
Conditions

Table of contents

MessageAvailableCondition

DownstreamMessageAffordableCondition

CountCondition

BooleanCondition

PeriodicCondition

AsynchronousCondition

Conditions 1

Table of contents

MessageAvailableCondition

DownstreamMessageAffordableCondition

CountCondition

BooleanCondition

PeriodicCondition

AsynchronousCondition

Conditions 2

The following table shows various states of the scheduling status of an operator:

Scheduling
Status

Description

NEVER Operator will never execute again

READY Operator is ready for execution

WAIT Operator may execute in the future

WAIT_TIME Operator will be ready for execution after specified duration

WAIT_EVENT
Operator is waiting on an asynchronous event with unknown time
interval

By default, operators are always READY , meaning they are scheduled to continuously
execute their compute() method. To change that behavior, some condition classes can
be passed to the constructor of an operator. There are various conditions currently
supported in the Holoscan SDK:

MessageAvailableCondition

DownstreamMessageAffordableCondition

CountCondition

BooleanCondition

PeriodicCondition

Note

A failure in execution of any single operator stops the execution
of all the operators.

Operators are naturally unscheduled from execution when their
scheduling status reaches NEVER state.

Conditions 3

AsynchronousCondition

Conditions are AND-combined

An Operator can be associated with multiple conditions which define its execution
behavior. Conditions are AND combined to describe the current state of an operator. For
an operator to be executed by the scheduler, all the conditions must be in READY state
and conversely, the operator is unscheduled from execution whenever any one of the
scheduling terms reaches NEVER state. The priority of various states during AND
combine follows the order NEVER , WAIT_EVENT , WAIT , WAIT_TIME , and READY .

MessageAvailableCondition

An operator associated with MessageAvailableCondition (C++ / Python) is executed
when the associated queue of the input port has at least a certain number of elements.
This condition is associated with a specific input port of an operator through the
condition() method on the return value (IOSpec) of the OperatorSpec’s input() method.

The minimum number of messages that permits the execution of the operator is
specified by min_size parameter (default: 1). An optional parameter for this condition
is front_stage_max_size , the maximum front stage message count. If this parameter is
set, the condition will only allow execution if the number of messages in the queue does
not exceed this count. It can be used for operators which do not consume all messages
from the queue.

DownstreamMessageAffordableCondition

Note

Detailed APIs can be found here: C++/
<a
href="../api/python/holoscan_python_api_conditions.html#module-
holoscan.conditions">Python

).

file:///tmp/jsreport/api/holoscan_cpp_api.html#conditions

Conditions 4

The DownstreamMessageAffordableCondition (C++ / Python) condition specifies that
an operator shall be executed if the input port of the downstream operator for a given
output port can accept new messages. This condition is associated with a specific output
port of an operator through the condition() method on the return value (IOSpec) of the
OperatorSpec’s output() method. The minimum number of messages that permits the
execution of the operator is specified by min_size parameter (default: 1).

CountCondition

An operator associated with CountCondition (C++ / Python) is executed for a specific
number of times specified using its count parameter. The scheduling status of the
operator associated with this condition can either be in READY or NEVER state. The
scheduling status reaches the NEVER state when the operator has been executed
count number of times.

BooleanCondition

An operator associated with BooleanCondition (C++ / Python) is executed when the
associated boolean variable is set to true . The boolean variable is set to true / false by
calling the enable_tick() / disable_tick() methods on the BooleanCondition object. The
check_tick_enabled() method can be used to check if the boolean variable is set to true

/ false . The scheduling status of the operator associated with this condition can either be
in READY or NEVER state. If the boolean variable is set to true , the scheduling status
of the operator associated with this condition is set to READY . If the boolean variable is
set to false , the scheduling status of the operator associated with this condition is set to
NEVER . The enable_tick() / disable_tick() methods can be called from any operator in

the workflow.

Ingested Tab Module

PeriodicCondition

An operator associated with PeriodicCondition (C++ / Python) is executed after
periodic time intervals specified using its recess_period parameter. The scheduling
status of the operator associated with this condition can either be in READY or
WAIT_TIME state. For the first time or after periodic time intervals, the scheduling status

Conditions 5

of the operator associated with this condition is set to READY and the operator is
executed. After the operator is executed, the scheduling status is set to WAIT_TIME , and
the operator is not executed until the recess_period time interval.

AsynchronousCondition

AsynchronousCondition (C++ / Python) is primarily associated with operators which
are working with asynchronous events happening outside of their regular execution
performed by the scheduler. Since these events are non-periodic in nature,
AsynchronousCondition prevents the scheduler from polling the operator for its status

regularly and reduces CPU utilization. The scheduling status of the operator associated
with this condition can either be in READY , WAIT , WAIT_EVENT , or NEVER states
based on the asynchronous event it’s waiting on.

The state of an asynchronous event is described using AsynchronousEventState and is
updated using the event_state() API.

AsynchronousEventState Description

READY Init state, first execution of compute() method is pending

WAIT
Request to async service yet to be sent, nothing to do but
wait

EVENT_WAITING
Request sent to an async service, pending event done
notification

EVENT_DONE Event done notification received, operator ready to be ticked

EVENT_NEVER
Operator does not want to be executed again, end of
execution

Operators associated with this scheduling term most likely have an asynchronous thread
which can update the state of the condition outside of its regular execution cycle
performed by the scheduler. When the asynchronous event state is in WAIT state, the
scheduler regularly polls for the scheduling state of the operator. When the
asynchronous event state is in EVENT_WAITING state, schedulers will not check the
scheduling status of the operator again until they receive an event notification. Setting
the state of the asynchronous event to EVENT_DONE automatically sends the event
notification to the scheduler. Operators can use the EVENT_NEVER state to indicate the

Conditions 6

end of its execution cycle. As for all of the condition types, the condition type can be used
with any of the schedulers.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

	MessageAvailableCondition
	DownstreamMessageAffordableCondition
	CountCondition
	BooleanCondition
	PeriodicCondition
	AsynchronousCondition

