TABLE OF CONTENTS

Chapter 1. Release Notes.. 1
 1.1. Updates in Release 7.0.. 2
 1.2. Updates in Release 7.1.. 2
 1.3. Updates in Release 7.2.. 2

Chapter 2. Validated Platforms...4
 2.1. Supported NVIDIA GPUs and Validated Server Platforms...............................4
 2.2. Hypervisor Software Releases... 6
 2.3. Guest OS Support..8
 2.3.1. Windows Guest OS Support...8
 2.3.2. Linux Guest OS Support..9
 2.4. NVIDIA CUDA Toolkit Version Support..9

Chapter 3. Known Product Limitations..11
 3.1. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10...11
 3.2. NVENC requires at least 1 Gbyte of frame buffer.. 12
 3.3. VM failures or crashes on servers with 1 TB or more of system memory........... 12
 3.4. VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted........ 13
 3.5. Virtual GPU fails to start if ECC is enabled.. 13
 3.6. Single vGPU benchmark scores are lower than pass-through GPU......................15
 3.7. VMs configured with large memory fail to initialize vGPU when booted.............17

Chapter 4. Resolved Issues.. 19

Chapter 5. Security Updates... 21
 5.1. Since 7.2: Restricting Access to GPU Performance Counters.............................21
 5.1.1. Windows: Restricting Access to GPU Performance Counters for One User by Using NVIDIA Control Panel...21
 5.1.2. Windows: Restricting Access to GPU Performance Counters Across an Enterprise by Using a Registry Key..22
 5.1.3. Linux Guest VMs: Restricting Access to GPU Performance Counters...........22
 5.1.4. Hypervisor Host: Restricting Access to GPU Performance Counters.............23

Chapter 6. Known Issues.. 24
 6.1. 7.0 Only: After a long stress test, a blue screen crash (BSOD) occurs..................24
 6.2. Vulkan applications crash in Windows 7 guest VMs configured with NVIDIA vGPU....25
 6.3. Host core CPU utilization is higher than expected for moderate workloads...........25
 6.4. H.264 encoder falls back to software encoding on 1Q vGPUs with a 4K display........26
 6.5. H.264 encoder falls back to software encoding on 2Q vGPUs with 3 or more 4K displays...26
 6.6. Frame capture while the interactive logon message is displayed returns blank screen...27
 6.7. RDS sessions do not use the GPU with some Microsoft Windows Server releases.....27
 6.8. VMware vMotion fails gracefully under heavy load..28
 6.9. Cloned VMs configured with a vGPU type different than the type in the master image fail to start...29
6.10. View session freezes intermittently after a Linux VM acquires a license..................... 29
6.11. 7.0 Only: Blue Screen crash during guest driver installation................................. 30
6.12. 7.0 Only: Suspending and resuming a VM configured with vGPU can cause errors....... 31
6.13. Even when the scheduling policy is equal share, unequal GPU utilization is reported... 31
6.14. When the scheduling policy is fixed share, GPU utilization is reported as higher than
 expected.. 32
6.15. No data displayed on NVIDIA dashboards in VMware vRealize Operations................. 33
6.16. nvidia-smi reports that vGPU migration is supported on all hypervisors.................. 34
6.17. GPU resources not available error during VMware instant clone provisioning.............. 34
6.18. VMs with 32 GB or more of RAM fail to boot with GPUs requiring 64 GB of MMIO space.. 35
6.19. Module load failed during VIB downgrade from R390 to R384.................................. 36
6.20. Resolution is not updated after a VM acquires a license and is restarted................... 37
6.21. On Tesla P40, P6, and P4 GPUs, the default ECC setting prevents NVIDIA vGPU from
 starting.. 37
6.22. Tesla P40 cannot be used in pass-through mode.. 38
6.23. NVIDIA vGPU encoder and process utilization counters don’t work with Windows
 Performance Counters.. 38
6.24. On Linux, 3D applications run slowly when windows are dragged........................... 39
6.25. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise
 Linux and CentOS... 39
6.26. No Manage License option available in NVIDIA X Server Settings by default............ 40
6.27. Licenses remain checked out when VMs are forcibly powered off............................ 41
6.28. Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame
 buffer... 42
6.29. vGPU VM fails to boot in ESXi 6.5 if the graphics type is Shared............................. 43
6.30. ESXi 6.5 web client shows high memory usage even when VMs are idle...................... 44
6.31. VMs configured with NVIDIA vGPU must not be on a host in a VMware DRS cluster..... 44
6.32. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS
 7.0... 45
6.33. NVIDIA Control Panel fails to start and reports that “you are not currently using a display
 that is attached to an Nvidia GPU”.. 46
6.34. VM configured with more than one vGPU fails to initialize vGPU when booted............. 47
6.35. A VM configured with both a vGPU and a passthrough GPU fails to start the passthrough
 GPU.. 47
6.36. vGPU allocation policy fails when multiple VMs are started simultaneously............... 48
6.37. Before Horizon agent is installed inside a VM, the Start menu’s sleep option is available
 48
6.38. vGPU-enabled VMs fail to start, nvidia-smi fails when VMs are configured with too high
 a proportion of the server’s memory.. 49
6.39. On reset or restart VMs fail to start with the error VMIOP: no graphics device is available
 for vGPU.. 50
6.40. nvidia-smi shows high GPU utilization for vGPU VMs with active Horizon sessions...... 50
Chapter 1.
RELEASE NOTES

These Release Notes summarize current status, information on validated platforms, and known issues with NVIDIA vGPU software and associated hardware on VMware vSphere.

The releases in this release family of NVIDIA vGPU software include the software listed in the following table:

<table>
<thead>
<tr>
<th>Software</th>
<th>7.0</th>
<th>7.1</th>
<th>7.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA Virtual GPU Manager for the VMware vSphere</td>
<td>410.68</td>
<td>410.91</td>
<td>410.107</td>
</tr>
<tr>
<td>releases listed in Hypervisor Software Releases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVIDIA Windows driver</td>
<td>411.81</td>
<td>412.16</td>
<td>412.31</td>
</tr>
<tr>
<td>NVIDIA Linux driver</td>
<td>410.71</td>
<td>410.92</td>
<td>410.107</td>
</tr>
</tbody>
</table>

Caution

If you install the wrong NVIDIA vGPU software packages for the version of VMware vSphere you are using, NVIDIA Virtual GPU Manager will fail to load.

The releases of the vGPU Manager and guest VM drivers that you install must be compatible. Different versions of the vGPU Manager and guest VM driver from within the same main release branch can be used together. For example, you can use the vGPU Manager from release 7.1 with guest VM drivers from release 7.0. However, versions of the vGPU Manager and guest VM driver from different main release branches cannot be used together. For example, you cannot use the vGPU Manager from release 7.1 with guest VM drivers from release 6.2.

See **VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted**.

This requirement does not apply to the NVIDIA vGPU software license sever. All releases of NVIDIA vGPU software are compatible with all releases of the license server.
1.1. Updates in Release 7.0

New Features in Release 7.0

‣ vMotion support for VMs that are configured with vGPU
‣ vGPU support for NVIDIA frame buffer capture metrics
‣ vGPU support for render capture metrics from the hypervisor and guest VMs
‣ Support for NVIDIA GPU Cloud (NGC) containers with NVIDIA vGPU software
‣ Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 7.0

‣ Support for VMware vCenter Server 6.7
‣ Support for Ubuntu 18.04 LTS as a guest OS
‣ Support for Red Hat Enterprise Linux 7.6 as a guest OS
‣ Support for CentOS 7.6 as a guest OS
‣ Support for Windows 10 Spring Creators Update (1803) as a guest OS

Feature Support Withdrawn in Release 7.0

‣ 32-bit Windows guest operating systems are no longer supported.
‣ VMware vSphere ESXi 5.5 is no longer supported.

1.2. Updates in Release 7.1

New Features in Release 7.1

‣ Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 7.1

‣ Support for the Tesla T4 GPU
‣ Support for VMware Horizon 7.7

1.3. Updates in Release 7.2

New Features in Release 7.2

‣ Miscellaneous bug fixes
‣ Security updates - see Security Updates
Hardware and Software Support Introduced in Release 7.2

- Support for VMware Horizon 7.8
Chapter 2.
VALIDATED PLATFORMS

This release family of NVIDIA vGPU software provides support for several NVIDIA
GPUs on validated server hardware platforms, VMware vSphere hypervisor software
versions, and guest operating systems. It also supports the version of NVIDIA CUDA
Toolkit that is compatible with R410 drivers.

2.1. Supported NVIDIA GPUs and Validated Server Platforms

This release of NVIDIA vGPU software provides support for the following NVIDIA
GPUs on VMware vSphere, running on validated server hardware platforms:

- GPUs based on the NVIDIA Maxwell™ graphic architecture:
 - Tesla M6
 - Tesla M10
 - Tesla M60
- GPUs based on the NVIDIA Pascal™ architecture:
 - Tesla P4
 - Tesla P6
 - Tesla P40
 - Tesla P100 PCIe 16 GB (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
 - Tesla P100 SXM2 16 GB (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
 - Tesla P100 PCIe 12GB (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
- GPUs based on the NVIDIA Volta architecture:
 - Tesla V100 SXM2 (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
Validated Platforms

- Tesla V100 SXM2 32GB (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
- Tesla V100 PCIe (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
- Tesla V100 PCIe 32GB (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
- Tesla V100 FHHL (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
- GPUs based on the NVIDIA Turing architecture:
 - Since 7.1: Tesla T4

For a list of validated server platforms, refer to NVIDIA GRID Certified Servers.

Requirements for Using vGPU on GPUs Requiring 64 GB of MMIO Space with Large-Memory VMs

Some GPUs require 64 GB of MMIO space. When a vGPU on a GPU that requires 64 GB of MMIO space is assigned to a VM with 32 GB or more of memory on ESXi 6.0 Update 3 and later, or ESXi 6.5 and later updates, the VM’s MMIO space must be increased to 64 GB. For more information, see VMware Knowledge Base Article: VMware vSphere VMDirectPath I/O: Requirements for Platforms and Devices (2142307).

With ESXi 6.7, no extra configuration is needed.

The following GPUs require 64 GB of MMIO space:

- Tesla P6
- Tesla P40

Requirements for Using GPUs Based on the Pascal and Volta Architectures in Pass-Through Mode

- The Tesla V100, Tesla P100, and Tesla P6 GPUs require 32 GB of MMIO space in pass-through mode.
- The Tesla P40 GPU requires 64 GB of MMIO space in pass-through mode.
Pass through of GPUs with large BAR memory settings has some restrictions on VMware ESXi:

- The guest OS must be a 64-bit OS.
- 64-bit MMIO and EFI boot must be enabled for the VM.
- The guest OS must be able to be installed in EFI boot mode.
- The Tesla V100, Tesla P100, and Tesla P6 require ESXi 6.0 Update 1 and later, or ESXi 6.5 and later.
- Because it requires 64 GB of MMIO space, the Tesla P40 requires ESXi 6.0 Update 3 and later, or ESXi 6.5 and later.

As a result, the VM’s MMIO space must be increased to 64 GB as explained in VMware Knowledge Base Article: VMware vSphere VMDirectPath I/O: Requirements for Platforms and Devices (2142307).

2.2. Hypervisor Software Releases

Supported VMware vSphere Hypervisor (ESXi) Releases

This release is supported on the VMware vSphere Hypervisor (ESXi) releases listed in the table.

Support for NVIDIA vGPU software requires the Enterprise Plus Edition of VMware vSphere Hypervisor (ESXi). For details, see Compare VMware vSphere Editions (PDF).

Updates to a base release of VMware vSphere Hypervisor (ESXi) are compatible with the base release and can also be used with this version of NVIDIA vGPU software unless expressly stated otherwise.

<table>
<thead>
<tr>
<th>Software</th>
<th>Release Supported</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware vSphere Hypervisor (ESXi) 6.7</td>
<td>6.7 and compatible updates</td>
<td>All NVIDIA GPUs that support NVIDIA vGPU software are supported. Starting with release 6.7 U1, vMotion with vGPU and suspend and resume with vGPU are supported on suitable GPUs as listed in Supported NVIDIA GPUs and Validated Server Platforms. Release 6.7 supports only suspend and resume with</td>
</tr>
</tbody>
</table>
Validated Platforms

Software	Release Supported	Notes
VMware vSphere Hypervisor (ESXi) 6.5 | 6.5 and compatible updates Requires VMware vSphere Hypervisor (ESXi) 6.5 patch EP3 (ESXi650-201811002, build 10884925) or later from VMware | All NVIDIA GPUs that support NVIDIA vGPU software are supported. Suspend-resume with vGPU and vMotion with vGPU are not supported.
VMware vSphere Hypervisor (ESXi) 6.0 | 6.0 and compatible updates Pending release of a patch from VMware for VMware vSphere Hypervisor (ESXi) 6.0 | GPUs based on the Pascal and Volta architectures in pass-through mode require 6.0 Update 3 or later. For vGPU, all NVIDIA GPUs that support NVIDIA vGPU software are supported. Suspend-resume with vGPU and vMotion with vGPU are not supported.

Supported Management Software and Virtual Desktop Software Releases

This release supports the management software and virtual desktop software releases listed in the table.

Updates to a base release of VMware Horizon and VMware vCenter Server are compatible with the base release and can also be used with this version of NVIDIA vGPU software unless expressly stated otherwise.

<table>
<thead>
<tr>
<th>Software</th>
<th>Releases Supported</th>
</tr>
</thead>
</table>
| VMware Horizon | Since 7.2: 7.8 and compatible 7.8.x updates
Since 7.1: 7.7 and compatible 7.7.x updates
7.6 and compatible 7.6.x updates
7.5 and compatible 7.5.x updates
7.4 and compatible 7.4.x updates
7.3 and compatible 7.3.x updates
7.2 and compatible 7.2.x updates |

www.nvidia.com
Virtual GPU Software R410 for VMware vSphere
RN-07347-001_v7.0 through 7.2 | 7
2.3. Guest OS Support

NVIDIA vGPU software supports several Windows releases and Linux distributions as a guest OS. The supported guest operating systems depend on the hypervisor software version.

Use only a guest OS release that is listed as supported by NVIDIA vGPU software with your virtualization software. To be listed as supported, a guest OS release must be supported not only by NVIDIA vGPU software, but also by your virtualization software. NVIDIA cannot support guest OS releases that your virtualization software does not support.

NVIDIA vGPU software supports only 64-bit guest operating systems. No 32-bit guest operating systems are supported.

2.3.1. Windows Guest OS Support

NVIDIA vGPU software supports only the 64-bit Windows releases listed in the table as a guest OS on VMware vSphere. The releases of VMware vSphere for which a Windows release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

If a specific release, even an update release, is not listed, it’s not supported.

VMware vMotion with vGPU and suspend-resume with vGPU are supported on supported Windows guest OS releases.

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - VMware vSphere Releases</th>
<th>Pass-Through GPU - VMware vSphere Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2016 1607, 1709</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
<tr>
<td>Windows Server 2012 R2</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
<tr>
<td>Windows Server 2008 R2</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
<tr>
<td>Windows 10 RTM (1507), November Update (1511), Anniversary Update (1607), Creators Update</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
</tbody>
</table>
2.3.2. Linux Guest OS Support

NVIDIA vGPU software supports only the Linux distributions listed in the table as a guest OS on VMware vSphere. The releases of VMware vSphere for which a Linux release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

If a specific release, even an update release, is not listed, it’s not supported. VMware vMotion with vGPU and suspend-resume with vGPU are supported on supported Linux guest OS releases.

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>NVIDIA vGPU - VMware vSphere Releases</th>
<th>Pass-Through GPU - VMware vSphere Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 7.0-7.6 and later compatible 7.x versions</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
<tr>
<td>CentOS 7.0-7.6 and later compatible 7.x versions</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 6.6 and later compatible 6.x versions</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
<tr>
<td>CentOS 6.6 and later compatible 6.x versions</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
<tr>
<td>Ubuntu 18.04 LTS</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
<tr>
<td>Ubuntu 16.04 LTS</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
<tr>
<td>Ubuntu 14.04 LTS</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
<tr>
<td>SUSE Linux Enterprise Server 12 SP3</td>
<td>6.7, 6.5, 6.0</td>
<td>6.7, 6.5, 6.0</td>
</tr>
</tbody>
</table>

2.4. NVIDIA CUDA Toolkit Version Support

The releases in this release family of NVIDIA vGPU software support NVIDIA CUDA Toolkit 10.0.

For more information about NVIDIA CUDA Toolkit, see CUDA Toolkit 10.0 Documentation.
2.5. vGPU Migration Support

vGPU migration, which includes vMotion and suspend-resume, is supported only on a subset of supported GPUs, VMware vSphere Hypervisor (ESXi) releases, and guest operating systems.

Supported GPUs:
- Tesla M6
- Tesla M10
- Tesla M60
- Tesla P4
- Tesla P6
- Tesla P40
- **Since 7.1:** Tesla T4

Supported VMware vSphere Hypervisor (ESXi) releases:
- Release 6.7 U1 and compatible updates support vMotion with vGPU and suspend-resume with vGPU.
- Release 6.7 supports only suspend-resume with vGPU.
- Releases earlier than 6.7 do not support any form of vGPU migration.

Supported guest OS releases: Windows and Linux.
Chapter 3.
KNOWN PRODUCT LIMITATIONS

Known product limitations for this release of NVIDIA vGPU software are described in the following sections.

3.1. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10

Description
To reduce the possibility of memory exhaustion, vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on a Windows 10 guest OS.

The following vGPU profiles have 512 Mbytes or less of frame buffer:
- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q

Workaround
Use a profile that supports more than 1 virtual display head and has at least 1 Gbyte of frame buffer.
3.2. NVENC requires at least 1 Gbyte of frame buffer

Description

Using the frame buffer for the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) may cause memory exhaustion with vGPU profiles that have 512 Mbytes or less of frame buffer. To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer. Application GPU acceleration remains fully supported and available for all profiles, including profiles with 512 MBytes or less of frame buffer. NVENC support from both Citrix and VMware is a recent feature and, if you are using an older version, you should experience no change in functionality.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q

Workaround

If you require NVENC to be enabled, use a profile that has at least 1 Gbyte of frame buffer.

3.3. VM failures or crashes on servers with 1 TB or more of system memory

Description

Support for vGPU and vSGA is limited to servers with less than 1 TB of system memory. On servers with 1 TB or more of system memory, VM failures or crashes may occur. For example, when Citrix Virtual Apps and Desktops is used with a Windows 7 guest OS, a blue screen crash may occur. However, support for vDGA is not affected by this limitation.

This limitation applies only to systems with supported GPUs based on the Maxwell architecture: Tesla M6, Tesla M10, and Tesla M60.

Resolution

1. Limit the amount of system memory on the server to 1 TB minus 16 GB by setting memmapMaxRAMMB to 1032192, which is equal to 1048576 minus 16384.
2. Reboot the server.

If the problem persists, contact your server vendor for the recommended system memory configuration with NVIDIA GPUs.

3.4. VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted

Description

A VM running a version of the NVIDIA guest VM drivers from a previous main release branch, for example release 4.4, will fail to initialize vGPU when booted on a VMware vSphere platform running the current release of Virtual GPU Manager.

In this scenario, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA virtual GPU is present in **Windows Device Manager** but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Depending on the versions of drivers in use, the VMware vSphere VM's log file reports one of the following errors:

- A version mismatch between guest and host drivers:

```
vthread-10| E105: vmiop_log: Guest VGX version(2.0) and Host VGX version(2.1) do not match
```

- A signature mismatch:

```
```

Resolution

Install the current NVIDIA guest VM driver in the VM.

3.5. Virtual GPU fails to start if ECC is enabled

Description

Tesla M60, Tesla M6, and GPUs based on the Pascal GPU architecture, for example Tesla P100 or Tesla P4, support error correcting code (ECC) memory for improved data integrity. Tesla M60 and M6 GPUs in graphics mode are supplied with ECC memory disabled by default, but it may subsequently be enabled using `nvidia-smi`. GPUs based on the Pascal GPU architecture are supplied with ECC memory enabled.

However, NVIDIA vGPU does not support ECC memory. If ECC memory is enabled, NVIDIA vGPU fails to start.
The following error is logged in the VMware vSphere host’s log file:

vthread10|E105: Initialization: VGX not supported with ECC Enabled.

Resolution

Ensure that ECC is disabled on all GPUs.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.

1. Use `nvidia-smi` to list the status of all GPUs, and check for ECC noted as enabled on GPUs.

```
# nvidia-smi -q

==============NVSMI LOG==============
Timestamp                           : Tue Dec 19 18:36:45 2017
Driver Version                      : 384.99
Attached GPUs                       : 1
GPU 0000:02:00.0

[...]

  Ecc Mode
  Current                     : Enabled
  Pending                     : Enabled

[...]
```

2. Change the ECC status to off on each GPU for which ECC is enabled.

 - If you want to change the ECC status to off for all GPUs on your host machine, run this command:

     ```
     # nvidia-smi -e 0
     ```

 - If you want to change the ECC status to off for a specific GPU, run this command:

     ```
     # nvidia-smi -i id -e 0
     
     id is the index of the GPU as reported by nvidia-smi.
     
     This example disables ECC for the GPU with index 0000:02:00.0.
     # nvidia-smi -i 0000:02:00.0 -e 0
     ```

3. Reboot the host.

4. Confirm that ECC is now disabled for the GPU.

```
# nvidia-smi -q

==============NVSMI LOG==============
Timestamp                           : Tue Dec 19 18:37:53 2017
Driver Version                      : 384.99
Attached GPUs                       : 1
```
If you later need to enable ECC on your GPUs, run one of the following commands:

- If you want to change the ECC status to on for all GPUs on your host machine, run this command:

 `nvidia-smi -e 1`

- If you want to change the ECC status to on for a specific GPU, run this command:

 `nvidia-smi -i id -e 1`

 id is the index of the GPU as reported by `nvidia-smi`.

 This example enables ECC for the GPU with index `0000:02:00.0`.

 `nvidia-smi -i 0000:02:00.0 -e 1`

After changing the ECC status to on, reboot the host.

3.6. Single vGPU benchmark scores are lower than pass-through GPU

Description

A single vGPU configured on a physical GPU produces lower benchmark scores than the physical GPU run in pass-through mode.

Aside from performance differences that may be attributed to a vGPU’s smaller frame buffer size, vGPU incorporates a performance balancing feature known as Frame Rate Limiter (FRL). On vGPUs that use the best-effort scheduler, FRL is enabled. On vGPUs that use the fixed share or equal share scheduler, FRL is disabled.

FRL is used to ensure balanced performance across multiple vGPUs that are resident on the same physical GPU. The FRL setting is designed to give good interactive remote graphics experience but may reduce scores in benchmarks that depend on measuring frame rendering rates, as compared to the same benchmarks running on a pass-through GPU.

Resolution

FRL is controlled by an internal vGPU setting. On vGPUs that use the best-effort scheduler, NVIDIA does not validate vGPU with FRL disabled, but for validation of benchmark performance, FRL can be temporarily disabled by adding the configuration
parameter `pciPassthru0.cfg.frame_rate_limiter` in the VM's advanced configuration options.

This setting can only be changed when the VM is powered off.

1. Select **Edit Settings**.
2. In **Edit Settings** window, select the **VM Options** tab.
3. From the **Advanced** drop-down list, select **Edit Configuration**.
4. In the **Configuration Parameters** dialog box, click **Add Row**.
5. In the **Name** field, type the parameter name `pciPassthru0.cfg.frame_rate_limiter`, in the **Value** field type 0, and click **OK**.

With this setting in place, the VM's vGPU will run without any frame rate limit. The FRL can be reverted back to its default setting by setting `pciPassthru0.cfg.frame_rate_limiter` to 1 or by removing the parameter from the advanced settings.
3.7. VMs configured with large memory fail to initialize vGPU when booted

Description

When starting multiple VMs configured with large amounts of RAM (typically more than 32GB per VM), a VM may fail to initialize vGPU. In this scenario, the VM boots in VMware SVGA mode and doesn't load the NVIDIA driver. The NVIDIA vGPU software GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

The VMware vSphere VM's log file contains these error messages:

vthread10|E105: NVOS status 0x29
vthread10|E105: Assertion Failed at 0x7620fd4b:179
vthread10|E105: 8 frames returned by backtrace
...
vthread10|E105: VGPU message 12 failed, result code: 0x29
...
vthread10|E105: NVOS status 0x8
vthread10|E105: Assertion Failed at 0x7620c8df:280
vthread10|E105: 8 frames returned by backtrace
...
vthread10|E105: VGPU message 26 failed, result code: 0x8

Resolution

vGPU reserves a portion of the VM's framebuffer for use in GPU mapping of VM system memory. The reservation is sufficient to support up to 32GB of system memory, and may be increased to accommodate up to 64GB by adding the configuration parameter pciPassthru0.cfg.enable_large_sys_mem in the VM's advanced configuration options

This setting can only be changed when the VM is powered off.

1. Select Edit Settings.
2. In Edit Settings window, select the VM Options tab.
3. From the Advanced drop-down list, select Edit Configuration.
4. In the Configuration Parameters dialog box, click Add Row.
5. In the Name field, type the parameter name pciPassthru0.cfg.enable_large_sys_mem, in the Value field type 1, and click OK.

With this setting in place, less GPU framebuffer is available to applications running in the VM. To accommodate system memory larger than 64GB, the reservation can
be further increased by adding `pciPassthru0.cfg.extra_fb_reservation` in the VM’s advanced configuration options, and setting its value to the desired reservation size in megabytes. The default value of 64M is sufficient to support 64 GB of RAM. We recommend adding 2 M of reservation for each additional 1 GB of system memory. For example, to support 96 GB of RAM, set `pciPassthru0.cfg.extra_fb_reservation` to 128.

The reservation can be reverted back to its default setting by setting `pciPassthru0.cfg.enable_large_sys_mem` to 0, or by removing the parameter from the advanced settings.
Chapter 4.
RESOLVED ISSUES

Only resolved issues that have been previously noted as known issues or had a noticeable user impact are listed. The summary and description for each resolved issue indicate the effect of the issue on NVIDIA vGPU software before the issue was resolved.

Issues Resolved in Release 7.0

<table>
<thead>
<tr>
<th>Bug ID</th>
<th>Summary and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200422318</td>
<td>No data displayed on NVIDIA dashboards in VMware vRealize Operations</td>
</tr>
<tr>
<td></td>
<td>Data is not collected for any ESXi host that is identified by its host name when it</td>
</tr>
<tr>
<td></td>
<td>is added to VMware vCenter Server. The connection to CIM provider from NVIDIA</td>
</tr>
<tr>
<td></td>
<td>Virtual GPU Management Pack fails for such hosts because their host names cannot be</td>
</tr>
<tr>
<td></td>
<td>resolved.</td>
</tr>
<tr>
<td></td>
<td>This issue is resolved in NVIDIA Virtual GPU Management Pack for VMware vRealize</td>
</tr>
<tr>
<td></td>
<td>Operations 1.1.</td>
</tr>
<tr>
<td>200439654</td>
<td>View session freezes intermittently after a Linux VM acquires a license</td>
</tr>
<tr>
<td></td>
<td>In a Linux VM, the view session can sometimes freeze after the VM acquires a license.</td>
</tr>
<tr>
<td>2407960</td>
<td>Intermittent purple screen crashes</td>
</tr>
<tr>
<td></td>
<td>Intermittent purple screen crashes can occur with nv_interrupt_handler.</td>
</tr>
</tbody>
</table>

Issues Resolved in Release 7.1

<table>
<thead>
<tr>
<th>Bug ID</th>
<th>Summary and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2425350</td>
<td>After a long stress test, a blue screen crash (BSOD) occurs</td>
</tr>
<tr>
<td>200492702</td>
<td>After a long stress test, the GPU hangs, causing severe performance issues or a blue</td>
</tr>
<tr>
<td></td>
<td>screen crash in the VM.</td>
</tr>
<tr>
<td>Bug ID</td>
<td>Summary and Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>200461544</td>
<td>Blue Screen crash during guest driver installation</td>
</tr>
<tr>
<td></td>
<td>During installation of the NVIDIA vGPU software graphics driver in guest VMs running some Microsoft Windows 10 releases, a blue screen crash occurs with the error VIDEO_TDR_FAILURE 116.</td>
</tr>
<tr>
<td>200426078</td>
<td>Suspending and resuming a VM configured with vGPU can cause errors</td>
</tr>
<tr>
<td></td>
<td>If the guest VM graphics driver comes from an older release of NVIDIA vGPU software than the Virtual GPU Manager, suspending and resuming a VM configured with vGPU causes one of the following sets of errors depending on the guest OS:</td>
</tr>
<tr>
<td></td>
<td>‣ Windows: XID error 43, a TDR, and a VM crash</td>
</tr>
<tr>
<td></td>
<td>‣ Linux: XID error 13 and XID error 69</td>
</tr>
</tbody>
</table>

Issues Resolved in Release 7.2

No resolved issues are reported in this release for VMware vSphere.
5.1. Since 7.2: Restricting Access to GPU Performance Counters

The NVIDIA graphics driver contains a vulnerability (CVE-2018-6260) that may allow access to application data processed on the GPU through a side channel exposed by the GPU performance counters. To address this vulnerability, update the driver and restrict access to GPU performance counters to allow access only by administrator users and users who need to use CUDA profiling tools.

The GPU performance counters that are affected by this vulnerability are the hardware performance monitors used by the CUDA profiling tools such as CUPTI, Nsight Graphics, and Nsight Compute. These performance counters are exposed on the hypervisor host and in guest VMs only as follows:

- On the hypervisor host, they are always exposed. However, the Virtual GPU Manager does not access these performance counters and, therefore, is not affected.
- In Windows and Linux guest VMs, they are exposed only in VMs configured for GPU pass through. They are not exposed in VMs configured for NVIDIA vGPU.

5.1.1. Windows: Restricting Access to GPU Performance Counters for One User by Using NVIDIA Control Panel

Perform this task from the guest VM to which the GPU is passed through.

Ensure that you are running NVIDIA Control Panel version 8.1.950.

1. Open NVIDIA Control Panel:

 - Right-click on the Windows desktop and select NVIDIA Control Panel from the menu.
 - Open Windows Control Panel and double-click the NVIDIA Control Panel icon.
2. In NVIDIA Control Panel, select the Manage GPU Performance Counters task in the Developer section of the navigation pane.
3. Complete the task by following the instructions in the Manage GPU Performance Counters > Developer topic in the NVIDIA Control Panel help.

5.1.2. Windows: Restricting Access to GPU Performance Counters Across an Enterprise by Using a Registry Key

You can use a registry key to restrict access to GPU Performance Counters for all users who log in to a Windows guest VM. By incorporating the registry key information into a script, you can automate the setting of this registry for all Windows guest VMs across your enterprise.

Perform this task from the guest VM to which the GPU is passed through.

Caution Only enterprise administrators should perform this task. Changes to the Windows registry must be made with care and system instability can result if registry keys are incorrectly set.

1. Set the RmProfilingAdminOnly Windows registry key to 1.

 [HKLM\SYSTEM\CurrentControlSet\Services\nvlddmkm\Global\NVTweak]
 Value: "RmProfilingAdminOnly"
 Type: DWORD
 Data: 00000001

 The data value 1 restricts access, and the data value 0 allows access, to application data processed on the GPU through a side channel exposed by the GPU performance counters.

2. Restart the VM.

5.1.3. Linux Guest VMs: Restricting Access to GPU Performance Counters

On systems where unprivileged users don’t need to use GPU performance counters, restrict access to these counters to system administrators, namely users with the CAP_SYS_ADMIN capability set. By default, the GPU performance counters are not restricted to users with the CAP_SYS_ADMIN capability.

Perform this task from the guest VM to which the GPU is passed through.

This task requires sudo privileges.

1. Log in to the guest VM.

2. Set the kernel module parameter NVreg_RestrictProfilingToAdminUsers to 1 by adding this parameter to the /etc/modprobe.d/nvidia.conf file.

 ▶ If you are setting only this parameter, add an entry for it to the /etc/modprobe.d/nvidia.conf file as follows:

   ```
   options nvidia
   NVreg_RegistryDwords="NVreg_RestrictProfilingToAdminUsers=1"
   ```
If you are setting multiple parameters, set them in a single entry as in the following example:

```bash
options nvidia NVreg_RegistryDwords="RmPVMRL=0x0"
"NVreg_RestrictProfilingToAdminUsers=1"
```

If the `/etc/modprobe.d/nvidia.conf` file does not already exist, create it.

3. Restart the VM.

5.1.4. Hypervisor Host: Restricting Access to GPU Performance Counters

On systems where unprivileged users don’t need to use GPU performance counters, restrict access to these counters to system administrators. By default, the GPU performance counters are not restricted to system administrators.

Perform this task from your hypervisor host machine.

1. Open a command shell as the root user on your hypervisor host machine.
2. Set the kernel module parameter `NVreg_RestrictProfilingToAdminUsers` to 1 by using the `esxcli` set command.

 ▶ If you are setting only this parameter, set it as follows:

   ```bash
   # esxcli system module parameters set -m nvidia -p "NVreg_RestrictProfilingToAdminUsers=1"
   ```

 ▶ If you are setting multiple parameters, set them in a single command as in the following example:

   ```bash
   # esxcli system module parameters set -m nvidia -p "NVreg_RegistryDwords=RmPVMRL=0x0 NVreg_RestrictProfilingToAdminUsers=1"
   ```

3. Reboot your hypervisor host machine.
Chapter 6.
KNOWN ISSUES

6.1. 7.0 Only: After a long stress test, a blue screen crash (BSOD) occurs

Description

After a long stress test, the GPU hangs, causing severe performance issues or a blue screen crash in the VM.

This issue affects only supported GPUs based on the NVIDIA Pascal architecture or the NVIDIA Volta architecture.

The `nvidia-smi -q` command returns the following information, in which power readings and clocks data are shown as Unknown Error.

<table>
<thead>
<tr>
<th>Power Readings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Management</td>
<td>Supported</td>
</tr>
<tr>
<td>Power Draw</td>
<td>Unknown Error</td>
</tr>
<tr>
<td>Power Limit</td>
<td>250.00 W</td>
</tr>
<tr>
<td>Default Power Limit</td>
<td>250.00 W</td>
</tr>
<tr>
<td>Enforced Power Limit</td>
<td>250.00 W</td>
</tr>
<tr>
<td>Min Power Limit</td>
<td>125.00 W</td>
</tr>
<tr>
<td>Max Power Limit</td>
<td>250.00 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clocks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphics</td>
<td>Unknown Error</td>
</tr>
<tr>
<td>SM</td>
<td>Unknown Error</td>
</tr>
<tr>
<td>Memory</td>
<td>3615 MHz</td>
</tr>
<tr>
<td>Video</td>
<td>Unknown Error</td>
</tr>
</tbody>
</table>

Status

Resolved in release 7.1

Ref. #

- 2425350
6.2. Vulkan applications crash in Windows 7 guest VMs configured with NVIDIA vGPU

Description
In Windows 7 guest VMs configured with NVIDIA vGPU, applications developed with Vulkan APIs crash or throw errors when they are launched. Vulkan APIs require sparse texture support, but in Windows 7 guest VMs configured with NVIDIA vGPU, sparse textures are not enabled.

In Windows 10 guest VMs configured with NVIDIA vGPU, sparse textures are enabled and applications developed with Vulkan APIs run correctly in these VMs.

Status
Open

Ref. #
200381348

6.3. Host core CPU utilization is higher than expected for moderate workloads

Description
When GPU performance is being monitored, host core CPU utilization is higher than expected for moderate workloads. For example, host CPU utilization when only a small number of VMs are running is as high as when several times as many VMs are running.

Workaround
Disable monitoring of the following GPU performance statistics:

- vGPU engine usage by applications across multiple vGPUs
- Encoder session statistics
- Frame buffer capture (FBC) session statistics
- Statistics gathered by performance counters in guest VMs

Status
Open
6.4. H.264 encoder falls back to software encoding on 1Q vGPUs with a 4K display

Description
On 1Q vGPUs with a 4K display, a shortage of frame buffer causes the H.264 encoder to fall back to software encoding.

Workaround
Use a 2Q or larger virtual GPU type to provide more frame buffer for each vGPU.

Status
Open

Ref. #
2422580

6.5. H.264 encoder falls back to software encoding on 2Q vGPUs with 3 or more 4K displays

Description
On 2Q vGPUs with three or more 4K displays, a shortage of frame buffer causes the H.264 encoder to fall back to software encoding.

This issue affects only vGPUs assigned to VMs that are running a Linux guest OS.

Workaround
Use a 4Q or larger virtual GPU type to provide more frame buffer for each vGPU.

Status
Open

Ref. #
200457177
6.6. Frame capture while the interactive logon message is displayed returns blank screen

Description
Because of a known limitation with NvFBC, a frame capture while the interactive logon message is displayed returns a blank screen.

An NvFBC session can capture screen updates that occur after the session is created. Before the logon message appears, there is no screen update after the message is shown and, therefore, a black screen is returned instead. If the NvFBC session is created after this update has occurred, NvFBC cannot get a frame to capture.

Workaround
Press Enter or wait for the screen to update for NvFBC to capture the frame.

Status
Not a bug

Ref. #
2115733

6.7. RDS sessions do not use the GPU with some Microsoft Windows Server releases

Description
When some releases of Windows Server are used as a guest OS, Remote Desktop Services (RDS) sessions do not use the GPU. With these releases, the RDS sessions by default use the Microsoft Basic Render Driver instead of the GPU. This default setting enables 2D DirectX applications such as Microsoft Office to use software rendering, which can be more efficient than using the GPU for rendering. However, as a result, 3D applications that use DirectX are prevented from using the GPU.

Version
- Windows Server 2016
- Windows Server 2012
Solution

Change the local computer policy to use the hardware graphics adapter for all RDS sessions.

2. Set the **Use the hardware default graphics adapter for all Remote Desktop Services sessions** option.

6.8. VMware vMotion fails gracefully under heavy load

Description

Migrating a VM configured with vGPU fails gracefully if the VM is running an intensive workload.

The error stack in the task details on the vSphere web client contains the following error message:

```
The migration has exceeded the maximum switchover time of 100 second(s).
ESX has preemptively failed the migration to allow the VM to continue running on
the source.
To avoid this failure, either increase the maximum allowable switchover time or
wait until
the VM is performing a less intensive workload.
```

Workaround

Increase the maximum switchover time by increasing the `vmotion.maxSwitchoverSeconds` option from the default value of 100 seconds.

For more information, see VMware Knowledge Base Article: vMotion or Storage vMotion of a VM fails with the error: The migration has exceeded the maximum switchover time of 100 second(s) (2141355).

Status

Not an NVIDIA bug

Ref. #

200416700
6.9. Cloned VMs configured with a vGPU type different than the type in the master image fail to start

Description
Cloned VMs configured with a vGPU type different than the type in the master image fail to start.

When a Windows 10 VM is booted, the VM becomes stuck in a loop and alternately displays *Getting devices ready: 50%* and *Preparation in progress*.

Workaround
Create one master image for each vGPU type that you want to use. Do not attempt to configure a cloned VM with a vGPU type different than the type in the master image.

Status
Open

Ref. #
2285306

6.10. View session freezes intermittently after a Linux VM acquires a license

Description
In a Linux VM, the view session can sometimes freeze after the VM acquires a license.

Workaround
Resize the view session.

Status
Open

Ref. #
200426961
6.11. 7.0 Only: Blue Screen crash during guest driver installation

Description
During installation of the NVIDIA vGPU software graphics driver in guest VMs running some Microsoft Windows 10 releases, a blue screen crash occurs with the error VIDEO_TDR_FAILURE 116.

Version
This issue affects the following Microsoft Windows 10 releases:

- RTM (1507)
- November Update (1511)

Workaround
1. Identify the NVIDIA GPU for which the Hardware Ids property contains values that start with PCI\VEN_10DE.
 a. Open Device Manager and expand Display adapters.
 b. For each NVIDIA GPU listed under Display adapters, double-click the GPU and in the Properties window that opens, click the Details tab and select Hardware Ids in the Property list.
2. For the device that you identified in the previous step, display the value of the Class Guid property.
 The value of this property is a string, for example, 4d36e968-e325-11ce-bfc1-08002be10318.
3. Open the Registry Editor and navigate to HKEY_LOCAL_MACHINE\SYSTEM \CurrentControlSet\Control\Class\{class-guid\}, where class-guid is the value of the Class Guid property that you displayed in the previous step.
 Under class-guid, multiple adapters numbered as four-digit numbers starting from 0000 are listed, for example, 0000 and 0001.
4. For each adapter listed, create the EnableVGXFlipQueue Windows registry key with type REG_DWORD and a value of 0.
5. Install the NVIDIA vGPU software graphics driver.

Status
Resolved in NVIDIA vGPU software release 7.1.
6.12. 7.0 Only: Suspending and resuming a VM configured with vGPU can cause errors

Description

If the guest VM graphics driver comes from an older release of NVIDIA vGPU software than the Virtual GPU Manager, suspending and resuming a VM configured with vGPU causes one of the following sets of errors depending on the guest OS:

- Windows: XID error 43, a TDR, and a VM crash
- Linux: XID error 13 and XID error 69

Workaround

Ensure that the guest VM graphics driver and the Virtual GPU Manager come from the same release of NVIDIA vGPU software.

Status

Open

Ref. #

Resolved in NVIDIA vGPU software release 7.1.

6.13. Even when the scheduling policy is equal share, unequal GPU utilization is reported

Description

When the scheduling policy is equal share, unequal GPU engine utilization can be reported for the vGPUs on the same physical GPU.

For example, GPU engine usage for three P40-8Q vGPUs on a Tesla P40 GPU might be reported as follows:

```
[root@localhost:~] nvidia-smi vgpu
Wed Jun 27 10:33:18 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.59                 Driver Version: 390.59                    |
|-------------------------------+--------------------------------+------------|
| GPU  Name                     | Bus-Id                         | GPU-Util   |
|      vGPU ID    Name          | VM ID    VM Name               | vGPU-Util  |
|-----------------------------------------------------------------------------+
```
The vGPU utilization of the vGPU 2122658 is reported as 59%. However, the expected vGPU utilization should not exceed 33%.

This behavior is a result of the mechanism that is used to measure GPU engine utilization.

Status
Open

Ref. #
2175888

6.14. When the scheduling policy is fixed share, GPU utilization is reported as higher than expected

Description

When the scheduling policy is fixed share, GPU engine utilization can be reported as higher than expected for a vGPU.

For example, GPU engine usage for six P40-4Q vGPUs on a Tesla P40 GPU might be reported as follows:

```
[root@localhost:~] nvidia-smi vgpu
Mon Aug 20 10:33:18 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.42                 Driver Version: 390.42                    |
|-------------------------------+--------------------------------+------------+
| GPU  Name                     | Bus-Id                         | GPU-Util   |
|      vGPU ID    Name          | VM ID    VM Name               | vGPU-Util  |
|===============================+================================+============|
|   0  Tesla P40                | 00000000:81:00.0               |  99%       |
| 85109      GRID P40-4Q   | 85110    win7-xmpl-146048-1    |     32%    |
| 87195      GRID P40-4Q   | 87196    win7-xmpl-146048-2    |     39%    |
| 88095      GRID P40-4Q   | 88096    win7-xmpl-146048-3    |     26%    |
| 89170      GRID P40-4Q   | 89171    win7-xmpl-146048-4    |      0%    |
| 90475      GRID P40-4Q   | 90476    win7-xmpl-146048-5    |      0%    |
| 93363      GRID P40-4Q   | 93364    win7-xmpl-146048-6    |      0%    |
+-------------------------------+--------------------------------+------------+
```
The vGPU utilization of vGPU 85109 is reported as 32%. For vGPU 87195, vGPU utilization is reported as 39%. And for 88095, it is reported as 26%. However, the expected vGPU utilization of any vGPU should not exceed approximately 16.7%.

This behavior is a result of the mechanism that is used to measure GPU engine utilization.

Status

Open

Ref. #

2227591

6.15. No data displayed on NVIDIA dashboards in VMware vRealize Operations

Description

No data is displayed on NVIDIA dashboards in VMware vRealize Operations with the NVIDIA Virtual GPU Management Pack.

Data is not collected for any ESXi host that is identified by its host name when it is added to VMware vCenter Server. The connection to CIM provider from NVIDIA Virtual GPU Management Pack fails for such hosts because their host names cannot be resolved.

Workaround

When adding a host to VMware vCenter Server, specify its IP address instead of its host name.

Status

Ref. #

200422318
6.16. `nvidia-smi` reports that vGPU migration is supported on all hypervisors

Description

The command `nvidia-smi vgpu -m` shows that vGPU migration is supported on all hypervisors, even hypervisors or hypervisor versions that do not support vGPU migration.

Status

Closed

Ref. #

200407230

6.17. GPU resources not available error during VMware instant clone provisioning

Description

A *GPU resources not available* error might occur during VMware instant clone provisioning. On Windows VMs, a Video TDR failure - `NVLDMMKM.sys` error causes a blue screen crash.

This error occurs when options for VMware Virtual Shared Graphics Acceleration (vSGA) are set for a VM that is configured with NVIDIA vGPU. VMware vSGA is a feature of VMware vSphere that enables multiple virtual machines to share the physical GPUs on ESXi hosts and can be used as an alternative to NVIDIA vGPU.

Depending on the combination of options set, one of the following error messages is seen when the VM is powered on:

- Module 'MKS' power on failed.

 This message is seen when the following options are set:

 - **Enable 3D support** is selected.
 - **3D Renderer** is set to **Hardware**
 - The graphics type of all GPUs on the ESXi host is Shared Direct.
 - Hardware GPU resources are not available. The virtual machine will use software rendering.
This message is seen when the following options are set:

- **Enable 3D support** is selected.
- **3D Renderer** is set to **Automatic**.
- The graphics type of all GPUs on the ESXi host is Shared Direct.

Resolution

If you want to use NVIDIA vGPU, unset any options for VMware vSGA that are set for the VM.

1. Ensure that the VM is powered off.
2. Open the vCenter Web UI.
3. In the vCenter Web UI, right-click the VM and choose **Edit Settings**.
4. Click the **Virtual Hardware** tab.
5. In the device list, expand the **Video card** node and de-select the **Enable 3D support** option.
6. Start the VM.

Status

Not a bug

Ref. #

2369683

6.18. VMs with 32 GB or more of RAM fail to boot with GPUs requiring 64 GB of MMIO space

Description

VMs with 32 GB or more of RAM fail to boot with GPUs that require 64 GB of MMIO space. VMs boot successfully with RAM allocations of less than 32 GB.

The following GPUs require 64 GB of MMIO space:

- Tesla P6
- Tesla P40

Version

This issue affects the following versions of VMware vSphere ESXi:

- 6.0 Update 3 and later updates
- 6.5 and later updates
Workaround

If you want to use a VM with 32 GB or more of RAM with GPUs that require 64 GB of MMIO space, use this workaround:

1. Create a VM to which less than 32 GB of RAM is allocated.
2. Choose **VM Options > Advanced** and set
 `pciPassthru.use64bitMMIO="TRUE"`.
3. Allocate the required amount of RAM to the VM.

For more information, see [VMware Knowledge Base Article: VMware vSphere VMDirectPath I/O: Requirements for Platforms and Devices (2142307)](https://kb.vmware.com/kb/2142307).

Status

Not an NVIDIA bug

Resolved in VMware vSphere ESXi 6.7

Ref. #

2043171

6.19. Module load failed during VIB downgrade from R390 to R384

Description

Some registry keys are available only with the R390 Virtual GPU Manager, for example, `NVreg_IgnoreMMIOCheck`. If any keys that are available only with the R390 Virtual GPU Manager are set, the NVIDIA module fails to load after a downgrade from R390 to R384.

When `nvidia-smi` is run without any arguments to verify the installation, the following error message is displayed:

```
NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.
```

Workaround

Before uninstalling the R390 VIB, clear all parameters of the `nvidia` module to remove any registry keys that are available only for the R390 Virtual GPU Manager.

```
esxcli system module parameters set -p "" -m nvidia
```
Known Issues

Status
Not an NVIDIA bug

Ref. #
200366884

6.20. Resolution is not updated after a VM acquires a license and is restarted

Description
In a Red Enterprise Linux 7.3 guest VM, an increase in resolution from 1024×768 to 2560×1600 is not applied after a license is acquired and the gridd service is restarted. This issue occurs if the multimonitor parameter is added to the xorg.conf file.

Version
Red Enterprise Linux 7.3

Status
Open

Ref. #
200275925

6.21. On Tesla P40, P6, and P4 GPUs, the default ECC setting prevents NVIDIA vGPU from starting

Description
On Tesla P40, Tesla P6, and Tesla P4 GPUs, the default error-correcting code (ECC) memory setting prevents NVIDIA vGPU from starting. By default, ECC memory is enabled on these GPUs, but NVIDIA vGPU does not support ECC memory.

Workaround
Before running NVIDIA vGPU, disable ECC memory as explained in *Virtual GPU Software User Guide*.
6.22. Tesla P40 cannot be used in pass-through mode

Description
Pass-through mode on Tesla P40 GPUs and other GPUs based on the Pascal architecture does not work as expected. In some situations, after the VM is powered on, the guest OS crashes or fails to boot.

Workaround
Ensure that your GPUs are configured as described in Requirements for Using GPUs Based on the Pascal and Volta Architectures in Pass-Through Mode

Status
Not a bug

Ref. #
1944539

6.23. NVIDIA vGPU encoder and process utilization counters don't work with Windows Performance Counters

Description
GPU encoder and process utilization counter groups are listed in Windows Performance Counters, but no instances of the counters are available. The counters are disabled by default and must be enabled.

Workaround
Enable the counters by running the following sequence of commands from a command shell:
6.24. On Linux, 3D applications run slowly when windows are dragged

Description

When windows for 3D applications on Linux are dragged, the frame rate drops substantially and the application runs slowly.

This issue does not affect 2D applications.

Status

Open

Ref. #

1971698

6.25. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS

Description

On Red Hat Enterprise Linux 6.8 and 6.9, and CentOS 6.8 and 6.9, a segmentation fault in DBus code causes the nvidia-gridd service to exit.
The `nvidia-gridd` service uses DBus for communication with **NVIDIA X Server Settings** to display licensing information through the **Manage License** page. Disabling the GUI for licensing resolves this issue.

To prevent this issue, the GUI for licensing is disabled by default. You might encounter this issue if you have enabled the GUI for licensing and are using Red Hat Enterprise Linux 6.8 or 6.9, or CentOS 6.8 and 6.9.

Version

Red Hat Enterprise Linux 6.8 and 6.9

CentOS 6.8 and 6.9

Status

Open

Ref. #

- 200358191
- 200319854
- 1895945

6.26. No Manage License option available in NVIDIA X Server Settings by default

Description

By default, the **Manage License** option is not available in **NVIDIA X Server Settings**. This option is missing because the GUI for licensing on Linux is disabled by default to work around the issue that is described in A segmentation fault in DBus code causes `nvidia-gridd` to exit on Red Hat Enterprise Linux and CentOS.

Workaround

This workaround requires **sudo** privileges.

1. If **NVIDIA X Server Settings** is running, shut it down.
2. If the `/etc/nvidia/gridd.conf` file does not already exist, create it by copying the supplied template file `/etc/nvidia/gridd.conf.template`.

3. As root, edit the `/etc/nvidia/gridd.conf` file to set the `EnableUI` option to `TRUE`.

4. Start the `nvidia-gridd` service.

   ```
   # sudo service nvidia-gridd start
   ```

 When NVIDIA X Server Settings is restarted, the Manage License option is now available.

Status

Open

6.27. Licenses remain checked out when VMs are forcibly powered off

Description

NVIDIA vGPU software licenses remain checked out on the license server when non-persistent VMs are forcibly powered off.

The NVIDIA service running in a VM returns checked out licenses when the VM is shut down. In environments where non-persistent licensed VMs are not cleanly shut down, licenses on the license server can become exhausted. For example, this issue can occur in automated test environments where VMs are frequently changing and are not guaranteed to be cleanly shut down. The licenses from such VMs remain checked out against their MAC address for seven days before they time out and become available to other VMs.

Resolution

If VMs are routinely being powered off without clean shutdown in your environment, you can avoid this issue by shortening the license borrow period. To shorten the license borrow period, set the `LicenseInterval` configuration setting in your VM image. For details, refer to Virtual GPU Client Licensing User Guide.

Status

Closed

Ref. #

1694975
6.28. Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer

Description

Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer.

This issue typically occurs in the following situations:

- Full screen 1080p video content is playing in a browser. In this situation, the session hangs and session reconnection fails.
- Multiple display heads are used with Citrix Virtual Apps and Desktops or VMware Horizon on a Windows 10 guest VM.
- Higher resolution monitors are used.
- Applications that are frame-buffer intensive are used.
- NVENC is in use.

To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer.

When memory exhaustion occurs, the NVIDIA host driver reports Xid error 31 and Xid error 43 in the VMware vSphere log file `vmware.log` in the guest VM's storage directory.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

- Tesla M6-0B, M6-0Q
- Tesla M10-0B, M10-0Q
- Tesla M60-0B, M60-0Q

The root cause is a known issue associated with changes to the way that recent Microsoft operating systems handle and allow access to overprovisioning messages and errors. If your systems are provisioned with enough frame buffer to support your use cases, you should not encounter these issues.

Workaround

- Use an appropriately sized vGPU to ensure that the frame buffer supplied to a VM through the vGPU is adequate for your workloads.
- Monitor your frame buffer usage.
- If you are using Windows 10, consider these workarounds and solutions:
 - Use a profile that has 1 Gbyte of frame buffer.
Optimize your Windows 10 resource usage.

To obtain information about best practices for improved user experience using Windows 10 in virtual environments, complete the NVIDIA GRID vGPU Profile Sizing Guide for Windows 10 download request form.

Additionally, you can use the VMware OS Optimization Tool to make and apply optimization recommendations for Windows 10 and other operating systems.

Status
Open

Ref. #
- 200130864
- 1803861

6.29. vGPU VM fails to boot in ESXi 6.5 if the graphics type is Shared

Description

If vSGA is being used, this issue shouldn't be encountered and changing the default graphics type is not necessary.

On VMware vSphere Hypervisor (ESXi) 6.5, after vGPU is configured, VMs to which a vGPU is assigned may fail to start and the following error message may be displayed:

The amount of graphics resource available in the parent resource pool is insufficient for the operation.

The vGPU Manager VIB provides vSGA and vGPU functionality in a single VIB. After this VIB is installed, the default graphics type is Shared, which provides vSGA functionality. To enable vGPU support for VMs in VMware vSphere 6.5, you must change the default graphics type to Shared Direct. If you do not change the default graphics type you will encounter this issue.

Version
VMware vSphere Hypervisor (ESXi) 6.5

Workaround
Change the default graphics type to Shared Direct as explained in Virtual GPU Software User Guide.
6.30. ESXi 6.5 web client shows high memory usage even when VMs are idle

Description
On VMware vSphere Hypervisor (ESXi) 6.5, the web client shows a memory usage alarm with critical severity for VMs to which a vGPU is attached even when the VMs are idle. When memory usage is monitored from inside the VM, no memory usage alarm is shown. The web client does not show a memory usage alarm for the same VMs without an attached vGPU.

Version
VMware vSphere Hypervisor (ESXi) 6.5

Workaround
Avoid using the VMware vSphere Hypervisor (ESXi) 6.5 web client to monitor memory usage for VMs to which a vGPU is attached.

6.31. VMs configured with NVIDIA vGPU must not be on a host in a VMware DRS cluster

Description
The ESXi host on which VMs configured with NVIDIA vGPU reside must not be a member of a VMware Distributed Resource Scheduler (DRS) cluster. The installer for the NVIDIA driver for NVIDIA vGPU software cannot locate the NVIDIA vGPU software...
GPU card on a host in a VMware DRS Cluster. Any attempt to install the driver on a VM on a host in a DRS cluster fails with the following error:

NVIDIA Installer cannot continue
This graphics driver could not find compatible graphics hardware.

Furthermore, you cannot overcome this limitation by configuring a VM with NVIDIA vGPU and installing the driver on the VM on a host outside a DRS cluster and moving the host into the DRS cluster after configuring it.

Workaround

Move each VM configured with NVIDIA vGPU to a host outside the DRS cluster.

1. Remove NVIDIA Virtual GPU Manager from the host in the DRS cluster.
2. Create a cluster of VMware ESXi hosts outside the DRS domain.
3. Install the NVIDIA Virtual GPU Manager on an ESXi host in the cluster that you created in the previous step.
4. Create a vSphere VM for use with NVIDIA vGPU.
5. Configure the vSphere VM with NVIDIA vGPU.
6. Boot the vSphere VM and install the NVIDIA driver for NVIDIA vGPU.

For instructions for performing these tasks, refer to *Virtual GPU Software User Guide*.

Status

Open

Ref. #

1933449

6.32. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0

Description

GDM fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0 with the following error:

Oh no! Something has gone wrong!

Workaround

Permanently enable permissive mode for Security Enhanced Linux (SELinux).

1. As root, edit the `/etc/selinux/config` file to set SELINUX to permissive.

 SELINUX=permissive
2. Reboot the system.

```bash
~]# reboot
```

For more information, see Permissive Mode in Red Hat Enterprise Linux 7 SELinux User’s and Administrator’s Guide.

Status

Not an NVIDIA bug

Ref. #

200167868

6.33. NVIDIA Control Panel fails to start and reports that “you are not currently using a display that is attached to an Nvidia GPU”

Description

When you launch NVIDIA Control Panel on a VM configured with vGPU, it fails to start and reports that you are not using a display attached to an NVIDIA GPU. This happens because Windows is using VMware’s SVGA device instead of NVIDIA vGPU.

Fix

Make NVIDIA vGPU the primary display adapter.

Use Windows screen resolution control panel to make the second display, identified as “2” and corresponding to NVIDIA vGPU, to be the active display and select the Show desktop only on 2 option. Click Apply to accept the configuration.

You may need to click on the Detect button for Windows to recognize the display connected to NVIDIA vGPU.

> If the VMware Horizon/View agent is installed in the VM, the NVIDIA GPU is automatically selected in preference to the SVGA device.

Status

Open
6.34. VM configured with more than one vGPU fails to initialize vGPU when booted

Description
Using the current VMware vCenter user interface, it is possible to configure a VM with more than one vGPU device. When booted, the VM boots in VMware SVGA mode and doesn’t load the NVIDIA driver. The additional vGPU devices are present in Windows Device Manager but display a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Workaround
NVIDIA vGPU currently supports a single virtual GPU device per VM. Remove any additional vGPUs from the VM configuration before booting the VM.

Status
Open

6.35. A VM configured with both a vGPU and a passthrough GPU fails to start the passthrough GPU

Description
Using the current VMware vCenter user interface, it is possible to configure a VM with a vGPU device and a passthrough (direct path) GPU device. This is not a currently supported configuration for vGPU. The passthrough GPU appears in Windows Device Manager with a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Workaround
Do not assign vGPU and passthrough GPUs to a VM simultaneously.
6.36. vGPU allocation policy fails when multiple VMs are started simultaneously

Description
If multiple VMs are started simultaneously, vSphere may not adhere to the placement policy currently in effect. For example, if the default placement policy (breadth-first) is in effect, and 4 physical GPUs are available with no resident vGPUs, then starting 4 VMs simultaneously should result in one vGPU on each GPU. In practice, more than one vGPU may end up resident on a GPU.

Workaround
Start VMs individually.

Status
Not an NVIDIA bug

6.37. Before Horizon agent is installed inside a VM, the Start menu’s sleep option is available

Description
When a VM is configured with a vGPU, the Sleep option remains available in the Windows Start menu. Sleep is not supported on vGPU and attempts to use it will lead to undefined behavior.

Workaround
Do not use Sleep with vGPU.

Installing the VMware Horizon agent will disable the Sleep option.
6.38. vGPU-enabled VMs fail to start, nvidia-smi fails when VMs are configured with too high a proportion of the server’s memory.

Description
If vGPU-enabled VMs are assigned too high a proportion of the server’s total memory, the following errors occur:

- One or more of the VMs may fail to start with the following error:

```
The available Memory resources in the parent resource pool are insufficient for the operation
```

- When run in the host shell, the nvidia-smi utility returns this error:

```
-sh: can't fork
```

For example, on a server configured with 256G of memory, these errors may occur if vGPU-enabled VMs are assigned more than 243G of memory.

Workaround
Reduce the total amount of system memory assigned to the VMs.

Status
Closed

Ref. #
200060499
6.39. On reset or restart VMs fail to start with the error VMIOP: no graphics device is available for vGPU...

Description
On a system running a maximal configuration, that is, with the maximum number of vGPU VMs the server can support, some VMs might fail to start post a reset or restart operation.

Fix
Upgrade to ESXi 6.0 Update 1.

Status
Closed

Ref. #
200097546

6.40. nvidia-smi shows high GPU utilization for vGPU VMs with active Horizon sessions

Description
vGPU VMs with an active Horizon connection utilize a high percentage of the GPU on the ESXi host. The GPU utilization remains high for the duration of the Horizon session even if there are no active applications running on the VM.

Workaround
None

Status
Open

Partially resolved for Horizon 7.0.1:
- For Blast connections, GPU utilization is no longer high.
- For PCoIP connections, utilization remains high.
Ref. #

1735009
Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA, the NVIDIA logo, NVIDIA GRID, vGPU, Pascal, Quadro, and Tesla are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2013-2019 NVIDIA Corporation. All rights reserved.