
Holoscan Application Package Specification (HAP)

Table of contents

Introduction

Overview

Definitions, Acronyms, Abbreviations

Requirements

Architecture & Design

Supplemental Application Files

Operating Environments

Holoscan Application Package Specification (HAP) 1

Table of contents

Introduction

Overview

Definitions, Acronyms, Abbreviations

Requirements

Architecture & Design

Supplemental Application Files

Operating Environments

Holoscan Application Package Specification (HAP) 2

Introduction

The Holoscan Application Package specification extends the MONAI Deploy Application
Package specification to provide the streaming capabilities, multi-fragment and other
features of the Holoscan SDK.

Overview

This document includes the specification of the Holoscan Application Package (HAP). A
HAP is a containerized application or service which is self-descriptive, as defined by this
document.

Goal

This document aims to define the structure and purpose of a HAP, including which parts
are optional and which are required so that developers can easily create conformant
HAPs.

Assumptions, Constraints, Dependencies

The following assumptions relate to HAP execution, inspection and general usage:

Containerized applications will be based on Linux x64 (AMD64) and/or ARM64
(aarch64).

Containerized applications’ host environment will be based on Linux x64 (AMD64)
and/or ARM64 (aarch64) with container support.

Developers expect the local execution of their applications to behave identically to
the execution of the containerized version.

Developers expect the local execution of their containerized applications to behave
identically to the execution in deployment.

Developers and operations engineers want the application packages to be self-
describing.

Applications may be created using tool other than that provided in the Holoscan
SDK or the MONAI Deploy App SDK.

Holoscan Application Package Specification (HAP) 3

Holoscan Application Package may be created using a tool other than that provided
in the Holoscan SDK or the MONAI Deploy App SDK.

Pre-existing, containerized applications must be “converted” into Holoscan
Application Packages.

A Holoscan Application Package may contain a classical application (non-fragment
based), a single-fragment application, or a multi-fragment application. (Please see
the definition of fragment in Definitions, Acronyms, Abbreviations)

The scalability of a multi-fragment application based on Holoscan SDK is outside the
scope of this document.

Application packages are expected to be deployed in one of the supported
environments. For additional information, see Holoscan Operating Environments.

Definitions, Acronyms, Abbreviations

Term Definition

ARM64 Or, AARCH64. See Wikipedia for details.

Container See What’s a container?

Fragment
A fragment is a building block of the Application. It is a directed graph of
operators. For details, please refer to the MONAI Deploy App SDK or
Holoscan App SDK.

Gigibytes
(GiB)

A gibibyte (GiB) is a unit of measurement used in computer data storage
that equals to 1,073,741,824 bytes.

HAP
Holoscan Application Package. A containerized application or service which
is self-descriptive.

Hosting
Service

A service that hosts and orchestrates HAP containers.

MAP
MONAI Application Package. A containerized application or service which is
self-descriptive.

Mebibyte
s (MiB)

A mebibyte (MiB) is a unit of measurement used in computer data storage
that equals to 1,048,576 bytes.

MONAI Medical Open Network for Artificial Intelligence.

SDK Software Development Kit.

https://en.wikipedia.org/wiki/AArch64
https://www.docker.com/resources/what-container/

Holoscan Application Package Specification (HAP) 4

Semantic
Version

See Semantic Versioning 2.0.

x64 Or, x86-64 or AMD64. See Wikipedia for details.

Requirements

The following requirements MUST be met by the HAP specification to be considered
complete and approved. All requirements marked as MUST or SHALL MUST be
implemented in order to be supported by a HAP-ready hosting service.

Single Artifact

A HAP SHALL comprise a single container, meeting the minimum requirements set
forth by this document.

A HAP SHALL be a containerized application to maximize the portability of its
application.

Self-Describing

A HAP MUST be self-describing and provide a mechanism for extracting its
description.

A HAP SHALL provide a method to print the metadata files to the console.

A HAP SHALL provide a method to copy the metadata files to a user-specified
directory.

The method of description SHALL be in a machine-readable and writable format.

The method of description SHALL be in a human-readable format.

The method of description SHOULD be a human writable format.

The method of description SHALL be declarative and immutable.

The method of description SHALL provide the following information about the HAP:

Execution requirements such as dependencies and restrictions.

https://semver.org/
https://en.wikipedia.org/wiki/X86-64

Holoscan Application Package Specification (HAP) 5

Resource requirements include CPU cores, system memory, shared memory,
GPU, and GPU memory.

Runtime Characteristics of the HAP

A HAP SHALL start the packaged Application when it is executed by the users when
arguments are specified.

A HAP SHALL describe the packaged Application as a long-running service or an
application so an external agent can manage its lifecycle.

IO Specification

A HAP SHALL provide information about its expected inputs such that an external
agent can determine if the HAP can receive a workload.

A HAP SHALL provide sufficient information about its outputs so that an external
agent knows how to handle the results.

Local Execution

A HAP MUST be in a format that supports local execution in a development environment.

[Note] See Holoscan Operating Environments for additional information about supported
environments.

Compatible with Kubernetes

A HAP SHALL support deployment using Kubernetes.

OCI Compliance

The containerized portion of a HAP SHALL comply with Open Container Initiative format
standards.

Image Annotations

All annotations for the containerized portion of a HAP MUST adhere to the specifications
laid out by The OpenContainers Annotations Spec

https://opencontainers.org/
https://specs.opencontainers.org/image-spec/annotations/?v=v1.0.1

Holoscan Application Package Specification (HAP) 6

org.opencontainers.image.title : A HAP container image SHALL provide a human-
readable title (string).

org.opencontainers.image.version : A HAP container image SHALL provide a
version of the packaged application using the semantic versioning format. This
value is the same as the value defined in /etc/holoscan/app.json#version in the
Table of Application Manifest Fields.

All other OpenContainers predefined keys SHOULD be provided when available.

Hosting Environment

The HAP Hosting Environment executes the HAP and provides the application with a
customized set of environment variables and command line options as part of the
invocation.

The Hosting Service MUST, by default, execute the application as defined by
/etc/holoscan/app.json#command and then exit when the application or the

service completes.

The Hosting Service MUST provide any environment variables specified by
/etc/holoscan/app.json#environment .

The Hosting Service SHOULD monitor the Application process and record its CPU,
system memory, and GPU utilization metrics.

The Hosting Service SHOULD monitor the Application process and enforce any
timeout value specified in /etc/holoscan/app.json#timeout .

Table of Environment Variables

A HAP SHALL contain the following environment variables and their default values, if not
specified by the user, in the Application Manifest /etc/holoscan/app.json#environment .

Variable Default Format Description

HOLOSCAN_INPUT
_PATH

/var/holoscan
/input/

Folder
Path

Path to the input folder for the
Application.

HOLOSCAN_OUTP
UT_PATH

/var/holoscan
/output/

Folder
Path

Path to the output folder for the
Application.

Holoscan Application Package Specification (HAP) 7

HOLOSCAN_WORK
DIR

/var/holoscan
/

Folder
Path

Path to the Application’s working
directory.

HOLOSCAN_MODE
L_PATH

/opt/holoscan
/models/

Folder
Path

Path to the Application’s models
directory.

HOLOSCAN_CONFI
G_PATH

/var/holoscan
/app.yaml

File Path
Path to the Application’s configuration
file.

HOLOSCAN_APP_
MANIFEST_PATH

/etc/holoscan/
app.config

File Path
Path to the Application’s configuration
file.

HOLOSCAN_PKG_
MANIFEST_PATH

/etc/holoscan/
pkg.config

File Path
Path to the Application’s configuration
file.

HOLOSCAN_DOCS
/opt/holoscan
/docs

Folder
Path

Path to the folder containing
application documentation and
licenses.

HOLOSCAN_LOGS
/var/holoscan
/logs

Folder
Path

Path to the Application’s logs.

Architecture & Design

Description

The Holoscan Application Package (HAP) is a functional package designed to act on
datasets of a prescribed format. A HAP is a container image that adheres to the
specification provided in this document.

Application

The primary component of a HAP is the application. The application is provided by an
application developer and incorporated into the HAP using the Holoscan Application
Packager.

All application code and binaries SHALL be in the /opt/holoscan/app/ folder, except for
any dependencies installed by the Holoscan Application Packager during the creation of
the HAP.

All AI models (PyTorch, TensorFlow, TensorRT, etc.) SHOULD be in separate sub-folders of
the /opt/holoscan/models/ folder. In specific use cases where the app package

Holoscan Application Package Specification (HAP) 8

developer is prevented from enclosing the model files in the package/container due to
intellectual property concerns, the models can be supplied from the host system when
the app package is run, e.g., via the volume mount mappings and the use of container
env variables.

Manifests

A HAP SHALL contain two manifests: the Application Manifest and the Package Manifest.
The Package Manifest shall be stored in /etc/holoscan/pkg.json , and the Application
Manifest shall be stored in /etc/holoscan/app.json . Once a HAP is created, its manifests
are expected to be immutable.

Application Manifest

Table of Application Manifest Fields

Name Required Default Type Format Description

apiVers
ion

No 0.0.0
stri
ng

semantic
version

Version of the manifest file
schema.

comma
nd

Yes N/A
stri
ng

shell
comman
d

Shell command used to run the
Application.

environ
ment

No N/A
obje
ct

object w/
name-
value
pairs

An object of name-value pairs that
will be passed to the application
during execution.

input Yes N/A
obje
ct

object
Data structure which provides
information about Application
inputs.

input.f
ormats

Yes N/A
arra
y

array of
objects

List of input data formats accepted
by the Application.

input.p
ath

No input/
stri
ng

relative
file-
system
path

Folder path relative to the working
directory from which the
application will read inputs.

Holoscan Application Package Specification (HAP) 9

readine
ss

No N/A
obje
ct

object
An object of name-value pairs that
defines the readiness probe.

readine
ss.type

Yes N/A
stri
ng

string
Type of the probe: tcp , grpc ,
http-get or command .

readine
ss.com
mand

Yes (when
type is
command)

N/A
arra
y

shell
comman
d

Shell command and arguments in
string array form.

readine
ss.port

Yes (when
type is tcp ,
grpc , or
http-get)

N/A
inte
ger

number
The port number of readiness
probe.

readine
ss.path

Yes (when
type is
http-get)

N/A
stri
ng

string
HTTP path and query to access the
readiness probe.

readine
ss.initia
lDelayS
econds

No 1
inte
ger

number

Number of seconds after the
container has started before the
readiness probe is initialized and
performed.

readine
ss.peri
odSeco
nds

No 10
inte
ger

number
Number of seconds between
performing the readiness probe.

readine
ss.time
outSec
onds

No 1
inte
ger

number
Number of seconds after which the
probe times out.

readine
ss.failur
eThres
hold

No 3
inte
ger

number
Number of retries to be performed
before considering the application
is unhealthy.

livenes
s

No N/A
obje
ct

object

An object of name-value pairs that
defines the liveness probe.
Recommended for service
applications.

Holoscan Application Package Specification (HAP) 10

livenes
s.type

Yes N/A
stri
ng

string
Type of the probe: tcp , grpc ,
http-get or command .

livenes
s.com
mand

Yes (when
type is
command)

N/A
arra
y

shell
comman
d

Shell command and arguments in
string array form.

livenes
s.port

Yes (when
type is tcp ,
grpc , or
http-get)

N/A
inte
ger

number
The port number of the liveness
probe.

livenes
s.path

Yes (when
type is
http-get)

N/A
stri
ng

string
HTTP path and query to access the
liveness probe.

livenes
s.initial
DelayS
econds

No 1
inte
ger

number

Number of seconds after the
container has started before the
liveness probe is initialized and
performed.

livenes
s.perio
dSecon
ds

No 10
inte
ger

number
Number of seconds between
performing the liveness probe.

livenes
s.timeo
utSeco
nds

No 1
inte
ger

number
Number of seconds after which the
probe times out.

livenes
s.failur
eThres
hold

No 3
inte
ger

number
Number of retries to be performed
before considering the application
is unhealthy.

output Yes N/A
obje
ct

object
Data structure which provides
information about Application
output.

output.
format

Yes N/A
obje
ct

object
Details about the format of the
outputs produced by the
application.

Holoscan Application Package Specification (HAP) 11

output.
path

No output/
stri
ng

relative
file-
system
path

Folder path relative to the working
directory to which the application
will write outputs.

sdk No N/A
stri
ng

string SDK used for the Application.

sdkVer
sion

No 0.0.0
stri
ng

semantic
version

Version of the SDK used the
Application.

timeou
t

No 0
inte
ger

number

The maximum number of seconds
the application should execute
before being timed out and
terminated. Recommended for a
single batch/execution type of
applications.

version No 0.0.0
stri
ng

semantic
version

Version of the Application.

workin
gDirect
ory

No
/var/hol
oscan/

stri
ng

absolute
file-
system
path

Folder, or directory, in which the
application will be executed.

The Application Manifest file provides information about the HAP’s Application.

The Application Manifest MUST define the type of the containerized application (
/etc/holoscan/app.json#type).

Type SHALL have the value of either service or application.

The Application Manifest MUST define the command used to run the Application (
/etc/holoscan/app.json#command).

The Application Manifest SHOULD define the version of the manifest file schema (
/etc/holoscan/app.json#apiVersion).

The Manifest schema version SHALL be provided as a semantic version string.

When not provided, the default value 0.0.0 SHALL be assumed.

https://semver.org/

Holoscan Application Package Specification (HAP) 12

The Application Manifest SHOULD define the SDK used to create the Application (
/etc/holoscan/app.json#sdk).

The Application Manifest SHOULD define the version of the SDK used to create the
Application (/etc/holoscan/app.json#sdkVersion).

SDK version SHALL be provided as a semantic version string.

When not provided, the default value 0.0.0 SHALL be assumed.

The Application Manifest SHOULD define the version of the application itself (
/etc/holoscan/app.json#version).

The Application version SHALL be provided as a semantic version string.

When not provided, the default value 0.0.0 SHALL be assumed.

The Application Manifest SHOULD define the application’s working directory (
/etc/holoscan/app.json#workingDirectory).

The Application will execute with its current directory set to this value.

The value provided must be an absolute path (the first character is /).

The default path /var/holoscan/ SHALL be assumed when not provided.

The Application Manifest SHOULD define the data input path, relative to the
working directory, used by the Application (/etc/holoscan/app.json#input.path).

The input path SHOULD be a relative to the working directory or an absolute
file-system path to a directory.

When the value is a relative file-system path (the first character is not /),
it is relative to the application’s working directory.

When the value is an absolute file-system path (the first character is /),
the file-system path is used as-is.

When not provided, the default value input/ SHALL be assumed.

https://semver.org/
https://semver.org/

Holoscan Application Package Specification (HAP) 13

The Application Manifest SHOULD define input data formats supported by the
Application (/etc/holoscan/app.json#input.formats).

Possible values include, but are not limited to, none , network , file .

The Application Manifest SHOULD define the output path relative to the working
directory used by the Application (/etc/holoscan/app.json#output.path).

The output path SHOULD be relative to the working directory or an absolute
file-system path to a directory.

When the value is a relative file-system path (the first character is not /),
it is relative to the application’s working directory.

When the value is an absolute file-system path (the first character is /),
the file-system path is used as-is.

When not provided, the default value output/ SHALL be assumed.

The Application Manifest SHOULD define the output data format produced by the
Application (/etc/holoscan/app.json#output.format).

Possible values include, but are not limited to, none , screen , file , network .

The Application Manifest SHOULD configure a check to determine whether or not
the application is “ready.”

The Application Manifest SHALL define the probe type to be performed (
/etc/holoscan/app.json#readiness.type).

Possible values include tcp , grpc , http-get , and command .

The Application Manifest SHALL define the probe commands to execute when
the type is command (/etc/holoscan/app.json#readiness.command).

The data structure is expected to be an array of strings.

The Application Manifest SHALL define the port to perform the readiness
probe when the type is grpc , tcp , or http-get . (
/etc/holoscan/app.json#readiness.port)

Holoscan Application Package Specification (HAP) 14

The value provided must be a valid port number ranging from 1 through
65535. (Please note that port numbers below 1024 are root-only
privileged ports.)

The Application Manifest SHALL define the path to perform the readiness
probe when the type is http-get (/etc/holoscan/app.json#readiness.path).

The value provided must be an absolute path (the first character is /).

The Application Manifest SHALL define the number of seconds after the
container has started before the readiness probe is initiated. (
/etc/holoscan/app.json#readiness.initialDelaySeconds).

The default value 0 SHALL be assumed when not provided.

The Application Manifest SHALL define how often to perform the readiness
probe (/etc/holoscan/app.json#readiness.periodSeconds).

When not provided, the default value 10 SHALL be assumed.

The Application Manifest SHALL define the number of seconds after which the
probe times out (/etc/holoscan/app.json#readiness.timeoutSeconds)

When not provided, the default value 1 SHALL be assumed.

The Application Manifest SHALL define the number of times to perform the
probe before considering the service is not ready (
/etc/holoscan/app.json#readiness.failureThreshold)

The default value 3 SHALL be assumed when not provided.

The Application Manifest SHOULD configure a check to determine whether or not
the application is “live” or not.

The Application Manifest SHALL define the type of probe to be performed (
/etc/holoscan/app.json#liveness.type).

Possible values include tcp , grpc , http-get , and command .

Holoscan Application Package Specification (HAP) 15

The Application Manifest SHALL define the probe commands to execute when
the type is command (/etc/holoscan/app.json#liveness.command).

The data structure is expected to be an array of strings.

The Application Manifest SHALL define the port to perform the liveness probe
when the type is grpc , tcp , or http-get . (
/etc/holoscan/app.json#liveness.port)

The value provided must be a valid port number ranging from 1 through
65535. (Please note that port numbers below 1024 are root-only
privileged ports.)

The Application Manifest SHALL define the path to perform the liveness probe
when the type is http-get (/etc/holoscan/app.json#liveness.path).

The value provided must be an absolute path (the first character is /).

The Application Manifest SHALL define the number of seconds after the
container has started before the liveness probe is initiated. (
/etc/holoscan/app.json#liveness.initialDelaySeconds).

The default value 0 SHALL be assumed when not provided.

The Application Manifest SHALL define how often to perform the liveness
probe (/etc/holoscan/app.json#liveness.periodSeconds).

When not provided, the default value 10 SHALL be assumed.

The Application Manifest SHALL define the number of seconds after which the
probe times out (/etc/holoscan/app.json#liveness.timeoutSeconds)

The default value 1 SHALL be assumed when not provided.

The Application Manifest SHALL define the number of times to perform the
probe before considering the service is not alive (
/etc/holoscan/app.json#liveness.failureThreshold)

When not provided, the default value 3 SHALL be assumed.

Holoscan Application Package Specification (HAP) 16

The Application Manifest SHOULD define any timeout applied to the Application (
/etc/holoscan/app.json#timeout).

When the value is 0 , timeout SHALL be disabled.

When not provided, the default value 0 SHALL be assumed.

The Application Manifest MUST enable the specification of environment variables
for the Application (/etc/holoscan/app.json#environment)

The data structure is expected to be in "name": "value" members of the
object.

The field’s name will be the name of the environment variable verbatim and
must conform to all requirements for environment variables and JSON field
names.

The field’s value will be the value of the environment variable and must
conform to all requirements for environment variables.

Package Manifest

Table of Package Manifest Fields

Name Required Default Type Format Description

apiVersion No 0.0.0
strin
g

semantic
version

Version of the manifest file
schema.

applicationRoo
t

Yes
/opt/hol
oscan/a
pp/

strin
g

absolute
file-
system
path

Absolute file-system path to
the folder which contains the
Application

modelRoot No
/opt/hol
oscan/m
odels/

strin
g

absolute
file-
system
path

Absolute file-system path to
the folder which contains the
model(s).

models No N/A array
array of
objects

Array of objects which
describe models in the
package.

Holoscan Application Package Specification (HAP) 17

models[*].nam
e

Yes N/A
strin
g

string Name of the model.

models[*].path No N/A
strin
g

Relative
file-
system
path

File-system path to the folder
which contains the model
that is relative to the value
defined in modelRoot .

resources No N/A
obje
ct

object
Object describing resource
requirements for the
Application.

resources.cpu No 1
deci
mal
(2)

number
Number of CPU cores
required by the Application
or the Fragment.

resources.cpuL
imit

No N/A
deci
mal
(2)

number
The CPU core limit for the
Application or the Fragment.
(1)

resources.gpu No 0
deci
mal
(2)

number
Number of GPU devices
required by the Application
or the Fragment.

resources.gpu
Limit

No N/A
deci
mal
(2)

number
The GPU device limit for the
Application or the Fragment.
(1)

resources.me
mory

No 1Gi
strin
g

memory
size

The memory required by the
Application or the Fragment.

resources.me
moryLimit

No N/A
strin
g

memory
size

The memory limit for the
Application or the Fragment.
(1)

resources.gpu
Memory

No N/A
strin
g

memory
size

The GPU memory required
by the Application or the
Fragment.

resources.gpu
MemoryLimit

No N/A
strin
g

memory
size

The GPU memory limit for
the Application or the
Fragment. (1)

resources.shar
edMemory

No 64Mi strin
g

memory
size

The shared memory required
by the Application or the

Holoscan Application Package Specification (HAP) 18

Fragment.

resources.frag
ments

No N/A
obje
ct

objects
Nested objects which
describe resources for a
Multi-Fragment Application.

resources.frag
ments.<frag
ment-
name>

Yes N/A
strin
g

string Name of the fragment.

resources.frag
ments.<frag
ment-
name>.cpu

No 1
deci
mal
(2)

number
Number of CPU cores
required by the Fragment.

resources.frag
ments.<frag
ment-
name>.cpuL
imit

No N/A
deci
mal
(2)

number
The CPU core limit for the
Fragment. (1)

resources.frag
ments.<frag
ment-
name>.gpu

No 0
deci
mal
(2)

number
Number of GPU devices
required by the Fragment.

resources.frag
ments.<frag
ment-
name>.gpu
Limit

No N/A
deci
mal
(2)

number
The GPU device limit for the
Fragment. (1)

resources.frag
ments.<frag
ment-
name>.me
mory

No 1Gi
strin
g

memory
size

The memory required by the
Fragment.

Holoscan Application Package Specification (HAP) 19

resources.frag
ments.<frag
ment-
name>.me
moryLimit

No N/A
strin
g

memory
size

The memory limit for the
Fragment. (1)

resources.frag
ments.<frag
ment-
name>.gpu
Memory

No N/A
strin
g

memory
size

The GPU memory required
by the Fragment.

resources.frag
ments.<frag
ment-
name>.gpu
MemoryLimit

No N/A
strin
g

memory
size

The GPU memory limit for
the Fragment. (1)

resources.frag
ments.<frag
ment-
name>.shar
edMemory

No 64Mi
strin
g

memory
size

The shared memory required
by the Fragment.

version No 0.0.0
strin
g

semantic
version

Version of the package.

[Notes] (1) Use of resource limits depend on the orchestration service or the hosting
environement’s configuration and implementation. (2) Consider rounding up to a whole
number as decimal values may not be supported by all orchestration/hosting services.

The Package Manifest file provides information about the HAP’s package layout. It is not
intended as a mechanism for controlling how the HAP is used or how the HAP’s
Application is executed.

The Package Manifest MUST be UTF-8 encoded and use the JavaScript Object
Notation (JSON) format.

The Package Manifest SHOULD support either CRLF or LF style line endings.

Holoscan Application Package Specification (HAP) 20

The Package Manifest SHOULD specify the folder which contains the application (
/etc/holoscan/pkg.json#applicationRoot).

When not provided, the default path /opt/holoscan/app/ will be assumed.

The Package Manifest SHOULD provide the version of the package file manifest
schema (/etc/holoscan/pkg.json#apiVersion).

The Manifest schema version SHALL be provided as a semantic version string.

The Package Manifest SHOULD provide the package version of itself (
/etc/holoscan/pkg.json#version).

The Package version SHALL be provided as a semantic version string.

The Package Manifest SHOULD provide the directory path to the user-provided
models. (/etc/holoscan/pkg.json#modelRoot).

The value provided must be an absolute path (the first character is /).

When not provided, the default path /opt/holoscan/models/ SHALL be
assumed.

The Package Manifest SHOULD list the models used by the application (
/etc/holoscan/pkg.json#models).

Models SHALL be defined by name (/etc/holoscan/pkg.json#models[*].name).

Model names SHALL NOT contain any Unicode whitespace or control
characters.

Model names SHALL NOT exceed 128 bytes in length.

Models SHOULD provide a file-system path if they’re included in the HAP itself
(/etc/holoscan/pkg.json#models[*].path).

When the value is a relative file-system path (the first character is not /),
it is relative to the model root directory defined in
/etc/holoscan/pkg.json#modelRoot .

https://semver.org/
https://semver.org/

Holoscan Application Package Specification (HAP) 21

When the value is an absolute file-system path (the first character is /),
the file-system path is used as-is.

When no value is provided, the name is assumed as the name of the
directory relative to the model root directory defined in
/etc/holoscan/pkg.json#modelRoot .

The Package Manifest SHOULD specify the resources required to execute the
Application and the fragments for a Multi-Fragment Application.

This information is used to provision resources when running the containerized
application using a compatible application deployment service.

A classic Application or a single Fragment Application SHALL define its resources in
the /etc/holoscan/pkg.json#resource object.

The /etc/holoscan/pkg.json#resource object is for the whole application. It
CAN also be used as a catchall for all fragments in a multi-fragment application
where applicable.

CPU requirements SHALL be denoted using the decimal count of CPU cores (
/etc/holoscan/pkg.json#resources.cpu).

Optional CPU limits SHALL be denoted using the decimal count of CPU cores (
/etc/holoscan/pkg.json#resources.cpuLimit)

GPU requirements SHALL be denoted using the decimal count of GPUs (
/etc/holoscan/pkg.json#resources.gpu).

Optional GPU limits SHALL be denoted using the decimal count of GPUs (
/etc/holoscan/pkg.json#resources.gpuLimit)

Memory requirements SHALL be denoted using decimal values followed by
units (/etc/holoscan/pkg.json#resources.memory).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Holoscan Application Package Specification (HAP) 22

Optional memory limits SHALL be denoted using decimal values followed by
units (/etc/holoscan/pkg.json#resources.memoryLimit).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

GPU memory requirements SHALL be denoted using decimal values followed
by units (/etc/holoscan/pkg.json#resources.gpuMemory).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Optional GPU memory limits SHALL be denoted using decimal values followed
by units (/etc/holoscan/pkg.json#resources.gpuMemoryLimit).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Shared memory requirements SHALL be denoted using decimal values
followed by units (/etc/holoscan/pkg.json#resources.sharedMemory).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Optional shared memory limits SHALL be denoted using decimal values
followed by units (/etc/holoscan/pkg.json#resources.sharedMemoryLimit).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Integer values MUST be positive and not contain any position separators.

Example legal values: 1 , 42 , 2048

Holoscan Application Package Specification (HAP) 23

Example illegal values: -1 , 1.5 , 2,048

Decimal values MUST be positive, rounded to the nearest tenth, use the dot (.
) character to separate whole and fractional values, and not contain any
positional separators.

Example legal values: 1 , 1.0 , 0.5 , 2.5 , 1024

Example illegal values: 1,024 , -1.0 , 3.14

When not provided, the default values of cpu=1 , gpu=0 , memory="1Gi" ,
and sharedMemory="64Mi" will be assumed.

A Multi-Fragment Application SHOULD define its resources in the
/etc/holoscan/pkg.json#resource.fragments.<fragment-name> object.

When a matching fragment-name cannot be found, the
/etc/holoscan/pkg.json#resource definition is used.

Fragment names (fragment-name) SHALL NOT contain any Unicode
whitespace or control characters.

Fragment names (fragment-name) SHALL NOT exceed 128 bytes in length.

CPU requirements for fragments SHALL be denoted using the decimal count of
CPU cores (
/etc/holoscan/pkg.json#resources.fragments.<fragment-name>.cpu).

Optional CPU limits for fragments SHALL be denoted using the decimal count
of CPU cores (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.cpuLimit

).

GPU requirements for fragments SHALL be denoted using the decimal count
of GPUs (
/etc/holoscan/pkg.json#resources.fragments.<fragment-name>.gpu).

Holoscan Application Package Specification (HAP) 24

Optional GPU limits for fragments SHALL be denoted using the decimal count
of GPUs (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.gpuLimit

).

Memory requirements for fragments SHALL be denoted using decimal values
followed by units (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.memory

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Optional memory limits for fragments SHALL be denoted using decimal values
followed by units (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.memoryLimit

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

GPU memory requirements for fragments SHALL be denoted using decimal
values followed by units (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.gpuMemory

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Optional GPU memory limits for fragments SHALL be denoted using decimal
values followed by units (

Holoscan Application Package Specification (HAP) 25

/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.gpuMemoryLimit

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Shared memory requirements for fragments SHALL be denoted using decimal
values followed by units (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.sharedMemory

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Optional shared memory limits for fragments SHALL be denoted using decimal
values followed by units (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.sharedMemoryLimit

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Integer values MUST be positive and not contain any position separators.

Example legal values: 1 , 42 , 2048

Example illegal values: -1 , 1.5 , 2,048

Decimal values MUST be positive, rounded to the nearest tenth, use the dot (.
) character to separate whole and fractional values, and not contain any
positional separators.

Example legal values: 1 , 1.0 , 0.5 , 2.5 , 1024

Holoscan Application Package Specification (HAP) 26

Example illegal values: 1,024 , -1.0 , 3.14

When not provided, the default values of cpu=1 , gpu=0 , memory="1Gi" ,
and sharedMemory="64Mi" will be assumed.

Supplemental Application Files

A HAP SHOULD package supplemental application files provided by the user.

Supplemental files SHOULD be in sub-folders of the /opt/holoscan/docs/
folder.

Supplemental files include, but are not limited to, the following:

README.md

License.txt

Changelog.txt

EULA

Documentation

Third-party licenses

Container Behavior and Interaction

A HAP is a single container supporting the following defined behaviors when started.

Default Behavior

When a HAP is started from the CLI or other means without any parameters, the HAP
shall execute the contained application. The HAP internally may use Entrypoint , CMD ,
or a combination of both.

Manifest Export

A HAP SHOULD provide at least one method to access the embedded application, models,
licenses, README, or manifest files, namely, app.json and package.json .

Holoscan Application Package Specification (HAP) 27

The Method SHOULD provide a container command, show , to print one or more
manifest files to the console.

The Method SHOULD provide a container command, export , to copy one or more
manifest files to a mounted volume path, as described below

/var/run/holoscan/export/app/ : when detected, the Method copies the
contents of /opt/holoscan/app/ to the folder.

/var/run/holoscan/export/config/ : when detected, the Method copies
/var/holoscan/app.yaml , /etc/holoscan/app.json and
/etc/holoscan/pkg.json to the folder.

/var/run/holoscan/export/models/ : when detected, the Method copies the
contents of /opt/holoscan/models/ to the folder.

/var/run/holoscan/export/docs/ : when detected, the Method copies the
contents of /opt/holoscan/docs/ to the folder.

/var/run/holoscan/export/ : when detected without any of the above being
detected, the Method SHALL copy all of the above.

Since a HAP is an OCI compliant container, a user can also run a HAP and log in to an
interactive shell, using a method supported by the container engine and its command
line interface, e.g. Docker supports this by setting the entrypoint option. The files in the
HAP can then be opened or copied to the mapped volumes with shell commands or
scripts. A specific implementation of a HAP may choose to streamline such a process with
scripts and applicable user documentation.

Table of Important Paths

Path Purpose

/etc/holoscan/ HAP manifests and immutable configuration files.

/etc/holoscan/app.j
son

Application Manifest file.

/etc/holoscan/pkg.j
son

Package Manifest file.

Holoscan Application Package Specification (HAP) 28

/opt/holoscan/app/ Application code, scripts, and other files.

/opt/holoscan/mod
els/

AI models. Each model should be in a separate sub-folder.

/opt/holoscan/docs
/

Documentation, licenses, EULA, changelog, etc…

/var/holoscan/ Default working directory.

/var/holoscan/input
/

Default input directory.

/var/holoscan/outp
ut/

Default output directory.

/var/run/holoscan/
export/

Special case folder, causes the Script to export contents related
to the app. (see: Manifest Export)

/var/run/holoscan/
export/app/

Special case folder, causes the Script to export the contents of
/opt/holoscan/app/ to the folder.

/var/run/holoscan/
export/config/

Special case folder, causes the Script to export
/etc/holoscan/app.json and /etc/holoscan/pkg.json to the

folder.

/var/run/holoscan/
export/models/

Special case folder, causes the Script to export the contents of
/opt/holoscan/models/ to the folder.

Operating Environments

Holoscan SDK supports the following operating environments.

Operating Environment Name Characteristics

AGX Devkit Clara AGX devkit with RTX 6000 dGPU only

IGX Orin Devkit Clara Holoscan devkit with A6000 dGPU only

IGX Orin Devkit - integrated GPU only IGX Orin Devkit, iGPU only

IGX Orin Devkit with discrete GPU IGX Orin Devkit, with RTX A6000 dGPU

Jetson AGX Orin Devkit Jetson Orin Devkit, iGPU only

Jetson Orin Nano Devkit Jetson Orin Nano Devkit, iGPU only

Holoscan Application Package Specification (HAP) 29

X86_64 dGPU only on Ubuntu 18.04 and 20.04
© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

	Introduction
	Overview
	Definitions, Acronyms, Abbreviations
	Requirements
	Architecture & Design
	Supplemental Application Files
	Operating Environments

