
Resources

Table of contents

Allocator

Clock

Transmitter (advanced)

Receiver (advanced)

Resources 1

Table of contents

Allocator

Clock

Transmitter (advanced)

Receiver (advanced)

Resources 2

Resource classes represent resources such as a allocators, clocks, transmitters or
receivers that may be used as a parameter for operators or schedulers. The resource
classes that are likely to be directly used by application authors are documented here.

Allocator

UnboundedAllocator

An allocator that uses dynamic host or device memory allocation without an upper
bound. This allocator does not take any user-specified parameters. This memory pool is
easy to use and is recommended for initial prototyping. Once an application is working,
switching to a BlockMemoryPool instead may help provide additional performance.

BlockMemoryPool

This is a memory pool which provides a user-specified number of equally sized blocks of
memory. Using this memory pool provides a way to allocate memory blocks once and
reuse the blocks on each subsequent call to an Operator’s compute method. This saves
overhead relative to allocating memory again each time compute is called. For the built-
in operators which accept a memory pool parameer, there is a section in it’s API
docstrings titled “Device Memory Requirements” which provides guidance on the
num_blocks and block_size needed for use with this memory pool.

The storage_type parameter can be set to determine the memory storage type
used by the operator. This can be 0 for page-locked host memory (allocated with

Note

There are a number of other resources classes used internally which
are not documented here, but appear in the API Documentation
(C++/
<a
href="../api/python/holoscan_python_api_resources.html#module-
holoscan.resources">Python

).

file:///tmp/jsreport/api/holoscan_cpp_api.html#resources

Resources 3

cudaMallocHost), 1 for device memory (allocated with cudaMalloc) or 2 for
system memory (allocated with C++ new).

The block_size parameter determines the size of a single block in the memory pool
in bytes. Any allocation requests made of this allocator must fit into this block size.

The num_blocks parameter controls the total number of blocks that are allocated
in the memory pool.

The dev_id parameter is an optional parameter that can be used to specify the
CUDA ID of the device on which the memory pool will be created.

CudaStreamPool

This allocator creates a pool of CUDA streams.

The stream_flags parameter specifies the flags sent to
cudaStreamCreateWithPriority when creating the streams in the pool.

The stream_priority parameter specifies the priority sent to
cudaStreamCreateWithPriority when creating the streams in the pool. Lower values
have a higher priority.

The reserved_size parameter specifies the initial number of CUDA streams created
in the pool upon initialization.

The max_size parameter is an optional parameter that can be used to specify a
maximum number of CUDA streams that can be present in the pool. The default
value of 0 means that the size of the pool is unlimited.

The dev_id parameter is an optional parameter that can be used to specify the
CUDA ID of the device on which the stream pool will be created.

Clock

Clock classes can be provided via a clock parameter to the Scheduler classes to
manage the flow of time.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html

Resources 4

All clock classes provide a common set of methods that can be used at runtime in user
applications.

The time() method returns the current time in seconds (floating point).

The timestamp() method returns the current time as an integer number of
nanoseconds.

The sleep_for() method sleeps for a specified duration in ns. An overloaded version
of this method allows specifying the duration using a
std::chrono::duration<Rep, Period> from the C++ API or a datetime.timedelta

from the Python API.

The sleep_until() method sleeps until a specified target time in ns.

Realtime Clock

The RealtimeClock respects the true duration of conditions such as PeriodicCondition .
It is the default clock type and the one that would likely be used in user applications.

In addition to the general clock methods documented above:

this class has a set_time_scale() method which can be used to dynamically change
the time scale used by the clock.

the parameter initial_time_offset can be used to set an initial offset in the time at
initialization.

the parameter initial_time_scale can be used to modify the scale of time. For
instance, a scale of 2.0 would cause time to run twice as fast.

the parameter use_time_since_epoch makes times relative to the POSIX epoch (
initial_time_offset becomes an offset from epoch).

Manual Clock

The ManualClock compresses time intervals (e.g. PeriodicCondition proceeds
immediately rather than waiting for the specified period). It is provided mainly for use
during testing/development.

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://en.wikipedia.org/wiki/Epoch_(computing)

Resources 5

The parameter initial_timestamp controls the initial timestamp on the clock in ns.

Transmitter (advanced)

Typically users don’t need to explicitly assign transmitter or receiver classes to the IOSpec
ports of Holoscan SDK operators. For connections between operators a
DoubleBufferTransmitter will automatically be used, while for connections between

fragments in a distributed application, a UcxTransmitter will be used. When data frame
flow tracking is enabled any DoubleBufferTransmitter will be replaced by an
AnnotatedDoubleBufferTransmitter which also records the timestamps needed for that

feature.

DoubleBufferTransmitter

This is the transmitter class used by output ports of operators within a fragment.

UcxTransmitter

This is the transmitter class used by output ports of operators that connect fragments in
a distributed applications. It takes care of sending UCX active messages and serializing
their contents.

Receiver (advanced)

Typically users don’t need to explicitly assign transmitter or receiver classes to the IOSpec
ports of Holoscan SDK operators. For connections between operators a
DoubleBufferReceiver will be used, while for connections between fragments in a

distributed application, the UcxReceiver will be used. When data frame flow tracking is
enabled any DoubleBufferReceiver will be replaced by an
AnnotatedDoubleBufferReceiver which also records the timestamps needed for that

feature.

DoubleBufferReceiver

This is the receiver class used by input ports of operators within a fragment.

UcxReceiver

Resources 6

This is the receiver class used by input ports of operators that connect fragments in a
distributed applications. It takes care of receiving UCX active messages and deserializing
their contents.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

	Allocator
	Clock
	Transmitter (advanced)
	Receiver (advanced)

