
Holoscan Core Concepts

Holoscan Core Concepts 1

An Application is composed of Fragments , each of which runs a graph of Operators .
The implementation of that graph is sometimes referred to as a pipeline, or workflow,
which can be visualized below:

Fig. 3 Core concepts: Application

Note

In its early days, the Holoscan SDK was tightly linked to the GXF core
concepts. While the Holoscan SDK still relies on GXF as a backend to
execute applications, it now offers its own interface, including a C++
API (0.3), a Python API (0.4), and the ability to write native operators
(0.4) without requiring to wrap a GXF extension. Read the Holoscan
and GXF section for additional details.

file:///tmp/jsreport/autocleanup/gxf/gxf_core_concepts.html
file:///tmp/jsreport/autocleanup/gxf/gxf_core_concepts.html
file:///tmp/jsreport/autocleanup/gxf/holoscan_and_gxf.html
file:///tmp/jsreport/autocleanup/gxf/holoscan_and_gxf.html

Holoscan Core Concepts 2

Fig. 4 Core concepts: Port

The core concepts of the Holoscan API are:

Application: An application acquires and processes streaming data. An application
is a collection of fragments where each fragment can be allocated to execute on a
physical node of a Holoscan cluster.

Fragment: A fragment is a building block of the Application. It is a directed graph of
operators. A fragment can be assigned to a physical node of a Holoscan cluster
during execution. The run-time execution manages communication across
fragments. In a Fragment, Operators (Graph Nodes) are connected to each other by
flows (Graph Edges).

Operator: An operator is the most basic unit of work in this framework. An
Operator receives streaming data at an input port, processes it, and publishes it to
one of its output ports. A Codelet in GXF would be replaced by an Operator in the
Holoscan SDK. An Operator encapsulates Receiver s and Transmitter s of a GXF
Entity as Input/Output Port s of the Operator .

(Operator) Resource: Resources such as system memory or a GPU memory pool
that an Operator needs to perform its job. Resources are allocated during the
initialization phase of the application. This matches the semantics of GXF’s Memory
Allocator or any other components derived from the Component class in GXF.

Condition: A condition is a predicate that can be evaluated at runtime to determine
if an operator should execute. This matches the semantics of GXF’s Scheduling
Term.

Port: An interaction point between two operators. Operators ingest data at Input
ports and publish data at Output ports. Receiver , Transmitter , and
MessageRouter in GXF would be replaced with the concept of Input/Output Port

of the Operator and the Flow (Edge) of the Application Workflow (DAG) in the
Framework.

Message: A generic data object used by operators to communicate information.

Executor: An Executor that manages the execution of a Fragment on a physical
node. The framework provides a default Executor that uses a GXF Scheduler to
execute an Application.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

https://docs.nvidia.com/api/cpp/classholoscan_1_1Application.html#exhale-class-classholoscan-1-1application
https://docs.nvidia.com/api/cpp/classholoscan_1_1Fragment.html#exhale-class-classholoscan-1-1fragment
https://docs.nvidia.com/api/cpp/classholoscan_1_1Operator.html#exhale-class-classholoscan-1-1operator
https://docs.nvidia.com/gxf/gxf_core_concepts.html#holoscan-core-concepts-gxf
https://docs.nvidia.com/gxf/gxf_core_concepts.html#holoscan-core-concepts-gxf
https://docs.nvidia.com/api/cpp/classholoscan_1_1Resource.html#exhale-class-classholoscan-1-1resource
https://docs.nvidia.com/api/cpp/classholoscan_1_1Condition.html#exhale-class-classholoscan-1-1condition
https://docs.nvidia.com/gxf/doc/scheduler/scheduler.html#schedulingterms
https://docs.nvidia.com/gxf/doc/scheduler/scheduler.html#schedulingterms
https://docs.nvidia.com/api/cpp/classholoscan_1_1IOSpec.html#exhale-class-classholoscan-1-1iospec
https://docs.nvidia.com/api/cpp/classholoscan_1_1Message.html#exhale-class-classholoscan-1-1message
https://docs.nvidia.com/api/cpp/classholoscan_1_1Executor.html#exhale-class-classholoscan-1-1executor
https://docs.nvidia.com/gxf/doc/scheduler/scheduler.html

