
Holoscan CLI - Package Command

Table of contents

Synopsis

Examples

Positional Arguments

Flags

Holoscan CLI - Package Command 1

Table of contents

Synopsis

Examples

Positional Arguments

Flags

Holoscan CLI - Package Command 2

holoscan package - generate HAP-compliant container for your application.

Synopsis

holoscan package [--help|-h] [--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}] --
config|-c CONFIG [--docs|-d DOCS] [--models|-m MODELS] --platform PLATFORM [--
platform-config PLATFORM_CONFIG] [--timeout TIMEOUT] [--version VERSION] [--base-
image BASE_IMAGE] [--build-image BUILD_IMAGE] [--build-cache BUILD_CACHE] [--cmake-
args CMAKE_ARGS] [--no-cache|-n] [--sdk SDK] [--sdk-version SDK_VERSION] [--holoscan-
sdk-file HOLOSCAN_SDK_FILE] [--monai-deploy-sdk-file MONAI_DEPLOY_SDK_FILE] [--
output|-o OUTPUT] --tag|-t TAG [--username USERNAME] [--uid UID] [--gid GID]
application

Examples

The code below package a python application for x86_64 systems:

The code below package a C++ application for the IGX Orin DevKit (aarch64) with a
discrete GPU:

Using a Python directory as input # Required: a `__main__.py` file in the application
directory to execute # Optional: a `requirements.txt` file in the application directory to
install dependencies holoscan package --platform x64-workstation --tag my-
awesome-app --config /path/to/my/awesome/application/config.yaml
/path/to/my/awesome/application/ # Using a Python file as input holoscan package --
platform x64-workstation --tag my-awesome-app --config
/path/to/my/awesome/application/config.yaml
/path/to/my/awesome/application/my-app.py

Using a C++ source directory as input # Required: a `CMakeLists.txt` file in the
application directory holoscan package --platform igx-orin-devkit --platform-config
dgpu --tag my-awesome-app --config /path/to/my/awesome/application/config.yaml
/path/to/my/awesome/application/ # Using a C++ pre-compiled executable as input
holoscan package --platform igx-orin-devkit --platform-config dgpu --tag my-

https://docs.nvidia.com/hap.html
https://docs.nvidia.com/cli.html#cli-help
https://docs.nvidia.com/cli.html#cli-log-level

Holoscan CLI - Package Command 3

Positional Arguments

application

Path to the application to be packaged. The following inputs are supported:

C++ source code: you may pass a directory path with your C++ source code with a
CMakeLists.txt file in it, and the Packager will attempt to build your application

using CMake and include the compiled application in the final package.

C++ pre-compiled executable: A pre-built executable binary file may be directly
provided to the Packager.

Python application: you may pass either:

a directory which includes a __main__.py file to execute (required) and an
optional requirements.txt file that defined dependencies for your Python
application, or

the path to a single python file to execute

awesome-app --config /path/to/my/awesome/application/config.yaml
/path/to/my/awesome/bin/application-executable

Note

The commands above load the generated image onto Docker to
make the image accessible with docker images .

If you need to package for a different platform or want to transfer the
generated image to another system, use the
--output /path/to/output flag so the generated package can be

saved to the specified location.

Holoscan CLI - Package Command 4

Flags

--config|-c CONFIG

Path to the application’s configuration file. The configuration file must be in YAML
format with a .yaml file extension.

[--docs|-d DOCS]

An optional directory path of documentation, README, licenses that shall be included in
the package.

[--models|-m MODELS]

An optional directory path to a model file, a directory with a single model, or a directory
with multiple models.

Single model example:

Warning

Python (PyPI) modules are installed into the user’s (via [--username
USERNAME] argument) directory with the user ID specified via [--uid
UID]. Therefore, when running a packaged Holoscan application on
Kubernetes or other service providers, running Docker with non root
user, and running Holoscan CLI run command where the logged-on
user’s ID is different, ensure to specify the USER ID that is used
when building the application package.

For example, include the securityContext when running a Holoscan
packaged application with UID=1000 using Argo:

spec: securityContext: runAsUser: 1000 runAsNonRoot: true

https://docs.nvidia.com/run_config.html

Holoscan CLI - Package Command 5

Multi-model example:

--platform PLATFORM

A comma-separated list of platform types to generate. Each platform value specified
generates a standalone container image. If you are running the Packager on the same
architecture, the generated image is automatically loaded onto Docker and is available
with docker images . Otherwise, use --output flag to save the generated image onto the
disk.

PLATFORM must be one of: clara-agx-devkit , igx-orin-devkit , jetson-agx-orin-devkit ,
x64-workstation .

igx-orin-devkit : IGX Orin DevKit

jetson-agx-orin-devkit : Orin AGX DevKit

x64-workstation : systems with a x86-64 processor(s)

[--platform-config PLATFORM_CONFIG]

Specifies the platform configuration to generate. PLATFORM_CONFIG must be one of:
igpu , igpu-assist , dgpu .

igpu : Supports integrated GPU

igpu-assist : Supports compute-only tasks on iGPU in presence of a dGPU

dgpu : Supports dedicated GPU

my-model/ ├── surgical_video.gxf_entities └── surgical_video.gxf_index my-model/
└── model ├── surgical_video.gxf_entities └── surgical_video.gxf_index

my-models/ ├── model-1 │ ├── my-first-model.gxf_entities │ └── my-first-
model.gxf_index └── model-2 └── my-other-model.ts

https://en.wikipedia.org/wiki/X86-64

Holoscan CLI - Package Command 6

[--timeout TIMEOUT]

An optional timeout value of the application for the supported orchestrators to manage
the application’s lifecycle. Defaults to 0 .

[--version VERSION]

An optional version number of the application. When specified, it overrides the value
specified in the configuration file.

[--base-image BASE_IMAGE]

Optionally specifies the base container image for building packaged application. It must
be a valid Docker image tag either accessible online or via `docker images. By default, the
Packager picks a base image to use from NGC.

[--build-image BUILD_IMAGE]

Optionally specifies the build container image for building C++ applications. It must be a
valid Docker image tag either accessible online or via `docker images. By default, the
Packager picks a build image to use from NGC.

[--build-cache BUILD_CACHE]

Specifies a directory path for storing Docker cache. Defaults to ~/.holoscan_build_cache .
If the $HOME directory is inaccessible, the CLI uses the /tmp directory.

[--cmake-args CMAKE_ARGS]

A comma-separated list of cmake arguments to be used when building C++ applications.

Note

--platform-config is required when --platform is not
x64-workstation (which uses dgpu).

https://docs.nvidia.com/run_config.html

Holoscan CLI - Package Command 7

For example:

[--no-cache|-n]

Do not use cache when building image.

[--sdk SDK]

SDK for building the application: Holoscan or MONAI-Deploy. SDK must be one of:
holoscan, monai-deploy.

[--source URL|FILE]

Override the artifact manifest source with a securely hosted file or from the local file
system.

E.g. https://my.domain.com/my-file.json

[--sdk-version SDK_VERSION]

Set the version of the SDK that is used to build and package the Application. If not
specified, the packager attempts to detect the installed version.

[--holoscan-sdk-file HOLOSCAN_SDK_FILE]

Path to the Holoscan SDK Debian or PyPI package. If not specified, the packager
downloads the SDK file from the internet depending on the SDK version
detected/specified. The HOLOSCAN_SDK_FILE filename must have .deb or .whl file
extension for Debian package or PyPI wheel package, respectively.

[--monai-deploy-sdk-file MONAI_DEPLOY_SDK_FILE]

Path to the MONAI Deploy App SDK Debian or PyPI package. If not specified, the packager
downloads the SDK file from the internet based on the SDK version. The
MONAI_DEPLOY_SDK_FILE package filename must have .whl or .gz file extension.

holoscan package --cmake-args "-DCMAKE_BUILD_TYPE=DEBUG -
DCMAKE_ARG=VALUE"

Holoscan CLI - Package Command 8

[--output|-o OUTPUT]

Output directory where result images will be written.

--tag|-t TAG

Name and optionally a tag (format: name:tag).

For example:

[--username USERNAME]

Optional username to be created in the container execution context. Defaults to
holoscan .

[--uid UID]

Optional user ID to be associated with the user created with --username with default of
1000 .

Note

If this flag isn’t present, the packager will load the generated image
onto Docker to make the image accessible with docker images . The
--output flag is therefore required when building a packaging for a

different target architecture than the host system that runs the
packaer.

my-company/my-application:latest my-company/my-application:1.0.0 my-
application:1.0.1 my-application

Warning

Holoscan CLI - Package Command 9

[--gid GID]

Optional group ID to be associated with the user created with --username with default of
1000 .

[--source PATH|URL]

Overrides the default manifest file source. This value can be a local file path or a HTTPS
url.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

A very large UID value may result in a very large image due to an
open issue with Docker. It is recommended to use the default value
of 1000 when packaging an application and use your current
UID/GID when running the application.

https://github.com/docker/hub-feedback/issues/2263

	Synopsis
	Examples
	Positional Arguments
	Flags

