.

Even in compute mode, Tesla M60 and M6 GPUs do not support NVIDIA Virtual Compute Server vGPU types.

For more information, refer to gpumodeswitch User Guide.

2.2. Hypervisor Software Releases

This release supports only the hypervisor software releases listed in the table.

Note: If a specific release, even an update release, is not listed, it’s not supported.

<table>
<thead>
<tr>
<th>Software</th>
<th>Releases Supported</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubuntu</td>
<td>20.04 LTS</td>
<td>All NVIDIA GPUs that NVIDIA vGPU software supports are supported with vGPU and in pass-through mode, except on systems that are based on NVIDIA® NVSwitch™ on-chip memory fabric.</td>
</tr>
<tr>
<td>Ubuntu</td>
<td>18.04 LTS</td>
<td>Support is limited to HWE kernels 5.4.0-77 and later. All NVIDIA GPUs that NVIDIA vGPU software supports are supported with vGPU and in pass-through mode, except on systems that are based on NVIDIA NVSwitch on-chip memory fabric.</td>
</tr>
</tbody>
</table>

2.3. Guest OS Support

NVIDIA vGPU software supports several Linux distributions as a guest OS. The supported guest operating systems depend on the hypervisor software version.

Note:

Use only a guest OS release that is listed as supported by NVIDIA vGPU software with your virtualization software. To be listed as supported, a guest OS release must be supported not only by NVIDIA vGPU software, but also by your virtualization software. NVIDIA cannot support guest OS releases that your virtualization software does not support.

NVIDIA vGPU software supports only 64-bit guest operating systems. No 32-bit guest operating systems are supported.
2.3.1. Linux Guest OS Support

NVIDIA vGPU software supports **only** the 64-bit Linux distributions listed in the table as a guest OS on Ubuntu. The releases of Ubuntu for which a Linux release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - Ubuntu Releases</th>
<th>Pass-Through GPU - Ubuntu Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubuntu 20.04 LTS</td>
<td>20.04, 18.04</td>
<td>20.04, 18.04</td>
</tr>
<tr>
<td>Ubuntu 18.04 LTS</td>
<td>20.04, 18.04</td>
<td>20.04, 18.04</td>
</tr>
</tbody>
</table>

Note:
If a specific release, even an update release, is not listed, it’s **not** supported.

2.4. NVIDIA CUDA Toolkit Version Support

The releases in this release family of NVIDIA vGPU software support NVIDIA CUDA Toolkit 11.6.

For more information about NVIDIA CUDA Toolkit, see [CUDA Toolkit 11.6 Documentation](#).

Note:
If you are using NVIDIA vGPU software with CUDA on Linux, avoid conflicting installation methods by installing CUDA from a distribution-independent runfile package. Do not install CUDA from a distribution-specific RPM or Deb package.

To ensure that the NVIDIA vGPU software graphics driver is not overwritten when CUDA is installed, deselect the CUDA driver when selecting the CUDA components to install.

For more information, see [NVIDIA CUDA Installation Guide for Linux](#).

2.5. Multiple vGPU Support

To support applications and workloads that are compute or graphics intensive, multiple vGPUs can be added to a single VM. The assignment of more than one vGPU to a VM is supported only on a subset of vGPUs and Ubuntu releases.

Supported vGPUs

Only Q-series and C-series time-sliced vGPUs that are allocated all of the physical GPU’s frame buffer are supported. MIG-backed vGPUs are **not** supported.
<table>
<thead>
<tr>
<th>GPU Architecture</th>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validated Platforms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampere [compute workloads only]</td>
<td>NVIDIA A100 PCIe 80GB</td>
<td>A100D-80C See Note [1].</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100 HGX 80GB</td>
<td>A100DX-80C See Note [1].</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100 PCIe 40GB</td>
<td>A100-40C See Note [1].</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100 HGX 40GB</td>
<td>A100X-40C See Note [1].</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A30</td>
<td>A30-24C See Note [1].</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A30X</td>
<td></td>
</tr>
<tr>
<td>Ampere [compute and graphics workloads]</td>
<td>NVIDIA A40</td>
<td>A40-48Q See Note [1].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A40-48C See Note [1].</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A16</td>
<td>A16-16Q See Note [1].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A16-16C See Note [1].</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A10</td>
<td>A10-24Q See Note [1].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A10-24C See Note [1].</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A2</td>
<td>A2-16Q See Note [1].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2-16C See Note [1].</td>
</tr>
<tr>
<td></td>
<td>NVIDIA RTX A6000</td>
<td>A6000-48Q See Note [1].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A6000-48C See Note [1].</td>
</tr>
<tr>
<td></td>
<td>NVIDIA RTX A5000</td>
<td>A5000-24Q See Note [1].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5000-24C See Note [1].</td>
</tr>
<tr>
<td>Turing</td>
<td>Tesla T4</td>
<td>T4-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4-16C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 6000</td>
<td>RTX6000-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX6000-24C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 6000 passive</td>
<td>RTX6000P-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX6000P-24C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 8000</td>
<td>RTX8000-48Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX8000-48C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 8000 passive</td>
<td>RTX8000P-48Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX8000P-48C</td>
</tr>
<tr>
<td>Volta</td>
<td>Tesla V100 SXM2 32GB</td>
<td>V100DX-32Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100D-32C</td>
</tr>
<tr>
<td></td>
<td>Tesla V100 PCIe 32GB</td>
<td>V100D-32Q</td>
</tr>
</tbody>
</table>
Validated Platforms

Virtual GPU Software R510 for Ubuntu

<table>
<thead>
<tr>
<th>GPU Architecture</th>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V100D-32C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100S-32Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100S-32C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100X-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100X-16C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100-16C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100L-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V100L-16C</td>
</tr>
<tr>
<td>Pascal</td>
<td>Tesla P100 SXM2</td>
<td>P100X-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P100X-16C</td>
</tr>
<tr>
<td></td>
<td>Tesla P100 PCIe 16GB</td>
<td>P100-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P100-16C</td>
</tr>
<tr>
<td></td>
<td>Tesla P100 PCIe 12GB</td>
<td>P100C-12Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P100C-12C</td>
</tr>
<tr>
<td></td>
<td>Tesla P40</td>
<td>P40-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P40-24C</td>
</tr>
<tr>
<td></td>
<td>Tesla P6</td>
<td>P6-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P6-16C</td>
</tr>
<tr>
<td></td>
<td>Tesla P4</td>
<td>P4-8Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P4-8C</td>
</tr>
<tr>
<td>Maxwell</td>
<td>Tesla M60</td>
<td>M60-8Q</td>
</tr>
<tr>
<td></td>
<td>Tesla M10</td>
<td>M10-8Q</td>
</tr>
<tr>
<td></td>
<td>Tesla M6</td>
<td>M6-8Q</td>
</tr>
</tbody>
</table>

Note:
1. This type of vGPU cannot be assigned with other types of vGPU to the same VM.

Maximum vGPUs per VM

NVIDIA vGPU software supports up to a maximum of 16 vGPUs per VM on Ubuntu.

Supported Hypervisor Releases

Ubuntu 20.04 LTS, 18.04 LTS
2.6. Peer-to-Peer CUDA Transfers over NVLink Support

Peer-to-peer CUDA transfers enable device memory between vGPUs on different GPUs that are assigned to the same VM to be accessed from within the CUDA kernels. NVLink is a high-bandwidth interconnect that enables fast communication between such vGPUs. Peer-to-Peer CUDA transfers over NVLink are supported only on a subset of vGPUs, Ubuntu releases, and guest OS releases.

Supported vGPUs

Only Q-series and C-series time-sliced vGPUs that are allocated all of the physical GPU’s frame buffer on physical GPUs that support NVLink are supported.

<table>
<thead>
<tr>
<th>GPU Architecture</th>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampere [compute workloads only]</td>
<td>NVIDIA A100 PCIe 80GB</td>
<td>A100D-80C</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100 HGX 80GB</td>
<td>A100DX-80C See Note [1]</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100 PCIe 40GB</td>
<td>A100-40C</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100 HGX 40GB</td>
<td>A100X-40C See Note [1]</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A30</td>
<td>A30-24C See Note [1]</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A30X</td>
<td></td>
</tr>
<tr>
<td>Ampere [compute and graphics workloads]</td>
<td>NVIDIA A40</td>
<td>A40-48Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A40-48C</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A10</td>
<td>A10-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A10-24C</td>
</tr>
<tr>
<td></td>
<td>NVIDIA RTX A6000</td>
<td>A6000-48Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A6000-48C</td>
</tr>
<tr>
<td></td>
<td>NVIDIA RTX A5000</td>
<td>A5000-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5000-24C</td>
</tr>
<tr>
<td>Turing</td>
<td>Quadro RTX 6000</td>
<td>RTX6000-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX6000-24C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 6000 passive</td>
<td>RTX6000P-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX6000P-24C</td>
</tr>
<tr>
<td></td>
<td>Quadro RTX 8000</td>
<td>RTX8000-48Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTX8000-48C</td>
</tr>
</tbody>
</table>
Validated Platforms

GPU Architecture

<table>
<thead>
<tr>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadro RTX 8000 passive</td>
<td>RTX8000P-48Q
RTX8000P-48C</td>
</tr>
<tr>
<td>Tesla V100 SXM2 32GB</td>
<td>V100DX-32Q
V100DX-32C</td>
</tr>
<tr>
<td>Tesla V100 SXM2</td>
<td>V100X-16Q
V100X-16C</td>
</tr>
<tr>
<td>Tesla P100 SXM2</td>
<td>P100X-16Q
P100X-16C</td>
</tr>
</tbody>
</table>

Note:

1. Supported only on the following hardware:
 - NVIDIA HGX™ A100 4-GPU baseboard with four fully connected GPUs

Supported Hypervisor Releases

Peer-to-Peer CUDA Transfers over NVLink are supported on all hypervisor releases that support the assignment of more than one vGPU to a VM. For details, see [Multiple vGPU Support](#).

Supported Guest OS Releases

Linux only. Peer-to-Peer CUDA Transfers over NVLink are **not** supported on Windows.

Limitations

- Only direct connections are supported. NVSwitch is not supported.
- Only time-sliced vGPUs are supported. MIG-backed vGPUs are **not** supported.
- PCIe is not supported.
- SLI is not supported.

2.7. GPUDirect Technology Support

NVIDIA GPUDirect® Remote Direct Memory Access (RDMA) technology enables network devices to directly access vGPU frame buffer, bypassing CPU host memory altogether. GPUDirect Storage technology enables a direct data path for direct memory access (DMA) transfers between GPU memory and storage. GPUDirect technology is supported only on a subset of vGPUs and guest OS releases.
Supported vGPUs

All C-series vGPUs on physical GPUs that support single root I/O virtualization (SR-IOV) are supported.

- GPUDirect RDMA technology is supported on both time-sliced and MIG-backed vGPUs that meet these requirements.
- GPUDirect Storage technology is supported only on time-sliced vGPUs that meet these requirements. It is not supported on MIG-backed vGPUs.

<table>
<thead>
<tr>
<th>GPU Architecture</th>
<th>Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampere [time-sliced and MIG-backed vGPUs]</td>
<td>NVIDIA A100 PCIe 80GB</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100 HGX 80GB</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100 PCIe 40GB</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100 HGX 40GB</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A100X</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A30</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A30X</td>
</tr>
<tr>
<td>Ampere [time-sliced vGPUs only]</td>
<td>NVIDIA A40</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A16</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A10</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A2</td>
</tr>
<tr>
<td></td>
<td>NVIDIA RTX A6000</td>
</tr>
<tr>
<td></td>
<td>NVIDIA RTX A5000</td>
</tr>
</tbody>
</table>

Supported Guest OS Releases

Linux only. GPUDirect technology is not supported on Windows.

Supported Network Interface Cards

GPUDirect technology is supported on the following network interface cards:

- Mellanox Connect-X® 6 SmartNIC
- Mellanox Connect-X 5 Ethernet adapter card

Limitations

GPUDirect Storage technology is supported only on the following guest OS releases:

- Red Hat Enterprise Linux 8.4
2.8. Unified Memory Support

Unified memory is a single memory address space that is accessible from any CPU or GPU in a system. It creates a pool of managed memory that is shared between the CPU and GPU to provide a simple way to allocate and access data that can be used by code running on any CPU or GPU in the system. Unified memory is supported only on a subset of vGPUs and guest OS releases.

Note: Unified memory is disabled by default. If used, you must enable unified memory individually for each vGPU that requires it by setting a vGPU plugin parameter. NVIDIA CUDA Toolkit profilers are supported and can be enabled on a VM for which unified memory is enabled.

Supported vGPUs

Only Q-series and C-series time-sliced vGPUs that are allocated all of the physical GPU’s frame buffer on physical GPUs that support unified memory are supported.

<table>
<thead>
<tr>
<th>GPU Architecture</th>
<th>Board</th>
<th>vGPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampere</td>
<td>NVIDIA A40</td>
<td>A40-48Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A40-48C</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A16</td>
<td>A16-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A16-16C</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A10</td>
<td>A10-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A10-24C</td>
</tr>
<tr>
<td></td>
<td>NVIDIA A16</td>
<td>A2-16Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2-16C</td>
</tr>
<tr>
<td></td>
<td>NVIDIA RTX A6000</td>
<td>A6000-48Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A6000-48C</td>
</tr>
<tr>
<td></td>
<td>NVIDIA RTX A5000</td>
<td>A5000-24Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5000-24C</td>
</tr>
</tbody>
</table>

Supported Guest OS Releases

Linux only. Unified memory is **not** supported on Windows.

Limitations

- Only time-sliced vGPUs are supported. MIG-backed vGPUs are **not** supported.
2.9. **NVIDIA Deep Learning Super Sampling (DLSS) Support**

NVIDIA vGPU software supports NVIDIA DLSS on NVIDIA RTX Virtual Workstation.

Supported DLSS versions: 2.0. Version 1.0 is not supported.

Supported GPUs:
- NVIDIA A40
- NVIDIA A16
- NVIDIA A2
- NVIDIA A10
- NVIDIA RTX A6000
- NVIDIA RTX A5000
- Tesla T4
- Quadro RTX 8000
- Quadro RTX 8000 passive
- Quadro RTX 6000
- Quadro RTX 6000 passive

Note: NVIDIA graphics driver components that DLSS requires are installed only if a supported GPU is detected during installation of the driver. Therefore, if the creation of VM templates includes driver installation, the template should be created from a VM that is configured with a supported GPU while the driver is being installed.

Supported applications: only applications that use `nvngx_dlss.dll` version 2.0.18 or newer
Chapter 3. Known Product Limitations

Known product limitations for this release of NVIDIA vGPU software are described in the following sections.

3.1. vGPUs of different types on the same GPU are not supported

Ubuntu does not support different vGPU types on the same GPU. All vGPUs on a single GPU must be of the same type.

3.2. NVENC does not support resolutions greater than 4096×4096

Description
The NVIDIA hardware-based H.264 video encoder (NVENC) does not support resolutions greater than 4096×4096. This restriction applies to all NVIDIA GPU architectures and is imposed by the GPU encoder hardware itself, not by NVIDIA vGPU software. The maximum supported resolution for each encoding scheme is listed in the documentation for NVIDIA Video Codec SDK. This limitation affects any remoting tool where H.264 encoding is used with a resolution greater than 4096×4096. Most supported remoting tools fall back to software encoding in such scenarios.

Workaround
If your GPU is based on a GPU architecture later than the NVIDIA Maxwell® architecture, use H.265 encoding. H.265 is more efficient than H.264 encoding and has a maximum resolution
of 8192×8192. On GPUs based on the NVIDIA Maxwell architecture, H.265 has the same maximum resolution as H.264, namely 4096×4096.

Note: Resolutions greater than 4096×4096 are supported only by the H.265 decoder that 64-bit client applications use. The H.265 decoder that 32-bit applications use supports a maximum resolution of 4096×4096.

3.3. Issues occur when the channels allocated to a vGPU are exhausted

Description

Issues occur when the channels allocated to a vGPU are exhausted and the guest VM to which the vGPU is assigned fails to allocate a channel to the vGPU. A physical GPU has a fixed number of channels and the number of channels allocated to each vGPU is inversely proportional to the maximum number of vGPUs allowed on the physical GPU.

When the channels allocated to a vGPU are exhausted and the guest VM fails to allocate a channel, the following errors are reported on the hypervisor host or in an NVIDIA bug report:

```
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): Guest attempted to allocate channel above its max channel limit 0xfb
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): VGPU message 6 failed, result code: 0x1a
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): 0xc1d004a1, 0xff0e0000, 0xff0400fb, 0xc36f,
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): 0x1, 0xff1fe314, 0xff1fe038, 0x100b6f000, 0x1000,
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): 0x80000000, 0xff0e0200, 0x0, 0x0, (Not logged),
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): 0x1, 0x0
```

Workaround

Use a vGPU type with more frame buffer, thereby reducing the maximum number of vGPUs allowed on the physical GPU. As a result, the number of channels allocated to each vGPU is increased.
3.4. **Virtual GPU hot plugging is not supported**

NVIDIA vGPU software does not support the addition of virtual function I/O (VFIO) mediated device (mdev) devices after the VM has been started by QEMU. All mdev devices must be added before the VM is started.

3.5. **Total frame buffer for vGPUs is less than the total frame buffer on the physical GPU**

Some of the physical GPU's frame buffer is used by the hypervisor on behalf of the VM for allocations that the guest OS would otherwise have made in its own frame buffer. The frame buffer used by the hypervisor is not available for vGPUs on the physical GPU. In NVIDIA vGPU deployments, frame buffer for the guest OS is reserved in advance, whereas in bare-metal deployments, frame buffer for the guest OS is reserved on the basis of the runtime needs of applications.

If error-correcting code (ECC) memory is enabled on a physical GPU that does not have HBM2 memory, the amount of frame buffer that is usable by vGPUs is further reduced. All types of vGPU are affected, not just vGPUs that support ECC memory.

On all GPUs that support ECC memory and, therefore, dynamic page retirement, additional frame buffer is allocated for dynamic page retirement. The amount that is allocated is inversely proportional to the maximum number of vGPUs per physical GPU. All GPUs that support ECC memory are affected, even GPUs that have HBM2 memory or for which ECC memory is disabled.

The approximate amount of frame buffer that NVIDIA vGPU software reserves can be calculated from the following formula:

\[
\text{max-reserved-fb} = \frac{\text{vgpu-profile-size-in-mb}}{16} + 16 + \text{ecc-adjustments} + \text{page-retirement-allocation} + \text{compression-adjustment}
\]

- **max-reserved-fb**
 The maximum total amount of reserved frame buffer in Mbytes that is not available for vGPUs.

- **vgpu-profile-size-in-mb**
 The amount of frame buffer in Mbytes allocated to a single vGPU. This amount depends on the vGPU type. For example, for the T4-16Q vGPU type, \(\text{vgpu-profile-size-in-mb} \) is 16384.

- **ecc-adjustments**
 The amount of frame buffer in Mbytes that is not usable by vGPUs when ECC is enabled on a physical GPU that does not have HBM2 memory.
If ECC is enabled on a physical GPU that does not have HBM2 memory, `ecc-adjustments` is `fb-without-ecc/16`, which is equivalent to 64 Mbytes for every Gbyte of frame buffer assigned to the vGPU. `fb-without-ecc` is total amount of frame buffer with ECC disabled.

If ECC is disabled or the GPU has HBM2 memory, `ecc-adjustments` is 0.

page-retirement-allocation
The amount of frame buffer in Mbytes that is reserved for dynamic page retirement.

- On GPUs based on the NVIDIA Maxwell GPU architecture, `page-retirement-allocation = 4 ÷ max-vgpus-per-gpu`.
- On GPUs based on NVIDIA GPU architectures after the Maxwell architecture, `page-retirement-allocation = 128 ÷ max-vgpus-per-gpu`.

max-vgpus-per-gpu
The maximum number of vGPUs that can be created simultaneously on a physical GPU. This number varies according to the vGPU type. For example, for the T4-16Q vGPU type, `max-vgpus-per-gpu` is 1.

compression-adjustment
The amount of frame buffer in Mbytes that is reserved for the higher compression overhead in vGPU types with 12 Gbytes or more of frame buffer on GPUs based on the Turing architecture.

`compression-adjustment` depends on the vGPU type as shown in the following table.

<table>
<thead>
<tr>
<th>vGPU Type</th>
<th>Compression Adjustment (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4-16Q</td>
<td>28</td>
</tr>
<tr>
<td>T4-16C</td>
<td>32</td>
</tr>
<tr>
<td>T4-16A</td>
<td>104</td>
</tr>
<tr>
<td>RTX6000-12Q</td>
<td>28</td>
</tr>
<tr>
<td>RTX6000-12C</td>
<td>32</td>
</tr>
<tr>
<td>RTX6000-12A</td>
<td>104</td>
</tr>
<tr>
<td>RTX6000-24Q</td>
<td>32</td>
</tr>
<tr>
<td>RTX6000-24C</td>
<td>104</td>
</tr>
<tr>
<td>RTX6000-24A</td>
<td>32</td>
</tr>
<tr>
<td>RTX6000P-12Q</td>
<td>28</td>
</tr>
<tr>
<td>RTX6000P-12C</td>
<td>32</td>
</tr>
<tr>
<td>RTX6000P-12A</td>
<td>104</td>
</tr>
<tr>
<td>RTX6000P-24Q</td>
<td>32</td>
</tr>
<tr>
<td>RTX6000P-24C</td>
<td>104</td>
</tr>
<tr>
<td>RTX6000P-24A</td>
<td>32</td>
</tr>
<tr>
<td>RTX8000-12Q</td>
<td>32</td>
</tr>
<tr>
<td>RTX8000-12C</td>
<td></td>
</tr>
</tbody>
</table>
3.6. Issues may occur with graphics-intensive OpenCL applications on vGPU types with limited frame buffer

Description

Issues may occur when graphics-intensive OpenCL applications are used with vGPU types that have limited frame buffer. These issues occur when the applications demand more frame buffer than is allocated to the vGPU.
For example, these issues may occur with the Adobe Photoshop and LuxMark OpenCL Benchmark applications:

- When the image resolution and size are changed in Adobe Photoshop, a program error may occur or Photoshop may display a message about a problem with the graphics hardware and a suggestion to disable OpenCL.
- When the LuxMark OpenCL Benchmark application is run, XID error 31 may occur.

Workaround

For graphics-intensive OpenCL applications, use a vGPU type with more frame buffer.

3.7. In pass through mode, all GPUs connected to each other through NVLink must be assigned to the same VM

Description

In pass through mode, all GPUs connected to each other through NVLink must be assigned to the same VM. If a subset of GPUs connected to each other through NVLink is passed through to a VM, unrecoverable error XID 74 occurs when the VM is booted. This error corrupts the NVLink state on the physical GPUs and, as a result, the NVLink bridge between the GPUs is unusable.

Workaround

Restore the NVLink state on the physical GPUs by resetting the GPUs or rebooting the hypervisor host.

3.8. NVENC requires at least 1 Gbyte of frame buffer

Description

Using the frame buffer for the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) may cause memory exhaustion with vGPU profiles that have 512 Mbytes or less of frame buffer. To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer. Application GPU acceleration remains fully supported and available for all profiles, including profiles with 512 MBytes or less of frame buffer.
NVENC support from both Citrix and VMware is a recent feature and, if you are using an older version, you should experience no change in functionality.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q

Workaround

If you require NVENC to be enabled, use a profile that has at least 1 Gbyte of frame buffer.

3.9. VM running an incompatible NVIDIA vGPU guest driver fails to initialize vGPU when booted

Description

A VM running a version of the NVIDIA guest VM driver that is incompatible with the current release of Virtual GPU Manager will fail to initialize vGPU when booted on a Ubuntu platform running that release of Virtual GPU Manager.

A guest VM driver is incompatible with the current release of Virtual GPU Manager in either of the following situations:

- The guest driver is from a release in a branch two or more major releases before the current release, for example release 9.4.

 In this situation, the Ubuntu VM’s `/var/log/messages` log file reports the following error:

 vmiop_log: (0x0): Incompatible Guest/Host drivers: Guest VGX version is older than the minimum version supported by the Host. Disabling vGPU.

- The guest driver is from a later release than the Virtual GPU Manager.

 In this situation, the Ubuntu VM’s `/var/log/messages` log file reports the following error:

 vmiop_log: (0x0): Incompatible Guest/Host drivers: Guest VGX version is newer than the maximum version supported by the Host. Disabling vGPU.

In either situation, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA virtual GPU is present in **Windows Device Manager** but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Resolution

Install a release of the NVIDIA guest VM driver that is compatible with current release of Virtual GPU Manager.
3.10. Single vGPU benchmark scores are lower than pass-through GPU

Description

A single vGPU configured on a physical GPU produces lower benchmark scores than the physical GPU run in pass-through mode.

Aside from performance differences that may be attributed to a vGPU’s smaller frame buffer size, vGPU incorporates a performance balancing feature known as Frame Rate Limiter (FRL). On vGPUs that use the best-effort scheduler, FRL is enabled. On vGPUs that use the fixed share or equal share scheduler, FRL is disabled.

FRL is used to ensure balanced performance across multiple vGPUs that are resident on the same physical GPU. The FRL setting is designed to give good interactive remote graphics experience but may reduce scores in benchmarks that depend on measuring frame rendering rates, as compared to the same benchmarks running on a pass-through GPU.

Resolution

FRL is controlled by an internal vGPU setting. On vGPUs that use the best-effort scheduler, NVIDIA does not validate vGPU with FRL disabled, but for validation of benchmark performance, FRL can be temporarily disabled by setting frame_rate_limiter=0 in the vGPU configuration file.

echo "frame_rate_limiter=0" > /sys/bus/mdev/devices/vgpu-id/nvidia/vgpu_params

For example:

echo "frame_rate_limiter=0" > /sys/bus/mdev/devices/aa618089-8b16-4d01-a136-25a0f3c73123/nvidia/vgpu_params

The setting takes effect the next time any VM using the given vGPU type is started.

With this setting in place, the VM’s vGPU will run without any frame rate limit.

The FRL can be reverted back to its default setting as follows:

1. Clear all parameter settings in the vGPU configuration file.

 # echo " " > /sys/bus/mdev/devices/vgpu-id/nvidia/vgpu_params

 Note: You cannot clear specific parameter settings. If your vGPU configuration file contains other parameter settings that you want to keep, you must reinstate them in the next step.

2. Set frame_rate_limiter=1 in the vGPU configuration file.

 # echo "frame_rate_limiter=1" > /sys/bus/mdev/devices/vgpu-id/nvidia/vgpu_params

 If you need to reinstate other parameter settings, include them in the command to set frame_rate_limiter=1. For example:
3.11. nvidia-smi fails to operate when all GPUs are assigned to GPU pass-through mode

Description

If all GPUs in the platform are assigned to VMs in pass-through mode, `nvidia-smi` will return an error:

```
[root@vgx-test ~]# nvidia-smi
Failed to initialize NVML: Unknown Error
```

This is because GPUs operating in pass-through mode are not visible to `nvidia-smi` and the NVIDIA kernel driver operating in the Ubuntu host.

To confirm that all GPUs are operating in pass-through mode, confirm that the `vfio-pci` kernel driver is handling each device.

```
# lspci -s 05:00.0 -k
05:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M60] (rev a1)
  Subsystem: NVIDIA Corporation Device 113a
  Kernel driver in use: vfio-pci
```

Resolution

N/A
Chapter 4. Resolved Issues

Only resolved issues that have been previously noted as known issues or had a noticeable user impact are listed. The summary and description for each resolved issue indicate the effect of the issue on NVIDIA vGPU software before the issue was resolved.

Issues Resolved in Release 14.0

No resolved issues are reported in this release for Ubuntu.
Chapter 5. Known Issues

5.1. For some license deployments, GSP firmware remains enabled with unsupported products

Description

If GPU System Processor (GSP) firmware is enabled with an unsupported product in a GPU pass through or bare-metal configuration on Linux, the VM or bare-metal host should fail to acquire a license. This behavior is implemented to prevent the VM or host from being in an unsupported configuration. However, only license acquisition from a networked legacy NVIDIA vGPU software license server fails. For all other license deployments, the VM or host acquires a license and is in an unsupported configuration.

GSP is supported only for vCS in GPU pass through and bare-metal deployments on Linux. If you are using any other product in a GPU pass through or bare-metal deployment on Linux, you must disable the GSP firmware.

Note: For NVIDIA vGPU deployments on Linux and all NVIDIA vGPU software deployments on Windows, GSP is also not supported but GSP firmware is already disabled. For these deployments, this issue does not arise.

The GSP firmware might be enabled with an unsupported product in a GPU pass through or bare-metal configuration on Linux. In this situation, the following error message is written to the licensing event log file when the VM or host attempts to acquire a license:

Invalid feature requested for the underlying GSP firmware configuration.
Disable GSP firmware to use this feature.

For the location of the licensing event log file, refer to Virtual GPU Client Licensing User Guide.

Workaround

Ensure that the GSP firmware is disabled as explained in Virtual GPU Software User Guide.
5.2. **After an upgrade of the Linux graphics driver from a Debian package, the driver is not loaded into the VM**

Description

After the NVIDIA vGPU software graphics driver for Linux is upgraded from a Debian package, the driver is not loaded into the VM.

Workaround

Use one of the following workarounds to load the driver into the VM:

- Reboot the VM.
- Remove the `nvidia` module from the Linux kernel and reinsert it into the kernel.

 1. Remove the `nvidia` module from the Linux kernel.

     ```
     sudo rmmod nvidia
     ```

 2. Reinsert the `nvidia` module into the Linux kernel.

     ```
     sudo modprobe nvidia
     ```

Status

Not a bug

Ref. #

200748806
5.3. A licensed client might fail to acquire a license if a proxy is set

Description
If a proxy is set with a system environment variable such as HTTP_PROXY or HTTPS_PROXY, a licensed client might fail to acquire a license.

Workaround
Perform this workaround on each affected licensed client.

1. Add the address of the NVIDIA vGPU software license server to the system environment variable NO_PROXY.
 The address must be specified exactly as it is specified in the client’s license server settings either as a fully-qualified domain name or an IP address. If the NO_PROXY environment variable contains multiple entries, separate the entries with a comma (,).
 If high availability is configured for the license server, add the addresses of the primary license server and the secondary license server to the system environment variable NO_PROXY.

2. Restart the NVIDIA driver service that runs the core NVIDIA vGPU software logic.
 ▶ On Windows, restart the NVIDIA Display Container service.
 ▶ On Linux, restart the nvidia-gridd service.

Status
Closed

Ref. #
200704733
5.4. Session connection fails with four 4K displays and NVENC enabled on a 2Q, 3Q, or 4Q vGPU

Description

Desktop session connections fail for a 2Q, 3Q, or 4Q vGPU that is configured with four 4K displays and for which the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) is enabled. This issue affects only Teradici Cloud Access Software sessions on Linux guest VMs.

This issue is accompanied by the following error message:

This Desktop has no resources available or it has timed out

This issue is caused by insufficient frame buffer.

Workaround

Ensure that sufficient frame buffer is available for all the virtual displays that are connected to a vGPU by changing the configuration in one of the following ways:

- Reducing the number of virtual displays. The number of 4K displays supported with NVENC enabled depends on the vGPU.

<table>
<thead>
<tr>
<th>vGPU</th>
<th>4K Displays Supported with NVENC Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Q</td>
<td>1</td>
</tr>
<tr>
<td>3Q</td>
<td>2</td>
</tr>
<tr>
<td>4Q</td>
<td>3</td>
</tr>
</tbody>
</table>

- Disabling NVENC. The number of 4K displays supported with NVENC disabled depends on the vGPU.

<table>
<thead>
<tr>
<th>vGPU</th>
<th>4K Displays Supported with NVENC Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Q</td>
<td>2</td>
</tr>
<tr>
<td>3Q</td>
<td>2</td>
</tr>
<tr>
<td>4Q</td>
<td>4</td>
</tr>
</tbody>
</table>

- Using a vGPU type with more frame buffer. Four 4K displays with NVENC enabled on any Q-series vGPU with at least 6144 MB of frame buffer are supported.

Status

Not an NVIDIA bug
5.5. NVIDIA A100 HGX 80GB vGPU names shown as Graphics Device by nvidia-smi

Description

The names of vGPUs that reside on the NVIDIA A100 80GB GPU are incorrectly shown as Graphics Device by the `nvidia-smi` command. The correct names indicate the vGPU type, for example, A100DX-40C.

```bash
$ nvidia-smi
Mon Jan 25 02:52:57 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.04    Driver Version: 460.32.04    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC | |
| Fan  Temp  Perf  Pwr:Usage/Cap| Memory-Usage | GPU-Util  Compute M. | MIG M. |
|                               |                      |               MIG M. |                      |
|===============================+======================+======================|
|   0  Graphics Device   On   | 00000000:07:00.0 Off|                    0 |
| N/A   N/A    P0    N/A / N/A |   6053MiB / 81915MiB |      0%      Default |
|                               |                      |             Disabled |
|   1  Graphics Device   On   | 00000000:08:00.0 Off|                    0 |
| N/A   N/A    P0    N/A / N/A |   6053MiB / 81915MiB |      0%      Default |
|                               |                      |             Disabled |
+-----------------------------------------------------------------------------+

Processes:

<table>
<thead>
<tr>
<th>GPU</th>
<th>Gi</th>
<th>Ci</th>
<th>PID</th>
<th>Type</th>
<th>Process name</th>
<th>GPU Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No running processes found</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Status

Open

Ref.

200691204
5.6. Idle Teradici Cloud Access Software session disconnects from Linux VM

Description
After a Teradici Cloud Access Software session has been idle for a short period of time, the session disconnects from the VM. When this issue occurs, the error messages NVOS status 0x19 and vGPU Message 21 failed are written to the log files on the hypervisor host. This issue affects only Linux guest VMs.

Status
Open

Ref. #
200689126

5.7. GPU Operator doesn't support vGPU on GPUs based on architectures before NVIDIA Turing

Description
NVIDIA GPU Operator doesn't support vGPU deployments on GPUs based on architectures before the NVIDIA Turing™ architecture. This issue is caused by the omission of version information for the vGPU manager from the configuration information that GPU Operator requires. Without this information, GPU Operator does not deploy the NVIDIA driver container because the container cannot determine if the driver is compatible with the vGPU manager.

Status
Open

Ref. #
3227576
5.8. Idle NVIDIA A100, NVIDIA A40, and NVIDIA A10 GPUs show 100% GPU utilization

Description

The `nvidia-smi` command shows 100% GPU utilization for NVIDIA A100, NVIDIA A40, and NVIDIA A10 GPUs even if no vGPUs have been configured or no VMs are running. A GPU is affected by this issue only if the `sriov-manage` script has not been run to enable the virtual function for the GPU in the `sysfs` file system.

```
[root@host ~]# nvidia-smi
Fri Feb 11 11:45:28 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03    Driver Version: 510.47.03   CUDA Version:  11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC | |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. | MIG M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  A100-PCIE-40GB      On   | 00000000:5E:00.0 Off |                    0 |
| N/A   50C    P0    97W / 250W |      0MiB / 40537MiB | 100% Default Disabled |
+-------------------------------+----------------------+----------------------+

Processes:

<table>
<thead>
<tr>
<th>GPU</th>
<th>GI</th>
<th>CI</th>
<th>PID</th>
<th>Type</th>
<th>Process name</th>
<th>GPU Memory Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No running processes found</td>
<td></td>
</tr>
</tbody>
</table>
+----------------------------------------------+
```

Workaround

Run the `sriov-manage` script to enable the virtual function for the GPU in the `sysfs` file system as explained in [Virtual GPU Software User Guide](#).

After this workaround has been completed, the `nvidia-smi` command shows 0% GPU utilization for affected GPUs when they are idle.

```
[root@host ~]# nvidia-smi
Fri Feb 11 11:47:38 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03    Driver Version: 510.47.03   CUDA Version:  11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC | |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. | MIG M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  A100-PCIE-40GB      On   | 00000000:5E:00.0 Off |                    0 |
| N/A   50C    P0    97W / 250W |      0MiB / 40537MiB | 0% Default Disabled |
+-------------------------------+----------------------+----------------------+
```
5.9. Guest VM frame buffer listed by `nvidia-smi` for vGPUs on GPUs that support SRIOV is incorrect

Description

The amount of frame buffer listed in a guest VM by the `nvidia-smi` command for vGPUs on GPUs that support Single Root I/O Virtualization (SR-IOV) is incorrect. Specifically, the amount of frame buffer listed is the amount of frame buffer allocated for the vGPU type minus the size of the VMMU segment (`vmmu_page_size`). Examples of GPUs that support SRIOV are GPUs based on the NVIDIA Ampere architecture, such as NVIDIA A100 PCIe 40GB or NVIDIA A100 HGX 40GB.

For example, frame buffer for -4C and -20C vGPU types is listed as follows:

- For -4C vGPU types, frame buffer is listed as 3963 MB instead of 4096 MB.
- For -20C vGPU types, frame buffer is listed as 20347 MB instead of 20480 MB.

Status

Open

Ref. #

200524749
5.10. **Driver upgrade in a Linux guest VM with multiple vGPUs might fail**

Description
Upgrading the NVIDIA vGPU software graphics driver in a Linux guest VM with multiple vGPUs might fail. This issue occurs if the driver is upgraded by overinstalling the new release of the driver on the current release of the driver while the nvidia-gridd service is running in the VM.

Workaround
1. Stop the nvidia-gridd service.
2. Try again to upgrade the driver.

Status
Open

Ref. #
200633548

5.11. **On Linux, the frame rate might drop to 1 after several minutes**

Description
On Linux, the frame rate might drop to 1 frame per second (FPS) after NVIDIA vGPU software has been running for several minutes. Only some applications are affected, for example, glxgears. Other applications, such as Unigine Heaven, are not affected. This behavior occurs because Display Power Management Signaling (DPMS) for the Xorg server is enabled by default and the display is detected to be inactive even when the application is running. When DPMS is enabled, it enables power saving behavior of the display after several minutes of inactivity by setting the frame rate to 1 FPS.

Workaround
1. If necessary, stop the Xorg server.

   ```bash
   # /etc/init.d/xorg stop
   ```
2. In a plain text editor, edit the `/etc/X11/xorg.conf` file to set the options to disable DPMS and disable the screen saver.

a. In the Monitor section, set the DPMS option to `false`.
   ```plaintext
   Option "DPMS" "false"
   ```

b. At the end of the file, add a `ServerFlags` section that contains option to disable the screen saver.
   ```plaintext
   Section "ServerFlags"
   Option "BlankTime" "0"
   EndSection
   ```

c. Save your changes to `/etc/X11/xorg.conf` file and quit the editor.

3. Start the Xorg server.
   ```bash
   # /etc/init.d/xorg start
   ```

5.12. RAPIDS cuDF merge fails on NVIDIA vGPU

Description

The merge function of the RAPIDS cuDF GPU data frame library fails on NVIDIA vGPU. This function fails because RAPIDS uses the Unified Memory feature of CUDA, which NVIDIA vGPU does not support.
5.13. **ECC memory settings for a vGPU cannot be changed by using NVIDIA X Server Settings**

Description

The ECC memory settings for a vGPU cannot be changed from a Linux guest VM by using **NVIDIA X Server Settings**. After the ECC memory state has been changed on the **ECC Settings** page and the VM has been rebooted, the ECC memory state remains unchanged.

Workaround

Use the `nvidia-smi` command in the guest VM to enable or disable ECC memory for the vGPU as explained in **Virtual GPU Software User Guide**.

If the ECC memory state remains unchanged even after you use the `nvidia-smi` command to change it, use the workaround in **Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored**.

Status

Open

Ref. #

200523086

5.14. **Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored**

Description

After the ECC memory state for a Linux vGPU VM has been changed by using the `nvidia-smi` command and the VM has been rebooted, the ECC memory state might remain unchanged.

This issue occurs when multiple NVIDIA configuration files in the system cause the kernel module option for setting the ECC memory state `RMGuestECCState` in `/etc/modprobe.d/nvidia.conf` to be ignored.
When the `nvidia-smi` command is used to enable ECC memory, the file `/etc/modprobe.d/nvidia.conf` is created or updated to set the kernel module option `RMGuestECCState`. Another configuration file in `/etc/modprobe.d/` that contains the keyword `NVreg_RegistryDwordsPerDevice` might cause the kernel module option `RMGuestECCState` to be ignored.

Workaround

This workaround requires administrator privileges.

1. Move the entry containing the keyword `NVreg_RegistryDwordsPerDevice` from the other configuration file to `/etc/modprobe.d/nvidia.conf`.
2. Reboot the VM.

Status

Open

Ref. #

200505777

5.15. Host core CPU utilization is higher than expected for moderate workloads

Description

When GPU performance is being monitored, host core CPU utilization is higher than expected for moderate workloads. For example, host CPU utilization when only a small number of VMs are running is as high as when several times as many VMs are running.

Workaround

Disable monitoring of the following GPU performance statistics:

- vGPU engine usage by applications across multiple vGPUs
- Encoder session statistics
- Frame buffer capture (FBC) session statistics
- Statistics gathered by performance counters in guest VMs

Status

Open
5.16. **Frame capture while the interactive logon message is displayed returns blank screen**

Description

Because of a known limitation with NvFBC, a frame capture while the interactive logon message is displayed returns a blank screen.

An NvFBC session can capture screen updates that occur after the session is created. Before the logon message appears, there is no screen update after the message is shown and, therefore, a black screen is returned instead. If the NvFBC session is created after this update has occurred, NvFBC cannot get a frame to capture.

Workaround

Press **Enter** or wait for the screen to update for NvFBC to capture the frame.

Status

Not a bug

5.17. **When the scheduling policy is fixed share, GPU utilization is reported as higher than expected**

Description

When the scheduling policy is fixed share, GPU engine utilization can be reported as higher than expected for a vGPU.

For example, GPU engine usage for six P40-4Q vGPUs on a Tesla P40 GPU might be reported as follows:
The vGPU utilization of vGPU 85109 is reported as 32%. For vGPU 87195, vGPU utilization is reported as 39%. And for 88095, it is reported as 26%. However, the expected vGPU utilization of any vGPU should not exceed approximately 16.7%.

This behavior is a result of the mechanism that is used to measure GPU engine utilization.

Status

Open

Ref. #

2227591

5.18. **nvidia-smi reports that vGPU migration is supported on all hypervisors**

Description

The command `nvidia-smi vgpu -m` shows that vGPU migration is supported on all hypervisors, even hypervisors or hypervisor versions that do not support vGPU migration.

Status

Closed

Ref. #

200407230
5.19. Luxmark causes a segmentation fault on an unlicensed Linux client

Description
If the Luxmark application is run on a Linux guest VM configured with NVIDIA vGPU that is booted without acquiring a license, a segmentation fault occurs and the application core dumps. The fault occurs when the application cannot allocate a CUDA object on NVIDIA vGPUs where CUDA is disabled. On NVIDIA vGPUs that can support CUDA, CUDA is disabled in unlicensed mode.

Status
Not an NVIDIA bug.

Ref. #
200330956

5.20. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS

Description
On Red Hat Enterprise Linux 6.8 and 6.9, and CentOS 6.8 and 6.9, a segmentation fault in DBus code causes the nvidia-gridd service to exit.

The nvidia-gridd service uses DBus for communication with NVIDIA X Server Settings to display licensing information through the Manage License page. Disabling the GUI for licensing resolves this issue.

To prevent this issue, the GUI for licensing is disabled by default. You might encounter this issue if you have enabled the GUI for licensing and are using Red Hat Enterprise Linux 6.8 or 6.9, or CentOS 6.8 and 6.9.

Version
Red Hat Enterprise Linux 6.8 and 6.9
CentOS 6.8 and 6.9
5.21. **No Manage License option available in NVIDIA X Server Settings by default**

Description

By default, the **Manage License** option is not available in **NVIDIA X Server Settings**. This option is missing because the GUI for licensing on Linux is disabled by default to work around the issue that is described in a [segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS](https://example.com/issue).

Workaround

This workaround requires **sudo** privileges.

```
Note: Do not use this workaround with Red Hat Enterprise Linux 6.8 and 6.9 or CentOS 6.8 and 6.9. To prevent a segmentation fault in DBus code from causing the nvidia-gridd service from exiting, the GUI for licensing must be disabled with these OS versions.
```

If you are licensing a physical GPU for vCS, you **must** use the configuration file `/etc/nvidia/gridd.conf`.

1. If **NVIDIA X Server Settings** is running, shut it down.
2. If the `/etc/nvidia/gridd.conf` file does not already exist, create it by copying the supplied template file `/etc/nvidia/gridd.conf.template`.
3. As root, edit the `/etc/nvidia/gridd.conf` file to set the `EnableUI` option to `TRUE`.
4. Start the `nvidia-gridd` service.
   ```bash
   # sudo service nvidia-gridd start
   ```

When **NVIDIA X Server Settings** is restarted, the **Manage License** option is now available.
5.22. Licenses remain checked out when VMs are forcibly powered off

Description
NVIDIA vGPU software licenses remain checked out on the license server when non-persistent VMs are forcibly powered off.

The NVIDIA service running in a VM returns checked out licenses when the VM is shut down. In environments where non-persistent licensed VMs are not cleanly shut down, licenses on the license server can become exhausted. For example, this issue can occur in automated test environments where VMs are frequently changing and are not guaranteed to be cleanly shut down. The licenses from such VMs remain checked out against their MAC address for seven days before they time out and become available to other VMs.

Resolution
If VMs are routinely being powered off without clean shutdown in your environment, you can avoid this issue by shortening the license borrow period. To shorten the license borrow period, set the LicenseInterval configuration setting in your VM image. For details, refer to Virtual GPU Client Licensing User Guide.

Status
Closed

Ref. #
1694975
Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS [TOGETHER AND SEPARATELY, "MATERIALS"] ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA GRID, NVIDIA GRID vGPU, NVIDIA Maxwell, NVIDIA Pascal, NVIDIA Turing, NVIDIA Volta, GPU Direct, Quadro, and Tesla are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2013-2022 NVIDIA Corporation & affiliates. All rights reserved.