
Schedulers

Table of contents

Greedy Scheduler

Multithread Scheduler

Event-Based Scheduler

Schedulers 1

Table of contents

Greedy Scheduler

Multithread Scheduler

Event-Based Scheduler

Schedulers 2

The Scheduler component is a critical part of the system responsible for governing the
execution of operators in a graph by enforcing conditions associated with each operator.
Its primary responsibility includes orchestrating the execution of all operators defined in
the graph while keeping track of their execution states.

The Holoscan SDK offers multiple schedulers that can cater to various use cases. These
schedulers are:

1. Greedy Scheduler: This basic single-threaded scheduler tests conditions in a greedy
manner. It is suitable for simple use cases and provides predictable execution.
However, it may not be ideal for large-scale applications as it may incur significant
overhead in condition execution.

2. MultiThread Scheduler: The multithread scheduler is designed to handle complex
execution patterns in large-scale applications. This scheduler consists of a
dispatcher thread that monitors the status of each operator and dispatches it to a
thread pool of worker threads responsible for executing them. Once execution is
complete, worker threads enqueue the operator back on the dispatch queue. The
multithread scheduler offers superior performance and scalability over the greedy
scheduler.

3. Event-Based Scheduler: The event-based scheduler is also a multi-thread scheduler,
but as the name indicates it is event-based rather than polling based. Instead of
having a thread that constantly polls for the execution readiness of each operator, it
instead waits for an event to be received which indicates that an operator is ready
to execute. The event-based scheduler will have a lower latency than using the
multi-thread scheduler with a long polling interval (check_recession_period_ms),
but without the high CPU usage seen for a multi-thread scheduler with a very short
polling interval.

It is essential to select the appropriate scheduler for the use case at hand to ensure
optimal performance and efficient resource utilization. Since most parameters of the
schedulers overlap, it is easy to switch between them to test which may be most
performant for a given application.

Note

Schedulers 3

Greedy Scheduler

The greedy scheduler has a few parameters that the user can configure.

The clock used by the scheduler can be set to either a realtime or manual clock.

The realtime clock is what should be used for applications as it pauses
execution as needed to respect user specified conditions (e.g. operators with
periodic conditions will wait the requested period before executing again).

The manual clock is of benefit mainly for testing purposes as it causes
operators to run in a time-compressed fashion (e.g. periodic conditions are
not respected and operators run in immediate succession).

The user can specify a max_duration_ms that will cause execution of the
application to terminate after a specified maximum duration. The default value of
-1 (or any other negative value) will result in no maximum duration being applied.

This scheduler also has a boolean parameter, stop_on_deadlock that controls
whether the application will terminate if a deadlock occurs. A deadlock occurs when
all operators are in a WAIT state, but there is no periodic condition pending to
break out of this state. This parameter is true by default.

When setting the stop_on_deadlock_timeout parameter, the scheduler will wait
this amount of time (in ms) before determining that it is in deadlock and should
stop. It will reset if a job comes in during the wait. A negative value means no stop
on deadlock. This parameter only applies when stop_on_deadlock=true .

Multithread Scheduler

Detailed APIs can be found here: C++/
<a
href="../api/python/holoscan_python_api_schedulers.html#module-
holoscan.schedulers">Python

).

https://docs.nvidia.com/resources.html#clock
file:///tmp/jsreport/api/holoscan_cpp_api.html#schedulers

Schedulers 4

The multithread scheduler has several parameters that the user can configure. These are
a superset of the parameters available for the GreedyScheduler (described in the
section above). Only the parameters unique to the multithread scheduler are described
here. The multi-thread scheduler uses a dedicated thread to poll the status of operators
and schedule any that are ready to execute. This will lead to high CPU usage by this
polling thread when check_recession_period_ms is close to 0.

The number of worker threads used by the scheduler can be set via
worker_thread_number , which defaults to 1 . This should be set based on a

consideration of both the workflow and the available hardware. For example, the
topology of the computation graph will determine how many operators it may be
possible to run in parallel. Some operators may potentially launch multiple threads
internally, so some amount of performance profiling may be required to determine
optimal parameters for a given workflow.

The value of check_recession_period_ms controls how long the scheduler will sleep
before checking a given condition again. In other words, this is the polling interval
for operators that are in a WAIT state. The default value for this parameter is 5
ms.

Event-Based Scheduler

The event-based scheduler is also a multi-thread scheduler, but it is event-based rather
than polling based. As such, there is no check_recession_period_ms parameter, and this
scheduler will not have the high CPU usage that can occur when polling at a short
interval. Instead, the scheduler only wakes up when an event is received indicating that
an operator is ready to execute. The parameters of this scheduler are a superset of the
parameters available for the GreedyScheduler (described above). Only the parameters
unique to the event-based scheduler are described here.

The number of worker threads used by the scheduler can be set via
worker_thread_number , which defaults to 1 . This should be set based on a

consideration of both the workflow and the available hardware. For example, the
topology of the computation graph will determine how many operators it may be
possible to run in parallel. Some operators may potentially launch multiple threads
internally, so some amount of performance profiling may be required to determine
optimal parameters for a given workflow.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

	Greedy Scheduler
	Multithread Scheduler
	Event-Based Scheduler

