
Ping Multi Port

Table of contents

Operators and Workflow

User Defined Data Types

Defining an Explicit Number of Inputs and Outputs

Receiving Any Number of Inputs

Running the Application

Ping Multi Port 1

Table of contents

Operators and Workflow

User Defined Data Types

Defining an Explicit Number of Inputs and Outputs

Receiving Any Number of Inputs

Running the Application

Ping Multi Port 2

List of Figures
Figure 0. Graphviz 481832a40f9d6ff34591625aec2eb4eb1cc991eb

Ping Multi Port 3

In this section, we look at how to create an application with a more complex workflow
where operators may have multiple input/output ports that send/receive a user-defined
data type.

In this example we will cover:

how to send/receive messages with a custom data type

how to add a port that can receive any number of inputs

Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

Fig. 7 A workflow with multiple inputs and outputs

In this example, PingTxOp sends a stream of odd integers to the out1 port, and even
integers to the out2 port. PingMxOp receives these values using in1 and in2 ports,
multiplies them by a constant factor, then forwards them to a single port - receivers - on
PingRxOp .

User Defined Data Types

Note

The example source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian

package, alongside their executables.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Ping Multi Port 4

In the previous ping examples, the port types for our operators were integers, but the
Holoscan SDK can send any arbitrary data type. In this example, we’ll see how to
configure operators for our user-defined ValueData class.

Ingested Tab Module

Defining an Explicit Number of Inputs and Outputs

After defining our custom ValueData class, we configure our operators’ ports to
send/receive messages of this type, similarly to the previous example.

This is the first operator - PingTxOp - sending ValueData objects on two ports, out1
and out2 :

Ingested Tab Module

We then configure the middle operator - PingMxOp - to receive that data on ports in1
and in2 :

Ingested Tab Module

PingMxOp processes the data, then sends it out on two ports, similarly to what is done
by PingTxOp above.

Receiving Any Number of Inputs

In this workflow, PingRxOp has a single input port - receivers - that is connected to two
upstream ports from PingMxOp . When an input port needs to connect to multiple
upstream ports, we define it with spec.param() instead of spec.input() . The inputs are
then stored in a vector, following the order they were added with add_flow() .

Ingested Tab Module

The rest of the code creates the application, operators, and defines the workflow:

Ingested Tab Module

https://docs.nvidia.com/ping_custom_op.html#configuring-operator-input-and-output-ports

Ping Multi Port 5

The operators tx , mx , and rx are created in the application’s compose()
similarly to previous examples.

Since the operators in this example have multiple input/output ports, we need to
specify the third, port name pair argument when calling add_flow() :

tx/out1 is connected to mx/in1 , and tx/out2 is connected to mx/in2 .

mx/out1 and mx/out2 are both connected to rx/receivers .

Running the Application

Running the application should give you output similar to the following in your terminal.

[info] [gxf_executor.cpp:222] Creating context [info] [gxf_executor.cpp:1531]
Loading extensions from configs... [info] [gxf_executor.cpp:1673] Activating Graph...
[info] [gxf_executor.cpp:1703] Running Graph... [info] [gxf_executor.cpp:1705]
Waiting for completion... [info] [gxf_executor.cpp:1706] Graph execution waiting.
Fragment: [info] [greedy_scheduler.cpp:195] Scheduling 3 entities [info]
[ping_multi_port.cpp:80] Middle message received (count: 1) [info]
[ping_multi_port.cpp:82] Middle message value1: 1 [info] [ping_multi_port.cpp:83]
Middle message value2: 2 [info] [ping_multi_port.cpp:112] Rx message received
(count: 1, size: 2) [info] [ping_multi_port.cpp:114] Rx message value1: 3 [info]
[ping_multi_port.cpp:115] Rx message value2: 6 [info] [ping_multi_port.cpp:80]
Middle message received (count: 2) [info] [ping_multi_port.cpp:82] Middle message
value1: 3 [info] [ping_multi_port.cpp:83] Middle message value2: 4 [info]
[ping_multi_port.cpp:112] Rx message received (count: 2, size: 2) [info]
[ping_multi_port.cpp:114] Rx message value1: 9 [info] [ping_multi_port.cpp:115] Rx
message value2: 12 ... [info] [ping_multi_port.cpp:114] Rx message value1: 51 [info]
[ping_multi_port.cpp:115] Rx message value2: 54 [info] [ping_multi_port.cpp:80]
Middle message received (count: 10) [info] [ping_multi_port.cpp:82] Middle message
value1: 19 [info] [ping_multi_port.cpp:83] Middle message value2: 20 [info]
[ping_multi_port.cpp:112] Rx message received (count: 10, size: 2) [info]
[ping_multi_port.cpp:114] Rx message value1: 57 [info] [ping_multi_port.cpp:115] Rx
message value2: 60 [info] [greedy_scheduler.cpp:374] Scheduler stopped: Some
entities are waiting for execution, but there are no periodic or async entities to get

Ping Multi Port 6

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

out of the deadlock. [info] [greedy_scheduler.cpp:403] Scheduler finished. [info]
[gxf_executor.cpp:1714] Graph execution deactivating. Fragment: [info]
[gxf_executor.cpp:1715] Deactivating Graph... [info] [gxf_executor.cpp:1718] Graph
execution finished. Fragment: [info] [gxf_executor.cpp:241] Destroying context

Note

Depending on your log level you may see more or fewer messages.
The output above was generated using the default value of INFO .
Refer to the Logging section for more details on how to set the log
level.

file:///tmp/jsreport/holoscan_logging.html#holoscan-logging

	Operators and Workflow
	User Defined Data Types
	Defining an Explicit Number of Inputs and Outputs
	Receiving Any Number of Inputs
	Running the Application

