
Creating Operators

Table of contents

C++ Operators

Python Operators

Advanced Topics

Creating Operators 1

Table of contents

C++ Operators

Python Operators

Advanced Topics

Creating Operators 2

List of Figures
Figure 0. Graphviz 75ff72e35736eb2b8ccd3233ed065e0b088d5b17

Figure 1. Holoscan Tensor Interoperability

Figure 2. Graphviz 1c255a991739fa90e384e904715221679a5f67ca

Figure 3. Graphviz D5bf8fa022b9f3584e20248ff54a8f06a49e3b63

Figure 4. Graphviz 8cdb373b9b4010a5e5ba0fd13bbf5f2d32b72fc9

Creating Operators 3

C++ Operators

When assembling a C++ application, two types of operators can be used:

1. Native C++ operators: custom operators defined in C++ without using the GXF API,
by creating a subclass of holoscan::Operator . These C++ operators can pass
arbitrary C++ objects around between operators.

2. GXF Operators: operators defined in the underlying C++ library by inheriting from
the holoscan::ops::GXFOperator class. These operators wrap GXF codelets from
GXF extensions. Examples are VideoStreamReplayerOp for replaying video files,
FormatConverterOp for format conversions, and HolovizOp for visualization.

Native C++ Operators

Operator Lifecycle (C++)

The lifecycle of a holoscan::Operator is made up of three stages:

Tip

Creating a custom operator is also illustrated in the ping_custom_op
example.

Note

It is possible to create an application using a mixture of GXF
operators and native operators. In this case, some special
consideration to cast the input and output tensors appropriately
must be taken, as shown in a section below.

file:///tmp/jsreport/autocleanup/examples/ping_custom_op.html

Creating Operators 4

start() is called once when the operator starts, and is used for initializing heavy
tasks such as allocating memory resources and using parameters.

compute() is called when the operator is triggered, which can occur any number of
times throughout the operator lifecycle between start() and stop() .

stop() is called once when the operator is stopped, and is used for deinitializing
heavy tasks such as deallocating resources that were previously assigned in start() .

All operators on the workflow are scheduled for execution. When an operator is first
executed, the start() method is called, followed by the compute() method. When the
operator is stopped, the stop() method is called. The compute() method is called
multiple times between start() and stop() .

If any of the scheduling conditions specified by Conditions are not met (for example, the
CountCondition would cause the scheduling condition to not be met if the operator has

been executed a certain number of times), the operator is stopped and the stop()
method is called.

We will cover how to use Conditions in the Specifying operator inputs and outputs (C++)
section of the user guide.

Typically, the start() and the stop() functions are only called once during the
application’s lifecycle. However, if the scheduling conditions are met again, the operator
can be scheduled for execution, and the start() method will be called again.

Fig. 15 The sequence of method calls in the lifecycle of a Holoscan Operator

We can override the default behavior of the operator by implementing the above
methods. The following example shows how to implement a custom operator that
overrides start, stop and compute methods.

Listing 2 The basic structure of a Holoscan Operator (C++)

https://docs.nvidia.com/holoscan_core.html#holoscan-concepts-condition
https://docs.nvidia.com/api/cpp/classholoscan_1_1Condition.html#exhale-class-classholoscan-1-1condition

Creating Operators 5

Creating a custom operator (C++)

To create a custom operator in C++ it is necessary to create a subclass of
holoscan::Operator . The following example demonstrates how to use native operators

(the operators that do not have an underlying, pre-compiled GXF Codelet).

Code Snippet: examples/ping_multi_port/cpp/ping_multi_port.cpp

Listing 3 examples/ping_multi_port/cpp/ping_multi_port.cpp

#include "holoscan/holoscan.hpp" using holoscan::Operator; using
holoscan::OperatorSpec; using holoscan::InputContext; using
holoscan::OutputContext; using holoscan::ExecutionContext; using holoscan::Arg;
using holoscan::ArgList; class MyOp : public Operator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS(MyOp) MyOp() = default; void
setup(OperatorSpec& spec) override { } void start() override {
HOLOSCAN_LOG_TRACE("MyOp::start()"); } void compute(InputContext&,
OutputContext& op_output, ExecutionContext&) override {
HOLOSCAN_LOG_TRACE("MyOp::compute()"); }; void stop() override {
HOLOSCAN_LOG_TRACE("MyOp::stop()"); } };

#include "holoscan/holoscan.hpp" class ValueData { public: ValueData() = default;
explicit ValueData(int value) : data_(value) {
HOLOSCAN_LOG_TRACE("ValueData::ValueData(): {}", data_); } ~ValueData() {
HOLOSCAN_LOG_TRACE("ValueData::~ValueData(): {}", data_); } void data(int value) {
data_ = value; } int data() const { return data_; } private: int data_; }; namespace
holoscan::ops { class PingTxOp : public Operator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS(PingTxOp) PingTxOp() = default; void
setup(OperatorSpec& spec) override { spec.output<std::shared_ptr<ValueData>>
("out1"); spec.output<std::shared_ptr<ValueData>>("out2"); } void
compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {
auto value1 = std::make_shared<ValueData>(index_++); op_output.emit(value1,
"out1"); auto value2 = std::make_shared<ValueData>(index_++);
op_output.emit(value2, "out2"); }; int index_ = 0; }; class PingMiddleOp : public
Operator { public: HOLOSCAN_OPERATOR_FORWARD_ARGS(PingMiddleOp)
PingMiddleOp() = default; void setup(OperatorSpec& spec) override {

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_multi_port/cpp/ping_multi_port.cpp

Creating Operators 6

Code Snippet: examples/native_operator/cpp/app_config.yaml

spec.input<std::shared_ptr<ValueData>>("in1");
spec.input<std::shared_ptr<ValueData>>("in2");
spec.output<std::shared_ptr<ValueData>>("out1");
spec.output<std::shared_ptr<ValueData>>("out2"); spec.param(multiplier_,
"multiplier", "Multiplier", "Multiply the input by this value", 2); } void
compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&)
override { auto value1 = op_input.receive<std::shared_ptr<ValueData>>
("in1").value(); auto value2 = op_input.receive<std::shared_ptr<ValueData>>
("in2").value(); HOLOSCAN_LOG_INFO("Middle message received (count: {})",
count_++); HOLOSCAN_LOG_INFO("Middle message value1: {}", value1->data());
HOLOSCAN_LOG_INFO("Middle message value2: {}", value2->data()); // Multiply the
values by the multiplier parameter value1->data(value1->data() * multiplier_); value2-
>data(value2->data() * multiplier_); op_output.emit(value1, "out1");
op_output.emit(value2, "out2"); }; private: int count_ = 1; Parameter<int> multiplier_;
}; class PingRxOp : public Operator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS(PingRxOp) PingRxOp() = default; void
setup(OperatorSpec& spec) override { spec.param(receivers_, "receivers", "Input
Receivers", "List of input receivers.", {}); } void compute(InputContext& op_input,
OutputContext&, ExecutionContext&) override { auto value_vector =
op_input.receive<std::vector<std::shared_ptr<ValueData>>>("receivers").value();
HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++,
value_vector.size()); HOLOSCAN_LOG_INFO("Rx message value1: {}", value_vector[0]-
>data()); HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1]->data()); };
private: Parameter<std::vector<IOSpec*>> receivers_; int count_ = 1; }; } //
namespace holoscan::ops class App : public holoscan::Application { public: void
compose() override { using namespace holoscan; auto tx =
make_operator<ops::PingTxOp>("tx", make_condition<CountCondition>(10)); auto
mx = make_operator<ops::PingMiddleOp>("mx", Arg("multiplier", 3)); auto rx =
make_operator<ops::PingRxOp>("rx"); add_flow(tx, mx, {{"out1", "in1"}, {"out2",
"in2"}}); add_flow(mx, rx, {{"out1", "receivers"}, {"out2", "receivers"}}); } }; int main(int
argc, char** argv) { auto app = holoscan::make_application<MyPingApp>(); app-
>run(); return 0; }

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/cpp/app_config.yaml

Creating Operators 7

In this application, three operators are created: PingTxOp , PingMxOp , and PingRxOp

1. The PingTxOp operator is a source operator that emits two values every time it is
invoked. The values are emitted on two different output ports, out1 (for even
integers) and out2 (for odd integers).

2. The PingMxOp operator is a middle operator that receives two values from the
PingTxOp operator and emits two values on two different output ports. The values

are multiplied by the multiplier parameter.

3. The PingRxOp operator is a sink operator that receives two values from the
PingMxOp operator. The values are received on a single input, receivers , which is

a vector of input ports. The PingRxOp operator receives the values in the order
they are emitted by the PingMxOp operator.

As covered in more detail below, the inputs to each operator are specified in the setup()
method of the operator. Then inputs are received within the compute() method via
op_input.receive() and outputs are emitted via op_output.emit() .

Note that for native C++ operators as defined here, any object including a shared pointer
can be emitted or received. For large objects such as tensors it may be preferable from a
performance standpoint to transmit a shared pointer to the object rather than making a
copy. When shared pointers are used and the same tensor is sent to more than one
downstream operator, one should avoid in-place operations on the tensor or race
conditions between operators may occur.

Specifying operator parameters (C++)

In the example holoscan::ops::PingMxOp operator above, we have a parameter
multiplier that is declared as part of the class as a private member using the param()

templated type:

It is then added to the OperatorSpec attribute of the operator in its setup() method,
where an associated string key must be provided. Other properties can also be
mentioned such as description and default value:

Parameter<int> multiplier_;

Creating Operators 8

See the Configuring operator parameters section to learn how an application can set these
parameters.

Specifying operator inputs and outputs (C++)

To configure the input(s) and output(s) of C++ native operators, call the spec.input() and
spec.output() methods within the setup() method of the operator.

The spec.input() and spec.output() methods should be called once for each input and
output to be added. The OperatorSpec object and the setup() method will be initialized
and called automatically by the Application class when its run() method is called.

These methods (spec.input() and spec.output()) return an IOSpec object that can be
used to configure the input/output port.

By default, the holoscan::MessageAvailableCondition and
holoscan::DownstreamMessageAffordableCondition conditions are applied (with a
min_size of 1) to the input/output ports. This means that the operator’s compute()

method will not be invoked until a message is available on the input port and the
downstream operator’s input port (queue) has enough capacity to receive the message.

// Provide key, and optionally other information spec.param(multiplier_, "multiplier",
"Multiplier", "Multiply the input by this value", 2);

Note

If your parameter is of a custom type, you must register that type and
provide a YAML encoder/decoder, as documented under
<a
href="api/cpp/classholoscan_1_1Operator.html#_CPPv4I0EN8holoscan8Operator1

void setup(OperatorSpec& spec) override { spec.input<std::shared_ptr<ValueData>>
("in"); // Above statement is equivalent to: // spec.input<std::shared_ptr<ValueData>>

https://docs.nvidia.com/holoscan_create_app.html#configuring-app-operator-parameters

Creating Operators 9

In the above example, the spec.input() method is used to configure the input port to
have the holoscan::MessageAvailableCondition with a minimum size of 1. This means
that the operator’s compute() method will not be invoked until a message is available on
the input port of the operator. Similarly, the spec.output() method is used to configure
the output port to have the holoscan::DownstreamMessageAffordableCondition with a
minimum size of 1. This means that the operator’s compute() method will not be
invoked until the downstream operator’s input port has enough capacity to receive the
message.

If you want to change this behavior, use the IOSpec::condition() method to configure the
conditions. For example, to configure the input and output ports to have no conditions,
you can use the following code:

The example code in the setup() method configures the input port to have no
conditions, which means that the compute() method will be called as soon as the
operator is ready to compute. Since there is no guarantee that the input port will have a
message available, the compute() method should check if there is a message available
on the input port before attempting to read it.

The receive() method of the InputContext object can be used to access different types
of input data within the compute() method of your operator class, where its template
argument (DataT) is the data type of the input. This method takes the name of the input
port as an argument (which can be omitted if your operator has a single input port), and
returns the input data. If input data is not available, the method returns an object of the
holoscan::RuntimeError class which contains an error message describing the reason

for the failure. The holoscan::RuntimeError class is a derived class of

("in") // .condition(ConditionType::kMessageAvailable, Arg("min_size") = 1);
spec.output<std::shared_ptr<ValueData>>("out"); // Above statement is equivalent to:
// spec.output<std::shared_ptr<ValueData>>("out") //
.condition(ConditionType::kDownstreamMessageAffordable, Arg("min_size") = 1); ... }

void setup(OperatorSpec& spec) override { spec.input<std::shared_ptr<ValueData>>
("in") .condition(ConditionType::kNone); spec.output<std::shared_ptr<ValueData>>
("out") .condition(ConditionType::kNone); // ... }

Creating Operators 10

std::runtime_error and supports accessing more error information, for example, with
what() method.

In the example code fragment below, the PingRxOp operator receives input on a port
called “in” with data type ValueData . The receive() method is used to access the input
data. The value is checked to be valid or not with the if condition. If value is of
holoscan::RuntimeError type, then if condition will be false. Otherwise, the data()

method of the ValueData class is called to get the value of the input data.

For GXF Entity objects (holoscan::gxf::Entity wraps underlying GXF nvidia::gxf::Entity
class), the receive() method will return the GXF Entity object for the input of the
specified name. In the example below, the PingRxOp operator receives input on a port
called “in” with data type holoscan::gxf::Entity .

For objects of type std::any , the receive() method will return a std::any object
containing the input of the specified name. In the example below, the PingRxOp
operator receives input on a port called “in” with data type std::any . The type() method

// ... class PingRxOp : public holoscan::ops::GXFOperator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(PingRxOp,
holoscan::ops::GXFOperator) PingRxOp() = default; void setup(OperatorSpec& spec)
override { spec.input<ValueData>("in"); } void compute(InputContext& op_input,
OutputContext&, ExecutionContext&) override { // The type of `value` is `ValueData`
auto value = op_input.receive<ValueData>("in"); if (value){
HOLOSCAN_LOG_INFO("Message received (value: {})", value.data()); } } };

// ... class PingRxOp : public holoscan::ops::GXFOperator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(PingRxOp,
holoscan::ops::GXFOperator) PingRxOp() = default; void setup(OperatorSpec& spec)
override { spec.input<holoscan::gxf::Entity>("in"); } void compute(InputContext&
op_input, OutputContext&, ExecutionContext&) override { // The type of `in_entity` is
'holoscan::gxf::Entity'. auto in_entity = op_input.receive<holoscan::gxf::Entity>("in"); if
(in_entity) { // Process with `in_entity`. // ... } } };

Creating Operators 11

of the std::any object is used to determine the actual type of the input data, and the
std::any_cast<T>() function is used to retrieve the value of the input data.

The Holoscan SDK provides built-in data types called Domain Objects, defined in the
include/holoscan/core/domain directory. For example, the holoscan::Tensor is a

Domain Object class that is used to represent a multi-dimensional array of data, which
can be used directly by OperatorSpec , InputContext , and OutputContext .

// ... class PingRxOp : public holoscan::ops::GXFOperator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(PingRxOp,
holoscan::ops::GXFOperator) PingRxOp() = default; void setup(OperatorSpec& spec)
override { spec.input<std::any>("in"); } void compute(InputContext& op_input,
OutputContext&, ExecutionContext&) override { // The type of `in_any` is 'std::any'.
auto in_any = op_input.receive<std::any>("in"); auto& in_any_type = in_any.type(); if
(in_any_type == typeid(holoscan::gxf::Entity)) { auto in_entity =
std::any_cast<holoscan::gxf::Entity>(in_any); // Process with `in_entity`. // ... } else if
(in_any_type == typeid(std::shared_ptr<ValueData>)) { auto in_message =
std::any_cast<std::shared_ptr<ValueData>>(in_any); // Process with `in_message`. // ...
} else if (in_any_type == typeid(nullptr_t)) { // No message is available. } else {
HOLOSCAN_LOG_ERROR("Invalid message type: {}", in_any_type.name()); return; } }
};

Tip

This
holos

class is a wrapper around the DLManagedTensorCtx struct holding a
DLManagedTensor object. As such, it provides a primary interface to
access Tensor data and is interoperable with other frameworks that
support the DLPack interface.

https://docs.nvidia.com/api/holoscan_cpp_api.html#domain-objects
https://dmlc.github.io/dlpack/latest/c_api.html#_CPPv415DLManagedTensor
https://dmlc.github.io/dlpack/latest/

Creating Operators 12

Receiving any number of inputs (C++)

Instead of assigning a specific number of input ports, it may be desired to have the ability
to receive any number of objects on a port in certain situations. This can be done by
defining Parameter with std::vector<IOSpec*>> (
Parameter<std::vector<IOSpec*>> receivers_) and calling
spec.param(receivers_, "receivers", "Input Receivers", "List of input receivers.", {}); as

done for PingRxOp in the native operator ping example.

Listing 4 examples/ping_multi_port/cpp/ping_multi_port.cpp

Warning

Passing
holos

objects to/from GXF operators directly is not supported. Instead, they
need to be passed through
<a
href="api/cpp/classholoscan_1_1gxf_1_1Entity.html#_CPPv4N8holoscan3gxf6Entity

objects. See the interoperability section for more details.

class PingRxOp : public Operator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS(PingRxOp) PingRxOp() = default; void
setup(OperatorSpec& spec) override { spec.param(receivers_, "receivers", "Input
Receivers", "List of input receivers.", {}); } void compute(InputContext& op_input,
OutputContext&, ExecutionContext&) override { auto value_vector =
op_input.receive<std::vector<ValueData>>("receivers"); HOLOSCAN_LOG_INFO("Rx
message received (count: {}, size: {})", count_++, value_vector.size());
HOLOSCAN_LOG_INFO("Rx message value1: {}", value_vector[0]->data());
HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1]->data()); }; private:
Parameter<std::vector<IOSpec*>> receivers_; int count_ = 1; }; } // namespace
holoscan::ops class App : public holoscan::Application { public: void compose()
override { using namespace holoscan; auto tx = make_operator<ops::PingTxOp>
("tx", make_condition<CountCondition>(10)); auto mx =

Creating Operators 13

Then, once the following configuration is provided in the compose() method, the
PingRxOp will receive two inputs on the receivers port.

By using a parameter (receivers) with std::vector<holoscan::IOSpec*> type, the
framework creates input ports (receivers:0 and receivers:1) implicitly and connects
them (and adds the references of the input ports to the receivers vector).

Building your C++ operator

You can build your C++ operator using CMake, by calling find_package(holoscan) in your
CMakeLists.txt to load the SDK libraries. Your operator will need to link against
holoscan::core :

Listing 5 /CMakeLists.txt

Once your CMakeLists.txt is ready in <src_dir> , you can build in <build_dir>
with the command line below. You can optionally pass Holoscan_ROOT if the SDK
installation you’d like to use differs from the PATHS given to find_package(holoscan)
above.

make_operator<ops::PingMiddleOp>("mx", Arg("multiplier", 3)); auto rx =
make_operator<ops::PingRxOp>("rx"); add_flow(tx, mx, {{"out1", "in1"}, {"out2",
"in2"}}); add_flow(mx, rx, {{"out1", "receivers"}, {"out2", "receivers"}}); } };

134: add_flow(mx, rx, {{"out1", "receivers"}, {"out2", "receivers"}});

Your CMake project cmake_minimum_required(VERSION 3.20) project(my_project
CXX) # Finds the holoscan SDK find_package(holoscan REQUIRED CONFIG PATHS
"/opt/nvidia/holoscan") # Create a library for your operator
add_library(my_operator SHARED my_operator.cpp) # Link your operator against
holoscan::core target_link_libraries(my_operator PUBLIC holoscan::core)

Configure cmake -S <src_dir> -B <build_dir> -D

Creating Operators 14

Using your C++ Operator in an Application

If the application is configured in the same CMake project as the operator, you
can simply add the operator CMake target library name under the application
executable target_link_libraries call, as the operator CMake target is already
defined.

If the application is configured in a separate project as the operator, you need
to export the operator in its own CMake project, and import it in the application
CMake project, before being able to list it under target_link_libraries also. This is
the same as what is done for the SDK built-in operators, available under the
holoscan::ops namespace.

You can then include the headers to your C++ operator in your application code.

GXF Operators

With the Holoscan C++ API, we can also wrap GXF Codelets from GXF extensions as
Holoscan Operators.

Holoscan_ROOT="/opt/nvidia/holoscan" # Build cmake --build <build_dir> -j

operator add_library(my_op my_op.cpp) target_link_libraries(my_operator
PUBLIC holoscan::core) # application add_executable(my_app main.cpp)
target_link_libraries(my_operator PRIVATE holoscan::core my_op)

Note

If you do not have an existing GXF extension, we recommend
developing native operators using the C++ or Python APIs to skip the
need for wrapping gxf codelets as operators. If you do need to create
a GXF Extension, follow the Creating a GXF Extension section for a
detailed explanation of the GXF extension development process.

https://cmake.org/cmake/help/latest/guide/importing-exporting/index.html
https://docs.nvidia.com/holoscan_operators_extensions.html#operators
https://docs.nvidia.com/gxf/gxf_core_concepts.html#holoscan-core-concepts-gxf
https://docs.nvidia.com/api/cpp/classholoscan_1_1Operator.html#exhale-class-classholoscan-1-1operator
file:///tmp/jsreport/autocleanup/gxf/gxf_by_example.html#creating-gxf-extension

Creating Operators 15

Given an existing GXF extension, we can create a simple “identity” application consisting
of a replayer, which reads contents from a file on disk, and our recorder from the last
section, which will store the output of the replayer exactly in the same format. This allows
us to see whether the output of the recorder matches the original input files.

The MyRecorderOp Holoscan Operator implementation below will wrap the
MyRecorder GXF Codelet shown here.

Operator definition

Listing 6 my_recorder_op.hpp

Tip

The manual codelet wrapping mechanism described below is no
longer necessary in order to make use of a GXF Codelet as a Holoscan
operator. There is a new
<a
href="api/cpp/classholoscan_1_1ops_1_1GXFCodeletOp.html#_CPPv4N8holoscan3

which allows directly using an existing GXF codelet via
<a
href="api/cpp/classholoscan_1_1Fragment.html#_CPPv4I00Dp0EN8holoscan8Frag

without having to first create a wrapper class for it. Similarly there is
now also a
<a
href="api/cpp/classholoscan_1_1GXFComponentResource.html#_CPPv4N8holosca

class which allows a GXF Component to be used as a Holoscan
resource via
<a
href="api/cpp/classholoscan_1_1Fragment.html#_CPPv4I00Dp0EN8holoscan8Frag

. A detailed example of how to use each of these is provided for both
C++ and Python applications in the
examples/import_gxf_components folder.

#ifndef APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP #define
APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP #include

https://docs.nvidia.com/gxf/gxf_by_example.html#my-recorder-hpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/import_gxf_components

Creating Operators 16

The holoscan::ops::MyRecorderOp class wraps a MyRecorder GXF Codelet by inheriting
from the holoscan::ops::GXFOperator class. The
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER macro is used to forward the arguments
of the constructor to the base class.

We first need to define the fields of the MyRecorderOp class. You can see that fields
with the same names are defined in both the MyRecorderOp class and the
MyRecorder GXF codelet .

Listing 7 Parameter declarations in gxf_extensions/my_recorder/my_recorder.hpp

Comparing the MyRecorderOp holoscan parameter to the MyRecorder gxf codelet:

Holoscan Operator GXF Codelet

holoscan::Parameter nvidia::gxf::Parameter

"holoscan/core/gxf/gxf_operator.hpp" namespace holoscan::ops { class
MyRecorderOp : public holoscan::ops::GXFOperator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(MyRecorderOp,
holoscan::ops::GXFOperator) MyRecorderOp() = default; const char* gxf_typename()
const override { return "MyRecorder"; } void setup(OperatorSpec& spec) override;
void initialize() override; private: Parameter<holoscan::IOSpec*> receiver_;
Parameter<std::shared_ptr<holoscan::Resource>> my_serializer_;
Parameter<std::string> directory_; Parameter<std::string> basename_;
Parameter<bool> flush_on_tick_; }; } // namespace holoscan::ops #endif/*
APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP */

nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::Receiver>> receiver_;
nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::EntitySerializer>>
my_serializer_; nvidia::gxf::Parameter<std::string> directory_;
nvidia::gxf::Parameter<std::string> basename_; nvidia::gxf::Parameter<bool>
flush_on_tick_;

https://docs.nvidia.com/api/cpp/define_operator_8hpp_1af59d84ffa537c4b1186e2a1ae2be30ad.html#exhale-define-operator-8hpp-1af59d84ffa537c4b1186e2a1ae2be30ad

Creating Operators 17

holoscan::IOSpec*

nvidia::gxf::Handle<nvidia::gxf::Receiver>
;>

or
nvidia::gxf::Handle<nvidia::gxf::Transmitter
>>

std::shared_ptr<holoscan::Resource
>>

nvidia::gxf::Handle<T>>
example: T is nvidia::gxf::EntitySerializer

We then need to implement the following functions:

const char* gxf_typename() const override : return the GXF type name of the
Codelet. The fully-qualified class name (MyRecorder) for the GXF Codelet is
specified.

void setup(OperatorSpec& spec) override : setup the OperatorSpec with the
inputs/outputs and parameters of the Operator.

void initialize() override : initialize the Operator.

Setting up parameter specifications

The implementation of the setup(OperatorSpec& spec) function is as follows:

Listing 8 my_recorder_op.cpp

#include "./my_recorder_op.hpp" #include "holoscan/core/fragment.hpp" #include
"holoscan/core/gxf/entity.hpp" #include "holoscan/core/operator_spec.hpp"
#include "holoscan/core/resources/gxf/video_stream_serializer.hpp" namespace
holoscan::ops { void MyRecorderOp::setup(OperatorSpec& spec) { auto& input =
spec.input<holoscan::gxf::Entity>("input"); // Above is same with the following two lines
(a default condition is assigned to the input port if not specified): // // auto& input =
spec.input<holoscan::gxf::Entity>("input") //
.condition(ConditionType::kMessageAvailable, Arg("min_size") = 1);
spec.param(receiver_, "receiver", "Entity receiver", "Receiver channel to log",
&input); spec.param(my_serializer_, "serializer", "Entity serializer", "Serializer for
serializing input data"); spec.param(directory_, "out_directory", "Output directory
path", "Directory path to store received output"); spec.param(basename_,

Creating Operators 18

Here, we set up the inputs/outputs and parameters of the Operator. Note how the
content of this function is very similar to the MyRecorder GXF codelet’s registerInterface
function.

In the C++ API, GXF Receiver and Transmitter components (such as
DoubleBufferReceiver and DoubleBufferTransmitter) are considered as input and

output ports of the Operator so we register the inputs/outputs of the Operator with
input<T> and output<T> functions (where T is the data type of the

port).

Compared to the pure GXF application that does the same job, the SchedulingTerm
of an Entity in the GXF Application YAML are specified as Condition s on the
input/output ports (e.g., holoscan::MessageAvailableCondition and
holoscan::DownstreamMessageAffordableCondition).

The highlighted lines in MyRecorderOp::setup above match the following highlighted
statements of GXF Application YAML:

Listing 9 A part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

"basename", "File base name", "User specified file name without extension");
spec.param(flush_on_tick_, "flush_on_tick", "Boolean to flush on tick", "Flushes
output buffer on every `tick` when true", false); } void MyRecorderOp::initialize() {...}
} // namespace holoscan::ops

name: recorder components: - name: input type: nvidia::gxf::DoubleBufferReceiver -
name: allocator type: nvidia::gxf::UnboundedAllocator - name: component_serializer
type: nvidia::gxf::StdComponentSerializer parameters: allocator: allocator - name:
entity_serializer type: nvidia::gxf::StdEntitySerializer parameters:
component_serializers: [component_serializer] - type: MyRecorder parameters:
receiver: input serializer: entity_serializer out_directory: "/tmp" basename:
"tensor_out" - type: nvidia::gxf::MessageAvailableSchedulingTerm parameters:
receiver: input min_size: 1

https://docs.nvidia.com/gxf/gxf_by_example.html#my-recorder-cpp
https://docs.nvidia.com/gxf/gxf_by_example.html#creating-gxf-application
https://docs.nvidia.com/gxf/doc/scheduler/scheduler.html#schedulingterms
https://docs.nvidia.com/gxf/gxf_by_example.html#my-recorder-gxf-yaml
https://docs.nvidia.com/gxf/gxf_by_example.html#my-recorder-gxf-yaml

Creating Operators 19

In the same way, if we had a Transmitter GXF component, we would have the following
statements (Please see available constants for holoscan::ConditionType):

Initializing the operator

Next, the implementation of the initialize() function is as follows:

Listing 10 my_recorder_op.cpp

Here we set up the pre-defined parameters such as the serializer . The highlighted lines
above matches the highlighted statements of GXF Application YAML:

Listing 11 Another part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

auto& output = spec.output<holoscan::gxf::Entity>("output"); // Above is same with
the following two lines (a default condition is assigned to the output port if not specified):
// // auto& output = spec.output<holoscan::gxf::Entity>("output") //
.condition(ConditionType::kDownstreamMessageAffordable, Arg("min_size") = 1);

#include "./my_recorder_op.hpp" #include "holoscan/core/fragment.hpp" #include
"holoscan/core/gxf/entity.hpp" #include "holoscan/core/operator_spec.hpp"
#include "holoscan/core/resources/gxf/video_stream_serializer.hpp" namespace
holoscan::ops { void MyRecorderOp::setup(OperatorSpec& spec) {...} void
MyRecorderOp::initialize() { // Set up prerequisite parameters before calling
GXFOperator::initialize() auto frag = fragment(); auto serializer = frag-
>make_resource<holoscan::StdEntitySerializer>("serializer");
add_arg(Arg("serializer") = serializer); GXFOperator::initialize(); } } // namespace
holoscan::ops

name: recorder components: - name: input type: nvidia::gxf::DoubleBufferReceiver -
name: allocator type: nvidia::gxf::UnboundedAllocator - name: component_serializer
type: nvidia::gxf::StdComponentSerializer parameters: allocator: allocator - name:
entity_serializer type: nvidia::gxf::StdEntitySerializer parameters:
component_serializers: [component_serializer] - type: MyRecorder parameters:
receiver: input serializer: entity_serializer out_directory: "/tmp" basename:

https://docs.nvidia.com/gxf/gxf_by_example.html#my-recorder-gxf-yaml

Creating Operators 20

Building your GXF operator

There are no differences in CMake between building a GXF operator and building a native
C++ operator, since the GXF codelet is actually loaded through a GXF extension as a
plugin, and does not need to be added to target_link_libraries(my_operator ...) .

Using your GXF Operator in an Application

There are no differences in CMake between using a GXF operator and using a native C++
operator in an application. However, the application will need to load the GXF extension
library which holds the wrapped GXF codelet symbols, so the application needs to be
configured to find the extension library in its yaml configuration file, as documented
here.

Interoperability between GXF and native C++ operators

To support sending or receiving tensors to and from operators (both GXF and native C++
operators), the Holoscan SDK provides the C++ classes below:

A class template called holoscan::MyMap which inherits from
std::unordered_map<std::string, std::shared_ptr<T>> . The template

parameter T can be any type, and it is used to specify the type of the
std::shared_ptr objects stored in the map.

"tensor_out" - type: nvidia::gxf::MessageAvailableSchedulingTerm parameters:
receiver: input min_size: 1

Note

The Holoscan C++ API already provides the
<a
href="api/cpp/classholoscan_1_1StdEntitySerializer.html#_CPPv4N8holoscan19Std

class which wraps the nvidia::gxf::StdEntitySerializer GXF
component, used here as serializer .

https://docs.nvidia.com/holoscan_create_app.html#loading-gxf-extensions

Creating Operators 21

A holoscan::TensorMap class defined as a specialization of holoscan::Map for the
holoscan::Tensor type.

Fig. 16 Supporting Tensor Interoperability

Consider the following example, where GXFSendTensorOp and GXFReceiveTensorOp
are GXF operators, and where ProcessTensorOp is a C++ native operator:

Fig. 17 The tensor interoperability between C++ native operator and GXF operator

The following code shows how to implement ProcessTensorOp ’s compute() method as
a C++ native operator communicating with GXF operators. Focus on the use of the
holoscan::gxf::Entity :

Listing 12 examples/tensor_interop/cpp/tensor_interop.cpp

void compute(InputContext& op_input, OutputContext& op_output,
ExecutionContext& context) override { // The type of `in_message` is
'holoscan::TensorMap'. auto in_message = op_input.receive<holoscan::TensorMap>
("in").value(); // the type of out_message is TensorMap TensorMap out_message; for

Creating Operators 22

The input message is of type holoscan::TensorMap object.

Every holoscan::Tensor in the TensorMap object is copied on the host as in_data .

The data is processed (values multiplied by 2)

The data is moved back to the holoscan::Tensor object on the GPU.

A new holoscan::TensorMap object out_message is created to be sent to the next
operator with op_output.emit() .

Python Operators

When assembling a Python application, two types of operators can be used:

(auto& [key, tensor] : in_message) { // Process with 'tensor' here. cudaError_t
cuda_status; size_t data_size = tensor->nbytes(); std::vector<uint8_t>
in_data(data_size); CUDA_TRY(cudaMemcpy(in_data.data(), tensor->data(), data_size,
cudaMemcpyDeviceToHost)); HOLOSCAN_LOG_INFO("ProcessTensorOp Before key:
'{}', shape: ({}), data: [{}]", key, fmt::join(tensor->shape(), ","), fmt::join(in_data, ","));
for (size_t i = 0; i < data_size; i++) { in_data[i] *= 2; }
HOLOSCAN_LOG_INFO("ProcessTensorOp After key: '{}', shape: ({}), data: [{}]", key,
fmt::join(tensor->shape(), ","), fmt::join(in_data, ","));
CUDA_TRY(cudaMemcpy(tensor->data(), in_data.data(), data_size,
cudaMemcpyHostToDevice)); out_message.insert({key, tensor}); } // Send the
processed message. op_output.emit(out_message); };

Note

A complete example of the C++ native operator that supports
interoperability with GXF operators is available in the
examples/tensor_interop/cpp directory.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/tensor_interop/cpp

Creating Operators 23

1. Native Python operators: custom operators defined in Python, by creating a
subclass of holoscan.core.Operator . These Python operators can pass arbitrary
Python objects around between operators and are not restricted to the stricter
parameter typing used for C++ API operators.

2. Python wrappings of C++ Operators: operators defined in the underlying C++
library by inheriting from the holoscan::Operator class. These operators have
Python bindings available within the holoscan.operators module. Examples are
VideoStreamReplayerOp for replaying video files, FormatConverterOp for format

conversions, and HolovizOp for visualization.

Native Python Operator

Operator Lifecycle (Python)

The lifecycle of a holoscan.core.Operator is made up of three stages:

start() is called once when the operator starts, and is used for initializing heavy
tasks such as allocating memory resources and using parameters.

compute() is called when the operator is triggered, which can occur any number of
times throughout the operator lifecycle between start() and stop() .

stop() is called once when the operator is stopped, and is used for deinitializing
heavy tasks such as deallocating resources that were previously assigned in start() .

All operators on the workflow are scheduled for execution. When an operator is first
executed, the start() method is called, followed by the compute() method. When the

Note

It is possible to create an application using a mixture of Python
wrapped C++ operators and native Python operators. In this case,
some special consideration to cast the input and output tensors
appropriately must be taken, as shown in a section below.

Creating Operators 24

operator is stopped, the stop() method is called. The compute() method is called
multiple times between start() and stop() .

If any of the scheduling conditions specified by Conditions are not met (for example, the
CountCondition would cause the scheduling condition to not be met if the operator has

been executed a certain number of times), the operator is stopped and the stop()
method is called.

We will cover how to use Conditions in the Specifying operator inputs and outputs
(Python) section of the user guide.

Typically, the start() and the stop() functions are only called once during the
application’s lifecycle. However, if the scheduling conditions are met again, the operator
can be scheduled for execution, and the start() method will be called again.

Fig. 18 The sequence of method calls in the lifecycle of a Holoscan Operator

We can override the default behavior of the operator by implementing the above
methods. The following example shows how to implement a custom operator that
overrides start, stop and compute methods.

Listing 13 The basic structure of a Holoscan Operator (Python)

setup method vs initialize vs __init__

The setup method aims to get the “operator’s spec” by providing OperatorSpec object
as a spec param. When __init__ is called, it calls C++’s Operator::spec method (and also

from holoscan.core import (ExecutionContext, InputContext, Operator,
OperatorSpec, OutputContext,) class MyOp(Operator): def __init__(self, fragment,
*args, **kwargs): super().__init__(fragment, *args, **kwargs) def setup(self, spec:
OperatorSpec): pass def start(self): pass def compute(self, op_input: InputContext,
op_output: OutputContext, context: ExecutionContext): pass def stop(self): pass

https://docs.nvidia.com/holoscan_core.html#holoscan-concepts-condition

Creating Operators 25

sets self.spec class member), and calls setup method so that Operator’s spec
property holds the operator’s specification. (See the source code for more details.)

Since the setup method can be called multiple times with other OperatorSpec object
(e.g., to enumerate the operator’s description), in the setup method, a user shouldn’t
initialize something in the Operator object. Such initialization needs to be done in
initialize method. The __init__ method is for creating the Operator object and it can be

used for initializing the operator object itself by passing miscellaneous arguments. Still, it
doesn’t ‘initialize’ the corresponding GXF entity object.

Creating a custom operator (Python)

To create a custom operator in Python it is necessary to create a subclass of
holoscan.core.Operator . A simple example of an operator that takes a time-varying 1D

input array named “signal” and applies convolution with a boxcar (i.e. rect) kernel.

For simplicity, this operator assumes that the “signal” that will be received on the input is
already a numpy.ndarray or is something that can be cast to one via (np.asarray). We
will see more details in a later section on how we can interoperate with various tensor
classes, including the GXF Tensor objects used by some of the C++-based operators.

Code Snippet: examples/numpy_native/convolve.py

Listing 14 examples/numpy_native/convolve.py

import os from holoscan.conditions import CountCondition from holoscan.core
import Application, Operator, OperatorSpec from holoscan.logger import LogLevel,
set_log_level import numpy as np class SignalGeneratorOp(Operator): """Generate a
time-varying impulse. Transmits an array of zeros with a single non-zero entry of a
specified `height`. The position of the non-zero entry shifts to the right (in a periodic
fashion) each time `compute` is called. Parameters ---------- fragment :
holoscan.core.Fragment The Fragment (or Application) the operator belongs to.
height : number The height of the signal impulse. size : number The total number of
samples in the generated 1d signal. dtype : numpy.dtype or str The data type of the
generated signal. """ def __init__(self, fragment, *args, height=1, size=10,
dtype=np.int32, **kwargs): self.count = 0 self.height = height self.dtype = dtype
self.size = size super().__init__(fragment, *args, **kwargs) def setup(self, spec:
OperatorSpec): spec.output("signal") def compute(self, op_input, op_output,

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/holoscan/core/__init__.py#:~:text=class%20Operator
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/examples/numpy_native/convolve.py

Creating Operators 26

Code Snippet: examples/numpy_native/convolve.yaml

context): # single sample wide impulse at a time-varying position signal =
np.zeros((self.size,), dtype=self.dtype) signal[self.count % signal.size] = self.height
self.count += 1 op_output.emit(signal, "signal") class ConvolveOp(Operator): """Apply
convolution to a tensor. Convolves an input signal with a "boxcar" (i.e. "rect") kernel.
Parameters ---------- fragment : holoscan.core.Fragment The Fragment (or
Application) the operator belongs to. width : number The width of the boxcar kernel
used in the convolution. unit_area : bool, optional Whether or not to normalize the
convolution kernel to unit area. If False, all samples have implitude one and the
dtype of the kernel will match that of the signal. When True the sum over the kernel
is one and a 32-bit floating point data type is used for the kernel. """ def __init__(self,
fragment, *args, width=4, unit_area=False, **kwargs): self.count = 0 self.width =
width self.unit_area = unit_area super().__init__(fragment, *args, **kwargs) def
setup(self, spec: OperatorSpec): spec.input("signal_in") spec.output("signal_out") def
compute(self, op_input, op_output, context): signal = op_input.receive("signal_in")
assert isinstance(signal, np.ndarray) if self.unit_area: kernel = np.full((self.width,),
1/self.width, dtype=np.float32) else: kernel = np.ones((self.width,),
dtype=signal.dtype) convolved = np.convolve(signal, kernel, mode='same')
op_output.emit(convolved, "signal_out") class PrintSignalOp(Operator): """Print the
received signal to the terminal.""" def setup(self, spec: OperatorSpec):
spec.input("signal") def compute(self, op_input, op_output, context): signal =
op_input.receive("signal") print(signal) class ConvolveApp(Application): """Minimal
signal processing application. Generates a time-varying impulse, convolves it with a
boxcar kernel, and prints the result to the terminal. A `CountCondition` is applied to
the generate to terminate execution after a specific number of steps. """ def
compose(self): signal_generator = SignalGeneratorOp(self, CountCondition(self,
count=24), name="generator", **self.kwargs("generator"),) convolver =
ConvolveOp(self, name="conv", **self.kwargs("convolve")) printer =
PrintSignalOp(self, name="printer") self.add_flow(signal_generator, convolver)
self.add_flow(convolver, printer) def main(config_file): app = ConvolveApp() # if the --
config command line argument was provided, it will override this config_file`
app.config(config_file) app.run() if __name__ == "__main__": config_file =
os.path.join(os.path.dirname(__file__), 'convolve.yaml') main(config_file=config_file)

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/examples/numpy_native/convolve.yaml

Creating Operators 27

Listing 15 examples/numpy_native/convolve.yaml

In this application, three native Python operators are created: SignalGeneratorOp ,
ConvolveOp and PrintSignalOp . The SignalGeneratorOp generates a synthetic signal

such as [0, 0, 1, 0, 0, 0] where the position of the non-zero entry varies each time it is
called. ConvolveOp performs a 1D convolution with a boxcar (i.e. rect) function of a
specified width. PrintSignalOp just prints the received signal to the terminal.

As covered in more detail below, the inputs to each operator are specified in the setup()
method of the operator. Then inputs are received within the compute method via
op_input.receive() and outputs are emitted via op_output.emit() .

Note that for native Python operators as defined here, any Python object can be emitted
or received. When transmitting between operators, a shared pointer to the object is
transmitted rather than a copy. In some cases, such as sending the same tensor to more
than one downstream operator, it may be necessary to avoid in-place operations on the
tensor in order to avoid any potential race conditions between operators.

Specifying operator parameters (Python)

In the example SignalGeneratorOp operator above, we added three keyword arguments
in the operator’s __init__ method, used inside the compose() method of the operator to
adjust its behavior:

signal_generator: height: 1 size: 20 dtype: int32 convolve: width: 4 unit_area: false

def __init__(self, fragment, *args, width=4, unit_area=False, **kwargs): # Internal
counter for the time-dependent signal generation self.count = 0 # Parameters
self.width = width self.unit_area = unit_area # To forward remaining arguments to any
underlying C++ Operator class super().__init__(fragment, *args, **kwargs)

Note

As an alternative closer to C++, these parameters can be added
through the

Creating Operators 28

See the Configuring operator parameters section to learn how an application can set these
parameters.

Specifying operator inputs and outputs (Python)

To configure the input(s) and output(s) of Python native operators, call the spec.input()
and spec.output() methods within the setup() method of the operator.

O

attribute of the operator in its
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.Operator.setup"

method, where an associated string key must be provided as well as
a default value:

Other kwargs properties can also be passed to spec.param such as
headline , description (used by GXF applications), or kind (used

when Receiving any number of inputs (Python)).

def setup(self, spec: OperatorSpec): spec.param("width", 4)
spec.param("unit_area", False)

Note

Native operator parameters added via either of these methods must
not have a name that overlaps with any of the existing attribute or
method names of the base
Oper

class.

https://docs.nvidia.com/holoscan_create_app.html#configuring-app-operator-parameters

Creating Operators 29

The spec.input() and spec.output() methods should be called once for each input and
output to be added. The holoscan.core.OperatorSpec object and the setup() method
will be initialized and called automatically by the Application class when its run()
method is called.

These methods (spec.input() and spec.output()) return an IOSpec object that can be
used to configure the input/output port.

By default, the holoscan.conditions.MessageAvailableCondition and
holoscan.conditions.DownstreamMessageAffordableCondition conditions are applied

(with a min_size of 1) to the input/output ports. This means that the operator’s
compute() method will not be invoked until a message is available on the input port and

the downstream operator’s input port (queue) has enough capacity to receive the
message.

In the above example, the spec.input() method is used to configure the input port to
have the holoscan.conditions.MessageAvailableCondition with a minimum size of 1. This
means that the operator’s compute() method will not be invoked until a message is
available on the input port of the operator. Similarly, the spec.output() method is used
to configure the output port to have a
holoscan.conditions.DownstreamMessageAffordableCondition with a minimum size of

1. This means that the operator’s compute() method will not be invoked until the
downstream operator’s input port has enough capacity to receive the message.

If you want to change this behavior, use the IOSpec.condition() method to configure the
conditions. For example, to configure the input and output ports to have no conditions,
you can use the following code:

def setup(self, spec: OperatorSpec): spec.input("in") # Above statement is equivalent
to: # spec.input("in") # .condition(ConditionType.MESSAGE_AVAILABLE, min_size = 1)
spec.output("out") # Above statement is equivalent to: # spec.output("out") #
.condition(ConditionType.DOWNSTREAM_MESSAGE_AFFORDABLE, min_size = 1)

from holoscan.core import ConditionType, OperatorSpec # ... def setup(self, spec:
OperatorSpec): spec.input("in").condition(ConditionType.NONE)
spec.output("out").condition(ConditionType.NONE)

Creating Operators 30

The example code in the setup() method configures the input port to have no
conditions, which means that the compute() method will be called as soon as the
operator is ready to compute. Since there is no guarantee that the input port will have a
message available, the compute() method should check if there is a message available
on the input port before attempting to read it.

The receive() method of the InputContext object can be used to access different types
of input data within the compute() method of your operator class. This method takes
the name of the input port as an argument (which can be omitted if your operator has a
single input port).

For standard Python objects, receive() will directly return the Python object for input of
the specified name.

The Holoscan SDK also provides built-in data types called Domain Objects, defined in the
include/holoscan/core/domain directory. For example, the Tensor is a Domain Object

class that is used to represent a multi-dimensional array of data, which can be used
directly by OperatorSpec , InputContext , and OutputContext .

In both cases, it will return None if there is no message available on the input port:

Tip

This
holosca

class supports both DLPack and NumPy’s array interface (
__array_inte

and
_

) so that it can be used with other Python libraries such as CuPy,
PyTorch, JAX, TensorFlow, and Numba. See the interoperability
section for more details.

https://docs.nvidia.com/api/holoscan_cpp_api.html#domain-objects
https://dmlc.github.io/dlpack/latest/
https://docs.cupy.dev/en/stable/user_guide/interoperability.html
https://github.com/pytorch/pytorch/issues/15601
https://github.com/google/jax/issues/1100#issuecomment-580773098
https://github.com/tensorflow/community/pull/180
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html

Creating Operators 31

Receiving any number of inputs (Python)

Instead of assigning a specific number of input ports, it may be desired to have the ability
to receive any number of objects on a port in certain situations. This can be done by
calling spec.param(port_name, kind='receivers') as done for PingRxOp in the native
operator ping example located at examples/native_operator/python/ping.py :

Code Snippet: examples/native_operator/python/ping.py

Listing 16 examples/native_operator/python/ping.py

and in the compose method of the application, two parameters are connected to this
“receivers” port:

This line connects both the out1 and out2 ports of operator mx to the receivers port
of operator rx .

Here, values as returned by op_input.receive("receivers") will be a tuple of python
objects.

Python wrapping of a C++ operator

... def compute(self, op_input, op_output, context): msg = op_input.receive("in") if
msg: # Do something with msg

class PingRxOp(Operator): """Simple receiver operator. This operator has: input:
"receivers" This is an example of a native operator that can dynamically have any
number of inputs connected to is "receivers" port. """ def __init__(self, fragment,
*args, **kwargs): self.count = 1 # Need to call the base class constructor last
super().__init__(fragment, *args, **kwargs) def setup(self, spec: OperatorSpec):
spec.param("receivers", kind="receivers") def compute(self, op_input, op_output,
context): values = op_input.receive("receivers") print(f"Rx message received (count:
{self.count}, size:{len(values)})") self.count += 1 print(f"Rx message value1:
{values[0].data}") print(f"Rx message value2:{values[1].data}")

self.add_flow(mx, rx, {("out1", "receivers"), ("out2", "receivers")})

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/python/ping.py

Creating Operators 32

Wrapping an operator developed in C++ for use from Python is covered in a separate
section on creating C++ operator Python bindings.

Interoperability between wrapped and native Python operators

As described in the Interoperability between GXF and native C++ operators section,
holoscan::Tensor objects can be passed to GXF operators using a holoscan::TensorMap

message that holds the tensor(s). In Python, this is done by sending dict type objects
that have tensor names as the keys and holoscan Tensor or array-like objects as the
values. Similarly, when a wrapped C++ operator that transmits a single holoscan::Tensor
is connected to the input port of a Python native operator, calling op_input.receive() on
that port will return a Python dict containing a single item. That item’s key is the tensor
name and its value is the corresponding holoscan.core.Tensor .

Consider the following example, where VideoStreamReplayerOp and HolovizOp are
Python wrapped C++ operators, and where ImageProcessingOp is a Python native
operator:

Tip

As of Holoscan 2.1, there is a
<a
href="api/python/holoscan_python_api_operators.html#holoscan.operators.GXFCo

class which can be used to easily wrap an existing GXF codelet from
Python without having to first write an underlying C++ wrapper class
for it. Similarly there is now also a
<a
href="api/python/holoscan_python_api_resources.html#holoscan.resources.GXFCo

class which allows a GXF Component to be used as a Holoscan
resource from Python applications. A detailed example of how to use
each of these is provided for Python applications in the
examples/import_gxf_components folder.

https://docs.nvidia.com/holoscan_create_operator_python_bindings.html#holoscan-create-operators-python-bindings
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/import_gxf_components/python

Creating Operators 33

Fig. 19 The tensor interoperability between Python native operator and C++-based Python GXF
operator

The following code shows how to implement ImageProcessingOp ’s compute() method
as a Python native operator communicating with C++ operators:

Listing 17 examples/tensor_interop/python/tensor_interop.py

The op_input.receive() method call returns a dict object.

The holoscan.core.Tensor object is converted to a CuPy array by using
cupy.asarray() method call.

The CuPy array is used as an input to the ndi.gaussian_filter() function call with a
parameter sigma . The result of the ndi.gaussian_filter() function call is a CuPy
array.

Finally, a new dict object is created , out_message , to be sent to the next operator
with op_output.emit() . The CuPy array, cp_array , is added to it where the key is
the tensor name. CuPy arrays do not have to explicitly be converted to a
holocan.core.Tensor object first since they implement a DLPack (and
__cuda__array_interface__) interface.

def compute(self, op_input, op_output, context): # in_message is a dict of tensors
in_message = op_input.receive("input_tensor") # smooth along first two axes, but not
the color channels sigma = (self.sigma, self.sigma, 0) # out_message will be a dict of
tensors out_message = dict() for key, value in in_message.items(): print(f"message
received (count:{self.count})") self.count += 1 cp_array = cp.asarray(value) # process
cp_array cp_array = ndi.gaussian_filter(cp_array, sigma) out_message[key] = cp_array
op_output.emit(out_message, "output_tensor")

Note

Creating Operators 34

You can add multiple tensors to a single dict object , as in the example below:

Operator sending a message:

Operator receiving the message, assuming the outputs port above is connected to the
inputs port below with add_flow() has the corresponding tensors:

A complete example of the Python native operator that supports
interoperability with Python wrapped C++ operators is available in
the examples/tensor_interop/python directory.

out_message = { "video": output_array, "labels": labels, "bbox_coords": bbox_coords,
} # emit the tensors op_output.emit(out_message, "outputs")

in_message = op_input.receive("inputs") # Tensors and tensor names video_tensor =
in_message["video"] labels_tensor = in_message["labels"] bbox_coords_tensor =
in_message["bbox_coords"]

Note

Some existing operators allow configuring the name of the tensors
they send/receive. An example is the tensors parameter of
<a
href="api/python/holoscan_python_api_operators.html#holoscan.operators.Holov

, where the name for each tensor maps to the names of the tensors
in the
Entity

(see the holoviz entry in
apps/endoscopy_tool_tracking/python/endoscopy_tool_tracking.yaml).

A complete example of a Python native operator that emits multiple
tensors to a downstream C++ operator is available in the

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/tensor_interop/python
file:///tmp/jsreport/autocleanup/holoscan_create_app.html#configuring-an-application
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/apps/endoscopy_tool_tracking/python/endoscopy_tool_tracking.yaml

Creating Operators 35

Advanced Topics

Further customizing inputs and outputs

This section complements the information above on basic input and output port
configuration given separately in the C++ and Python operator creation guides. The
concepts described here are the same for either the C++ or Python APIs.

examples/holoviz/python directory.

There is a special serialization code for tensor types for emit/receive
of tensor objects over a UCX connection that avoids copying the
tensor data to an intermediate buffer. For distributed apps, we
cannot just send the Python object as we do between operators in a
single fragment app, but instead we need to cast it to
holoscan::Tensor to use a special zero-copy code path. However, we

also transmit a header indicating if the type was originally some other
array-like object and attempt to return the same type again on the
other side so that the behavior remains more similar to the non-
distributed case.

Transmitted object Received Object

holoscan.Tensor holoscan.Tensor

dict of array-like
dict of
holoscan.Tensor

host array-like object (with
__array_interface__)

numpy.ndarray

device array-like object (with
__cuda_array_interface__)

cupy.ndarray

This avoids NumPy or CuPy arrays being serialized to a string via
cloudpickle so that they can efficiently be transmitted and the same
type is returned again on the opposite side. Worth mentioning is that
,if the type emitted was e.g. a PyTorch host/device tensor on emit, the
received value will be a numpy/cupy array since ANY object
implementing the interfaces returns those types.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/python

Creating Operators 36

By default, both the input and output ports of an Operator will use a double-buffered
queue that has a capacity of one message and a policy that is set to error if a message
arrives while the queue is already full. A single MessageAvailableCondition (C++ /
Python)) condition is automatically placed on the operator for each input port so that

the compute method will not be called until a single message is available at each port.
Similarly each output port has a DownstreamMessageAffordableCondition (C++ /
Python) condition that does not let the operator call compute until any operators

connected downstream have space in their receiver queue for a single message. These
default conditions ensure that messages never arrive at a queue when it is already full
and that a message has already been received whenever the compute method is called.
These default conditions make it relatively easy to connect a pipeline where each
operator calls compute in turn, but may not be suitable for all applications. This section
covers how the default behavior can be overridden on request.

To override the properties of the queue used for a given port, the connector (C++ /
Python) method can be used as shown in the example below. This example also shows

how the condition (C++ / Python) method can be used to change the condition type
placed on the Operator by a port. In general, when an operator has multiple conditions,
they are AND combined, so the conditions on all ports must be satisfied before an
operator can call compute .

Ingested Tab Module

To learn more about overriding connectors and/or conditions there is a
multi_branch_pipeline example which overrides default conditions to allow two branches
of a pipeline to run at different frame rates. There is also an example of increasing the
queue sizes available in this Python queue policy test application.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

Note

Overriding operator port properties is an advanced topic. Developers
may want to skip this section until they come across a case where the
default behavior is not sufficient for their application.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/multi_branch_pipeline
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/tests/system/test_application_with_repeated_emit_on_same_port.py

	C++ Operators
	Python Operators
	Advanced Topics

