<3

NVIDIA.

GXF Core C APlIs

Table of contents

Context

Extensions

Graph Execution
Entities

Components
Primitive Parameters
Vector Parameters
Information Queries

Miscellaneous

GXF Core C APIs

Context

Create context
gxf_result_t GxfContextCreate(gxf_context_t* context);

Creates a new GXF context

A GXF context is required for all almost all GXF operations. The context must be
destroyed with ‘GxfContextDestroy’. Multiple contexts can be created in the same
process, however they can not communicate with each other.

parameter: context The new GXF context is written to the given pointer.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Create a context from a shared context
gxf_result_t GxfContextCreate1(gxf_context_t shared, gxf_context_t* context);

Creates a new runtime context from shared context.

A shared runtime context is used for sharing entities between graphs running within the
same process.

parameter: shared A valid GXF shared context.

parameter: context The new GXF context is written to the given pointer

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Destroy context

GXF Core C APIs

gxf_result_t GxfContextDestroy(gxf_context_t context);
Destroys a GXF context

Every GXF context must be destroyed by calling this function. The context must have
been previously created with ‘GxfContextCreate’. This will also destroy all entities and
components which were created as part of the context.

parameter: context A valid GXF context.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Extensions

Maximum number of extensions in a context can be 1024 .

Load Extensions from a file

gxf_result_t GxfLoadExtension(gxf_context_t context, const char* filename);
Loads extension in the given context from file.

parameter: context A valid GXF context

parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

This function will be deprecated.

Load Extension libraries

GXF Core C APIs

gxf_result_t GxfLoadExtensions(gxf_context_t context, const GxfLoadExtensionsinfo*
info);

Loads GXF extension libraries

Loads one or more extensions either directly by their filename or indirectly by loading
manifest files. Before a component can be added to a GXF entity the GXF extension
shared library providing the component must be loaded. An extensions must only be
loaded once.

To simplify loading multiple extensions at once the developer can create a manifest file
which lists all extensions he needs. This function will then load all extensions listed in the
manifest file. Multiple manifest may be loaded, however each extensions may still be

loaded only a single time.

A manifest file is a YAML file with a single top-level entry ‘extensions’ followed by a list of
filenames of GXF extension shared libraries.

Example: —- START OF FILE —- extensions: - gxf/std/libgxf_std.so - gxf/npp/libgxf_npp.so
—- END OF FILE —-

parameter: context A valid GXF context
parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

gxf_result_t GxfLoadExtensionManifest(gxf_context_t context, const char*
manifest_filename);

Loads extensions from manifest file.
parameter: context A valid GXF context.
parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

GXF Core C APIs

This function will be deprecated.
Load Metadata files

gxf_result_t GxfLoadExtensionMetadataFiles(gxf_context_t context, const char* const*
filenames, uint32_t count);

Loads an extension registration metadata file

Reads a metadata file of the contents of an extension used for registration. These
metadata files can be used to resolve typename and TID's of components for other
extensions which depend on them. Metadata files do not contain the actual
implementation of the extension and must be loaded only to run the extension query
API's on extension libraries which have the actual implementation and only depend on
the metadata for type resolution.

If some components of extension B depend on some components in extension A: - Load
metadata file for extension A - Load extension library for extension B using
‘GxfLoadExtensions’ - Run extension query api's on extension B and it's components.
parameter: context A valid GXF context.

parameter: filenames absolute paths of metadata files.

parameter: count The number of metadata files to be loaded

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Register component

gxf_result_t GxfRegisterComponent(gxf_context_t context, gxf_tid_t tid, const char*
name, const char* base_name);

Registers a component with a GXF extension

GXF Core C APIs

A GXF extension need to register all of its components in the extension factory function.
For convenience the helper macros in gxf/std/extension_factory_helper.hpp can be used.

The developer must choose a unique GXF tid with two random 64-bit integers. The
developer must ensure that every GXF component has a unique tid. The name of the
component must be the fully qualified C++ type name of the component. A component
may only have a single base class and that base class must be specified with its fully
qualified C++ type name as the parameter ‘base_name’.

ref: gxf/std/extension_factory_helper.hpp ref: core/type_name.hpp

parameter: context A valid GXF context
parameter: tid The chosen GXF tid
parameter: name The type name of the component

parameter: base_name The type name of the base class of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Graph Execution

Loads a list of entities from YAML file

gxf_result_t GxfGraphLoadFile(gxf_context_t context, const char* filename, const char*
parameters_override[], const uint32_t num_overrides);

parameter: context A valid GXF context
parameter: filename A valid YAML filename.

parameter: params_override An optional array of strings used for override parameters
in yaml file.

parameter: num_overrides Number of optional override parameter strings.

GXF Core C APIs

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Set the root folder for searching YAML files during loading
gxf_result_t GxfGraphSetRootPath(gxf_context_t context, const char* path);
parameter: context A valid GXF context

parameter: path Path to root folder for searching YAML files during loading

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Loads a list of entities from YAML text

gxf_result_t GxfGraphParseString(gxf_context_t context, const char* tex, const char*
parameters_override[], const uint32_t num_overrides);

parameter: context A valid GXF context
parameter: text A valid YAML text.

parameter: params_override An optional array of strings used for override parameters
in yaml file.

parameter: num_overrides Number of optional override parameter strings.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Activate all system components

gxf_result_t GxfGraphActivate(gxf_context_t context);

GXF Core C APIs

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Deactivate all System components

gxf_result_t GxfGraphDeactivate(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Starts the execution of the graph asynchronously

gxf_result_t GxfGraphRunAsync(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Interrupt the execution of the graph
gxf_result_t GxfGraphinterrupt(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Waits for the graph to complete execution

GXF Core C APIs

gxf_result_t GxfGraphWait(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.’

Runs all System components and waits for their completion

gxf_result_t GxfGraphRun(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Entities

Create an entity
gxf_result_t GxfEntityCreate(gxf_context_t context, gxf_uid_t* eid);

Creates a new entity and updates the eid to the unique identifier of the newly created
entity.

This method will be deprecated.

gxf_result_t GxfCreateEntity((gxf_context_t context, const GxfEntityCreatelnfo* info,
gxf_uid_t* eid);

Create a new GXF entity.

Entities are light-weight containers to hold components and form the basic building
blocks of a GXF application. Entities are created when a GXF file is loaded, or they can be
created manually using this function. Entities created with this function must be
destroyed using ‘GxfEntityDestroy’. After the entity was created components can be

GXF Core C APIs

added to it with ‘GxfComponentAdd'. To start execution of codelets on an entity the entity
needs to be activated first. This can happen automatically using
‘GXF_ENTITY_CREATE_PROGRAM_BIT or manually using ‘GxfEntityActivate'.

parameter context: GXF context that creates the entity. parameter info: pointer to a
GxfEntityCreatelnfo structure containing parameters affecting the creation of the entity.
parameter eid: pointer to a gxf_uid_t handle in which the resulting entity is returned.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Activate an entity

gxf_result_t GxfEntityActivate(gxf_context_t context, gxf_uid_t eid);

Activates a previously created and inactive entity

Activating an entity generally marks the official start of its lifetime and has multiple
implications: - If mandatory parameters, i.e. parameter which do not have the flag
“optional”, are not set the operation will fail.

e All components on the entity are initialized.

¢ All codelets on the entity are scheduled for execution. The scheduler will start
calling start, tick and stop functions as specified by scheduling terms.

e After activation trying to change a dynamic parameters will result in a failure.
e Adding or removing components of an entity after activation will result in a failure.
parameter: context A valid GXF context
parameter: eid UID of a valid entity
returns: GXF error code
Deactivate an entity

gxf_result_t GxfEntityDeactivate(gxf_context_t context, gxf_uid_t eid);

GXF Core C APIs 10

Deactivates a previously activated entity

Deactivating an entity generally marks the official end of its lifetime and has multiple
implications:

e All codelets are removed from the schedule. Already running entities are run to
completion.

¢ All components on the entity are deinitialized.
e Components can be added or removed again once the entity was deactivated.
e Mandatory and non-dynamic parameters can be changed again.
Note: In case that the entity is currently executing this function will wait and block until

the current execution is finished.

parameter: context A valid GXF context

parameter: eid UID of a valid entity

returns: GXF error code

Destroy an entity

gxf_result_t GxfEntityDestroy(gxf_context_t context, gxf_uid_t eid);

Destroys a previously created entity

Destroys an entity immediately. The entity is destroyed even if the reference count has
not yet reached 0. If the entity is active it is deactivated first.

Note: This function can block for the same reasons as ‘GxfEntityDeactivate'.

parameter: context A valid GXF context

parameter: eid The returned UID of the created entity

GXF Core C APIs

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Find an entity

gxf_result_t GxfEntityFind(gxf_context_t context, const char* name, gxf_uid_t* eid);
Finds an entity by its name

parameter: context A valid GXF context

parameter: name A C string with the name of the entity. Ownership is not transferred.
parameter: eid The returned UID of the entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Find all entities

gxf_result_t GxfEntityFindAll(gxf_context_t context, uinté4_t* num_entities, gxf_uid_t*
entities);

Finds all entities in the current application

Finds and returns all entity ids for the current application. If more than max_entities exist
only max_entities will be returned. The order and selection of entities returned is
arbitrary.

parameter: context A valid GXF context

parameter: num_entities In/Out: the max number of entities that can fit in the
buffer/the number of entities that exist in the application

parameter: entities A buffer allocated by the caller for returned UIDs of all entities, with
capacity for num_entities.

GXF Core C APIs 12

returns: GXF_SUCCESS if the operation was successful,
GXF_QUERY_NOT_ENOUGH_CAPACITY if more entities exist in the application than
max_entities, or otherwise one of the GXF error codes.

Increase reference count of an entity
gxf_result_t GxfEntityRefCountinc(gxf_context_t context, gxf_uid_t eid);

Increases the reference count for an entity by 1.

By default reference counting is disabled for an entity. This means that entities created
with ‘GxfEntityCreate’ are not automatically destroyed. If this function is called for an
entity with disabled reference count, reference counting is enabled and the reference
count is set to 1. Once reference counting is enabled an entity will be automatically
destroyed if the reference count reaches zero, or if ‘GxfEntityCreate’ is called explicitly.
parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Decrease reference count of an entity
gxf_result_t GxfEntityRefCountDec(gxf_context_t context, gxf_uid_t eid);

Decreases the reference count for an entity by 1.

See ‘GxfEntityRefCountiInc’ for more details on reference counting.
parameter: context A valid GXF context
parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

GXF Core C APIs 13

Get status of an entity

gxf_result_t GxfEntityGetStatus(gxf_context_t context, gxf_uid_t eid, gxf_entity_status_t*
entity_status);

Gets the status of the entity.

See ‘gxf_entity_status_t’ for the various status.
parameter: context A valid GXF context

parameter: eid The UID of a valid entity

parameter: entity_status output; status of an entity eid

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get state of an entity

gxf_result_t GxfEntityGetState(gxf_context_t context, gxf_uid_t eid, entity_state_t*
entity_state);

Gets the state of the entity.
See ‘gxf_entity_status_t’ for the various status.

parameter: context A valid GXF context
parameter: eid The UID of a valid entity

parameter: entity_state output; behavior status of an entity eid used by the behavior
tree parent codelet

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

GXF Core C APIs 14

Notify entity of an event
gxf_result_t GxfEntityEventNotify(gxf_context_t context, gxf_uid_t eid);

Notifies the occurrence of an event and inform the scheduler to check the status of the
entity

The entity must have an ‘AsynchronousSchedulingTerm’ scheduling term component and
it must be in “EVENT_WAITING” state for the notification to be acknowledged.

See ‘AsynchronousEventState’ for various states
parameter: context A valid GXF context
parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Components
Maximum number of components in an entity or an extension can be up to 1024 .

Get component type identifier

gxf_result_t GxfComponentTypeld(gxf_context_t context, const char* name, gxf_tid_t*
tid);

Gets the GXF unique type ID (TID) of a component

Get the unique type ID which was used to register the component with GXF. The function
expects the fully qualified C++ type name of the component including namespaces.

Example of a valid component type name: “nvidia::gxf::test::PingTx"

parameter: context A valid GXF context

GXF Core C APIs 15

parameter: name The fully qualified C++ type name of the component

parameter: tid The returned TID of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get component type name

gxf_result_t GxfComponentTypeName(gxf_context_t context, gxf_tid_t tid, const char**
name);

Gets the fully qualified C++ type name GXF component typename

Get the unique typename of the component with which it was registered using one of the
GXF_EXT_FACTORY_ADD*() macros

parameter: context A valid GXF context

parameter: tid The unique type ID (TID) of the component with which the component
was registered

parameter: name The returned name of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get component name

gxf_result_t GxfComponentName(gxf_context_t context, gxf_uid_t cid, const char**
name);

Gets the name of a component

Each component has a user-defined name which was used in the call to
‘GxfComponentAdd'. Usually the name is specified in the GXF application file.

GXF Core C APIs 16

parameter: context A valid GXF context
parameter: cid The unique object ID (UID) of the component

parameter: name The returned name of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get unique identifier of the entity of given component
gxf_result_t GxfComponentEntity(gxf_context_t context, gxf_uid_t cid, gxf_uid_t* eid);
Gets the unique object ID of the entity of a component

Each component has a unique ID with respect to the context and is stored in one entity.
This function can be used to retrieve the ID of the entity to which a given component
belongs.

parameter: context A valid GXF context
parameter: cid The unique object ID (UID) of the component

parameter: eid The returned UID of the entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Add a new component

gxf_result_t GxfComponentAdd(gxf_context_t context, gxf_uid_t eid, gxf_tid_t tid, const
char* name, gxf_uid_t* cid);

Adds a new component to an entity

An entity can contain multiple components and this function can be used to add a new
component to an entity. A component must be added before an entity is activated, or

GXF Core C APIs 17

after it was deactivated. Components must not be added to active entities. The order of
components is stable and identical to the order in which components are added (see
‘GxfComponentFind’).

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity to which the component is
added.

parameter: tid The unique type ID (TID) of the component to be added to the entity.
parameter: name The name of the new component. Ownership is not transferred.
parameter: cid The returned UID of the created component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Add component to entity interface

gxf_result_t GxfComponentAddTolnterface(gxf_context_t context, gxf_uid_t eid, gxf_uid_t
cid, const char* name);

Adds an existing component to the interface of an entity

An entity can holds references to other components in its interface, so that when finding
a component in an entity, both the component this entity holds and those it refers to will
be returned. This supports the case when an entity contains a subgraph, then those
components that has been declared in the subgraph interface will be put to the interface

of the parent entity.

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity to which the component is
added.

parameter: cid The unique object ID of the component.

GXF Core C APIs 18

parameter: name The name of the new component. Ownership is not transferred.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Find a component in an entity

gxf_result_t GxfComponentFind(gxf_context_t context, gxf_uid_t eid, gxf_tid_t tid, const
char* name, int32_t* offset, gxf_uid_t* cid);

Finds a component in an entity

Searches components in an entity which satisfy certain criteria: component type,
component name, and component min index. All three criteria are optional; in case no
criteria is given the first component is returned. The main use case for “component min
index” is a repeated search which continues at the index which was returned by a

previous search.

In case no entity with the given criteria was found GXF_ENTITY_NOT_FOUND is returned.
parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity which is searched.

parameter: tid The component type ID (TID) of the component to find (optional)

parameter: name The component name of the component to find (optional). Ownership
not transferred.

parameter: offset The index of the first component in the entity to search. Also contains
the index of the component which was found.

parameter: cid The returned UID of the searched component
returns: GXF_SUCCESS if a component matching the criteria was found,

GXF_ENTITY_NOT_FOUND if no component matching the criteria was found, or otherwise
one of the GXF error codes.

GXF Core C APIs 19

Get type identifier for a component
gxf_result_t GxfComponentType(gxf_context_t context, gxf_uid_t cid, gxf_tid_t* tid);
Gets the component type ID (TID) of a component

parameter: context A valid GXF context

parameter: cid The component object ID (UID) for which the component type is
requested.

parameter: tid The returned TID of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Gets pointer to component

gxf_result_t GxfComponentPointer(gxf_context_t context, gxf_uid_t uid, gxf_tid_t tid,
void** pointer);

Verifies that a component exists, has the given type, gets a pointer to it.
parameter: context A valid GXF context

parameter: uid The component object ID (UID).

parameter: tid The expected component type ID (TID) of the component

parameter: pointer The returned pointer to the component object.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Primitive Parameters

GXF Core C APIs 20

64-bit floating point

Set

gxf_result_t GxfParameterSetFloat64(gxf_context_t context, gxf_uid_t uid, const char*
key, double value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value adouble value

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetFloat64(gxf_context_t context, gxf_uid_t uid, const char*
key, double* value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value pointer to get the double value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

64-bit signed integer

GXF Core C APIs 21

Set

gxf_result_t GxfParameterSetIint64(gxf_context_t context, gxf_uid_t uid, const char* key,
int64_t value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value 64-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
inte4_t* value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value pointer to get the 64-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

64-bit unsigned integer

Set

GXF Core C APIs 22

gxf_result_t GxfParameterSetUInt64(gxf_context_t context, gxf_uid_t uid, const char*
key, uint64_t value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value unsigned 64-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetUInt64(gxf_context_t context, gxf_uid_t uid, const char*
key, uinté4_t* value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value pointer to get the unsigned 64-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

32-bit signed integer
Set

gxf_result_t GxfParameterSetInt32(gxf_context_t context, gxf_uid_t uid, const char* key,
int32_t value);

GXF Core C APIs 23

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value 32-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetInt32(gxf_context_t context, gxf_uid_t uid, const char* key,
int32_t* value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value pointer to get the 32-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

String parameter
Set

gxf_result_t GxfParameterSetStr(gxf_context_t context, gxf_uid_t uid, const char* key,
const char* value);

parameter: context A valid GXF context.

GXF Core C APIs 24

parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value A char array containing value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetStr(gxf_context_t context, gxf_uid_t uid, const char* key,
const char** value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value pointer to a char* array to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Boolean
Set

gxf_result_t GxfParameterSetBool(gxf_context_t context, gxf_uid_t uid, const char* key,
bool value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

GXF Core C APIs 25

parameter: key A valid name of a component to set.

parameter: value A boolean value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetBool(gxf_context_t context, gxf_uid_t uid, const char* key,
bool* value);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value pointer to get the boolean value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Handle
Set

gxf_result_t GxfParameterSetHandle(gxf_context_t context, gxf_uid_t uid, const char*
key, gxf_uid_t cid);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

GXF Core C APIs 26

parameter: cid Unique identifier to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetHandle(gxf_context_t context, gxf_uid_t uid, const char*
key, gxf_uid_t* cid);

parameter: context A valid GXF context.
parameter: uid A valid component identifier.
parameter: key A valid name of a component to set.

parameter: value Pointer to a unique identifier to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Vector Parameters

To set or get the vector parameters of a component, users can use the following C-APIs
for various data types:

Set 1-D Vector Parameters

Users can call gxf_result_t GxfParameterSet1D"DataType"Vector(gxf_context_t context,
gxf_uid_t uid, const char* key, data_type* value, uint64_t length)

value should point to an array of the data to be set of the corresponding type. The size
of the stored array should match the length argument passed.

See the table below for all the supported data types and their corresponding function
signatures.

GXF Core C APIs 27

parameter: key The name of the parameter
parameter: value The value to set of the parameter
parameter: length The length of the vector parameter

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Table 1 Supported Data Types to Set 1D Vector Parameters

Function Name data_type
GxfParameterSet1DFloat64Vector(...) double
GxfParameterSet1DInt64Vector(...) inté4_t
GxfParameterSet1DUInt64Vector(...) uinté4_t
GxfParameterSet1DInt32Vector(...) int32_t

Set 2-D Vector Parameters

Users can call gxf_result_t GxfParameterSet2D"DataType"Vector(gxf_context_t context,
gxf_uid_t uid, const char* key, data_type** value, uint64_t height, uint64_t width)

value should point to an array of array (and not to the address of a contiguous array of
data) of the data to be set of the corresponding type. The length of the first dimension of
the array should match the height argument passed and similarly the length of the

second dimension of the array should match the width passed.

See the table below for all the supported data types and their corresponding function
signatures.

parameter: key The name of the parameter
parameter: value The value to set of the parameter

parameter: height The height of the 2-D vector parameter

GXF Core C APIs 28

parameter: width The width of the 2-D vector parameter

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Table 2 Supported Data Types to Set 2D Vector Parameters

Function Name data_type
GxfParameterSet2DFloat64Vector(...) double
GxfParameterSet2DInt64Vector(...) inté4_t
GxfParameterSet2DUInt64Vector(...) uint64_t
GxfParameterSet2DInt32Vector(...) int32_t

Get 1-D Vector Parameters

Users can call gxf_result_t GxfParameterGet1D"DataType"Vector(gxf_context_t context,
gxf_uid_t uid, const char* key, data_type** value, uint64_t* length) to get the value of a
1-D vector.

Before calling this method, users should call
GxfParameterGet1D"DataType"Vectorinfo(gxf_context_t context, gxf_uid_t uid, const
char* key, uint64_t* length)

to obtain the length of the vector parameter and then allocate at least that much
memory to retrieve the value .

value should point to an array of size greater than or equal to length allocated by user

of the corresponding type to retrieve the data. If the length doesn’t match the size of
stored vector then it will be updated with the expected size.

See the table below for all the supported data types and their corresponding function
signatures.

parameter: key The name of the parameter

parameter: value The value to set of the parameter

GXF Core C APIs 29

parameter: length The length of the 1-D vector parameter obtained by calling
GxfParameterGet1D"DataType"Vectorinfo(...)

Table 3 Supported Data Types to Get the Value of 1D Vector Parameters

Function Name data_type
GxfParameterGet1DFloat64Vector(...) double
GxfParameterGet1DInt64Vector(...) inte64 _t
GxfParameterGet1DUInt64Vector(...) uinte4_t
GxfParameterGet1DInt32Vector(...) int32_t

Get 2-D Vector Parameters

Users can call gxf_result_t GxfParameterGet2D"DataType"Vector(gxf_context_t context,
gxf_uid_t uid, const char* key, data_type** value, uint64_t* height, uint64_t* width) to
get the value of a -2D vector.

Before calling this method, users should call

GxfParameterGet1D"DataType"Vectorinfo(gxf_context_t context, gxf_uid_t uid, const
char* key, uinté4_t* height, uinté4_t* width)

to obtain the height and width of the 2D-vector parameter and then allocate at least
that much memory to retrieve the value .

value should point to an array of array of height (size of first dimension) greater than or
equal to height and width (size of the second dimension) greater than or equal to
width allocated by user of the corresponding type to get the data. If the height or

width don’t match the height and width of the stored vector then they will be updated
with the expected values.

See the table below for all the supported data types and their corresponding function
signatures.

parameter”. key The name of the parameter

parameter”. value Allocated array to get the value of the parameter

GXF Core C APIs 30

parameter”. height The height of the 2-D vector parameter obtained by calling
GxfParameterGet2D"DataType"VectorInfo(...)

parameter”. width The width of the 2-D vector parameter obtained by calling
GxfParameterGet2D"DataType"VectorInfo(...)

Table 4 Supported Data Types to Get the Value of 2D Vector Parameters

Function Name data_type
GxfParameterGet2DFloat64Vector(...) double
GxfParameterGet2DInt64Vector(...) inte64 _t
GxfParameterGet2DUInt64Vector(...) uinte4_t
GxfParameterGet2DInt32Vector(...) int32_t

Information Queries

Get Meta Data about the GXF Runtime

gxf_result_t GxfRuntimelnfo(gxf_context_t context, gxf_runtime_info* info);
parameter: context A valid GXF context.

parameter: info pointer to gxf_runtime_info object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get description and list of components in loaded Extension

gxf_result_t GxfExtensionInfo(gxf_context_t context, gxf_tid_t tid, gxf_extension_info_t*
info);

parameter: context A valid GXF context.

GXF Core C APIs 31

parameter: tid The unique identifier of the extension.

parameter: info pointer to gxf_extension_info_t object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get description and list of parameters of Component

gxf_result_t GxfComponentinfo(gxf_context_t context, gxf_tid_t tid,
gxf_component_info_t* info);

Note: Parameters are only available after at least one instance is created for the
Component.

parameter: context A valid GXF context.
parameter: tid The unique identifier of the component.

parameter: info pointer to gxf_component_info_t object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get parameter type description
Gets a string describing the parameter type

const char* GxfParameterTypeStr(gxf_parameter_type_t param_type);

parameter: param_type Type of parameter to get info about.

returns: C-style string description of the parameter type.

Get flag type description

GXF Core C APIs 32

Gets a string describing the flag type
const char* GxfParameterFlagTypeStr(gxf_parameter_flags_t_flag_type);
parameter: flag_type Type of flag to get info about.

returns: C-style string description of the flag type.

Get parameter description

Gets description of specific parameter. Fails if the component is not instantiated yet.

gxf_result_t GxfGetParameterinfo(gxf_context_t context, gxf_tid_t cid, const char* key,
gxf_parameter_info_t* info);

parameter: context A valid GXF context.
parameter: cid The unique identifier of the component.
parameter: key The name of the parameter.

parameter: info Pointer to a gxf_parameter_info_t object to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Redirect logs to a file

Redirect console logs to the provided file.
gxf_result_t GxfGetParameterinfo(gxf_context_t context, FILE* fp);
parameter: context A valid GXF context.

parameter: fp File path for the redirected logs.

GXF Core C APIs 33

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error

codes.

Miscellaneous

Get string description of error
const char* GxfResultStr(gxf_result_t result);
Gets a string describing an GXF error code.
The caller does not get ownership of the return C string and must not delete it.
parameter: result A GXF error code

returns: A pointer to a C string with the error code description.

GXF Core C APIs

34

	Context
	Extensions
	Graph Execution
	Entities
	Components
	Primitive Parameters
	Vector Parameters
	Information Queries
	Miscellaneous

