
Enabling RDMA

Table of contents

Enabling RDMA on the ConnectX SmartNIC

Enabling GPUDirect RDMA

Testing with Rivermax

Enabling RDMA 1

Table of contents

Enabling RDMA on the ConnectX SmartNIC

Enabling GPUDirect RDMA

Testing with Rivermax

Enabling RDMA 2

There are two parts to enabling RDMA for Holoscan:

Enabling RDMA on the ConnectX SmartNIC

Enabling GPUDirect RDMA

Enabling RDMA on the ConnectX SmartNIC

Skip to the next section if you do not plan to leverage a ConnectX SmartNIC.

The NVIDIA IGX Orin developer kit comes with an embedded ConnectX Ethernet adapter
to offer advanced hardware offloads and accelerations. You can also purchase an
individual ConnectX adapter and install it on other systems such as x86_64 workstations.

The following steps are required to ensure your ConnectX can be used for RDMA over
Converged Ethernet (RoCE):

1. Install MOFED drivers

Ensure the Mellanox OFED drivers version 23.10 or above are installed:

If not installed, or an older version, install the appropriate version from the MLNX_OFED
download page, or use the script below:

Note

Learn more about RDMA in the technology overview section.

cat /sys/module/mlx5_core/version

You can choose different versions/OS or download directly from the # Download
Center in the webpage linked above MOFED_VERSION="23.10-2.1.3.1"
OS="ubuntu22.04"
MOFED_PACKAGE="MLNX_OFED_LINUX-${MOFED_VERSION}-${OS}-$(uname -m)"

https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://docs.nvidia.com/networking/display/mlnxofedv23070512/rdma+over+converged+ethernet+(roce)
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed
file:///tmp/jsreport/autocleanup/relevant_technologies.html#gpudirect-rdma

Enabling RDMA 3

2. Load MOFED drivers

Ensure the drivers are loaded:

If nothing appears, run the following command:

3. Switch the board Link Layer to Ethernet

The ConnectX SmartNIC can function in two separate modes (called link layer):

Ethernet (ETH)

Infiniband (IB)

Holoscan does not support IB at this time (not tested), so the ConnectX will need to
use the ETH link layer.

To identify the current mode, run ibstat or ibv_devinfo and look for the Link Layer
value. In the example below, the mlx5_0 interface is in Ethernet mode, while the
mlx5_1 interface is in Infiniband mode. Do not pay attention to the transport value

which is always InfiniBand .

wget --progress=dot:giga
https://www.mellanox.com/downloads/ofed/MLNX_OFED-${MOFED_VERSION}/${MOF
tar xf ${MOFED_PACKAGE}.tgz sudo ./${MOFED_PACKAGE}/mlnxofedinstall # add
the --force flag to force uninstallation if necessary: # sudo
./${MOFED_PACKAGE}/mlnxofedinstall --force rm -r ${MOFED_PACKAGE}*

sudo lsmod | grep ib_core

sudo /etc/init.d/openibd restart

$ ibstat CA 'mlx5_0' CA type: MT4129 Number of ports: 1 Firmware version:
28.37.0190 Hardware version: 0 Node GUID: 0x48b02d0300ee7a04 System image
GUID: 0x48b02d0300ee7a04 Port 1: State: Down Physical state: Disabled Rate: 40
Base lid: 0 LMC: 0 SM lid: 0 Capability mask: 0x00010000 Port GUID:

Enabling RDMA 4

If no results appear after ibstat and sudo lsmod | grep ib_core returns a result like
this:

Consider running the following command or rebooting:

To switch the link layer mode, there are two possible options:

1. On IGX Orin developer kits, you can switch that setting through the BIOS: see IGX
Orin documentation.

2. On any system with a ConnectX (including IGX Orin devkits), you can run the
command below from a terminal (requires a reboot). sudo ibdev2netdev -v is used
to identify the PCI address of the ConnectX (any of the two interfaces is fine to use),
and mlxconfig is used to apply the changes.

Note: LINK_TYPE_P1 and LINK_TYPE_P2 are for mlx5_0 and mlx5_1 respectively.
You can choose to only set one of them. You can pass ETH or 2 for Ethernet
mode, and IB or 1 for InfiniBand.

This is the output of the command above:

0x4ab02dfffeee7a04 Link layer: Ethernet CA 'mlx5_1' CA type: MT4129 Number of
ports: 1 Firmware version: 28.37.0190 Hardware version: 0 Node GUID:
0x48b02d0300ee7a05 System image GUID: 0x48b02d0300ee7a04 Port 1: State:
Active Physical state: LinkUp Rate: 100 Base lid: 0 LMC: 0 SM lid: 0 Capability mask:
0x00010000 Port GUID: 0x4ab02dfffeee7a05 Link layer: InfiniBand

ib_core 425984 1 ib_uverbs

sudo /etc/init.d/openibd restart

mlx_pci=$(sudo ibdev2netdev -v | awk '{print $1}' | head -n1) sudo mlxconfig -
d $mlx_pci set LINK_TYPE_P1=ETH LINK_TYPE_P2=ETH

https://docs.nvidia.com/igx-orin/user-guide/latest/switch-network-link.html
https://docs.nvidia.com/igx-orin/user-guide/latest/switch-network-link.html

Enabling RDMA 5

Next Boot is actually the current value that was expected to be used at the next
reboot, while New is the value you’re about to set to override Next Boot .

Apply with y and reboot afterwards:

4. Configure the IP addresses of the ethernet interfaces

First, identify the logical names of your ConnectX interfaces. Connecting a cable in just
one of the interfaces on the ConnectX will help you identify which port is which (in the
example below, only mlx5_1 i.e. eth3 is connected):

Device #1: ---------- Device type: ConnectX7 Name: P3740-B0-QSFP_Ax
Description: NVIDIA Prometheus P3740 ConnectX-7 VPI PCIe Switch
Motherboard; 400Gb/s; dual-port QSFP; PCIe switch5.0 X8 SLOT0 ;X16 SLOT2;
secure boot; Device: 0005:03:00.0 Configurations: Next Boot New
LINK_TYPE_P1 ETH(2) ETH(2) LINK_TYPE_P2 IB(1) ETH(2) Apply new
Configuration? (y/n) [n] :

Applying... Done! -I- Please reboot machine to load new configurations.

$ sudo ibdev2netdev mlx5_0 port 1 ==> eth2 (Down) mlx5_1 port 1 ==> eth3 (Up)

Tip

For IGX Orin Developer Kits with no live source to connect to the
ConnectX QSFP ports, adding -v can show you which logical name is
mapped to each specific port:

0005:03.00.0 is the QSFP port closer to the PCI slots

0005:03.00.1 is the QSFP closer to the RJ45 ethernet ports

$ sudo ibdev2netdev -v 0005:03:00.0 mlx5_0 (MT4129 - P3740-
0002) NVIDIA IGX, P3740-0002, 2-port QSFP up to 400G,

Enabling RDMA 6

The next step is to set a static IP on the interface you’d like to use so you can refer to it in
your Holoscan applications (ex: Emergent cameras, distributed applications…).

First, check if you already have an address setup. We’ll use the eth3 interface in this
example for mlx5_1 :

If nothing appears or you’d like to change the address, you can set an IP and MTU
(Maximum Transmission Unit) through the Network Manager user interface, CLI (nmcli),
or other IP configuration tools. In the example below, we use ip (ifconfig is legacy) to
configure the eth3 interface with an address of 192.168.1.1/24 and a MTU of 9000
(i.e. “jumbo frame”) to send Ethernet frames with a payload greater than the standard
size of 1500 bytes:

If you have a cable connected but it does not show Up/Down in the
output of ibdev2netdev , you can try to parse the output of dmesg
instead. The example below shows that 0005:03:00.1 is plugged, and
that it is associated with eth3 :

InfiniBand and Ethernet, PCIe5 fw 28.37.0190 port 1 (DOWN)
==> eth2 (Down) 0005:03:00.1 mlx5_1 (MT4129 - P3740-0002)
NVIDIA IGX, P3740-0002, 2-port QSFP up to 400G, InfiniBand
and Ethernet, PCIe5 fw 28.37.0190 port 1 (DOWN) ==> eth2
(Down)

$ sudo dmesg | grep -w mlx5_core ... [11.512808] mlx5_core
0005:03:00.0 eth2: Link down [11.640670] mlx5_core
0005:03:00.1 eth3: Link down ... [3712.267103] mlx5_core
0005:03:00.1: Port module event: module 1, Cable plugged

ip -f inet addr show eth3

sudo ip link set dev eth3 down sudo ip addr add 192.168.1.1/24 dev eth3 sudo ip

https://docs.nvidia.com/emergent_setup.html#emergent-vision-tech
https://docs.nvidia.com/holoscan_create_distributed_app.html

Enabling RDMA 7

Enabling GPUDirect RDMA

Follow the instructions below to enable GPUDirect RDMA:

Ingested Tab Module

Testing with Rivermax

The instructions below describe the steps to test GPUDirect using the Rivermax SDK. The
test applications used by these instructions, generic_sender and generic_receiver , can
then be used as samples in order to develop custom applications that use the Rivermax
SDK to optimize data transfers.

link set dev eth3 mtu 9000 sudo ip link set dev eth3 up

Note

If you are connecting the ConnectX to another ConnectX with a LinkX
interconnect, do the same on the other system with an IP address on
the same network segment.

For example, to communicate with 192.168.1.1/24 above (/24 ->
255.255.255.0 submask), setup your other system with an IP

between 192.168.1.2 and 192.168.1.254 , and the same /24
submask.

Note

Only supported on NVIDIA’s Quadro/workstation GPUs (not GeForce).

https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/networking/rivermax
https://www.nvidia.com/en-us/networking/interconnect/
https://www.nvidia.com/en-us/networking/interconnect/

Enabling RDMA 8

Running the Rivermax sample applications requires two systems, a sender and a receiver,
connected via ConnectX network adapters. If two Developer Kits are used then the
onboard ConnectX can be used on each system, but if only one Developer Kit is available
then it is expected that another system with an add-in ConnectX network adapter will
need to be used. Rivermax supports a wide array of platforms, including both Linux and
Windows, but these instructions assume that another Linux based platform will be used
as the sender device while the Developer Kit is used as the receiver.

Note

The Linux default path where Rivermax expects to find the license file
is /opt/mellanox/rivermax/rivermax.lic , or you can specify the full
path and file name for the environment variable
RIVERMAX_LICENSE_PATH .

Note

If manually installing the Rivermax SDK from the link above, please
note there is no need to follow the steps for installing
MLNX_OFED/MLNX_EN in the Rivermax documentation.

Note

The $rivermax_sdk variable referenced below corresponds to the
path where the Rivermax SDK package was installed. If the Rivermax
SDK was installed via SDK Manager, this path will be:

If the Rivermax SDK was installed via a manual download, make sure
to export your path to the SDK:

rivermax_sdk=$HOME/Documents/Rivermax/1.31.10

Enabling RDMA 9

1. Determine the logical name for the ConnectX devices that are used by each system.
This can be done by using the lshw -class network command, finding the product:
entry for the ConnectX device, and making note of the logical name: that
corresponds to that device. For example, this output on a Developer Kit shows the
onboard ConnectX device using the enp9s0f01 logical name (lshw output
shortened for demonstration purposes).

The instructions that follow will use the enp9s0f0 logical name for ifconfig
commands, but these names should be replaced with the corresponding logical
names as determined by this step.

2. Run the generic_sender application on the sending system.

a. Bring up the network:

b. Build the sample apps:

Install path might differ in future versions of Rivermax.

rivermax_sdk=$DOWNLOAD_PATH/1.31.10

$ sudo lshw -class network *-network:0 description: Ethernet interface
product: MT28908 Family [ConnectX-6] vendor: Mellanox Technologies
physical id: 0 bus info: pci@0000:09:00.0 logical name: enp9s0f0
version: 00 serial: 48:b0:2d:13:9b:6b capacity: 10Gbit/s width: 64 bits clock:
33MHz capabilities: pciexpress vpd msix pm bus_master cap_list ethernet
physical 1000bt-fd 10000bt-fd autonegotiation configuration:
autonegotiation=on broadcast=yes driver=mlx5_core driverversion=5.4-1.0.3
duplex=full firmware=20.27.4006 (NVD0000000001) ip=10.0.0.2 latency=0
link=yes multicast=yes resources: iomemory:180-17f irq:33
memory:1818000000-1819ffffff

$ sudo ifconfig enp9s0f0 up 10.0.0.1

Enabling RDMA 10

e. Launch the generic_sender application:

3. Run the generic_receiver application on the receiving system.

a. Bring up the network:

b. Build the generic_receiver app with GPUDirect support from the Rivermax
GitHub Repo. Before following the instructions to build with CUDA-Toolkit support,
apply the changes to file generic_receiver/generic_receiver.cpp in this PR, this was
tested on the IGX Orin Developer Kit with Rivermax 1.31.10.

c. Launch the generic_receiver application from the build directory:

$ cd ${rivermax_sdk}/apps $ make

$ sudo ./generic_sender -l 10.0.0.1 -d 10.0.0.2 -p 5001 -y 1462 -k 8192 -z 500 -v
... +### | Sender
index: 0 | Thread ID: 0x7fa1ffb1c0 | CPU core affinity: -1 | Number of streams
in this thread: 1 | Memory address: 0x7f986e3010 | Memory length:
59883520[B] | Memory key: 40308
+### | Stream
index: 0 | Source IP: 10.0.0.1 | Destination IP: 10.0.0.2 | Destination port: 5001
| Number of flows: 1 | Rate limit bps: 0 | Rate limit max burst in packets: 0 |
Memory address: 0x7f986e3010 | Memory length: 59883520[B] | Memory key:
40308 | Number of user requested chunks: 1 | Number of application chunks:
5 | Number of packets in chunk: 8192 | Packet's payload size: 1462
+**

$ sudo ifconfig enp9s0f0 up 10.0.0.2

$ sudo ./generic_receiver -i 10.0.0.2 -m 10.0.0.2 -s 10.0.0.1 -p 5001 -g 0 ...
Attached flow 1 to stream. Running main receive loop... Got 5877704 GPU
packets | 68.75 Gbps during 1.00 sec Got 5878240 GPU packets | 68.75 Gbps
during 1.00 sec Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec Got

https://github.com/NVIDIA/Rivermax
https://github.com/NVIDIA/Rivermax
https://github.com/NVIDIA/Rivermax/blob/master/generic_receiver/README.md#how-to-build
https://github.com/NVIDIA/Rivermax/pull/3/files

Enabling RDMA 11

With both the generic_sender and generic_receiver processes active, the receiver will
continue to print out received packet statistics every second. Both processes can then be
terminated with <ctrl-c> .

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

5877704 GPU packets | 68.75 Gbps during 1.00 sec Got 5878240 GPU packets
| 68.75 Gbps during 1.00 sec ...

	Enabling RDMA on the ConnectX SmartNIC
	Enabling GPUDirect RDMA
	Testing with Rivermax

