
Data Flow Tracking

Table of contents

Enabling Data Flow Tracking

Retrieving Data Flow Tracking Results

Customizing Data Flow Tracking

Logging

Data Flow Tracking 1

Table of contents

Enabling Data Flow Tracking

Retrieving Data Flow Tracking Results

Customizing Data Flow Tracking

Logging

Data Flow Tracking 2

The Holoscan SDK provides the Data Flow Tracking APIs as a mechanism to profile your
application and analyze the fine-grained timing properties and data flow between
operators in the graph of a fragment.

Currently, data flow tracking is only supported between the root operators and leaf
operators of a graph and in simple cycles in a graph (support for tracking data flow
between any pair of operators in a graph is planned for the future).

A root operator is an operator without any predecessor nodes

A leaf operator (also known as a sink operator) is an operator without any successor
nodes.

When data flow tracking is enabled, every message is tracked from the root operators to
the leaf operators and in cycles. Then, the maximum (worst-case), average and minimum
end-to-end latencies of one or more paths can be retrieved using the Data Flow Tracking
APIs.

Warning

Data Flow Tracking is currently not supported between multiple
fragments in a distributed application.

Tip

The end-to-end latency between a root operator and a leaf
operator is the time taken between the start of a root operator
and the end of a leaf operator. Data Flow Tracking enables the
support to track the end-to-end latency of every message being
passed between a root operator and a leaf operator.

The reported end-to-end latency for a cyclic path is the time
taken between the start of the first operator of a cycle and the

file:///tmp/jsreport/autocleanup/holoscan_create_distributed_app.html

Data Flow Tracking 3

The API also provides the ability to retrieve the number of messages sent from the root
operators.

Enabling Data Flow Tracking

Before an application (C++ / python) is run with the run() method, data flow tracking
can be enabled by calling the track() method in C++ and using the Tracker class in
python .

Ingested Tab Module

Retrieving Data Flow Tracking Results

After an application has been run, data flow tracking results can be accessed by various
functions:

1. print() (C++ / python)

time when a message is again received by the first operator of
the cycle.

Tip

The Data Flow Tracking feature is also illustrated in the
flow_tracker

Look at the
<a
href="api/cpp/classholoscan_1_1DataFlowTracker.html#_CPPv4N8holoscan1

and
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.DataFlowTr

API documentation for exhaustive definitions

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/flow_tracker

Data Flow Tracking 4

Prints all data flow tracking results including end-to-end latencies and the
number of source messages to the standard output.

2. get_num_paths() (C++ / python)

Returns the number of paths between the root operators and the leaf
operators.

3. get_path_strings() (C++ / python)

Returns a vector of strings, where each string represents a path between the
root operators and the leaf operators. A path is a comma-separated list of
operator names.

4. get_metric() (C++ / python)

Returns the value of different metrics based on the arguments.

get_metric(std::string pathstring, holoscan::DataFlowMetric metric) returns
the value of a metric metric for a path pathstring . The metric can be one of
the following:

holoscan::DataFlowMetric::kMaxE2ELatency (python): the maximum
end-to-end latency in the path

holoscan::DataFlowMetric::kAvgE2ELatency (python): the average end-
to-end latency in the path

holoscan::DataFlowMetric::kMinE2ELatency (python): the minimum
end-to-end latency in the path

holoscan::DataFlowMetric::kMaxMessageID (python): the message
number or ID which resulted in the maximum end-to-end latency

holoscan::DataFlowMetric::kMinMessageID (python): the message
number or ID which resulted in the minimum end-to-end latency

get_metric(holoscan::DataFlowMetric metric =
DataFlowMetric::kNumSrcMessages)

returns a map of source operator and its edge, and the number of messages

Data Flow Tracking 5

sent from the source operator to the edge.

In the above example, the data flow tracking results can be printed to the standard
output like the following:

Ingested Tab Module

Customizing Data Flow Tracking

Data flow tracking can be customized using a few, optional configuration parameters. The
track() method (C++ / Tracker class in python) can be configured to skip a few

messages at the beginning of an application’s execution as a warm-up period. It is also
possible to discard a few messages at the end of an application’s run as a wrap-up period.
Additionally, outlier end-to-end latencies can be ignored by setting a latency threshold
value which is the minimum latency below which the observed latencies are ignored.

Ingested Tab Module

The default values of these parameters of track() are as follows:

kDefaultNumStartMessagesToSkip : 10

kDefaultNumLastMessagesToDiscard : 10

kDefaultLatencyThreshold : 0 (do not filter out any latency values)

These parameters can also be configured using the helper functions:
set_skip_starting_messages , set_discard_last_messages and set_skip_latencies .

Logging

Tip

For effective benchmarking, it is common practice to include warm-
up and cool-down periods by skipping the initial and final messages.

Data Flow Tracking 6

The Data Flow Tracking API provides the ability to log every message’s graph-traversal
information to a file. This enables developers to analyze the data flow at a granular level.
When logging is enabled, every message’s received and sent timestamps at every
operator between the root and the leaf operators are logged after a message has been
processed at the leaf operator.

The logging is enabled by calling the enable_logging method in C++ and by providing
the filename parameter to Tracker in python .

Ingested Tab Module

The logger file logs the paths of the messages after a leaf operator has finished its
compute method. Every path in the logfile includes an array of tuples of the form:

“(root operator name, message receive timestamp, message publish timestamp) -> … ->
(leaf operator name, message receive timestamp, message publish timestamp)”.

This log file can further be analyzed to understand latency distributions, bottlenecks, data
flow and other characteristics of an application.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

	Enabling Data Flow Tracking
	Retrieving Data Flow Tracking Results
	Customizing Data Flow Tracking
	Logging

