<3

NVIDIA.

GXF Core concepts



Here is a list of the key GXF terms used in this section:
e Applications are built as compute graphs.
e Entities are nodes of the graph. They are nothing more than a unique identifier.
e Components are parts of an entity and provide their functionality.

e Codelets are special components which allow the execution of custom code. They
can be derived by overriding the C++ functions initialize , start, tick, stop,

deinitialize , and registerinterface (for defining configuration parameters).
e Connections are edges of the graph, which connect components.

e Scheduler and Scheduling Terms: components that determine how and when the
tick() of a Codelet executes. This can be single or multithreaded, support
conditional execution, asynchronous scheduling, and other custom behavior.

e Memory Allocator: provides a system for allocating a large contiguous memory
pool up-front and then reusing regions as needed. Memory can be pinned to the
device (enabling zero-copy between Codelets when messages are not modified) or
host, or customized for other potential behavior.

e Receivers, Transmitters, and Message Router: a message passing system
between Codelets that supports zero-copy.

e Tensor: the common message type is a tensor. It provides a simple abstraction for
numeric data that can be allocated, serialized, sent between Codelets, etc. Tensors
can be rank 1 to 7 supporting a variety of common data types like arrays, vectors,
matrices, multi-channel images, video, regularly sampled time-series data, and
higher dimensional constructs popular with deep learning flows.

e Parameters: configuration variables used by the Codelet. In GXF applications, they
are loaded from the application YAML file and are modifiable without recompiling.

In comparison, the core concepts of the Holoscan SDK can be found here.

GXF Core concepts


https://docs.nvidia.com/holoscan_core.html#holoscan-core-concepts



