<3

NVIDIA.

Class HolovizOp

Table of contents

Nested Relationships
Inheritance Relationships

Class Documentation

Class HolovizOp

e Defined in File holoviz.hpp

Nested Relationships

Nested Types
e Struct HolovizOp::InputSpec

e Struct InputSpec::View

Inheritance Relationships
Base Type

e public holoscan::Operator (Class Operator)

Class Documentation

class HolovizOp : public holoscan::Operator
Operator class for data visualization.

This high-speed viewer handles compositing, blending, and visualization of RGB or
RGBA images, masks, geometric primitives, text and depth maps. The operator can
auto detect the format of the input tensors acquired at the receivers port. Else the

input specification can be set at creation time using the tensors parameter or at
runtime when passing input specifications to the input_specs port.

Depth maps and 3D geometry are rendered in 3D and support camera movement.
The camera is controlled using the mouse:

e Orbit (LMB)
e Pan (LMB + CTRL | MMB)
e Dolly (LMB + SHIFT | RMB | Mouse wheel)

e Look Around (LMB + ALT | LMB + CTRL + SHIFT)

Class HolovizOp 2

https://docs.nvidia.com/file_include_holoscan_operators_holoviz_holoviz.hpp.html#file-include-holoscan-operators-holoviz-holoviz-hpp
https://docs.nvidia.com/structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec.html#exhale-struct-structholoscan-1-1ops-1-1holovizop-1-1inputspec
https://docs.nvidia.com/structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec_1_1View.html#exhale-struct-structholoscan-1-1ops-1-1holovizop-1-1inputspec-1-1view
https://docs.nvidia.com/classholoscan_1_1Operator.html#exhale-class-classholoscan-1-1operator
https://docs.nvidia.com/classholoscan_1_1Operator.html#_CPPv4N8holoscan8OperatorE
https://docs.nvidia.com/classholoscan_1_1Operator.html#classholoscan_1_1Operator

e Zoom (Mouse wheel + SHIFT) Or by providing new values at the
camera_eye_input , camera_look_at_input or camera_up_input input ports.
The camera pose can be output at the camera_pose_output port when
enable_camera_pose_output is setto true.

==Named Inputs==

e receivers : multi-receiver accepting nvidia::gxf::Tensor and/or
nvidia::gxf::VideoBuffer

o Any number of upstream ports may be connected to this receivers port.

This port can accept either VideoBuffers or Tensors. These inputs can be
in either host or device memory. Each tensor or video buffer will result in
a layer. The operator autodetects the layer type for certain input types
(e.g. a video buffer will result in an image layer). For other input types or
more complex use cases, input specifications can be provided either at
initialization time as a parameter or dynamically at run time (via

input_specs). On each call to compute , tensors corresponding to all
names specified in the tensors parameter must be found or an
exception will be raised. Any extra, named tensors not present in the

tensors parameter specification (or optional, dynamic input_specs
input) will be ignored.

¢ input_specs: holoscan:ops::HolovizOp::InputSpec (optional)
o Alist of InputSpec objects. This port can be used to dynamically update
the overlay specification at run time. No inputs are required on this port
in order for the operator to compute .
e render_buffer_input: nvidia::gxf::VideoBuffer (optional)
o An empty render buffer can optionally be provided. The video buffer
must have format GXF_VIDEO_FORMAT_RGBA and be in device memory.
This input port only exists if enable_render_buffer_input was set to true,
in which case compute will only be called when a message arrives on

this input.

e camera_eye_input: std:array<float, 3> (optional)

Class HolovizOp

o Camera eye position. The camera is animated to reach the new position.
e camera_look_at_input: std:array<float, 3> (optional)

o Camera look at position. The camera is animated to reach the new
position.

e camera_up_input:: std:array<float, 3> (optional)
o Camera up vector. The camera is animated to reach the new vector.
==Named Outputs==
¢ render_buffer_output: nvidia::gxf::VideoBuffer (optional)
o Output for a filled render buffer. If an input render buffer is specified, it is
using that one, else it allocates a new buffer. The video buffer will have

format GXF_VIDEO_FORMAT_RGBA and will be in device memory. This
output is useful for offline rendering or headless mode. This output port

only exists if enable_render_buffer_output was set to true.

e camera_pose_output: std:array<float, 16> or nvidia:gxf::Pose3D
(optional)

o Output the camera pose. Depending on the value of
camera_pose_output_type this outputs a 4x4 row major projection

matrix (type std:array<float, 16>) or the camera extrinsics model
(type nvidia::gxf::Pose3D). This output port only exists if
enable_camera_pose_output was setto True.

==Parameters==

e receivers: List of input queues to component accepting gxf::Tensor or
gxf::VideoBuffer .

o type: std:vector<gxf::Handle<gxf::Receiver>>

e enable_render_buffer_input: Enable render_buffer_input (default: false)

Class HolovizOp

o type: bool
¢ enable_render_buffer_output: Enable render_buffer_output (default: false)
o type: bool
e enable_camera_pose_output: Enable camera_pose_output (default: false)
o type: bool
e tensors: List of input tensor specifications (default: [])
o type: InputSpec
= name: name of the tensor containing the input data to display
m type: std:string
= type: input type (default "unknown")
= type: std:string
m possible values:

= unknown: unknown type, the operator tries to guess the
type by inspecting the tensor.

= color: RGB or RGBA color 2d image.
= color_lut: single channel 2d image, color is looked up.

= points: point primitives, one coordinate (x, y) per
primitive.

= lines: line primitives, two coordinates (x0, y0) and (x1, y1)
per primitive.

» line_strip: line strip primitive, a line primitive i is defined
by each coordinate (xi, yi) and the following (xi+1, yi+1).

Class HolovizOp 5

» triangles: triangle primitive, three coordinates (x0, y0),
(x1,y1) and (x2, y2) per primitive.

m Crosses: Cross primitive, a cross is defined by the center
coordinate and the size (xi, yi, si).

m rectangles: axis aligned rectangle primitive, each
rectangle is defined by two coordinates (xi, yi) and (xi+1,

yi+1).

m ovals: oval primitive, an oval primitive is defined by the
center coordinate and the axis sizes (xi, yi, sxi, syi).

m text: text is defined by the top left coordinate and the
size (x, y, S) per string, text strings are defined by
InputSpec member text.

= depth_map: single channel 2d array where each element
represents a depth value. The data is rendered as a 3d
object using points, lines or triangles. The color for the
elements can be specified through depth_map_color .
Supported format: 8-bit unsigned normalized format that
has a single 8-bit depth component.

= depth_map_color: RGBA 2d image, same size as the
depth map. One color value for each element of the
depth map grid. Supported format: 32-bit unsigned
normalized format that has an 8-bit R component in byte
0, an 8-bit G component in byte 1, an 8-bit B component
in byte 2, and an 8-bit A component in byte 3.

m opacity: layer opacity, 1.0 is fully opaque, 0.0 is fully transparent
(default: 1.0)

m type: float
= priority: layer priority, determines the render order, layers with
higher priority values are rendered on top of layers with lower

priority values (default: 0)

= type: int32_t

Class HolovizOp 6

https://docs.nvidia.com/structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec.html#structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec

color: RGBA color of rendered geometry (default: [1.f, 1.f, 1.f, 1.f])
= type: std:vector<float>

line_width: line width for geometry made of lines (default: 1.0)
m type: float

point_size: point size for geometry made of points (default: 1.0)
» type: float

text: array of text strings, used when type is text. (default: [])
m type: std:vector<std::string>

depth_map_render_mode: depth map render mode (default:
points)

= type: std:string

m possible values:
= points: render as points
= lines: render as lines

= triangles: render as triangles

e color_lut: Color lookup table for tensors of type ‘color_lut’, vector of four float
RGBA values

o type: std:vector<std::vector<float>>

e window title: Title on window canvas (default: "Holoviz")

o type: std:string

Class HolovizOp

¢ display_name: In exclusive mode, name of display to use as shown with
xrandr or hwinfo --monitor (default: DP-0)

o type: std:string

e width: Window width or display resolution width if in exclusive or fullscreen
mode (default: 1920)

o type: uint32_t

¢ height: Window height or display resolution height if in exclusive or fullscreen
mode (default: 1080)

o type: uint32_t

o framerate: Display framerate if in exclusive mode (default: 60)
o type: uint32_t

e use_exclusive_display: Enable exclusive display (default: false)
o type: bool

e fullscreen: Enable fullscreen window (default: false)
o type: bool

e headless: Enable headless mode. No window is opened, the render buffer is
output to render_buffer_output . (default: false)

o type: bool

e window_close_scheduling_term: BooleanSchedulingTerm to stop the codelet
from ticking when the window is closed

o type: gxfi:Handle<gxf::BooleanSchedulingTerm>

¢ allocator: Allocator used to allocate memory for render_buffer_output

Class HolovizOp 8

https://docs.nvidia.com/classholoscan_1_1Allocator.html#classholoscan_1_1Allocator

o type: gxf::Handle<gxf::Allocator>

o font_path: File path for the font used for rendering text (default: ")
o type: std:string

e cuda_stream_pool: Instance of gxf::CudaStreamPool
o type: gxfi:Handle<gxf::CudaStreamPool>

e camera_pose_output_type: Type of data output at camera_pose_output .
Supported values are projection_matrix and extrinsics_model . Default value
is projection_matrix .

o type: std:string

e camera_eye: Initial camera eye position.
o type: std:array<float, 3>

e camera_look_at: Initial camera look at position.
o type: std:array<float, 3>

e camera_up: Initial camera up vector.
o type: std:array<float, 3>

==Device Memory Requirements==

If render_buffer_input is enabled, the provided buffer is used and no memory
block will be allocated. Otherwise, when using this operator with a
BlockMemoryPool , a single device memory block is needed (storage_type =1).
The size of this memory block can be determined by rounding the width and height
up to the nearest even size and then padding the rows as needed so that the row
stride is a multiple of 256 bytes. C++ code to calculate the block size is as follows:

#include <cstdint> int64_t get_block_size(int32_t height, int32_t width) { int32_t
height_even = height + (height & 1); int32_t width_even = width + (width & 1);

Class HolovizOp 9

int64_t row_bytes = width_even * 4; // 4 bytes per pixel for 8-bit RGBA int64_t
row_stride = (row_bytes % 256 == 0) ? row_bytes : ((row_bytes / 256 + 1) * 256);
return height_even * row_stride; }

==Notes==
1. Displaying Color Images

Image data can either be on host or device (GPU). Multiple image formats are
supported

o R 8 bit unsigned

o R 16 bit unsigned

o R 16 bit float

o R 32 bit unsigned

o R 32 bit float

o RGB 8 bit unsigned
o BGR 8 bit unsigned
o RGBA 8 bit unsigned
o BGRA 8 bit unsigned
o RGBA 16 bit unsigned
o RGBA 16 bit float

RGBA 32 bit float

(@)

When the type parameter is setto color_lut the final color is looked up using

the values from the color_lut parameter. For color lookups these image
formats are supported

o R 8 bit unsigned

Class HolovizOp 10

o R 16 bit unsigned

o R 32 bit unsigned

2. Drawing Geometry

In all cases, x and y are normalized coordinates in the range [0, 1] . The x

and y correspond to the horizontal and vertical axes of the display,

respectively. The origin (0, 0) is at the top left of the display. Geometric
primitives outside of the visible area are clipped. Coordinate arrays are
expected to have the shape (N, C) where N is the coordinate countand C is
the component count for each coordinate.

Class HolovizOp

Points are defined by a (x,y) coordinate pair.
Lines are defined by a set of two (x, y) coordinate pairs.

Lines strips are defined by a sequence of (x, y) coordinate pairs. The
first two coordinates define the first line, each additional coordinate adds
a line connecting to the previous coordinate.

Triangles are defined by a set of three (x, y) coordinate pairs.

Crosses are defined by (x, y, size) tuples. size specifies the size of the
cross in the x direction and is optional, if omitted it's set to 0.05 . The
size in the y direction is calculated using the aspect ratio of the window
to make the crosses square.

Rectangles (bounding boxes) are defined by a pair of 2-tuples defining
the upper-left and lower-right coordinates of a box: (x1, y1), (x2, y2) .

Ovals are defined by (x, y, size_x, size_y) tuples. size_x and size_y are
optional, if omitted they are setto 0.05 .

Texts are defined by (x, y, size) tuples. size specifies the size of the text
in y direction and is optional, if omitted it's set to 0.05 . The size in the

x direction is calculated using the aspect ratio of the window. The index
of each coordinate references a text string from the text parameter and

11

the index is clamped to the size of the text array. For example, if there is
one item set for the text parameter, e.g. text=["my_text"] and three

coordinates, then my_text is rendered three times. If

text=["first text", "second text"] and three coordinates are specified,
then first text is rendered at the first coordinate, second text atthe
second coordinate and then second text again at the third coordinate.

The text string array is fixed and can't be changed after initialization. To
hide text which should not be displayed, specify coordinates greater than
(1.0, 1.0) for the text item, the text is then clipped away.

o 3D Points are defined by a (x, y, z) coordinate tuple.
o 3D Lines are defined by a set of two (x, y, z) coordinate tuples.

o 3D Lines strips are defined by a sequence of (x,y, z) coordinate tuples.
The first two coordinates define the first line, each additional coordinate
adds a line connecting to the previous coordinate.

o 3D Triangles are defined by a set of three (x,y, z) coordinate tuples.
3. Displaying Depth Maps

When type is depth_map the provided data is interpreted as a rectangular
array of depth values. Additionally a 2d array with a color value for each point
in the grid can be specified by setting type to depth_map_color .

The type of geometry drawn can be selected by setting
depth_map_render_mode .

Depth maps are rendered in 3D and support camera movement.
4. Output

By default a window is opened to display the rendering, but the extension can
also be run in headless mode with the headless parameter.

Using a display in exclusive mode is also supported with the
use_exclusive_display parameter. This reduces the latency by avoiding the
desktop compositor.

Class HolovizOp 12

The rendered framebuffer can be output to render_buffer_output .
Public Types
enum class InputType

Input type.

All geometric primitives expect a 1d array of coordinates. Coordinates range
from 0.0 (left, top) to 1.0 (right, bottom).

Values:

enumerator UNKNOWN

unknown type, the operator tries to guess the type by inspecting the tensor
enumerator COLOR

GRAY, RGB or RGBA 2d color image.

enumerator COLOR_LUT

single channel 2d image, color is looked up

enumerator POINTS

point primitives, one coordinate (x, y) per primitive

enumerator LINES

line primitives, two coordinates (x0, y0) and (x1, y1) per primitive
enumerator LINE_STRIP

line strip primitive, a line primitive i is defined by each coordinate (xi, yi) and
the following (xi+1, yi+1)

enumerator TRIANGLES

triangle primitive, three coordinates (x0, y0), (x1, y1) and (x2, y2) per primitive

Class HolovizOp 13

enumerator CROSSES

cross primitive, a cross is defined by the center coordinate and the size (xi, i,
Si)

enumerator RECTANGLES

axis aligned rectangle primitive, each rectangle is defined by two coordinates
(xi, yi) and (xi+1, yi+1)

enumerator OVALS

oval primitive, an oval primitive is defined by the center coordinate and the
axis sizes (xi, yi, sxi, syi)

enumerator TEXT

text is defined by the top left coordinate and the size (x, y, s) per string, text
strings are define by InputSpec::text_

enumerator DEPTH_MAP

single channel 2d array where each element represents a depth value. The
data is rendered as a 3d object using points, lines or triangles. The color for
the elements can be specified through DEPTH_MAP_COLOR . Supported

format: 8-bit unsigned normalized format that has a single 8-bit depth
component

enumerator DEPTH_MAP_COLOR

RGBA 2d image, same size as the depth map. One color value for each element
of the depth map grid. Supported format: 32-bit unsigned normalized format
that has an 8-bit R component in byte > 0, an 8-bit G component in byte 1, an
8-bit B component in byte 2, and an 8-bit A component in byte 3

enumerator POINTS_3D

3D point primitives, one coordinate (X, y, z) per primitive

enumerator LINES_3D

3D line primitives, two coordinates (x0, y0, z0) and (x1, y1, z1) per primitive

Class HolovizOp 14

https://docs.nvidia.com/structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec.html#structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec_1a3a1c9b3e4b0255e5eec64489682d91b5

enumerator LINE_STRIP_3D

3D line strip primitive, a line primitive i is defined by each coordinate (xi, yi, zi)
and the following (xi+1, yi+1, zi+1)

enumerator TRIANGLES 3D

3D triangle primitive, three coordinates (x0, y0, z0), (x1, y1, z1) and (X2, y2, z2)
per primitive

enum class DepthMapRenderMode
Depth map render mode.
Values:
enumerator POINTS
render points
enumerator LINES
render lines
enumerator TRIANGLES

render triangles

Public Functions

HOLOSCAN_OPERATOR_FORWARD_ARGS (HolovizOp) HolovizOp()=default

virtual void setup(OperatorSpec &spec) override
Define the operator specification.
Parameters

spec - The reference to the operator specification.

Class HolovizOp 15

https://docs.nvidia.com/classholoscan_1_1OperatorSpec.html#_CPPv4N8holoscan12OperatorSpecE

virtual void initialize() override
Initialize the operator.

This function is called when the fragment is initialized by
Executor::initialize_fragment().

virtual void start() override

Implement the startup logic of the operator.

This method is called multiple times over the lifecycle of the operator according to
the order defined in the lifecycle, and used for heavy initialization tasks such as

allocating memory resources.

virtual void compute(InputContext &op_input, OutputContext &op_output,
ExecutionContext &context) override

Implement the compute method.

This method is called by the runtime multiple times. The runtime calls this
method until the operator is stopped.

Parameters
e op_input - The input context of the operator.
e op_output - The output context of the operator.
e context - The execution context of the operator.
virtual void stop() override
Implement the shutdown logic of the operator.
This method is called multiple times over the lifecycle of the operator according to

the order defined in the lifecycle, and used for heavy deinitialization tasks such as
deallocation of all resources previously assigned in start.

struct InputSpec

Class HolovizOp 16

https://docs.nvidia.com/classholoscan_1_1Executor.html#classholoscan_1_1Executor_1a6b5386f809f4af7ee63e2a3f97790cec
https://docs.nvidia.com/classholoscan_1_1InputContext.html#_CPPv4N8holoscan12InputContextE
https://docs.nvidia.com/classholoscan_1_1OutputContext.html#_CPPv4N8holoscan13OutputContextE
https://docs.nvidia.com/classholoscan_1_1ExecutionContext.html#_CPPv4N8holoscan16ExecutionContextE

Input specification
Public Functions

InputSpec() = default

inline InputSpec(const std::string &tensor_name, InputType type)
InputSpec(const std::string &tensor_name, const std::string &type_str)
explicit InputSpec(const std::string &yaml_description)

Returns
an InputSpec from the YAML form output by description()

inline explicit operator bool() const noexcept

Returns
true if the input spec is valid

std::string description() const

Returns

a YAML string representation of the InputSpec

Public Members

std::string tensor_name_

name of the tensor containing the input data
InputType type_ = InputType::UNKNOWN
input type

float opacity_=1.f

layer opacity, 1.0 is fully opaque, 0.0 is fully transparent

Class HolovizOp

17

https://docs.nvidia.com/structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec.html#structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec
https://docs.nvidia.com/structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec.html#structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec_1aea24c9c91f08db32035a325d635dadfd
https://docs.nvidia.com/structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec.html#structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec

int32_t priority_=0

layer priority, determines the render order, layers with higher priority values
are rendered on top of layers with lower priority values

std::vector<float> color_={1.f, 1.f, 1.f, 1.f}
color of rendered geometry

float line_width_=1.f

line width for geometry made of lines

float point_size_=1.f

point size for geometry made of points
std::vector<std::string> text_

array of text strings, used when type_ is TEXT.

DepthMapRenderMode depth_map_render_mode_ =
DepthMapRenderMode::POINTS

depth map render mode, used if type_ is DEPTH_MAP or DEPTH_MAP_COLOR.

std::vector<View> views_

struct View
Layer view.

By default a layer will fill the whole window. When using a view the layer
can be placed freely within the window.

Layers can also be placed in 3D space by specifying a 3D transformation
matrix. Note that for geometry layers there is a default matrix which
allows coordinates in the range of [0 ... 1] instead of the Vulkan [-1 ... 1]
range. When specifying a matrix for a geometry layer, this default matrix
is overwritten.

Class HolovizOp 18

Class HolovizOp

When multiple views are specified the layer is drawn multiple times using
the specified layer views.

It's possible to specify a negative term for height, which flips the image.
When using a negative height, one should also adjust the y value to point
to the lower left corner of the viewport instead of the upper left corner.

Public Members

float offset x_=0.f

float offset_y_=0.f

offset of top-left corner of the view. Top left coordinate of the window
area is (0, 0) bottom right coordinate is (1, 1).

float width_=1.f

float height_=1.f
width and height of the view in normalized range. 1.0 is full size.
std::optional<std::array<float, 16>> matrix_

row major 4x4 transform matrix (optional, can be nullptr)

19

	Nested Relationships
	Inheritance Relationships
	Class Documentation

