
Using Holoscan Operators in GXF Applications

Table of contents

1. Creating compatible Holoscan Operators

2. Creating the GXF extension that wraps the operator

3. Using your wrapped operator in a GXF application

Using Holoscan Operators in GXF Applications 1

Table of contents

1. Creating compatible Holoscan Operators

2. Creating the GXF extension that wraps the operator

3. Using your wrapped operator in a GXF application

Using Holoscan Operators in GXF Applications 2

For users who are familiar with the GXF development ecosystem (used in Holoscan SDK
0.2), we provide an export feature to leverage native Holoscan operators as GXF codelets
to execute in GXF applications and GraphComposer.

We demonstrate how to wrap a native C++ holoscan operator as a GXF codelet in the
wrap_operator_as_gxf_extension , as described below.

1. Creating compatible Holoscan Operators

To be compatible with GXF codelets, inputs and outputs specified in
Operator::setup(OperatorSpec& spec) must be of type holoscan::gxf::Entity , as shown

in the PingTxNativeOp and the PingRxNativeOp implementations of this example, in
contrast to the PingTxOp and PingRxOp built-in operators of the SDK.

For more details regarding the use of holoscan::gxf::Entity , follow the documentation on
Interoperability between GXF and native C++ operators.

2. Creating the GXF extension that wraps the operator

To wrap the native operator as a GXF codelet in a GXF extension, we provide the CMake
wrap_operator_as_gxf_extension function in the SDK. An example of how it wraps
PingTxNativeOp and PingRxNativeOp can be found here.

It leverages the CMake target names of the operators defined in their respective
CMakeLists.txt (ping_tx_native_op, ping_rx_native_op)

The function parameters are documented at the top of the
WrapOperatorAsGXFExtension.cmake file (ignore implementation below).

Note

This section assumes you are already familiar with how to create a
native C++ operator.

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_tx_native_op/ping_tx_native_op.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_rx_native_op/ping_rx_native_op.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators/ping_tx/ping_tx.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators/ping_rx/ping_rx.cpp
https://docs.nvidia.com/holoscan_create_operator.html#interoperability-with-gxf-operators-cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_extension/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_tx_native_op/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_rx_native_op/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/cmake/modules/WrapOperatorAsGXFExtension.cmake#L18-42
file:///tmp/jsreport/holoscan_create_operator.html#native-cpp-operators
file:///tmp/jsreport/holoscan_create_operator.html#native-cpp-operators

Using Holoscan Operators in GXF Applications 3

3. Using your wrapped operator in a GXF application

As shown in the gxf_app/CMakeLists.txt here, you need to list the following extensions
in create_gxe_application() to use your wrapped codelets:

GXF::std

gxf_holoscan_wrapper

the name of the CMake target for the created extension, defined by the
EXTENSION_TARGET_NAME argument passed to wrap_operator_as_gxf_extension

in the previous section

The codelet class name (defined by the CODELET_NAMESPACE::CODELET_NAME
arguments passed to wrap_operator_as_gxf_extension in the previous section) can then
be used as a component type in a GXF app node, as shown in the YAML app definition of
the example, connecting the two ping operators.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

Warning

A unique GXF extension is currently needed for each native
operator to export (operators cannot be bundled in a single
extension at this time).

Wrapping other GXF entities than operators (as codelets) is not
currently supported.

Note

This section assumes you are familiar with how to create a GXF
application.

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_app/CMakeLists.min.txt#L30-33
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_app/ping.yaml
file:///tmp/jsreport/autocleanup/gxf_by_example.html#creating-gxf-application
file:///tmp/jsreport/autocleanup/gxf_by_example.html#creating-gxf-application

	1. Creating compatible Holoscan Operators
	2. Creating the GXF extension that wraps the operator
	3. Using your wrapped operator in a GXF application

