<3

NVIDIA.

Ping Custom Op



Table of contents

Operators and Workflow

Configuring Operator Input and Output Ports
Configuring Operator Parameters

Message Data Types

Running the Application

Ping Custom Op



List of Figures

Figure 0. Graphviz 71b34fe2fcfd0564f52cb6e8312ac0a0a301b25f

Ping Custom Op



In this section, we will modify the previous ping_simple example to add a custom
operator into the workflow. We've already seen a custom operator defined in the
hello_world example but skipped over some of the details.

In this example we will cover:
¢ the details of creating your own custom operator class
e how to add input and output ports to your operator
e how to add parameters to your operator

e the data type of the messages being passed between operators

(D) Note

The example source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian
package, alongside their executables.

Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

PingTxOp PingM=xOp PingRxOp
out...ln » [in]in : int out...in p [in]in : int
out(out) : int out(out) : int

Fig. 6 A linear workflow with new custom operator

Compared to the previous example, we are adding a new PingMxOp operator between
the PingTxOp and PingRx0p operators. This new operator takes as input an integer,
multiplies it by a constant factor, and then sends the new value to PingRxOp. You can

Ping Custom Op


https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

think of this custom operator as doing some data processing on an input stream before
sending the result to downstream operators.

Configuring Operator Input and Output Ports

Our custom operator needs 1 input and 1 output port and can be added by calling
spec.input() and spec.output() methods within the operator’s setup() method. This
requires providing the data type and name of the port as arguments (for C++ API), or just
the port name (for Python API). We will see an example of this in the code snippet below.
For more details, see Specifying operator inputs and outputs (C++) or Specifying operator
inputs and outputs (Python).

Configuring Operator Parameters

Operators can be made more reusable by customizing their parameters during
initialization. The custom parameters can be provided either directly as arguments or
accessed from the application’s YAML configuration file. We will show how to use the
former in this example to customize the “multiplier” factor of our PingMxOp custom
operator. Configuring operators using a YAML configuration file will be shown in a
subsequent example. For more details, see Configuring operator parameters.

The code snippet below shows how to define the PingMxOp class.
Ingested Tab Module

Now that the custom operator has been defined, we create the application, operators,
and define the workflow.

Ingested Tab Module

Message Data Types

For the C++ API, the messages that are passed between the operators are the objects of
the data type at the inputs and outputs, so the value variable from lines 20 and 25 of
the example above has the type int . For the Python API, the messages passed between

operators can be arbitrary Python objects so no special consideration is needed since it is
not restricted to the stricter parameter typing used for C++ API operators.

Let's look at the code snippet for the built-in PingTxOp class and see if this helps to make
it clearer.

Ping Custom Op 4


https://docs.nvidia.com/holoscan_create_operator.html#specifying-operator-inputs-and-outputs-cpp
https://docs.nvidia.com/holoscan_create_operator.html#specifying-operator-inputs-and-outputs-python
https://docs.nvidia.com/holoscan_create_operator.html#specifying-operator-inputs-and-outputs-python
https://docs.nvidia.com/video_replayer.html#video-replayer-example
https://docs.nvidia.com/holoscan_create_app.html#configuring-app-operator-parameters

Ingested Tab Module

/\ Attention

For advance use cases, e.g., when writing C++ applications where you
need interoperability between C++ native and GXF operators you will
need to use the holoscan::-TensorMap type instead. See
Interoperability between GXF and native C++ operators for more
details. If you are writing a Python application which needs a mixture
of Python wrapped C++ operators and native Python operators, see
Interoperability between wrapped and native Python operators

Running the Application

Running the application should give you the following output in your terminal:

Middle message value: 1 Rx message value: 3 Middle message value: 2 Rx message
value: 6 Middle message value: 3 Rx message value: 9 Middle message value: 4 Rx
message value: 12 Middle message value: 5 Rx message value: 15 Middle message
value: 6 Rx message value: 18 Middle message value: 7 Rx message value: 21 Middle
message value: 8 Rx message value: 24 Middle message value: 9 Rx message value:
27 Middle message value: 10 Rx message value: 30

Ping Custom Op


file:///tmp/jsreport/holoscan_create_operator.html#interoperability-with-gxf-operators-cpp
file:///tmp/jsreport/holoscan_create_operator.html#interoperability-with-wrapped-operators-python

	Operators and Workflow
	Configuring Operator Input and Output Ports
	Configuring Operator Parameters
	Message Data Types
	Running the Application



