
GXF by Example

Table of contents

Innerworkings of a GXF Entity

Data Flow and Triggering Rules

Creating a GXF Extension

Creating a GXF Application

Running the GXF Recorder Application

GXF by Example 1

Table of contents

Innerworkings of a GXF Entity

Data Flow and Triggering Rules

Creating a GXF Extension

Creating a GXF Application

Running the GXF Recorder Application

GXF by Example 2

List of Figures
Figure 0. Format Converter Entity Diagram

Figure 1. Format Converter Entity Diagram Detail 1

Figure 2. Codelet Lifecycle Diagram

GXF by Example 3

Innerworkings of a GXF Entity

Let us look at an example of a GXF entity to try to understand its general anatomy. As an
example let’s start with the entity definition for an image format converter entity named
format_converter_entity as shown below.

Listing 23 An example GXF Application YAML snippet

Above:

Warning

This section is legacy (0.2) as we recommend developing extensions
and applications using the C++ or Python APIs. Refer to the developer
guide for up-to-date recommendations.

%YAML 1.2 --- # other entities declared --- name: format_converter_entity
components: - name: in_tensor type: nvidia::gxf::DoubleBufferReceiver - type:
nvidia::gxf::MessageAvailableSchedulingTerm parameters: receiver: in_tensor
min_size: 1 - name: out_tensor type: nvidia::gxf::DoubleBufferTransmitter - type:
nvidia::gxf::DownstreamReceptiveSchedulingTerm parameters: transmitter:
out_tensor min_size: 1 - name: pool type: nvidia::gxf::BlockMemoryPool parameters:
storage_type: 1 block_size: 4919040 # 854 * 480 * 3 (channel) * 4 (bytes per pixel)
num_blocks: 2 - name: format_converter_component type:
nvidia::holoscan::formatconverter::FormatConverter parameters: in: in_tensor out:
out_tensor out_tensor_name: source_video out_dtype: "float32" scale_min: 0.0
scale_max: 255.0 pool: pool --- # other entities declared --- components: - name:
input_connection type: nvidia::gxf::Connection parameters: source:
upstream_entity/output target: format_converter/in_tensor --- components: - name:
output_connection type: nvidia::gxf::Connection parameters: source:
format_converter/out_tensor target: downstream_entity/input --- name: scheduler
components: - type: nvidia::gxf::GreedyScheduler

GXF by Example 4

1. The entity format_converter_entity receives a message in its in_tensor message
from an upstream entity upstream_entity as declared in the input_connection .

2. The received message is passed to the format_converter_component component
to convert the tensor element precision from uint8 to float32 and scale any input
in the [0, 255] intensity range.

3. The format_converter_component component finally places the result in the
out_tensor message so that its result is made available to a downstream entity (
downstream_ent as declared in output_connection).

4. The Connection components tie the inputs and outputs of various components
together, in the above case
upstream_entity/output -> format_converter_entity/in_tensor and
format_converter_entity/out_tensor -> downstream_entity/input .

5. The scheduler entity declares a GreedyScheduler “system component” which
orchestrates the execution of the entities declared in the graph. In the specific case
of GreedyScheduler entities are scheduled to run exclusively, where no more than
one entity can run at any given time.

The YAML snippet above can be visually represented as follows.

Fig. 21 Arrangement of components and entities in a Holoscan application

In the image, as in the YAML, you will notice the use of
MessageAvailableSchedulingTerm , DownstreamReceptiveSchedulingTerm , and

GXF by Example 5

BlockMemoryPool . These are components that play a “supporting” role to in_tensor ,
out_tensor , and format_converter_component components respectively. Specifically:

MessageAvailableSchedulingTerm is a component that takes a
Receiver`` (in this case DoubleBufferReceiver named in_tensor
) and alerts the graph Executor that a message is available. This alert triggers

format_converter_component`.

DownstreamReceptiveSchedulingTerm is a component that takes a Transmitter
(in this case DoubleBufferTransmitter named out_tensor) and alerts the graph
Executor that a message has been placed on the output.

BlockMemoryPool provides two blocks of almost 5MB allocated on the GPU
device and is used by format_converted_ent to allocate the output tensor where
the converted data will be placed within the format converted component.

Together these components allow the entity to perform a specific function and
coordinate communication with other entities in the graph via the declared scheduler.

More generally, an entity can be thought of as a collection of components where
components can be passed to one another to perform specific subtasks (e.g. event
triggering or message notification, format conversion, memory allocation), and an
application as a graph of entities.

The scheduler is a component of type nvidia::gxf::System which orchestrates the
execution components in each entity at application runtime based on triggering rules.

Data Flow and Triggering Rules

Entities communicate with one another via messages which may contain one or more
payloads. Messages are passed and received via a component of type nvidia::gxf::Queue
from which both nvidia::gxf::Receiver and nvidia::gxf::Transmitter are derived. Every
entity that receives and transmits messages has at least one receiver and one transmitter
queue.

Holoscan uses the nvidia::gxf::SchedulingTerm component to coordinate data access
and component orchestration for a Scheduler which invokes execution through the
tick() function in each Codelet .

GXF by Example 6

In the above example, we used a MessageAvailableSchedulingTerm to trigger the
execution of the components waiting for data from in_tensor receiver queue, namely
format_converter_component .

Listing 24 MessageAvailableSchedulingTerm

Similarly, DownStreamReceptiveSchedulingTerm checks whether the out_tensor
transmitter queue has at least one outgoing message in it. If there are one or more
outgoing messages, DownStreamReceptiveSchedulingTerm will notify the scheduler
which in turn attempts to place the message in the receiver queue of a downstream
entity. If, however, the downstream entity has a full receiver queue, the message is held
in the out_tensor queue as a means to handle back-pressure.

Listing 25 DownstreamReceptiveSchedulingTerm

If we were to draw the entity in Fig. 21 in greater detail it would look something like the
following.

Tip

A SchedulingTerm defines a specific condition that is used by an
entity to let the scheduler know when it’s ready for execution.

- type: nvidia::gxf::MessageAvailableSchedulingTerm parameters: receiver: in_tensor
min_size: 1

- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm parameters: transmitter:
out_tensor min_size: 1

GXF by Example 7

Fig. 22 Receive and transmit Queues and SchedulingTerm s in entities.

Up to this point, we have covered the “entity component system” at a high level and
showed the functional parts of an entity, namely, the messaging queues and the
scheduling terms that support the execution of components in the entity. To complete
the picture, the next section covers the anatomy and lifecycle of a component, and how
to handle events within it.

Creating a GXF Extension

GXF components in Holoscan can perform a multitude of sub-tasks ranging from data
transformations, to memory management, to entity scheduling. In this section, we will
explore an nvidia::gxf::Codelet component which in Holoscan is known as a “GXF
extension”. Holoscan (GXF) extensions are typically concerned with application-specific
sub-tasks such as data transformations, AI model inference, and the like.

Extension Lifecycle

The lifecycle of a Codelet is composed of the following five stages.

https://docs.nvidia.com/holoscan_operators_extensions.html#sdk-extensions

GXF by Example 8

1. initialize - called only once when the codelet is created for the first time, and use of
light-weight initialization.

2. deinitialize - called only once before the codelet is destroyed, and used for light-
weight deinitialization.

3. start - called multiple times over the lifecycle of the codelet according to the order
defined in the lifecycle, and used for heavy initialization tasks such as allocating
memory resources.

4. stop - called multiple times over the lifecycle of the codelet according to the order
defined in the lifecycle, and used for heavy deinitialization tasks such as
deallocation of all resources previously assigned in start .

5. tick - called when the codelet is triggered, and is called multiple times over the
codelet lifecycle; even multiple times between start and stop .

The flow between these stages is detailed in Fig. 23.

Fig. 23 Sequence of method calls in the lifecycle of a Holoscan extension

Implementing an Extension

GXF by Example 9

In this section, we will implement a simple recorder that will highlight the actions we
would perform in the lifecycle methods. The recorder receives data in the input queue
and records the data to a configured location on the disk. The output format of the
recorder files is the GXF-formatted index/binary replayer files (the format is also used for
the data in the sample applications), where the gxf_index file contains timing and
sequence metadata that refer to the binary/tensor data held in the gxf_entities file.

Declare the Class That Will Implement the Extension Functionality

The developer can create their Holoscan extension by extending the Codelet class,
implementing the extension functionality by overriding the lifecycle methods, and
defining the parameters the extension exposes at the application level via the
registerInterface method. To define our recorder component we would need to

implement some of the methods in the Codelet .

First, clone the Holoscan project from here and create a folder to develop our extension
such as under gxf_extensions/my_recorder .

In our extension folder, we create a header file my_recorder.hpp with a declaration of
our Holoscan component.

Listing 26 gxf_extensions/my_recorder/my_recorder.hpp

Tip

Using Bash we create a Holoscan extension folder as follows.

git clone https://github.com/nvidia-holoscan/holoscan-sdk.git cd
clara-holoscan-embedded-sdk mkdir -p
gxf_extensions/my_recorder

#include <string> #include "gxf/core/handle.hpp" #include "gxf/std/codelet.hpp"
#include "gxf/std/receiver.hpp" #include "gxf/std/transmitter.hpp" #include
"gxf/serialization/file_stream.hpp" #include "gxf/serialization/entity_serializer.hpp"
class MyRecorder : public nvidia::gxf::Codelet { public: gxf_result_t

https://github.com/nvidia-holoscan/holoscan-sdk

GXF by Example 10

Declare the Parameters to Expose at the Application Level

Next, we can start implementing our lifecycle methods in the my_recorder.cpp file,
which we also create in gxf_extensions/my_recorder path.

Our recorder will need to expose the nvidia::gxf::Parameter variables to the application
so the parameters can be modified by configuration.

Listing 27 registerInterface in gxf_extensions/my_recorder/my_recorder.cpp

registerInterface(nvidia::gxf::Registrar* registrar) override; gxf_result_t initialize()
override; gxf_result_t deinitialize() override; gxf_result_t start() override; gxf_result_t
tick() override; gxf_result_t stop() override; private:
nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::Receiver>> receiver_;
nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::EntitySerializer>>
my_serializer_; nvidia::gxf::Parameter<std::string> directory_;
nvidia::gxf::Parameter<std::string> basename_; nvidia::gxf::Parameter<bool>
flush_on_tick_; // File stream for data index nvidia::gxf::FileStream index_file_stream_;
// File stream for binary data nvidia::gxf::FileStream binary_file_stream_; // Offset into
binary file size_t binary_file_offset_; };

#include "my_recorder.hpp" gxf_result_t
MyRecorder::registerInterface(nvidia::gxf::Registrar* registrar) {
nvidia::gxf::Expected<void> result; result &= registrar->parameter(receiver_,
"receiver", "Entity receiver", "Receiver channel to log"); result &= registrar-
>parameter(my_serializer_, "serializer", "Entity serializer", "Serializer for serializing
input data"); result &= registrar->parameter(directory_, "out_directory", "Output
directory path", "Directory path to store received output"); result &= registrar-
>parameter(basename_, "basename", "File base name", "User specified file name
without extension", nvidia::gxf::Registrar::NoDefaultParameter(),
GXF_PARAMETER_FLAGS_OPTIONAL); result &= registrar->parameter(flush_on_tick_,
"flush_on_tick", "Boolean to flush on tick", "Flushes output buffer on every `tick`
when true", false); // default value `false` return nvidia::gxf::ToResultCode(result); }

GXF by Example 11

For pure GXF applications, our component’s parameters can be specified in the following
format in the YAML file:

Listing 28 Example parameters for MyRecorder component

Note that all the parameters exposed at the application level are mandatory except for
flush_on_tick , which defaults to false , and basename , whose default is handled at
initialize() below.

Implement the Lifecycle Methods

This extension does not need to perform any heavy-weight initialization tasks, so we will
concentrate on initialize() , tick() , and deinitialize() methods which define the core
functionality of our component. At initialization, we will create a file stream and keep
track of the bytes we write on tick() via binary_file_offset .

Listing 29 initialize in gxf_extensions/my_recorder/my_recorder.cpp

name: my_recorder_entity components: - name: my_recorder_component type:
MyRecorder parameters: receiver: receiver serializer: my_serializer out_directory:
/home/user/out_path basename: my_output_file # optional # flush_on_tick: false #
optional

gxf_result_t MyRecorder::initialize() { // Create path by appending receiver name to
directory path if basename is not provided std::string path = directory_.get() + '/'; if
(const auto& basename = basename_.try_get()) { path += basename.value(); } else {
path += receiver_->name(); } // Initialize index file stream as write-only
index_file_stream_ = nvidia::gxf::FileStream("", path +
nvidia::gxf::FileStream::kIndexFileExtension); // Initialize binary file stream as write-
only binary_file_stream_ = nvidia::gxf::FileStream("", path +
nvidia::gxf::FileStream::kBinaryFileExtension); // Open index file stream
nvidia::gxf::Expected<void> result = index_file_stream_.open(); if (!result) { return
nvidia::gxf::ToResultCode(result); } // Open binary file stream result =
binary_file_stream_.open(); if (!result) { return nvidia::gxf::ToResultCode(result); }
binary_file_offset_ = 0; return GXF_SUCCESS; }

GXF by Example 12

When de-initializing, our component will take care of closing the file streams that were
created at initialization.

Listing 30 deinitialize in gxf_extensions/my_recorder/my_recorder.cpp

In our recorder, no heavy-weight initialization tasks are required so we implement the
following, however, we would use start() and stop() methods for heavy-weight tasks
such as memory allocation and deallocation.

Listing 31 start/stop in gxf_extensions/my_recorder/my_recorder.cpp

Finally, we write the component-specific functionality of our extension by implementing
tick() .

Listing 32 tick in gxf_extensions/my_recorder/my_recorder.cpp

gxf_result_t MyRecorder::deinitialize() { // Close binary file stream
nvidia::gxf::Expected<void> result = binary_file_stream_.close(); if (!result) { return
nvidia::gxf::ToResultCode(result); } // Close index file stream result =
index_file_stream_.close(); if (!result) { return nvidia::gxf::ToResultCode(result); }
return GXF_SUCCESS; }

gxf_result_t MyRecorder::start() { return GXF_SUCCESS; } gxf_result_t
MyRecorder::stop() { return GXF_SUCCESS; }

Tip

For a detailed implementation of start() and stop() , and how
memory management can be handled therein, please refer to the
implementation of the AJA Video source extension.

gxf_result_t MyRecorder::tick() { // Receive entity
nvidia::gxf::Expected<nvidia::gxf::Entity> entity = receiver_->receive(); if (!entity) {
return nvidia::gxf::ToResultCode(entity); } // Write entity to binary file

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/gxf_extensions/aja

GXF by Example 13

Register the Extension as a Holoscan Component

As a final step, we must register our extension so it is recognized as a component and
loaded by the application executor. For this we create a simple declaration in
my_recorder_ext.cpp as follows.

Listing 33 gxf_extensions/my_recorder/my_recorder_ext.cpp

GXF_EXT_FACTORY_SET_INFO configures the extension with the following information in
order:

UUID which can be generated using scripts/generate_extension_uuids.py which
defines the extension id

extension name

extension description

nvidia::gxf::Expected<size_t> size = my_serializer_->serializeEntity(entity.value(),
&binary_file_stream_); if (!size) { return nvidia::gxf::ToResultCode(size); } // Create
entity index nvidia::gxf::EntityIndex index; index.log_time =
std::chrono::system_clock::now().time_since_epoch().count(); index.data_size =
size.value(); index.data_offset = binary_file_offset_; // Write entity index to index file
nvidia::gxf::Expected<size_t> result = index_file_stream_.writeTrivialType(&index); if
(!result) { return nvidia::gxf::ToResultCode(result); } binary_file_offset_ += size.value();
if (flush_on_tick_) { // Flush binary file output stream nvidia::gxf::Expected<void> result
= binary_file_stream_.flush(); if (!result) { return nvidia::gxf::ToResultCode(result); } //
Flush index file output stream result = index_file_stream_.flush(); if (!result) { return
nvidia::gxf::ToResultCode(result); } } return GXF_SUCCESS; }

#include "gxf/std/extension_factory_helper.hpp" #include "my_recorder.hpp"
GXF_EXT_FACTORY_BEGIN() GXF_EXT_FACTORY_SET_INFO(0xb891cef3ce754825,
0x9dd3dcac9bbd8483, "MyRecorderExtension", "My example recorder extension",
"NVIDIA", "0.1.0", "LICENSE"); GXF_EXT_FACTORY_ADD(0x2464fabf91b34ccf,
0xb554977fa22096bd, MyRecorder, nvidia::gxf::Codelet, "My example recorder
codelet."); GXF_EXT_FACTORY_END()

GXF by Example 14

author

extension version

license text

GXF_EXT_FACTORY_ADD registers the newly built extension as a valid Codelet
component with the following information in order:

UUID which can be generated using scripts/generate_extension_uuids.py which
defines the component id (this must be different from the extension id),

fully qualified extension class,

fully qualifies base class,

component description

To build a shared library for our new extension which can be loaded by a Holoscan
application at runtime we use a CMake file under
gxf_extensions/my_recorder/CMakeLists.txt with the following content.

Listing 34 gxf_extensions/my_recorder/CMakeLists.txt

Here, we create a library my_recorder_lib with the implementation of the lifecycle
methods, and the extension my_recorder which exposes the C API necessary for the
application runtime to interact with our component.

To make our extension discoverable from the project root we add the line

Create library add_library(my_recorder_lib SHARED my_recorder.cpp
my_recorder.hpp) target_link_libraries(my_recorder_lib PUBLIC GXF::std
GXF::serialization yaml-cpp) # Create extension add_library(my_recorder SHARED
my_recorder_ext.cpp) target_link_libraries(my_recorder PUBLIC my_recorder_lib) #
Install GXF extension as a component 'holoscan-gxf_extensions'
install_gxf_extension(my_recorder) # this will also install my_recorder_lib #
install_gxf_extension(my_recorder_lib) # this statement is not necessary because
this library follows `<extension library name>_lib` convention.

GXF by Example 15

to the CMake file gxf_extensions/CMakeLists.txt .

At this point, we have a complete extension that records data coming into its receiver
queue to the specified location on the disk using the GXF-formatted binary/index files.

Creating a GXF Application

For our application, we create the directory apps/my_recorder_app_gxf with the
application definition file my_recorder_gxf.yaml . The my_recorder_gxf.yaml application
is as follows:

Listing 35 apps/my_recorder_app_gxf/my_recorder_gxf.yaml

add_subdirectory(my_recorder)

Tip

To build our extension, we can follow the steps in the README.

%YAML 1.2 --- name: replayer components: - name: output type:
nvidia::gxf::DoubleBufferTransmitter - name: allocator type:
nvidia::gxf::UnboundedAllocator - name: component_serializer type:
nvidia::gxf::StdComponentSerializer parameters: allocator: allocator - name:
entity_serializer type: nvidia::holoscan::stream_playback::VideoStreamSerializer #
inheriting from nvidia::gxf::EntitySerializer parameters: component_serializers:
[component_serializer] - type:
nvidia::holoscan::stream_playback::VideoStreamReplayer parameters: transmitter:
output entity_serializer: entity_serializer boolean_scheduling_term:
boolean_scheduling directory: "/workspace/data/racerx" basename: "racerx"
frame_rate: 0 # as specified in timestamps repeat: false # default: false realtime: true
default: true count: 0 # default: 0 (no frame count restriction) - name:
boolean_scheduling type: nvidia::gxf::BooleanSchedulingTerm - type:
nvidia::gxf::DownstreamReceptiveSchedulingTerm parameters: transmitter: output
min_size: 1 --- name: recorder components: - name: input type:

https://github.com/nvidia-holoscan/holoscan-sdk#using-a-development-container

GXF by Example 16

Above:

The replayer reads data from /workspace/data/racerx/racerx.gxf_[index|entities]
files, deserializes the binary data to a nvidia::gxf::Tensor using
VideoStreamSerializer , and puts the data on an output message in the
replayer/output transmitter queue.

The input_connection component connects the replayer/output transmitter
queue to the recorder/input receiver queue.

The recorder reads the data in the input receiver queue, uses StdEntitySerializer
to convert the received nvidia::gxf::Tensor to a binary stream, and outputs to the
/tmp/tensor_out.gxf_[index|entities] location specified in the parameters.

The scheduler component, while not explicitly connected to the application-
specific entities, performs the orchestration of the components discussed in the
Data Flow and Triggering Rules.

Note the use of the component_serializer in our newly built recorder. This component is
declared separately in the entity

nvidia::gxf::DoubleBufferReceiver - name: allocator type:
nvidia::gxf::UnboundedAllocator - name: component_serializer type:
nvidia::gxf::StdComponentSerializer parameters: allocator: allocator - name:
entity_serializer type: nvidia::holoscan::stream_playback::VideoStreamSerializer #
inheriting from nvidia::gxf::EntitySerializer parameters: component_serializers:
[component_serializer] - type: MyRecorder parameters: receiver: input serializer:
entity_serializer out_directory: "/tmp" basename: "tensor_out" - type:
nvidia::gxf::MessageAvailableSchedulingTerm parameters: receiver: input min_size:
1 --- components: - name: input_connection type: nvidia::gxf::Connection
parameters: source: replayer/output target: recorder/input --- name: scheduler
components: - name: clock type: nvidia::gxf::RealtimeClock - name:
greedy_scheduler type: nvidia::gxf::GreedyScheduler parameters: clock: clock

GXF by Example 17

and passed into MyRecorder via the serializer parameter which we exposed in the
extension development section (Declare the Parameters to Expose at the Application
Level).

For our app to be able to load (and also compile where necessary) the extensions
required at runtime, we need to declare a CMake file
apps/my_recorder_app_gxf/CMakeLists.txt as follows.

Listing 36 apps/my_recorder_app_gxf/CMakeLists.txt

In the declaration of create_gxe_application we list:

my_recorder component declared in the CMake file of the extension development
section under the EXTENSIONS argument

the existing stream_playback Holoscan extension which reads data from disk

To make our newly built application discoverable by the build, in the root of the
repository, we add the following line to apps/CMakeLists.txt :

- name: entity_serializer type:
nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from
nvidia::gxf::EntitySerializer parameters: component_serializers:
[component_serializer]

- type: MyRecorder parameters: receiver: input serializer: entity_serializer directory:
"/tmp" basename: "tensor_out"

create_gxe_application(NAME my_recorder_gxf YAML my_recorder_gxf.yaml
EXTENSIONS GXF::std GXF::cuda GXF::multimedia GXF::serialization my_recorder
stream_playback) # Download the associated dataset if needed
if(HOLOSCAN_DOWNLOAD_DATASETS) add_dependencies(my_recorder_gxf
racerx_data) endif()

add_subdirectory(my_recorder_app_gxf)

GXF by Example 18

We now have a minimal working application to test the integration of our newly built
MyRecorder extension.

Running the GXF Recorder Application

To run our application in a local development container:

1. Follow the instructions under the Using a Development Container section steps 1-5
(try clearing the CMake cache by removing the build folder before compiling).

You can execute the following commands to build

2. Our test application can now be run in the development container using the
command

from inside the development container.

(You can execute ./run launch to run the development container.)

./run build # ./run clear_cache # if you want to clear build/install/cache folders

./apps/my_recorder_app_gxf/my_recorder_gxf

@LINUX:/workspace/holoscan-sdk/build$
./apps/my_recorder_app_gxf/my_recorder_gxf 2022-08-24 04:46:47.333 INFO
gxf/gxe/gxe.cpp@230: Creating context 2022-08-24 04:46:47.339 INFO
gxf/gxe/gxe.cpp@107: Loading app:
'apps/my_recorder_app_gxf/my_recorder_gxf.yaml' 2022-08-24 04:46:47.339
INFO gxf/std/yaml_file_loader.cpp@117: Loading GXF entities from YAML file
'apps/my_recorder_app_gxf/my_recorder_gxf.yaml'... 2022-08-24 04:46:47.340
INFO gxf/gxe/gxe.cpp@291: Initializing... 2022-08-24 04:46:47.437 INFO
gxf/gxe/gxe.cpp@298: Running... 2022-08-24 04:46:47.437 INFO
gxf/std/greedy_scheduler.cpp@170: Scheduling 2 entities 2022-08-24
04:47:14.829 INFO /workspace/holoscan-
sdk/gxf_extensions/stream_playback/video_stream_replayer.cpp@144: Reach
end of file or playback count reaches to the limit. Stop ticking. 2022-08-24

https://github.com/nvidia-holoscan/holoscan-sdk#using-a-development-container

GXF by Example 19

A successful run (it takes about 30 secs) will result in output files (tensor_out.gxf_index
and tensor_out.gxf_entities in /tmp) that match the original input files (
racerx.gxf_index and racerx.gxf_entities under data/racerx) exactly.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

04:47:14.829 INFO gxf/std/greedy_scheduler.cpp@329: Scheduler stopped:
Some entities are waiting for execution, but there are no periodic or async
entities to get out of the deadlock. 2022-08-24 04:47:14.829 INFO
gxf/std/greedy_scheduler.cpp@353: Scheduler finished. 2022-08-24
04:47:14.829 INFO gxf/gxe/gxe.cpp@320: Deinitializing... 2022-08-24
04:47:14.863 INFO gxf/gxe/gxe.cpp@327: Destroying context 2022-08-24
04:47:14.863 INFO gxf/gxe/gxe.cpp@333: Context destroyed.

@LINUX:/workspace/holoscan-sdk/build$ ls -al /tmp/ total 821384 drwxrwxrwt 1
root root 4096 Aug 24 04:37 . drwxr-xr-x 1 root root 4096 Aug 24 04:36 ..
drwxrwxrwt 2 root root 4096 Aug 11 21:42 .X11-unix -rw-r--r-- 1 1000 1000 729309
Aug 24 04:47 gxf_log -rw-r--r-- 1 1000 1000 840054484 Aug 24 04:47
tensor_out.gxf_entities -rw-r--r-- 1 1000 1000 16392 Aug 24 04:47
tensor_out.gxf_index @LINUX:/workspace/holoscan-sdk/build$ ls -al ../data/racerx
total 839116 drwxr-xr-x 2 1000 1000 4096 Aug 24 02:08 . drwxr-xr-x 4 1000 1000
4096 Aug 24 02:07 .. -rw-r--r-- 1 1000 1000 19164125 Jun 17 16:31 racerx-
medium.mp4 -rw-r--r-- 1 1000 1000 840054484 Jun 17 16:31 racerx.gxf_entities -rw-
r--r-- 1 1000 1000 16392 Jun 17 16:31 racerx.gxf_index

	Innerworkings of a GXF Entity
	Data Flow and Triggering Rules
	Creating a GXF Extension
	Creating a GXF Application
	Running the GXF Recorder Application

