
Bring Your Own Model (BYOM)

Table of contents

Operators and Workflow

Prerequisites

Understanding the Application Code

Modifying the Application for Ultrasound Segmentation

Running the Application

Customizing the Inference Operator

Common Pitfalls Deploying New Models

Bring Your Own Model (BYOM) 1

Table of contents

Operators and Workflow

Prerequisites

Understanding the Application Code

Modifying the Application for Ultrasound Segmentation

Running the Application

Customizing the Inference Operator

Common Pitfalls Deploying New Models

Bring Your Own Model (BYOM) 2

List of Figures
Figure 0. Byom Workflow

Figure 1. App Ultrasound

Bring Your Own Model (BYOM) 3

The Holoscan platform is optimized for performing AI inferencing workflows. This section
shows how the user can easily modify the bring_your_own_model example to create
their own AI applications.

In this example we’ll cover:

the usage of FormatConverterOp , InferenceOp , SegmentationPostprocessorOp
operators to add AI inference into the workflow

how to modify the existing code in this example to create an ultrasound
segmentation application to visualize the results from a spinal scoliosis
segmentation model

Operators and Workflow

Here is the diagram of the operators and workflow used in the byom.py example.

Fig. 10 The BYOM inference workflow

The example code already contains the plumbing required to create the pipeline above
where the video is loaded by VideoStreamReplayer and passed to two branches. The

Note

The example source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian

package, alongside their executables.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/bring_your_own_model/python/byom.py
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Bring Your Own Model (BYOM) 4

first branch goes directly to Holoviz to display the original video. The second branch in
this workflow goes through AI inferencing and can be used to generate overlays such as
bounding boxes, segmentation masks, or text to add additional information.

This second branch has three operators we haven’t yet encountered.

Format Converter: The input video stream goes through a preprocessing stage to
convert the tensors to the appropriate shape/format before being fed into the AI
model. It is used here to convert the datatype of the image from uint8 to float32
and resized to match the model’s expectations.

Inference: This operator performs AI inferencing on the input video stream with the
provided model. It supports inferencing of multiple input video streams and
models.

Segmentation Postprocessor: this postprocessing stage takes the output of
inference, either with the final softmax layer (multiclass) or sigmoid (2-class), and
emits a tensor with uint8 values that contain the highest probability class index.
The output of the segmentation postprocessor is then fed into the Holoviz visualizer
to create the overlay.

Prerequisites

To follow along this example, you can download the ultrasound dataset with the
following commands:

You can also follow along using your own dataset by adjusting the operator parameters
based on your input video and model, and converting your video and model to a format
that is understood by Holoscan.

Input video

$ wget --content-disposition \ https://api.ngc.nvidia.com/v2/resources/nvidia/clara-
holoscan/holoscan_ultrasound_sample_data/versions/20220608/zip \ -O
holoscan_ultrasound_sample_data_20220608.zip $ unzip
holoscan_ultrasound_sample_data_20220608.zip -d
<SDK_ROOT>/data/ultrasound_segmentation

Bring Your Own Model (BYOM) 5

The video stream replayer supports reading video files that are encoded as gxf entities.
These files are provided with the ultrasound dataset as the
ultrasound_256x256.gxf_entities and ultrasound_256x256.gxf_index files.

Input model

Currently, the inference operators in Holoscan are able to load ONNX models, or
TensorRT engine files built for the GPU architecture on which you will be running the
model. TensorRT engines are automatically generated from ONNX by the operators when
the applications run.

If you are converting your model from PyTorch to ONNX, chances are your input is NCHW
and will need to be converted to NHWC. We provide an example transformation script
named graph_surgeon.py , installed in /opt/nvidia/holoscan/bin or available on GitHub.
You may need to modify the dimensions as needed before modifying your model.

Understanding the Application Code

Note

To use your own video data, you can use the
convert_video_to_gxf_entities.py script (installed in
/opt/nvidia/holoscan/bin or on GitHub) to encode your video. Note

that - using this script - the metadata in the generated GXF tensor
files will indicate that the data should be copied to the GPU on read.

Tip

To get a better understanding of your model, and if this step is
necessary, websites such as netron.app can be used.

https://onnx.ai/
https://developer.nvidia.com/tensorrt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#graph_surgeonpy
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#convert_video_to_gxf_entitiespy
https://netron.app/

Bring Your Own Model (BYOM) 6

Before modifying the application, let’s look at the existing code to get a better
understanding of how it works.

Ingested Tab Module

Next, we look at the operators and their parameters defined in the application yaml file.

Ingested Tab Module

Finally, we define the application and workflow.

Ingested Tab Module

Modifying the Application for Ultrasound Segmentation

To create the ultrasound segmentation application, we need to swap out the input video
and model to use the ultrasound files, and adjust the parameters to ensure the input
video is resized correctly to the model’s expectations.

We will need to modify the python and yaml files to change our application to the
ultrasound segmentation application.

Ingested Tab Module

The above changes are enough to update the byom example to the ultrasound
segmentation application.

In general, when deploying your own AI models, you will need to consider the operators
in the second branch. This example uses a pretty typical AI workflow:

Input: This could be a video on disk, an input stream from a capture device, or
other data stream.

Preprocessing: You may need to preprocess the input stream to convert tensors
into the shape and format that is expected by your AI model (e.g., converting
datatype and resizing).

Inference: Your model will need to be in onnx or trt format.

Postprocessing: An operator that postprocesses the output of the model to a
format that can be readily used by downstream operators.

Bring Your Own Model (BYOM) 7

Output: The postprocessed stream can be displayed or used by other downstream
operators.

The Holoscan SDK comes with a number of built-in operators that you can use to
configure your own workflow. If needed, you can write your own custom operators or
visit Holohub for additional implementations and ideas for operators.

Running the Application

After modifying the application as instructed above, running the application should bring
up the ultrasound video with a segmentation mask overlay similar to the image below.

Fig. 11 Ultrasound Segmentation

Note

If you run the byom.py application without modification and are
using the debian installation, you may run into the following error
message:

In this case, modifying the write permissions for the model directory
should help (use with caution):

[error] Error in Inference Manager ... TRT Inference: failed to
build TRT engine file.

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators
https://nvidia-holoscan.github.io/holohub/

Bring Your Own Model (BYOM) 8

Customizing the Inference Operator

The builtin InferenceOp operator provides the functionality of the Inference. This
operator has a receivers port that can connect to any number of upstream ports to
allow for multiai inferencing, and one transmitter port to send results downstream.
Below is a description of some of the operator’s parameters and a general guidance on
how to use them.

backend : if the input models are in tensorrt engine file format, select trt as the
backend. If the input models are in onnx format select either trt or onnx as the
backend.

allocator : Can be passed to this operator to specify how the output tensors are
allocated.

model_path_map : contains dictionary keys with unique strings that refer to each
model. The values are set to the path to the model files on disk. All models must be
either in onnx or in tensorrt engine file format. The Holoscan Inference Module
will do the onnx to tensorrt model conversion if the TensorRT engine files do not
exist.

pre_processor_map : this dictionary should contain the same keys as
model_path_map , mapping to the output tensor name for each model.

inference_map : this dictionary should contain the same keys as model_path_map
, mapping to the output tensor name for each model.

enable_fp16 : Boolean variable indicating if half-precision should be used to speed
up inferencing. The default value is False, and uses single-precision (32-bit fp)
values.

input_on_cuda : indicates whether input tensors are on device or host

sudo chmod a+w
/opt/nvidia/holoscan/examples/bring_your_own_model/model

https://docs.nvidia.com/inference.html#holoinfer

Bring Your Own Model (BYOM) 9

output_on_cuda : indicates whether output tensors are on device or host

transmit_on_cuda : if True, it means the data transmission from the inference will
be on Device, otherwise it means the data transmission from the inference will be
on Host

Common Pitfalls Deploying New Models

Color Channel Order

It is important to know what channel order your model expects. This may be indicated by
the training data, pre-training transformations performed at training, or the expected
inference format used in your application.

For example, if your inference data is RGB, but your model expects BGR, you will need to
add the following to your segmentation_preprocessor in the yaml file:
out_channel_order: [2,1,0] .

Normalizing Your Data

Similarly, default scaling for streaming data is [0,1] , but dependent on how your model
was trained, you may be expecting [0,255] .

For the above case you would add the following to your segmentation_preprocessor in
the yaml file:

scale_min: 0.0 scale_max: 255.0

Network Output Type

Models often have different output types such as Sigmoid , Softmax , or perhaps
something else, and you may need to examine the last few layers of your model to
determine which applies to your case.

As in the case of our ultrasound segmentation example above, we added the following in
our yaml file: network_output_type: softmax

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

	Operators and Workflow
	Prerequisites
	Understanding the Application Code
	Modifying the Application for Ultrasound Segmentation
	Running the Application
	Customizing the Inference Operator
	Common Pitfalls Deploying New Models

