
Creating an Application

Table of contents

Defining an Application Class

Configuring an Application

Application Workflows

Building and running your Application

Creating an Application 1

Table of contents

Defining an Application Class

Configuring an Application

Application Workflows

Building and running your Application

Creating an Application 2

List of Figures
Figure 0. Graphviz 8efeecb48c58f5386369c48eaeef4a22e69d1fcd

Figure 1. Graphviz C45d32849d97f0eeca87975cf39776b0f641e83c

Figure 2. Graphviz 05a77fe15e35f2a15dc49175047424d743335b87

Figure 3. Cycle Implicit Root

Creating an Application 3

In this section, we’ll address:

how to define an Application class

how to configure an Application

how to define different types of workflows

how to build and run your application

Defining an Application Class

The following code snippet shows an example Application code skeleton:

Ingested Tab Module

It is also possible to instead launch the application asynchronously (i.e. non-blocking for
the thread launching the application), as shown below:

Ingested Tab Module

Note

This section covers basics of applications running as a single
fragment. For multi-fragment applications, refer to the distributed
application documentation.

Tip

This is also illustrated in the hello_world example.

file:///tmp/jsreport/autocleanup/holoscan_create_distributed_app.html
file:///tmp/jsreport/autocleanup/holoscan_create_distributed_app.html
file:///tmp/jsreport/autocleanup/examples/hello_world.html

Creating an Application 4

Configuring an Application

An application can be configured at different levels:

1. providing the GXF extensions that need to be loaded (when using GXF operators)

2. configuring parameters for your application, including for:

1. the operators in the workflow

2. the scheduler of your application

3. configuring some runtime properties when deploying for production

The sections below will describe how to configure each of them, starting with a native
support for YAML-based configuration for convenience.

YAML Configuration support

Holoscan supports loading arbitrary parameters from a YAML configuration file at
runtime, making it convenient to configure each item listed above, or other custom
parameters you wish to add on top of the existing API. For C++ applications, it also
provides the ability to change the behavior of your application without needing to
recompile it.

Tip

This is also illustrated in the ping_simple_run_async example.

Note

Usage of the YAML utility is optional. Configurations can be
hardcoded in your program, or done using any parser of your
choosing.

https://docs.nvidia.com/holoscan_create_operator.html#wrap-gxf-codelet-as-operator
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_simple_run_async

Creating an Application 5

Here is an example YAML configuration:

Ingesting these parameters can be done using the two methods below:

Ingested Tab Module

Loading GXF extensions

If you use operators that depend on GXF extensions for their implementations (known as
GXF operators), the shared libraries (.so) of these extensions need to be dynamically
loaded as plugins at runtime.

The SDK already automatically handles loading the required extensions for the built-in
operators in both C++ and Python, as well as common extensions (listed here). To load
additional extensions for your own operators, you can use one of the following approach:

Ingested Tab Module

string_param: "test" float_param: 0.50 bool_param: true dict_param: key_1: value_1
key_2: value_2

Tip

This is also illustrated in the video_replayer example.

Attention

With both from_config and kwargs , the returned ArgList
/dictionary will include both the key and its associated item if that
item value is a scalar. If the item is a map/dictionary itself, the input
key is dropped, and the output will only hold the key/values from that
item.

https://docs.nvidia.com/holoscan_create_operator.html#wrap-gxf-codelet-as-operator
https://docs.nvidia.com/holoscan_operators_extensions.html
https://docs.nvidia.com/holoscan_operators_extensions.html
file:///tmp/jsreport/autocleanup/examples/video_replayer.html

Creating an Application 6

Configuring operators

Operators are defined in the compose() method of your application. They are not
instantiated (with the initialize method) until an application’s run() method is called.

Operators have three type of fields which can be configured: parameters, conditions, and
resources.

Configuring operator parameters

Operators could have parameters defined in their setup method to better control their
behavior (see details when creating your own operators). The snippet below would be the
implementation of this method for a minimal operator named MyOp , that takes a string
and a boolean as parameters; we’ll ignore any extra details for the sake of this example:

Ingested Tab Module

Given this YAML configuration:

Note

To be discoverable, paths to these shared libraries need to either be
absolute, relative to your working directory, installed in the
lib/gxf_extensions folder of the holoscan package, or listed under

the HOLOSCAN_LIB_PATH or LD_LIBRARY_PATH environment
variables.

Tip

Given an instance of an operator class, you can print a human-
readable description of its specification to inspect the parameter
fields that can be configured on that operator class:

Ingested Tab Module

https://docs.nvidia.com/holoscan_create_operator.html

Creating an Application 7

We can configure an instance of the MyOp operator in the application’s compose
method like this:

Ingested Tab Module

If multiple ArgList are provided with duplicate keys, the latest one overrides them:

Ingested Tab Module

Configuring operator conditions

By default, operators with no input ports will continuously run, while operators with input
ports will run as long as they receive inputs (as they’re configured with the
MessageAvailableCondition).

To change that behavior, one or more other conditions classes can be passed to the
constructor of an operator to define when it should execute.

For example, we set three conditions on this operator my_op :

Ingested Tab Module

myop_param: string_param: "test" bool_param: true bool_param: false # we'll use
this later

Tip

This is also illustrated in the ping_custom_op example.

Tip

This is also illustrated in the conditions examples.

https://docs.nvidia.com/components/conditions.html
file:///tmp/jsreport/autocleanup/examples/ping_custom_op.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/conditions

Creating an Application 8

Configuring operator resources

Some resources can be passed to the operator’s constructor, typically an allocator passed
as a regular parameter.

For example:

Ingested Tab Module

Configuring the scheduler

The scheduler controls how the application schedules the execution of the operators that
make up its workflow.

The default scheduler is a single-threaded GreedyScheduler . An application can be
configured to use a different scheduler Scheduler (C++ / Python) or change the
parameters from the default scheduler, using the scheduler() function (C++ / Python).

For example, if an application needs to run multiple operators in parallel, the
MultiThreadScheduler or EventBasedScheduler can instead be used. The difference

between the two is that the MultiThreadScheduler is based on actively polling operators
to determine if they are ready to execute, while the EventBasedScheduler will instead
wait for an event indicating that an operator is ready to execute.

The code snippet belows shows how to set and configure a non-default scheduler:

Ingested Tab Module

Note

You’ll need to specify a unique name for the conditions if there are
multiple conditions applied to an operator.

Tip

https://docs.nvidia.com/components/resources.html
https://docs.nvidia.com/components/resources.html#allocator
https://docs.nvidia.com/components/schedulers.html

Creating an Application 9

Configuring runtime properties

As described below, applications can run simply by executing the C++ or Python
application manually on a given node, or by packaging it in a HAP container. With the
latter, runtime properties need to be configured: refer to the App Runner Configuration
for details.

Application Workflows

One-operator Workflow

The simplest form of a workflow would be a single operator.

Fig. 12 A one-operator workflow

This is also illustrated in the multithread example.

Note

Operators are initialized according to the topological order of its
fragment-graph. When an application runs, the operators are
executed in the same topological order. Topological ordering of the
graph ensures that all the data dependencies of an operator are
satisfied before its instantiation and execution. Currently, we do not
support specifying a different and explicit instantiation and execution
order of the operators.

https://docs.nvidia.com/holoscan_packager.html
https://docs.nvidia.com/cli/hap.html
https://docs.nvidia.com/cli/run_config.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/multithread
https://en.wikipedia.org/wiki/Topological_sorting

Creating an Application 10

The graph above shows an Operator (C++ / Python) (named MyOp) that has neither
inputs nor output ports.

Such an operator may accept input data from the outside (e.g., from a file) and
produce output data (e.g., to a file) so that it acts as both the source and the sink
operator.

Arguments to the operator (e.g., input/output file paths) can be passed as
parameters as described in the section above.

We can add an operator to the workflow by calling add_operator (C++ / Python)
method in the compose() method.

The following code shows how to define a one-operator workflow in compose() method
of the App class (assuming that the operator class MyOp is declared/defined in the
same file).

Ingested Tab Module

Linear Workflow

Here is an example workflow where the operators are connected linearly:

Fig. 13 A linear workflow

In this example, SourceOp produces a message and passes it to ProcessOp. ProcessOp
produces another message and passes it to SinkOp.

We can connect two operators by calling the add_flow() method (C++ / Python) in the
compose() method.

The add_flow() method (C++ / Python) takes the source operator, the destination
operator, and the optional port name pairs. The port name pair is used to connect the
output port of the source operator to the input port of the destination operator. The first
element of the pair is the output port name of the upstream operator and the second
element is the input port name of the downstream operator. An empty port name (“”) can

Creating an Application 11

be used for specifying a port name if the operator has only one input/output port. If
there is only one output port in the upstream operator and only one input port in the
downstream operator, the port pairs can be omitted.

The following code shows how to define a linear workflow in the compose() method of
the App class (assuming that the operator classes SourceOp , ProcessOp , and
SinkOp are declared/defined in the same file).

Ingested Tab Module

Complex Workflow (Multiple Inputs and Outputs)

You can design a complex workflow like below where some operators have multi-inputs
and/or multi-outputs:

Creating an Application 12

Creating an Application 13

Fig. 14 A complex workflow (multiple inputs and outputs)

Ingested Tab Module

If there is a cycle in the graph with no implicit root operator, the root operator is either
the first operator in the first call to add_flow method (C++ / Python), or the operator in
the first call to add_operator method (C++ / Python).

Ingested Tab Module

If there is a cycle in the graph with an implicit root operator which has no input port, then
the initialization and execution orders of the operators are still topologically sorted as far
as possible until the cycle needs to be explicitly broken. An example is given below:

Building and running your Application

Ingested Tab Module

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

Note

Given a CMake project, a pre-built executable, or a python
application, you can also use the Holoscan CLI to package and run
your Holoscan application in a OCI-compliant container image.

file:///tmp/jsreport/autocleanup/cli/cli.html
file:///tmp/jsreport/autocleanup/holoscan_packager.html
file:///tmp/jsreport/autocleanup/holoscan_packager.html

	Defining an Application Class
	Configuring an Application
	Application Workflows
	Building and running your Application

