
The GXF Scheduler

Table of contents

Greedy Scheduler

Multithread Scheduler

Epoch Scheduler

SchedulingTerms

The GXF Scheduler 1

Table of contents

Greedy Scheduler

Multithread Scheduler

Epoch Scheduler

SchedulingTerms

The GXF Scheduler 2

List of Figures
Figure 0. Greedy Scheduler

Figure 1. Multithread Scheduler

The GXF Scheduler 3

The execution of entities in a graph is governed by the scheduler and the scheduling
terms associated with every entity. A scheduler is a component responsible for
orchestrating the execution of all the entities defined in a graph. A scheduler typically
keeps track of the graph entities and their current execution states and passes them on
to a nvidia::gxf::EntityExecutor component when ready for execution. The following
diagram depicts the flow for an entity execution.

Figure: Entity execution sequence

As shown in the sequence diagram, the schedulers begin executing the graph entities via
the nvidia::gxf::System::runAsync_abi() interface and continue this process until it meets
the certain ending criteria. A single entity can have multiple codelets. These codelets are
executed in the same order in which they were defined in the entity. A failure in
execution of any single codelet stops the execution of all the entities. Entities are
naturally unscheduled from execution when any one of their scheduling term reaches
NEVER state.

Scheduling terms are components used to define the execution readiness of an entity. An
entity can have multiple scheduling terms associated with it and each scheduling term
represents the state of an entity using SchedulingCondition.

The table below shows various states of nvidia::gxf::SchedulingConditionType described
using nvidia::gxf::SchedulingCondition.

SchedulingConditionType Description

NEVER Entity will never execute again

READY Entity is ready for execution

The GXF Scheduler 4

WAIT Entity may execute in the future

WAIT_TIME Entity will be ready for execution after specified duration

WAIT_EVENT
Entity is waiting on an asynchronous event with unknown
time interval

Schedulers define deadlock as a condition when there are no entities which are
in READY, WAIT_TIME or WAIT_EVENT state which guarantee execution at a future point in
time. This implies all the entities are in WAIT state for which the scheduler does not know
if they ever will reach the READY state in the future. The scheduler can be configured to
stop when it reaches such a state using the stop_on_deadlock parameter, else the entities
are polled to check if any of them have reached READY state. max_duration configuration
parameter can be used to stop execution of all entities regardless of their state after a
specified amount of time has elapsed.

There are two types of schedulers currently supported by GXF

1. Greedy Scheduler

2. Multithread Scheduler

Greedy Scheduler

This is a basic single threaded scheduler which tests scheduling term greedily. It is great
for simple use cases and predictable execution but may incur a large overhead of
scheduling term execution, making it unsuitable for large applications. The scheduler
requires a clock to keep track of time. Based on the choice of clock the scheduler will
execute differently. If a Realtime clock is used the scheduler will execute in real-time. This
means pausing execution - sleeping the thread, until periodic scheduling terms are due
again. If a ManualClock is used scheduling will happen “time-compressed”. This means
flow of time is altered to execute codelets in immediate succession.

The GreedyScheduler maintains a running count of entities which are
in READY, WAIT_TIME and WAIT_EVENT states. The following activity diagram depicts the
gist of the decision making for scheduling an entity by the greedy scheduler -

The GXF Scheduler 5

Figure: Greedy Scheduler Activity Diagram

Greedy Scheduler Configuration

The greedy scheduler takes in the following parameters from the configuration file

Parameter name Description

clock
The clock used by the scheduler to define the flow of time.
Typical choices are RealtimeClock or ManualClock

max_duration_ms

The maximum duration for which the scheduler will execute
(in ms). If not specified, the scheduler will run until all work is
done. If periodic terms are present this means the
application will run indefinitely

stop_on_deadlock

If stop_on_deadlock is disabled,
the GreedyScheduler constantly polls for the status of all the
waiting entities to check if any of them are ready for
execution.

The GXF Scheduler 6

Example usage - The following code snippet configures a Greedy scheduler with a
ManualClock option specified.

Multithread Scheduler

The MultiThread scheduler is more suitable for large applications with complex execution
patterns. The scheduler consists of a dispatcher thread which checks the status of an
entity and dispatches it to a thread pool of worker threads responsible for executing
them. Worker threads enqueue the entity back on to the dispatch queue upon
completion of execution. The number of worker threads can be configured
using worker_thread_number parameter. The MultiThread scheduler also manages a
dedicated queue and thread to handle asynchronous events. The following activity
diagram demonstrates the gist of the multithread scheduler implementation.

name: scheduler components: - type: nvidia::gxf::GreedyScheduler parameters:
max_duration_ms: 3000 clock: misc/clock stop_on_deadlock: true --- name: misc
components: - name: clock type: nvidia::gxf::ManualClock

The GXF Scheduler 7

Figure: MultiThread Scheduler Activity Diagram

As depicted in the diagram, when an entity reaches WAIT_EVENT state, it’s moved to a
queue where they wait to receive event done notification. The asynchronous event
handler thread is responsible for moving entities to the dispatcher upon receiving event
done notification. The dispatcher thread also maintains a running count of the number of
entities in READY, WAIT_EVENT and WAIT_TIME states and uses these statistics to check if
the scheduler has reached a deadlock. The scheduler also needs a clock component to
keep track of time and it is configured using the clock parameter.

MultiThread scheduler is more resource efficient compared to the Greedy Scheduler and
does not incur any additional overhead for constantly polling the states of scheduling
terms. The check_recession_period_ms parameter can be used to configure the time
interval the scheduler must wait to poll the state of entities which are in WAIT state.

Multithread Scheduler Configuration

The multithread scheduler takes in the following parameters from the configuration file

Parameter name Description

clock
The clock used by the scheduler to define the flow of time.
Typical choices are RealtimeClock or ManualClock.

max_duration_ms

The maximum duration for which the scheduler will execute
(in ms). If not specified, the scheduler will run until all work is
done. If periodic terms are present this means the
application will run indefinitely.

check_recess_period_ms
Duration to sleep before checking the condition of an entity
again [ms]. This is the maximum duration for which the
scheduler would wait when an entity is not yet ready to run.

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a
waiting state, but no periodic entity exists to break the dead
end. Should be disabled when scheduling conditions can be
changed by external actors, for example by clearing queues
manually.

worker_thread_number Number of threads.

Example usage - The following code snippet configures a Multithread scheduler with the
number of worked threads and max duration specified -

The GXF Scheduler 8

Epoch Scheduler

The Epoch scheduler is used for running loads in externally managed threads. Each run is
called an Epoch. The scheduler goes over all entities that are known to be active and
executes them one by one. If the epoch budget is provided (in ms), it would keep running
all codelets until the budget is consumed or no codelet is ready. It might run over budget
since it guarantees to cover all codelets in epoch. In case the budget is not provided, it
would go over all the codelets once and execute them only once.

The epoch scheduler takes in the following parameters from the configuration file -

Parameter name Description

clock
The clock used by the scheduler to define the flow of time.
Typical choice is a RealtimeClock.

Example usage - The following code snippet configures an Epoch scheduler -

Note that the epoch scheduler is intended to run from an external thread. The
runEpoch(float budget_ms); can be used to set the budget_ms and run the scheduler

from the external thread. If the specified budget is not positive, all the nodes are
executed once.

SchedulingTerms

A SchedulingTerm defines a specific condition that is used by an entity to let the
scheduler know when it’s ready for execution. There are various scheduling terms
currently supported by GXF.

PeriodicSchedulingTerm

name: scheduler components: - type: nvidia::gxf::MultiThreadScheduler parameters:
max_duration_ms: 5000 clock: misc/clock worker_thread_number: 5
check_recession_period_ms: 3 stop_on_deadlock: false --- name: misc components: -
name: clock type: nvidia::gxf::RealtimeClock

name: scheduler components: - name: clock type: nvidia::gxf::RealtimeClock - name:
epoch type: nvidia::gxf::EpochScheduler parameters: clock: clock

The GXF Scheduler 9

An entity associated with nvidia::gxf::PeriodicSchedulingTerm is ready for execution after
periodic time intervals specified using its recess_period parameter.
The PeriodicSchedulingTerm can either be in READY or WAIT_TIME state.

Example usage -

CountSchedulingTerm

An entity associated with nvidia::gxf::CountSchedulingTerm is executed for a specific
number of times specified using its count parameter. The CountSchedulingTerm can
either be in READY or NEVER state. The scheduling term reaches the NEVER state when
the entity has been executed count number of times.

Example usage -

MessageAvailableSchedulingTerm

An entity associated with nvidia::gxf::MessageAvailableSchedulingTerm is executed
when the associated receiver queue has at least a certain number of elements. The
receiver is specified using the receiver parameter of the scheduling term. The minimum
number of messages that permits the execution of the entity is specified by min_size . An
optional parameter for this scheduling term is front_stage_max_size , the maximum
front stage message count. If this parameter is set, the scheduling term will only allow
execution if the number of messages in the queue does not exceed this count. It can be
used for codelets which do not consume all messages from the queue.

In the example shown below, the minimum size of the queue is configured to be 4. This
means the entity will not be executed until there are at least 4 messages in the queue.

- name: scheduling_term type: nvidia::gxf::PeriodicSchedulingTerm parameters:
recess_period: 50000000

- name: scheduling_term type: nvidia::gxf::CountSchedulingTerm parameters: count:
42

- type: nvidia::gxf::MessageAvailableSchedulingTerm parameters: receiver: tensors
min_size: 4

The GXF Scheduler 10

MultiMessageAvailableSchedulingTerm

An entity associated with nvidia::gxf::MultiMessageAvailableSchedulingTerm is executed
when a list of provided input receivers combined have at least a given number of
messages. The receivers parameter is used to specify a list of the input
channels/receivers. The minimum number of messages needed to permit the entity
execution is set by min_size parameter.

Consider the example shown below. The associated entity will be executed when the
number of messages combined for all the three receivers is at least the min_size, i.e. 5.

BooleanSchedulingTerm

An entity associated with nvidia::gxf::BooleanSchedulingTerm is executed when its
internal state is set to tick. The parameter enable_tick is used to control the entity
execution. The scheduling term also has two APIs enable_tick() and disable_tick() to
toggle its internal state. The entity execution can be controlled by calling these APIs. If
enable_tick is set to false, the entity is not executed (Scheduling condition is set to
NEVER). If enable_tick is set to true, the entity will be executed (Scheduling condition is

set to READY). Entities can toggle the state of the scheduling term by maintaining a
handle to it.

Example usage -

AsynchronousSchedulingTerm

AsynchronousSchedulingTerm is primarily associated with entities which are working
with asynchronous events happening outside of their regular execution performed by the
scheduler. Since these events are non-periodic in

- name: input_1 type: nvidia::gxf::test::MockReceiver parameters: max_capacity: 10 -
name: input_2 type: nvidia::gxf::test::MockReceiver parameters: max_capacity: 10 -
name: input_3 type: nvidia::gxf::test::MockReceiver parameters: max_capacity: 10 -
type: nvidia::gxf::MultiMessageAvailableSchedulingTerm parameters: receivers:
[input_1, input_2, input_3] min_size: 5

- type: nvidia::gxf::BooleanSchedulingTerm parameters: enable_tick: true

The GXF Scheduler 11

nature, AsynchronousSchedulingTerm prevents the scheduler from polling the entity for
its status regularly and reduces CPU utilization. AsynchronousSchedulingTerm can either
be in READY, WAIT, WAIT_EVENT or NEVER states based on asynchronous event it’s
waiting on.

The state of an asynchronous event is described
using nvidia::gxf::AsynchronousEventState and is updated using the setEventState API.

AsynchronousEventState Description

READY Init state, first tick is pending

WAIT
Request to async service yet to be sent, nothing to do but
wait

EVENT_WAITING
Request sent to an async service, pending event done
notification

EVENT_DONE Event done notification received, entity ready to be ticked

EVENT_NEVER Entity does not want to be ticked again, end of execution

Entities associated with this scheduling term most likely have an asynchronous thread
which can update the state of the scheduling term outside of it’s regular execution cycle
performed by the gxf scheduler. When the scheduling term is in WAIT state, the
scheduler regularly polls for the state of the entity. When the scheduling term is
in EVENT_WAITING state, schedulers will not check the status of the entity again until they
receive an event notification which can be triggered using the GxfEntityEventNotify api.
Setting the state of the scheduling term to EVENT_DONE automatically sends this
notification to the scheduler. Entities can use the EVENT_NEVER state to indicate the end
of its execution cycle.

Example usage -

DownsteamReceptiveSchedulingTerm

This scheduling term specifies that an entity shall be executed if the receiver for a given
transmitter can accept new messages.

Example usage -

- name: async_scheduling_term type: nvidia::gxf::AsynchronousSchedulingTerm

The GXF Scheduler 12

TargetTimeSchedulingTerm

This scheduling term permits execution at a user-specified timestamp. The timestamp is
specified on the clock provided.

Example usage -

ExpiringMessageAvailableSchedulingTerm

This scheduling waits for a specified number of messages in the receiver. The entity is
executed when the first message received in the queue is expiring or when there are
enough messages in the queue. The receiver parameter is used to set the receiver to
watch on. The parameters max_batch_size and max_delay_ns dictate the maximum
number of messages to be batched together and the maximum delay from first message
to wait before executing the entity respectively.

In the example shown below, the associated entity will be executed when the number of
messages in the queue is greater than max_batch_size , i.e 5, or when the delay from the
first message to current time is greater than max_delay_ns , i.e 10000000.

AND Combined

An entity can be associated with multiple scheduling terms which define it’s execution
behavior. Scheduling terms are AND combined to describe the current state of an entity.
For an entity to be executed by the scheduler, all the scheduling terms must be
in READY state and conversely, the entity is unscheduled from execution whenever any
one of the scheduling term reaches NEVER state. The priority of various states

- name: downstream_st type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters: transmitter: output min_size: 1

- name: target_st type: nvidia::gxf::TargetTimeSchedulingTerm parameters: clock:
clock/manual_clock

- name: target_st type: nvidia::gxf::ExpiringMessageAvailableSchedulingTerm
parameters: receiver: signal max_batch_size: 5 max_delay_ns: 10000000 clock:
misc/clock

The GXF Scheduler 13

during AND combine follows the order NEVER, WAIT_EVENT, WAIT, WAIT_TIME,
and READY.

Example usage -

BTSchedulingTerm

A BT (Behavior Tree) scheduling term is used to schedule a behavior tree entity itself and
its child entities (if any) in a Behavior tree.

Example usage -

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

components: - name: integers type: nvidia::gxf::DoubleBufferTransmitter - name:
fibonacci type: nvidia::gxf::DoubleBufferTransmitter - type:
nvidia::gxf::CountSchedulingTerm parameters: count: 100 - type:
nvidia::gxf::DownstreamReceptiveSchedulingTerm parameters: transmitter: integers
min_size: 1

name: root components: - name: root_controller type:
nvidia::gxf::EntityCountFailureRepeatController parameters: max_repeat_count: 0 -
name: root_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root: true - name:
root_codelet type: nvidia::gxf::SequenceBehavior parameters: children: [
child1/child1_st] s_term: root_st controller: root_controller

	Greedy Scheduler
	Multithread Scheduler
	Epoch Scheduler
	SchedulingTerms

