
Logging

Table of contents

Overview

Logger Format

Calling the Logger in Your Application

Logging 1

Table of contents

Overview

Logger Format

Calling the Logger in Your Application

Logging 2

Overview

The Holoscan SDK uses the Logger module to convey messages to the user. These
messages are categorized into different severity levels (see below) to inform users of the
severity of a message and as a way to control the number and verbosity of messages that
are printed to the terminal. There are two settings which can be used for this purpose:

Logger level

Logger format

Logger Level

Messages that are logged using the Logger module have a severity level, e.g., messages
can be categorized as INFO, WARN, ERROR, etc.

The default logging level for an application is to print out messages with severity INFO or
above, i.e., messages that are categorized as INFO, WARN, ERROR, and CRITICAL. You can
modify this default by calling set_log_level() (C++ / Python) in the application code to
override the SDK default logging level and give it one of the following log levels.

TRACE

DEBUG

INFO

WARN

ERROR

CRITICAL

OFF

Ingested Tab Module

Additionally, at runtime, the user can set the HOLOSCAN_LOG_LEVEL environment
variable to one of the values listed above. This provides users with the flexibility to enable
printing of diagnostic information for debugging purposes when an issue occurs.

Logging 3

Logger Format

When a message is printed out, the default message format shows the message severity
level, filename:linenumber, and the message to be printed.

For example:

export HOLOSCAN_LOG_LEVEL=TRACE

Note

Under the hood, Holoscan SDK uses GXF to execute the computation
graph. By default, this GXF layer uses the same logging level as
Holoscan SDK. If it is desired to override the logging level of this
executor independently of the Holoscan SDK logging level,
environment variable HOLOSCAN_EXECUTOR_LOG_LEVEL can be
used. It supports the same levels as HOLOSCAN_LOG_LEVEL .

Note

For distributed applications, it can sometimes be useful to also
enable additional logging for the UCX library used to transmit data
between fragments. This can be done by setting the UCX
environment variable UCX_LOG_LEVEL to one of: fatal, error, warn,
info, debug, trace, req, data, async, func, poll. These have the
behavior as described here: UCX log levels.

[info] [ping_multi_port.cpp:114] Rx message value1: 51 [info]
[ping_multi_port.cpp:115] Rx message value2: 54

https://github.com/openucx/ucx/blob/v1.14.0/src/ucs/config/types.h#L16C1-L31

Logging 4

You can modify this default by calling set_log_pattern() (C++ / Python) in the
application code to override the SDK default logging format.

The pattern string can be one of the following pre-defined values

SHORT : prints message severity level, and message

DEFAULT : prints message severity level, filename:linenumber, and message

LONG : prints timestamp, application, message severity level, filename:linenumber,
and message

FULL : prints timestamp, thread id, application, message severity level,
filename:linenumber, and message

Ingested Tab Module

With this logger format, the above application would display messages with the following
format:

Alternatively, the pattern string can be a custom pattern to customize the logger format.
Using this string pattern

would display messages with the following format:

For more details on custom formatting and details of each flag, please see the spdlog wiki
page.

Additionally, at runtime, the user can also set the HOLOSCAN_LOG_FORMAT
environment variable to modify the logger format. The accepted string pattern is the

[info] Rx message value1: 51 [info] Rx message value2: 54

"[%Y-%m-%d %H:%M:%S.%e] [%n] [%^%l%$] [%s:%#] %v";

[2023-06-27 14:22:36.073] [holoscan] [info] [ping_multi_port.cpp:114] Rx message
value1: 51 [2023-06-27 14:22:36.073] [holoscan] [info] [ping_multi_port.cpp:115] Rx
message value2: 54

https://github.com/gabime/spdlog/wiki/3.-Custom-formatting#pattern-flags
https://github.com/gabime/spdlog/wiki/3.-Custom-formatting#pattern-flags

Logging 5

same as the string pattern for the set_log_pattern() api mentioned above.

Precedence of Logger Level and Logger Format

The HOLOSCAN_LOG_LEVEL environment variable takes precedence and overrides the
application settings, such as Logger::set_log_level() (C++ / Python).

When HOLOSCAN_LOG_LEVEL is set, it determines the logging level. If this environment
variable is unset, the application settings are used if they are available. Otherwise, the
SDK’s default logging level of INFO is applied.

Similarly, the HOLOSCAN_LOG_FORMAT environment variable takes precedence and
overrides the application settings, such as Logger::set_log_pattern() (C++ / Python).

When HOLOSCAN_LOG_FORMAT is set, it determines the logging format. If this
environment variable is unset, the application settings are used if they are available.
Otherwise, the SDK’s default logging format depending on the current log level (FULL
format for DEBUG and TRACE log levels. DEFAULT format for other log levels) is
applied.

Calling the Logger in Your Application

The C++ API uses the HOLOSCAN_LOG_XXX() macros to log messages in the application.
These macros use the fmtlib format string syntax for their format strings.

Note

Holoscan automatically checks HOLOSCAN_LOG_LEVEL environment
variable and sets the log level when the Application class instance is
created. However, those log level settings are for Holoscan core or
C++ operator (C++)’s logging message (such as
HOLOSCAN_LOG_INFO macro), not for Python’s logging. Users of the

Python API should use the built-in
logging

module to log messages. The user needs to configure the logger
before use (logging.basicConfig(level=logging.INFO)):

https://docs.nvidia.com/api/holoscan_cpp_api.html#logging
https://fmt.dev/latest/syntax.html

Logging 6

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

>>> import logging >>> logger = logging.getLogger("main") >>>
logger.info('hello') >>> logging.basicConfig(level=logging.INFO)
>>> logger.info('hello') INFO:main:hello

	Overview
	Logger Format
	Calling the Logger in Your Application

