<3

NVIDIA.

Holoscan and GXF



Table of contents

Design differences

Current limitations

Holoscan and GXF



Design differences

There are 2 main elements at the core of Holoscan and GXF designs:
1. How to define and execute application graphs
2. How to define nodes’ functionality

How Holoscan SDK interfaces with GXF on those topics varies as Holoscan SDK evolves,
as described below:

Holoscan SDK v0.2
Holoscan SDK was tightly coupled with GXF's existing interface:
1. GXF application graphs are defined in YAML configuration files. GXE (Graph
Execution Engine) is used to execute Al application graphs. Its inputs are the YAML
configuration file, and a list of GXF Extensions to load as plugins (manifest yaml file).

This design allows entities to be swapped or updated without needing to recompile
an application.

2. Components are made available by registering them within a GXF extension, each
of which maps to a shared library and header(s).

Those concepts are illustrated in the GXF by example section.
The only additions that Holoscan provided on top of GXF were:
e domain specific reference applications
® new extensions
e CMake configurations for building extensions and applications
Holoscan SDK v0.3
The Holoscan SDK shifted to provide a more developer-friendly interface with C++:

1. GXF application graphs, memory allocation, scheduling, and message routing can be
defined using a C++ API, with the ability to read parameters and required GXF

Holoscan and GXF 2


https://docs.nvidia.com/gxf_by_example.html#gxf-by-example

extension names from a YAML configuration file. The backend used is still GXF as
Holoscan uses the GXF C API, but this bypasses GXE and the full YAML definition.

2. The C++ Operator class was added to wrap and expose GXF extensions to that new
application interface (See dev guide).

Holoscan SDK v0.4

The Holoscan SDK added Python wrapping and native operators to further increase ease
of use:

1. The C++ APl is also wrapped in Python. GXF is still used as the backend.

2. The Operator class supports native operators, i.e. operators that do not require to
implement and register a GXF Extension. An important feature is the ability to
support messaging between native and GXF operators without any performance
loss (i.e. zero-copy communication of tensors).

Holoscan SDK v0.5

1. The built-in Holoscan GXF extensions are loaded automatically and don't need to be
listed in the YAML configuration file of Holoscan applications. This allows Holoscan
applications to be defined without requiring a YAML configuration file.

2. No significant changes to build operators. However, most built-in operators were

switched to native implementations, with the ability to convert native operators to
GXF codelets for GXF application developers.

Holoscan SDK v1.0

1. The remaining GXF-based DemosiacOp operator was switched to a native
implementation. Now all operators provided by the SDK are native operators.

Current limitations

Here is a list of GXF capabilities not yet available in the Holoscan SDK which are planned
to be supported in future releases:

e Job Statistics

Holoscan and GXF 3


https://docs.nvidia.com/holoscan_create_operator.html#wrap-gxf-codelet-as-operator
https://docs.nvidia.com/gxf_wrap_holoscan_op.html
https://docs.nvidia.com/gxf_wrap_holoscan_op.html
https://docs.nvidia.com/doc/std/StandardExtension.html#job-stats

The GXF capabilities below are not available in the Holoscan SDK either. There is no plan
to support them at this time:

Graph Composer

e Behavior Trees

e Epoch Scheduler

e Target Time Scheduling Term

e Multi-Message Available Scheduling Term

e Expiring Message Available Scheduling Term

Holoscan and GXF


https://docs.nvidia.com/doc/composer/GraphComposer_Graph_Runtime.html
https://docs.nvidia.com/doc/behavior_tree/behavior_trees.html
https://docs.nvidia.com/doc/scheduler/scheduler.html#epoch-scheduler
https://docs.nvidia.com/doc/scheduler/scheduler.html#target-time-scheduling-term
https://docs.nvidia.com/doc/scheduler/scheduler.html#multi-message-available-scheduling-term
https://docs.nvidia.com/doc/scheduler/scheduler.html#expiring-message-available-scheduling-term

	Design differences
	Current limitations



