
Video Replayer (Distributed)

Table of contents

Operators and Workflow

Defining and Connecting Fragments

Running the Application

Video Replayer (Distributed) 1

Table of contents

Operators and Workflow

Defining and Connecting Fragments

Running the Application

Video Replayer (Distributed) 2

List of Figures
Figure 0. Graphviz 85b78b2782649644c07cf1ec3f4d0ea9dfc84e60

Figure 1. Video Replayer

Video Replayer (Distributed) 3

In this example, we extend the previous video replayer application into a multi-node
distributed application. A distributed application is made up of multiple Fragments (C++ /
Python), each of which may run on its own node.

In the distributed case we will:

create one fragment that loads a video file from disk using
VideoStreamReplayerOp operator

create a second fragment that will display the video using the HolovizOp operator

These two fragments will be combined into a distributed application such that the display
of the video frames could occur on a separate node from the node where the data is
read.

Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

Fig. 9 Workflow to load and display video from a file

This is the same workflow as the single fragment video replayer, each operator is
assigned to a separate fragment and there is now a network connection between the

Note

The example source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian

package, alongside their executables.

https://docs.nvidia.com/video_replayer.html
https://docs.nvidia.com/holoscan_create_distributed_app.html
https://docs.nvidia.com/video_replayer.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

Video Replayer (Distributed) 4

fragments.

Defining and Connecting Fragments

Distributed applications define Fragments explicitly to isolate the different units of work
that could be distributed to different nodes. In this example:

We define two classes that inherit from Fragment :

Fragment1 contains an instance of VideoStreamReplayerOp named
“replayer”.

Fragment2 contains an instance of HolovizOp name “holoviz”.

We create an application, DistributedVideoReplayerApp. In its compose method:

we call make_fragment to initialize both fragments.

we then connect the “output” port of “replayer” operator in fragment1 to the
“receivers” port of the “holoviz” operator in fragment2 to define the application
workflow.

The operators instantiated in the fragments can still be configured with parameters
initialized from the YAML configuration ingested by the application using
from_config() (C++) or kwargs() (Python).

Ingested Tab Module

This particular distributed application only has one operator per fragment, so the
operators was added via add_operator (C++ / Python). In general, each fragment
may have multiple operators and connections between operators within a fragment
would be made using add_flow() (C++ / Python) method within the fragment’s
compute() (C++ / Python) method.

Running the Application

Running the application should bring up video playback of the video referenced in the
YAML file.

Video Replayer (Distributed) 5

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

Note

Instructions for running the distributed application involve calling the
application from the “driver” node as well as from any worker nodes.
For details, see the application run instructions in the examples
directory on GitHub, or under
/opt/nvidia/holoscan/examples/video_replayer_distributed in the

NGC container and the debian package.

Tip

Refer to UCX Network Interface Selection when running a distributed
application across multiple nodes.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/video_replayer_distributed
file:///tmp/jsreport/holoscan_create_distributed_app.html#ucx-network-selection

	Operators and Workflow
	Defining and Connecting Fragments
	Running the Application

