
Creating a Distributed Application

Table of contents

Defining a Distributed Application Class

Building and running a Distributed Application

Serialization

Creating a Distributed Application 1

Table of contents

Defining a Distributed Application Class

Building and running a Distributed Application

Serialization

Creating a Distributed Application 2

Distributed applications refer to those where the workflow is divided into multiple
fragments that may be run on separate nodes. For example, data might be collected via a
sensor at the edge, sent to a separate workstation for processing, and then the
processed data could be sent back to the edge node for visualization. Each node would
run a single fragment consisting of a computation graph built up of operators. Thus one
fragment is the equivalent of a non-distributed application. In the distributed context, the
Application initializes the different fragments and then defines the connections between
them to build up the full distributed application workflow.

In this section we’ll describe:

how to define a distributed Application

how to build and run a distributed application

Defining a Distributed Application Class

Defining a single Fragment (C++ / Python) involves adding operators using
make_operator() (C++) or the operator constructor (Python), and defining the

connections between them using the add_flow() method (C++ / Python) in the
compose() method. Thus, defining a Fragment is just like defining a non-distributed

Application except that the class should inherit from Fragment instead of Application.

The application will then be defined by initializing fragments within the application’s
compose() method. The add_flow() method (C++ / Python) can be used to define the

connections across fragments.

Tip

Defining distributed applications is also illustrated in the
video_replayer_distributed and ping_distributed examples. The
ping_distributed examples also illustrate how to update C++ or

Python applications to parse user-defined arguments in a way that
works without disrupting support for distributed application
command line arguments (e.g. --driver , --worker).

file:///tmp/jsreport/autocleanup/examples/video_replayer_distributed.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_distributed

Creating a Distributed Application 3

Ingested Tab Module

Serialization of Custom Data Types for Distributed Applications

Transmission of data between fragments of a multi-fragment application is done via the
Unified Communications X (UCX) library. In order to transmit data, it must be serialized
into a binary form suitable for transmission over a network. For Tensors (C++ / Python),
strings and various scalar and vector numeric types, serialization is already built in. For
more details on concrete examples of how to extend the data serialization support to
additional user-defined classes, see the separate page on serialization.

Building and running a Distributed Application

Ingested Tab Module

Running an application in a distributed setting requires launching the application binary
on all nodes involved in the distributed application. A single node must be selected to act
as the application driver. This is achieved by using the --driver command-line option.
Worker nodes are initiated by launching the application with the --worker command-line
option. It’s possible for the driver node to also serve as a worker if both options are
specified.

The address of the driver node must be specified for each process (both the driver and
worker(s)) to identify the appropriate network interface for communication. This can be
done via the --address command-line option, which takes a value in the form of
[<IPv4/IPv6 address or hostname>][:<port>] (e.g.,
--address 192.168.50.68:10000):

The driver’s IP (or hostname) MUST be set for each process (driver and worker(s))
when running distributed applications on multiple nodes (default: 0.0.0.0). It can
be set without the port (e.g., --address 192.168.50.68).

In a single-node application, the driver’s IP (or hostname) can be omitted, allowing
any network interface (0.0.0.0) to be selected by the UCX library.

The port is always optional (default: 8765). It can be set without the IP (e.g.,
--address :10000).

https://openucx.org/
https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use

Creating a Distributed Application 4

The worker node’s address can be defined using the --worker-address command-line
option ([<IPv4/IPv6 address or hostname>][:<port>]). If it’s not specified, the
application worker will default to the host address (0.0.0.0) with a randomly chosen port
number between 10000 and 32767 that is not currently in use. This argument
automatically sets the HOLOSCAN_UCX_SOURCE_ADDRESS environment variable if the
worker address is a local IP address. Refer to Environment Variables for Distributed
Applications for details.

The --fragments command-line option is used in combination with --worker to specify a
comma-separated list of fragment names to be run by a worker. If not specified, the
application driver will assign a single fragment to the worker. To indicate that a worker
should run all fragments, you can specify --fragments all .

The --config command-line option can be used to designate a path to a configuration file
to be used by the application.

Below is an example launching a three fragment application named my_app on two
separate nodes:

The application driver is launched at 192.168.50.68:10000 on the first node (A),
with a worker running two fragments, “fragment1” and “fragment3”.

On a separate node (B), the application launches a worker for “fragment2”, which
will connect to the driver at the address above.

Ingested Tab Module

Note

UCX Network Interface Selection

UCX is used in the Holoscan SDK for communication across
fragments in distributed applications. It is designed to select the best
network device based on performance characteristics (bandwidth,
latency, NUMA locality, etc). In some scenarios (under investigation)
UCX cannot find the correct network interface to use, and the
application fails to run. In this case, you can manually specify the

https://openucx.org/
https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use
https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use
https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use

Creating a Distributed Application 5

network interface to use by setting the UCX_NET_DEVICES
environment variable.

For example, if the user wants to use the network interface eth0 ,
you can set the environment variable as follows, before running the
application:

Or, if you are running a packaged distributed application with the
Holoscan CLI, use the --nic eth0 option to manually specify the
network interface to use.

The available network interface names can be found by running the
following command:

export UCX_NET_DEVICES=eth0

ucx_info -d | grep Device: | awk '{print $3}' | sort | uniq # or ip -
o -4 addr show | awk '{print $2, $4}' # to show interface name
and IP

Warning

Known limitations

The following are known limitations of the distributed application
support in the SDK, which will be addressed in future updates:

1. A connection error message is displayed even when the distributed
application is running correctly.

The message
Connection dropped with status -25 (Connection reset by remote
peer)

appears in the console even when the application is functioning
properly. This is a known issue and will be addressed in future

file:///tmp/jsreport/autocleanup/cli/run.html#holoscan-cli-run

Creating a Distributed Application 6

updates, ensuring that this message will only be displayed in the
event of an actual connection error.

2. GPU tensors can only currently be sent/received by UCX from a
single device on a given node.

By default, device ID 0 is used by the UCX extensions to send/receive
data between fragments. To override this default, the user can set
environment variable HOLOSCAN_UCX_DEVICE_ID .

3. “Address already in use” errors in distributed applications due to
the health check service.

In scenarios where distributed applications have both the driver and
workers running on the same host, either within a Docker container
or directly on the host, there’s a possibility of encountering “Address
already in use” errors. A potential solution is to assign a different port
number to the HOLOSCAN_HEALTH_CHECK_PORT environment
variable (default: 8777), for example, by using
export HOLOSCAN_HEALTH_CHECK_PORT=8780 .

Note

GXF UCX Extension

Holoscan’s distributed application feature makes use of the GXF UCX
Extension. Its documentation may provide useful additional context
into how data is transmitted between fragments.

Tip

https://docs.nvidia.com/metropolis/deepstream/dev-guide/graphtools-docs/docs/text/ExtensionsManual/UcxExtension.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/graphtools-docs/docs/text/ExtensionsManual/UcxExtension.html

Creating a Distributed Application 7

Environment Variables for Distributed Applications

Holoscan SDK environment variables.

You can set environment variables to modify the default actions of services and the
scheduler when executing a distributed application.

HOLOSCAN_ENABLE_HEALTH_CHECK : determines if the health check service
should be active, even without specifying --driver or --worker in the CLI. By
default, initiating the AppDriver (--driver) or AppWorker (--worker) service
automatically triggers the GRPC Health Checking Service so grpc-health-probe can
monitor liveness/readiness. Interprets values like “true”, “1”, or “on” (case-
insensitive) as true (to enable the health check). It defaults to false if left
unspecified.

HOLOSCAN_HEALTH_CHECK_PORT : designates the port number on which the
Health Checking Service is launched. It must be an integer value representing a valid
port number. If unspecified, it defaults to 8777 .

HOLOSCAN_DISTRIBUTED_APP_SCHEDULER : controls which scheduler is used for
distributed applications. It can be set to either greedy , multi_thread or
event_based . multithread is also allowed as a synonym for multi_thread for

backwards compatibility. If unspecified, the default scheduler is multi_thread .

HOLOSCAN_STOP_ON_DEADLOCK : can be used in combination with
HOLOSCAN_DISTRIBUTED_APP_SCHEDULER to control whether or not the

application will automatically stop on deadlock. Values of “True”, “1” or “ON” will be
interpreted as true (enable stop on deadlock). It is true if unspecified. This
environment variable is only used when
HOLOSCAN_DISTRIBUTED_APP_SCHEDULER is explicitly set.

HOLOSCAN_STOP_ON_DEADLOCK_TIMEOUT : controls the delay (in ms) without
activity required before an application is considered to be in deadlock. It must be an

Given a CMake project, a pre-built executable, or a python
application, you can also use the Holoscan CLI to package and run
your Holoscan application in a OCI-compliant container image.

https://github.com/grpc/grpc/blob/master/doc/health-checking.md
https://github.com/grpc-ecosystem/grpc-health-probe
file:///tmp/jsreport/autocleanup/cli/cli.html
file:///tmp/jsreport/autocleanup/holoscan_packager.html
file:///tmp/jsreport/autocleanup/holoscan_packager.html

Creating a Distributed Application 8

integer value (units are ms).

HOLOSCAN_MAX_DURATION_MS : sets the application to automatically terminate
after the requested maximum duration (in ms) has elapsed. It must be an integer
value (units are ms). This environment variable is only used when
HOLOSCAN_DISTRIBUTED_APP_SCHEDULER is explicitly set.

HOLOSCAN_CHECK_RECESSION_PERIOD_MS : controls how long (in ms) the
scheduler waits before re-checking the status of operators in an application. It must
be a floating point value (units are ms). This environment variable is only used when
HOLOSCAN_DISTRIBUTED_APP_SCHEDULER is explicitly set.

HOLOSCAN_UCX_SERIALIZATION_BUFFER_SIZE : can be used to override the
default 7 kB serialization buffer size. This should typically not be needed as tensor
types store only a small header in this buffer to avoid explicitly making a copy of
their data. However, other data types do get directly copied to the serialization
buffer and in some cases it may be necessary to increase it.

HOLOSCAN_UCX_DEVICE_ID : The GPU ID of the device that will be used by UCX
transmitter/receivers in distributed applications. If unspecified, it defaults to 0. A list
of discrete GPUs available in a system can be obtained via nvidia-smi -L . GPU data
sent between fragments of a distributed application must be on this device.

HOLOSCAN_UCX_PORTS : This defines the preferred port numbers for the SDK
when specific ports for UCX communication need to be predetermined, such as in a
Kubernetes environment. If the distributed application requires three ports (UCX
receivers) and the environment variable is unset, the SDK chooses three unused
ports sequentially from the range 10000~32767. Specifying a value, for example,
HOLOSCAN_UCX_PORTS=10000 , results in the selection of ports 10000, 10001, and

10002. Multiple starting values can be comma-separated. The system increments
from the last provided port if more ports are needed. Any unused specified ports
are ignored.

HOLOSCAN_UCX_SOURCE_ADDRESS : This environment variable specifies the local
IP address (source) for the UCX connection. This variable is especially beneficial
when a node has multiple network interfaces, enabling the user to determine which
one should be utilized for establishing a UCX client (UCXTransmitter). If it is not
explicitly specified, the default address is set to 0.0.0.0 , representing any available
interface.

Creating a Distributed Application 9

UCX-specific environment variables

Transmission of data between fragments of a multi-fragment application is done via the
Unified Communications X (UCX) library, a point-to-point communication framework
designed to utilize the best available hardware resources (shared memory, TCP,
GPUDirect RDMA, etc). UCX has many parameters that can be controlled via environment
variables. A few that are particularly relevant to Holoscan SDK distributed applications
are listed below:

The UCX_TLS environment variable can be used to control which transport layers
are enabled. By default, UCX_TLS=all and UCX will attempt to choose the optimal
transport layer automatically.

The UCX_NET_DEVICES environment variable is by default set to all meaning that
UCX may choose to use any available network interface controller (NIC). In some
cases it may be necessary to restrict UCX to a specific device or set of devices, which
can be done by setting UCX_NET_DEVICES to a comma separated list of the device
names (i.e. as obtained by linux command ifconfig -a or ip link show).

Setting UCX_TCP_CM_REUSEADDR=y is recommended to enable ports to be reused
without having to wait the full socket TIME_WAIT period after a socket is closed.

The UCX_LOG_LEVEL environment variable can be used to control the logging level
of UCX. The default is setting is WARN, but changing to a lower level such as INFO
will provide more verbose output on which transports and devices are being used.

By default, Holoscan SDK will automatically set UCX_PROTO_ENABLE=y upon
application launch to enable the newer “v2” UCX protocols. If for some reason, the
older v1 protocols are needed, one can set UCX_PROTO_ENABLE=n in the
environment to override this setting. When the v2 protocols are enabled, one can
optionally set UCX_PROTO_INFO=y to enable detailed logging of what protocols are
being used at runtime.

By default, Holoscan SDK will automatically set UCX_MEMTYPE_CACHE=n upon
application launch to disable the UCX memory type cache (See UCX documentation
for more information. It can cause about 0.2 microseconds of pointer type checking
overhead with the cudacudaPointerGetAttributes() CUDA API). If for some reason,
the memory type cache is needed, one can set UCX_MEMTYPE_CACHE=y in the
environment to override this setting.

https://openucx.readthedocs.io/
https://openucx.readthedocs.io/en/master/faq.html#i-m-running-ucx-with-gpu-memory-and-geting-a-segfault-why
https://github.com/openucx/ucx/wiki/NVIDIA-GPU-Support#known-issues
https://github.com/openucx/ucx/wiki/NVIDIA-GPU-Support#known-issues

Creating a Distributed Application 10

By default, the Holoscan SDK will automatically set UCX_CM_USE_ALL_DEVICES=n
at application startup to disable consideration of all devices for data transfer. If for
some reason the opposite behavior is desired, one can set
UCX_CM_USE_ALL_DEVICES=y in the environment to override this setting. Setting
UCX_CM_USE_ALL_DEVICES=n can be used to workaround an issue where UCX

sometimes defaults to a device that might not be the most suitable for data transfer
based on the host’s available devices. On a host with address 10.111.66.60, UCX, for
instance, might opt for the br-80572179a31d (192.168.49.1) device due to its
superior bandwidth as compared to eno2 (10.111.66.60). With
UCX_CM_USE_ALL_DEVICES=n , UCX will ensure consistency by using the same

device for data transfer that was initially used to establish the connection. This
ensures more predictable behavior and can avoid potential issues stemming from
device mismatches during the data transfer process.

Setting UCX_TCP_PORT_RANGE=<start>-<end> can be used to define a
specific range of ports that UCX should utilize for data transfer. This is particularly
useful in environments where ports need to be predetermined, such as in a
Kubernetes setup. In such contexts, Pods often have ports that need to be exposed,
and these ports must be specified ahead of time. Moreover, in scenarios where
firewall configurations are stringent and only allow specified ports, having a
predetermined range ensures that the UCX communication does not get blocked.
This complements the HOLOSCAN_UCX_SOURCE_ADDRESS , which specifies the
local IP address for the UCX connection, by giving further control over which ports
on that specified address should be used. By setting a port range, users can ensure
that UCX operates within the boundaries of the network and security policies of
their infrastructure.

Tip

A list of all available UCX environment variables and a brief
description of each can be obtained by running ucx_info -f from the
Holoscan SDK container. Holoscan SDK uses UCX’s active message
(AM) protocols, so environment variables related to other protocols
such as tag-mat

Creating a Distributed Application 11

Serialization

Distributed applications must serialize any objects that are to be sent between the
fragments of a multi-fragment application. Serialization involves binary serialization to a
buffer that will be sent from one fragment to another via the Unified Communications X
(UCX) library. For tensor types (e.g. holoscan::Tensor), no actual copy is made, but instead
transmission is done directly from the original tensor’s data and only a small amount of
header information is copied to the serialization buffer.

A table of the types that have codecs pre-registered so that they can be serialized
between fragments using Holoscan SDK is given below.

Type Class Specific Types

integers int8_t, int16_t, int32_t, int64_t, uint8_t, uint16_t, uint32_t, uint64_t

floating point float, double, complex , complex

boolean bool

strings std::string

std::vector
T is std::string or any of the boolean, integer or floating point types
above

std::vector >
T is std::string or any of the boolean, integer or floating point types
above

std::vector a vector of InputSpec objects that are specific to HolovizOp

std::shared_ptr<
%>

T is any of the scalar, vector or std::string types above

tensor types
holoscan::Tensor, nvidia::gxf::Tensor, nvidia::gxf::VideoBuffer,
nvidia::gxf::AudioBuffer

GXF-specific
types

nvidia::gxf::TimeStamp, nvidia::gxf::EndOfStream

Warning

If an operator transmitting both CPU and GPU tensors is to be used
in distributed applications, the same output port cannot mix both
GPU and CPU tensors. CPU and GPU tensor outputs should be placed

Creating a Distributed Application 12

Python

For the Python API, any array-like object supporting the DLPack interface,
__array_interface__ or __cuda_array_interface__ will be transmitted using Tensor

serialization. This is done to avoid data copies for performance reasons. Objects of type
list[holoscan.HolovizOp.InputSpec] will be sent using the underlying C++ serializer for
std::vector<HolovizOp::InputSpec> . All other Python objects will be serialized

to/from a std::string using the cloudpickle library.

on separate output ports. This is a limitation of the underlying UCX
library being used for zero-copy tensor serialization between
operators.

As a concrete example, assume an operator, MyOperator with a
single output port named “out” defined in it’s setup method. If the
output port is only ever going to connect to other operators within a
fragment, but never across fragments then it is okay to have a
TensorMap with a mixture of host and device arrays on that single

port.

Ingested Tab Module

However, this mixing of CPU and GPU arrays on a single port will not
work for distributed apps and instead separate ports should be used
if it is necessary for an operator to communicate across fragments.

Ingested Tab Module

Warning

A restriction imposed by the use of cloudpickle is that all fragments in
a distributed application must be running the same Python version.

Warning

https://dmlc.github.io/dlpack/latest/
https://github.com/cloudpipe/cloudpickle
https://github.com/cloudpipe/cloudpickle/blob/v2.2.1/README.md?plain=1#L17-L18

Creating a Distributed Application 13

C++

For any additional C++ classes that need to be serialized for transmission between
fragments in a distributed application, the user must create their own codec and register
it with the Holoscan SDK framework. As a concrete example, suppose that we had the
following simple Coordinate class that we wish to send between fragments.

To create a codec capable of serializing and deserializing this type one should define a
holoscan::codec class for it as shown below.

Distributed applications behave differently than single fragment
applications when
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.OutputContext.e

is called to emit a tensor-like Python object. Specifically, for array-like
objects such as a PyTorch tensor, the same Python object will not be
received by any call to
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.InputContext.rec

in a downstream Python operator (even if the upstream and
downstream operators are part of the same fragment). An object of
type holoscan.Tensor will be received as a holoscan.Tensor . Any
other array-like objects with data stored on device (GPU) will be
received as a CuPy tensor. Similarly, any array-like object with data
stored on the host (CPU) will be received as a NumPy array. The user
must convert back to the original array-like type if needed (typically
possible in a zero-copy fashion via DLPack or array interfaces).

struct Coordinate { float x; float y; float z; };

#include "holoscan/core/codec_registry.hpp" #include "holoscan/core/errors.hpp"
#include "holoscan/core/expected.hpp" namespace holoscan { template <> struct
codec<Coordinate> { static expected<size_t, RuntimeError> serialize(const
Coordinate& value, Endpoint* endpoint) { return serialize_trivial_type<Coordinate>

Creating a Distributed Application 14

where the first argument to serialize is a const reference to the type to be serialized and
the return value is an expected containing the number of bytes that were serialized. The
deserialize method returns an expected containing the deserialized object. The
Endpoint class is a base class representing the serialization endpoint (For distributed

applications, the actual endpoint class used is UcxSerializationBuffer).

The helper functions serialize_trivial_type (deserialize_trivial_type) can be used to
serialize (deserialize) any plain-old-data (POD) type. Specifically, POD types can be
serialized by just copying sizeof(Type) bytes to/from the endpoint. The
read_trivial_type() and ~holoscan::Endpoint::write_trivial_type methods could be used

directly instead.

In practice, one would not actually need to define codec<Coordinate> at all since
Coordinate is a trivially serializable type and the existing codec treats any types for

which there is not a template specialization as a trivially serializable type. It is, however,
still necessary to register the codec type with the CodecRegistry as described below.

For non-trivial types, one will likely also need to use the read() and write() methods to
implement the codec. Example use of these for the built-in codecs can be found in
holoscan/core/codecs.hpp .

Once such a codec has been defined, the remaining step is to register it with the static
CodecRegistry class. This will make the UCX-based classes used by distributed

applications aware of the existence of a codec for serialization of this object type. If the

(value, endpoint); } static expected<Coordinate, RuntimeError>
deserialize(Endpoint* endpoint) { return deserialize_trivial_type<Coordinate>
(endpoint); } }; } // namespace holoscan

template <> struct codec<Coordinate> { static expected<size_t, RuntimeError>
serialize(const Coordinate& value, Endpoint* endpoint) { return endpoint-
>write_trivial_type(&value); } static expected<Coordinate, RuntimeError>
deserialize(Endpoint* endpoint) { Coordinate encoded; auto maybe_value =
endpoint->read_trivial_type(&encoded); if (!maybe_value) { return
forward_error(maybe_value); } return encoded; } };

Creating a Distributed Application 15

type is specific to a particular operator, then one can register it via the register_codec()
class.

Here, the argument provided to register_codec is the name the registry will use for the
codec. This name will be serialized in the message header so that the deserializer knows
which deserialization function to use on the received data. In this example, we chose a
name that matches the class name, but that is not a requirement. If the name matches
one that is already present in the CodecRegistry class, then any existing codec under
that name will be replaced by the newly registered one.

It is also possible to directly register the type outside of the context of initialize() by
directly retrieving the static instance of the codec registry as follows.

#include "holoscan/core/codec_registry.hpp" namespace holoscan::ops { void
MyCoordinateOperator::initialize() { register_codec<Coordinate>("Coordinate"); // ...
// parent class initialize() call must be after the argument additions above
Operator::initialize(); } } // namespace holoscan::ops

namespace holoscan { CodecRegistry::get_instance().add_codec<Coordinate>
("Coordinate"); } // namespace holoscan

Tip

CLI arguments (such as --driver , --worker , --fragments) are parsed
by the Application (
<a
href="api/cpp/classholoscan_1_1Application.html#_CPPv4N8holoscan11Applicatio

/
Pyt

) class and the remaining arguments are available as app.argv (
<a
href="api/cpp/classholoscan_1_1Application.html#_CPPv4N8holoscan11Applicatio

Creating a Distributed Application 16

Adding user-defined command line arguments

When adding user-defined command line arguments to an application, one should avoid
the use of any of the default command line argument names as --help , --version ,
--config , --driver , --worker , --address , --worker-address , --fragments as covered in

the section on running a distributed application. It is recommended to parse user-defined
arguments from the argv ((C++ / Python)) method/property of the application as
covered in the note above instead of using C++ char* argv[] or Python sys.argv directly.
This way, only the new, user-defined arguments will need to be parsed.

A concrete example of this for both C++ and Python can be seen in the existing
ping_distributed example where an application-defined boolean argument (--gpu) is
specified in addition to the default set of application arguments.

Ingested Tab Module
© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

/
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.Application.argv"

).

Ingested Tab Module

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_distributed

	Defining a Distributed Application Class
	Building and running a Distributed Application
	Serialization

