
Graph Specification

Table of contents

Concepts

Graph File Format

Graph Specification 1

Table of contents

Concepts

Graph File Format

Graph Specification 2

Graph Specification is a format to describe high-performance AI applications in a modular
and extensible way. It allows writing applications in a standard format and sharing
components across multiple applications without code modification. Graph Specification
is based on entity-composition pattern. Every object in graph is represented with entity
(aka Node) and components. Developers implement custom components which can be
added to entity to achieve the required functionality.

Concepts

The graph contains nodes which follow an entity-component design pattern
implementing the “composition over inheritance” paradigm. A node itself is just a light-
weight object which owns components. Components define how a node interacts with
the rest of the applications. For example, nodes be connected to pass data between each
other. A special component, called compute component, is used to execute the code
based on certain rules. Typically a compute component would receive data, execute
some computation and publish data.

Graph

A graph is a data-driven representation of an AI application. Implementing an application
by using programming code to create and link objects results in a monolithic and hard to
maintain program. Instead a graph object is used to structure an application. The graph
can be created using specialized tools and it can be analyzed to identify potential
problems or performance bottlenecks. The graph is loaded by the graph runtime to be
executed.

The functional blocks of a graph are defined by the set of nodes which the graph owns.
Nodes can be queried via the graph using certain query functions. For example, it is
possible to search for a node by its name.

SubGraph

A subgraph is a graph with additional node for interfaces. It points to the components
which are accessible outside this graph. In order to use a subgraph in an existing graph
or subgraph, the developer needs to create an entity where a component of the type
nvidia::gxf::Subgraph is contained. Inside the Subgraph component a corresponding

subgraph can be loaded from the yaml file indicated by location property and
instantiated in the parent graph.

Graph Specification 3

System makes the components from interface available to the parent graph when a sub-
graph is loaded in the parent graph. It allows users to link sub-graphs in parent with
defined interface.

A subgraph interface can be defined as follows:

Node

Graph Specification uses an entity-component design principle for nodes. This means
that a node is a light-weight object whose main purpose is to own components. A node is
a composition of components. Every component is in exactly one node. In order to
customize a node a developer does not derive from node as a base class, but instead
composes objects out of components. Components can be used to provide a rich set of
functionality to a node and thus to an application.

Components

Components are the main functional blocks of an application. Graph runtime provides a
couple of components which implement features like properties, code execution, rules
and message passing. It also allows a developer to extend the runtime by injecting her
own custom components with custom features to fit a specific use case.

The most common component is a codelet or compute component which is used for data
processing and code execution. To implement a custom codelet you’ll need to implement
a certain set of functions like start and stop. A special system - the scheduler - will call
these functions at the specified time. Typical examples of triggering code execution are:
receiving a new message from another node, or performing work on a regular schedule
based on a time trigger.

Edges

Nodes can receive data from other nodes by connecting them with an edge. This
essential feature allows a graph to represent a compute pipeline or a complicated AI
application. An input to a node is called sink while an output is called source. There can
be zero, one or multiple inputs and outputs. A source can be connected to multiple sinks
and a sink can be connected to multiple sources.

--- interfaces: - name: iname # the name of the interface for the access from the
parent graph target: n_entity/n_component # the true component in the subgraph
that is represented by the interface

Graph Specification 4

Extension

An extension is a compiled shared library of a logical group of component type
definitions and their implementations along with any other asset files that are required
for execution of the components. Some examples of asset files are model files, shared
libraries that the extension library links to and hence required to run, header and
development files that enable development of additional components and extensions
that use components from the extension.

An extension library is a runtime loadable module compiled with component information
in a standard format that allows the graph runtime to load the extension and retrieve
further information from it to:

Allow the runtime to create components using the component types in the
extension.

Query information regarding the component types in the extension:

The component type name

The base type of the component

A string description of the component

Information of parameters of the component – parameter name, type,
description etc.,

Query information regarding the extension itself - Name of the extension, version,
license, author and a string description of the extension.

The section :doc: GraphComposer_Dev_Workflow talks more about this with a focus on
developing extensions and components.

Graph File Format

Graph file stores list of entities. Each entity has a unique name and list of components.
Each component has a name, a type and properties. Properties are stored as key-value
pairs.

Graph Specification 5

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

%YAML 1.2 --- name: source components: - name: signal type: sample::test::ping -
type: nvidia::gxf::CountSchedulingTerm parameters: count: 10 --- components: -
type: nvidia::gxf::GreedyScheduler parameters: realtime: false max_duration_ms:
1000000

	Concepts
	Graph File Format

