
NVIDIA Holoscan SDK v2.0.0

Table of contents

Overview 12

Relevant Technologies 15

Getting Started with Holoscan 18

SDK Installation 20

Additional Setup 25

Enabling RDMA 25

Enabling G-SYNC 34

Disabling Variable Backlight 37

Enabling Exclusive Display Mode 38

Use both Integrated and Discrete GPUs on NVIDIA Developer Kits 38

Deployment Software Stack 39

Third Party Hardware Setup 40

AJA Video Systems 40

Emergent Vision Technologies (EVT) 49

Holoscan Core Concepts 53

Holoscan by Example 56

Hello World 57

Ping Simple 59

Ping Custom Op 61

Ping Multi Port 64

Video Replayer 67

NVIDIA Holoscan SDK v2.0.0 1

Table of contents

Overview

Relevant Technologies

Getting Started with Holoscan

SDK Installation

Additional Setup

Enabling RDMA

Enabling G-SYNC

Disabling Variable Backlight

Enabling Exclusive Display Mode

Use both Integrated and Discrete GPUs on NVIDIA Developer Kits

Deployment Software Stack

Third Party Hardware Setup

AJA Video Systems

Emergent Vision Technologies (EVT)

Holoscan Core Concepts

Holoscan by Example

Hello World

Ping Simple

Ping Custom Op

Ping Multi Port

Video Replayer

Video Replayer (Distributed) 70

Bring Your Own Model (BYOM) 74

Creating an Application 81

Creating a Distributed Application 92

Packaging Holoscan Applications 107

Creating Operators 111

Logging 147

Debugging 152

Built-in Operators and Extensions 170

Visualization 173

Inference 181

Schedulers 197

Conditions 200

Resources 205

Holoscan C++ API 209

Holoscan Python API 222

holoscan.conditions 222

holoscan.core 249

holoscan.executors 329

holoscan.graphs 331

holoscan.gxf 340

holoscan.logger 365

NVIDIA Holoscan SDK v2.0.0 2

Video Replayer (Distributed)

Bring Your Own Model (BYOM)

Creating an Application

Creating a Distributed Application

Packaging Holoscan Applications

Creating Operators

Logging

Debugging

Built-in Operators and Extensions

Visualization

Inference

Schedulers

Conditions

Resources

Holoscan C++ API

Holoscan Python API

holoscan.conditions

holoscan.core

holoscan.executors

holoscan.graphs

holoscan.gxf

holoscan.logger

holoscan.operators 368

holoscan.resources 505

holoscan.schedulers 608

Holoscan Application Package Specification (HAP) 625

Holoscan CLI 653

Application Runner Configuration 655

GXF Core concepts 657

Holoscan and GXF 659

GXF by Example 662

Using Holoscan Operators in GXF Applications 679

GXF User Guide 682

Graph Specification 682

Graph Execution Engine 686

Graph Specification TimeStamping 686

The GXF Scheduler 687

Behavior Trees 698

GXF Core C APIs 706

CudaExtension 739

MultimediaExtension 744

NetworkExtension 746

SerializationExtension 752

StandardExtension 756

NVIDIA Holoscan SDK v2.0.0 3

holoscan.operators

holoscan.resources

holoscan.schedulers

Holoscan Application Package Specification (HAP)

Holoscan CLI

Application Runner Configuration

GXF Core concepts

Holoscan and GXF

GXF by Example

Using Holoscan Operators in GXF Applications

GXF User Guide

Graph Specification

Graph Execution Engine

Graph Specification TimeStamping

The GXF Scheduler

Behavior Trees

GXF Core C APIs

CudaExtension

MultimediaExtension

NetworkExtension

SerializationExtension

StandardExtension

Data Flow Tracking 786

Video Pipeline Latency Tool 791

NVIDIA Holoscan SDK v2.0.0 4

Data Flow Tracking

Video Pipeline Latency Tool

NVIDIA Holoscan SDK v2.0.0 5

List of Figures
Figure 0. Agx Pcie Slots

Figure 1. Aja Card Installation

Figure 2. Video Replayer

Figure 3. Video Replayer

Figure 4. Byom Workflow

Figure 5. App Ultrasound

Figure 6. Cycle Implicit Root

Figure 7. Holoscan Tensor Interoperability

Figure 8. Holoviz Example

Figure 9. Inference Operator

Figure 10. Format Converter Entity Diagram

Figure 11. Format Converter Entity Diagram Detail 1

Figure 12. Codelet Lifecycle Diagram

Figure 13. Greedy Scheduler

Figure 14. Multithread Scheduler

Figure 15. Constant Behavior

Figure 16. Parallel Behavior

Figure 17. Repeat Behavior

Figure 18. Selector Behavior

NVIDIA Holoscan SDK v2.0.0 6

Figure 19. Sequence Behavior

Figure 20. Timer Behavior

Figure 21. Latency Setup Gpu To Onboard Hdmi

Figure 22. Latency Setup Gpu To Aja Hdmi

Figure 23. Latency Setup Aja Sdi To Aja Sdi

Figure 24. Latency Frame Lifespan Nordma

Figure 25. Latency Frame Lifespan Rdma

Figure 26. Latency Sample Nordma Raw

Figure 27. Latency Frame Real Application

Figure 28. Latency Sample Nordma Application

Figure 29. Latency Frame Estimated Application Nordma

Figure 30. Latency Sample Nordma Estimate

Figure 31. Latency Frame Estimated Application Rdma

Figure 32. Latency Sample Rdma

Figure 33. Latency Simulated Calibration

Figure 34. Latency Simulated Runtime

Figure 35. Latency Graph Aja 4k Nordma

Figure 36. Latency Graph Aja 4k Nordma Estimate

Figure 37. Latency Graph Aja 4k Rdma Estimate

Figure 38. Latency Graph Aja 4k Rdma S1000 Estimate

NVIDIA Holoscan SDK v2.0.0 7

List of Tables
Table 0.

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

NVIDIA Holoscan SDK v2.0.0 8

Table 19.

Table 20.

Table 21.

Table 22.

Table 23.

Table 24.

Table 25.

Table 26.

Table 27.

Table 28.

Table 29.

Table 30.

Table 31.

NVIDIA Holoscan SDK v2.0.0 9

Introduction

Overview
Relevant Technologies
Getting Started

Setup

SDK Installation
Additional Setup
Third Party Hardware Setup

Using the SDK

Holoscan Core Concepts
Holoscan by Example
Creating an Application
Creating a Distributed Application
Packaging Holoscan Applications
Creating Operators
Logging
Debugging

Operators

Built-in Operators and Extensions
Visualization
Inference

Components

Schedulers
Conditions
Resources

https://docs.nvidia.com/overview.html
https://docs.nvidia.com/relevant_technologies.html
https://docs.nvidia.com/getting_started.html
https://docs.nvidia.com/sdk_installation.html
https://docs.nvidia.com/additional_setup.html
https://docs.nvidia.com/third_party_hw_setup.html
https://docs.nvidia.com/holoscan_core.html
https://docs.nvidia.com/holoscan_by_example.html
https://docs.nvidia.com/holoscan_create_app.html
https://docs.nvidia.com/holoscan_create_distributed_app.html
https://docs.nvidia.com/holoscan_packager.html
https://docs.nvidia.com/holoscan_create_operator.html
https://docs.nvidia.com/holoscan_logging.html
https://docs.nvidia.com/holoscan_debugging.html
https://docs.nvidia.com/holoscan_operators_extensions.html
https://docs.nvidia.com/visualization.html
https://docs.nvidia.com/inference.html
https://docs.nvidia.com/components/schedulers.html
https://docs.nvidia.com/components/conditions.html
https://docs.nvidia.com/components/resources.html

NVIDIA Holoscan SDK v2.0.0 10

API

Holoscan C++ API
Holoscan Python API

App Packaging

Holoscan Application Package Specification (HAP)
Holoscan CLI
Application Runner Configuration

Graph Execution Framework

GXF Core concepts
Holoscan and GXF
GXF by Example
Using Holoscan Operators in GXF Applications
GXF User Guide

Performance Tools

Data Flow Tracking
Video Pipeline Latency Tool

Links

Developer page
Support Forum
NGC Containers
Github Repository
User Guide PDF
Previous releases

https://docs.nvidia.com/api/holoscan_cpp_api.html
https://docs.nvidia.com/api/holoscan_python_api.html
https://docs.nvidia.com/cli/hap.html
https://docs.nvidia.com/cli/cli.html
https://docs.nvidia.com/cli/run_config.html
https://docs.nvidia.com/gxf/gxf_core_concepts.html
https://docs.nvidia.com/gxf/holoscan_and_gxf.html
https://docs.nvidia.com/gxf/gxf_by_example.html
https://docs.nvidia.com/gxf/gxf_wrap_holoscan_op.html
https://docs.nvidia.com/gxf/doc/index.html
https://docs.nvidia.com/flow_tracking.html
https://docs.nvidia.com/latency_tool.html
https://developer.nvidia.com/holoscan-sdk
https://forums.developer.nvidia.com/c/healthcare/holoscan-sdk/320/all
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/collections/clara_holoscan
https://github.com/nvidia-holoscan
https://developer.nvidia.com/downloads/holoscan-sdk-user-guide
https://docs.nvidia.com/holoscan-sdk/index.html

NVIDIA Holoscan SDK v2.0.0 11

NVIDIA Holoscan SDK v2.0.0 12

Overview
NVIDIA Holoscan is the AI sensor processing platform that combines hardware systems
for low-latency sensor and network connectivity, optimized libraries for data processing
and AI, and core microservices to run streaming, imaging, and other applications, from
embedded to edge to cloud. It can be used to build streaming AI pipelines for a variety of
domains, including Medical Devices, High Performance Computing at the Edge, Industrial
Inspection and more.

The Holoscan SDK assists developers by providing:

1. Various installation strategies

From containers, to python wheels, to source, from development to deployment
environments, the Holoscan SDK comes in many packaging flavors to adapt to different
needs. Find more information in the sdk installation section.

2. C++ and Python APIs

Note

In previous releases, the prefix
Clara

was used to define Holoscan as a platform designed initially for
medical devices. As Holoscan has grown, its potential to serve other
areas has become apparent. With version 0.4.0, we’re proud to
announce that the Holoscan SDK is now officially built to be domain-
agnostic and can be used to build sensor AI applications in multiple
domains. Note that some of the content of the SDK (sample
applications) or the documentation might still appear to be
healthcare-specific pending additional updates. Going forward,
domain specific content will be hosted on the HoloHub repository.

https://developer.nvidia.com/holoscan-sdk
https://docs.nvidia.com/sdk_installation.html#clara-holoscan-setup
https://www.nvidia.com/en-us/clara/developer-kits/
https://nvidia-holoscan.github.io/holohub

NVIDIA Holoscan SDK v2.0.0 13

These APIs are now the recommended interface for the creation of application pipelines
in the Holoscan SDK. See the Using the SDK section to learn how to leverage those APIs,
or the Doxygen pages (C++/Python) for specific API documentation.

3. Built-in Operators

The units of work of Holoscan applications are implemented within Operators, as
described in the core concepts of the SDK. The operators included in the SDK provide
domain-agnostic functionalities such as IO, machine learning inference, processing, and
visualization, optimized for AI streaming pipelines, relying on a set of Core Technologies.
This guide provides more information on the operators provided within the SDK here.

4. Minimal Examples

The Holoscan SDK provides a list of examples to illustrate specific capabilities of the SDK.
Their source code can be found in the GitHub repository. The Holoscan by Example
section provides step-by-step analysis of some of these examples to illustrate the
innerworkings of the Holoscan SDK.

5. Repository of Operators and Applications

HoloHub is a central repository for users and developers to share reusable operators and
sample applications with the Holoscan community. Being open-source, these operators
and applications can also be used as reference implementations to complete the built-in
operators and examples available in the SDK.

6. Tooling to Package and Deploy Applications

Packaging and deploying applications is a complex problem that can require large
amount of efforts. The Holoscan CLI is a command-line interface included in the Holoscan
SDK that provides commands to package and run applications in OCI-compliant
containers that could be used for production.

7. Performance tools

As highlighted in the relevant technologies section, the soul of the Holoscan project is to
achieve peak performance by leveraging hardware and software developed at NVIDIA or
provided by third-parties. To validate this, Holoscan provides performance tools to help
users and developers track their application performance. They currently include:

a Video Pipeline Latency Measurement Tool to measure and estimate the total end-
to-end latency of a video streaming application including the video capture,

https://docs.nvidia.com/api/holoscan_cpp_api.html
https://docs.nvidia.com/api/holoscan_python_api.html
https://docs.nvidia.com/holoscan_core.html
https://docs.nvidia.com/relevant_technologies.html
https://docs.nvidia.com/holoscan_operators_extensions.html
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples#readme
https://docs.nvidia.com/holoscan_by_example.html#holoscan-getting-started
https://nvidia-holoscan.github.io/holohub
https://docs.nvidia.com/cli/cli.html
https://docs.nvidia.com/holoscan_packager.html
https://docs.nvidia.com/latency_tool.html#latency-tool

NVIDIA Holoscan SDK v2.0.0 14

processing, and output using various hardware and software components that are
supported by the NVIDIA Developer Kits.

the Data Flow Tracking feature to profile your application and analyze the data flow
between operators in its graph.

8. Documentation

The Holoscan SDK documentation is composed of:

This user guide, in a webpage or PDF format

Build and run instructions specific to each installation strategy

Release notes on Github

https://docs.nvidia.com/flow_tracking.html
https://docs.nvidia.com/holoscan/sdk-user-guide/
https://developer.nvidia.com/downloads/holoscan-sdk-user-guide
https://docs.nvidia.com/sdk_installation.html#clara-holoscan-setup
https://github.com/nvidia-holoscan/holoscan-sdk/releases

NVIDIA Holoscan SDK v2.0.0 15

Relevant Technologies
Holoscan accelerates streaming AI applications by leveraging both hardware and
software. The Holoscan SDK relies on multiple core technologies to achieve low latency
and high throughput:

Rivermax and GPUDirect RDMA

Graph Execution Framework

TensorRT Optimized Inference

Interoperability between CUDA and rendering frameworks

Accelerated Image Transformations

Unified Communications X

Rivermax and GPUDirect RDMA

The NVIDIA Developer Kits equipped with a ConnectX network adapter can be used along
with the NVIDIA Rivermax SDK to provide an extremely efficient network connection that
is further optimized for GPU workloads by using GPUDirect for RDMA. This technology
avoids unnecessary memory copies and CPU overhead by copying data directly to or
from pinned GPU memory, and supports both the integrated GPU or the discrete GPU.

Note

NVIDIA is also committed to supporting hardware vendors enable
RDMA within their own drivers, an example of which is provided by
the AJA Video Systems as part of a partnership with NVIDIA for the
Holoscan SDK. The AJASource operator is an example of how the
SDK can leverage RDMA.

https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://developer.nvidia.com/networking/rivermax
https://developer.nvidia.com/gpudirect
file:///tmp/jsreport/autocleanup/aja_setup.html#aja-video-systems

NVIDIA Holoscan SDK v2.0.0 16

For more information about GPUDirect RDMA, see the following:

GPUDirect RDMA Documentation

Minimal GPUDirect RDMA Demonstration source code, which provides a real
hardware example of using RDMA and includes both kernel drivers and userspace
applications for the RHS Research PicoEVB and HiTech Global HTG-K800 FPGA
boards.

Graph Execution Framework

The Graph Execution Framework (GXF) is a core component of the Holoscan SDK that
provides features to execute pipelines of various independent tasks with high
performance by minimizing or removing the need to copy data across each block of work,
and providing ways to optimize memory allocation.

GXF will be mentioned in many places across this user guide, including a dedicated
section which provides more details.

TensorRT Optimized Inference

NVIDIA TensorRT is a deep learning inference framework based on CUDA that provided
the highest optimizations to run on NVIDIA GPUs, including the NVIDIA Developer Kits.

The inference module leverages TensorRT among other backends, and provides the
ability to execute multiple inferences in parallel.

Interoperability between CUDA and rendering
frameworks

Vulkan is commonly used for realtime visualization and, like CUDA, is executed on the
GPU. This provides an opportunity for efficient sharing of resources between CUDA and
this rendering framework.

The Holoviz module uses the external resource interoperability functions of the low-level
CUDA driver application programming interface, the Vulkan external memory and
external semaphore extensions.

Accelerated Image Transformations

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://github.com/NVIDIA/jetson-rdma-picoevb
https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/inference.html#holoinfer
https://docs.nvidia.com/visualization.html#visualization
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EXTRES__INTEROP.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_external_memory_fd.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_external_semaphore.html

NVIDIA Holoscan SDK v2.0.0 17

Streaming image processing often requires common 2D operations like resizing,
converting bit widths, and changing color formats. NVIDIA has built the CUDA accelerated
NVIDIA Performance Primitive Library (NPP) that can help with many of these common
transformations. NPP is extensively showcased in the Format Converter operator of the
Holoscan SDK.

Unified Communications X

The Unified Communications X (UCX) framework is an open-source communication
framework developed as a collaboration between industry and academia. It provides high
performance point-to-point communication for data-centric applications. Holoscan SDK
uses UCX to send data between fragments in distributed applications. UCX’s high level
protocols attempt to automatically select an optimal transport layer depending on the
hardware available. For example technologies such as TCP, CUDA memory copy, CUDA
IPC and GPUDirect RDMA are supported.

https://docs.nvidia.com/cuda/npp/index.html
https://openucx.org/
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

NVIDIA Holoscan SDK v2.0.0 18

Getting Started with
Holoscan
As described in the Overview, the SDK provides many components and capabilities. The
goal of this section is to provide a recommended path to getting started with the SDK.

1. Choose your platform

The Holoscan SDK is optimized and compatible with multiple hardware platforms,
including NVIDIA Developer Kits (aarch64) and x86_64 workstations. Learn more on the
developer page to help you decide what hardware you should target.

2. Setup the SDK and your platform

Start with installing the SDK. If you have a need for it, you can go through additional
recommended setups to achieve peak performance, or setup additional sensors from
NVIDIA’s partners.

3. Learn the framework

1. Start with the Core Concepts to understand the technical terms used in this guide,
and the overall behavior of the framework.

2. Learn how to use the SDK in one of two ways (or both) based on your preference:

1. Going through the Holoscan by Example tutorial which will build your
knowledge step-by-step by going over concrete minimal examples in the SDK.
You can refer to each example source code and run instructions to inspect
them and run them as you go.

2. Going through the condensed documentations that should cover all
capabilities of the SDK using minimal mock code snippets, including creating
an application, creating a distributed application, and creating operators.

https://docs.nvidia.com/overview.html
https://developer.nvidia.com/holoscan-sdk
https://docs.nvidia.com/sdk_installation.html
https://docs.nvidia.com/additional_setup.html
https://docs.nvidia.com/third_party_hw_setup.html
https://docs.nvidia.com/holoscan_core.html
https://docs.nvidia.com/holoscan_by_example.html
https://docs.nvidia.com/holoscan_create_app.html
https://docs.nvidia.com/holoscan_create_app.html
https://docs.nvidia.com/holoscan_create_distributed_app.html
https://docs.nvidia.com/holoscan_create_operator.html

NVIDIA Holoscan SDK v2.0.0 19

4. Understand the reusable capabilities of the SDK

The Holoscan SDK does not only provide a framework to build and run applications, but
also a set of reusable operators to facilitate implementing applications for streaming, AI,
and other general domains.

The list of existing operators is available here, which points to the C++ or Python API
documentation for more details. Specific documentation is available for the visualization
(codename: HoloViz) and inference (codename: HoloInfer) operators.

Additionally, HoloHub is a central repository for users and developers to share reusable
operators and sample applications with the Holoscan community, extending the
capabilities of the SDK:

Just like the SDK operators, the HoloHub operators can be used in your own
Holoscan applications.

The HoloHub sample applications can be used as reference implementations to
complete the examples available in the SDK.

Take a glance at HoloHub to find components you might want to leverage in your
application, improve upon existing work, or contribute your own additions to the
Holoscan platform.

5. Write and Run your own application

The steps above cover what is required to write your own application and run it. For
facilitating packaging and distributing, the Holoscan SDK includes utilities to package and
run your Holoscan application in a OCI-compliant container image.

6. Master the details

Expand your understanding of the framework with details on the logging utility or
the data flow tracking benchmarking tool.

Learn more details on the configurable components that control the execution of
your application, like [Schedulers], [Conditions], and [Resources]. (Advanced) These
components are part on the GXF execution backend, hence the Graph Execution
Framework section at the bottom of this guide if deep understanding of the
application execution is needed.

https://docs.nvidia.com/holoscan_operators_extensions.html
https://docs.nvidia.com/visualization.html
https://docs.nvidia.com/inference.html
https://nvidia-holoscan.github.io/holohub
https://docs.nvidia.com/holoscan_packager.html
https://docs.nvidia.com/holoscan_packager.html
https://docs.nvidia.com/holoscan_logging.html
https://docs.nvidia.com/flow_tracking.html

NVIDIA Holoscan SDK v2.0.0 20

SDK Installation
The section below refers to the installation of the Holoscan SDK referred to as the
development stack, designed for NVIDIA Developer Kits (arm64), and for x86_64 Linux
compute platforms, ideal for development and testing of the SDK.

Prerequisites

Ingested Tab Module

For RDMA Support, follow the instructions in the Enabling RDMA section.

Additional software dependencies might be needed based on how you choose to
install the SDK (see section below).

Refer to the Additional Setup and Third-Party Hardware Setup sections for
additional prerequisites.

Install the SDK

We provide multiple ways to install and run the Holoscan SDK:

Instructions

Note

An alternative for the IGX Orin Developer Kit is the deployment stack,
based on OpenEmbedded (Yocto build system) instead of Ubuntu.
This is recommended to limit your stack to the software components
strictly required to run your Holoscan application. The runtime Board
Support Package (BSP) can be optimized with respect to memory
usage, speed, security and power requirements.

https://docs.nvidia.com/set_up_gpudirect_rdma.html
https://docs.nvidia.com/additional_setup.html
https://docs.nvidia.com/third_party_hw_setup.html
https://www.nvidia.com/en-us/edge-computing/products/igx/
file:///tmp/jsreport/autocleanup/deployment_stack.html
https://www.openembedded.org/wiki/Main_Page
https://www.yoctoproject.org/

NVIDIA Holoscan SDK v2.0.0 21

Ingested Tab Module

Not sure what to choose?

The Holoscan container image on NGC it the safest way to ensure all the
dependencies are present with the expected versions (including Torch and ONNX
Runtime), and should work on most Linux distributions. It is the simplest way to run
the embedded examples, while still allowing you to create your own C++ and Python
Holoscan application on top of it. These benefits come at a cost:

large image size from the numerous (some of them optional) dependencies. If
you need a lean runtime image, see section below.

standard inconvenience that exist when using Docker, such as more complex
run instructions for proper configuration.

If you are confident in your ability to manage dependencies on your own in your
host environment, the Holoscan Debian package should provide all the
capabilities needed to use the Holoscan SDK, assuming you are on Ubuntu 22.04.

If you are not interested in the C++ API but just need to work in Python, or want to
use a different version than Python 3.10, you can use the Holoscan python wheels
on PyPI. While they are the easiest solution to install the SDK, it might require the
most work to setup your environment with extra dependencies based on your
needs. Finally, they are only formally supported on Ubuntu 22.04, though should
support other linux distributions with glibc 2.35 or above.

NGC dev Container Debian Package Python Wheels

Runtime libraries Included Included Included

Python module 3.10 3.10 3.8 to 3.11

C++ headers and
CMake config

Included Included N/A

Examples (+ source) Included Included
retrieve from
GitHub

Sample datasets Included
retrieve from
NGC

retrieve from
NGC

CUDA runtime 1 Included automatically 2

installed
require manual
installation

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan
https://pypi.org/project/holoscan
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#readme
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#readme
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/collections/clara_holoscan
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/collections/clara_holoscan
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/collections/clara_holoscan
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/collections/clara_holoscan

NVIDIA Holoscan SDK v2.0.0 22

NPP support 3 Included automatically 2

installed
require manual
installation

TensorRT support 4 Included automatically 2

installed
require manual
installation

Vulkan support 5 Included automatically 2

installed
require manual
installation

V4L2 support 6 Included automatically 2

installed
require manual
installation

Torch support 7 Included
require manual
8
installation

require manual
8
installation

ONNX Runtime
support 9

Included
require manual
10
installation

require manual
10
installation

MOFED support 11
User space included
Install kernel drivers on the
host

require manual
installation

require manual
installation

CLI support Included
needs docker w/
buildx plugin

needs docker
w/
buildx plugin

Need more control over the SDK?

The Holoscan SDK source repository is open-source and provides reference
implementations as well as infrastructure for building the SDK yourself.

Attention

We only recommend building the SDK from source if you need to
build it with debug symbols or other options not used as part of the
published packages. If you want to write your own operator or
application, you can use the SDK as a dependency (and contribute to

https://developer.nvidia.com/npp
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/vulkan
https://en.wikipedia.org/wiki/Video4Linux
https://pytorch.org/
https://onnxruntime.ai/
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://docs.nvidia.com/holoscan_packager.html
https://github.com/nvidia-holoscan/holoscan-sdk

NVIDIA Holoscan SDK v2.0.0 23

Looking for a light runtime container image?

The current Holoscan container on NGC has a large size due to including all the
dependencies for each of the built-in operators, but also because of the development
tools and libraries that are included. Follow the instructions on GitHub to build a runtime
container without these development packages. This page also includes detailed
documentation to assist you in only including runtime dependencies your Holoscan
application might need.

[1]

CUDA 12 is required. Already installed on NVIDIA developer kits with IGX Software and
JetPack.

[2](1,2,3,4,5)

Debian installation on x86_64 requires the latest cuda-keyring package to automatically
install all dependencies.

[3]

NPP 12 needed for the FormatConverter and BayerDemosaic operators. Already installed
on NVIDIA developer kits with IGX Software and JetPack.

[4]

TensorRT 8.6.1+ and cuDNN needed for the Inference operator. Already installed on
NVIDIA developer kits with IGX Software and JetPack.

[5]

Vulkan 1.3.204+ loader needed for the HoloViz operator (+ libegl1 for headless
rendering). Already installed on NVIDIA developer kits with IGX Software and JetPack.

[6]

HoloHub). If you need to make other modifications to the SDK, file a
feature or bug request.

https://github.com/nvidia-holoscan/holoscan-sdk#runtime-container
https://docs.nvidia.com/cuda/archive/12.1.1/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/#network-repo-installation-for-ubuntu
https://github.com/nvidia-holoscan/holohub
https://forums.developer.nvidia.com/c/healthcare/holoscan-sdk/320/all
https://forums.developer.nvidia.com/c/healthcare/holoscan-sdk/320/all

NVIDIA Holoscan SDK v2.0.0 24

V4L2 1.22+ needed for the V4L2 operator. Already installed on NVIDIA developer kits with
IGX Software and JetPack.
[7]

Torch support requires LibTorch 2.1+, TorchVision 0.16+, OpenBLAS 0.3.20+, OpenMPI
(aarch64 only), MKL 2021.1.1 (x86_64 only), libpng and libjpeg.

[8](1,2)

To install LibTorch and TorchVision, either build them from source, download our pre-
built packages, or copy them from the holoscan container (in /opt).

[9]

ONNXRuntime 1.15.1+ needed for the Inference operator. Note that ONNX models are
also supported through the TensoRT backend of the Inference Operator.

[10](1,2)

To install ONNXRuntime, either build it from source, download our pre-built package with
CUDA 12 and TensoRT execution provider support, or copy it from the holoscan
container (in /opt/onnxruntime).

[11]

Tested with MOFED 23.10

https://edge.urm.nvidia.com/artifactory/sw-holoscan-thirdparty-generic-local/
https://edge.urm.nvidia.com/artifactory/sw-holoscan-thirdparty-generic-local/
https://edge.urm.nvidia.com/artifactory/sw-holoscan-thirdparty-generic-local/

NVIDIA Holoscan SDK v2.0.0 25

Additional Setup
In addition to the required steps to install the Holoscan SDK, the steps below will help
you achieve peak performance:

Enabling RDMA
Enabling G-SYNC
Disabling Variable Backlight
Enabling Exclusive Display Mode
Use both Integrated and Discrete GPUs on NVIDIA Developer Kits
Deployment Software Stack

Enabling RDMA

There are two parts to enabling RDMA for Holoscan:

Enabling RDMA on the ConnectX SmartNIC

Enabling GPUDirect RDMA

Enabling RDMA on the ConnectX SmartNIC

Skip to the next section if you do not plan to leverage a ConnectX SmartNIC.

The NVIDIA IGX Orin developer kit comes with an embedded ConnectX Ethernet adapter
to offer advanced hardware offloads and accelerations. You can also purchase an

Note

Learn more about RDMA in the technology overview section.

https://docs.nvidia.com/sdk_installation.html#clara-holoscan-setup
https://docs.nvidia.com/set_up_gpudirect_rdma.html
https://docs.nvidia.com/enable_gsync.html
https://docs.nvidia.com/disable_variable_backlight.html
https://docs.nvidia.com/enable_exclusive_display.html
https://docs.nvidia.com/use_igpu_with_dgpu.html
https://docs.nvidia.com/deployment_stack.html
https://www.nvidia.com/en-us/networking/ethernet-adapters/
file:///tmp/jsreport/autocleanup/relevant_technologies.html#gpudirect-rdma

NVIDIA Holoscan SDK v2.0.0 26

individual ConnectX adapter and install it on other systems such as x86_64 workstations.

The following steps are required to ensure your ConnectX can be used for RDMA over
Converged Ethernet (RoCE):

1. Install MOFED drivers

Ensure the Mellanox OFED drivers version 23.10 or above are installed:

If not installed, or an older version, install the appropriate version from the MLNX_OFED
download page, or use the script below:

2. Load MOFED drivers

Ensure the drivers are loaded:

If nothing appears, run the following command:

3. Switch the board Link Layer to Ethernet

cat /sys/module/mlx5_core/version

You can choose different versions/OS or download directly from the # Download
Center in the webpage linked above MOFED_VERSION="23.10-2.1.3.1"
OS="ubuntu22.04"
MOFED_PACKAGE="MLNX_OFED_LINUX-${MOFED_VERSION}-${OS}-$(uname -m)"
wget --progress=dot:giga
https://www.mellanox.com/downloads/ofed/MLNX_OFED-${MOFED_VERSION}/${MOF
tar xf ${MOFED_PACKAGE}.tgz sudo ./${MOFED_PACKAGE}/mlnxofedinstall # add
the --force flag to force uninstallation if necessary: # sudo
./${MOFED_PACKAGE}/mlnxofedinstall --force rm -r ${MOFED_PACKAGE}*

sudo lsmod | grep ib_core

sudo /etc/init.d/openibd restart

https://docs.nvidia.com/networking/display/mlnxofedv23070512/rdma+over+converged+ethernet+(roce)
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed

NVIDIA Holoscan SDK v2.0.0 27

The ConnectX SmartNIC can function in two separate modes (called link layer):

Ethernet (ETH)

Infiniband (IB)

Holoscan does not support IB at this time (not tested), so the ConnectX will need to
use the ETH link layer.

To identify the current mode, run ibstat or ibv_devinfo and look for the Link Layer
value. In the example below, the mlx5_0 interface is in Ethernet mode, while the
mlx5_1 interface is in Infiniband mode. Do not pay attention to the transport value

which is always InfiniBand .

If no results appear after ibstat and sudo lsmod | grep ib_core returns a result like
this:

Consider running the following command or rebooting:

To switch the link layer mode, there are two possible options:

$ ibstat CA 'mlx5_0' CA type: MT4129 Number of ports: 1 Firmware version:
28.37.0190 Hardware version: 0 Node GUID: 0x48b02d0300ee7a04 System image
GUID: 0x48b02d0300ee7a04 Port 1: State: Down Physical state: Disabled Rate: 40
Base lid: 0 LMC: 0 SM lid: 0 Capability mask: 0x00010000 Port GUID:
0x4ab02dfffeee7a04 Link layer: Ethernet CA 'mlx5_1' CA type: MT4129 Number of
ports: 1 Firmware version: 28.37.0190 Hardware version: 0 Node GUID:
0x48b02d0300ee7a05 System image GUID: 0x48b02d0300ee7a04 Port 1: State:
Active Physical state: LinkUp Rate: 100 Base lid: 0 LMC: 0 SM lid: 0 Capability mask:
0x00010000 Port GUID: 0x4ab02dfffeee7a05 Link layer: InfiniBand

ib_core 425984 1 ib_uverbs

sudo /etc/init.d/openibd restart

NVIDIA Holoscan SDK v2.0.0 28

1. On IGX Orin developer kits, you can switch that setting through the BIOS: see IGX
Orin documentation.

2. On any system with a ConnectX (including IGX Orin devkits), you can run the
command below from a terminal (requires a reboot). sudo ibdev2netdev -v is used
to identify the PCI address of the ConnectX (any of the two interfaces is fine to use),
and mlxconfig is used to apply the changes.

Note: LINK_TYPE_P1 and LINK_TYPE_P2 are for mlx5_0 and mlx5_1 respectively.
You can choose to only set one of them. You can pass ETH or 2 for Ethernet
mode, and IB or 1 for InfiniBand.

This is the output of the command above:

Next Boot is actually the current value that was expected to be used at the next
reboot, while New is the value you’re about to set to override Next Boot .

Apply with y and reboot afterwards:

4. Configure the IP addresses of the ethernet interfaces

First, identify the logical names of your ConnectX interfaces. Connecting a cable in just
one of the interfaces on the ConnectX will help you identify which port is which (in the
example below, only mlx5_1 i.e. eth3 is connected):

mlx_pci=$(sudo ibdev2netdev -v | awk '{print $1}' | head -n1) sudo mlxconfig -
d $mlx_pci set LINK_TYPE_P1=ETH LINK_TYPE_P2=ETH

Device #1: ---------- Device type: ConnectX7 Name: P3740-B0-QSFP_Ax
Description: NVIDIA Prometheus P3740 ConnectX-7 VPI PCIe Switch
Motherboard; 400Gb/s; dual-port QSFP; PCIe switch5.0 X8 SLOT0 ;X16 SLOT2;
secure boot; Device: 0005:03:00.0 Configurations: Next Boot New
LINK_TYPE_P1 ETH(2) ETH(2) LINK_TYPE_P2 IB(1) ETH(2) Apply new
Configuration? (y/n) [n] :

Applying... Done! -I- Please reboot machine to load new configurations.

https://docs.nvidia.com/igx-orin/user-guide/latest/switch-network-link.html
https://docs.nvidia.com/igx-orin/user-guide/latest/switch-network-link.html

NVIDIA Holoscan SDK v2.0.0 29

The next step is to set a static IP on the interface you’d like to use so you can refer to it in
your Holoscan applications (ex: Emergent cameras, distributed applications…).

$ sudo ibdev2netdev mlx5_0 port 1 ==> eth2 (Down) mlx5_1 port 1 ==> eth3 (Up)

Tip

For IGX Orin Developer Kits with no live source to connect to the
ConnectX QSFP ports, adding -v can show you which logical name is
mapped to each specific port:

0005:03.00.0 is the QSFP port closer to the PCI slots

0005:03.00.1 is the QSFP closer to the RJ45 ethernet ports

If you have a cable connected but it does not show Up/Down in the
output of ibdev2netdev , you can try to parse the output of dmesg
instead. The example below shows that 0005:03:00.1 is plugged, and
that it is associated with eth3 :

$ sudo ibdev2netdev -v 0005:03:00.0 mlx5_0 (MT4129 - P3740-
0002) NVIDIA IGX, P3740-0002, 2-port QSFP up to 400G,
InfiniBand and Ethernet, PCIe5 fw 28.37.0190 port 1 (DOWN)
==> eth2 (Down) 0005:03:00.1 mlx5_1 (MT4129 - P3740-0002)
NVIDIA IGX, P3740-0002, 2-port QSFP up to 400G, InfiniBand
and Ethernet, PCIe5 fw 28.37.0190 port 1 (DOWN) ==> eth2
(Down)

$ sudo dmesg | grep -w mlx5_core ... [11.512808] mlx5_core
0005:03:00.0 eth2: Link down [11.640670] mlx5_core
0005:03:00.1 eth3: Link down ... [3712.267103] mlx5_core
0005:03:00.1: Port module event: module 1, Cable plugged

https://docs.nvidia.com/emergent_setup.html#emergent-vision-tech
https://docs.nvidia.com/holoscan_create_distributed_app.html

NVIDIA Holoscan SDK v2.0.0 30

First, check if you already have an address setup. We’ll use the eth3 interface in this
example for mlx5_1 :

If nothing appears or you’d like to change the address, you can set an IP and MTU
(Maximum Transmission Unit) through the Network Manager user interface, CLI (nmcli),
or other IP configuration tools. In the example below, we use ip (ifconfig is legacy) to
configure the eth3 interface with an address of 192.168.1.1/24 and a MTU of 9000
(i.e. “jumbo frame”) to send Ethernet frames with a payload greater than the standard
size of 1500 bytes:

Enabling GPUDirect RDMA

ip -f inet addr show eth3

sudo ip link set dev eth3 down sudo ip addr add 192.168.1.1/24 dev eth3 sudo ip
link set dev eth3 mtu 9000 sudo ip link set dev eth3 up

Note

If you are connecting the ConnectX to another ConnectX with a LinkX
interconnect, do the same on the other system with an IP address on
the same network segment.

For example, to communicate with 192.168.1.1/24 above (/24 ->
255.255.255.0 submask), setup your other system with an IP

between 192.168.1.2 and 192.168.1.254 , and the same /24
submask.

Note

https://www.nvidia.com/en-us/networking/interconnect/
https://www.nvidia.com/en-us/networking/interconnect/

NVIDIA Holoscan SDK v2.0.0 31

Follow the instructions below to enable GPUDirect RDMA:

Ingested Tab Module

Testing with Rivermax

The instructions below describe the steps to test GPUDirect using the Rivermax SDK. The
test applications used by these instructions, generic_sender and generic_receiver , can
then be used as samples in order to develop custom applications that use the Rivermax
SDK to optimize data transfers.

Running the Rivermax sample applications requires two systems, a sender and a receiver,
connected via ConnectX network adapters. If two Developer Kits are used then the
onboard ConnectX can be used on each system, but if only one Developer Kit is available
then it is expected that another system with an add-in ConnectX network adapter will

Only supported on NVIDIA’s Quadro/workstation GPUs (not GeForce).

Note

The Linux default path where Rivermax expects to find the license file
is /opt/mellanox/rivermax/rivermax.lic , or you can specify the full
path and file name for the environment variable
RIVERMAX_LICENSE_PATH .

Note

If manually installing the Rivermax SDK from the link above, please
note there is no need to follow the steps for installing
MLNX_OFED/MLNX_EN in the Rivermax documentation.

https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/networking/rivermax

NVIDIA Holoscan SDK v2.0.0 32

need to be used. Rivermax supports a wide array of platforms, including both Linux and
Windows, but these instructions assume that another Linux based platform will be used
as the sender device while the Developer Kit is used as the receiver.

1. Determine the logical name for the ConnectX devices that are used by each system.
This can be done by using the lshw -class network command, finding the product:
entry for the ConnectX device, and making note of the logical name: that
corresponds to that device. For example, this output on a Developer Kit shows the
onboard ConnectX device using the enp9s0f01 logical name (lshw output
shortened for demonstration purposes).

Note

The $rivermax_sdk variable referenced below corresponds to the
path where the Rivermax SDK package was installed. If the Rivermax
SDK was installed via SDK Manager, this path will be:

If the Rivermax SDK was installed via a manual download, make sure
to export your path to the SDK:

Install path might differ in future versions of Rivermax.

rivermax_sdk=$HOME/Documents/Rivermax/1.31.10

rivermax_sdk=$DOWNLOAD_PATH/1.31.10

$ sudo lshw -class network *-network:0 description: Ethernet interface
product: MT28908 Family [ConnectX-6] vendor: Mellanox Technologies
physical id: 0 bus info: pci@0000:09:00.0 logical name: enp9s0f0
version: 00 serial: 48:b0:2d:13:9b:6b capacity: 10Gbit/s width: 64 bits clock:
33MHz capabilities: pciexpress vpd msix pm bus_master cap_list ethernet
physical 1000bt-fd 10000bt-fd autonegotiation configuration:
autonegotiation=on broadcast=yes driver=mlx5_core driverversion=5.4-1.0.3

NVIDIA Holoscan SDK v2.0.0 33

The instructions that follow will use the enp9s0f0 logical name for ifconfig
commands, but these names should be replaced with the corresponding logical
names as determined by this step.

2. Run the generic_sender application on the sending system.

a. Bring up the network:

b. Build the sample apps:

e. Launch the generic_sender application:

3. Run the generic_receiver application on the receiving system.

duplex=full firmware=20.27.4006 (NVD0000000001) ip=10.0.0.2 latency=0
link=yes multicast=yes resources: iomemory:180-17f irq:33
memory:1818000000-1819ffffff

$ sudo ifconfig enp9s0f0 up 10.0.0.1

$ cd ${rivermax_sdk}/apps $ make

$ sudo ./generic_sender -l 10.0.0.1 -d 10.0.0.2 -p 5001 -y 1462 -k 8192 -z 500 -v
... +### | Sender
index: 0 | Thread ID: 0x7fa1ffb1c0 | CPU core affinity: -1 | Number of streams
in this thread: 1 | Memory address: 0x7f986e3010 | Memory length:
59883520[B] | Memory key: 40308
+### | Stream
index: 0 | Source IP: 10.0.0.1 | Destination IP: 10.0.0.2 | Destination port: 5001
| Number of flows: 1 | Rate limit bps: 0 | Rate limit max burst in packets: 0 |
Memory address: 0x7f986e3010 | Memory length: 59883520[B] | Memory key:
40308 | Number of user requested chunks: 1 | Number of application chunks:
5 | Number of packets in chunk: 8192 | Packet's payload size: 1462
+**

NVIDIA Holoscan SDK v2.0.0 34

a. Bring up the network:

b. Build the generic_receiver app with GPUDirect support from the Rivermax
GitHub Repo. Before following the instructions to build with CUDA-Toolkit support,
apply the changes to file generic_receiver/generic_receiver.cpp in this PR, this was
tested on the IGX Orin Developer Kit with Rivermax 1.31.10.

c. Launch the generic_receiver application from the build directory:

With both the generic_sender and generic_receiver processes active, the receiver will
continue to print out received packet statistics every second. Both processes can then be
terminated with <ctrl-c> .

Enabling G-SYNC
For better performance and to keep up with the high refresh rate of Holoscan
applications, we recommend the use of a G-SYNC display.

$ sudo ifconfig enp9s0f0 up 10.0.0.2

$ sudo ./generic_receiver -i 10.0.0.2 -m 10.0.0.2 -s 10.0.0.1 -p 5001 -g 0 ...
Attached flow 1 to stream. Running main receive loop... Got 5877704 GPU
packets | 68.75 Gbps during 1.00 sec Got 5878240 GPU packets | 68.75 Gbps
during 1.00 sec Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec Got
5877704 GPU packets | 68.75 Gbps during 1.00 sec Got 5878240 GPU packets
| 68.75 Gbps during 1.00 sec ...

Tip

Holoscan has been tested with these two G-SYNC displays:

Asus ROG Swift PG279QM

https://github.com/NVIDIA/Rivermax
https://github.com/NVIDIA/Rivermax
https://github.com/NVIDIA/Rivermax/blob/master/generic_receiver/README.md#how-to-build
https://github.com/NVIDIA/Rivermax/pull/3/files
https://www.nvidia.com/en-us/geforce/products/g-sync-monitors/specs/
https://rog.asus.com/us/monitors/27-to-31-5-inches/rog-swift-pg279qm-model/

NVIDIA Holoscan SDK v2.0.0 35

Follow these steps to ensure G-SYNC is enabled on your display:

1. Open the “NVIDIA Settings” Graphical application (nvidia-settings in Terminal).

2. Click on X Server Display Configuration then the Advanced button. This will show
the Allow G-SYNC on monitor not validated as G-SYNC compatible option. Enable
the option and click Apply :

Asus ROG Swift 360 Hz PG259QNR

https://rog.asus.com/us/monitors/23-to-24-5-inches/rog-swift-360hz-pg259qnr-model/

NVIDIA Holoscan SDK v2.0.0 36

Fig. 1 Enable G-SYNC for the current display

3. To show the refresh rate and G-SYNC label on the display window, click on
OpenGL Settings for the selected display. Now click
Allow G-SYNC/G-SYNC Compatible and

NVIDIA Holoscan SDK v2.0.0 37

Enable G-SYNC/G-SYNC Compatible Visual Indicator options and click Quit . This
step is shown in below image. The Gsync indicator will be at the top right screen
once the application is running.

Fig. 2 Enable Visual Indicator for the current display

Disabling Variable Backlight
Various monitors have a Variable Backlight feature. That setting can add up to a frame of
latency when enabled. Refer to your monitor’s manufacturer instructions to disable it.

Tip

To disable variable backlight on the Asus ROG Swift monitors
mentioned above, use the joystick button at the back of the display,

NVIDIA Holoscan SDK v2.0.0 38

Enabling Exclusive Display Mode
By default, applications use a borderless fullscreen window managed by the window
manager. Because the window manager also manages other applications, applications
may suffer a performance hit. To improve performance, exclusive display mode can be
used with Holoscan’s new visualization module (Holoviz), allowing the application to
bypass the window manager and render directly to the display. Refer to the Holoviz
documentation for details.

Use both Integrated and Discrete
GPUs on NVIDIA Developer Kits
NVIDIA Developer Kits like the NVIDIA IGX Orin or the NVIDIA Clara AGX have both a
discrete GPU (dGPU - optional on IGX Orin) and an integrated GPU (iGPU - Tegra SoC).

As of this release, when these developer kits are flashed to leverage the dGPU, there are
two limiting factors preventing the use of the iGPU:

1. Conflict between the dGPU kernel mode driver and the iGPU display kernel driver
(both named nvidia.ko). This conflict is not addressable at this time, meaning that
the iGPU cannot be used for display while the dGPU is enabled.

2. Conflicts between the user mode driver libraries (ex: libcuda.so) and the compute
stack (ex: libcuda_rt.so) for dGPU and iGPU.

We provide utilities to work around the second conflict:

Ingested Tab Module

go to the image tag, select variable backlight , then switch that
setting to OFF .

Attention

https://docs.nvidia.com/visualization.html#holoviz-display-mode
https://docs.nvidia.com/visualization.html#holoviz-display-mode
https://www.nvidia.com/en-us/edge-computing/products/igx/
https://www.nvidia.com/en-gb/clara/intelligent-medical-instruments/

NVIDIA Holoscan SDK v2.0.0 39

Deployment Software Stack
NVIDIA Holoscan accelerates deployment of production-quality applications by providing
a set of OpenEmbedded build recipes and reference configurations that can be
leveraged to customize and build Holoscan-compatible Linux4Tegra (L4T) embedded
board support packages (BSP) on the NVIDIA IGX Developer Kits.

Holoscan OpenEmbedded/Yocto recipes add OpenEmbedded recipes and sample build
configurations to build BSPs for the NVIDIA IGX Developer Kit that feature support for
discrete GPUs (dGPU), AJA Video Systems I/O boards, and the Holoscan SDK. These BSPs
are built on a developer’s host machine and are then flashed onto the NVIDIA IGX
Developer Kit using provided scripts.

There are two options available to set up a build environment and start building Holoscan
BSP images using OpenEmbedded.

The first sets up a local build environment in which all dependencies are fetched
and installed manually by the developer directly on their host machine. Please refer
to the Holoscan OpenEmbedded/Yocto recipes README for more information on
how to use the local build environment.

The second uses a Holoscan OpenEmbedded/Yocto Build Container that is provided
by NVIDIA on NGC which contains all of the dependencies and configuration scripts
such that the entire process of building and flashing a BSP can be done with just a
few simple commands.

These utilities enable using the iGPU for capabilities other than
display only, since they do not address the first conflict listed above.

https://github.com/nvidia-holoscan/meta-tegra-holoscan
https://github.com/nvidia-holoscan/meta-tegra-holoscan/blob/main/README.md
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan-oe-builder

NVIDIA Holoscan SDK v2.0.0 40

Third Party Hardware
Setup
GPU compute performance is a key component of the Holoscan hardware platforms, and
to optimize GPU based video processing applications and provide lowest possible latency
the Holoscan SDK now supports AJA Video Systems capture cards and Emergent Vision
Technologies high-speed cameras. The following sections will provide more information
on how to setup the system with these technologies.

Table of Contents

AJA Video Systems
Installing the AJA Hardware
Installing the AJA Software

Downloading the AJA NTV2 SDK Source
Building the AJA NTV2 Drivers
Loading the AJA NTV2 Drivers
Building and Installing the AJA NTV2 SDK
Testing the AJA Device

Using AJA Devices in Containers
Troubleshooting

Emergent Vision Technologies (EVT)
Installing EVT Hardware
Installing EVT Software
Testing the EVT Camera
Troubleshooting

AJA Video Systems
AJA provides a wide range of proven, professional video I/O devices, and thanks to a
partnership between NVIDIA and AJA, Holoscan supports the AJA NTV2 SDK and device
drivers as of the NTV2 SDK 16.1 release.

https://docs.nvidia.com/aja_setup.html
https://docs.nvidia.com/aja_setup.html#installing-the-aja-hardware
https://docs.nvidia.com/aja_setup.html#installing-the-aja-software
https://docs.nvidia.com/aja_setup.html#downloading-the-aja-ntv2-sdk-source
https://docs.nvidia.com/aja_setup.html#building-the-aja-ntv2-drivers
https://docs.nvidia.com/aja_setup.html#loading-the-aja-ntv2-drivers
https://docs.nvidia.com/aja_setup.html#building-and-installing-the-aja-ntv2-sdk
https://docs.nvidia.com/aja_setup.html#testing-the-aja-device
https://docs.nvidia.com/aja_setup.html#using-aja-devices-in-containers
https://docs.nvidia.com/aja_setup.html#troubleshooting
https://docs.nvidia.com/emergent_setup.html
https://docs.nvidia.com/emergent_setup.html#installing-evt-hardware
https://docs.nvidia.com/emergent_setup.html#installing-evt-software
https://docs.nvidia.com/emergent_setup.html#testing-the-evt-camera
https://docs.nvidia.com/emergent_setup.html#troubleshooting
https://www.aja.com/

NVIDIA Holoscan SDK v2.0.0 41

The AJA drivers and SDK now offer RDMA support for NVIDIA GPUs. This feature allows
video data to be captured directly from the AJA card to GPU memory, which significantly
reduces latency and system PCI bandwidth for GPU video processing applications as
sysmem to GPU copies are eliminated from the processing pipeline.

The following instructions describe the steps required to setup and use an AJA device
with RDMA support on NVIDIA Developer Kits with a PCIe slot. Note that the AJA NTV2
SDK support for Holoscan includes all of the AJA Developer Products, though the
following instructions have only been verified for the Corvid 44 12G BNC and KONA HDMI
products, specifically.

Installing the AJA Hardware

This section describes how to install the AJA hardware on the Clara AGX Developer Kit.
Note that the AJA Hardware is also compatible with the NVIDIA IGX Orin Developer Kit.

To install an AJA Video Systems device into the Clara AGX Developer Kit, remove the side
access panel by removing two screws on the back of the Clara AGX. This provides access
to the two available PCIe slots, labelled 13 and 14 in the Clara AGX Developer Kit User
Guide:

Note

The addition of an AJA device to a NVIDIA Developer Kit is optional.
The Holoscan SDK has elements that can be run with an AJA device
with the additional features mentioned above, but those elements
can also run without AJA. For example, there are Holoscan sample
applications that have an AJA live input component, however they can
also take in video replay as input. Similarly, the latency measurement
tool can measure the latency of the video I/O subsystem with or
without an AJA device available.

https://www.aja.com/family/developer
https://www.aja.com/products/corvid-44-12g-bnc
https://www.aja.com/products/kona-hdmi
https://developer.nvidia.com/clara-agx-development-kit-user-guide
https://developer.nvidia.com/clara-agx-development-kit-user-guide

NVIDIA Holoscan SDK v2.0.0 42

While these slots are physically identical PCIe x16 slots, they are connected to the Clara
AGX via different PCIe bridges. Only slot 14 shares the same PCIe bridge as the RTX6000
dGPU, and so the AJA device must be installed into slot 14 for RDMA support to be
available. The following image shows a Corvid 44 12G BNC card installed into slot 14 as
needed to enable RDMA support.

https://www.aja.com/products/corvid-44-12g-bnc

NVIDIA Holoscan SDK v2.0.0 43

Installing the AJA Software

The AJA NTV2 SDK includes both the drivers (kernel module) that are required in order to
enable an AJA device, as well as the SDK (headers and libraries) that are used to access an
AJA device from an application.

The drivers must be loaded every time the system is rebooted, and they must be loaded
natively on the host system (i.e. not inside a container). The drivers must be loaded
regardless of whether applications will be run natively or inside a container (see Using
AJA Devices in Containers).

The SDK only needs to be installed on the native host and/or container that will be used
to compile applications with AJA support. The Holoscan SDK containers already have the
NTV2 SDK installed, and so no additional steps are required to build AJA-enabled
applications (such as the reference Holoscan applications) within these containers.
However, installing the NTV2 SDK and utilities natively on the host is useful for the initial

NVIDIA Holoscan SDK v2.0.0 44

setup and testing of the AJA device, so the following instructions cover this native
installation.

Downloading the AJA NTV2 SDK Source

Navigate to a directory where you would like the source code to be downloaded, then
perform the following to clone the NTV2 SDK source code.

Note

To summarize, the steps in this section must be performed on the
native host, outside of a container, with the following steps required
once:

Downloading the AJA NTV2 SDK Source

Building the AJA NTV2 Drivers

The following steps required after every reboot:

Loading the AJA NTV2 Drivers

And the following steps are optional (but recommended during the
initial setup):

Building and Installing the AJA NTV2 SDK

Testing the AJA Device

$ git clone https://github.com/nvidia-holoscan/ntv2.git $ export NTV2=$(pwd)/ntv2

Note

NVIDIA Holoscan SDK v2.0.0 45

Building the AJA NTV2 Drivers

The following will build the AJA NTV2 drivers with RDMA support enabled. Once built, the
kernel module (ajantv2.ko) and load/unload scripts (load_ajantv2 and unload_ajantv2)
will be output to the ${NTV2}/bin directory.

Loading the AJA NTV2 Drivers

Running any application that uses an AJA device requires the AJA kernel drivers to be
loaded, even if the application is being run from within a container.

The AJA drivers must be manually loaded every time the machine is rebooted using the
load_ajantv2 script:

These instructions use a fork of the official AJA NTV2 Repository that
is maintained by NVIDIA and may contain additional changes that are
required for Holoscan SDK support. These changes will be pushed to
the official AJA NTV2 repository whenever possible with the goal to
minimize or eliminate divergence between the two repositories.

$ export AJA_RDMA=1 # Or unset AJA_RDMA to disable RDMA support $ unset
AJA_IGPU # Or export AJA_IGPU=1 to run on the integrated GPU of the IGX Orin Devkit
(L4T >= 35.4) $ make -j --directory ${NTV2}/ajadriver/linux

Note

To enable RDMA with AJA, ensure the NVIDIA GPUDirect RDMA kernel
module is loaded before the AJA NTV2 drivers.

$ sudo sh ${NTV2}/bin/load_ajantv2 loaded ajantv2 driver module created node
/dev/ajantv20

https://github.com/aja-video/ntv2
file:///tmp/jsreport/autocleanup/set_up_gpudirect_rdma.html#enable-gpudirect-rdma
file:///tmp/jsreport/autocleanup/set_up_gpudirect_rdma.html#enable-gpudirect-rdma

NVIDIA Holoscan SDK v2.0.0 46

Building and Installing the AJA NTV2 SDK

Since the AJA NTV2 SDK is already loaded into the Holoscan containers, this step is not
strictly required in order to build or run any Holoscan applications. However, this builds
and installs various tools that can be useful for testing the operation of the AJA hardware
outside of Holoscan containers, and is required for the steps provided in Testing the AJA
Device.

Testing the AJA Device

The following steps depend on tools that were built and installed by the previous step,
Building and Installing the AJA NTV2 SDK. If any errors occur, see the Troubleshooting
section, below.

1. To ensure that an AJA device has been installed correctly, the
ntv2enumerateboards utility can be used:

Note

The NTV2 environment variable must point to the NTV2 SDK path
where the drivers were previously built as described in Building the
AJA NTV2 Drivers.

Secure boot must be disabled in order to load unsigned module. If
any errors occur while loading the module refer to the
Troubleshooting section, below.

$ sudo apt-get install -y cmake $ mkdir ${NTV2}/cmake-build $ cd ${NTV2}/cmake-
build $ export PATH=/usr/local/cuda/bin:${PATH} $ cmake .. $ make -j $ sudo make
install

NVIDIA Holoscan SDK v2.0.0 47

2. To ensure that RDMA support has been compiled into the AJA driver and is
functioning correctly, the testrdma utility can be used:

Using AJA Devices in Containers

Accessing an AJA device from a container requires the drivers to be loaded natively on the
host (see Loading the AJA NTV2 Drivers), then the device that is created by the
load_ajantv2 script must be shared with the container using the --device docker
argument, such as –device /dev/ajantv20:/dev/ajantv20.

Troubleshooting

1. Problem: The sudo sh ${NTV2}/bin/load_ajantv2 command returns an error.

Solutions:

1. Make sure the AJA card is properly installed and powered (see 2.a below)

2. Check if SecureBoot validation is disabled:

$ ntv2enumerateboards AJA NTV2 SDK version 16.2.0 build 3 built on Wed Feb
02 21:58:01 UTC 2022 1 AJA device(s) found: AJA device 0 is called 'KonaHDMI -
0' This device has a deviceID of 0x10767400 This device has 0 SDI Input(s) This
device has 0 SDI Output(s) This device has 4 HDMI Input(s) This device has 0
HDMI Output(s) This device has 0 Analog Input(s) This device has 0 Analog
Output(s) 47 video format(s): 1080i50, 1080i59.94, 1080i60, 720p59.94,
720p60, 1080p29.97, 1080p30, 1080p25, 1080p23.98, 1080p24, 2Kp23.98,
2Kp24, 720p50, 1080p50b, 1080p59.94b, 1080p60b, 1080p50a, 1080p59.94a,
1080p60a, 2Kp25, 525i59.94, 625i50, UHDp23.98, UHDp24, UHDp25,
4Kp23.98, 4Kp24, 4Kp25, UHDp29.97, UHDp30, 4Kp29.97, 4Kp30, UHDp50,
UHDp59.94, UHDp60, 4Kp50, 4Kp59.94, 4Kp60, 4Kp47.95, 4Kp48, 2Kp60a,
2Kp59.94a, 2Kp29.97, 2Kp30, 2Kp50a, 2Kp47.95a, 2Kp48a

$ testrdma -t500 test device 0 start 0 end 7 size 8388608 count 500
frames/errors 500/0

NVIDIA Holoscan SDK v2.0.0 48

If SecureBoot validation is enabled, disable it with the following procedure:

Enter a temporary password and reboot the system.

Upon reboot press any key when you see the blue screen MOK
Management

Select Change Secure Boot state

Enter the password your selected

Select Yes to disable Secure Book in shim-signed

After reboot you can verify again that SecureBoot validation is disabled in
shim.

2. Problem: The ntv2enumerateboards command does not find any devices.

Solutions:

1. Make sure that the AJA device is installed properly and detected by the system
(see Installing the AJA Hardware):

2. Make sure that the AJA drivers are loaded properly (see Loading the AJA NTV2
Drivers):

$ sudo mokutil --sb-state SecureBoot enabled SecureBoot validation is
disabled in shim

$ sudo mokutil --disable-validation

$ lspci 0000:00:00.0 PCI bridge: NVIDIA Corporation Device 1ad0 (rev a1)
0000:05:00.0 Multimedia video controller: AJA Video Device eb25 (rev 01)
0000:06:00.0 PCI bridge: Mellanox Technologies Device 1976
0000:07:00.0 PCI bridge: Mellanox Technologies Device 1976
0000:08:00.0 VGA compatible controller: NVIDIA Corporation Device 1e30
(rev a1)

NVIDIA Holoscan SDK v2.0.0 49

3. Problem: The testrdma command outputs the following error:

Solution: The AJA drivers need to be compiled with RDMA support enabled. Follow
the instructions in Building the AJA NTV2 Drivers, making sure not to skip the
export AJA_RDMA=1 when building the drivers.

Emergent Vision Technologies (EVT)
Thanks to a collaboration with Emergent Vision Technologies, the Holoscan SDK now
supports EVT high-speed cameras on NVIDIA Developer Kits equipped with a ConnectX
NIC using the Rivermax SDK.

Installing EVT Hardware

The EVT cameras can be connected to NVIDIA Developer Kits through a Mellanox
ConnectX SmartNIC, with the most simple connection method being a single cable
between a camera and the devkit. For 25 GigE cameras that use the SFP28 interface, this
can be achieved by using SFP28 cable with QSFP28 to SFP28 adaptor.

$ lsmod Module Size Used by ajantv2 610066 0 nvidia_drm 54950 4
mlx5_ib 170091 0 nvidia_modeset 1250361 8 nvidia_drm ib_core 211721
1 mlx5_ib nvidia 34655210 315 nvidia_modeset

error - GPU buffer lock failed

Note

The Holoscan SDK application has been tested using a SFP28 copper
cable of 2M or less. Longer copper cables or optical cables and optical
modules can be used but these have not been tested as a part of this
development.

https://emergentvisiontec.com/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://developer.nvidia.com/networking/rivermax
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://store.nvidia.com/en-us/networking/store/product/MCP2M00-A001E30N/NVIDIAMCP2M00A001E30NDACCableEthernet25GbESFP281m/
https://store.nvidia.com/en-us/networking/store/product/MAM1Q00A-QSA28/NVIDIAMAM1Q00AQSA28CableAdapter100Gbsto25GbsQSFP28toSFP28/

NVIDIA Holoscan SDK v2.0.0 50

Refer to the NVIDIA IGX Orin Developer Kit User Guide for the location of the QSFP28
connector on the device.

For EVT camera setup, refer to Hardware Installation in EVT Camera User’s Manual. Users
need to log in to find be able to download Camera User’s Manual.

Installing EVT Software

The Emergent SDK needs to be installed in order to compile and run the Clara Holoscan
applications with EVT camera. The latest tested version of the Emergent SDK is
eSDK 2.37.05 Linux Ubuntu 20.04.04 Kernel 5.10.65 JP 5.0 HP and can be downloaded

from here. The Emergent SDK comes with headers, libraries and examples. To install the
SDK refer to the Software Installation section of EVT Camera User’s Manual. Users need
to log in to find be able to download Camera User’s Manual.

Tip

The EVT cameras require the user to buy the lens. Based on the
application of camera, the lens can be bought from any online store.

Note

The Emergent SDK depends on Rivermax SDK and the Mellanox OFED
Network Drivers. If they’re already installed on your system, use the
following command when installing the Emergent SDK to avoid
duplicate installation:

Ensure the ConnectX is properly configured to use it with the
Emergent SDK.

sudo ./install_eSdk.sh no_mellanox

https://developer.nvidia.com/igx-orin-developer-kit-user-guide
https://emergentvisiontec.com/resources/?tab=umg
https://emergentvisiontec.com/resources/?tab=ss
https://emergentvisiontec.com/resources/?tab=umg
https://www.bhphotovideo.com/c/search?Ntt=c%20mount%20lens&N=0&InitialSearch=yes&sts=ps

NVIDIA Holoscan SDK v2.0.0 51

Testing the EVT Camera

To test if the EVT camera and SDK was installed correctly, run the eCapture application
with sudo privileges. First, ensure that a valid Rivermax license file is under
/opt/mellanox/rivermax/rivermax.lic , then follow the instructions under the eCapture

section of EVT Camera User’s Manual.

Troubleshooting

1. Problem: The application fails to find the EVT camera.

Solution:

Make sure that the MLNX ConnectX SmartNIC is configured with the correct IP
address. Follow section Configure the ConnectX SmartNIC

2. Problem: The application fails to open the EVT camera.

Solutions:

Make sure that the application was run with sudo privileges.

Make sure a valid Rivermax license file is located at
/opt/mellanox/rivermax/rivermax.lic .

3. Problem: Fail to find eCapture application in the home window.

Solution:

Open the terminal and find it under /opt/EVT/eCapture . The applications needs to
be run with sudo privileges.

4. Problem: The eCapture application fails to connect to the EVT camera with error
message “GVCP ack error”.

https://emergentvisiontec.com/resources/?tab=umg

NVIDIA Holoscan SDK v2.0.0 52

Solutions: It could be an issue with the HR12 power connection to the camera.
Disconnect the HR12 power connector from the camera and try reconnecting it.

5. Problem: The IP address of the Emergent camera is reset even after setting up with
the above steps.

Solutions: Check whether the NIC settings in Ubuntu is set to “Connect automatically”.
Go to Settings -> Network -> NIC for the Camera and then unselect “Connect
automatically” and in the IPv6 tab, select Disable .

NVIDIA Holoscan SDK v2.0.0 53

Holoscan Core Concepts

An Application is composed of Fragments , each of which runs a graph of Operators .
The implementation of that graph is sometimes referred to as a pipeline, or workflow,
which can be visualized below:

Fig. 3 Core concepts: Application

Note

In its early days, the Holoscan SDK was tightly linked to the GXF core
concepts. While the Holoscan SDK still relies on GXF as a backend to
execute applications, it now offers its own interface, including a C++
API (0.3), a Python API (0.4), and the ability to write native operators
(0.4) without requiring to wrap a GXF extension. Read the Holoscan
and GXF section for additional details.

file:///tmp/jsreport/autocleanup/gxf/gxf_core_concepts.html
file:///tmp/jsreport/autocleanup/gxf/gxf_core_concepts.html
file:///tmp/jsreport/autocleanup/gxf/holoscan_and_gxf.html
file:///tmp/jsreport/autocleanup/gxf/holoscan_and_gxf.html

NVIDIA Holoscan SDK v2.0.0 54

Fig. 4 Core concepts: Port

The core concepts of the Holoscan API are:

Application: An application acquires and processes streaming data. An application
is a collection of fragments where each fragment can be allocated to execute on a
physical node of a Holoscan cluster.

Fragment: A fragment is a building block of the Application. It is a directed graph of
operators. A fragment can be assigned to a physical node of a Holoscan cluster
during execution. The run-time execution manages communication across
fragments. In a Fragment, Operators (Graph Nodes) are connected to each other by
flows (Graph Edges).

Operator: An operator is the most basic unit of work in this framework. An
Operator receives streaming data at an input port, processes it, and publishes it to
one of its output ports. A Codelet in GXF would be replaced by an Operator in the
Holoscan SDK. An Operator encapsulates Receiver s and Transmitter s of a GXF
Entity as Input/Output Port s of the Operator .

(Operator) Resource: Resources such as system memory or a GPU memory pool
that an Operator needs to perform its job. Resources are allocated during the
initialization phase of the application. This matches the semantics of GXF’s Memory
Allocator or any other components derived from the Component class in GXF.

Condition: A condition is a predicate that can be evaluated at runtime to determine
if an operator should execute. This matches the semantics of GXF’s Scheduling
Term.

Port: An interaction point between two operators. Operators ingest data at Input
ports and publish data at Output ports. Receiver , Transmitter , and

https://docs.nvidia.com/api/cpp/classholoscan_1_1Application.html#exhale-class-classholoscan-1-1application
https://docs.nvidia.com/api/cpp/classholoscan_1_1Fragment.html#exhale-class-classholoscan-1-1fragment
https://docs.nvidia.com/api/cpp/classholoscan_1_1Operator.html#exhale-class-classholoscan-1-1operator
https://docs.nvidia.com/gxf/gxf_core_concepts.html#holoscan-core-concepts-gxf
https://docs.nvidia.com/gxf/gxf_core_concepts.html#holoscan-core-concepts-gxf
https://docs.nvidia.com/api/cpp/classholoscan_1_1Resource.html#exhale-class-classholoscan-1-1resource
https://docs.nvidia.com/api/cpp/classholoscan_1_1Condition.html#exhale-class-classholoscan-1-1condition
https://docs.nvidia.com/gxf/doc/scheduler/scheduler.html#schedulingterms
https://docs.nvidia.com/gxf/doc/scheduler/scheduler.html#schedulingterms
https://docs.nvidia.com/api/cpp/classholoscan_1_1IOSpec.html#exhale-class-classholoscan-1-1iospec

NVIDIA Holoscan SDK v2.0.0 55

MessageRouter in GXF would be replaced with the concept of Input/Output Port
of the Operator and the Flow (Edge) of the Application Workflow (DAG) in the
Framework.

Message: A generic data object used by operators to communicate information.

Executor: An Executor that manages the execution of a Fragment on a physical
node. The framework provides a default Executor that uses a GXF Scheduler to
execute an Application.

https://docs.nvidia.com/api/cpp/classholoscan_1_1Message.html#exhale-class-classholoscan-1-1message
https://docs.nvidia.com/api/cpp/classholoscan_1_1Executor.html#exhale-class-classholoscan-1-1executor
https://docs.nvidia.com/gxf/doc/scheduler/scheduler.html

NVIDIA Holoscan SDK v2.0.0 56

Holoscan by Example
In this section, we demonstrate how to use the Holoscan SDK to build applications
through a series of examples. The concepts needed to build your own Holoscan
applications will be covered as we go through each example.

Table of Contents

Hello World
Defining the HelloWorldApp class
Defining the HelloWorldApp workflow
Running the Application

Ping Simple
Operators and Workflow
Connecting Operators
Running the Application

Ping Custom Op
Operators and Workflow
Configuring Operator Input and Output Ports
Configuring Operator Parameters
Message Data Types
Running the Application

Ping Multi Port
Operators and Workflow
User Defined Data Types
Defining an Explicit Number of Inputs and Outputs

Note

Examples source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian

package, alongside their executables.

https://docs.nvidia.com/examples/hello_world.html
https://docs.nvidia.com/examples/hello_world.html#defining-the-helloworldapp-class
https://docs.nvidia.com/examples/hello_world.html#defining-the-helloworldapp-workflow
https://docs.nvidia.com/examples/hello_world.html#running-the-application
https://docs.nvidia.com/examples/ping_simple.html
https://docs.nvidia.com/examples/ping_simple.html#operators-and-workflow
https://docs.nvidia.com/examples/ping_simple.html#connecting-operators
https://docs.nvidia.com/examples/ping_simple.html#running-the-application
https://docs.nvidia.com/examples/ping_custom_op.html
https://docs.nvidia.com/examples/ping_custom_op.html#operators-and-workflow
https://docs.nvidia.com/examples/ping_custom_op.html#configuring-operator-input-and-output-ports
https://docs.nvidia.com/examples/ping_custom_op.html#configuring-operator-parameters
https://docs.nvidia.com/examples/ping_custom_op.html#message-data-types
https://docs.nvidia.com/examples/ping_custom_op.html#running-the-application
https://docs.nvidia.com/examples/ping_multi_port.html
https://docs.nvidia.com/examples/ping_multi_port.html#operators-and-workflow
https://docs.nvidia.com/examples/ping_multi_port.html#user-defined-data-types
https://docs.nvidia.com/examples/ping_multi_port.html#defining-an-explicit-number-of-inputs-and-outputs
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

NVIDIA Holoscan SDK v2.0.0 57

Receiving Any Number of Inputs
Running the Application

Video Replayer
Operators and Workflow
Video Stream Replayer Operator
Holoviz Operator
Application Configuration File (YAML)
Running the Application

Video Replayer (Distributed)
Operators and Workflow
Defining and Connecting Fragments
Running the Application

Bring Your Own Model (BYOM)
Operators and Workflow
Prerequisites
Understanding the Application Code
Modifying the Application for Ultrasound Segmentation
Running the Application
Customizing the Inference Operator
Common Pitfalls Deploying New Models

Hello World
For our first example, we look at how to create a Hello World example using the Holoscan
SDK.

In this example we’ll cover:

how to define your application class

how to define a one-operator workflow

how to use a CountCondition to limit the number of times an operator is executed

Note

https://docs.nvidia.com/examples/ping_multi_port.html#receiving-any-number-of-inputs
https://docs.nvidia.com/examples/ping_multi_port.html#running-the-application
https://docs.nvidia.com/examples/video_replayer.html
https://docs.nvidia.com/examples/video_replayer.html#operators-and-workflow
https://docs.nvidia.com/examples/video_replayer.html#video-stream-replayer-operator
https://docs.nvidia.com/examples/video_replayer.html#holoviz-operator
https://docs.nvidia.com/examples/video_replayer.html#application-configuration-file-yaml
https://docs.nvidia.com/examples/video_replayer.html#running-the-application
https://docs.nvidia.com/examples/video_replayer_distributed.html
https://docs.nvidia.com/examples/video_replayer_distributed.html#operators-and-workflow
https://docs.nvidia.com/examples/video_replayer_distributed.html#defining-and-connecting-fragments
https://docs.nvidia.com/examples/video_replayer_distributed.html#running-the-application
https://docs.nvidia.com/examples/byom.html
https://docs.nvidia.com/examples/byom.html#operators-and-workflow
https://docs.nvidia.com/examples/byom.html#prerequisites
https://docs.nvidia.com/examples/byom.html#understanding-the-application-code
https://docs.nvidia.com/examples/byom.html#modifying-the-application-for-ultrasound-segmentation
https://docs.nvidia.com/examples/byom.html#running-the-application
https://docs.nvidia.com/examples/byom.html#customizing-the-inference-operator
https://docs.nvidia.com/examples/byom.html#common-pitfalls-deploying-new-models

NVIDIA Holoscan SDK v2.0.0 58

Defining the HelloWorldApp class

For more details, see the Defining an Application Class section.

We define the HelloWorldApp class that inherits from holoscan’s Application base
class. An instance of the application is created in main . The run() method will then start
the application.

Ingested Tab Module

Defining the HelloWorldApp workflow

For more details, see the Application Workflows section.

When defining your application class, the primary task is to define the operators used in
your application and the interconnectivity between them to define the application
workflow. The HelloWorldApp uses the simplest form of a workflow which consists of a
single operator: HelloWorldOp .

For the sake of this first example, we will ignore the details of defining a custom operator
to focus on the highlighted information below: when this operator runs (compute), it will
print out Hello World! to the standard output:

Ingested Tab Module

Defining the application workflow occurs within the application’s compose() method. In
there, we first create an instance of the HelloWorldOp operator defined above, then add
it to our simple workflow using add_operator() .

Ingested Tab Module

The example source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian

package, alongside their executables.

https://docs.nvidia.com/holoscan_create_app.html#defining-an-application-class
https://docs.nvidia.com/holoscan_create_app.html#application-workflows
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

NVIDIA Holoscan SDK v2.0.0 59

Holoscan applications deal with streaming data, so an operator’s compute() method will
be called continuously until some situation arises that causes the operator to stop. For
our Hello World example, we want to execute the operator only once. We can impose
such a condition by passing a CountCondition object as an argument to the operator’s
constructor.

For more details, see the Configuring operator conditions section.

Running the Application

Running the application should give you the following output in your terminal:

Congratulations! You have successfully run your first Holoscan SDK application!

Ping Simple
Most applications will require more than one operator. In this example, we will create two
operators where one operator will produce and send data while the other operator will
receive and print the data. The code in this example makes use of the built-in PingTxOp
and PingRxOp operators that are defined in the holoscan::ops namespace.

In this example we’ll cover:

how to use built-in operators

how to use add_flow() to connect operators together

Hello World!

Note

The example source code and run instructions can be found in the
examples directory on GitHub, or under

https://docs.nvidia.com/holoscan_create_app.html#configuring-app-operator-conditions
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

NVIDIA Holoscan SDK v2.0.0 60

Operators and Workflow

Here is a example workflow involving two operators that are connected linearly.

digraph ping_simple { rankdir="LR" node [shape=record]; tx [label="PingTxOp| |out(out) :
int"]; rx [label="PingRxOp|[in]in : int | "]; tx -> rx [label="out...in"] }

Fig. 5 A linear workflow

In this example, the source operator PingTxOp produces integers from 1 to 10 and
passes it to the sink operator PingRxOp which prints the integers to standard output.

Connecting Operators

We can connect two operators by calling add_flow() (C++ / Python) in the application’s
compose() method.

The add_flow() method (C++ / Python) takes the source operator, the destination
operator, and the optional port name pairs. The port name pair is used to connect the
output port of the source operator to the input port of the destination operator. The first
element of the pair is the output port name of the upstream operator and the second
element is the input port name of the downstream operator. An empty port name (“”) can
be used for specifying a port name if the operator has only one input/output port. If
there is only one output port in the upstream operator and only one input port in the
downstream operator, the port pairs can be omitted.

The following code shows how to define a linear workflow in the compose() method for
our example. Note that when an operator appears in an add_flow() statement, it doesn’t
need to be added into the workflow separately using add_operator() .

Ingested Tab Module

/opt/nvidia/holoscan/examples in the NGC container and the debian
package, alongside their executables.

NVIDIA Holoscan SDK v2.0.0 61

Running the Application

Running the application should give you the following output in your terminal:

Ping Custom Op
In this section, we will modify the previous ping_simple example to add a custom
operator into the workflow. We’ve already seen a custom operator defined in the
hello_world example but skipped over some of the details.

In this example we will cover:

the details of creating your own custom operator class

how to add input and output ports to your operator

how to add parameters to your operator

the data type of the messages being passed between operators

Operators and Workflow

Rx message value: 1 Rx message value: 2 Rx message value: 3 Rx message value: 4
Rx message value: 5 Rx message value: 6 Rx message value: 7 Rx message value: 8
Rx message value: 9 Rx message value: 10

Note

The example source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian

package, alongside their executables.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

NVIDIA Holoscan SDK v2.0.0 62

Here is the diagram of the operators and workflow used in this example.

digraph custom_op { rankdir="LR" node [shape=record]; tx [label="PingTxOp| |out(out) :
int"]; mx [label="PingMxOp| [in]in : int | out(out) : int "]; rx [label="PingRxOp| [in]in : int |
"]; tx -> mx [label="out...in"] mx -> rx [label="out...in"] }

Fig. 6 A linear workflow with new custom operator

Compared to the previous example, we are adding a new PingMxOp operator between
the PingTxOp and PingRxOp operators. This new operator takes as input an integer,
multiplies it by a constant factor, and then sends the new value to PingRxOp. You can
think of this custom operator as doing some data processing on an input stream before
sending the result to downstream operators.

Configuring Operator Input and Output Ports

Our custom operator needs 1 input and 1 output port and can be added by calling
spec.input() and spec.output() methods within the operator’s setup() method. This

requires providing the data type and name of the port as arguments (for C++ API), or just
the port name (for Python API). We will see an example of this in the code snippet below.
For more details, see Specifying operator inputs and outputs (C++) or Specifying operator
inputs and outputs (Python).

Configuring Operator Parameters

Operators can be made more reusable by customizing their parameters during
initialization. The custom parameters can be provided either directly as arguments or
accessed from the application’s YAML configuration file. We will show how to use the
former in this example to customize the “multiplier” factor of our PingMxOp custom
operator. Configuring operators using a YAML configuration file will be shown in a
subsequent example. For more details, see Configuring operator parameters.

The code snippet below shows how to define the PingMxOp class.

Ingested Tab Module

Now that the custom operator has been defined, we create the application, operators,
and define the workflow.

https://docs.nvidia.com/holoscan_create_operator.html#specifying-operator-inputs-and-outputs-cpp
https://docs.nvidia.com/holoscan_create_operator.html#specifying-operator-inputs-and-outputs-python
https://docs.nvidia.com/holoscan_create_operator.html#specifying-operator-inputs-and-outputs-python
https://docs.nvidia.com/video_replayer.html#video-replayer-example
https://docs.nvidia.com/holoscan_create_app.html#configuring-app-operator-parameters

NVIDIA Holoscan SDK v2.0.0 63

Ingested Tab Module

Message Data Types

For the C++ API, the messages that are passed between the operators are the objects of
the data type at the inputs and outputs, so the value variable from lines 20 and 25 of
the example above has the type int . For the Python API, the messages passed between
operators can be arbitrary Python objects so no special consideration is needed since it is
not restricted to the stricter parameter typing used for C++ API operators.

Let’s look at the code snippet for the built-in PingTxOp class and see if this helps to make
it clearer.

Ingested Tab Module

Running the Application

Running the application should give you the following output in your terminal:

Attention

For advance use cases, e.g., when writing C++ applications where you
need interoperability between C++ native and GXF operators you will
need to use the holoscan::TensorMap type instead. See
Interoperability between GXF and native C++ operators for more
details. If you are writing a Python application which needs a mixture
of Python wrapped C++ operators and native Python operators, see
Interoperability between wrapped and native Python operators

Middle message value: 1 Rx message value: 3 Middle message value: 2 Rx message
value: 6 Middle message value: 3 Rx message value: 9 Middle message value: 4 Rx
message value: 12 Middle message value: 5 Rx message value: 15 Middle message
value: 6 Rx message value: 18 Middle message value: 7 Rx message value: 21 Middle

file:///tmp/jsreport/holoscan_create_operator.html#interoperability-with-gxf-operators-cpp
file:///tmp/jsreport/holoscan_create_operator.html#interoperability-with-wrapped-operators-python

NVIDIA Holoscan SDK v2.0.0 64

Ping Multi Port
In this section, we look at how to create an application with a more complex workflow
where operators may have multiple input/output ports that send/receive a user-defined
data type.

In this example we will cover:

how to send/receive messages with a custom data type

how to add a port that can receive any number of inputs

Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

digraph ping_multi_port { rankdir="LR" node [shape=record]; tx [label="PingTxOp|
|out1(out) : ValueData\nout2(out) : ValueData"]; mx [label="PingMxOp|[in]in1 :
ValueData\n[in]in2 : ValueData|out1(out) : ValueData\nout2(out) : ValueData"]; rx
[label="PingRxOp|[in]receivers : ValueData | "]; tx -> mx [label="out1...in1"] tx -> mx
[label="out2...in2"] mx -> rx [label="out1...receivers"] mx -> rx [label="out2...receivers"] }

Fig. 7 A workflow with multiple inputs and outputs

message value: 8 Rx message value: 24 Middle message value: 9 Rx message value:
27 Middle message value: 10 Rx message value: 30

Note

The example source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian

package, alongside their executables.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

NVIDIA Holoscan SDK v2.0.0 65

In this example, PingTxOp sends a stream of odd integers to the out1 port, and even
integers to the out2 port. PingMxOp receives these values using in1 and in2 ports,
multiplies them by a constant factor, then forwards them to a single port - receivers - on
PingRxOp .

User Defined Data Types

In the previous ping examples, the port types for our operators were integers, but the
Holoscan SDK can send any arbitrary data type. In this example, we’ll see how to
configure operators for our user-defined ValueData class.

Ingested Tab Module

Defining an Explicit Number of Inputs and Outputs

After defining our custom ValueData class, we configure our operators’ ports to
send/receive messages of this type, similarly to the previous example.

This is the first operator - PingTxOp - sending ValueData objects on two ports, out1
and out2 :

Ingested Tab Module

We then configure the middle operator - PingMxOp - to receive that data on ports in1
and in2 :

Ingested Tab Module

PingMxOp processes the data, then sends it out on two ports, similarly to what is done
by PingTxOp above.

Receiving Any Number of Inputs

In this workflow, PingRxOp has a single input port - receivers - that is connected to two
upstream ports from PingMxOp . When an input port needs to connect to multiple
upstream ports, we define it with spec.param() instead of spec.input() . The inputs are
then stored in a vector, following the order they were added with add_flow() .

https://docs.nvidia.com/ping_custom_op.html#configuring-operator-input-and-output-ports

NVIDIA Holoscan SDK v2.0.0 66

Ingested Tab Module

The rest of the code creates the application, operators, and defines the workflow:

Ingested Tab Module

The operators tx , mx , and rx are created in the application’s compose()
similarly to previous examples.

Since the operators in this example have multiple input/output ports, we need to
specify the third, port name pair argument when calling add_flow() :

tx/out1 is connected to mx/in1 , and tx/out2 is connected to mx/in2 .

mx/out1 and mx/out2 are both connected to rx/receivers .

Running the Application

Running the application should give you output similar to the following in your terminal.

[info] [gxf_executor.cpp:222] Creating context [info] [gxf_executor.cpp:1531]
Loading extensions from configs... [info] [gxf_executor.cpp:1673] Activating Graph...
[info] [gxf_executor.cpp:1703] Running Graph... [info] [gxf_executor.cpp:1705]
Waiting for completion... [info] [gxf_executor.cpp:1706] Graph execution waiting.
Fragment: [info] [greedy_scheduler.cpp:195] Scheduling 3 entities [info]
[ping_multi_port.cpp:80] Middle message received (count: 1) [info]
[ping_multi_port.cpp:82] Middle message value1: 1 [info] [ping_multi_port.cpp:83]
Middle message value2: 2 [info] [ping_multi_port.cpp:112] Rx message received
(count: 1, size: 2) [info] [ping_multi_port.cpp:114] Rx message value1: 3 [info]
[ping_multi_port.cpp:115] Rx message value2: 6 [info] [ping_multi_port.cpp:80]
Middle message received (count: 2) [info] [ping_multi_port.cpp:82] Middle message
value1: 3 [info] [ping_multi_port.cpp:83] Middle message value2: 4 [info]
[ping_multi_port.cpp:112] Rx message received (count: 2, size: 2) [info]
[ping_multi_port.cpp:114] Rx message value1: 9 [info] [ping_multi_port.cpp:115] Rx
message value2: 12 ... [info] [ping_multi_port.cpp:114] Rx message value1: 51 [info]
[ping_multi_port.cpp:115] Rx message value2: 54 [info] [ping_multi_port.cpp:80]
Middle message received (count: 10) [info] [ping_multi_port.cpp:82] Middle message

NVIDIA Holoscan SDK v2.0.0 67

Video Replayer
So far we have been working with simple operators to demonstrate Holoscan SDK
concepts. In this example, we look at two built-in Holoscan operators that have many
practical applications.

In this example we’ll cover:

how to load a video file from disk using VideoStreamReplayerOp operator

how to display video using HolovizOp operator

how to configure your operator’s parameters using a YAML configuration file

value1: 19 [info] [ping_multi_port.cpp:83] Middle message value2: 20 [info]
[ping_multi_port.cpp:112] Rx message received (count: 10, size: 2) [info]
[ping_multi_port.cpp:114] Rx message value1: 57 [info] [ping_multi_port.cpp:115] Rx
message value2: 60 [info] [greedy_scheduler.cpp:374] Scheduler stopped: Some
entities are waiting for execution, but there are no periodic or async entities to get
out of the deadlock. [info] [greedy_scheduler.cpp:403] Scheduler finished. [info]
[gxf_executor.cpp:1714] Graph execution deactivating. Fragment: [info]
[gxf_executor.cpp:1715] Deactivating Graph... [info] [gxf_executor.cpp:1718] Graph
execution finished. Fragment: [info] [gxf_executor.cpp:241] Destroying context

Note

Depending on your log level you may see more or fewer messages.
The output above was generated using the default value of INFO .
Refer to the Logging section for more details on how to set the log
level.

Note

file:///tmp/jsreport/holoscan_logging.html#holoscan-logging

NVIDIA Holoscan SDK v2.0.0 68

Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

digraph video_replayer { rankdir="LR" node [shape=record]; replayer
[label="VideoStreamReplayerOp| |output(out) : Tensor"]; viz [label="HolovizOp|
[in]receivers : Tensor | "]; replayer -> viz [label="output...receivers"] }

Fig. 8 Workflow to load and display video from a file

We connect the “output” port of the replayer operator to the “receivers” port of the
Holoviz operator.

Video Stream Replayer Operator

The built-in video stream replayer operator can be used to replay a video stream that has
been encoded as gxf entities. You can use the convert_video_to_gxf_entities.py script
(installed in /opt/nvidia/holoscan/bin or available on GitHub) to encode a video file as
gxf entities for use by this operator.

This operator processes the encoded file sequentially and supports realtime, faster than
realtime, or slower than realtime playback of prerecorded data. The input data can
optionally be repeated to loop forever or only for a specified count. For more details, see
operators-video-stream-replayer.

We will use the replayer to read gxf entities from disk and send the frames downstream
to the Holoviz operator.

Holoviz Operator

The example source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian

package, alongside their executables.

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#convert_video_to_gxf_entitiespy
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

NVIDIA Holoscan SDK v2.0.0 69

The built-in Holoviz operator provides the functionality to composite real time streams of
frames with multiple different other layers like segmentation mask layers, geometry
layers and GUI layers.

We will use Holoviz to display frames that have been sent by the replayer operator to it’s
“receivers” port which can receive any number of inputs. In more intricate workflows, this
port can receive multiple streams of input data where, for example, one stream is the
original video data while other streams detect objects in the video to create bounding
boxes and/or text overlays.

Application Configuration File (YAML)

The SDK supports reading an optional YAML configuration file and can be used to
customize the application’s workflow and operators. For more complex workflows, it may
be helpful to use the application configuration file to help separate operator parameter
settings from your code. See Configuring an Application for additional details.

This example uses the following configuration file to configure the parameters for the
replayer and Holoviz operators. The full list of parameters can be found at operators-
video-stream-replayer and operators-holoviz.

Tip

For C++ applications, the configuration file can be a nice way to set
the behavior of the application at runtime without having to
recompile the code.

%YAML 1.2 replayer: directory: "../data/racerx" # Path to gxf entity video data
basename: "racerx" # Look for <basename>.gxf_{entities|index} frame_rate: 0 #
Frame rate to replay. (default: 0 follow frame rate in timestamps) repeat: true #
Loop video? (default: false) realtime: true # Play in realtime, based on
frame_rate/timestamps (default: true) count: 0 # Number of frames to read (default:
0 for no frame count restriction) holoviz: width: 854 # width of window size height:
480 # height of window size tensors: - name: "" # name of tensor containing input
data to display type: color # input type e.g., color, triangles, text, depth_map

https://docs.nvidia.com/holoscan_create_app.html#configuring-an-application

NVIDIA Holoscan SDK v2.0.0 70

The code below shows our video_replayer example. Operator parameters are
configured from a configuration file using from_config() (C++) and self.**kwargs()
(Python).

Ingested Tab Module

Running the Application

Running the application should bring up video playback of the video referenced in the
YAML file.

Video Replayer (Distributed)
In this example, we extend the previous video replayer application into a multi-node
distributed application. A distributed application is made up of multiple Fragments (C++ /

opacity: 1.0 # layer opacity priority: 0 # determines render order, higher priority
layers are rendered on top

https://docs.nvidia.com/video_replayer.html
https://docs.nvidia.com/holoscan_create_distributed_app.html

NVIDIA Holoscan SDK v2.0.0 71

Python), each of which may run on its own node.

In the distributed case we will:

create one fragment that loads a video file from disk using
VideoStreamReplayerOp operator

create a second fragment that will display the video using the HolovizOp operator

These two fragments will be combined into a distributed application such that the display
of the video frames could occur on a separate node from the node where the data is
read.

Operators and Workflow

Here is the diagram of the operators and workflow used in this example.

digraph video_replayer_distributed { rankdir="LR" node [shape=record]; replayer
[label="VideoStreamReplayerOp| |output(out) : Tensor"]; viz [label="HolovizOp|
[in]receivers : Tensor | "]; replayer -> viz [label="output...receivers"] }

Fig. 9 Workflow to load and display video from a file

This is the same workflow as the single fragment video replayer, each operator is
assigned to a separate fragment and there is now a network connection between the
fragments.

Defining and Connecting Fragments

Note

The example source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian

package, alongside their executables.

https://docs.nvidia.com/video_replayer.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

NVIDIA Holoscan SDK v2.0.0 72

Distributed applications define Fragments explicitly to isolate the different units of work
that could be distributed to different nodes. In this example:

We define two classes that inherit from Fragment :

Fragment1 contains an instance of VideoStreamReplayerOp named
“replayer”.

Fragment2 contains an instance of HolovizOp name “holoviz”.

We create an application, DistributedVideoReplayerApp. In its compose method:

we call make_fragment to initialize both fragments.

we then connect the “output” port of “replayer” operator in fragment1 to the
“receivers” port of the “holoviz” operator in fragment2 to define the application
workflow.

The operators instantiated in the fragments can still be configured with parameters
initialized from the YAML configuration ingested by the application using
from_config() (C++) or kwargs() (Python).

Ingested Tab Module

This particular distributed application only has one operator per fragment, so the
operators was added via add_operator (C++ / Python). In general, each fragment
may have multiple operators and connections between operators within a fragment
would be made using add_flow() (C++ / Python) method within the fragment’s
compute() (C++ / Python) method.

Running the Application

Running the application should bring up video playback of the video referenced in the
YAML file.

NVIDIA Holoscan SDK v2.0.0 73

Note

Instructions for running the distributed application involve calling the
application from the “driver” node as well as from any worker nodes.
For details, see the application run instructions in the examples
directory on GitHub, or under
/opt/nvidia/holoscan/examples/video_replayer_distributed in the

NGC container and the debian package.

Tip

Refer to UCX Network Interface Selection when running a distributed
application across multiple nodes.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/video_replayer_distributed
file:///tmp/jsreport/holoscan_create_distributed_app.html#ucx-network-selection

NVIDIA Holoscan SDK v2.0.0 74

Bring Your Own Model (BYOM)
The Holoscan platform is optimized for performing AI inferencing workflows. This section
shows how the user can easily modify the bring_your_own_model example to create
their own AI applications.

In this example we’ll cover:

the usage of FormatConverterOp , InferenceOp , SegmentationPostprocessorOp
operators to add AI inference into the workflow

how to modify the existing code in this example to create an ultrasound
segmentation application to visualize the results from a spinal scoliosis
segmentation model

Operators and Workflow

Here is the diagram of the operators and workflow used in the byom.py example.

Fig. 10 The BYOM inference workflow

Note

The example source code and run instructions can be found in the
examples directory on GitHub, or under
/opt/nvidia/holoscan/examples in the NGC container and the debian

package, alongside their executables.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/bring_your_own_model/python/byom.py
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

NVIDIA Holoscan SDK v2.0.0 75

The example code already contains the plumbing required to create the pipeline above
where the video is loaded by VideoStreamReplayer and passed to two branches. The
first branch goes directly to Holoviz to display the original video. The second branch in
this workflow goes through AI inferencing and can be used to generate overlays such as
bounding boxes, segmentation masks, or text to add additional information.

This second branch has three operators we haven’t yet encountered.

Format Converter: The input video stream goes through a preprocessing stage to
convert the tensors to the appropriate shape/format before being fed into the AI
model. It is used here to convert the datatype of the image from uint8 to float32
and resized to match the model’s expectations.

Inference: This operator performs AI inferencing on the input video stream with the
provided model. It supports inferencing of multiple input video streams and
models.

Segmentation Postprocessor: this postprocessing stage takes the output of
inference, either with the final softmax layer (multiclass) or sigmoid (2-class), and
emits a tensor with uint8 values that contain the highest probability class index.
The output of the segmentation postprocessor is then fed into the Holoviz visualizer
to create the overlay.

Prerequisites

To follow along this example, you can download the ultrasound dataset with the
following commands:

You can also follow along using your own dataset by adjusting the operator parameters
based on your input video and model, and converting your video and model to a format
that is understood by Holoscan.

$ wget --content-disposition \ https://api.ngc.nvidia.com/v2/resources/nvidia/clara-
holoscan/holoscan_ultrasound_sample_data/versions/20220608/zip \ -O
holoscan_ultrasound_sample_data_20220608.zip $ unzip
holoscan_ultrasound_sample_data_20220608.zip -d
<SDK_ROOT>/data/ultrasound_segmentation

NVIDIA Holoscan SDK v2.0.0 76

Input video

The video stream replayer supports reading video files that are encoded as gxf entities.
These files are provided with the ultrasound dataset as the
ultrasound_256x256.gxf_entities and ultrasound_256x256.gxf_index files.

Input model

Currently, the inference operators in Holoscan are able to load ONNX models, or
TensorRT engine files built for the GPU architecture on which you will be running the
model. TensorRT engines are automatically generated from ONNX by the operators when
the applications run.

If you are converting your model from PyTorch to ONNX, chances are your input is NCHW
and will need to be converted to NHWC. We provide an example transformation script
named graph_surgeon.py , installed in /opt/nvidia/holoscan/bin or available on GitHub.
You may need to modify the dimensions as needed before modifying your model.

Understanding the Application Code

Note

To use your own video data, you can use the
convert_video_to_gxf_entities.py script (installed in
/opt/nvidia/holoscan/bin or on GitHub) to encode your video. Note

that - using this script - the metadata in the generated GXF tensor
files will indicate that the data should be copied to the GPU on read.

Tip

To get a better understanding of your model, and if this step is
necessary, websites such as netron.app can be used.

https://onnx.ai/
https://developer.nvidia.com/tensorrt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#graph_surgeonpy
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/scripts#convert_video_to_gxf_entitiespy
https://netron.app/

NVIDIA Holoscan SDK v2.0.0 77

Before modifying the application, let’s look at the existing code to get a better
understanding of how it works.

Ingested Tab Module

Next, we look at the operators and their parameters defined in the application yaml file.

Ingested Tab Module

Finally, we define the application and workflow.

Ingested Tab Module

Modifying the Application for Ultrasound Segmentation

To create the ultrasound segmentation application, we need to swap out the input video
and model to use the ultrasound files, and adjust the parameters to ensure the input
video is resized correctly to the model’s expectations.

We will need to modify the python and yaml files to change our application to the
ultrasound segmentation application.

Ingested Tab Module

The above changes are enough to update the byom example to the ultrasound
segmentation application.

In general, when deploying your own AI models, you will need to consider the operators
in the second branch. This example uses a pretty typical AI workflow:

Input: This could be a video on disk, an input stream from a capture device, or
other data stream.

Preprocessing: You may need to preprocess the input stream to convert tensors
into the shape and format that is expected by your AI model (e.g., converting
datatype and resizing).

Inference: Your model will need to be in onnx or trt format.

Postprocessing: An operator that postprocesses the output of the model to a
format that can be readily used by downstream operators.

NVIDIA Holoscan SDK v2.0.0 78

Output: The postprocessed stream can be displayed or used by other downstream
operators.

The Holoscan SDK comes with a number of built-in operators that you can use to
configure your own workflow. If needed, you can write your own custom operators or
visit Holohub for additional implementations and ideas for operators.

Running the Application

After modifying the application as instructed above, running the application should bring
up the ultrasound video with a segmentation mask overlay similar to the image below.

Fig. 11 Ultrasound Segmentation

Note

If you run the byom.py application without modification and are
using the debian installation, you may run into the following error
message:

In this case, modifying the write permissions for the model directory
should help (use with caution):

[error] Error in Inference Manager ... TRT Inference: failed to
build TRT engine file.

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators
https://nvidia-holoscan.github.io/holohub/

NVIDIA Holoscan SDK v2.0.0 79

Customizing the Inference Operator

The builtin InferenceOp operator provides the functionality of the Inference. This
operator has a receivers port that can connect to any number of upstream ports to
allow for multiai inferencing, and one transmitter port to send results downstream.
Below is a description of some of the operator’s parameters and a general guidance on
how to use them.

backend : if the input models are in tensorrt engine file format, select trt as the
backend. If the input models are in onnx format select either trt or onnx as the
backend.

allocator : Can be passed to this operator to specify how the output tensors are
allocated.

model_path_map : contains dictionary keys with unique strings that refer to each
model. The values are set to the path to the model files on disk. All models must be
either in onnx or in tensorrt engine file format. The Holoscan Inference Module
will do the onnx to tensorrt model conversion if the TensorRT engine files do not
exist.

pre_processor_map : this dictionary should contain the same keys as
model_path_map , mapping to the output tensor name for each model.

inference_map : this dictionary should contain the same keys as model_path_map
, mapping to the output tensor name for each model.

enable_fp16 : Boolean variable indicating if half-precision should be used to speed
up inferencing. The default value is False, and uses single-precision (32-bit fp)
values.

input_on_cuda : indicates whether input tensors are on device or host

sudo chmod a+w
/opt/nvidia/holoscan/examples/bring_your_own_model/model

https://docs.nvidia.com/inference.html#holoinfer

NVIDIA Holoscan SDK v2.0.0 80

output_on_cuda : indicates whether output tensors are on device or host

transmit_on_cuda : if True, it means the data transmission from the inference will
be on Device, otherwise it means the data transmission from the inference will be
on Host

Common Pitfalls Deploying New Models

Color Channel Order

It is important to know what channel order your model expects. This may be indicated by
the training data, pre-training transformations performed at training, or the expected
inference format used in your application.

For example, if your inference data is RGB, but your model expects BGR, you will need to
add the following to your segmentation_preprocessor in the yaml file:
out_channel_order: [2,1,0] .

Normalizing Your Data

Similarly, default scaling for streaming data is [0,1] , but dependent on how your model
was trained, you may be expecting [0,255] .

For the above case you would add the following to your segmentation_preprocessor in
the yaml file:

scale_min: 0.0 scale_max: 255.0

Network Output Type

Models often have different output types such as Sigmoid , Softmax , or perhaps
something else, and you may need to examine the last few layers of your model to
determine which applies to your case.

As in the case of our ultrasound segmentation example above, we added the following in
our yaml file: network_output_type: softmax

NVIDIA Holoscan SDK v2.0.0 81

Creating an Application
In this section, we’ll address:

how to define an Application class

how to configure an Application

how to define different types of workflows

how to build and run your application

Defining an Application Class

The following code snippet shows an example Application code skeleton:

Ingested Tab Module

Note

This section covers basics of applications running as a single
fragment. For multi-fragment applications, refer to the distributed
application documentation.

Tip

This is also illustrated in the hello_world example.

file:///tmp/jsreport/autocleanup/holoscan_create_distributed_app.html
file:///tmp/jsreport/autocleanup/holoscan_create_distributed_app.html
file:///tmp/jsreport/autocleanup/examples/hello_world.html

NVIDIA Holoscan SDK v2.0.0 82

It is also possible to instead launch the application asynchronously (i.e. non-blocking for
the thread launching the application), as shown below:

Ingested Tab Module

Configuring an Application

An application can be configured at different levels:

1. providing the GXF extensions that need to be loaded (when using GXF operators)

2. configuring parameters for your application, including for:

1. the operators in the workflow

2. the scheduler of your application

3. configuring some runtime properties when deploying for production

The sections below will describe how to configure each of them, starting with a native
support for YAML-based configuration for convenience.

YAML Configuration support

Holoscan supports loading arbitrary parameters from a YAML configuration file at
runtime, making it convenient to configure each item listed above, or other custom
parameters you wish to add on top of the existing API. For C++ applications, it also
provides the ability to change the behavior of your application without needing to
recompile it.

Tip

This is also illustrated in the ping_simple_run_async example.

Note

https://docs.nvidia.com/holoscan_create_operator.html#wrap-gxf-codelet-as-operator
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_simple_run_async

NVIDIA Holoscan SDK v2.0.0 83

Here is an example YAML configuration:

Ingesting these parameters can be done using the two methods below:

Ingested Tab Module

Loading GXF extensions

If you use operators that depend on GXF extensions for their implementations (known as
GXF operators), the shared libraries (.so) of these extensions need to be dynamically
loaded as plugins at runtime.

Usage of the YAML utility is optional. Configurations can be
hardcoded in your program, or done using any parser of your
choosing.

string_param: "test" float_param: 0.50 bool_param: true dict_param: key_1: value_1
key_2: value_2

Tip

This is also illustrated in the video_replayer example.

Attention

With both from_config and kwargs , the returned ArgList
/dictionary will include both the key and its associated item if that
item value is a scalar. If the item is a map/dictionary itself, the input
key is dropped, and the output will only hold the key/values from that
item.

https://docs.nvidia.com/holoscan_create_operator.html#wrap-gxf-codelet-as-operator
file:///tmp/jsreport/autocleanup/examples/video_replayer.html

NVIDIA Holoscan SDK v2.0.0 84

The SDK already automatically handles loading the required extensions for the built-in
operators in both C++ and Python, as well as common extensions (listed here). To load
additional extensions for your own operators, you can use one of the following approach:

Ingested Tab Module

Configuring operators

Operators are defined in the compose() method of your application. They are not
instantiated (with the initialize method) until an application’s run() method is called.

Operators have three type of fields which can be configured: parameters, conditions, and
resources.

Configuring operator parameters

Operators could have parameters defined in their setup method to better control their
behavior (see details when creating your own operators). The snippet below would be the
implementation of this method for a minimal operator named MyOp , that takes a string
and a boolean as parameters; we’ll ignore any extra details for the sake of this example:

Ingested Tab Module

Note

To be discoverable, paths to these shared libraries need to either be
absolute, relative to your working directory, installed in the
lib/gxf_extensions folder of the holoscan package, or listed under

the HOLOSCAN_LIB_PATH or LD_LIBRARY_PATH environment
variables.

Tip

Given an instance of an operator class, you can print a human-
readable description of its specification to inspect the parameter

https://docs.nvidia.com/holoscan_operators_extensions.html
https://docs.nvidia.com/holoscan_operators_extensions.html
https://docs.nvidia.com/holoscan_create_operator.html

NVIDIA Holoscan SDK v2.0.0 85

Given this YAML configuration:

We can configure an instance of the MyOp operator in the application’s compose
method like this:

Ingested Tab Module

If multiple ArgList are provided with duplicate keys, the latest one overrides them:

Ingested Tab Module

Configuring operator conditions

By default, operators with no input ports will continuously run, while operators with input
ports will run as long as they receive inputs (as they’re configured with the
MessageAvailableCondition).

To change that behavior, one or more other conditions classes can be passed to the
constructor of an operator to define when it should execute.

For example, we set three conditions on this operator my_op :

Ingested Tab Module

fields that can be configured on that operator class:

Ingested Tab Module

myop_param: string_param: "test" bool_param: true bool_param: false # we'll use
this later

Tip

This is also illustrated in the ping_custom_op example.

https://docs.nvidia.com/components/conditions.html
file:///tmp/jsreport/autocleanup/examples/ping_custom_op.html

NVIDIA Holoscan SDK v2.0.0 86

Configuring operator resources

Some resources can be passed to the operator’s constructor, typically an allocator passed
as a regular parameter.

For example:

Ingested Tab Module

Tip

This is also illustrated in the conditions examples.

Note

You’ll need to specify a unique name for the conditions if there are
multiple conditions applied to an operator.

Note

Python operators that wrap an underlying C++ operator currently do
not accept conditions as positional arguments. Instead one needs to
call the
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.Operator.add_ar

method after the object has been constructed to add the condition.

Note

https://docs.nvidia.com/components/resources.html
https://docs.nvidia.com/components/resources.html#allocator
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/conditions

NVIDIA Holoscan SDK v2.0.0 87

Configuring the scheduler

The scheduler controls how the application schedules the execution of the operators that
make up its workflow.

The default scheduler is a single-threaded GreedyScheduler . An application can be
configured to use a different scheduler Scheduler (C++ / Python) or change the
parameters from the default scheduler, using the scheduler() function (C++ / Python).

For example, if an application needs to run multiple operators in parallel, the
MultiThreadScheduler or EventBasedScheduler can instead be used. The difference

between the two is that the MultiThreadScheduler is based on actively polling operators
to determine if they are ready to execute, while the EventBasedScheduler will instead
wait for an event indicating that an operator is ready to execute.

The code snippet belows shows how to set and configure a non-default scheduler:

Ingested Tab Module

Configuring runtime properties

Python operators that wrap an underlying C++ operator currently do
not accept resources as positional arguments. Instead one needs to
call the
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.Operator.add_ar

method after the object has been constructed to add the resource.

Tip

This is also illustrated in the multithread example.

https://docs.nvidia.com/components/schedulers.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/multithread

NVIDIA Holoscan SDK v2.0.0 88

As described below, applications can run simply by executing the C++ or Python
application manually on a given node, or by packaging it in a HAP container. With the
latter, runtime properties need to be configured: refer to the App Runner Configuration
for details.

Application Workflows

One-operator Workflow

The simplest form of a workflow would be a single operator.

digraph myop { rankdir="LR" node [shape=record]; myop [label="MyOp| | "]; }

Fig. 12 A one-operator workflow

The graph above shows an Operator (C++ / Python) (named MyOp) that has neither
inputs nor output ports.

Such an operator may accept input data from the outside (e.g., from a file) and
produce output data (e.g., to a file) so that it acts as both the source and the sink
operator.

Arguments to the operator (e.g., input/output file paths) can be passed as
parameters as described in the section above.

Note

Operators are initialized according to the topological order of its
fragment-graph. When an application runs, the operators are
executed in the same topological order. Topological ordering of the
graph ensures that all the data dependencies of an operator are
satisfied before its instantiation and execution. Currently, we do not
support specifying a different and explicit instantiation and execution
order of the operators.

https://docs.nvidia.com/holoscan_packager.html
https://docs.nvidia.com/cli/hap.html
https://docs.nvidia.com/cli/run_config.html
https://en.wikipedia.org/wiki/Topological_sorting

NVIDIA Holoscan SDK v2.0.0 89

We can add an operator to the workflow by calling add_operator (C++ / Python)
method in the compose() method.

The following code shows how to define a one-operator workflow in compose() method
of the App class (assuming that the operator class MyOp is declared/defined in the
same file).

Ingested Tab Module

Linear Workflow

Here is an example workflow where the operators are connected linearly:

digraph linear_workflow { rankdir="LR" node [shape=record]; sourceop
[label="SourceOp| |output(out) : Tensor"]; processop [label="ProcessOp| [in]input :
Tensor | output(out) : Tensor "]; sinkop [label="SinkOp| [in]input : Tensor | "]; sourceop -
> processop [label="output...input"] processop -> sinkop [label="output...input"] }

Fig. 13 A linear workflow

In this example, SourceOp produces a message and passes it to ProcessOp. ProcessOp
produces another message and passes it to SinkOp.

We can connect two operators by calling the add_flow() method (C++ / Python) in the
compose() method.

The add_flow() method (C++ / Python) takes the source operator, the destination
operator, and the optional port name pairs. The port name pair is used to connect the
output port of the source operator to the input port of the destination operator. The first
element of the pair is the output port name of the upstream operator and the second
element is the input port name of the downstream operator. An empty port name (“”) can
be used for specifying a port name if the operator has only one input/output port. If
there is only one output port in the upstream operator and only one input port in the
downstream operator, the port pairs can be omitted.

The following code shows how to define a linear workflow in the compose() method of
the App class (assuming that the operator classes SourceOp , ProcessOp , and
SinkOp are declared/defined in the same file).

NVIDIA Holoscan SDK v2.0.0 90

Ingested Tab Module

Complex Workflow (Multiple Inputs and Outputs)

You can design a complex workflow like below where some operators have multi-inputs
and/or multi-outputs:

digraph complex_workflow { node [shape=record]; reader1 [label="{Reader1|
|image(out)\nmetadata(out)}"]; reader2 [label="{Reader2| |roi(out)}"]; processor1
[label="{Processor1|[in]image1\n[in]image2\n[in]metadata|image(out)}"]; processor2
[label="{Processor2|[in]image\n[in]roi|image(out)}"]; processor3 [label="{Processor3|
[in]image|seg_image(out)}"]; writer [label="{Writer|[in]image\n[in]seg_image| }"]; notifier
[label="{Notifier|[in]image| }"]; reader1->processor1 [label="image...
{image1,image2}\nmetadata...metadata"] reader2->processor2 [label="roi...roi"]
processor1->processor2 [label="image...image"] processor1->writer
[label="image...image"] processor2->notifier [label="image...image"] processor2-
>processor3 [label="image...image"] processor3->writer [label="seg_image...seg_image"] }

Fig. 14 A complex workflow (multiple inputs and outputs)

Ingested Tab Module

If there is a cycle in the graph with no implicit root operator, the root operator is either
the first operator in the first call to add_flow method (C++ / Python), or the operator in
the first call to add_operator method (C++ / Python).

Ingested Tab Module

If there is a cycle in the graph with an implicit root operator which has no input port, then
the initialization and execution orders of the operators are still topologically sorted as far
as possible until the cycle needs to be explicitly broken. An example is given below:

NVIDIA Holoscan SDK v2.0.0 91

Building and running your Application

Ingested Tab Module

Note

Given a CMake project, a pre-built executable, or a python
application, you can also use the Holoscan CLI to package and run
your Holoscan application in a OCI-compliant container image.

file:///tmp/jsreport/autocleanup/cli/cli.html
file:///tmp/jsreport/autocleanup/holoscan_packager.html
file:///tmp/jsreport/autocleanup/holoscan_packager.html

NVIDIA Holoscan SDK v2.0.0 92

Creating a Distributed
Application
Distributed applications refer to those where the workflow is divided into multiple
fragments that may be run on separate nodes. For example, data might be collected via a
sensor at the edge, sent to a separate workstation for processing, and then the
processed data could be sent back to the edge node for visualization. Each node would
run a single fragment consisting of a computation graph built up of operators. Thus one
fragment is the equivalent of a non-distributed application. In the distributed context, the
Application initializes the different fragments and then defines the connections between
them to build up the full distributed application workflow.

In this section we’ll describe:

how to define a distributed Application

how to build and run a distributed application

Defining a Distributed Application Class

Tip

Defining distributed applications is also illustrated in the
video_replayer_distributed and ping_distributed examples. The
ping_distributed examples also illustrate how to update C++ or

Python applications to parse user-defined arguments in a way that
works without disrupting support for distributed application
command line arguments (e.g. --driver , --worker).

file:///tmp/jsreport/autocleanup/examples/video_replayer_distributed.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_distributed

NVIDIA Holoscan SDK v2.0.0 93

Defining a single Fragment (C++ / Python) involves adding operators using
make_operator() (C++) or the operator constructor (Python), and defining the

connections between them using the add_flow() method (C++ / Python) in the
compose() method. Thus, defining a Fragment is just like defining a non-distributed

Application except that the class should inherit from Fragment instead of Application.

The application will then be defined by initializing fragments within the application’s
compose() method. The add_flow() method (C++ / Python) can be used to define the

connections across fragments.

Ingested Tab Module

Serialization of Custom Data Types for Distributed Applications

Transmission of data between fragments of a multi-fragment application is done via the
Unified Communications X (UCX) library. In order to transmit data, it must be serialized
into a binary form suitable for transmission over a network. For Tensors ({ref} C++ /
Python), strings and various scalar and vector numeric types, serialization is already

built in. For more details on concrete examples of how to extend the data serialization
support to additional user-defined classes, see the separate page on serialization.

Building and running a Distributed Application

Ingested Tab Module

Running an application in a distributed setting requires launching the application binary
on all nodes involved in the distributed application. A single node must be selected to act
as the application driver. This is achieved by using the --driver command-line option.
Worker nodes are initiated by launching the application with the --worker command-line
option. It’s possible for the driver node to also serve as a worker if both options are
specified.

The address of the driver node must be specified for each process (both the driver and
worker(s)) to identify the appropriate network interface for communication. This can be
done via the --address command-line option, which takes a value in the form of
[<IPv4/IPv6 address or hostname>][:<port>] (e.g.,
--address 192.168.50.68:10000):

https://openucx.org/

NVIDIA Holoscan SDK v2.0.0 94

The driver’s IP (or hostname) MUST be set for each process (driver and worker(s))
when running distributed applications on multiple nodes (default: 0.0.0.0). It can
be set without the port (e.g., --address 192.168.50.68).

In a single-node application, the driver’s IP (or hostname) can be omitted, allowing
any network interface (0.0.0.0) to be selected by the UCX library.

The port is always optional (default: 8765). It can be set without the IP (e.g.,
--address :10000).

The worker node’s address can be defined using the --worker-address command-line
option ([<IPv4/IPv6 address or hostname>][:<port>]). If it’s not specified, the
application worker will default to the host address (0.0.0.0) with a randomly chosen port
number between 10000 and 32767 that is not currently in use. This argument
automatically sets the HOLOSCAN_UCX_SOURCE_ADDRESS environment variable if the
worker address is a local IP address. Refer to Environment Variables for Distributed
Applications for details.

The --fragments command-line option is used in combination with --worker to specify a
comma-separated list of fragment names to be run by a worker. If not specified, the
application driver will assign a single fragment to the worker. To indicate that a worker
should run all fragments, you can specify --fragments all .

The --config command-line option can be used to designate a path to a configuration file
to be used by the application.

Below is an example launching a three fragment application named my_app on two
separate nodes:

The application driver is launched at 192.168.50.68:10000 on the first node (A),
with a worker running two fragments, “fragment1” and “fragment3”.

On a separate node (B), the application launches a worker for “fragment2”, which
will connect to the driver at the address above.

Ingested Tab Module

https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use

NVIDIA Holoscan SDK v2.0.0 95

Note

UCX Network Interface Selection

UCX is used in the Holoscan SDK for communication across
fragments in distributed applications. It is designed to select the best
network device based on performance characteristics (bandwidth,
latency, NUMA locality, etc). In some scenarios (under investigation)
UCX cannot find the correct network interface to use, and the
application fails to run. In this case, you can manually specify the
network interface to use by setting the UCX_NET_DEVICES
environment variable.

For example, if the user wants to use the network interface eth0 ,
you can set the environment variable as follows, before running the
application:

Or, if you are running a packaged distributed application with the
Holoscan CLI, use the --nic eth0 option to manually specify the
network interface to use.

The available network interface names can be found by running the
following command:

export UCX_NET_DEVICES=eth0

ucx_info -d | grep Device: | awk '{print $3}' | sort | uniq # or ip -
o -4 addr show | awk '{print $2, $4}' # to show interface name
and IP

Warning

Known limitations

https://openucx.org/
https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use
https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use
https://openucx.readthedocs.io/en/master/faq.html#which-network-devices-does-ucx-use
file:///tmp/jsreport/autocleanup/cli/run.html#holoscan-cli-run

NVIDIA Holoscan SDK v2.0.0 96

The following are known limitations of the distributed application
support in the SDK, which will be addressed in future updates:

1. A connection error message is displayed even when the distributed
application is running correctly.

The message
Connection dropped with status -25 (Connection reset by remote
peer)

appears in the console even when the application is functioning
properly. This is a known issue and will be addressed in future
updates, ensuring that this message will only be displayed in the
event of an actual connection error.

2. GPU tensors can only currently be sent/received by UCX from a
single device on a given node.

By default, device ID 0 is used by the UCX extensions to send/receive
data between fragments. To override this default, the user can set
environment variable HOLOSCAN_UCX_DEVICE_ID .

3. “Address already in use” errors in distributed applications due to
the health check service.

In scenarios where distributed applications have both the driver and
workers running on the same host, either within a Docker container
or directly on the host, there’s a possibility of encountering “Address
already in use” errors. A potential solution is to assign a different port
number to the HOLOSCAN_HEALTH_CHECK_PORT environment
variable (default: 8777), for example, by using
export HOLOSCAN_HEALTH_CHECK_PORT=8780 .

Note

GXF UCX Extension

Holoscan’s distributed application feature makes use of the GXF UCX
Extension. Its documentation may provide useful additional context

https://docs.nvidia.com/metropolis/deepstream/dev-guide/graphtools-docs/docs/text/ExtensionsManual/UcxExtension.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/graphtools-docs/docs/text/ExtensionsManual/UcxExtension.html

NVIDIA Holoscan SDK v2.0.0 97

Environment Variables for Distributed Applications

Holoscan SDK environment variables.

You can set environment variables to modify the default actions of services and the
scheduler when executing a distributed application.

HOLOSCAN_ENABLE_HEALTH_CHECK : determines if the health check service
should be active, even without specifying --driver or --worker in the CLI. By
default, initiating the AppDriver (--driver) or AppWorker (--worker) service
automatically triggers the GRPC Health Checking Service so grpc-health-probe can
monitor liveness/readiness. Interprets values like “true”, “1”, or “on” (case-
insensitive) as true (to enable the health check). It defaults to false if left
unspecified.

HOLOSCAN_HEALTH_CHECK_PORT : designates the port number on which the
Health Checking Service is launched. It must be an integer value representing a valid
port number. If unspecified, it defaults to 8777 .

HOLOSCAN_DISTRIBUTED_APP_SCHEDULER : controls which scheduler is used for
distributed applications. It can be set to either greedy , multi_thread or
event_based . multithread is also allowed as a synonym for multi_thread for

backwards compatibility. If unspecified, the default scheduler is multi_thread .

HOLOSCAN_STOP_ON_DEADLOCK : can be used in combination with
HOLOSCAN_DISTRIBUTED_APP_SCHEDULER to control whether or not the

application will automatically stop on deadlock. Values of “True”, “1” or “ON” will be

into how data is transmitted between fragments.

Tip

Given a CMake project, a pre-built executable, or a python
application, you can also use the Holoscan CLI to package and run
your Holoscan application in a OCI-compliant container image.

https://github.com/grpc/grpc/blob/master/doc/health-checking.md
https://github.com/grpc-ecosystem/grpc-health-probe
file:///tmp/jsreport/autocleanup/cli/cli.html
file:///tmp/jsreport/autocleanup/holoscan_packager.html
file:///tmp/jsreport/autocleanup/holoscan_packager.html

NVIDIA Holoscan SDK v2.0.0 98

interpreted as true (enable stop on deadlock). It is true if unspecified. This
environment variable is only used when
HOLOSCAN_DISTRIBUTED_APP_SCHEDULER is explicitly set.

HOLOSCAN_STOP_ON_DEADLOCK_TIMEOUT : controls the delay (in ms) without
activity required before an application is considered to be in deadlock. It must be an
integer value (units are ms).

HOLOSCAN_MAX_DURATION_MS : sets the application to automatically terminate
after the requested maximum duration (in ms) has elapsed. It must be an integer
value (units are ms). This environment variable is only used when
HOLOSCAN_DISTRIBUTED_APP_SCHEDULER is explicitly set.

HOLOSCAN_CHECK_RECESSION_PERIOD_MS : controls how long (in ms) the
scheduler waits before re-checking the status of operators in an application. It must
be a floating point value (units are ms). This environment variable is only used when
HOLOSCAN_DISTRIBUTED_APP_SCHEDULER is explicitly set.

HOLOSCAN_UCX_SERIALIZATION_BUFFER_SIZE : can be used to override the
default 7 kB serialization buffer size. This should typically not be needed as tensor
types store only a small header in this buffer to avoid explicitly making a copy of
their data. However, other data types do get directly copied to the serialization
buffer and in some cases it may be necessary to increase it.

HOLOSCAN_UCX_DEVICE_ID : The GPU ID of the device that will be used by UCX
transmitter/receivers in distributed applications. If unspecified, it defaults to 0. A list
of discrete GPUs available in a system can be obtained via nvidia-smi -L . GPU data
sent between fragments of a distributed application must be on this device.

HOLOSCAN_UCX_PORTS : This defines the preferred port numbers for the SDK
when specific ports for UCX communication need to be predetermined, such as in a
Kubernetes environment. If the distributed application requires three ports (UCX
receivers) and the environment variable is unset, the SDK chooses three unused
ports sequentially from the range 10000~32767. Specifying a value, for example,
HOLOSCAN_UCX_PORTS=10000 , results in the selection of ports 10000, 10001, and

10002. Multiple starting values can be comma-separated. The system increments
from the last provided port if more ports are needed. Any unused specified ports
are ignored.

NVIDIA Holoscan SDK v2.0.0 99

HOLOSCAN_UCX_SOURCE_ADDRESS : This environment variable specifies the local
IP address (source) for the UCX connection. This variable is especially beneficial
when a node has multiple network interfaces, enabling the user to determine which
one should be utilized for establishing a UCX client (UCXTransmitter). If it is not
explicitly specified, the default address is set to 0.0.0.0 , representing any available
interface.

UCX-specific environment variables

Transmission of data between fragments of a multi-fragment application is done via the
Unified Communications X (UCX) library, a point-to-point communication framework
designed to utilize the best available hardware resources (shared memory, TCP,
GPUDirect RDMA, etc). UCX has many parameters that can be controlled via environment
variables. A few that are particularly relevant to Holoscan SDK distributed applications
are listed below:

The UCX_TLS environment variable can be used to control which transport layers
are enabled. By default, UCX_TLS=all and UCX will attempt to choose the optimal
transport layer automatically.

The UCX_NET_DEVICES environment variable is by default set to all meaning that
UCX may choose to use any available network interface controller (NIC). In some
cases it may be necessary to restrict UCX to a specific device or set of devices, which
can be done by setting UCX_NET_DEVICES to a comma separated list of the device
names (i.e. as obtained by linux command ifconfig -a or ip link show).

Setting UCX_TCP_CM_REUSEADDR=y is recommended to enable ports to be reused
without having to wait the full socket TIME_WAIT period after a socket is closed.

The UCX_LOG_LEVEL environment variable can be used to control the logging level
of UCX. The default is setting is WARN, but changing to a lower level such as INFO
will provide more verbose output on which transports and devices are being used.

By default, Holoscan SDK will automatically set UCX_PROTO_ENABLE=y upon
application launch to enable the newer “v2” UCX protocols. If for some reason, the
older v1 protocols are needed, one can set UCX_PROTO_ENABLE=n in the
environment to override this setting. When the v2 protocols are enabled, one can
optionally set UCX_PROTO_INFO=y to enable detailed logging of what protocols are
being used at runtime.

https://openucx.readthedocs.io/

NVIDIA Holoscan SDK v2.0.0 100

By default, Holoscan SDK will automatically set UCX_MEMTYPE_CACHE=n upon
application launch to disable the UCX memory type cache (See UCX documentation
for more information. It can cause about 0.2 microseconds of pointer type checking
overhead with the cudacudaPointerGetAttributes() CUDA API). If for some reason,
the memory type cache is needed, one can set UCX_MEMTYPE_CACHE=y in the
environment to override this setting.

By default, the Holoscan SDK will automatically set UCX_CM_USE_ALL_DEVICES=n
at application startup to disable consideration of all devices for data transfer. If for
some reason the opposite behavior is desired, one can set
UCX_CM_USE_ALL_DEVICES=y in the environment to override this setting. Setting
UCX_CM_USE_ALL_DEVICES=n can be used to workaround an issue where UCX

sometimes defaults to a device that might not be the most suitable for data transfer
based on the host’s available devices. On a host with address 10.111.66.60, UCX, for
instance, might opt for the br-80572179a31d (192.168.49.1) device due to its
superior bandwidth as compared to eno2 (10.111.66.60). With
UCX_CM_USE_ALL_DEVICES=n , UCX will ensure consistency by using the same

device for data transfer that was initially used to establish the connection. This
ensures more predictable behavior and can avoid potential issues stemming from
device mismatches during the data transfer process.

Setting UCX_TCP_PORT_RANGE=<start>-<end> can be used to define a
specific range of ports that UCX should utilize for data transfer. This is particularly
useful in environments where ports need to be predetermined, such as in a
Kubernetes setup. In such contexts, Pods often have ports that need to be exposed,
and these ports must be specified ahead of time. Moreover, in scenarios where
firewall configurations are stringent and only allow specified ports, having a
predetermined range ensures that the UCX communication does not get blocked.
This complements the HOLOSCAN_UCX_SOURCE_ADDRESS , which specifies the
local IP address for the UCX connection, by giving further control over which ports
on that specified address should be used. By setting a port range, users can ensure
that UCX operates within the boundaries of the network and security policies of
their infrastructure.

Tip

A list of all available UCX environment variables and a brief
description of each can be obtained by running ucx_info -f from the

https://openucx.readthedocs.io/en/master/faq.html#i-m-running-ucx-with-gpu-memory-and-geting-a-segfault-why
https://github.com/openucx/ucx/wiki/NVIDIA-GPU-Support#known-issues
https://github.com/openucx/ucx/wiki/NVIDIA-GPU-Support#known-issues

NVIDIA Holoscan SDK v2.0.0 101

Serialization

Distributed applications must serialize any objects that are to be sent between the
fragments of a multi-fragment application. Serialization involves binary serialization to a
buffer that will be sent from one fragment to another via the Unified Communications X
(UCX) library. For tensor types (e.g. holoscan::Tensor), no actual copy is made, but instead
transmission is done directly from the original tensor’s data and only a small amount of
header information is copied to the serialization buffer.

A table of the types that have codecs pre-registered so that they can be serialized
between fragments using Holoscan SDK is given below.

Type Class Specific Types

integers int8_t, int16_t, int32_t, int64_t, uint8_t, uint16_t, uint32_t, uint64_t

floating point float, double, complex , complex

boolean bool

strings std::string

std::vector
T is std::string or any of the boolean, integer or floating point types
above

std::vector >
T is std::string or any of the boolean, integer or floating point types
above

std::vector a vector of InputSpec objects that are specific to HolovizOp

std::shared_ptr<
%>

T is any of the scalar, vector or std::string types above

tensor types
holoscan::Tensor, nvidia::gxf::Tensor, nvidia::gxf::VideoBuffer,
nvidia::gxf::AudioBuffer

GXF-specific
types

nvidia::gxf::TimeStamp, nvidia::gxf::EndOfStream

Holoscan SDK container. Holoscan SDK uses UCX’s active message
(AM) protocols, so environment variables related to other protocols
such as tag-mat

NVIDIA Holoscan SDK v2.0.0 102

Python

For the Python API, any array-like object supporting the DLPack interface,
__array_interface__ or __cuda_array_interface__ will be transmitted using Tensor

serialization. This is done to avoid data copies for performance reasons. Objects of type
list[holoscan.HolovizOp.InputSpec] will be sent using the underlying C++ serializer for
std::vector<HolovizOp::InputSpec> . All other Python objects will be serialized

to/from a std::string using the cloudpickle library.

Warning

If an operator transmitting both CPU and GPU tensors is to be used
in distributed applications, the same output port cannot mix both
GPU and CPU tensors. CPU and GPU tensor outputs should be placed
on separate output ports. This is a limitation of the underlying UCX
library being used for zero-copy tensor serialization between
operators.

As a concrete example, assume an operator, MyOperator with a
single output port named “out” defined in it’s setup method. If the
output port is only ever going to connect to other operators within a
fragment, but never across fragments then it is okay to have a
TensorMap with a mixture of host and device arrays on that single

port.

Ingested Tab Module

However, this mixing of CPU and GPU arrays on a single port will not
work for distributed apps and instead separate ports should be used
if it is necessary for an operator to communicate across fragments.

Ingested Tab Module

Warning

https://dmlc.github.io/dlpack/latest/
https://github.com/cloudpipe/cloudpickle

NVIDIA Holoscan SDK v2.0.0 103

C++

For any additional C++ classes that need to be serialized for transmission between
fragments in a distributed application, the user must create their own codec and register
it with the Holoscan SDK framework. As a concrete example, suppose that we had the
following simple Coordinate class that we wish to send between fragments.

A restriction imposed by the use of cloudpickle is that all fragments in
a distributed application must be running the same Python version.

Warning

Distributed applications behave differently than single fragment
applications when
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.OutputContext.e

is called to emit a tensor-like Python object. Specifically, for array-like
objects such as a PyTorch tensor, the same Python object will not be
received by any call to
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.InputContext.rec

in a downstream Python operator (even if the upstream and
downstream operators are part of the same fragment). An object of
type holoscan.Tensor will be received as a holoscan.Tensor . Any
other array-like objects with data stored on device (GPU) will be
received as a CuPy tensor. Similarly, any array-like object with data
stored on the host (CPU) will be received as a NumPy array. The user
must convert back to the original array-like type if needed (typically
possible in a zero-copy fashion via DLPack or array interfaces).

struct Coordinate { float x; float y; float z; };

https://github.com/cloudpipe/cloudpickle/blob/v2.2.1/README.md?plain=1#L17-L18

NVIDIA Holoscan SDK v2.0.0 104

To create a codec capable of serializing and deserializing this type one should define a
holoscan::codec class for it as shown below.

where the first argument to serialize is a const reference to the type to be serialized and
the return value is an expected containing the number of bytes that were serialized. The
deserialize method returns an expected containing the deserialized object. The
Endpoint class is a base class representing the serialization endpoint (For distributed

applications, the actual endpoint class used is UcxSerializationBuffer).

The helper functions serialize_trivial_type (deserialize_trivial_type) can be used to
serialize (deserialize) any plain-old-data (POD) type. Specifically, POD types can be
serialized by just copying sizeof(Type) bytes to/from the endpoint. The
read_trivial_type() and ~holoscan::Endpoint::write_trivial_type methods could be used

directly instead.

In practice, one would not actually need to define codec<Coordinate> at all since
Coordinate is a trivially serializable type and the existing codec treats any types for

which there is not a template specialization as a trivially serializable type. It is, however,
still necessary to register the codec type with the CodecRegistry as described below.

#include "holoscan/core/codec_registry.hpp" #include "holoscan/core/errors.hpp"
#include "holoscan/core/expected.hpp" namespace holoscan { template <> struct
codec<Coordinate> { static expected<size_t, RuntimeError> serialize(const
Coordinate& value, Endpoint* endpoint) { return serialize_trivial_type<Coordinate>
(value, endpoint); } static expected<Coordinate, RuntimeError>
deserialize(Endpoint* endpoint) { return deserialize_trivial_type<Coordinate>
(endpoint); } }; } // namespace holoscan

template <> struct codec<Coordinate> { static expected<size_t, RuntimeError>
serialize(const Coordinate& value, Endpoint* endpoint) { return endpoint-
>write_trivial_type(&value); } static expected<Coordinate, RuntimeError>
deserialize(Endpoint* endpoint) { Coordinate encoded; auto maybe_value =
endpoint->read_trivial_type(&encoded); if (!maybe_value) { return
forward_error(maybe_value); } return encoded; } };

NVIDIA Holoscan SDK v2.0.0 105

For non-trivial types, one will likely also need to use the read() and write() methods to
implement the codec. Example use of these for the built-in codecs can be found in
holoscan/core/codecs.hpp .

Once such a codec has been defined, the remaining step is to register it with the static
CodecRegistry class. This will make the UCX-based classes used by distributed

applications aware of the existence of a codec for serialization of this object type. If the
type is specific to a particular operator, then one can register it via the register_codec()
class.

Here, the argument provided to register_codec is the name the registry will use for the
codec. This name will be serialized in the message header so that the deserializer knows
which deserialization function to use on the received data. In this example, we chose a
name that matches the class name, but that is not a requirement. If the name matches
one that is already present in the CodecRegistry class, then any existing codec under
that name will be replaced by the newly registered one.

It is also possible to directly register the type outside of the context of initialize() by
directly retrieving the static instance of the codec registry as follows.

#include "holoscan/core/codec_registry.hpp" namespace holoscan::ops { void
MyCoordinateOperator::initialize() { register_codec<Coordinate>("Coordinate"); // ...
// parent class initialize() call must be after the argument additions above
Operator::initialize(); } } // namespace holoscan::ops

namespace holoscan { CodecRegistry::get_instance().add_codec<Coordinate>
("Coordinate"); } // namespace holoscan

Tip

CLI arguments (such as --driver , --worker , --fragments) are parsed
by the Application (
<a
href="api/cpp/classholoscan_1_1Application.html#_CPPv4N8holoscan11Applicatio

NVIDIA Holoscan SDK v2.0.0 106

Adding user-defined command line arguments

When adding user-defined command line arguments to an application, one should avoid
the use of any of the default command line argument names as --help , --version ,
--config , --driver , --worker , --address , --worker-address , --fragments as covered in

the section on running a distributed application. It is recommended to parse user-defined
arguments from the argv ((C++ / Python)) method/property of the application as
covered in the note above instead of using C++ char* argv[] or Python sys.argv directly.
This way, only the new, user-defined arguments will need to be parsed.

A concrete example of this for both C++ and Python can be seen in the existing
ping_distributed example where an application-defined boolean argument (--gpu) is
specified in addition to the default set of application arguments.

Ingested Tab Module

/
Pyt

) class and the remaining arguments are available as app.argv (
<a
href="api/cpp/classholoscan_1_1Application.html#_CPPv4N8holoscan11Applicatio

/
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.Application.argv"

).

Ingested Tab Module

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/ping_distributed

NVIDIA Holoscan SDK v2.0.0 107

Packaging Holoscan
Applications
The Holoscan App Packager, included as part of the Holoscan CLI as the package
command, allows you to package your Holoscan applications into a HAP-compliant
container image for distribution and deployment.

Prerequisites

Dependencies

Ensure the following are installed in the environment where you want to run the CLI:

PIP dependencies (automatically installed with the holoscan python wheel)

NVIDIA Container Toolkit with Docker

Developer Kits (aarch64): already included in IGX Software and JetPack

x86_64: tested with NVIDIA Container Toolkit 1.13.3 w/Docker v24.0.1

Docker BuildX plugin

1. Check if it is installed:

2. If not, run the following commands based on the official doc:

$ docker buildx version github.com/docker/buildx v0.10.5 86bdced

Install Docker dependencies sudo apt-get update sudo apt-get install ca-
certificates curl gnupg # Add Docker Official GPG Key sudo install -m 0755 -
d /etc/apt/keyrings curl -fsSL
https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o

https://docs.nvidia.com/cli/package.html
https://docs.nvidia.com/cli/cli.html
https://docs.nvidia.com/cli/hap.html
https://docs.nvidia.com/cli/cli.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/requirements.txt
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository

NVIDIA Holoscan SDK v2.0.0 108

QEMU (Optional)

used for packaging container images of different architectures than the host
(example: x86_64 -> arm64)

CLI Installation

The Holoscan CLI is installed as part of the Holoscan SDK and can be called with the
following instructions depending on your installation:

Ingested Tab Module

Package an application

1. Ensure to use the HAP environment variables wherever possible when accessing
data. For example:

Let’s take a look at the distributed video replayer example (
examples/video_replayer_distributed).

Using the Application Configuration File

/etc/apt/keyrings/docker.gpg sudo chmod a+r
/etc/apt/keyrings/docker.gpg # Configure Docker APT Repository echo \
"deb [arch="$(dpkg --print-architecture)" signed-
by=/etc/apt/keyrings/docker.gpg]
https://download.docker.com/linux/ubuntu \ "$(. /etc/os-release && echo
"$VERSION_CODENAME")" stable" | \ sudo tee
/etc/apt/sources.list.d/docker.list > /dev/null # Install Docker BuildX Plugin
sudo apt-get update sudo apt-get install docker-buildx-plugin

Tip

The packager feature is also illustrated in the cli_packager and
video_replayer_distributed examples.

https://github.com/multiarch/qemu-user-static
https://docs.nvidia.com/cli/hap.html#table-of-environment-variables
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/cli_packager
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/video_replayer_distributed

NVIDIA Holoscan SDK v2.0.0 109

Ingested Tab Module

Using Environment Variable HOLOSCAN_INPUT_PATH for Data Input

Ingested Tab Module

2. Include a YAML configuration file as described in the Application Runner
Configuration page.

3. Use the holoscan package command to create a HAP container image. For
example:

Run a packaged application

The packaged Holoscan application container image can run with the Holoscan App
Runner:

Since the packaged Holoscan application container images are OCI-compliant, they’re
also compatible with Docker, Kubernetes, and containerd.

Each packaged Holoscan application container image includes tools inside for extracting
the embedded application, manifest files, models, etc. To access the tool and to view all
available options, run the following:

The command should prints following:

holoscan package --platform x64-workstation --tag my-awesome-app --config
/path/to/my/awesome/application/config.yaml
/path/to/my/awesome/application/

holoscan run -i /path/to/my/input -o /path/to/application/generated/output my-
application:1.0.1

docker run -it my-container-image[:tag] help

https://docs.nvidia.com/cli/run_config.html
https://docs.nvidia.com/cli/run_config.html
https://docs.nvidia.com/cli/run.html
https://docs.nvidia.com/cli/run.html
https://www.docker.com/
https://kubernetes.io/
https://containerd.io/

NVIDIA Holoscan SDK v2.0.0 110

For example, run the following commands to extract the manifest files and the
application configuration file:

USAGE: /var/holoscan/tools [command] [arguments]... Command List extract ----------
----------------- Extract data based on mounted volume paths.
/var/run/holoscan/export/app extract the application
/var/run/holoscan/export/config extract app.json and pkg.json manifest files and
application YAML. /var/run/holoscan/export/models extract models
/var/run/holoscan/export/docs extract documentation files
/var/run/holoscan/export extract all of the above IMPORTANT: ensure the directory
to be mounted for data extraction is created first on the host system. and has the
correct permissions. If the directory had been created by the container previously
with the user and group being root, please delete it and manually create it again.
show ----------------------------- Print manifest file(s): [app|pkg] to the terminal. app print
app.json pkg print pkg.json env ------------------------- Print all environment variables to
the terminal.

Note

The tools can also be accessed inside the Docker container via
/var/holoscan/tools .

create a directory on the host system first mkdir -p config-files # mount the directory
created to /var/run/holoscan/export/config docker run -it --rm -v $(pwd)/config-
files:/var/run/holoscan/export/config my-container-image[:tag] extract # include -u
1000 if the above command reports a permission error docker run -it --rm -u 1000 -v
$(pwd)/config-files:/var/run/holoscan/export/config my-container-image[:tag]
extract # If the permission error continues to occur, please check if the mounted
directory has the correct permission. # If it doesn't, please recreate it or change the
permissions as needed. # list files extracted ls config-files/ # output: # app.json
app.yaml pkg.json

NVIDIA Holoscan SDK v2.0.0 111

Creating Operators

C++ Operators

When assembling a C++ application, two types of operators can be used:

1. Native C++ operators: custom operators defined in C++ without using the GXF API,
by creating a subclass of holoscan::Operator . These C++ operators can pass
arbitrary C++ objects around between operators.

2. GXF Operators: operators defined in the underlying C++ library by inheriting from
the holoscan::ops::GXFOperator class. These operators wrap GXF codelets from
GXF extensions. Examples are VideoStreamReplayerOp for replaying video files,
FormatConverterOp for format conversions, and HolovizOp for visualization.

Native C++ Operators

Tip

Creating a custom operator is also illustrated in the ping_custom_op
example.

Note

It is possible to create an application using a mixture of GXF
operators and native operators. In this case, some special
consideration to cast the input and output tensors appropriately
must be taken, as shown in a section below.

file:///tmp/jsreport/autocleanup/examples/ping_custom_op.html

NVIDIA Holoscan SDK v2.0.0 112

Operator Lifecycle (C++)

The lifecycle of a holoscan::Operator is made up of three stages:

start() is called once when the operator starts, and is used for initializing heavy
tasks such as allocating memory resources and using parameters.

compute() is called when the operator is triggered, which can occur any number of
times throughout the operator lifecycle between start() and stop() .

stop() is called once when the operator is stopped, and is used for deinitializing
heavy tasks such as deallocating resources that were previously assigned in start() .

All operators on the workflow are scheduled for execution. When an operator is first
executed, the start() method is called, followed by the compute() method. When the
operator is stopped, the stop() method is called. The compute() method is called
multiple times between start() and stop() .

If any of the scheduling conditions specified by Conditions are not met (for example, the
CountCondition would cause the scheduling condition to not be met if the operator has

been executed a certain number of times), the operator is stopped and the stop()
method is called.

We will cover how to use Conditions in the Specifying operator inputs and outputs (C++)
section of the user guide.

Typically, the start() and the stop() functions are only called once during the
application’s lifecycle. However, if the scheduling conditions are met again, the operator
can be scheduled for execution, and the start() method will be called again.

digraph lifecycle { rankdir="LR" node [shape=Mrecord]; start [label="start"] compute
[label="compute"] stop [label="stop"] start -> compute compute -> compute compute ->
stop }

Fig. 15 The sequence of method calls in the lifecycle of a Holoscan Operator

https://docs.nvidia.com/holoscan_core.html#holoscan-concepts-condition
https://docs.nvidia.com/api/cpp/classholoscan_1_1Condition.html#exhale-class-classholoscan-1-1condition

NVIDIA Holoscan SDK v2.0.0 113

We can override the default behavior of the operator by implementing the above
methods. The following example shows how to implement a custom operator that
overrides start, stop and compute methods.

Listing 2 The basic structure of a Holoscan Operator (C++)

Creating a custom operator (C++)

To create a custom operator in C++ it is necessary to create a subclass of
holoscan::Operator . The following example demonstrates how to use native operators

(the operators that do not have an underlying, pre-compiled GXF Codelet).

Code Snippet: examples/ping_multi_port/cpp/ping_multi_port.cpp

Listing 3 examples/ping_multi_port/cpp/ping_multi_port.cpp

#include "holoscan/holoscan.hpp" using holoscan::Operator; using
holoscan::OperatorSpec; using holoscan::InputContext; using
holoscan::OutputContext; using holoscan::ExecutionContext; using holoscan::Arg;
using holoscan::ArgList; class MyOp : public Operator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS(MyOp) MyOp() = default; void
setup(OperatorSpec& spec) override { } void start() override {
HOLOSCAN_LOG_TRACE("MyOp::start()"); } void compute(InputContext&,
OutputContext& op_output, ExecutionContext&) override {
HOLOSCAN_LOG_TRACE("MyOp::compute()"); }; void stop() override {
HOLOSCAN_LOG_TRACE("MyOp::stop()"); } };

#include "holoscan/holoscan.hpp" class ValueData { public: ValueData() = default;
explicit ValueData(int value) : data_(value) {
HOLOSCAN_LOG_TRACE("ValueData::ValueData(): {}", data_); } ~ValueData() {
HOLOSCAN_LOG_TRACE("ValueData::~ValueData(): {}", data_); } void data(int value) {
data_ = value; } int data() const { return data_; } private: int data_; }; namespace
holoscan::ops { class PingTxOp : public Operator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS(PingTxOp) PingTxOp() = default; void
setup(OperatorSpec& spec) override { spec.output<std::shared_ptr<ValueData>>
("out1"); spec.output<std::shared_ptr<ValueData>>("out2"); } void
compute(InputContext&, OutputContext& op_output, ExecutionContext&) override {

https://docs.nvidia.com/https:://links-need-to-be-corrected.com

NVIDIA Holoscan SDK v2.0.0 114

auto value1 = std::make_shared<ValueData>(index_++); op_output.emit(value1,
"out1"); auto value2 = std::make_shared<ValueData>(index_++);
op_output.emit(value2, "out2"); }; int index_ = 0; }; class PingMiddleOp : public
Operator { public: HOLOSCAN_OPERATOR_FORWARD_ARGS(PingMiddleOp)
PingMiddleOp() = default; void setup(OperatorSpec& spec) override {
spec.input<std::shared_ptr<ValueData>>("in1");
spec.input<std::shared_ptr<ValueData>>("in2");
spec.output<std::shared_ptr<ValueData>>("out1");
spec.output<std::shared_ptr<ValueData>>("out2"); spec.param(multiplier_,
"multiplier", "Multiplier", "Multiply the input by this value", 2); } void
compute(InputContext& op_input, OutputContext& op_output, ExecutionContext&)
override { auto value1 = op_input.receive<std::shared_ptr<ValueData>>
("in1").value(); auto value2 = op_input.receive<std::shared_ptr<ValueData>>
("in2").value(); HOLOSCAN_LOG_INFO("Middle message received (count: {})",
count_++); HOLOSCAN_LOG_INFO("Middle message value1: {}", value1->data());
HOLOSCAN_LOG_INFO("Middle message value2: {}", value2->data()); // Multiply the
values by the multiplier parameter value1->data(value1->data() * multiplier_); value2-
>data(value2->data() * multiplier_); op_output.emit(value1, "out1");
op_output.emit(value2, "out2"); }; private: int count_ = 1; Parameter<int> multiplier_;
}; class PingRxOp : public Operator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS(PingRxOp) PingRxOp() = default; void
setup(OperatorSpec& spec) override { spec.param(receivers_, "receivers", "Input
Receivers", "List of input receivers.", {}); } void compute(InputContext& op_input,
OutputContext&, ExecutionContext&) override { auto value_vector =
op_input.receive<std::vector<std::shared_ptr<ValueData>>>("receivers").value();
HOLOSCAN_LOG_INFO("Rx message received (count: {}, size: {})", count_++,
value_vector.size()); HOLOSCAN_LOG_INFO("Rx message value1: {}", value_vector[0]-
>data()); HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1]->data()); };
private: Parameter<std::vector<IOSpec*>> receivers_; int count_ = 1; }; } //
namespace holoscan::ops class App : public holoscan::Application { public: void
compose() override { using namespace holoscan; auto tx =
make_operator<ops::PingTxOp>("tx", make_condition<CountCondition>(10)); auto
mx = make_operator<ops::PingMiddleOp>("mx", Arg("multiplier", 3)); auto rx =
make_operator<ops::PingRxOp>("rx"); add_flow(tx, mx, {{"out1", "in1"}, {"out2",
"in2"}}); add_flow(mx, rx, {{"out1", "receivers"}, {"out2", "receivers"}}); } }; int main(int

NVIDIA Holoscan SDK v2.0.0 115

Code Snippet: examples/native_operator/cpp/app_config.yaml

In this application, three operators are created: PingTxOp , PingMxOp , and PingRxOp

1. The PingTxOp operator is a source operator that emits two values every time it is
invoked. The values are emitted on two different output ports, out1 (for even
integers) and out2 (for odd integers).

2. The PingMxOp operator is a middle operator that receives two values from the
PingTxOp operator and emits two values on two different output ports. The values

are multiplied by the multiplier parameter.

3. The PingRxOp operator is a sink operator that receives two values from the
PingMxOp operator. The values are received on a single input, receivers , which is

a vector of input ports. The PingRxOp operator receives the values in the order
they are emitted by the PingMxOp operator.

As covered in more detail below, the inputs to each operator are specified in the setup()
method of the operator. Then inputs are received within the compute() method via
op_input.receive() and outputs are emitted via op_output.emit() .

Note that for native C++ operators as defined here, any object including a shared pointer
can be emitted or received. For large objects such as tensors it may be preferable from a
performance standpoint to transmit a shared pointer to the object rather than making a
copy. When shared pointers are used and the same tensor is sent to more than one
downstream operator, one should avoid in-place operations on the tensor or race
conditions between operators may occur.

Specifying operator parameters (C++)

In the example holoscan::ops::PingMxOp operator above, we have a parameter
multiplier that is declared as part of the class as a private member using the param()

templated type:

argc, char** argv) { auto app = holoscan::make_application<MyPingApp>(); app-
>run(); return 0; }

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/cpp/app_config.yaml

NVIDIA Holoscan SDK v2.0.0 116

It is then added to the OperatorSpec attribute of the operator in its setup() method,
where an associated string key must be provided. Other properties can also be
mentioned such as description and default value:

See the Configuring operator parameters section to learn how an application can set these
parameters.

Specifying operator inputs and outputs (C++)

To configure the input(s) and output(s) of C++ native operators, call the spec.input() and
spec.output() methods within the setup() method of the operator.

The spec.input() and spec.output() methods should be called once for each input and
output to be added. The OperatorSpec object and the setup() method will be initialized
and called automatically by the Application class when its run() method is called.

These methods (spec.input() and spec.output()) return an IOSpec object that can be
used to configure the input/output port.

Parameter<int> multiplier_;

// Provide key, and optionally other information spec.param(multiplier_, "multiplier",
"Multiplier", "Multiply the input by this value", 2);

Note

If your parameter is of a custom type, you must register that type and
provide a YAML encoder/decoder, as documented under
<a
href="api/cpp/classholoscan_1_1Operator.html#_CPPv4I0EN8holoscan8Operator1

https://docs.nvidia.com/holoscan_create_app.html#configuring-app-operator-parameters

NVIDIA Holoscan SDK v2.0.0 117

By default, the holoscan::MessageAvailableCondition and
holoscan::DownstreamMessageAffordableCondition conditions are applied (with a
min_size of 1) to the input/output ports. This means that the operator’s compute()

method will not be invoked until a message is available on the input port and the
downstream operator’s input port (queue) has enough capacity to receive the message.

In the above example, the spec.input() method is used to configure the input port to
have the holoscan::MessageAvailableCondition with a minimum size of 1. This means
that the operator’s compute() method will not be invoked until a message is available on
the input port of the operator. Similarly, the spec.output() method is used to configure
the output port to have the holoscan::DownstreamMessageAffordableCondition with a
minimum size of 1. This means that the operator’s compute() method will not be
invoked until the downstream operator’s input port has enough capacity to receive the
message.

If you want to change this behavior, use the IOSpec::condition() method to configure the
conditions. For example, to configure the input and output ports to have no conditions,
you can use the following code:

The example code in the setup() method configures the input port to have no
conditions, which means that the compute() method will be called as soon as the
operator is ready to compute. Since there is no guarantee that the input port will have a
message available, the compute() method should check if there is a message available
on the input port before attempting to read it.

void setup(OperatorSpec& spec) override { spec.input<std::shared_ptr<ValueData>>
("in"); // Above statement is equivalent to: // spec.input<std::shared_ptr<ValueData>>
("in") // .condition(ConditionType::kMessageAvailable, Arg("min_size") = 1);
spec.output<std::shared_ptr<ValueData>>("out"); // Above statement is equivalent to:
// spec.output<std::shared_ptr<ValueData>>("out") //
.condition(ConditionType::kDownstreamMessageAffordable, Arg("min_size") = 1); ... }

void setup(OperatorSpec& spec) override { spec.input<std::shared_ptr<ValueData>>
("in") .condition(ConditionType::kNone); spec.output<std::shared_ptr<ValueData>>
("out") .condition(ConditionType::kNone); // ... }

NVIDIA Holoscan SDK v2.0.0 118

The receive() method of the InputContext object can be used to access different types
of input data within the compute() method of your operator class, where its template
argument (DataT) is the data type of the input. This method takes the name of the input
port as an argument (which can be omitted if your operator has a single input port), and
returns the input data. If input data is not available, the method returns an object of the
holoscan::RuntimeError class which contains an error message describing the reason

for the failure. The holoscan::RuntimeError class is a derived class of
std::runtime_error and supports accessing more error information, for example, with
what() method.

In the example code fragment below, the PingRxOp operator receives input on a port
called “in” with data type ValueData . The receive() method is used to access the input
data. The value is checked to be valid or not with the if condition. If value is of
holoscan::RuntimeError type, then if condition will be false. Otherwise, the data()

method of the ValueData class is called to get the value of the input data.

For GXF Entity objects (holoscan::gxf::Entity wraps underlying GXF nvidia::gxf::Entity
class), the receive() method will return the GXF Entity object for the input of the
specified name. In the example below, the PingRxOp operator receives input on a port
called “in” with data type holoscan::gxf::Entity .

// ... class PingRxOp : public holoscan::ops::GXFOperator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(PingRxOp,
holoscan::ops::GXFOperator) PingRxOp() = default; void setup(OperatorSpec& spec)
override { spec.input<ValueData>("in"); } void compute(InputContext& op_input,
OutputContext&, ExecutionContext&) override { // The type of `value` is `ValueData`
auto value = op_input.receive<ValueData>("in"); if (value){
HOLOSCAN_LOG_INFO("Message received (value: {})", value.data()); } } };

// ... class PingRxOp : public holoscan::ops::GXFOperator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(PingRxOp,
holoscan::ops::GXFOperator) PingRxOp() = default; void setup(OperatorSpec& spec)
override { spec.input<holoscan::gxf::Entity>("in"); } void compute(InputContext&
op_input, OutputContext&, ExecutionContext&) override { // The type of `in_entity` is

NVIDIA Holoscan SDK v2.0.0 119

For objects of type std::any , the receive() method will return a std::any object
containing the input of the specified name. In the example below, the PingRxOp
operator receives input on a port called “in” with data type std::any . The type() method
of the std::any object is used to determine the actual type of the input data, and the
std::any_cast<T>() function is used to retrieve the value of the input data.

The Holoscan SDK provides built-in data types called Domain Objects, defined in the
include/holoscan/core/domain directory. For example, the holoscan::Tensor is a

Domain Object class that is used to represent a multi-dimensional array of data, which
can be used directly by OperatorSpec , InputContext , and OutputContext .

'holoscan::gxf::Entity'. auto in_entity = op_input.receive<holoscan::gxf::Entity>("in"); if
(in_entity) { // Process with `in_entity`. // ... } } };

// ... class PingRxOp : public holoscan::ops::GXFOperator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(PingRxOp,
holoscan::ops::GXFOperator) PingRxOp() = default; void setup(OperatorSpec& spec)
override { spec.input<std::any>("in"); } void compute(InputContext& op_input,
OutputContext&, ExecutionContext&) override { // The type of `in_any` is 'std::any'.
auto in_any = op_input.receive<std::any>("in"); auto& in_any_type = in_any.type(); if
(in_any_type == typeid(holoscan::gxf::Entity)) { auto in_entity =
std::any_cast<holoscan::gxf::Entity>(in_any); // Process with `in_entity`. // ... } else if
(in_any_type == typeid(std::shared_ptr<ValueData>)) { auto in_message =
std::any_cast<std::shared_ptr<ValueData>>(in_any); // Process with `in_message`. // ...
} else if (in_any_type == typeid(nullptr_t)) { // No message is available. } else {
HOLOSCAN_LOG_ERROR("Invalid message type: {}", in_any_type.name()); return; } }
};

Tip

This
holos

class is a wrapper around the DLManagedTensorCtx struct holding a

https://docs.nvidia.com/api/holoscan_cpp_api.html#domain-objects

NVIDIA Holoscan SDK v2.0.0 120

Receiving any number of inputs (C++)

Instead of assigning a specific number of input ports, it may be desired to have the ability
to receive any number of objects on a port in certain situations. This can be done by
defining Parameter with std::vector<IOSpec*>> (
Parameter<std::vector<IOSpec*>> receivers_) and calling
spec.param(receivers_, "receivers", "Input Receivers", "List of input receivers.", {}); as

done for PingRxOp in the native operator ping example.

Listing 4 examples/ping_multi_port/cpp/ping_multi_port.cpp

DLManagedTensor object. As such, it provides a primary interface to
access Tensor data and is interoperable with other frameworks that
support the DLPack interface.

Warning

Passing
holos

objects to/from GXF operators directly is not supported. Instead, they
need to be passed through
<a
href="api/cpp/classholoscan_1_1gxf_1_1Entity.html#_CPPv4N8holoscan3gxf6Entity

objects. See the interoperability section for more details.

class PingRxOp : public Operator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS(PingRxOp) PingRxOp() = default; void
setup(OperatorSpec& spec) override { spec.param(receivers_, "receivers", "Input
Receivers", "List of input receivers.", {}); } void compute(InputContext& op_input,
OutputContext&, ExecutionContext&) override { auto value_vector =
op_input.receive<std::vector<ValueData>>("receivers"); HOLOSCAN_LOG_INFO("Rx
message received (count: {}, size: {})", count_++, value_vector.size());
HOLOSCAN_LOG_INFO("Rx message value1: {}", value_vector[0]->data());

https://dmlc.github.io/dlpack/latest/c_api.html#_CPPv415DLManagedTensor
https://dmlc.github.io/dlpack/latest/

NVIDIA Holoscan SDK v2.0.0 121

Then, once the following configuration is provided in the compose() method, the
PingRxOp will receive two inputs on the receivers port.

By using a parameter (receivers) with std::vector<holoscan::IOSpec*> type, the
framework creates input ports (receivers:0 and receivers:1) implicitly and connects
them (and adds the references of the input ports to the receivers vector).

Building your C++ operator

You can build your C++ operator using CMake, by calling find_package(holoscan) in your
CMakeLists.txt to load the SDK libraries. Your operator will need to link against
holoscan::core :

Listing 5 /CMakeLists.txt

Once your CMakeLists.txt is ready in <src_dir> , you can build in <build_dir>
with the command line below. You can optionally pass Holoscan_ROOT if the SDK

HOLOSCAN_LOG_INFO("Rx message value2: {}", value_vector[1]->data()); }; private:
Parameter<std::vector<IOSpec*>> receivers_; int count_ = 1; }; } // namespace
holoscan::ops class App : public holoscan::Application { public: void compose()
override { using namespace holoscan; auto tx = make_operator<ops::PingTxOp>
("tx", make_condition<CountCondition>(10)); auto mx =
make_operator<ops::PingMiddleOp>("mx", Arg("multiplier", 3)); auto rx =
make_operator<ops::PingRxOp>("rx"); add_flow(tx, mx, {{"out1", "in1"}, {"out2",
"in2"}}); add_flow(mx, rx, {{"out1", "receivers"}, {"out2", "receivers"}}); } };

134: add_flow(mx, rx, {{"out1", "receivers"}, {"out2", "receivers"}});

Your CMake project cmake_minimum_required(VERSION 3.20) project(my_project
CXX) # Finds the holoscan SDK find_package(holoscan REQUIRED CONFIG PATHS
"/opt/nvidia/holoscan") # Create a library for your operator
add_library(my_operator SHARED my_operator.cpp) # Link your operator against
holoscan::core target_link_libraries(my_operator PUBLIC holoscan::core)

NVIDIA Holoscan SDK v2.0.0 122

installation you’d like to use differs from the PATHS given to find_package(holoscan)
above.

Using your C++ Operator in an Application

If the application is configured in the same CMake project as the operator, you
can simply add the operator CMake target library name under the application
executable target_link_libraries call, as the operator CMake target is already
defined.

If the application is configured in a separate project as the operator, you need
to export the operator in its own CMake project, and import it in the application
CMake project, before being able to list it under target_link_libraries also. This is
the same as what is done for the SDK built-in operators, available under the
holoscan::ops namespace.

You can then include the headers to your C++ operator in your application code.

GXF Operators

With the Holoscan C++ API, we can also wrap GXF Codelets from GXF extensions as
Holoscan Operators.

Configure cmake -S <src_dir> -B <build_dir> -D
Holoscan_ROOT="/opt/nvidia/holoscan" # Build cmake --build <build_dir> -j

operator add_library(my_op my_op.cpp) target_link_libraries(my_operator
PUBLIC holoscan::core) # application add_executable(my_app main.cpp)
target_link_libraries(my_operator PRIVATE holoscan::core my_op)

Note

If you do not have an existing GXF extension, we recommend
developing native operators using the C++ or Python APIs to skip the
need for wrapping gxf codelets as operators. If you do need to create

https://cmake.org/cmake/help/latest/guide/importing-exporting/index.html
https://docs.nvidia.com/holoscan_operators_extensions.html#operators
https://docs.nvidia.com/gxf/gxf_core_concepts.html#holoscan-core-concepts-gxf
https://docs.nvidia.com/api/cpp/classholoscan_1_1Operator.html#exhale-class-classholoscan-1-1operator

NVIDIA Holoscan SDK v2.0.0 123

Given an existing GXF extension, we can create a simple “identity” application consisting
of a replayer, which reads contents from a file on disk, and our recorder from the last
section, which will store the output of the replayer exactly in the same format. This allows
us to see whether the output of the recorder matches the original input files.

The MyRecorderOp Holoscan Operator implementation below will wrap the
MyRecorder GXF Codelet shown here.

Operator definition

Listing 6 my_recorder_op.hpp

The holoscan::ops::MyRecorderOp class wraps a MyRecorder GXF Codelet by inheriting
from the holoscan::ops::GXFOperator class. The
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER macro is used to forward the arguments
of the constructor to the base class.

We first need to define the fields of the MyRecorderOp class. You can see that fields
with the same names are defined in both the MyRecorderOp class and the
MyRecorder GXF codelet .

a GXF Extension, follow the Creating a GXF Extension section for a
detailed explanation of the GXF extension development process.

#ifndef APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP #define
APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP #include
"holoscan/core/gxf/gxf_operator.hpp" namespace holoscan::ops { class
MyRecorderOp : public holoscan::ops::GXFOperator { public:
HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(MyRecorderOp,
holoscan::ops::GXFOperator) MyRecorderOp() = default; const char* gxf_typename()
const override { return "MyRecorder"; } void setup(OperatorSpec& spec) override;
void initialize() override; private: Parameter<holoscan::IOSpec*> receiver_;
Parameter<std::shared_ptr<holoscan::Resource>> my_serializer_;
Parameter<std::string> directory_; Parameter<std::string> basename_;
Parameter<bool> flush_on_tick_; }; } // namespace holoscan::ops #endif/*
APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP */

https://docs.nvidia.com/gxf/gxf_by_example.html#my-recorder-hpp
https://docs.nvidia.com/api/cpp/define_operator_8hpp_1af59d84ffa537c4b1186e2a1ae2be30ad.html#exhale-define-operator-8hpp-1af59d84ffa537c4b1186e2a1ae2be30ad
file:///tmp/jsreport/autocleanup/gxf/gxf_by_example.html#creating-gxf-extension

NVIDIA Holoscan SDK v2.0.0 124

Listing 7 Parameter declarations in gxf_extensions/my_recorder/my_recorder.hpp

Comparing the MyRecorderOp holoscan parameter to the MyRecorder gxf codelet:

Holoscan Operator GXF Codelet

holoscan::Parameter nvidia::gxf::Parameter

holoscan::IOSpec*

nvidia::gxf::Handle<nvidia::gxf::Receiver>
;>

or
nvidia::gxf::Handle<nvidia::gxf::Transmitter
>>

std::shared_ptr<holoscan::Resource
>>

nvidia::gxf::Handle<T>>
example: T is nvidia::gxf::EntitySerializer

We then need to implement the following functions:

const char* gxf_typename() const override : return the GXF type name of the
Codelet. The fully-qualified class name (MyRecorder) for the GXF Codelet is
specified.

void setup(OperatorSpec& spec) override : setup the OperatorSpec with the
inputs/outputs and parameters of the Operator.

void initialize() override : initialize the Operator.

Setting up parameter specifications

The implementation of the setup(OperatorSpec& spec) function is as follows:

Listing 8 my_recorder_op.cpp

nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::Receiver>> receiver_;
nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::EntitySerializer>>
my_serializer_; nvidia::gxf::Parameter<std::string> directory_;
nvidia::gxf::Parameter<std::string> basename_; nvidia::gxf::Parameter<bool>
flush_on_tick_;

NVIDIA Holoscan SDK v2.0.0 125

Here, we set up the inputs/outputs and parameters of the Operator. Note how the
content of this function is very similar to the MyRecorder GXF codelet’s registerInterface
function.

In the C++ API, GXF Receiver and Transmitter components (such as
DoubleBufferReceiver and DoubleBufferTransmitter) are considered as input and

output ports of the Operator so we register the inputs/outputs of the Operator with
input<T> and output<T> functions (where T is the data type of the

port).

Compared to the pure GXF application that does the same job, the SchedulingTerm
of an Entity in the GXF Application YAML are specified as Condition s on the
input/output ports (e.g., holoscan::MessageAvailableCondition and
holoscan::DownstreamMessageAffordableCondition).

The highlighted lines in MyRecorderOp::setup above match the following highlighted
statements of GXF Application YAML:

#include "./my_recorder_op.hpp" #include "holoscan/core/fragment.hpp" #include
"holoscan/core/gxf/entity.hpp" #include "holoscan/core/operator_spec.hpp"
#include "holoscan/core/resources/gxf/video_stream_serializer.hpp" namespace
holoscan::ops { void MyRecorderOp::setup(OperatorSpec& spec) { auto& input =
spec.input<holoscan::gxf::Entity>("input"); // Above is same with the following two lines
(a default condition is assigned to the input port if not specified): // // auto& input =
spec.input<holoscan::gxf::Entity>("input") //
.condition(ConditionType::kMessageAvailable, Arg("min_size") = 1);
spec.param(receiver_, "receiver", "Entity receiver", "Receiver channel to log",
&input); spec.param(my_serializer_, "serializer", "Entity serializer", "Serializer for
serializing input data"); spec.param(directory_, "out_directory", "Output directory
path", "Directory path to store received output"); spec.param(basename_,
"basename", "File base name", "User specified file name without extension");
spec.param(flush_on_tick_, "flush_on_tick", "Boolean to flush on tick", "Flushes
output buffer on every `tick` when true", false); } void MyRecorderOp::initialize() {...}
} // namespace holoscan::ops

https://docs.nvidia.com/gxf/gxf_by_example.html#my-recorder-cpp
https://docs.nvidia.com/gxf/gxf_by_example.html#creating-gxf-application
https://docs.nvidia.com/gxf/doc/scheduler/scheduler.html#schedulingterms
https://docs.nvidia.com/gxf/gxf_by_example.html#my-recorder-gxf-yaml
https://docs.nvidia.com/gxf/gxf_by_example.html#my-recorder-gxf-yaml

NVIDIA Holoscan SDK v2.0.0 126

Listing 9 A part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

In the same way, if we had a Transmitter GXF component, we would have the following
statements (Please see available constants for holoscan::ConditionType):

Initializing the operator

Next, the implementation of the initialize() function is as follows:

Listing 10 my_recorder_op.cpp

name: recorder components: - name: input type: nvidia::gxf::DoubleBufferReceiver -
name: allocator type: nvidia::gxf::UnboundedAllocator - name: component_serializer
type: nvidia::gxf::StdComponentSerializer parameters: allocator: allocator - name:
entity_serializer type: nvidia::gxf::StdEntitySerializer parameters:
component_serializers: [component_serializer] - type: MyRecorder parameters:
receiver: input serializer: entity_serializer out_directory: "/tmp" basename:
"tensor_out" - type: nvidia::gxf::MessageAvailableSchedulingTerm parameters:
receiver: input min_size: 1

auto& output = spec.output<holoscan::gxf::Entity>("output"); // Above is same with
the following two lines (a default condition is assigned to the output port if not specified):
// // auto& output = spec.output<holoscan::gxf::Entity>("output") //
.condition(ConditionType::kDownstreamMessageAffordable, Arg("min_size") = 1);

#include "./my_recorder_op.hpp" #include "holoscan/core/fragment.hpp" #include
"holoscan/core/gxf/entity.hpp" #include "holoscan/core/operator_spec.hpp"
#include "holoscan/core/resources/gxf/video_stream_serializer.hpp" namespace
holoscan::ops { void MyRecorderOp::setup(OperatorSpec& spec) {...} void
MyRecorderOp::initialize() { // Set up prerequisite parameters before calling
GXFOperator::initialize() auto frag = fragment(); auto serializer = frag-
>make_resource<holoscan::StdEntitySerializer>("serializer");
add_arg(Arg("serializer") = serializer); GXFOperator::initialize(); } } // namespace
holoscan::ops

NVIDIA Holoscan SDK v2.0.0 127

Here we set up the pre-defined parameters such as the serializer . The highlighted lines
above matches the highlighted statements of GXF Application YAML:

Listing 11 Another part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

Building your GXF operator

There are no differences in CMake between building a GXF operator and building a native
C++ operator, since the GXF codelet is actually loaded through a GXF extension as a
plugin, and does not need to be added to target_link_libraries(my_operator ...) .

Using your GXF Operator in an Application

There are no differences in CMake between using a GXF operator and using a native C++
operator in an application. However, the application will need to load the GXF extension
library which holds the wrapped GXF codelet symbols, so the application needs to be

name: recorder components: - name: input type: nvidia::gxf::DoubleBufferReceiver -
name: allocator type: nvidia::gxf::UnboundedAllocator - name: component_serializer
type: nvidia::gxf::StdComponentSerializer parameters: allocator: allocator - name:
entity_serializer type: nvidia::gxf::StdEntitySerializer parameters:
component_serializers: [component_serializer] - type: MyRecorder parameters:
receiver: input serializer: entity_serializer out_directory: "/tmp" basename:
"tensor_out" - type: nvidia::gxf::MessageAvailableSchedulingTerm parameters:
receiver: input min_size: 1

Note

The Holoscan C++ API already provides the
<a
href="api/cpp/classholoscan_1_1StdEntitySerializer.html#_CPPv4N8holoscan19Std

class which wraps the nvidia::gxf::StdEntitySerializer GXF
component, used here as serializer .

https://docs.nvidia.com/gxf/gxf_by_example.html#my-recorder-gxf-yaml

NVIDIA Holoscan SDK v2.0.0 128

configured to find the extension library in its yaml configuration file, as documented
here.

Interoperability between GXF and native C++ operators

To support sending or receiving tensors to and from operators (both GXF and native C++
operators), the Holoscan SDK provides the C++ classes below:

A class template called holoscan::MyMap which inherits from
std::unordered_map<std::string, std::shared_ptr<T>> . The template

parameter T can be any type, and it is used to specify the type of the
std::shared_ptr objects stored in the map.

A holoscan::TensorMap class defined as a specialization of holoscan::Map for the
holoscan::Tensor type.

Fig. 16 Supporting Tensor Interoperability

Consider the following example, where GXFSendTensorOp and GXFReceiveTensorOp
are GXF operators, and where ProcessTensorOp is a C++ native operator:

digraph interop { rankdir="LR" node [shape=record]; source [label="GXFSendTensorOp|
|signal(out) : Tensor"]; process [label="ProcessTensorOp| [in]in : TensorMap | out(out) :

https://docs.nvidia.com/holoscan_create_app.html#loading-gxf-extensions

NVIDIA Holoscan SDK v2.0.0 129

TensorMap "]; sink [label="GXFReceiveTensorOp| [in]signal : Tensor | "]; source->process
[label="signal...in"] process->sink [label="out...signal"] }

Fig. 17 The tensor interoperability between C++ native operator and GXF operator

The following code shows how to implement ProcessTensorOp ’s compute() method as
a C++ native operator communicating with GXF operators. Focus on the use of the
holoscan::gxf::Entity :

Listing 12 examples/tensor_interop/cpp/tensor_interop.cpp

The input message is of type holoscan::TensorMap object.

Every holoscan::Tensor in the TensorMap object is copied on the host as in_data .

The data is processed (values multiplied by 2)

The data is moved back to the holoscan::Tensor object on the GPU.

void compute(InputContext& op_input, OutputContext& op_output,
ExecutionContext& context) override { // The type of `in_message` is
'holoscan::TensorMap'. auto in_message = op_input.receive<holoscan::TensorMap>
("in").value(); // the type of out_message is TensorMap TensorMap out_message; for
(auto& [key, tensor] : in_message) { // Process with 'tensor' here. cudaError_t
cuda_status; size_t data_size = tensor->nbytes(); std::vector<uint8_t>
in_data(data_size); CUDA_TRY(cudaMemcpy(in_data.data(), tensor->data(), data_size,
cudaMemcpyDeviceToHost)); HOLOSCAN_LOG_INFO("ProcessTensorOp Before key:
'{}', shape: ({}), data: [{}]", key, fmt::join(tensor->shape(), ","), fmt::join(in_data, ","));
for (size_t i = 0; i < data_size; i++) { in_data[i] *= 2; }
HOLOSCAN_LOG_INFO("ProcessTensorOp After key: '{}', shape: ({}), data: [{}]", key,
fmt::join(tensor->shape(), ","), fmt::join(in_data, ","));
CUDA_TRY(cudaMemcpy(tensor->data(), in_data.data(), data_size,
cudaMemcpyHostToDevice)); out_message.insert({key, tensor}); } // Send the
processed message. op_output.emit(out_message); };

NVIDIA Holoscan SDK v2.0.0 130

A new holoscan::TensorMap object out_message is created to be sent to the next
operator with op_output.emit() .

Python Operators

When assembling a Python application, two types of operators can be used:

1. Native Python operators: custom operators defined in Python, by creating a
subclass of holoscan.core.Operator . These Python operators can pass arbitrary
Python objects around between operators and are not restricted to the stricter
parameter typing used for C++ API operators.

2. Python wrappings of C++ Operators: operators defined in the underlying C++
library by inheriting from the holoscan::Operator class. These operators have
Python bindings available within the holoscan.operators module. Examples are
VideoStreamReplayerOp for replaying video files, FormatConverterOp for format

conversions, and HolovizOp for visualization.

Native Python Operator

Note

A complete example of the C++ native operator that supports
interoperability with GXF operators is available in the
examples/tensor_interop/cpp directory.

Note

It is possible to create an application using a mixture of Python
wrapped C++ operators and native Python operators. In this case,
some special consideration to cast the input and output tensors
appropriately must be taken, as shown in a section below.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/tensor_interop/cpp

NVIDIA Holoscan SDK v2.0.0 131

Operator Lifecycle (Python)

The lifecycle of a holoscan.core.Operator is made up of three stages:

start() is called once when the operator starts, and is used for initializing heavy
tasks such as allocating memory resources and using parameters.

compute() is called when the operator is triggered, which can occur any number of
times throughout the operator lifecycle between start() and stop() .

stop() is called once when the operator is stopped, and is used for deinitializing
heavy tasks such as deallocating resources that were previously assigned in start() .

All operators on the workflow are scheduled for execution. When an operator is first
executed, the start() method is called, followed by the compute() method. When the
operator is stopped, the stop() method is called. The compute() method is called
multiple times between start() and stop() .

If any of the scheduling conditions specified by Conditions are not met (for example, the
CountCondition would cause the scheduling condition to not be met if the operator has

been executed a certain number of times), the operator is stopped and the stop()
method is called.

We will cover how to use Conditions in the Specifying operator inputs and outputs
(Python) section of the user guide.

Typically, the start() and the stop() functions are only called once during the
application’s lifecycle. However, if the scheduling conditions are met again, the operator
can be scheduled for execution, and the start() method will be called again.

digraph lifecycle2 { rankdir="LR" node [shape=Mrecord]; start [label="start"] compute
[label="compute"] stop [label="stop"] start -> compute compute -> compute compute ->
stop }

Fig. 18 The sequence of method calls in the lifecycle of a Holoscan Operator

https://docs.nvidia.com/holoscan_core.html#holoscan-concepts-condition

NVIDIA Holoscan SDK v2.0.0 132

We can override the default behavior of the operator by implementing the above
methods. The following example shows how to implement a custom operator that
overrides start, stop and compute methods.

Listing 13 The basic structure of a Holoscan Operator (Python)

setup method vs initialize vs __init__

The setup method aims to get the “operator’s spec” by providing OperatorSpec object
as a spec param. When __init__ is called, it calls C++’s Operator::spec method (and also
sets self.spec class member), and calls setup method so that Operator’s spec
property holds the operator’s specification. (See the source code for more details.)

Since the setup method can be called multiple times with other OperatorSpec object
(e.g., to enumerate the operator’s description), in the setup method, a user shouldn’t
initialize something in the Operator object. Such initialization needs to be done in
initialize method. The __init__ method is for creating the Operator object and it can be

used for initializing the operator object itself by passing miscellaneous arguments. Still, it
doesn’t ‘initialize’ the corresponding GXF entity object.

Creating a custom operator (Python)

To create a custom operator in Python it is necessary to create a subclass of
holoscan.core.Operator . A simple example of an operator that takes a time-varying 1D

input array named “signal” and applies convolution with a boxcar (i.e. rect) kernel.

For simplicity, this operator assumes that the “signal” that will be received on the input is
already a numpy.ndarray or is something that can be cast to one via (np.asarray). We
will see more details in a later section on how we can interoperate with various tensor
classes, including the GXF Tensor objects used by some of the C++-based operators.

Code Snippet: examples/numpy_native/convolve.py

from holoscan.core import (ExecutionContext, InputContext, Operator,
OperatorSpec, OutputContext,) class MyOp(Operator): def __init__(self, fragment,
*args, **kwargs): super().__init__(fragment, *args, **kwargs) def setup(self, spec:
OperatorSpec): pass def start(self): pass def compute(self, op_input: InputContext,
op_output: OutputContext, context: ExecutionContext): pass def stop(self): pass

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/holoscan/core/__init__.py#:~:text=class%20Operator
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/examples/numpy_native/convolve.py

NVIDIA Holoscan SDK v2.0.0 133

Listing 14 examples/numpy_native/convolve.py

import os from holoscan.conditions import CountCondition from holoscan.core
import Application, Operator, OperatorSpec from holoscan.logger import LogLevel,
set_log_level import numpy as np class SignalGeneratorOp(Operator): """Generate a
time-varying impulse. Transmits an array of zeros with a single non-zero entry of a
specified `height`. The position of the non-zero entry shifts to the right (in a periodic
fashion) each time `compute` is called. Parameters ---------- fragment :
holoscan.core.Fragment The Fragment (or Application) the operator belongs to.
height : number The height of the signal impulse. size : number The total number of
samples in the generated 1d signal. dtype : numpy.dtype or str The data type of the
generated signal. """ def __init__(self, fragment, *args, height=1, size=10,
dtype=np.int32, **kwargs): self.count = 0 self.height = height self.dtype = dtype
self.size = size super().__init__(fragment, *args, **kwargs) def setup(self, spec:
OperatorSpec): spec.output("signal") def compute(self, op_input, op_output,
context): # single sample wide impulse at a time-varying position signal =
np.zeros((self.size,), dtype=self.dtype) signal[self.count % signal.size] = self.height
self.count += 1 op_output.emit(signal, "signal") class ConvolveOp(Operator): """Apply
convolution to a tensor. Convolves an input signal with a "boxcar" (i.e. "rect") kernel.
Parameters ---------- fragment : holoscan.core.Fragment The Fragment (or
Application) the operator belongs to. width : number The width of the boxcar kernel
used in the convolution. unit_area : bool, optional Whether or not to normalize the
convolution kernel to unit area. If False, all samples have implitude one and the
dtype of the kernel will match that of the signal. When True the sum over the kernel
is one and a 32-bit floating point data type is used for the kernel. """ def __init__(self,
fragment, *args, width=4, unit_area=False, **kwargs): self.count = 0 self.width =
width self.unit_area = unit_area super().__init__(fragment, *args, **kwargs) def
setup(self, spec: OperatorSpec): spec.input("signal_in") spec.output("signal_out") def
compute(self, op_input, op_output, context): signal = op_input.receive("signal_in")
assert isinstance(signal, np.ndarray) if self.unit_area: kernel = np.full((self.width,),
1/self.width, dtype=np.float32) else: kernel = np.ones((self.width,),
dtype=signal.dtype) convolved = np.convolve(signal, kernel, mode='same')
op_output.emit(convolved, "signal_out") class PrintSignalOp(Operator): """Print the
received signal to the terminal.""" def setup(self, spec: OperatorSpec):
spec.input("signal") def compute(self, op_input, op_output, context): signal =
op_input.receive("signal") print(signal) class ConvolveApp(Application): """Minimal

NVIDIA Holoscan SDK v2.0.0 134

Code Snippet: examples/numpy_native/convolve.yaml

Listing 15 examples/numpy_native/convolve.yaml

In this application, three native Python operators are created: SignalGeneratorOp ,
ConvolveOp and PrintSignalOp . The SignalGeneratorOp generates a synthetic signal

such as [0, 0, 1, 0, 0, 0] where the position of the non-zero entry varies each time it is
called. ConvolveOp performs a 1D convolution with a boxcar (i.e. rect) function of a
specified width. PrintSignalOp just prints the received signal to the terminal.

As covered in more detail below, the inputs to each operator are specified in the setup()
method of the operator. Then inputs are received within the compute method via
op_input.receive() and outputs are emitted via op_output.emit() .

Note that for native Python operators as defined here, any Python object can be emitted
or received. When transmitting between operators, a shared pointer to the object is
transmitted rather than a copy. In some cases, such as sending the same tensor to more
than one downstream operator, it may be necessary to avoid in-place operations on the
tensor in order to avoid any potential race conditions between operators.

Specifying operator parameters (Python)

signal processing application. Generates a time-varying impulse, convolves it with a
boxcar kernel, and prints the result to the terminal. A `CountCondition` is applied to
the generate to terminate execution after a specific number of steps. """ def
compose(self): signal_generator = SignalGeneratorOp(self, CountCondition(self,
count=24), name="generator", **self.kwargs("generator"),) convolver =
ConvolveOp(self, name="conv", **self.kwargs("convolve")) printer =
PrintSignalOp(self, name="printer") self.add_flow(signal_generator, convolver)
self.add_flow(convolver, printer) def main(config_file): app = ConvolveApp() # if the --
config command line argument was provided, it will override this config_file`
app.config(config_file) app.run() if __name__ == "__main__": config_file =
os.path.join(os.path.dirname(__file__), 'convolve.yaml') main(config_file=config_file)

signal_generator: height: 1 size: 20 dtype: int32 convolve: width: 4 unit_area: false

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.5.0/examples/numpy_native/convolve.yaml

NVIDIA Holoscan SDK v2.0.0 135

In the example SignalGeneratorOp operator above, we added three keyword arguments
in the operator’s __init__ method, used inside the compose() method of the operator to
adjust its behavior:

def __init__(self, fragment, *args, width=4, unit_area=False, **kwargs): # Internal
counter for the time-dependent signal generation self.count = 0 # Parameters
self.width = width self.unit_area = unit_area # To forward remaining arguments to any
underlying C++ Operator class super().__init__(fragment, *args, **kwargs)

Note

As an alternative closer to C++, these parameters can be added
through the
O

attribute of the operator in its
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.Operator.setup"

method, where an associated string key must be provided as well as
a default value:

Other kwargs properties can also be passed to spec.param such as
headline , description (used by GXF applications), or kind (used

when Receiving any number of inputs (Python)).

def setup(self, spec: OperatorSpec): spec.param("width", 4)
spec.param("unit_area", False)

Note

NVIDIA Holoscan SDK v2.0.0 136

See the Configuring operator parameters section to learn how an application can set these
parameters.

Specifying operator inputs and outputs (Python)

To configure the input(s) and output(s) of Python native operators, call the spec.input()
and spec.output() methods within the setup() method of the operator.

The spec.input() and spec.output() methods should be called once for each input and
output to be added. The holoscan.core.OperatorSpec object and the setup() method
will be initialized and called automatically by the Application class when its run()
method is called.

These methods (spec.input() and spec.output()) return an IOSpec object that can be
used to configure the input/output port.

By default, the holoscan.conditions.MessageAvailableCondition and
holoscan.conditions.DownstreamMessageAffordableCondition conditions are applied

(with a min_size of 1) to the input/output ports. This means that the operator’s
compute() method will not be invoked until a message is available on the input port and

the downstream operator’s input port (queue) has enough capacity to receive the
message.

Native operator parameters added via either of these methods must
not have a name that overlaps with any of the existing attribute or
method names of the base
Oper

class.

def setup(self, spec: OperatorSpec): spec.input("in") # Above statement is equivalent
to: # spec.input("in") # .condition(ConditionType.MESSAGE_AVAILABLE, min_size = 1)
spec.output("out") # Above statement is equivalent to: # spec.output("out") #
.condition(ConditionType.DOWNSTREAM_MESSAGE_AFFORDABLE, min_size = 1)

https://docs.nvidia.com/holoscan_create_app.html#configuring-app-operator-parameters

NVIDIA Holoscan SDK v2.0.0 137

In the above example, the spec.input() method is used to configure the input port to
have the holoscan.conditions.MessageAvailableCondition with a minimum size of 1. This
means that the operator’s compute() method will not be invoked until a message is
available on the input port of the operator. Similarly, the spec.output() method is used
to configure the output port to have a
holoscan.conditions.DownstreamMessageAffordableCondition with a minimum size of

1. This means that the operator’s compute() method will not be invoked until the
downstream operator’s input port has enough capacity to receive the message.

If you want to change this behavior, use the IOSpec.condition() method to configure the
conditions. For example, to configure the input and output ports to have no conditions,
you can use the following code:

The example code in the setup() method configures the input port to have no
conditions, which means that the compute() method will be called as soon as the
operator is ready to compute. Since there is no guarantee that the input port will have a
message available, the compute() method should check if there is a message available
on the input port before attempting to read it.

The receive() method of the InputContext object can be used to access different types
of input data within the compute() method of your operator class. This method takes
the name of the input port as an argument (which can be omitted if your operator has a
single input port).

For standard Python objects, receive() will directly return the Python object for input of
the specified name.

The Holoscan SDK also provides built-in data types called Domain Objects, defined in the
include/holoscan/core/domain directory. For example, the Tensor is a Domain Object

class that is used to represent a multi-dimensional array of data, which can be used
directly by OperatorSpec , InputContext , and OutputContext .

from holoscan.core import ConditionType, OperatorSpec # ... def setup(self, spec:
OperatorSpec): spec.input("in").condition(ConditionType.NONE)
spec.output("out").condition(ConditionType.NONE)

https://docs.nvidia.com/api/holoscan_cpp_api.html#domain-objects

NVIDIA Holoscan SDK v2.0.0 138

In both cases, it will return None if there is no message available on the input port:

Receiving any number of inputs (Python)

Instead of assigning a specific number of input ports, it may be desired to have the ability
to receive any number of objects on a port in certain situations. This can be done by
calling spec.param(port_name, kind='receivers') as done for PingRxOp in the native
operator ping example located at examples/native_operator/python/ping.py :

Code Snippet: examples/native_operator/python/ping.py

Listing 16 examples/native_operator/python/ping.py

Tip

This
holosca

class supports both DLPack and NumPy’s array interface (
__array_inte

and
_

) so that it can be used with other Python libraries such as CuPy,
PyTorch, JAX, TensorFlow, and Numba. See the interoperability
section for more details.

... def compute(self, op_input, op_output, context): msg = op_input.receive("in") if
msg: # Do something with msg

class PingRxOp(Operator): """Simple receiver operator. This operator has: input:
"receivers" This is an example of a native operator that can dynamically have any
number of inputs connected to is "receivers" port. """ def __init__(self, fragment,
*args, **kwargs): self.count = 1 # Need to call the base class constructor last

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/native_operator/python/ping.py
https://dmlc.github.io/dlpack/latest/
https://docs.cupy.dev/en/stable/user_guide/interoperability.html
https://github.com/pytorch/pytorch/issues/15601
https://github.com/google/jax/issues/1100#issuecomment-580773098
https://github.com/tensorflow/community/pull/180
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html

NVIDIA Holoscan SDK v2.0.0 139

and in the compose method of the application, two parameters are connected to this
“receivers” port:

This line connects both the out1 and out2 ports of operator mx to the receivers port
of operator rx .

Here, values as returned by op_input.receive("receivers") will be a tuple of python
objects.

Python wrapping of a C++ operator

For convenience while maintaining highest performance, operators written in C++ can be
wrapped in Python. In the Holoscan SDK, we’ve used pybind11 to wrap all the built-in
operators in python/holoscan/operators . We’ll highlight the main components below:

Trampoline classes for handling Python kwargs

super().__init__(fragment, *args, **kwargs) def setup(self, spec: OperatorSpec):
spec.param("receivers", kind="receivers") def compute(self, op_input, op_output,
context): values = op_input.receive("receivers") print(f"Rx message received (count:
{self.count}, size:{len(values)})") self.count += 1 print(f"Rx message value1:
{values[0].data}") print(f"Rx message value2:{values[1].data}")

self.add_flow(mx, rx, {("out1", "receivers"), ("out2", "receivers")})

Note

While we provide some utilities to simplify part of the process, this
section is designed for advanced developers, since the wrapping of
the C++ class using pybind11 is mostly manual and can vary greatly
between each operator.

NVIDIA Holoscan SDK v2.0.0 140

In a C++ file (my_op_pybind.cpp in our skeleton code below), create a subclass of the
C++ Operator class to wrap. In the subclass, define a new constructor which takes a
Fragment , an explicit list of parameters with potential default values (argA , argB

below…), and an operator name to fully initialize the operator similar to what is done in
Fragment::make_operator :

Listing 17 my_op_python/my_op_pybind.cpp

Example: Look at the implementation of PyLSTMTensorRTInferenceOp on HoloHub for
a specific example, or any of the Py*Op classes used for the SDK built-in operators here.
In the latter, you can find examples of add_arg used for less straightforward arguments.

Documentation strings

Prepare documentation strings (const char*) for your python class and its parameters,
which we’ll use in the next step.

#include <holoscan/core/fragment.hpp> #include <holoscan/core/operator.hpp>
#include <holoscan/core/operator_spec.hpp> #include "my_op.hpp" class PyMyOp :
public MyOp { public: using MyOp::MyOp; PyMyOp(Fragment* fragment, TypeA
argA, TypeB argB = 0, ..., const std::string& name = "my_op") : MyOp(ArgList{
Arg{"argA", argA}, Arg{"argB", argB}, ... }) { # If you have arguments you can't pass
directly to the `MyOp` constructor as an `Arg`, do # the conversion and pass the
result to `this->add_arg` before setting up the spec below. name_ = name;
fragment_ = fragment; spec_ = std::make_shared<OperatorSpec>(fragment);
setup(*spec_.get()); } }

Note

Below we use a PYDOC macro defined in the SDK and available in
HoloHub as a utility to remove leading spaces. In this skeleton
example, the documentation code is located in a header file named
my_op_pybind_docs.hpp , under a custom doc::MyOp namespace.

https://github.com/nvidia-holoscan/holohub/blob/main/operators/lstm_tensor_rt_inference/python/lstm_tensor_rt_inference.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.6.0/python/holoscan/operators/operators.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.6.0/python/holoscan/macros.hpp
https://github.com/nvidia-holoscan/holohub/blob/main/cmake/pydoc/macros.hpp

NVIDIA Holoscan SDK v2.0.0 141

Listing 18 my_op_python/my_op_pybind_docs.hpp

Examples: Continuing with the LSTMTensorRTInferenceOp example on HoloHub, the
documentation strings are defined in lstm_tensor_rt_inference_pydoc.hpp. The
documentation strings for the SDK built-in operators are located in operators_pydoc.hpp.

Writing glue code

In the same C++ file as the first section, call py::class_ within PYBIND11_MODULE to
define your operator python class.

None of this is required, you just need to make the strings available
in some way for the next section.

#include "../macros.hpp" namespace doc::MyOp { PYDOC(cls, R"doc(My operator.
)doc") PYDOC(constructor, R"doc(Create the operator. Parameters ---------- fragment
: holoscan.core.Fragment The fragment that the operator belongs to. argA : TypeA
argA description argB : TypeB, optional argB description name : str, optional The
name of the operator.)doc") PYDOC(initialize, R"doc(Initialize the operator. This
method is called only once when the operator is created for the first time, and uses
a light-weight initialization.)doc") PYDOC(setup, R"doc(Define the operator
specification. Parameters ---------- spec : holoscan.core.OperatorSpec The operator
specification.)doc") }

Note

If you are implementing the python wrapping in Holohub, the
<module_name> passed to PYBIND_11_MODULE must

match _<CPP_CMAKE_TARGET> (covered in more details
in the next section), in this case, _my_op .

If you are implementing the python wrapping in a standalone
CMake project,the <module_name> passed to

https://github.com/nvidia-holoscan/holohub/blob/main/operators/lstm_tensor_rt_inference/python/lstm_tensor_rt_inference_pydoc.hpp
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.6.0/python/holoscan/operators/operators_pydoc.hpp

NVIDIA Holoscan SDK v2.0.0 142

Listing 19 my_op_python/my_op_pybind.cpp (continued)

Examples: Like the trampoline class, the PYBIND11_MODULE implementation of the
LSTMTensorRTInferenceOp example on HoloHub is located in

lstm_tensor_rt_inference.cpp. For the SDK built-in operators, their class bindings are all
implemented within a single PYBIND11_MODULE in operators.cpp.

Configuring with CMake

We use CMake to configure pybind11 and build the bindings for the C++ operator you
wish to wrap. There are two approaches detailed below, one for HoloHub
(recommended), one for standalone CMake projects.

PYBIND_11_MODULE must match the name of the module
passed to the pybind11-add-module CMake function.

#include <pybind11/pybind11.h> #include "my_op_pybind_docs.hpp" using
pybind11::literals::operator""_a; namespace py = pybind11; #define STRINGIFY(x) #x
#define MACRO_STRINGIFY(x) STRINGIFY(x) // See notes above, value of
`<module_name>` is important PYBIND11_MODULE(<module_name>, m) { m.doc() =
R"pbdoc(My Module Python Bindings --------------------------------------- .. currentmodule::
<module_name> .. autosummary:: :toctree: _generate add subtract)pbdoc"; #ifdef
VERSION_INFO m.attr("__version__") = MACRO_STRINGIFY(VERSION_INFO); #else
m.attr("__version__") = "dev"; #endif py::class_<MyOp, PyMyOp, Operator,
std::shared_ptr<MyOp>>(m, "MyOp", doc::MyOp::doc_cls) .def(py::init<Fragment*,
TypeA, TypeB, ..., const std::string&>(), "fragment"_a, "argA"_a, "argB"_a = 0, ...,
"name"_a = "my_op", doc::MyOp::doc_constructor) .def("initialize", &MyOp::initialize,
doc::MyOp::doc_initialize) .def("setup", &MyOp::setup, "spec"_a,
doc::MyOp::doc_setup); }

Tip

To have your bindings built, ensure the CMake code below is
executed as part of a CMake project which already defines the C++

https://github.com/nvidia-holoscan/holohub/blob/main/operators/lstm_tensor_rt_inference/python/lstm_tensor_rt_inference.cpp#L104
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.6.0/python/holoscan/operators/operators.cpp#L469
https://pybind11.readthedocs.io/en/stable/compiling.html#pybind11-add-module

NVIDIA Holoscan SDK v2.0.0 143

Ingested Tab Module

Importing the class in Python

Ingested Tab Module

Interoperability between wrapped and native Python operators

As described in the Interoperability between GXF and native C++ operators section,
holoscan::Tensor objects can be passed to GXF operators using a holoscan::TensorMap

message that holds the tensor(s). In Python, this is done by sending dict type objects
that have tensor names as the keys and holoscan Tensor or array-like objects as the
values. Similarly, when a wrapped C++ operator that transmits a single holoscan::Tensor
is connected to the input port of a Python native operator, calling op_input.receive() on
that port will return a Python dict containing a single item. That item’s key is the tensor
name and its value is the corresponding holoscan.core.Tensor .

Consider the following example, where VideoStreamReplayerOp and HolovizOp are
Python wrapped C++ operators, and where ImageProcessingOp is a Python native
operator:

digraph interop2 { rankdir="LR" node [shape=record]; video
[label="VideoStreamReplayerOp| |output_tensor(out) : Tensor"]; processop
[label="ImageProcessingOp| [in]input_tensor : dict[str,Tensor] | output_tensor(out) :
dict[str,Tensor]"]; viz [label="HolovizOp| [in]receivers : Tensor | "]; video->processop
[label="output_tensor...input_tensor"] processop->viz [label="output_tensor...receivers"] }

Fig. 19 The tensor interoperability between Python native operator and C++-based Python GXF
operator

The following code shows how to implement ImageProcessingOp ’s compute() method
as a Python native operator communicating with C++ operators:

operator as a CMake target, either built in your project (with
add_library) or imported (with find_package or find_library).

NVIDIA Holoscan SDK v2.0.0 144

Listing 22 examples/tensor_interop/python/tensor_interop.py

The op_input.receive() method call returns a dict object.

The holoscan.core.Tensor object is converted to a CuPy array by using
cupy.asarray() method call.

The CuPy array is used as an input to the ndi.gaussian_filter() function call with a
parameter sigma . The result of the ndi.gaussian_filter() function call is a CuPy
array.

Finally, a new dict object is created , out_message , to be sent to the next operator
with op_output.emit() . The CuPy array, cp_array , is added to it where the key is
the tensor name. CuPy arrays do not have to explicitly be converted to a
holocan.core.Tensor object first since they implement a DLPack (and
__cuda__array_interface__) interface.

You can add multiple tensors to a single dict object , as in the example below:

Operator sending a message:

def compute(self, op_input, op_output, context): # in_message is of dict in_message =
op_input.receive("input_tensor") # smooth along first two axes, but not the color
channels sigma = (self.sigma, self.sigma, 0) # out_message is of dict out_message =
dict() for key, value in in_message.items(): print(f"message received (count:
{self.count})") self.count += 1 cp_array = cp.asarray(value) # process cp_array
cp_array = ndi.gaussian_filter(cp_array, sigma) out_message[key] = cp_array
op_output.emit(out_message, "output_tensor")

Note

A complete example of the Python native operator that supports
interoperability with Python wrapped C++ operators is available in
the examples/tensor_interop/python directory.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/examples/tensor_interop/python

NVIDIA Holoscan SDK v2.0.0 145

Operator receiving the message, assuming the outputs port above is connected to the
inputs port below with add_flow() has the corresponding tensors:

out_message = { "video": output_array, "labels": labels, "bbox_coords": bbox_coords,
} # emit the tensors op_output.emit(out_message, "outputs")

in_message = op_input.receive("inputs") # Tensors and tensor names video_tensor =
in_message["video"] labels_tensor = in_message["labels"] bbox_coords_tensor =
in_message["bbox_coords"]

Note

Some existing operators allow configuring the name of the tensors
they send/receive. An example is the tensors parameter of
<a
href="api/python/holoscan_python_api_operators.html#holoscan.operators.Holov

, where the name for each tensor maps to the names of the tensors
in the
Entity

(see the holoviz entry in
apps/endoscopy_tool_tracking/python/endoscopy_tool_tracking.yaml).

A complete example of a Python native operator that emits multiple
tensors to a downstream C++ operator is available in the
examples/holoviz/python directory.

There is a special serialization code for tensor types for emit/receive
of tensor objects over a UCX connection that avoids copying the
tensor data to an intermediate buffer. For distributed apps, we
cannot just send the Python object as we do between operators in a
single fragment app, but instead we need to cast it to
holoscan::Tensor to use a special zero-copy code path. However, we

also transmit a header indicating if the type was originally some other
array-like object and attempt to return the same type again on the

file:///tmp/jsreport/autocleanup/holoscan_create_app.html#configuring-an-application
https://github.com/nvidia-holoscan/holoscan-sdk/blob/v0.4.0/apps/endoscopy_tool_tracking/python/endoscopy_tool_tracking.yaml
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/holoviz/python

NVIDIA Holoscan SDK v2.0.0 146

other side so that the behavior remains more similar to the non-
distributed case.

Transmitted object Received Object

holoscan.Tensor holoscan.Tensor

dict of array-like
dict of
holoscan.Tensor

host array-like object (with
__array_interface__)

numpy.ndarray

device array-like object (with
__cuda_array_interface__)

cupy.ndarray

This avoids NumPy or CuPy arrays being serialized to a string via
cloudpickle so that they can efficiently be transmitted and the same
type is returned again on the opposite side. Worth mentioning is that
,if the type emitted was e.g. a PyTorch host/device tensor on emit, the
received value will be a numpy/cupy array since ANY object
implementing the interfaces returns those types.

NVIDIA Holoscan SDK v2.0.0 147

Logging
Overview

The Holoscan SDK uses the Logger module to convey messages to the user. These
messages are categorized into different severity levels (see below) to inform users of the
severity of a message and as a way to control the number and verbosity of messages that
are printed to the terminal. There are two settings which can be used for this purpose:

Logger level

Logger format

Logger Level

Messages that are logged using the Logger module have a severity level, e.g., messages
can be categorized as INFO, WARN, ERROR, etc.

The default logging level for an application is to print out messages with severity INFO or
above, i.e., messages that are categorized as INFO, WARN, ERROR, and CRITICAL. You can
modify this default by calling set_log_level() (C++ / Python) in the application code to
override the SDK default logging level and give it one of the following log levels.

TRACE

DEBUG

INFO

WARN

ERROR

CRITICAL

OFF

NVIDIA Holoscan SDK v2.0.0 148

Ingested Tab Module

Additionally, at runtime, the user can set the HOLOSCAN_LOG_LEVEL environment
variable to one of the values listed above. This provides users with the flexibility to enable
printing of diagnostic information for debugging purposes when an issue occurs.

Logger Format

When a message is printed out, the default message format shows the message severity
level, filename:linenumber, and the message to be printed.

For example:

export HOLOSCAN_LOG_LEVEL=TRACE

Note

Under the hood, Holoscan SDK uses GXF to execute the computation
graph. By default, this GXF layer uses the same logging level as
Holoscan SDK. If it is desired to override the logging level of this
executor independently of the Holoscan SDK logging level,
environment variable HOLOSCAN_EXECUTOR_LOG_LEVEL can be
used. It supports the same levels as HOLOSCAN_LOG_LEVEL .

Note

For distributed applications, it can sometimes be useful to also
enable additional logging for the UCX library used to transmit data
between fragments. This can be done by setting the UCX
environment variable UCX_LOG_LEVEL to one of: fatal, error, warn,
info, debug, trace, req, data, async, func, poll. These have the
behavior as described here: UCX log levels.

https://github.com/openucx/ucx/blob/v1.14.0/src/ucs/config/types.h#L16C1-L31

NVIDIA Holoscan SDK v2.0.0 149

You can modify this default by calling set_log_pattern() (C++ / Python) in the
application code to override the SDK default logging format.

The pattern string can be one of the following pre-defined values

SHORT : prints message severity level, and message

DEFAULT : prints message severity level, filename:linenumber, and message

LONG : prints timestamp, application, message severity level, filename:linenumber,
and message

FULL : prints timestamp, thread id, application, message severity level,
filename:linenumber, and message

Ingested Tab Module

With this logger format, the above application would display messages with the following
format:

Alternatively, the pattern string can be a custom pattern to customize the logger format.
Using this string pattern

would display messages with the following format:

[info] [ping_multi_port.cpp:114] Rx message value1: 51 [info]
[ping_multi_port.cpp:115] Rx message value2: 54

[info] Rx message value1: 51 [info] Rx message value2: 54

"[%Y-%m-%d %H:%M:%S.%e] [%n] [%^%l%$] [%s:%#] %v";

[2023-06-27 14:22:36.073] [holoscan] [info] [ping_multi_port.cpp:114] Rx message
value1: 51 [2023-06-27 14:22:36.073] [holoscan] [info] [ping_multi_port.cpp:115] Rx
message value2: 54

NVIDIA Holoscan SDK v2.0.0 150

For more details on custom formatting and details of each flag, please see the spdlog wiki
page.

Additionally, at runtime, the user can also set the HOLOSCAN_LOG_FORMAT
environment variable to modify the logger format. The accepted string pattern is the
same as the string pattern for the set_log_pattern() api mentioned above.

Precedence of Logger Level and Logger Format

The HOLOSCAN_LOG_LEVEL environment variable takes precedence and overrides the
application settings, such as Logger::set_log_level() (C++ / Python).

When HOLOSCAN_LOG_LEVEL is set, it determines the logging level. If this environment
variable is unset, the application settings are used if they are available. Otherwise, the
SDK’s default logging level of INFO is applied.

Similarly, the HOLOSCAN_LOG_FORMAT environment variable takes precedence and
overrides the application settings, such as Logger::set_log_pattern() (C++ / Python).

When HOLOSCAN_LOG_FORMAT is set, it determines the logging format. If this
environment variable is unset, the application settings are used if they are available.
Otherwise, the SDK’s default logging format depending on the current log level (FULL
format for DEBUG and TRACE log levels. DEFAULT format for other log levels) is
applied.

Calling the Logger in Your Application

The C++ API uses the HOLOSCAN_LOG_XXX() macros to log messages in the application.
These macros use the fmtlib format string syntax for their format strings.

Note

Holoscan automatically checks HOLOSCAN_LOG_LEVEL environment
variable and sets the log level when the Application class instance is
created. However, those log level settings are for Holoscan core or
C++ operator (C++)’s logging message (such as
HOLOSCAN_LOG_INFO macro), not for Python’s logging. Users of the

https://github.com/gabime/spdlog/wiki/3.-Custom-formatting#pattern-flags
https://github.com/gabime/spdlog/wiki/3.-Custom-formatting#pattern-flags
https://docs.nvidia.com/api/holoscan_cpp_api.html#logging
https://fmt.dev/latest/syntax.html

NVIDIA Holoscan SDK v2.0.0 151

Python API should use the built-in
logging

module to log messages. The user needs to configure the logger
before use (logging.basicConfig(level=logging.INFO)):

>>> import logging >>> logger = logging.getLogger("main") >>>
logger.info('hello') >>> logging.basicConfig(level=logging.INFO)
>>> logger.info('hello') INFO:main:hello

NVIDIA Holoscan SDK v2.0.0 152

Debugging
Overview

The Holoscan SDK is designed to streamline the debugging process for developers
working on advanced applications.

This comprehensive guide covers the SDK’s debugging capabilities, with a focus on Visual
Studio Code integration, and provides detailed instructions for various debugging
scenarios.

It includes methods for debugging both the C++ and Python components of applications,
utilizing tools like GDB, UCX, and Python-specific debuggers.

Visual Studio Code Integration

VSCode Dev Container

The Holoscan SDK can be effectively developed using Visual Studio Code, leveraging the
capabilities of a development container. This container, defined in the .devcontainer
folder, is pre-configured with all the necessary tools and libraries, as detailed in Visual
Studio Code’s documentation on development containers.

Launching VSCode with the Holoscan SDK

Local Development: Use the ./run vscode command to launch Visual Studio Code
in a development container.

Remote Development: For attaching to an existing dev container from a remote
machine, use ./run vscode_remote . Additional instructions can be accessed via
./run vscode_remote -h .

Upon launching Visual Studio Code, the development container will automatically be
built. This process also involves the installation of recommended extensions and the
configuration of CMake.

https://github.com/nvidia-holoscan/holoscan-sdk
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers

NVIDIA Holoscan SDK v2.0.0 153

Configuring CMake

For manual adjustments to the CMake configuration:

1. Open the command palette in VSCode (Ctrl + Shift + P).

2. Execute the CMake: Configure command.

Building the Source Code

To build the source code within the development container:

Either press Ctrl + Shift + B .

Or use the command palette (Ctrl + Shift + P) and run Tasks: Run Build Task .

Debugging Workflow

For debugging the source code:

1. Open the Run and Debug view in VSCode (Ctrl + Shift + D).

2. Select an appropriate debug configuration from the dropdown.

3. Press F5 to start the debugging session.

The launch configurations are defined in .vscode/launch.json (link).

Please refer to Visual Studio Code’s documentation on debugging for more information.

Integrated Debugging for C++ and Python in Holoscan SDK

The Holoscan SDK facilitates seamless debugging of both C++ and Python components
within your applications. This is achieved through the integration of the
Python C++ Debugger extension in Visual Studio Code, which can be found here.

This powerful extension is specifically designed to enable effective debugging of Python
operators that are executed within the C++ runtime environment. Additionally, it provides
robust capabilities for debugging C++ operators and various SDK components that are
executed via the Python interpreter.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/.vscode/launch.json
https://code.visualstudio.com/docs/editor/debugging
https://marketplace.visualstudio.com/items?itemName=benjamin-simmonds.pythoncpp-debug

NVIDIA Holoscan SDK v2.0.0 154

To utilize this feature, debug configurations for Python C++ Debug should be defined
within the .vscode/launch.json file, available here.

Here’s how to get started:

1. Open a Python file within your project, such as
examples/ping_vector/python/ping_vector.py .

2. In the Run and Debug view of Visual Studio Code, select the Python C++ Debug
debug configuration.

3. Set the necessary breakpoints in both your Python and C++ code.

4. Initiate the debugging session by pressing F5 .

Upon starting the session, two separate debug terminals will be launched - one for
Python and another for C++. In the C++ terminal, you will encounter a prompt regarding
superuser access:

Respond with y to proceed.

Following this, the Python application initiates, and the C++ debugger attaches to the
Python process. This setup allows you to simultaneously debug both Python and C++
code. The CALL STACK tab in the Run and Debug view will display
Python: Debug Current File and (gdb) Attach , indicating active debugging sessions for

both languages.

By leveraging this integrated debugging approach, developers can efficiently
troubleshoot and enhance applications that utilize both Python and C++ components
within the Holoscan SDK.

Debugging an Application Crash

This section outlines the procedures for debugging an application crash.

Core Dump Analysis

Superuser access is required to attach to a process. Attaching as superuser can
potentially harm your computer. Do you want to continue? [y/N]

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/.vscode/launch.json

NVIDIA Holoscan SDK v2.0.0 155

In the event of an application crash, you might encounter messages like
Segmentation fault (core dumped) or Aborted (core dumped) . These indicate the

generation of a core dump file, which captures the application’s memory state at the time
of the crash. This file can be utilized for debugging purposes.

Enabling coredump

There are instances where core dumps might be disabled or not generated despite an
application crash.

To activate core dumps, it’s necessary to configure the ulimit setting, which determines
the maximum size of core dump files. By default, ulimit is set to 0, effectively disabling
core dumps. Setting ulimit to unlimited enables the generation of core dumps.

Additionally, configuring the core_pattern value is required. This value specifies the
naming convention for the core dump file. To view the current core_pattern setting,
execute the following command:

To modify the core_pattern value, execute the following command:

where in this case we have requested both the executable name (%e) and the process id
(%p) be present in the generated file’s name. The various options available are
documented in the core documentation.

If you encounter errors like tee: /proc/sys/kernel/core_pattern: Read-only file system or
sysctl: setting key "kernel.core_pattern", ignoring: Read-only file system within a Docker

container, it’s advisable to set the kernel.core_pattern parameter on the host system
instead of within the container.

ulimit -c unlimited

cat /proc/sys/kernel/core_pattern # or sysctl kernel.core_pattern

echo "coredump_%e_%p" | sudo tee /proc/sys/kernel/core_pattern # or sudo sysctl
-w kernel.core_pattern=coredump_%e_%p

https://man7.org/linux/man-pages/man5/core.5.html

NVIDIA Holoscan SDK v2.0.0 156

As kernel.core_pattern is a system-wide kernel parameter, modifying it on the host
should impact all containers. This method, however, necessitates appropriate
permissions on the host machine.

Furthermore, when launching a Docker container using docker run , it’s often essential
to include the --cap-add=SYS_PTRACE option to enable core dump creation inside the
container. Core dump generation typically requires elevated privileges, which are not
automatically available to Docker containers.

Using GDB to Debug a coredump File

After the core dump file is generated, you can utilize GDB to debug the core dump file.

Consider a scenario where a segmentation fault is intentionally induced at line 29 in
examples/ping_simple/cpp/ping_simple.cpp by adding the line *(int*)0 = 0; to trigger

the fault.

Upon running ./examples/ping_simple/cpp/ping_simple , the following output is
observed:

It’s apparent that the application has aborted and a core dump file has been generated.

--- a/examples/ping_simple/cpp/ping_simple.cpp +++
b/examples/ping_simple/cpp/ping_simple.cpp @@ -19,7 +19,6 @@ #include
<holoscan/operators/ping_tx/ping_tx.hpp> #include
<holoscan/operators/ping_rx/ping_rx.hpp> - class MyPingApp : public
holoscan::Application { public: void compose() override { @@ -27,6 +26,7 @@ class
MyPingApp : public holoscan::Application { // Define the tx and rx operators,
allowing the tx operator to execute 10 times auto tx =
make_operator<ops::PingTxOp>("tx", make_condition<CountCondition>(10)); auto
rx = make_operator<ops::PingRxOp>("rx"); + *(int*)0 = 0;

$./examples/ping_simple/cpp/ping_simple Segmentation fault (core dumped)

$ ls coredump* coredump_ping_simple_2160275

NVIDIA Holoscan SDK v2.0.0 157

The core dump file can be debugged using GDB by executing
gdb <application> <coredump_file> .

It is evident that the application crashed at line 29 of
examples/ping_simple/cpp/ping_simple.cpp .

To display the backtrace, the bt command can be executed.

$ gdb ./examples/ping_simple/cpp/ping_simple coredump_ping_simple_2160275
GNU gdb (Ubuntu 12.1-0ubuntu1~22.04) 12.1 Copyright (C) 2022 Free Software
Foundation, Inc. License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html> This is free software: you are free to change and
redistribute it. There is NO WARRANTY, to the extent permitted by law. Type "show
copying" and "show warranty" for details. This GDB was configured as "x86_64-
linux-gnu". Type "show configuration" for configuration details. For bug reporting
instructions, please see: <https://www.gnu.org/software/gdb/bugs/>. Find the GDB
manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>. For help, type "help". Type
"apropos word" to search for commands related to "word"... Reading symbols from
./examples/ping_simple/cpp/ping_simple... [New LWP 2160275] [Thread debugging
using libthread_db enabled] Using host libthread_db library "/usr/lib/x86_64-linux-
gnu/libthread_db.so.1". Core was generated by
`./examples/ping_simple/cpp/ping_simple'. Program terminated with signal
SIGSEGV, Segmentation fault. #0 MyPingApp::compose (this=0x563bd3a3de80) at
../examples/ping_simple/cpp/ping_simple.cpp:29 29 *(int*)0 = 0; (gdb)

(gdb) bt #0 MyPingApp::compose (this=0x563bd3a3de80) at
../examples/ping_simple/cpp/ping_simple.cpp:29 #1 0x00007f2a76cdb5ea in
holoscan::Application::compose_graph (this=0x563bd3a3de80) at
../src/core/application.cpp:325 #2 0x00007f2a76c3d121 in
holoscan::AppDriver::check_configuration (this=0x563bd3a42920) at
../src/core/app_driver.cpp:803 #3 0x00007f2a76c384ef in holoscan::AppDriver::run
(this=0x563bd3a42920) at ../src/core/app_driver.cpp:168 #4 0x00007f2a76cda70c in
holoscan::Application::run (this=0x563bd3a3de80) at ../src/core/application.cpp:207 #5

NVIDIA Holoscan SDK v2.0.0 158

UCX Segmentation Fault Handler

In cases where a distributed application using the UCX library encounters a segmentation
fault, you might see stack traces from UCX. This is a default configuration of the UCX
library to output stack traces upon a segmentation fault. However, this behavior can be
modified by setting the UCX_HANDLE_ERRORS environment variable:

UCX_HANDLE_ERRORS=bt prints a backtrace during a segmentation fault (default
setting).

UCX_HANDLE_ERRORS=debug attaches a debugger if a segmentation fault occurs.

UCX_HANDLE_ERRORS=freeze freezes the application on a segmentation fault.

UCX_HANDLE_ERRORS=freeze,bt both freezes the application and prints a
backtrace upon a segmentation fault.

UCX_HANDLE_ERRORS=none disables backtrace printing during a segmentation
fault.

While the default action is to print a backtrace on a segmentation fault, it may not always
be helpful.

For instance, if a segmentation fault is intentionally caused at line 129 in
examples/ping_distributed/cpp/ping_distributed_ops.cpp (by adding *(int*)0 = 0;),

running ./examples/ping_distributed/cpp/ping_distributed will result in the following
output:

0x0000563bd2ec4002 in main (argc=1, argv=0x7ffea82c4c28) at
../examples/ping_simple/cpp/ping_simple.cpp:38

[holoscan:2097261:0:2097311] Caught signal 11 (Segmentation fault: address not
mapped to object at address (nil)) ==== backtrace (tid:2097311) ==== 0
/opt/ucx/1.15.0/lib/libucs.so.0(ucs_handle_error+0x2e4) [0x7f18db865264] 1
/opt/ucx/1.15.0/lib/libucs.so.0(+0x3045f) [0x7f18db86545f] 2
/opt/ucx/1.15.0/lib/libucs.so.0(+0x30746) [0x7f18db865746] 3 /usr/lib/x86_64-linux-
gnu/libc.so.6(+0x42520) [0x7f18da9ee520] 4
./examples/ping_distributed/cpp/ping_distributed(+0x103d2b) [0x5651dafc7d2b] 5

NVIDIA Holoscan SDK v2.0.0 159

Although a backtrace is provided, it may not always be helpful as it often lacks source
code information. To obtain detailed source code information, using a debugger is
necessary.

By setting the UCX_HANDLE_ERRORS environment variable to freeze,bt and running
./examples/ping_distributed/cpp/ping_distributed , we can observe that the thread

responsible for the segmentation fault is frozen, allowing us to attach a debugger to it for
further investigation.

/workspace/holoscan-sdk/build-debug-
x86_64/lib/libholoscan_core.so.1(_ZN8holoscan3gxf10GXFWrapper4tickEv+0x13d)
[0x7f18dcbfaafd] 6 /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_core.so(_ZN6nvidia3gxf14EntityExecutor10EntityItem11tickCodeletER
[0x7f18db2cb487] 7 /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_core.so(_ZN6nvidia3gxf14EntityExecutor10EntityItem4tickElPNS0_6Ro
[0x7f18db2cde44] 8 /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_core.so(_ZN6nvidia3gxf14EntityExecutor10EntityItem7executeElPNS0
[0x7f18db2ce859] 9 /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_core.so(_ZN6nvidia3gxf14EntityExecutor13executeEntityEll+0x41b)
[0x7f18db2cf0cb] 10 /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_serialization.so(_ZN6nvidia3gxf20MultiThreadScheduler20workerThr
[0x7f18daf0cc50] 11 /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xdc253)
[0x7f18dacb0253] 12 /usr/lib/x86_64-linux-gnu/libc.so.6(+0x94ac3)
[0x7f18daa40ac3] 13 /usr/lib/x86_64-linux-gnu/libc.so.6(+0x126660)
[0x7f18daad2660] ================================= Segmentation fault
(core dumped)

$ UCX_HANDLE_ERRORS=freeze,bt
./examples/ping_distributed/cpp/ping_distributed [holoscan:2127091:0:2127105]
Caught signal 11 (Segmentation fault: address not mapped to object at address (nil))
==== backtrace (tid:2127105) ==== 0
/opt/ucx/1.15.0/lib/libucs.so.0(ucs_handle_error+0x2e4) [0x7f9995850264] 1
/opt/ucx/1.15.0/lib/libucs.so.0(+0x3045f) [0x7f999585045f] 2
/opt/ucx/1.15.0/lib/libucs.so.0(+0x30746) [0x7f9995850746] 3 /usr/lib/x86_64-linux-
gnu/libc.so.6(+0x42520) [0x7f99949ee520] 4
./examples/ping_distributed/cpp/ping_distributed(+0x103d2b) [0x55971617fd2b] 5

NVIDIA Holoscan SDK v2.0.0 160

It is observed that the thread responsible for the segmentation fault is 2127105 (
tid:2127105). To attach a debugger to this thread, simply press Enter.

Upon attaching the debugger, a backtrace will be displayed, but it may not be from the
thread that triggered the segmentation fault. To handle this, use the info threads
command to list all threads, and the thread <thread_id> command to switch to the
thread that caused the segmentation fault.

/workspace/holoscan-sdk/build-debug-
x86_64/lib/libholoscan_core.so.1(_ZN8holoscan3gxf10GXFWrapper4tickEv+0x13d)
[0x7f9996bfaafd] 6 /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_core.so(_ZN6nvidia3gxf14EntityExecutor10EntityItem11tickCodeletER
[0x7f99952cb487] 7 /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_core.so(_ZN6nvidia3gxf14EntityExecutor10EntityItem4tickElPNS0_6Ro
[0x7f99952cde44] 8 /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_core.so(_ZN6nvidia3gxf14EntityExecutor10EntityItem7executeElPNS0
[0x7f99952ce859] 9 /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_core.so(_ZN6nvidia3gxf14EntityExecutor13executeEntityEll+0x41b)
[0x7f99952cf0cb] 10 /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_serialization.so(_ZN6nvidia3gxf20MultiThreadScheduler20workerThr
[0x7f9994f0cc50] 11 /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xdc253)
[0x7f9994cb0253] 12 /usr/lib/x86_64-linux-gnu/libc.so.6(+0x94ac3)
[0x7f9994a40ac3] 13 /usr/lib/x86_64-linux-gnu/libc.so.6(+0x126660)
[0x7f9994ad2660] =================================
[holoscan:2127091:0:2127105] Process frozen, press Enter to attach a debugger...

(gdb) info threads Id Target Id Frame * 1 Thread 0x7f9997b36000 (LWP 2127091)
"ping_distribute" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 2 Thread 0x7f9992731000 (LWP 2127093)
"ping_distribute" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 3 Thread 0x7f9991f30000 (LWP 2127094)
"ping_distribute" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 4 Thread 0x7f999172f000 (LWP 2127095)
"ping_distribute" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 5 Thread 0x7f99909ec000 (LWP 2127096)
"cuda-EvtHandlr" 0x00007f9994a96612 in __libc_pause () at

NVIDIA Holoscan SDK v2.0.0 161

It’s evident that thread ID 13 is responsible for the segmentation fault (LWP 2127105).
To investigate further, we can switch to this thread using the command thread 13 in
GDB:

After switching, we can employ the bt command to examine the backtrace of this
thread.

../sysdeps/unix/sysv/linux/pause.c:29 6 Thread 0x7f99891ff000 (LWP 2127097)
"async" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 7 Thread 0x7f997d7cd000 (LWP 2127098)
"ping_distribute" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 8 Thread 0x7f997cfcc000 (LWP 2127099)
"ping_distribute" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 9 Thread 0x7f995ffff000 (LWP 2127100)
"ping_distribute" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 10 Thread 0x7f99577fe000 (LWP 2127101)
"ping_distribute" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 11 Thread 0x7f995f3e5000 (LWP 2127103)
"ping_distribute" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 12 Thread 0x7f995ebe4000 (LWP 2127104)
"ping_distribute" 0x00007f9994a96612 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:29 13 Thread 0x7f995e3e3000 (LWP 2127105)
"ping_distribute" 0x00007f9994a9642f in __GI___wait4 (pid=pid@entry=2127631,
stat_loc=stat_loc@entry=0x7f995e3ddd3c, options=options@entry=0,
usage=usage@entry=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30

(gdb) thread 13

(gdb) bt #0 0x00007f9994a9642f in __GI___wait4 (pid=pid@entry=2127631,
stat_loc=stat_loc@entry=0x7f995e3ddd3c, options=options@entry=0,
usage=usage@entry=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30 #1
0x00007f9994a963ab in __GI___waitpid (pid=pid@entry=2127631,
stat_loc=stat_loc@entry=0x7f995e3ddd3c, options=options@entry=0) at
./posix/waitpid.c:38 #2 0x00007f999584d587 in ucs_debugger_attach () at
/opt/ucx/src/contrib/../src/ucs/debug/debug.c:816 #3 0x00007f999585031d in

NVIDIA Holoscan SDK v2.0.0 162

Under the backtrace of thread 13, you will find:

ucs_error_freeze (message=0x7f999586ec53 "address not mapped to object") at
/opt/ucx/src/contrib/../src/ucs/debug/debug.c:919 #4 ucs_handle_error
(message=0x7f999586ec53 "address not mapped to object") at
/opt/ucx/src/contrib/../src/ucs/debug/debug.c:1089 #5 ucs_handle_error
(message=0x7f999586ec53 "address not mapped to object") at
/opt/ucx/src/contrib/../src/ucs/debug/debug.c:1077 #6 0x00007f999585045f in
ucs_debug_handle_error_signal (signo=signo@entry=11, cause=0x7f999586ec53
"address not mapped to object", fmt=fmt@entry=0x7f999586ecf5 " at address %p") at
/opt/ucx/src/contrib/../src/ucs/debug/debug.c:1038 #7 0x00007f9995850746 in
ucs_error_signal_handler (signo=11, info=0x7f995e3de3f0, context=<optimized out>) at
/opt/ucx/src/contrib/../src/ucs/debug/debug.c:1060 #8 <signal handler called> #9
holoscan::ops::PingTensorTxOp::compute (this=0x559716f26fa0, op_output=...,
context=...) at ../examples/ping_distributed/cpp/ping_distributed_ops.cpp:129 #10
0x00007f9996bfaafd in holoscan::gxf::GXFWrapper::tick (this=0x559716f6f740) at
../src/core/gxf/gxf_wrapper.cpp:66 #11 0x00007f99952cb487 in
nvidia::gxf::EntityExecutor::EntityItem::tickCodelet(nvidia::gxf::Handle<nvidia::gxf::Codelet>
const&) () from /workspace/holoscan-sdk/build-debug-x86_64/lib/libgxf_core.so #12
0x00007f99952cde44 in nvidia::gxf::EntityExecutor::EntityItem::tick(long,
nvidia::gxf::Router*) () from /workspace/holoscan-sdk/build-debug-
x86_64/lib/libgxf_core.so #13 0x00007f99952ce859 in
nvidia::gxf::EntityExecutor::EntityItem::execute(long, nvidia::gxf::Router*, long&) () from
/workspace/holoscan-sdk/build-debug-x86_64/lib/libgxf_core.so #14
0x00007f99952cf0cb in nvidia::gxf::EntityExecutor::executeEntity(long, long) () from
/workspace/holoscan-sdk/build-debug-x86_64/lib/libgxf_core.so #15
0x00007f9994f0cc50 in
nvidia::gxf::MultiThreadScheduler::workerThreadEntrance(nvidia::gxf::ThreadPool*, long)
() from /workspace/holoscan-sdk/build-debug-x86_64/lib/libgxf_serialization.so #16
0x00007f9994cb0253 in ?? () from /usr/lib/x86_64-linux-gnu/libstdc++.so.6 #17
0x00007f9994a40ac3 in start_thread (arg=<optimized out>) at
./nptl/pthread_create.c:442 #18 0x00007f9994ad2660 in clone3 () at
../sysdeps/unix/sysv/linux/x86_64/clone3.S:81

NVIDIA Holoscan SDK v2.0.0 163

This indicates that the segmentation fault occurred at line 129 in
examples/ping_distributed/cpp/ping_distributed_ops.cpp .

To view the backtrace of all threads, use the thread apply all bt command.

Debugging Holoscan Python Application

The Holoscan SDK provides support for tracing and profiling tools, particularly focusing
on the compute method of Python operators. Debugging Python operators using
Python IDEs can be challenging since this method is invoked from the C++ runtime. This
also applies to the initialize , start , and stop methods of Python operators.

Users can leverage IDEs like VSCode/PyCharm (which utilize the PyDev.Debugger) or
other similar tools to debug Python operators:

For VSCode, refer to VSCode Python Debugging.

For PyCharm, consult PyCharm Python Debugging.

Subsequent sections will detail methods for debugging, profiling, and tracing Python
applications using the Holoscan SDK.

pdb example

The following command initiates a Python application within a pdb session:

#8 <signal handler called> #9 holoscan::ops::PingTensorTxOp::compute
(this=0x559716f26fa0, op_output=..., context=...) at
../examples/ping_distributed/cpp/ping_distributed_ops.cpp:129

(gdb) thread apply all bt ... Thread 13 (Thread 0x7f995e3e3000 (LWP 2127105)
"ping_distribute"): #0 0x00007f9994a9642f in __GI___wait4 (pid=pid@entry=2127631,
stat_loc=stat_loc@entry=0x7f995e3ddd3c, options=options@entry=0,
usage=usage@entry=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30 ... Thread 12 (Thread
0x7f995ebe4000 (LWP 2127104) "ping_distribute"): #0 0x00007f9994a96612 in
__libc_pause () at ../sysdeps/unix/sysv/linux/pause.c:29 ...

https://github.com/fabioz/PyDev.Debugger
https://code.visualstudio.com/docs/python/debugging
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://docs.python.org/3/library/pdb.html

NVIDIA Holoscan SDK v2.0.0 164

For more details, please refer to the pdb_main() method in test_pytracing.py .

Profiling a Holoscan Python Application

For profiling, users can employ tools like cProfile or line_profiler for profiling Python
applications/operators.

Note that when using a multithreaded scheduler, cProfile or the profile module might not
accurately identify worker threads, or errors could occur.

In such cases with multithreaded schedulers, consider using multithread-aware profilers
like pyinstrument, pprofile, or yappi.

For further information, refer to the test case at test_pytracing.py.

Using pyinstrument

pyinstrument is a call stack profiler for Python, designed to highlight performance
bottlenecks in an easily understandable format directly in your terminal as the code
executes.

python python/tests/system/test_pytracing.py pdb # Type the following commands to
check if the breakpoints are hit: # # b test_pytracing.py:76 # c # exit

This is an interactive session. Please type the following commands to check if the
breakpoints are hit. (Pdb) b test_pytracing.py:76 Breakpoint 1 at
/workspace/holoscan-sdk/python/tests/system/test_pytracing.py:76 (Pdb) c ... >
/workspace/holoscan-sdk/python/tests/system/test_pytracing.py(76)start() ->
print("Mx start") (Pdb) exit

python -m pip install pyinstrument pyinstrument
python/tests/system/test_pytracing.py ## Note: With a multithreaded scheduler, the
same method may appear multiple times across different threads. # pyinstrument
python/tests/system/test_pytracing.py -s multithread

... 0.107 [root] None 0.088 MainThread <thread>:140079743820224 0.088
<module> ../../../bin/pyinstrument:1 0.088 main pyinstrument/__main__.py:28
[7 frames hidden] pyinstrument, <string>, runpy, <built... 0.087 _run_code

https://docs.python.org/3/library/profile.html
https://github.com/pyutils/line_profiler
https://github.com/joerick/pyinstrument
https://github.com/vpelletier/pprofile
https://github.com/sumerc/yappi
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/python/tests/system/test_pytracing.py

NVIDIA Holoscan SDK v2.0.0 165

Using pprofile

pprofile is a line-granularity, thread-aware deterministic and statistic pure-python
profiler.

runpy.py:63 0.087 <module> test_pytracing.py:1 0.061 main
test_pytracing.py:153 0.057 MyPingApp.compose test_pytracing.py:141

 0.041 PingMxOp.__init__ test_pytracing.py:59 0.041 PingMxOp.__init__
../core/__init__.py:262 [35 frames hidden] .., numpy, re, sre_compile,
sre_parse... 0.015 [self] test_pytracing.py 0.002 [self]
test_pytracing.py 0.024 <module> ../__init__.py:1 [5 frames hidden] .., <built-
in> 0.001 <module> ../conditions/__init__.py:1 [2 frames hidden] .., <built-in>

 0.019 Dummy-1 <thread>:140078275749440 0.019 <module>
../../../bin/pyinstrument:1 0.019 main pyinstrument/__main__.py:28 [5 frames
hidden] pyinstrument, <string>, runpy 0.019 _run_code runpy.py:63 0.019
<module> test_pytracing.py:1 0.019 main test_pytracing.py:153 0.014 [self]
test_pytracing.py 0.004 PingRxOp.compute test_pytracing.py:118 0.004 print
<built-in>

python -m pip install pprofile pprofile --include test_pytracing.py
python/tests/system/test_pytracing.py -s multithread

Total duration: 0.972872s File: python/tests/system/test_pytracing.py File duration:
0.542628s (55.78%) Line #| Hits| Time| Time per hit| %|Source code ------+----------+-
------------+-------------+-------+----------- ... 33| 0| 0| 0| 0.00%| 34| 2| 2.86102e-06|
1.43051e-06| 0.00%| def setup(self, spec: OperatorSpec): 35| 1| 1.62125e-05|
1.62125e-05| 0.00%| spec.output("out") 36| 0| 0| 0| 0.00%| 37| 2| 3.33786e-06|
1.66893e-06| 0.00%| def initialize(self): 38| 1| 1.07288e-05| 1.07288e-05| 0.00%|
print("Tx initialize") 39| 0| 0| 0| 0.00%| 40| 2| 1.40667e-05| 7.03335e-06| 0.00%|
def start(self): 41| 1| 1.23978e-05| 1.23978e-05| 0.00%| print("Tx start") 42| 0| 0|
0| 0.00%| 43| 2| 3.09944e-05| 1.54972e-05| 0.00%| def stop(self): 44| 1|
2.88486e-05| 2.88486e-05| 0.00%| print("Tx stop") 45| 0| 0| 0| 0.00%| 46| 4|
4.05312e-05| 1.01328e-05| 0.00%| def compute(self, op_input, op_output, context):
47| 3| 2.57492e-05| 8.58307e-06| 0.00%| value = self.index 48| 3| 2.12193e-05|
7.07308e-06| 0.00%| self.index += 1

https://github.com/vpelletier/pprofile

NVIDIA Holoscan SDK v2.0.0 166

Using yappi

yappi is a tracing profiler that is multithreading, asyncio and gevent aware.

Using profile/cProfile

profile/cProfile is a deterministic profiling module for Python programs.

python -m pip install yappi # yappi requires setting a context ID callback function to
specify the correct context ID for # Holoscan's worker threads. # For more details, please
see `yappi_main()` in `test_pytracing.py`. python python/tests/system/test_pytracing.py
yappi | grep test_pytracing.py ## Note: With a multithreaded scheduler, method hit
counts are distributed across multiple threads. #python
python/tests/system/test_pytracing.py yappi -s multithread | grep test_pytracing.py

... test_pytracing.py main:153 1 test_pytracing.py MyPingApp.compose:141 1
test_pytracing.py PingMxOp.__init__:59 1 test_pytracing.py PingTxOp.__init__:29 1
test_pytracing.py PingMxOp.setup:65 1 test_pytracing.py PingRxOp.__init__:99 1
test_pytracing.py PingRxOp.setup:104 1 test_pytracing.py PingTxOp.setup:34 1
test_pytracing.py PingTxOp.initialize:37 1 test_pytracing.py PingRxOp.stop:115 1
test_pytracing.py PingRxOp.initialize:109 1 test_pytracing.py PingMxOp.initialize:72
1 test_pytracing.py PingMxOp.stop:78 1 test_pytracing.py PingMxOp.compute:81 3
test_pytracing.py PingTxOp.compute:46 3 test_pytracing.py PingRxOp.compute:118
3 test_pytracing.py PingTxOp.start:40 1 test_pytracing.py PingMxOp.start:75 1
test_pytracing.py PingRxOp.start:112 1 test_pytracing.py PingTxOp.stop:43 1

python -m cProfile python/tests/system/test_pytracing.py 2>&1 | grep
test_pytracing.py ## Executing a single test case #python
python/tests/system/test_pytracing.py profile

1 0.001 0.001 0.107 0.107 test_pytracing.py:1(<module>) 1 0.000 0.000 0.000 0.000
test_pytracing.py:104(setup) 1 0.000 0.000 0.000 0.000
test_pytracing.py:109(initialize) 1 0.000 0.000 0.000 0.000
test_pytracing.py:112(start) 1 0.000 0.000 0.000 0.000 test_pytracing.py:115(stop) 3
0.000 0.000 0.000 0.000 test_pytracing.py:118(compute) 1 0.000 0.000 0.000 0.000
test_pytracing.py:140(MyPingApp) 1 0.014 0.014 0.073 0.073

https://github.com/sumerc/yappi
https://docs.python.org/3/library/profile.html

NVIDIA Holoscan SDK v2.0.0 167

Using line_profiler

line_profiler is a module for doing line-by-line profiling of functions.

test_pytracing.py:141(compose) 1 0.009 0.009 0.083 0.083
test_pytracing.py:153(main) 1 0.000 0.000 0.000 0.000
test_pytracing.py:28(PingTxOp) 1 0.000 0.000 0.000 0.000
test_pytracing.py:29(__init__) 1 0.000 0.000 0.000 0.000 test_pytracing.py:34(setup) 1
0.000 0.000 0.000 0.000 test_pytracing.py:37(initialize) 1 0.000 0.000 0.000 0.000
test_pytracing.py:40(start) 1 0.000 0.000 0.000 0.000 test_pytracing.py:43(stop) 3
0.000 0.000 0.000 0.000 test_pytracing.py:46(compute) 1 0.000 0.000 0.000 0.000
test_pytracing.py:58(PingMxOp) 1 0.000 0.000 0.058 0.058
test_pytracing.py:59(__init__) 1 0.000 0.000 0.000 0.000 test_pytracing.py:65(setup) 1
0.000 0.000 0.000 0.000 test_pytracing.py:72(initialize) 1 0.000 0.000 0.000 0.000
test_pytracing.py:75(start) 1 0.000 0.000 0.000 0.000 test_pytracing.py:78(stop) 3
0.001 0.000 0.001 0.000 test_pytracing.py:81(compute) 1 0.000 0.000 0.000 0.000
test_pytracing.py:98(PingRxOp) 1 0.000 0.000 0.000 0.000
test_pytracing.py:99(__init__)

python -m pip install line_profiler # Insert `@profile` before the function `def
compute(self, op_input, op_output, context):`. # The original file will be backed up as
`test_pytracing.py.bak`. file="python/tests/system/test_pytracing.py" pattern=" def
compute(self, op_input, op_output, context):" insertion=" @profile" if ! grep -q
"^$insertion" "$file"; then sed -i.bak "/^$pattern/i\\ $insertion" "$file" fi kernprof -lv
python/tests/system/test_pytracing.py # Remove the inserted `@profile` decorator. mv
"$file.bak" "$file"

... Wrote profile results to test_pytracing.py.lprof Timer unit: 1e-06 s Total time:
0.000304244 s File: python/tests/system/test_pytracing.py Function: compute at line
46 Line # Hits Time Per Hit % Time Line Contents
== 46
@profile 47 def compute(self, op_input, op_output, context): 48 3 2.3 0.8 0.8 value =
self.index 49 3 9.3 3.1 3.0 self.index += 1 50 51 3 0.5 0.2 0.2 output = [] 52 18 5.0 0.3
1.6 for i in range(0, 5): 53 15 4.2 0.3 1.4 output.append(value) 54 15 2.4 0.2 0.8 value
+= 1 55 56 3 280.6 93.5 92.2 op_output.emit(output, "out") ...

NVIDIA Holoscan SDK v2.0.0 168

Measuring Code Coverage

The Holoscan SDK provides support for measuring code coverage using Coverage.py.

To record code coverage programmatically, please refer to the coverage_main() method
in test_pytracing.py .

You can execute the example application with code coverage enabled by running the
following command:

The following command starts a Python application using the trace :

python -m pip install coverage coverage erase coverage run
examples/ping_vector/python/ping_vector.py coverage report
examples/ping_vector/python/ping_vector.py coverage html # Open the generated
HTML report in a browser. xdg-open htmlcov/index.html

python -m pip install coverage python python/tests/system/test_pytracing.py
coverage # python python/tests/system/test_pytracing.py coverage -s multithread

python -m trace --trackcalls python/tests/system/test_pytracing.py | grep
test_pytracing

... test_pytracing.main -> test_pytracing.MyPingApp.compose test_pytracing.main ->
test_pytracing.PingMxOp.compute test_pytracing.main ->
test_pytracing.PingMxOp.initialize test_pytracing.main ->
test_pytracing.PingMxOp.start test_pytracing.main -> test_pytracing.PingMxOp.stop
test_pytracing.main -> test_pytracing.PingRxOp.compute test_pytracing.main ->
test_pytracing.PingRxOp.initialize test_pytracing.main ->
test_pytracing.PingRxOp.start test_pytracing.main -> test_pytracing.PingRxOp.stop
test_pytracing.main -> test_pytracing.PingTxOp.compute test_pytracing.main ->
test_pytracing.PingTxOp.initialize test_pytracing.main ->
test_pytracing.PingTxOp.start test_pytracing.main -> test_pytracing.PingTxOp.stop

https://github.com/nedbat/coveragepy

NVIDIA Holoscan SDK v2.0.0 169

A test case utilizing the trace module programmatically can be found in the
trace_main() method in test_pytracing.py .

python python/tests/system/test_pytracing.py trace # python
python/tests/system/test_pytracing.py trace -s multithread

NVIDIA Holoscan SDK v2.0.0 170

Built-in Operators and
Extensions
The units of work of Holoscan applications are implemented within Operators, as
described in the core concepts of the SDK. The operators included in the SDK provide
domain-agnostic functionalities such as IO, machine learning inference, processing, and
visualization, optimized for AI streaming pipelines, relying on a set of Core Technologies.

Operators

The operators below are defined under the holoscan::ops namespace for C++ and
CMake, and under the holoscan.operators module in Python.

Class CMake target/lib Documentation

AJASourceOp aja C++ / Python

BayerDemosaicOp bayer_demosaic C++ / Python

FormatConverterOp format_converter C++ / Python

HolovizOp holoviz C++ / Python

InferenceOp inference C++ / Python

InferenceProcessorOp inference_processor C++ / Python

PingRxOp ping_rx C++ / Python

PingTxOp ping_tx C++ / Python

SegmentationPostprocessorOp segmentation_postprocessor C++ / Python

VideoStreamRecorderOp video_stream_recorder C++ / Python

VideoStreamReplayerOp video_stream_replayer C++ / Python

https://docs.nvidia.com/holoscan_core.html
https://docs.nvidia.com/relevant_technologies.html

NVIDIA Holoscan SDK v2.0.0 171

V4L2VideoCaptureOp v4l2 C++ / Python

Given an instance of an operator class, you can print a human-readable description of its
specification to inspect the inputs, outputs, and parameters that can be configured on
that operator class:

Ingested Tab Module

Extensions

The Holoscan SDK also includes some GXF extensions with GXF codelets, which are
typically wrapped as operators, or present for legacy reasons. In addition to the core GXF
extensions (std, cuda, serialization, multimedia) listed here, the Holoscan SDK includes
the following GXF extensions:

gxf_holoscan_wrapper

ucx_holoscan

GXF Holoscan Wrapper

The gxf_holoscan_wrapper extension includes the holoscan::gxf::OperatorWrapper
codelet. It is used as a utility base class to wrap a holoscan operator to interface with the
GXF framework.

Learn more about it in the Using Holoscan Operators in GXF Applications section.

Note

The Holoscan SDK uses meta-programming with templating and
std::any to support arbitrary data types. Because of this, some type

information (and therefore values) might not be retrievable by the
description API. If more details are needed, we recommend

inspecting the list of Parameter members in the operator header to
identify their type.

https://docs.nvidia.com/gxf/doc/index.html
https://docs.nvidia.com/gxf/gxf_wrap_holoscan_op.html
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/include/holoscan/operators

NVIDIA Holoscan SDK v2.0.0 172

UCX (Holoscan)

The ucx_holoscan extension includes
nvidia::holoscan::UcxHoloscanComponentSerializer which is a
nvidia::gxf::ComponentSerializer that handles serialization of holoscan::Message and
holoscan::Tensor types for transmission using the Unified Communication X (UCX)

library. UCX is the library used by Holoscan SDK to enable communication of data
between fragments in distributed applications.

HoloHub

Visit the HoloHub repository to find a collection of additional Holoscan operators and
extensions.

Note

The UcxHoloscanComponentSerializer is intended for use in
combination with other UCX components defined in the GXF UCX
extension. Specifically, it can be used by the UcxEntitySerializer
where it can operate alongside the UcxComponentSerializer that
serializes GXF-specific types (nvidia::gxf::Tensor ,
nvidia::gxf::VideoBuffer , etc.). This way both GXF and Holoscan types

can be serialized by distributed applications.

https://github.com/nvidia-holoscan/holohub

NVIDIA Holoscan SDK v2.0.0 173

Visualization
Overview

Holoviz provides the functionality to composite real time streams of frames with multiple
different other layers like segmentation mask layers, geometry layers and GUI layers.

For maximum performance Holoviz makes use of Vulkan, which is already installed as
part of the Nvidia GPU driver.

Holoscan provides the Holoviz operator which is sufficient for many, even complex
visualization tasks. The Holoviz operator is used by multiple Holoscan example
applications.

Additionally, for more advanced use cases, the Holoviz module can be used to create
application specific visualization operators. The Holoviz module provides a C++ API and is
also used by the Holoviz operator.

The term Holoviz is used for both the Holoviz operator and the Holoviz module below.
Both the operator and the module roughly support the same features set. Where
applicable information how to use a feature with the operator and the module is
provided. It’s explicitly mentioned below when features are not supported by the
operator.

Layers

The core entity of Holoviz are layers. A layer is a two-dimensional image object. Multiple
layers are composited to create the final output.

These layer types are supported by Holoviz:

image layer

geometry layer

GUI layer

https://www.vulkan.org/
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples
https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples#holoscan-sdk-examples

NVIDIA Holoscan SDK v2.0.0 174

All layers have common attributes which define the look and also the way layers are
finally composited.

The priority determines the rendering order of the layers. Before rendering the layers
they are sorted by priority, the layers with the lowest priority are rendered first so that
the layer with the highest priority is rendered on top of all other layers. If layers have the
same priority then the render order of these layers is undefined.

The example below draws a transparent geometry layer on top of an image layer
(geometry data and image data creation is omitted in the code). Although the geometry
layer is specified first, it is drawn last because it has a higher priority (1) than the image
layer (0).

Ingested Tab Module

Image Layers

Ingested Tab Module

Supported Image Formats

Ingested Tab Module

Geometry Layers

A geometry layer is used to draw geometric primitives such as points, lines, rectangles,
ovals or text.

Coordinates start with (0, 0) in the top left and end with (1, 1) in the bottom right.

Ingested Tab Module

ImGui Layers

Note

ImGui layers are not supported when using the Holoviz operator.

NVIDIA Holoscan SDK v2.0.0 175

The Holoviz module supports user interface layers created with Dear ImGui.

Calls to the Dear ImGui API are allowed between viz::BeginImGuiLayer() and
viz::EndImGuiLayer() are used to draw to the ImGui layer. The ImGui layer behaves like

other layers and is rendered with the layer opacity and priority.

The code below creates a Dear ImGui window with a checkbox used to conditionally show
a image layer.

ImGUI is a static library and has no stable API. Therefore the application and Holoviz have
to use the same ImGUI version. Therefore the link target holoscan::viz::imgui is
exported, make sure to link your app against that target.

Depth Map Layers

A depth map is a single channel 2d array where each element represents a depth value.
The data is rendered as a 3d object using points, lines or triangles. The color for the
elements can also be specified.

Supported format for the depth map:

8-bit unsigned normalized format that has a single 8-bit depth component

Supported format for the depth color map:

32-bit unsigned normalized format that has an 8-bit R component in byte 0, an 8-bit
G component in byte 1, an 8-bit B component in byte 2, and an 8-bit A component in
byte 3

Depth maps are rendered in 3D and support camera movement.

The camera is operated using the mouse.

Orbit (LMB)

namespace viz = holoscan::viz; bool show_image_layer = false; while
(!viz::WindowShouldClose()) { viz::Begin(); viz::BeginImGuiLayer();
ImGui::Begin("Options"); ImGui::Checkbox("Image layer", &show_image_layer);
ImGui::End(); viz::EndLayer(); if (show_image_layer) { viz::BeginImageLayer();
viz::ImageHost(...); viz::EndLayer(); } viz::End(); }

https://github.com/ocornut/imgui

NVIDIA Holoscan SDK v2.0.0 176

Pan (LMB + CTRL | MMB)

Dolly (LMB + SHIFT | RMB | Mouse wheel)

Look Around (LMB + ALT | LMB + CTRL + SHIFT)

Zoom (Mouse wheel + SHIFT)

Ingested Tab Module

Views

By default a layer will fill the whole window. When using a view, the layer can be placed
freely within the window.

Layers can also be placed in 3D space by specifying a 3D transformation matrix.

When multiple views are specified the layer is drawn multiple times using the specified
layer view.

It’s possible to specify a negative term for height, which flips the image. When using a
negative height, one should also adjust the y value to point to the lower left corner of the
viewport instead of the upper left corner.

Ingested Tab Module

Using a display in exclusive mode

Usually Holoviz opens a normal window on the Linux desktop. In that case the desktop
compositor is combining the Holoviz image with all other elements on the desktop. To

Note

For geometry layers there is a default matrix which allows
coordinates in the range of [0 … 1] instead of the Vulkan [-1 … 1]
range. When specifying a matrix for a geometry layer, this default
matrix is overwritten.

NVIDIA Holoscan SDK v2.0.0 177

avoid this extra compositing step, Holoviz can render to a display directly.

Configure a display for exclusive use

Ingested Tab Module

Enable exclusive display in Holoviz

Ingested Tab Module

The name of the display can either be the EDID name as displayed in the NVIDIA Settings,
or the output name used by xrandr .

CUDA streams

By default Holoviz is using CUDA stream 0 for all CUDA operations. Using the default
stream can affect concurrency of CUDA operations, see stream synchronization behavior
for more information.

Ingested Tab Module

Tip

In this example output of xrandr , DP-2 would be an adequate
display name to use:

Screen 0: minimum 8 x 8, current 4480 x 1440, maximum 32767
x 32767 DP-0 disconnected (normal left inverted right x axis y
axis) DP-1 disconnected (normal left inverted right x axis y axis)
DP-2 connected primary 2560x1440+1920+0 (normal left
inverted right x axis y axis) 600mm x 340mm 2560x1440 59.98 +
239.97* 199.99 144.00 120.00 99.95 1024x768 60.00 800x600
60.32 640x480 59.94 USB-C-0 disconnected (normal left
inverted right x axis y axis)

https://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html#stream-sync-behavior__default-stream

NVIDIA Holoscan SDK v2.0.0 178

Reading the framebuffer

The rendered frame buffer can be read back. This is useful when when doing offscreen
rendering or running Holoviz in a headless environment.

Ingested Tab Module

Holoviz operator

Class documentation

C++

Python .

Examples

There are multiple examples both in Python and C++ showing how to use various
features of the Holoviz operator.

Holoviz module

Concepts

The Holoviz module uses the concept of the immediate mode design pattern for its API,
inspired by the Dear ImGui library. The difference to the retained mode, for which most
APIs are designed for, is, that there are no objects created and stored by the application.
This makes it fast and easy to make visualization changes in a Holoscan application.

Instances

Note

Reading the depth buffer is not supported when using the Holoviz
operator.

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/holoviz
https://github.com/ocornut/imgui

NVIDIA Holoscan SDK v2.0.0 179

The Holoviz module uses a thread-local instance object to store its internal state. The
instance object is created when calling the Holoviz module is first called from a thread. All
Holoviz module functions called from that thread use this instance.

When calling into the Holoviz module from other threads other than the thread from
which the Holoviz module functions were first called, make sure to call viz::GetCurrent()
and viz::SetCurrent() in the respective threads.

There are usage cases where multiple instances are needed, for example, to open
multiple windows. Instances can be created by calling viz::Create() . Call viz::SetCurrent()
to make the instance current before calling the Holoviz module function to be executed
for the window the instance belongs to.

Getting started

The code below creates a window and displays an image.

First the Holoviz module needs to be initialized. This is done by calling viz::Init() .

The elements to display are defined in the render loop, termination of the loop is
checked with viz::WindowShouldClose() .

The definition of the displayed content starts with viz::Begin() and ends with viz::End() .
viz::End() starts the rendering and displays the rendered result.

Finally the Holoviz module is shutdown with viz::Shutdown() .

Result:

#include "holoviz/holoviz.hpp" namespace viz = holoscan::viz; viz::Init("Holoviz
Example"); while (!viz::WindowShouldClose()) { viz::Begin(); viz::BeginImageLayer();
viz::ImageHost(width, height, viz::ImageFormat::R8G8B8A8_UNORM, image_data);
viz::EndLayer(); viz::End(); } viz::Shutdown();

NVIDIA Holoscan SDK v2.0.0 180

Fig. 20 Holoviz example app

API

Holoviz module API

Examples

There are multiple examples showing how to use various features of the Holoviz module.

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/modules/holoviz/examples

NVIDIA Holoscan SDK v2.0.0 181

Inference
Overview

A Holoscan application that needs to run inference will use an inference operator. The
built-in Inference operator (InferenceOp) can be used, and several related use cases are
documented in the Inference operator section below. The use cases are created using the
parameter set that must be defined in the configuration file of the holoscan application. If
the built-in InferenceOp doesn’t cover a specific use case, users can create their own
custom inference operator as documented in Creating an Inference operator section.

The core inference functionality in the Holoscan SDK is provided by the Inference Module
which is a framework that facilitates designing and executing inference and processing
applications through its APIs. It is used by the built-in InferenceOp which supports the
same parameters as the Inference Module. All parameters required by the Holoscan
Inference Module are passed through a parameter set in the configuration file of an
application.

Parameters and related Features

Required parameters and related features available with the Holoscan Inference Module
are listed below.

Data Buffer Parameters: Parameters are provided in the inference settings to
enable data buffer locations at several stages of the inference. As shown in the
figure below, three parameters input_on_cuda , output_on_cuda and
transmit_on_cuda can be set by the user.

input_on_cuda refers to the location of the data going into the inference.

If value is true , it means the input data is on the device

If value is false , it means the input data is on the host

Default value: true

NVIDIA Holoscan SDK v2.0.0 182

output_on_cuda refers to the data location of the inferred data.

If value is true , it means the inferred data is on the device

If value is false , it means the inferred data is on the host

Default value: true

transmit_on_cuda refers to the data transmission.

If value is true , it means the data transmission from the inference
extension will be on Device

If value is false , it means the data transmission from the inference
extension will be on Host

Default value: true

Inference Parameters

backend parameter is set to either trt for TensorRT, onnxrt for Onnx
runtime, or torch for libtorch. If there are multiple models in the inference
application, all models will use the same backend. If it is desired to use
different backends for different models, specify the backend_map parameter
instead.

TensorRT:

CUDA-based inference supported both on x86_64 and aarch64

End-to-end CUDA-based data buffer parameters supported.
input_on_cuda , output_on_cuda and transmit_on_cuda will all

be true for end-to-end CUDA-based data movement.

input_on_cuda , output_on_cuda and transmit_on_cuda can be
either true or false .

TensorRT backend expects input models to be in
tensorrt engine file format or onnx format.

NVIDIA Holoscan SDK v2.0.0 183

if models are in tensorrt engine file format, parameter
is_engine_path must be set to true .

if models are in onnx format, it will be automatically
converted into tensorrt engine file by the Holoscan inference
module.

Torch:

CUDA and CPU based inference supported both on x86_64 and
aarch64.

End-to-end CUDA-based data buffer parameters supported.
input_on_cuda , output_on_cuda and transmit_on_cuda will all

be true for end-to-end CUDA-based data movement.

input_on_cuda , output_on_cuda and transmit_on_cuda can be
either true or false .

Libtorch and TorchVision are included in the Holoscan NGC
container, initially built as part of the PyTorch NGC container. To
use the Holoscan SDK torch backend outside of these containers,
we recommend you download libtorch and torchvision binaries
from Holoscan’s third-party repository.

Torch backend expects input models to be in torchscript format.

It is recommended to use the same version of torch for
torchscript model generation, as used in the HOLOSCAN SDK

on the respective architectures.

Additionally, it is recommended to generate the torchscript
model on the same architecture on which it will be executed.
For example, torchscript model must be generated on
x86_64 to be executed in an application running on x86_64

only.

Onnx runtime:

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
https://edge.urm.nvidia.com/artifactory/sw-holoscan-thirdparty-generic-local/

NVIDIA Holoscan SDK v2.0.0 184

Data flow via host only. input_on_cuda , output_on_cuda and
transmit_on_cuda must be false .

CUDA based inference (supported on x86_64)

CPU based inference (supported on x86_64 and aarch64)

infer_on_cpu parameter is set to true if CPU based inference is desired.

The tables below demonstrate the supported features related to the data
buffer and the inference with trt and onnxrt based backend, on x86 and
aarch64 system respectively.

x86 input_on_cuda output_on_cuda transmit_on_cuda infer_on_cpu

Supp
orted
value
s for
trt

true or false true or false true or false false

Supp
orted
value
s for
torc
h

true or false true or false true or false
true or
false

Supp
orted
value
s for
onn
xrt

false false true or false
true or
false

Aarch64 input_on_cuda output_on_cuda transmit_on_cuda infer_on_cpu

Suppor
ted
values
for trt

true or false true or false true or false false

NVIDIA Holoscan SDK v2.0.0 185

Suppor
ted
values
for
torch

true or false true or false true or false
true or
false

Suppor
ted
values
for
onnxr
t

false false true or false true

model_path_map : User can design single or multi AI inference pipeline by
populating model_path_map in the config file.

With a single entry it is single inference and with more than one entry,
multi AI inference is enabled.

Each entry in model_path_map has a unique keyword as key (used as an
identifier by the Holoscan Inference Module), and the path to the model
as value.

All model entries must have the models either in onnx or tensorrt
engine file or torchscript format.

pre_processor_map : input tensor to the respective model is specified in
pre_processor_map in the config file.

The Holoscan Inference Module supports same input for multiple models
or unique input per model.

Each entry in pre_processor_map has a unique keyword representing
the model (same as used in model_path_map), and a vector of tensor
names as the value.

The Holoscan Inference Module supports multiple input tensors per
model.

NVIDIA Holoscan SDK v2.0.0 186

inference_map : output tensors per model after inference is specified in
inference_map in the config file.

Each entry in inference_map has a unique keyword representing the
model (same as used in model_path_map and pre_processor_map),
and a vector of the output tensor names as the value.

The Holoscan Inference Module supports multiple output tensors per
model.

parallel_inference : Parallel or Sequential execution of inferences.

If multiple models are input, then user can execute models in parallel.

Parameter parallel_inference can be either true or false . Default
value is true .

Inferences are launched in parallel without any check of the available
GPU resources, user must make sure that there is enough memory and
compute available to run all the inferences in parallel.

enable_fp16 : Generation of the TensorRT engine files with FP16 option

If backend is set to trt , and if the input models are in onnx format,
then users can generate the engine file with fp16 option to accelerate
inferencing.

It takes few mintues to generate the engine files for the first time.

It can be either true or false . Default value is false .

is_engine_path : if the input models are specified in trt engine format in
model_path_map , this flag must be set to true . Default value is false .

in_tensor_names : Input tensor names to be used by pre_processor_map .
This parameter is optional. If absent in the parameter map, values are derived
from pre_processor_map .

NVIDIA Holoscan SDK v2.0.0 187

out_tensor_names : Output tensor names to be used by inference_map . This
parameter is optional. If absent in the parameter map, values are derived from
inference_map .

device_map : Multi-GPU inferencing is enabled if device_map is populated in
the parameter set.

Each entry in device_map has a unique keyword representing the model
(same as used in model_path_map and pre_processor_map), and GPU
identifier as the value. This GPU ID is used to execute the inference for
the specified model.

GPUs specified in the device_map must have P2P (peer to peer) access
and they must be connected to the same PCIE configuration. If P2P
access is not possible among GPUs, the host (CPU memory) will be used
to transfer the data.

Multi-GPU inferencing is supported for all backends.

backend_map : Multiple backends can be used in the same application with
this parameter.

Each entry in backend_map has a unique keyword representing the
model (same as used in model_path_map), and the backend as the
value.

A sample backend_map is shown below. In the example, model_1 uses
the tensorRT backend, and model 2 and model 3 uses the torch
backend for inference.

Other features: Table below illustrates other features and supported values in the
current release.

Feature Supported values

backend_map: "model_1_unique_identifier": "trt"
"model_2_unique_identifier": "torch" "model_3_unique_identifier":
"torch"

NVIDIA Holoscan SDK v2.0.0 188

Data type float32 , int32 , int8

Inference
Backend

trt , torch , onnxrt

Inputs per model Multiple

Outputs per
model

Multiple

GPU(s)
supported

Multi-GPU on same PCIE network

Tensor data
dimension

2, 3, 4

Model Type
All onnx or all torchscript or all trt engine type or a
combination of torch and trt engine

Multi Receiver and Single Transmitter support

The Holoscan Inference Module provides an API to extract the data from
multiple receivers.

The Holoscan Inference Module provides an API to transmit multiple tensors
via a single transmitter.

Parameter Specification

All required inference parameters of the inference application must be specified. Below is
a sample parameter set for an application that uses three models for inferencing. User
must populate all required fields with appropriate values.

inference: backend: "trt" model_path_map: "model_1_unique_identifier":
"path_to_model_1" "model_2_unique_identifier": "path_to_model_2"
"model_3_unique_identifier": "path_to_model_3" pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["input_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["input_tensor_1_model_3_unique_identifier"]
inference_map: "model_1_unique_identifier":
["output_tensor_1_model_1_unique_identifier"] "model_2_unique_identifier":

NVIDIA Holoscan SDK v2.0.0 189

Inference Operator

In Holoscan SDK, the built-in Inference operator (InferenceOp) is designed using the
Holoscan Inference Module APIs. The Inference operator ingests the inference parameter
set (from the configuration file) and the data receivers (from previous connected
operators in the application), executes the inference and transmits the inferred results to
the next connected operators in the application.

InferenceOp is a generic operator that serves multiple use cases via the parameter set.
Parameter sets for some key use cases are listed below:

Note: Some parameters have default values set for them in the InferenceOp . For any
parameters not mentioned in the example parameter sets below, their default is used by
the InferenceOp . These parameters are used to enable several use cases.

Single model inference using TensorRT backend.

Value of backend can be modified for other supported backends, and other
parameters related to each backend. User must ensure correct model type and
model path is provided into the parameter set, along with supported values of all
parameters for the respective backend.

In this example, path_to_model_1 must be an onnx file, which will be converted
to a tensorRT engine file at first execution. During subsequent executions, the
Holoscan inference module will automatically find the tensorRT engine file (if
path_to_model_1 has not changed). Additionally, if user has a pre-built tensorRT

["output_tensor_1_model_2_unique_identifier"] "model_3_unique_identifier":
["output_tensor_1_model_3_unique_identifier"] parallel_inference: true
infer_on_cpu: false enable_fp16: false input_on_cuda: true output_on_cuda: true
transmit_on_cuda: true is_engine_path: false

backend: "trt" model_path_map: "model_1_unique_identifier":
"path_to_model_1" pre_processor_map: "model_1_unique_identifier":
["input_tensor_1_model_1_unique_identifier"] inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]

NVIDIA Holoscan SDK v2.0.0 190

engine file, path_to_model_1 must be path to the engine file and the parameter
is_engine_path must be set to true in the parameter set.

Single model inference using TensorRT backend with multiple outputs.

As shown in example above, Holoscan Inference module automatically maps the
model outputs to the named tensors in the parameter set. Users must ensure to
use the named tensors in the same sequence in which the model generates the
output. Similar logic holds for multiple inputs.

Single model inference using fp16 precision.

If a tensorRT engine file is not available for fp16 precision, it will be automatically
generated by the Holoscan Inference module on the first execution. The file is
cached for future executions.

Single model inference on CPU.

backend: "trt" model_path_map: "model_1_unique_identifier":
"path_to_model_1" pre_processor_map: "model_1_unique_identifier":
["input_tensor_1_model_1_unique_identifier"] inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier",
"output_tensor_2_model_1_unique_identifier",
"output_tensor_3_model_1_unique_identifier"]

backend: "trt" model_path_map: "model_1_unique_identifier":
"path_to_model_1" pre_processor_map: "model_1_unique_identifier":
["input_tensor_1_model_1_unique_identifier"] inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier",
"output_tensor_2_model_1_unique_identifier",
"output_tensor_3_model_1_unique_identifier"] enable_fp16: true

backend: "onnxrt" model_path_map: "model_1_unique_identifier":
"path_to_model_1" pre_processor_map: "model_1_unique_identifier":
["input_tensor_1_model_1_unique_identifier"] inference_map:

NVIDIA Holoscan SDK v2.0.0 191

Note that the backend can only be onnxrt or torch for CPU based inference.

Single model inference with input/output data on Host.

Data in the core inference engine is passed through the host and is received on the
host. Inference can happen on the GPU. Parameters input_on_cuda and
output_on_cuda define the location of the data before and after inference

respectively.

Single model inference with data transmission via Host.

Data from inference operator to the next connected operator in the application is
transmitted via the host.

Multi model inference with a single backend.

"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
infer_on_cpu: true

backend: "trt" model_path_map: "model_1_unique_identifier":
"path_to_model_1" pre_processor_map: "model_1_unique_identifier":
["input_tensor_1_model_1_unique_identifier"] inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
input_on_cuda: false output_on_cuda: false

backend: "trt" model_path_map: "model_1_unique_identifier":
"path_to_model_1" pre_processor_map: "model_1_unique_identifier":
["input_tensor_1_model_1_unique_identifier"] inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
transmit_on_host: true

backend: "trt" model_path_map: "model_1_unique_identifier":
"path_to_model_1" "model_2_unique_identifier": "path_to_model_2"
"model_3_unique_identifier": "path_to_model_3" pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["input_tensor_1_model_2_unique_identifier"]

NVIDIA Holoscan SDK v2.0.0 192

By default multiple model inferences are launched in parallel. The backend specified
via parameter backend is used for all models in the application.

Multi model inference with sequential inference.

parallel_inference is set to true by default. To launch model inferences in
sequence, parallel_inference must be set to false .

Multi model inference with multiple backends.

"model_3_unique_identifier": ["input_tensor_1_model_3_unique_identifier"]
inference_map: "model_1_unique_identifier":
["output_tensor_1_model_1_unique_identifier"] "model_2_unique_identifier":
["output_tensor_1_model_2_unique_identifier"] "model_3_unique_identifier":
["output_tensor_1_model_3_unique_identifier"]

backend: "trt" model_path_map: "model_1_unique_identifier":
"path_to_model_1" "model_2_unique_identifier": "path_to_model_2"
"model_3_unique_identifier": "path_to_model_3" pre_processor_map:
"model_1_unique_identifier": ["input_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["input_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["input_tensor_1_model_3_unique_identifier"]
inference_map: "model_1_unique_identifier":
["output_tensor_1_model_1_unique_identifier"] "model_2_unique_identifier":
["output_tensor_1_model_2_unique_identifier"] "model_3_unique_identifier":
["output_tensor_1_model_3_unique_identifier"] parallel_inference: false

backend_map: "model_1_unique_identifier": "trt" "model_2_unique_identifier":
"torch" "model_3_unique_identifier": "torch" model_path_map:
"model_1_unique_identifier": "path_to_model_1" "model_2_unique_identifier":
"path_to_model_2" "model_3_unique_identifier": "path_to_model_3"
pre_processor_map: "model_1_unique_identifier":
["input_tensor_1_model_1_unique_identifier"] "model_2_unique_identifier":
["input_tensor_1_model_2_unique_identifier"] "model_3_unique_identifier":
["input_tensor_1_model_3_unique_identifier"] inference_map:

NVIDIA Holoscan SDK v2.0.0 193

In the above sample parameter set, the first model will do inference using the
tensorRT backend, and model 2 and 3 will do inference using the torch backend.

Note: the combination of backends in backend_map must support all other
parameters that will be used during the inference. For. e.g. onnxrt and tensorRT
combination with CPU based inference will not be supported.

Multi model inference with a single backend on multi-GPU.

In the sample above, model 1 and model 3 will do inference on the GPU with ID 1
and model 2 will do inferene on the GPU with ID 0. GPUs must have P2P (peer to
peer) access among them. If it is not enabled, the Holoscan inference module
enables it by default. If P2P access is not possible between GPUs, then the data
transfer will happen via the Host.

Multi model inference with multiple backends on multiple GPUs.

"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["output_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

backend: "trt" device_map: "model_1_unique_identifier": "1"
"model_2_unique_identifier": "0" "model_3_unique_identifier": "1"
model_path_map: "model_1_unique_identifier": "path_to_model_1"
"model_2_unique_identifier": "path_to_model_2" "model_3_unique_identifier":
"path_to_model_3" pre_processor_map: "model_1_unique_identifier":
["input_tensor_1_model_1_unique_identifier"] "model_2_unique_identifier":
["input_tensor_1_model_2_unique_identifier"] "model_3_unique_identifier":
["input_tensor_1_model_3_unique_identifier"] inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["output_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

backend_map: "model_1_unique_identifier": "trt" "model_2_unique_identifier":
"torch" "model_3_unique_identifier": "torch" device_map:
"model_1_unique_identifier": "1" "model_2_unique_identifier": "0"

NVIDIA Holoscan SDK v2.0.0 194

In the sample above, three models are used during the inference. Model 1 uses the
trt backend and runs on the GPU with ID 1, model 2 uses the torch backend and
runs on the GPU with ID 0, and model 3 uses the torch backend and runs on the
GPU with ID 1.

Creating an Inference operator

The Inference operator is the core inference unit in an inference application. The built-in
Inference operator (InferenceOp) can be used for inference, or users can create their
own custom inference operator as explained in this section. In Holoscan SDK, the
inference operator can be designed using the Holoscan Inference Module APIs.

Arguments in the code sections below are referred to as ….

Parameter Validity Check: Input inference parameters via the configuration (from
step 1) are verified for correctness.

Inference specification creation: For a single AI, only one entry is passed into the
required entries in the parameter set. There is no change in the API calls below.
Single AI or multi AI is enabled based on the number of entries in the parameter
specifications from the configuration (in step 1).

"model_3_unique_identifier": "1" model_path_map:
"model_1_unique_identifier": "path_to_model_1" "model_2_unique_identifier":
"path_to_model_2" "model_3_unique_identifier": "path_to_model_3"
pre_processor_map: "model_1_unique_identifier":
["input_tensor_1_model_1_unique_identifier"] "model_2_unique_identifier":
["input_tensor_1_model_2_unique_identifier"] "model_3_unique_identifier":
["input_tensor_1_model_3_unique_identifier"] inference_map:
"model_1_unique_identifier": ["output_tensor_1_model_1_unique_identifier"]
"model_2_unique_identifier": ["output_tensor_1_model_2_unique_identifier"]
"model_3_unique_identifier": ["output_tensor_1_model_3_unique_identifier"]

auto status = HoloInfer::inference_validity_check(...);

// Declaration of inference specifications
std::shared_ptr<HoloInfer::InferenceSpecs> inference_specs_; // Creation of

NVIDIA Holoscan SDK v2.0.0 195

Inference context creation.

Parameter setup with inference context: All required parameters of the Holoscan
Inference Module are transferred in this step, and relevant memory allocations are
initiated in the inference specification.

Data extraction and allocation: The following API is used from the Holoinfer utility to
extract and allocate data for the specified tensor.

Inference execution

Transmit inferred data:

Figure below demonstrates the Inference operator in the Holoscan SDK. All blocks with
blue color are the API calls from the Holoscan Inference Module.

inference specification structure inference_specs_ =
std::make_shared<HoloInfer::InferenceSpecs>(...);

// Pointer to inference context. std::unique_ptr<HoloInfer::InferContext>
holoscan_infer_context_; // Create holoscan inference context
holoscan_infer_context_ = std::make_unique<HoloInfer::InferContext>();

// Set and transfer inference specification to inference context auto status =
holoscan_infer_context_->set_inference_params(inference_specs_);

// Extract relevant data from input, and update inference specifications
gxf_result_t stat = HoloInfer::get_data_per_model(...);

// Execute inference and populate output buffer in inference specifications auto
status = holoscan_infer_context_->execute_inference(inference_specs_-
>data_per_model_, inference_specs_->output_per_model_);

// Transmit output buffers auto status = HoloInfer::transmit_data_per_model(...);

NVIDIA Holoscan SDK v2.0.0 196

NVIDIA Holoscan SDK v2.0.0 197

Schedulers
The Scheduler component is a critical part of the system responsible for governing the
execution of operators in a graph by enforcing conditions associated with each operator.
Its primary responsibility includes orchestrating the execution of all operators defined in
the graph while keeping track of their execution states.

The Holoscan SDK offers multiple schedulers that can cater to various use cases. These
schedulers are:

1. Greedy Scheduler: This basic single-threaded scheduler tests conditions in a greedy
manner. It is suitable for simple use cases and provides predictable execution.
However, it may not be ideal for large-scale applications as it may incur significant
overhead in condition execution.

2. MultiThread Scheduler: The multithread scheduler is designed to handle complex
execution patterns in large-scale applications. This scheduler consists of a
dispatcher thread that monitors the status of each operator and dispatches it to a
thread pool of worker threads responsible for executing them. Once execution is
complete, worker threads enqueue the operator back on the dispatch queue. The
multithread scheduler offers superior performance and scalability over the greedy
scheduler.

3. Event-Based Scheduler: The event-based scheduler is also a multi-thread scheduler,
but as the name indicates it is event-based rather than polling based. Instead of
having a thread that constantly polls for the execution readiness of each operator, it
instead waits for an event to be received which indicates that an operator is ready
to execute. The event-based scheduler will have a lower latency than using the
multi-thread scheduler with a long polling interval (check_recession_period_ms),
but without the high CPU usage seen for a multi-thread scheduler with a very short
polling interval.

It is essential to select the appropriate scheduler for the use case at hand to ensure
optimal performance and efficient resource utilization. Since most parameters of the
schedulers overlap, it is easy to switch between them to test which may be most
performant for a given application.

NVIDIA Holoscan SDK v2.0.0 198

Greedy Scheduler

The greedy scheduler has a few parameters that the user can configure.

The clock used by the scheduler can be set to either a realtime or manual clock.

The realtime clock is what should be used for applications as it pauses
execution as needed to respect user specified conditions (e.g. operators with
periodic conditions will wait the requested period before executing again).

The manual clock is of benefit mainly for testing purposes as it causes
operators to run in a time-compressed fashion (e.g. periodic conditions are
not respected and operators run in immediate succession).

The user can specify a max_duration_ms that will cause execution of the
application to terminate after a specified maximum duration. The default value of
-1 (or any other negative value) will result in no maximum duration being applied.

This scheduler also has a boolean parameter, stop_on_deadlock that controls
whether the application will terminate if a deadlock occurs. A deadlock occurs when
all operators are in a WAIT state, but there is no periodic condition pending to
break out of this state. This parameter is true by default.

When setting the stop_on_deadlock_timeout parameter, the scheduler will wait
this amount of time (in ms) before determining that it is in deadlock and should
stop. It will reset if a job comes in during the wait. A negative value means no stop
on deadlock. This parameter only applies when stop_on_deadlock=true .

Note

Detailed APIs can be found here: C++/
<a
href="../api/python/holoscan_python_api_schedulers.html#module-
holoscan.schedulers">Python

).

https://docs.nvidia.com/resources.html#clock
file:///tmp/jsreport/api/holoscan_cpp_api.html#schedulers

NVIDIA Holoscan SDK v2.0.0 199

Multithread Scheduler

The multithread scheduler has several parameters that the user can configure. These are
a superset of the parameters available for the GreedyScheduler (described in the
section above). Only the parameters unique to the multithread scheduler are described
here. The multi-thread scheduler uses a dedicated thread to poll the status of operators
and schedule any that are ready to execute. This will lead to high CPU usage by this
polling thread when check_recession_period_ms is close to 0.

The number of worker threads used by the scheduler can be set via
worker_thread_number , which defaults to 1 . This should be set based on a

consideration of both the workflow and the available hardware. For example, the
topology of the computation graph will determine how many operators it may be
possible to run in parallel. Some operators may potentially launch multiple threads
internally, so some amount of performance profiling may be required to determine
optimal parameters for a given workflow.

The value of check_recession_period_ms controls how long the scheduler will sleep
before checking a given condition again. In other words, this is the polling interval
for operators that are in a WAIT state. The default value for this parameter is 5
ms.

Event-Based Scheduler

The event-based scheduler is also a multi-thread scheduler, but it is event-based rather
than polling based. As such, there is no check_recession_period_ms parameter, and this
scheduler will not have the high CPU usage that can occur when polling at a short
interval. Instead, the scheduler only wakes up when an event is received indicating that
an operator is ready to execute. The parameters of this scheduler are a superset of the
parameters available for the GreedyScheduler (described above). Only the parameters
unique to the event-based scheduler are described here.

The number of worker threads used by the scheduler can be set via
worker_thread_number , which defaults to 1 . This should be set based on a

consideration of both the workflow and the available hardware. For example, the
topology of the computation graph will determine how many operators it may be
possible to run in parallel. Some operators may potentially launch multiple threads
internally, so some amount of performance profiling may be required to determine
optimal parameters for a given workflow.

NVIDIA Holoscan SDK v2.0.0 200

Conditions
The following table shows various states of the scheduling status of an operator:

Scheduling
Status

Description

NEVER Operator will never execute again

READY Operator is ready for execution

WAIT Operator may execute in the future

WAIT_TIME Operator will be ready for execution after specified duration

WAIT_EVENT
Operator is waiting on an asynchronous event with unknown time
interval

By default, operators are always READY , meaning they are scheduled to continuously
execute their compute() method. To change that behavior, some condition classes can
be passed to the constructor of an operator. There are various conditions currently
supported in the Holoscan SDK:

MessageAvailableCondition

DownstreamMessageAffordableCondition

Note

A failure in execution of any single operator stops the execution
of all the operators.

Operators are naturally unscheduled from execution when their
scheduling status reaches NEVER state.

NVIDIA Holoscan SDK v2.0.0 201

CountCondition

BooleanCondition

PeriodicCondition

AsynchronousCondition

Conditions are AND-combined

An Operator can be associated with multiple conditions which define it’s execution
behavior. Conditions are AND combined to describe the current state of an operator. For
an operator to be executed by the scheduler, all the conditions must be in READY state
and conversely, the operator is unscheduled from execution whenever any one of the
scheduling term reaches NEVER state. The priority of various states during AND
combine follows the order NEVER , WAIT_EVENT , WAIT , WAIT_TIME , and READY .

MessageAvailableCondition

An operator associated with MessageAvailableCondition is executed when the
associated queue of the input port has at least a certain number of elements. This
condition is associated with a specific input port of an operator through the condition()
method on the return value (IOSpec) of the OperatorSpec’s input() method.

The minimum number of messages that permits the execution of the operator is
specified by min_size parameter (default: 1). An optional parameter for this condition
is front_stage_max_size , the maximum front stage message count. If this parameter is

Note

Detailed APIs can be found here: C++/
<a
href="../api/python/holoscan_python_api_conditions.html#module-
holoscan.conditions">Python

).

file:///tmp/jsreport/api/holoscan_cpp_api.html#conditions

NVIDIA Holoscan SDK v2.0.0 202

set, the condition will only allow execution if the number of messages in the queue does
not exceed this count. It can be used for operators which do not consume all messages
from the queue.

DownstreamMessageAffordableCondition

This condition specifies that an operator shall be executed if the input port of the
downstream operator for a given output port can accept new messages. This condition is
associated with a specific output port of an operator through the condition() method on
the return value (IOSpec) of the OperatorSpec’s output() method. The minimum number
of messages that permits the execution of the operator is specified by min_size
parameter (default: 1).

CountCondition

An operator associated with CountCondition is executed for a specific number of times
specified using its count parameter. The scheduling status of the operator associated
with this condition can either be in READY or NEVER state. The scheduling status
reaches the NEVER state when the operator has been executed count number of
times.

BooleanCondition

An operator associated with BooleanCondition is executed when the associated boolean
variable is set to true . The boolean variable is set to true / false by calling the
enable_tick() / disable_tick() methods on the BooleanCondition object. The
check_tick_enabled() method can be used to check if the boolean variable is set to true

/ false . The scheduling status of the operator associated with this condition can either be
in READY or NEVER state. If the boolean variable is set to true , the scheduling status
of the operator associated with this condition is set to READY . If the boolean variable is
set to false , the scheduling status of the operator associated with this condition is set to
NEVER . The enable_tick() / disable_tick() methods can be called from any operator in

the workflow.

Ingested Tab Module

NVIDIA Holoscan SDK v2.0.0 203

PeriodicCondition

An operator associated with PeriodicCondition is executed after periodic time intervals
specified using its recess_period parameter. The scheduling status of the operator
associated with this condition can either be in READY or WAIT_TIME state. For the first
time or after periodic time intervals, the scheduling status of the operator associated
with this condition is set to READY and the operator is executed. After the operator is
executed, the scheduling status is set to WAIT_TIME and the operator is not executed
until the recess_period time interval.

AsynchronousCondition

AsynchronousCondition is primarily associated with operators which are working with
asynchronous events happening outside of their regular execution performed by the
scheduler. Since these events are non-periodic in nature, AsynchronousCondition
prevents the scheduler from polling the operator for its status regularly and reduces CPU
utilization. The scheduling status of the operator associated with this condition can either
be in READY , WAIT , WAIT_EVENT or NEVER states based on the asynchronous event
it’s waiting on.

The state of an asynchronous event is described using AsynchronousEventState and is
updated using the event_state() API.

AsynchronousEventState Description

READY Init state, first execution of compute() method is pending

WAIT
Request to async service yet to be sent, nothing to do but
wait

EVENT_WAITING
Request sent to an async service, pending event done
notification

EVENT_DONE Event done notification received, operator ready to be ticked

EVENT_NEVER
Operator does not want to be executed again, end of
execution

Operators associated with this scheduling term most likely have an asynchronous thread
which can update the state of the condition outside of it’s regular execution cycle
performed by the scheduler. When the asynchronous event state is in WAIT state, the

NVIDIA Holoscan SDK v2.0.0 204

scheduler regularly polls for the scheduling state of the operator. When the
asynchronous event state is in EVENT_WAITING state, schedulers will not check the
scheduling status of the operator again until they receive an event notification. Setting
the state of the asynchronous event to EVENT_DONE automatically sends the event
notification to the scheduler. Operators can use the EVENT_NEVER state to indicate the
end of its execution cycle.

NVIDIA Holoscan SDK v2.0.0 205

Resources
Resource classes represent resources such as a allocators, clocks, transmitters or
receivers that may be used as a parameter for operators or schedulers. The resource
classes that are likely to be directly used by application authors are documented here.

Allocator

UnboundedAllocator

An allocator that uses dynamic host or device memory allocation without an upper
bound. This allocator does not take any user-specified parameters.

BlockMemoryPool

This is a memory pool which provides a user-specified number of equally sized blocks of
memory.

The storage_type parameter can be set to determine the memory storage type
used by the operator. This can be 0 for page-locked host memory (allocated with
cudaMallocHost), 1 for device memory (allocated with cudaMalloc) or 2 for

system memory (allocated with C++ new).

Note

There are a number of other resources classes used internally which
are not documented here, but appear in the API Documentation
(C++/
<a
href="../api/python/holoscan_python_api_resources.html#module-
holoscan.resources">Python

).

file:///tmp/jsreport/api/holoscan_cpp_api.html#resources

NVIDIA Holoscan SDK v2.0.0 206

The block_size parameter determines the size of a single block in the memory pool
in bytes. Any allocation requests made of this allocator must fit into this block size.

The num_blocks parameter controls the total number of blocks that are allocated
in the memory pool.

The dev_id parameter is an optional parameter that can be used to specify the
CUDA ID of the device on which the memory pool will be created.

CudaStreamPool

This allocator creates a pool of CUDA streams.

The stream_flags parameter specifies the flags sent to
cudaStreamCreateWithPriority when creating the streams in the pool.

The stream_priority parameter specifies the priority sent to
cudaStreamCreateWithPriority when creating the streams in the pool. Lower values
have a higher priority.

The reserved_size parameter specifies the initial number of CUDA streams created
in the pool upon initialization.

The max_size parameter is an optional parameter that can be used to specify a
maximum number of CUDA streams that can be present in the pool. The default
value of 0 means that the size of the pool is unlimited.

The dev_id parameter is an optional parameter that can be used to specify the
CUDA ID of the device on which the stream pool will be created.

Clock

Clock classes can be provided via a clock parameter to the Scheduler classes to
manage the flow of time.

All clock classes provide a common set of methods that can be used at runtime in user
applications.

The time() method returns the current time in seconds (floating point).

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html

NVIDIA Holoscan SDK v2.0.0 207

The timestamp() method returns the current time as an integer number of
nanoseconds.

The sleep_for() method sleeps for a specified duration in ns. An overloaded version
of this method allows specifying the duration using a
std::chrono::duration<Rep, Period> from the C++ API or a datetime.timedelta

from the Python API.

The sleep_until() method sleeps until a specified target time in ns.

Realtime Clock

The RealtimeClock respects the true duration of conditions such as PeriodicCondition .
It is the default clock type and the one that would likely be used in user applications.

In addition to the general clock methods documented above:

this class has a set_time_scale() method which can be used to dynamically change
the time scale used by the clock.

the parameter initial_time_offset can be used to set an initial offset in the time at
initialization.

the parameter initial_time_scale can be used to modify the scale of time. For
instance, a scale of 2.0 would cause time to run twice as fast.

the parameter use_time_since_epoch makes times relative to the POSIX epoch (
initial_time_offset becomes an offset from epoch).

Manual Clock

The ManualClock compresses time intervals (e.g. PeriodicCondition proceeds
immediately rather than waiting for the specified period). It is provided mainly for use
during testing/development.

The parameter initial_timestamp controls the initial timestamp on the clock in ns.

Transmitter (advanced)

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://en.wikipedia.org/wiki/Epoch_(computing)

NVIDIA Holoscan SDK v2.0.0 208

Typically users don’t need to explicitly assign transmitter or receiver classes to the IOSpec
ports of Holoscan SDK operators. For connections between operators a
DoubleBufferTransmitter will automatically be used, while for connections between

fragments in a distributed application, a UcxTransmitter will be used. When data frame
flow tracking is enabled any DoubleBufferTransmitter will be replaced by an
AnnotatedDoubleBufferTransmitter which also records the timestamps needed for that

feature.

DoubleBufferTransmitter

This is the transmitter class used by output ports of operators within a fragment.

UcxTransmitter

This is the transmitter class used by output ports of operators that connect fragments in
a distributed applications. It takes care of sending UCX active messages and serializing
their contents.

Receiver (advanced)

Typically users don’t need to explicitly assign transmitter or receiver classes to the IOSpec
ports of Holoscan SDK operators. For connections between operators a
DoubleBufferReceiver will be used, while for connections between fragments in a

distributed application, the UcxReceiver will be used. When data frame flow tracking is
enabled any DoubleBufferReceiver will be replaced by an
AnnotatedDoubleBufferReceiver which also records the timestamps needed for that

feature.

DoubleBufferReceiver

This is the receiver class used by input ports of operators within a fragment.

UcxReceiver

This is the receiver class used by input ports of operators that connect fragments in a
distributed applications. It takes care of receiving UCX active messages and deserializing
their contents.

NVIDIA Holoscan SDK v2.0.0 209

Holoscan C++ API
Holoscan C++ API

Namespaces

Macros

Operator Definition

Resource Definition

Condition Definition

Scheduler Definition

Logging

Classes

Core

Operators

GXF Components

Conditions

Resources

Native Operator Support

Domain Objects

Tensor (interoperability with GXF Tensor and DLPack interface)

Class/Struct

NVIDIA Holoscan SDK v2.0.0 210

Functions

Utilities

Measurement

Enums

Functions

Typedefs

Variables

Namespaces

Namespace holoscan::gxf

Namespace holoscan::ops

Macros

Operator Definition

Define HOLOSCAN_OPERATOR_FORWARD_ARGS

Define HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER

Resource Definition

Define HOLOSCAN_RESOURCE_FORWARD_ARGS

Define HOLOSCAN_RESOURCE_FORWARD_ARGS_SUPER

Condition Definition

Define HOLOSCAN_CONDITION_FORWARD_ARGS

Define HOLOSCAN_CONDITION_FORWARD_ARGS_SUPER

Scheduler Definition

https://docs.nvidia.com/cpp/namespace_holoscan__gxf.html#namespace-holoscan-gxf
https://docs.nvidia.com/cpp/namespace_holoscan__ops.html#namespace-holoscan-ops
https://docs.nvidia.com/cpp/define_operator_8hpp_1ab2c635a927962650e72a33623f2f9ca1.html#exhale-define-operator-8hpp-1ab2c635a927962650e72a33623f2f9ca1
https://docs.nvidia.com/cpp/define_operator_8hpp_1af59d84ffa537c4b1186e2a1ae2be30ad.html#exhale-define-operator-8hpp-1af59d84ffa537c4b1186e2a1ae2be30ad
https://docs.nvidia.com/cpp/define_resource_8hpp_1a4c671dac9ff91b8ef6f9b5a5a168941f.html#exhale-define-resource-8hpp-1a4c671dac9ff91b8ef6f9b5a5a168941f
https://docs.nvidia.com/cpp/define_resource_8hpp_1a94bcc7c12f51de26c6873cf1e7be9ea9.html#exhale-define-resource-8hpp-1a94bcc7c12f51de26c6873cf1e7be9ea9
https://docs.nvidia.com/cpp/define_condition_8hpp_1a1cc440f7187549071aba2c2703265a2d.html#exhale-define-condition-8hpp-1a1cc440f7187549071aba2c2703265a2d
https://docs.nvidia.com/cpp/define_condition_8hpp_1a4c8ccc5264282a21b4ae2308dc1515d6.html#exhale-define-condition-8hpp-1a4c8ccc5264282a21b4ae2308dc1515d6

NVIDIA Holoscan SDK v2.0.0 211

Define HOLOSCAN_SCHEDULER_FORWARD_ARGS

Define HOLOSCAN_SCHEDULER_FORWARD_ARGS_SUPER

Logging

Define HOLOSCAN_LOG_TRACE

Define HOLOSCAN_LOG_DEBUG

Define HOLOSCAN_LOG_INFO

Define HOLOSCAN_LOG_WARN

Define HOLOSCAN_LOG_ERROR

Define HOLOSCAN_LOG_CRITICAL

Classes

Core

Class Application

Class Arg

Class ArgList

Class ArgType

Class ArgumentSetter

Struct CLIOptions

Class Component

Class ComponentSpec

Class Condition

Class Config

https://docs.nvidia.com/cpp/define_scheduler_8hpp_1a734c868ea263966370d6773ba4f617fa.html#exhale-define-scheduler-8hpp-1a734c868ea263966370d6773ba4f617fa
https://docs.nvidia.com/cpp/define_scheduler_8hpp_1a003acb63ae306b2971f5508061657317.html#exhale-define-scheduler-8hpp-1a003acb63ae306b2971f5508061657317
https://docs.nvidia.com/cpp/define_logger_8hpp_1a7e3138f9692735dc846a302a58057c6c.html#exhale-define-logger-8hpp-1a7e3138f9692735dc846a302a58057c6c
https://docs.nvidia.com/cpp/define_logger_8hpp_1a3cc81037bfb59885b17af859a383d1dd.html#exhale-define-logger-8hpp-1a3cc81037bfb59885b17af859a383d1dd
https://docs.nvidia.com/cpp/define_logger_8hpp_1aae5d745102f8830c1dd8cc10bca8c4bd.html#exhale-define-logger-8hpp-1aae5d745102f8830c1dd8cc10bca8c4bd
https://docs.nvidia.com/cpp/define_logger_8hpp_1a9c1127341727e5b368b8e65248f41b9c.html#exhale-define-logger-8hpp-1a9c1127341727e5b368b8e65248f41b9c
https://docs.nvidia.com/cpp/define_logger_8hpp_1a479748f09598bf5412b305bcfdd91340.html#exhale-define-logger-8hpp-1a479748f09598bf5412b305bcfdd91340
https://docs.nvidia.com/cpp/define_logger_8hpp_1ab9563f3d4ce1dfc852c3a034060aa8a7.html#exhale-define-logger-8hpp-1ab9563f3d4ce1dfc852c3a034060aa8a7
https://docs.nvidia.com/cpp/classholoscan_1_1Application.html#exhale-class-classholoscan-1-1application
https://docs.nvidia.com/cpp/classholoscan_1_1Arg.html#exhale-class-classholoscan-1-1arg
https://docs.nvidia.com/cpp/classholoscan_1_1ArgList.html#exhale-class-classholoscan-1-1arglist
https://docs.nvidia.com/cpp/classholoscan_1_1ArgType.html#exhale-class-classholoscan-1-1argtype
https://docs.nvidia.com/cpp/classholoscan_1_1ArgumentSetter.html#exhale-class-classholoscan-1-1argumentsetter
https://docs.nvidia.com/cpp/structholoscan_1_1CLIOptions.html#exhale-struct-structholoscan-1-1clioptions
https://docs.nvidia.com/cpp/classholoscan_1_1Component.html#exhale-class-classholoscan-1-1component
https://docs.nvidia.com/cpp/classholoscan_1_1ComponentSpec.html#exhale-class-classholoscan-1-1componentspec
https://docs.nvidia.com/cpp/classholoscan_1_1Condition.html#exhale-class-classholoscan-1-1condition
https://docs.nvidia.com/cpp/classholoscan_1_1Config.html#exhale-class-classholoscan-1-1config

NVIDIA Holoscan SDK v2.0.0 212

Class DataFlowTracker

Class ExecutionContext

Class ExtensionManager

Class Executor

Template Class FlowGraph

Class Fragment

Template Class Graph

Class InputContext

Class IOSpec

Class MessageLabel

Template Class MetaParameter

Class Operator

Class OperatorSpec

Struct OperatorTimestampLabel

Class OutputContext

Class ParameterWrapper

Class Resource

Class Scheduler

Operators

Class AJASourceOp

Class AsyncPingRxOp

Class AsyncPingTxOp

https://docs.nvidia.com/cpp/classholoscan_1_1DataFlowTracker.html#exhale-class-classholoscan-1-1dataflowtracker
https://docs.nvidia.com/cpp/classholoscan_1_1ExecutionContext.html#exhale-class-classholoscan-1-1executioncontext
https://docs.nvidia.com/cpp/classholoscan_1_1ExtensionManager.html#exhale-class-classholoscan-1-1extensionmanager
https://docs.nvidia.com/cpp/classholoscan_1_1Executor.html#exhale-class-classholoscan-1-1executor
https://docs.nvidia.com/cpp/classholoscan_1_1FlowGraph.html#exhale-class-classholoscan-1-1flowgraph
https://docs.nvidia.com/cpp/classholoscan_1_1Fragment.html#exhale-class-classholoscan-1-1fragment
https://docs.nvidia.com/cpp/classholoscan_1_1Graph.html#exhale-class-classholoscan-1-1graph
https://docs.nvidia.com/cpp/classholoscan_1_1InputContext.html#exhale-class-classholoscan-1-1inputcontext
https://docs.nvidia.com/cpp/classholoscan_1_1IOSpec.html#exhale-class-classholoscan-1-1iospec
https://docs.nvidia.com/cpp/classholoscan_1_1MessageLabel.html#exhale-class-classholoscan-1-1messagelabel
https://docs.nvidia.com/cpp/classholoscan_1_1MetaParameter.html#exhale-class-classholoscan-1-1metaparameter
https://docs.nvidia.com/cpp/classholoscan_1_1Operator.html#exhale-class-classholoscan-1-1operator
https://docs.nvidia.com/cpp/classholoscan_1_1OperatorSpec.html#exhale-class-classholoscan-1-1operatorspec
https://docs.nvidia.com/cpp/structholoscan_1_1OperatorTimestampLabel.html#exhale-struct-structholoscan-1-1operatortimestamplabel
https://docs.nvidia.com/cpp/classholoscan_1_1OutputContext.html#exhale-class-classholoscan-1-1outputcontext
https://docs.nvidia.com/cpp/classholoscan_1_1ParameterWrapper.html#exhale-class-classholoscan-1-1parameterwrapper
https://docs.nvidia.com/cpp/classholoscan_1_1Resource.html#exhale-class-classholoscan-1-1resource
https://docs.nvidia.com/cpp/classholoscan_1_1Scheduler.html#exhale-class-classholoscan-1-1scheduler
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1AJASourceOp.html#exhale-class-classholoscan-1-1ops-1-1ajasourceop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1AsyncPingRxOp.html#exhale-class-classholoscan-1-1ops-1-1asyncpingrxop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1AsyncPingTxOp.html#exhale-class-classholoscan-1-1ops-1-1asyncpingtxop

NVIDIA Holoscan SDK v2.0.0 213

Class BayerDemosaicOp

Class FormatConverterOp

Class HolovizOp

Class InferenceOp

Class InferenceProcessorOp

Class PingRxOp

Class PingTxOp

Class SegmentationPostprocessorOp

Class V4L2VideoCaptureOp

Class VideoStreamRecorderOp

Class VideoStreamReplayerOp

Struct BufferInfo

Struct HolovizOp::InputSpec

Struct InputSpec::View

Struct InferenceOp::DataMap

Struct InferenceOp::DataVecMap

Struct InferenceProcessorOp::DataMap

Struct InferenceProcessorOp::DataVecMap

Struct V4L2VideoCaptureOp::Buffer

Template Struct convert< NTV2Channel >

Template Struct codec< ops::HolovizOp::InputSpec >

Template Struct codec< ops::HolovizOp::InputSpec::View >

https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1BayerDemosaicOp.html#exhale-class-classholoscan-1-1ops-1-1bayerdemosaicop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1FormatConverterOp.html#exhale-class-classholoscan-1-1ops-1-1formatconverterop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1HolovizOp.html#exhale-class-classholoscan-1-1ops-1-1holovizop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1InferenceOp.html#exhale-class-classholoscan-1-1ops-1-1inferenceop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1InferenceProcessorOp.html#exhale-class-classholoscan-1-1ops-1-1inferenceprocessorop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1PingRxOp.html#exhale-class-classholoscan-1-1ops-1-1pingrxop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1PingTxOp.html#exhale-class-classholoscan-1-1ops-1-1pingtxop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1SegmentationPostprocessorOp.html#exhale-class-classholoscan-1-1ops-1-1segmentationpostprocessorop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1V4L2VideoCaptureOp.html#exhale-class-classholoscan-1-1ops-1-1v4l2videocaptureop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1VideoStreamRecorderOp.html#exhale-class-classholoscan-1-1ops-1-1videostreamrecorderop
https://docs.nvidia.com/cpp/classholoscan_1_1ops_1_1VideoStreamReplayerOp.html#exhale-class-classholoscan-1-1ops-1-1videostreamreplayerop
https://docs.nvidia.com/cpp/structholoscan_1_1ops_1_1BufferInfo.html#exhale-struct-structholoscan-1-1ops-1-1bufferinfo
https://docs.nvidia.com/cpp/structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec.html#exhale-struct-structholoscan-1-1ops-1-1holovizop-1-1inputspec
https://docs.nvidia.com/cpp/structholoscan_1_1ops_1_1HolovizOp_1_1InputSpec_1_1View.html#exhale-struct-structholoscan-1-1ops-1-1holovizop-1-1inputspec-1-1view
https://docs.nvidia.com/cpp/structholoscan_1_1ops_1_1InferenceOp_1_1DataMap.html#exhale-struct-structholoscan-1-1ops-1-1inferenceop-1-1datamap
https://docs.nvidia.com/cpp/structholoscan_1_1ops_1_1InferenceOp_1_1DataVecMap.html#exhale-struct-structholoscan-1-1ops-1-1inferenceop-1-1datavecmap
https://docs.nvidia.com/cpp/structholoscan_1_1ops_1_1InferenceProcessorOp_1_1DataMap.html#exhale-struct-structholoscan-1-1ops-1-1inferenceprocessorop-1-1datamap
https://docs.nvidia.com/cpp/structholoscan_1_1ops_1_1InferenceProcessorOp_1_1DataVecMap.html#exhale-struct-structholoscan-1-1ops-1-1inferenceprocessorop-1-1datavecmap
https://docs.nvidia.com/cpp/structholoscan_1_1ops_1_1V4L2VideoCaptureOp_1_1Buffer.html#exhale-struct-structholoscan-1-1ops-1-1v4l2videocaptureop-1-1buffer
https://docs.nvidia.com/cpp/structYAML_1_1convert_3_01NTV2Channel_01_4.html#exhale-struct-structyaml-1-1convert-3-01ntv2channel-01-4
https://docs.nvidia.com/cpp/structholoscan_1_1codec_3_01ops_1_1HolovizOp_1_1InputSpec_01_4.html#exhale-struct-structholoscan-1-1codec-3-01ops-1-1holovizop-1-1inputspec-01-4
https://docs.nvidia.com/cpp/structholoscan_1_1codec_3_01ops_1_1HolovizOp_1_1InputSpec_1_1View_01_4.html#exhale-struct-structholoscan-1-1codec-3-01ops-1-1holovizop-1-1inputspec-1-1view-01-4

NVIDIA Holoscan SDK v2.0.0 214

Template Struct codec< std::vector< ops::HolovizOp::InputSpec > >

Template Struct codec< std::vector< ops::HolovizOp::InputSpec::View > >

GXF Components

Conditions

Class AsynchronousCondition

Class BooleanCondition

Class CountCondition

Class DownstreamMessageAffordableCondition

Class MessageAvailableCondition

Class PeriodicCondition

Resources

Class Allocator

Class BlockMemoryPool

Class Clock

Class CudaStreamPool

Class DoubleBufferReceiver

Class DoubleBufferTransmitter

Class ManualClock

Class RealtimeClock

Class Receiver

Class SerializationBuffer

https://docs.nvidia.com/cpp/structholoscan_1_1codec_3_01std_1_1vector_3_01ops_1_1HolovizOp_1_1InputSpec_01_4_01_4.html#exhale-struct-structholoscan-1-1codec-3-01std-1-1vector-3-01ops-1-1holovizop-1-1inputspec-01-4-01-4
https://docs.nvidia.com/cpp/structholoscan_1_1codec_3_01std_1_1vector_3_01ops_1_1HolovizOp_1_1InputSpec_1_1View_01_4_01_4.html#exhale-struct-structholoscan-1-1codec-3-01std-1-1vector-3-01ops-1-1holovizop-1-1inputspec-1-1view-01-4-01-4
https://docs.nvidia.com/cpp/classholoscan_1_1AsynchronousCondition.html#exhale-class-classholoscan-1-1asynchronouscondition
https://docs.nvidia.com/cpp/classholoscan_1_1BooleanCondition.html#exhale-class-classholoscan-1-1booleancondition
https://docs.nvidia.com/cpp/classholoscan_1_1CountCondition.html#exhale-class-classholoscan-1-1countcondition
https://docs.nvidia.com/cpp/classholoscan_1_1DownstreamMessageAffordableCondition.html#exhale-class-classholoscan-1-1downstreammessageaffordablecondition
https://docs.nvidia.com/cpp/classholoscan_1_1MessageAvailableCondition.html#exhale-class-classholoscan-1-1messageavailablecondition
https://docs.nvidia.com/cpp/classholoscan_1_1PeriodicCondition.html#exhale-class-classholoscan-1-1periodiccondition
https://docs.nvidia.com/cpp/classholoscan_1_1Allocator.html#exhale-class-classholoscan-1-1allocator
https://docs.nvidia.com/cpp/classholoscan_1_1BlockMemoryPool.html#exhale-class-classholoscan-1-1blockmemorypool
https://docs.nvidia.com/cpp/classholoscan_1_1Clock.html#exhale-class-classholoscan-1-1clock
https://docs.nvidia.com/cpp/classholoscan_1_1CudaStreamPool.html#exhale-class-classholoscan-1-1cudastreampool
https://docs.nvidia.com/cpp/classholoscan_1_1DoubleBufferReceiver.html#exhale-class-classholoscan-1-1doublebufferreceiver
https://docs.nvidia.com/cpp/classholoscan_1_1DoubleBufferTransmitter.html#exhale-class-classholoscan-1-1doublebuffertransmitter
https://docs.nvidia.com/cpp/classholoscan_1_1ManualClock.html#exhale-class-classholoscan-1-1manualclock
https://docs.nvidia.com/cpp/classholoscan_1_1RealtimeClock.html#exhale-class-classholoscan-1-1realtimeclock
https://docs.nvidia.com/cpp/classholoscan_1_1Receiver.html#exhale-class-classholoscan-1-1receiver
https://docs.nvidia.com/cpp/classholoscan_1_1SerializationBuffer.html#exhale-class-classholoscan-1-1serializationbuffer

NVIDIA Holoscan SDK v2.0.0 215

Class StdComponentSerializer

Class StdEntitySerializer

Class Transmitter

Class UcxComponentSerializer

Class UcxEntitySerializer

Class UcxReceiver

Class UcxSerializationBuffer

Class UcxTransmitter

Class UnboundedAllocator

Schedulers

Class EventBasedScheduler

Class GreedyScheduler

Class MultiThreadScheduler

Network Contexts

Class UcxContext

Native Operator Support

Class Message

Domain Objects

Tensor (interoperability with GXF Tensor and DLPack interface)

Class/Struct

Class Tensor

https://docs.nvidia.com/cpp/classholoscan_1_1StdComponentSerializer.html#exhale-class-classholoscan-1-1stdcomponentserializer
https://docs.nvidia.com/cpp/classholoscan_1_1StdEntitySerializer.html#exhale-class-classholoscan-1-1stdentityserializer
https://docs.nvidia.com/cpp/classholoscan_1_1Transmitter.html#exhale-class-classholoscan-1-1transmitter
https://docs.nvidia.com/cpp/classholoscan_1_1UcxComponentSerializer.html#exhale-class-classholoscan-1-1ucxcomponentserializer
https://docs.nvidia.com/cpp/classholoscan_1_1UcxEntitySerializer.html#exhale-class-classholoscan-1-1ucxentityserializer
https://docs.nvidia.com/cpp/classholoscan_1_1UcxReceiver.html#exhale-class-classholoscan-1-1ucxreceiver
https://docs.nvidia.com/cpp/classholoscan_1_1UcxSerializationBuffer.html#exhale-class-classholoscan-1-1ucxserializationbuffer
https://docs.nvidia.com/cpp/classholoscan_1_1UcxTransmitter.html#exhale-class-classholoscan-1-1ucxtransmitter
https://docs.nvidia.com/cpp/classholoscan_1_1UnboundedAllocator.html#exhale-class-classholoscan-1-1unboundedallocator
https://docs.nvidia.com/cpp/classholoscan_1_1EventBasedScheduler.html#exhale-class-classholoscan-1-1eventbasedscheduler
https://docs.nvidia.com/cpp/classholoscan_1_1GreedyScheduler.html#exhale-class-classholoscan-1-1greedyscheduler
https://docs.nvidia.com/cpp/classholoscan_1_1MultiThreadScheduler.html#exhale-class-classholoscan-1-1multithreadscheduler
https://docs.nvidia.com/cpp/classholoscan_1_1UcxContext.html#exhale-class-classholoscan-1-1ucxcontext
https://docs.nvidia.com/cpp/classholoscan_1_1Message.html#exhale-class-classholoscan-1-1message
https://docs.nvidia.com/cpp/classholoscan_1_1Tensor.html#exhale-class-classholoscan-1-1tensor

NVIDIA Holoscan SDK v2.0.0 216

Class TensorMap

exhale_struct_structholoscan_1_1DLManagedTensorCtx

exhale_class_classholoscan_1_1DLManagedMemoryBuffer

Functions

Function holoscan::calc_strides

Function holoscan::dldatatype_from_typestr

Function holoscan::dldevice_from_pointer

Function holoscan::numpy_dtype

Utilities

Measurement

Class Timer

Enums

Enum MemoryStorageType

Enum ArgElementType

Enum ArgContainerType

Enum ConditionType

Enum DataFlowMetric

Enum ErrorCode

Enum LogLevel

Enum ParameterFlag

Enum SchedulerType

https://docs.nvidia.com/cpp/classholoscan_1_1TensorMap.html#exhale-class-classholoscan-1-1tensormap
https://docs.nvidia.com/cpp/function_tensor_8hpp_1aba4ddc93980bd147bc4970bfa3ff4d81.html#exhale-function-tensor-8hpp-1aba4ddc93980bd147bc4970bfa3ff4d81
https://docs.nvidia.com/cpp/function_tensor_8hpp_1a556c5cb30a8df020398c43aadb4f0922.html#exhale-function-tensor-8hpp-1a556c5cb30a8df020398c43aadb4f0922
https://docs.nvidia.com/cpp/function_tensor_8hpp_1a44e273bf355e7a145e76756817b92f68.html#exhale-function-tensor-8hpp-1a44e273bf355e7a145e76756817b92f68
https://docs.nvidia.com/cpp/function_tensor_8hpp_1aa973c4fccb61338f25cfb0ee4a272b83.html#exhale-function-tensor-8hpp-1aa973c4fccb61338f25cfb0ee4a272b83
https://docs.nvidia.com/cpp/classholoscan_1_1Timer.html#exhale-class-classholoscan-1-1timer
https://docs.nvidia.com/cpp/enum_allocator_8hpp_1a8b7f69b7437dab3499a14e35a5d72c75.html#exhale-enum-allocator-8hpp-1a8b7f69b7437dab3499a14e35a5d72c75
https://docs.nvidia.com/cpp/enum_arg_8hpp_1a797fe63fdfc22e0260d6d44b85f0d9f9.html#exhale-enum-arg-8hpp-1a797fe63fdfc22e0260d6d44b85f0d9f9
https://docs.nvidia.com/cpp/enum_arg_8hpp_1af4a95575587845846f8c58fa49bab5ab.html#exhale-enum-arg-8hpp-1af4a95575587845846f8c58fa49bab5ab
https://docs.nvidia.com/cpp/enum_condition_8hpp_1a5dc906177a4609bd59caa475ba7cdb30.html#exhale-enum-condition-8hpp-1a5dc906177a4609bd59caa475ba7cdb30
https://docs.nvidia.com/cpp/enum_dataflow__tracker_8hpp_1ad33aa68261c043b54c11a39337f5ec1f.html#exhale-enum-dataflow-tracker-8hpp-1ad33aa68261c043b54c11a39337f5ec1f
https://docs.nvidia.com/cpp/enum_errors_8hpp_1a33ad7eb800d03ecad89d263d61891a21.html#exhale-enum-errors-8hpp-1a33ad7eb800d03ecad89d263d61891a21
https://docs.nvidia.com/cpp/enum_logger_8hpp_1aa521e133a102a486c72b613570749983.html#exhale-enum-logger-8hpp-1aa521e133a102a486c72b613570749983
https://docs.nvidia.com/cpp/enum_parameter_8hpp_1aa1004e0a8386455dbece91f902e656a9.html#exhale-enum-parameter-8hpp-1aa1004e0a8386455dbece91f902e656a9
https://docs.nvidia.com/cpp/enum_scheduler_8hpp_1ae182dbb0da5dc05fc4661bec4ee09dc5.html#exhale-enum-scheduler-8hpp-1ae182dbb0da5dc05fc4661bec4ee09dc5

NVIDIA Holoscan SDK v2.0.0 217

Operator-Specific Enums

exhale_enum_include_2holoscan_2operators_2format__converter_2format__converte

exhale_enum_include_2holoscan_2operators_2format__converter_2format__converte

Inference Module Enums

Enum holoinfer_backend

Enum holoinfer_data_processor

Enum holoinfer_datatype

Enum holoinfer_code

Visualization Module Enums

Enum DepthMapRenderMode

Enum ImageFormat

Enum ComponentSwizzle

Enum InitFlags

Enum PrimitiveTopology

Functions

Template Function holoscan::make_application

Template Function holoscan::log_critical

Template Function holoscan::log_error

Template Function holoscan::log_warn

Template Function holoscan::log_info

Template Function holoscan::log_debug

https://docs.nvidia.com/cpp/enum_holoinfer__constants_8hpp_1a22febad39220b4b17ce7afa6fa59d15c.html#exhale-enum-holoinfer-constants-8hpp-1a22febad39220b4b17ce7afa6fa59d15c
https://docs.nvidia.com/cpp/enum_holoinfer__constants_8hpp_1a253286b72a22ac4e1128061e3ceba4f6.html#exhale-enum-holoinfer-constants-8hpp-1a253286b72a22ac4e1128061e3ceba4f6
https://docs.nvidia.com/cpp/enum_holoinfer__constants_8hpp_1a4cf747d00d17adc861a963ca55e9ded4.html#exhale-enum-holoinfer-constants-8hpp-1a4cf747d00d17adc861a963ca55e9ded4
https://docs.nvidia.com/cpp/enum_holoinfer__constants_8hpp_1a654bb7758997dfd1b8a03014c5dfae4a.html#exhale-enum-holoinfer-constants-8hpp-1a654bb7758997dfd1b8a03014c5dfae4a
https://docs.nvidia.com/cpp/enum_depth__map__render__mode_8hpp_1a1610f620d0ec7bb602c2f05da951e4fa.html#exhale-enum-depth-map-render-mode-8hpp-1a1610f620d0ec7bb602c2f05da951e4fa
https://docs.nvidia.com/cpp/enum_image__format_8hpp_1ac1df8331638c94daefdc3b27385e0433.html#exhale-enum-image-format-8hpp-1ac1df8331638c94daefdc3b27385e0433
https://docs.nvidia.com/cpp/enum_image__format_8hpp_1ada3d391622462f8571238aec0ea420ec.html#exhale-enum-image-format-8hpp-1ada3d391622462f8571238aec0ea420ec
https://docs.nvidia.com/cpp/enum_init__flags_8hpp_1aabff63dc2d78808d2a1e55f651be95bb.html#exhale-enum-init-flags-8hpp-1aabff63dc2d78808d2a1e55f651be95bb
https://docs.nvidia.com/cpp/enum_primitive__topology_8hpp_1a0bd75c25db987e4b90d482f641883a35.html#exhale-enum-primitive-topology-8hpp-1a0bd75c25db987e4b90d482f641883a35
https://docs.nvidia.com/cpp/function_application_8hpp_1afd5a542cf1c8166e8c32bd2618adfd71.html#exhale-function-application-8hpp-1afd5a542cf1c8166e8c32bd2618adfd71
https://docs.nvidia.com/cpp/function_logger_8hpp_1ab96dd0720200f30d82a68125a9880930.html#exhale-function-logger-8hpp-1ab96dd0720200f30d82a68125a9880930
https://docs.nvidia.com/cpp/function_logger_8hpp_1a4ff4b7f522e771a54df59d2cea8dc4e6.html#exhale-function-logger-8hpp-1a4ff4b7f522e771a54df59d2cea8dc4e6
https://docs.nvidia.com/cpp/function_logger_8hpp_1a2a6bf3f4a33139e6340f3242e198d994.html#exhale-function-logger-8hpp-1a2a6bf3f4a33139e6340f3242e198d994
https://docs.nvidia.com/cpp/function_logger_8hpp_1a511fe905cb7b47a6abc589544f0dd007.html#exhale-function-logger-8hpp-1a511fe905cb7b47a6abc589544f0dd007
https://docs.nvidia.com/cpp/function_logger_8hpp_1af5d15f6a4c76ce8883fb9a3df64cf8af.html#exhale-function-logger-8hpp-1af5d15f6a4c76ce8883fb9a3df64cf8af

NVIDIA Holoscan SDK v2.0.0 218

Template Function holoscan::log_trace

Template Function holoscan::log_message

Function holoscan::log_level

Function holoscan::set_log_level

Function holoscan::set_log_pattern

Typedefs

Typedef holoscan::unexpect_t

Typedef holoscan::bad_expected_access

Typedef holoscan::unexpected

Typedef holoscan::expected

Typedef holoscan::OperatorFlowGraph

Typedef holoscan::FragmentFlowGraph

Typedef holoscan::Parameter

Typedef holoscan::OperatorGraph

Typedef holoscan::OperatorEdgeDataElementType

Typedef holoscan::FragmentNodeType

Typedef holoscan::FragmentEdgeDataElementType

Typedef holoscan::FragmentGraph

Typedef holoscan::OperatorNodeType

Typedef holoscan::remove_pointer_t

Typedef holoscan::is_yaml_convertable_t

https://docs.nvidia.com/cpp/function_logger_8hpp_1a3c9f3f0113a317dadcbfd9c402f04882.html#exhale-function-logger-8hpp-1a3c9f3f0113a317dadcbfd9c402f04882
https://docs.nvidia.com/cpp/function_logger_8hpp_1a60d44225f9b1825fd9884879fee86db3.html#exhale-function-logger-8hpp-1a60d44225f9b1825fd9884879fee86db3
https://docs.nvidia.com/cpp/function_logger_8hpp_1a87d3a6c0dc0d1186f82ed4b9666bd852.html#exhale-function-logger-8hpp-1a87d3a6c0dc0d1186f82ed4b9666bd852
https://docs.nvidia.com/cpp/function_logger_8hpp_1a30f98b4f124293d8fe8493e6de2c06d0.html#exhale-function-logger-8hpp-1a30f98b4f124293d8fe8493e6de2c06d0
https://docs.nvidia.com/cpp/function_logger_8hpp_1a8017df47ff9679f3805d1a0b7e6dfe94.html#exhale-function-logger-8hpp-1a8017df47ff9679f3805d1a0b7e6dfe94
https://docs.nvidia.com/cpp/typedef_expected_8hpp_1a21751b7658eb9233f58d9a5a4f2c1bb3.html#exhale-typedef-expected-8hpp-1a21751b7658eb9233f58d9a5a4f2c1bb3
https://docs.nvidia.com/cpp/typedef_expected_8hpp_1a8c29243ec7fdd4aef7d935f0c72dc3f2.html#exhale-typedef-expected-8hpp-1a8c29243ec7fdd4aef7d935f0c72dc3f2
https://docs.nvidia.com/cpp/typedef_expected_8hpp_1add9f49110f4c6595e76137d1481cc95e.html#exhale-typedef-expected-8hpp-1add9f49110f4c6595e76137d1481cc95e
https://docs.nvidia.com/cpp/typedef_expected_8hpp_1af408adac7b395bb6c10178620a7c8bf9.html#exhale-typedef-expected-8hpp-1af408adac7b395bb6c10178620a7c8bf9
https://docs.nvidia.com/cpp/typedef_flow__graph_8hpp_1a4aecea229722688be3a7d30348421aa3.html#exhale-typedef-flow-graph-8hpp-1a4aecea229722688be3a7d30348421aa3
https://docs.nvidia.com/cpp/typedef_flow__graph_8hpp_1aeb18a0625c0375e8da1814e89670c608.html#exhale-typedef-flow-graph-8hpp-1aeb18a0625c0375e8da1814e89670c608
https://docs.nvidia.com/cpp/typedef_forward__def_8hpp_1acaccb6c50efc493a58bf447d50bf0164.html#exhale-typedef-forward-def-8hpp-1acaccb6c50efc493a58bf447d50bf0164
https://docs.nvidia.com/cpp/typedef_graph_8hpp_1a302b71634787b2078f85ce402ff3f47e.html#exhale-typedef-graph-8hpp-1a302b71634787b2078f85ce402ff3f47e
https://docs.nvidia.com/cpp/typedef_graph_8hpp_1a9fa5bdfec4d57e402a8deffe61750b36.html#exhale-typedef-graph-8hpp-1a9fa5bdfec4d57e402a8deffe61750b36
https://docs.nvidia.com/cpp/typedef_graph_8hpp_1ab20b0666014a0fc634583c1dc5af455e.html#exhale-typedef-graph-8hpp-1ab20b0666014a0fc634583c1dc5af455e
https://docs.nvidia.com/cpp/typedef_graph_8hpp_1ae1a8c1bff7a3db3c062684612e1e050c.html#exhale-typedef-graph-8hpp-1ae1a8c1bff7a3db3c062684612e1e050c
https://docs.nvidia.com/cpp/typedef_graph_8hpp_1ae5b60650556412963c694a9b15a81cc1.html#exhale-typedef-graph-8hpp-1ae5b60650556412963c694a9b15a81cc1
https://docs.nvidia.com/cpp/typedef_graph_8hpp_1afb2c17034d7e3e004a9131763e8f3d5f.html#exhale-typedef-graph-8hpp-1afb2c17034d7e3e004a9131763e8f3d5f
https://docs.nvidia.com/cpp/typedef_type__traits_8hpp_1a0d3f2b03e9f4324fd70e2cd5139fd1ec.html#exhale-typedef-type-traits-8hpp-1a0d3f2b03e9f4324fd70e2cd5139fd1ec
https://docs.nvidia.com/cpp/typedef_type__traits_8hpp_1a101b19fbb6e8792e899bbd1fff211698.html#exhale-typedef-type-traits-8hpp-1a101b19fbb6e8792e899bbd1fff211698

NVIDIA Holoscan SDK v2.0.0 219

Typedef holoscan::is_shared_ptr_t

Typedef holoscan::base_type_t

Typedef holoscan::is_scalar_t

Typedef holoscan::is_array_t

Typedef holoscan::is_vector_t

Typedef holoscan::type_info

Inference Module Typedefs

Typedef holoscan::inference::processor_FP

Typedef holoscan::inference::transforms_FP

Typedef holoscan::inference::MultiMappings

Typedef holoscan::inference::Mappings

Typedef holoscan::inference::DataMap

Typedef holoscan::inference::DimType

Typedef holoscan::inference::byte

Typedef holoscan::inference::TimePoint

Typedef holoscan::inference::node_type

Visualization Module Typedefs

Typedef GLFWwindow

Typedef holoscan::viz::InstanceHandle

Variables

Variable holoscan::kDefaultCpuMetrics

https://docs.nvidia.com/cpp/typedef_type__traits_8hpp_1a2e7271fe8cdf8230122ceb983228ec4e.html#exhale-typedef-type-traits-8hpp-1a2e7271fe8cdf8230122ceb983228ec4e
https://docs.nvidia.com/cpp/typedef_type__traits_8hpp_1a399cd74a5f909d7b3815158ac32c8471.html#exhale-typedef-type-traits-8hpp-1a399cd74a5f909d7b3815158ac32c8471
https://docs.nvidia.com/cpp/typedef_type__traits_8hpp_1a737b5fa7c80def8d7ee21a775b7ef00a.html#exhale-typedef-type-traits-8hpp-1a737b5fa7c80def8d7ee21a775b7ef00a
https://docs.nvidia.com/cpp/typedef_type__traits_8hpp_1a8898228ed7bb54554abcb87c4d2b8f7c.html#exhale-typedef-type-traits-8hpp-1a8898228ed7bb54554abcb87c4d2b8f7c
https://docs.nvidia.com/cpp/typedef_type__traits_8hpp_1ab095d25df2246a0edf7d95b99b728908.html#exhale-typedef-type-traits-8hpp-1ab095d25df2246a0edf7d95b99b728908
https://docs.nvidia.com/cpp/typedef_type__traits_8hpp_1aef13568514a360858861221b587da84e.html#exhale-typedef-type-traits-8hpp-1aef13568514a360858861221b587da84e
https://docs.nvidia.com/cpp/typedef_data__processor_8hpp_1a52a96a33d28d5268514788dc66953631.html#exhale-typedef-data-processor-8hpp-1a52a96a33d28d5268514788dc66953631
https://docs.nvidia.com/cpp/typedef_data__processor_8hpp_1aebc6df65b363c69857e1a735ea8108ce.html#exhale-typedef-data-processor-8hpp-1aebc6df65b363c69857e1a735ea8108ce
https://docs.nvidia.com/cpp/typedef_holoinfer__buffer_8hpp_1a087e5c16b34b9ed56caef479b684c421.html#exhale-typedef-holoinfer-buffer-8hpp-1a087e5c16b34b9ed56caef479b684c421
https://docs.nvidia.com/cpp/typedef_holoinfer__buffer_8hpp_1a33b28575b822fc2e74dd30eab1ae22bf.html#exhale-typedef-holoinfer-buffer-8hpp-1a33b28575b822fc2e74dd30eab1ae22bf
https://docs.nvidia.com/cpp/typedef_holoinfer__buffer_8hpp_1acafba819f141eab27791da813db442db.html#exhale-typedef-holoinfer-buffer-8hpp-1acafba819f141eab27791da813db442db
https://docs.nvidia.com/cpp/typedef_holoinfer__buffer_8hpp_1aeff0d061b611008ee9ba3dea8e1f167d.html#exhale-typedef-holoinfer-buffer-8hpp-1aeff0d061b611008ee9ba3dea8e1f167d
https://docs.nvidia.com/cpp/typedef_holoinfer__constants_8hpp_1a570844f644ca51f733f6420860f16338.html#exhale-typedef-holoinfer-constants-8hpp-1a570844f644ca51f733f6420860f16338
https://docs.nvidia.com/cpp/typedef_holoinfer__constants_8hpp_1ab4984b33b9a16734f72d72ce45e4a4ba.html#exhale-typedef-holoinfer-constants-8hpp-1ab4984b33b9a16734f72d72ce45e4a4ba
https://docs.nvidia.com/cpp/typedef_modules_2holoinfer_2src_2include_2holoinfer__utils_8hpp_1a45cf3d8d57bd6bbf4de6fcfcb24f2de9.html#exhale-typedef-modules-2holoinfer-2src-2include-2holoinfer-utils-8hpp-1a45cf3d8d57bd6bbf4de6fcfcb24f2de9
https://docs.nvidia.com/cpp/typedef_modules_2holoviz_2src_2holoviz_2holoviz_8hpp_1a3c96d80d363e67d13a41b5d1821f3242.html#exhale-typedef-modules-2holoviz-2src-2holoviz-2holoviz-8hpp-1a3c96d80d363e67d13a41b5d1821f3242
https://docs.nvidia.com/cpp/typedef_modules_2holoviz_2src_2holoviz_2holoviz_8hpp_1a4dc626cd976f39a19971569b6727a3a0.html#exhale-typedef-modules-2holoviz-2src-2holoviz-2holoviz-8hpp-1a4dc626cd976f39a19971569b6727a3a0
https://docs.nvidia.com/cpp/variable_cpu__resource__monitor_8hpp_1a81f044dd96503e8919462ec079ecbc65.html#exhale-variable-cpu-resource-monitor-8hpp-1a81f044dd96503e8919462ec079ecbc65

NVIDIA Holoscan SDK v2.0.0 220

Variable holoscan::metricToString

Variable holoscan::kDefaultLogfileName

Variable holoscan::kDefaultNumBufferedMessages

Variable holoscan::kDefaultLatencyThreshold

Variable holoscan::kDefaultNumLastMessagesToDiscard

Variable holoscan::kDefaultNumStartMessagesToSkip

Variable holoscan::unexpect

Variable holoscan::kDefaultGpuMetrics

Variable holoscan::kDefaultSerializationBufferSize

Variable holoscan::dimension_of_v

Variable holoscan::is_array_v

Variable holoscan::is_one_of_derived_v

Variable holoscan::is_scalar_v

Variable holoscan::is_yaml_convertable_v

Variable holoscan::is_shared_ptr_v

Variable holoscan::is_one_of_v

Variable holoscan::is_vector_v

exhale_variable_ucx__receiver_8hpp_1ad86e6465bc051d691c6e6f92ae0ccafe

Variable holoscan::kDefaultUcxSerializationBufferSize

Inference Module Variables

exhale_variable_infer__manager_8hpp_1a4de612a9b562e15c3b767cccdee50b1e

Variable holoscan::inference::kHoloInferDataTypeMap

https://docs.nvidia.com/cpp/variable_dataflow__tracker_8hpp_1a3e240487edfc73e59755f29d5a9ffe78.html#exhale-variable-dataflow-tracker-8hpp-1a3e240487edfc73e59755f29d5a9ffe78
https://docs.nvidia.com/cpp/variable_dataflow__tracker_8hpp_1a7cb835d2f1d0cad83d925f0b44d13acd.html#exhale-variable-dataflow-tracker-8hpp-1a7cb835d2f1d0cad83d925f0b44d13acd
https://docs.nvidia.com/cpp/variable_dataflow__tracker_8hpp_1a7e23da7f0ffa20bc79bdb743564bf0f6.html#exhale-variable-dataflow-tracker-8hpp-1a7e23da7f0ffa20bc79bdb743564bf0f6
https://docs.nvidia.com/cpp/variable_dataflow__tracker_8hpp_1a920aecafd8024abe3a125cbf0e32ce63.html#exhale-variable-dataflow-tracker-8hpp-1a920aecafd8024abe3a125cbf0e32ce63
https://docs.nvidia.com/cpp/variable_dataflow__tracker_8hpp_1aa2cfa7e17c78f18fc91c444dfa0945d1.html#exhale-variable-dataflow-tracker-8hpp-1aa2cfa7e17c78f18fc91c444dfa0945d1
https://docs.nvidia.com/cpp/variable_dataflow__tracker_8hpp_1af7cd18b9eb2b9d9b76d328b59900f566.html#exhale-variable-dataflow-tracker-8hpp-1af7cd18b9eb2b9d9b76d328b59900f566
https://docs.nvidia.com/cpp/variable_expected_8hpp_1ae6efc4444700a9a08911d884857bb06c.html#exhale-variable-expected-8hpp-1ae6efc4444700a9a08911d884857bb06c
https://docs.nvidia.com/cpp/variable_gpu__resource__monitor_8hpp_1ae9c4ec64e9b50146f256c3e70eccb823.html#exhale-variable-gpu-resource-monitor-8hpp-1ae9c4ec64e9b50146f256c3e70eccb823
https://docs.nvidia.com/cpp/variable_serialization__buffer_8hpp_1aa7a8ceba3b1b28fd04e0139b78701b36.html#exhale-variable-serialization-buffer-8hpp-1aa7a8ceba3b1b28fd04e0139b78701b36
https://docs.nvidia.com/cpp/variable_type__traits_8hpp_1a2b61ac0c36bd39ca398dde9664e65e33.html#exhale-variable-type-traits-8hpp-1a2b61ac0c36bd39ca398dde9664e65e33
https://docs.nvidia.com/cpp/variable_type__traits_8hpp_1a3891b0c8d38e9c0a11b23dc8edd31ceb.html#exhale-variable-type-traits-8hpp-1a3891b0c8d38e9c0a11b23dc8edd31ceb
https://docs.nvidia.com/cpp/variable_type__traits_8hpp_1a7c08bbb1ef7ef321fb992a95efd512da.html#exhale-variable-type-traits-8hpp-1a7c08bbb1ef7ef321fb992a95efd512da
https://docs.nvidia.com/cpp/variable_type__traits_8hpp_1ab85cb33786104651460327900b9a4bb0.html#exhale-variable-type-traits-8hpp-1ab85cb33786104651460327900b9a4bb0
https://docs.nvidia.com/cpp/variable_type__traits_8hpp_1ad783526c0f45be5263f0e3a05593d611.html#exhale-variable-type-traits-8hpp-1ad783526c0f45be5263f0e3a05593d611
https://docs.nvidia.com/cpp/variable_type__traits_8hpp_1ad7d7f0199299096140f9cfb74300d0de.html#exhale-variable-type-traits-8hpp-1ad7d7f0199299096140f9cfb74300d0de
https://docs.nvidia.com/cpp/variable_type__traits_8hpp_1af646bfc4bc70953fc1efc7bc3db459a5.html#exhale-variable-type-traits-8hpp-1af646bfc4bc70953fc1efc7bc3db459a5
https://docs.nvidia.com/cpp/variable_type__traits_8hpp_1af73fdd04b98b6ee3860a13bfe81229fb.html#exhale-variable-type-traits-8hpp-1af73fdd04b98b6ee3860a13bfe81229fb
https://docs.nvidia.com/cpp/variable_ucx__serialization__buffer_8hpp_1a562f8204ee23b5237632895651668eb8.html#exhale-variable-ucx-serialization-buffer-8hpp-1a562f8204ee23b5237632895651668eb8
https://docs.nvidia.com/cpp/variable_modules_2holoinfer_2src_2include_2holoinfer__utils_8hpp_1aed7f62ec8a46ab6cbe3334ac26c719c6.html#exhale-variable-modules-2holoinfer-2src-2include-2holoinfer-utils-8hpp-1aed7f62ec8a46ab6cbe3334ac26c719c6

NVIDIA Holoscan SDK v2.0.0 221

Variable holoscan::inference::process_manager

Variable holoscan::inference::StreamDeleter

Holoscan API
Holoviz

https://docs.nvidia.com/cpp/variable_process__manager_8hpp_1ab99c5b36d1bbf94cb7b4d231de096fdb.html#exhale-variable-process-manager-8hpp-1ab99c5b36d1bbf94cb7b4d231de096fdb
https://docs.nvidia.com/cpp/variable_utils_8hpp_1aba4496e4cd0c7966ca1730727c109373.html#exhale-variable-utils-8hpp-1aba4496e4cd0c7966ca1730727c109373
https://docs.nvidia.com/cpp/apidoc_root.html
https://docs.nvidia.com/cpp/apidoc_root.html#holoviz

NVIDIA Holoscan SDK v2.0.0 222

Holoscan Python API
Holoscan Python Submodules

holoscan.conditions
holoscan.core
holoscan.executors
holoscan.graphs
holoscan.gxf
holoscan.logger
holoscan.operators
holoscan.resources
holoscan.schedulers

holoscan.conditions
This module provides a Python API to underlying C++ API Conditions.

holos
can.c
onditi
ons.B
oolea
nCon
dition

Boolean condition class.

holos
can.c
onditi
ons.C
ountC
onditi
on

Count condition class.

https://docs.nvidia.com/python/holoscan_python_api_conditions.html
https://docs.nvidia.com/python/holoscan_python_api_core.html
https://docs.nvidia.com/python/holoscan_python_api_executors.html
https://docs.nvidia.com/python/holoscan_python_api_graphs.html
https://docs.nvidia.com/python/holoscan_python_api_gxf.html
https://docs.nvidia.com/python/holoscan_python_api_logger.html
https://docs.nvidia.com/python/holoscan_python_api_operators.html
https://docs.nvidia.com/python/holoscan_python_api_resources.html
https://docs.nvidia.com/python/holoscan_python_api_schedulers.html

NVIDIA Holoscan SDK v2.0.0 223

holos
can.c
onditi
ons.D
ownst
ream
Mess
ageAf
forda
bleCo
nditio
n

Condition that permits execution when the downstream operator can accept
new messages.

holos
can.c
onditi
ons.
Mess
ageAv
ailabl
eCon
dition

Condition that permits execution when an upstream message is available.

holos
can.c
onditi
ons.P
eriodi
cCon
dition

Condition class to support periodic execution of operators.

class holoscan.conditions.BooleanCondition

Bases: holoscan.gxf._gxf.GXFCondition

Boolean condition class.

Used to control whether an entity is executed.

Attributes

NVIDIA Holoscan SDK v2.0.0 224

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the condition.

frag
ment

Fragment that the condition belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the condition.

id The identifier of the component.

nam
e

The name of the condition.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 225

chec
k_tick
_ena
bled

(self)

Check whether the condition is True .

disab
le_tic
k

(self)

Set condition to False .

enabl
e_tic
k

(self)

Set condition to True .

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.conditions._conditions.BooleanCondition, fragment:
holoscan.core._core.Fragment, enable_tick: bool = True, name: str =
'noname_boolean_condition') None

Boolean condition.

Parameters

fragment

The fragment the condition will be associated with

NVIDIA Holoscan SDK v2.0.0 226

enable_tick

Boolean value for the condition.

name

The name of the condition.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

check_tick_enabled(self: holoscan.conditions._conditions.BooleanCondition) bool

Check whether the condition is True .

property description

YAML formatted string describing the condition.

disable_tick(self: holoscan.conditions._conditions.BooleanCondition) None

Set condition to False .

enable_tick(self: holoscan.conditions._conditions.BooleanCondition) None

NVIDIA Holoscan SDK v2.0.0 227

Set condition to True .

property fragment

Fragment that the condition belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the condition.

Returns

str

The GXF type name of the condition

property id

The identifier of the component.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 228

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFCondition) None

Initialize the component.

property name

The name of the condition.

Returns

name

setup(self: holoscan.conditions._conditions.BooleanCondition, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the condition.

property spec

class holoscan.conditions.CountCondition

Bases: holoscan.gxf._gxf.GXFCondition

Count condition class.

Attributes

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFCondition
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 229

args The list of arguments associated with the component.

coun
t

The execution count associated with the condition

descr
iptio
n

YAML formatted string describing the condition.

frag
ment

Fragment that the condition belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the condition.

id The identifier of the component.

nam
e

The name of the condition.

spec

Methods

add_
arg

(*args,

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 230

 **kwa
rgs)

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, a
rg0)

Define the component specification.

__init__(self: holoscan.conditions._conditions.CountCondition, fragment:
holoscan.core._core.Fragment, count: int = 1, name: str = 'noname_count_condition')
None

Count condition.

Parameters

fragment

The fragment the condition will be associated with

count

The execution count value used by the condition.

name

The name of the condition.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

NVIDIA Holoscan SDK v2.0.0 231

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property count

The execution count associated with the condition

property description

YAML formatted string describing the condition.

property fragment

Fragment that the condition belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

NVIDIA Holoscan SDK v2.0.0 232

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the condition.

Returns

str

The GXF type name of the condition

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFCondition) None

Initialize the component.

property name

The name of the condition.

Returns

name

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent
https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFCondition

NVIDIA Holoscan SDK v2.0.0 233

setup(self: holoscan.conditions._conditions.CountCondition, arg0:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the condition.

property spec

class holoscan.conditions.DownstreamMessageAffordableCondition

Bases: holoscan.gxf._gxf.GXFCondition

Condition that permits execution when the downstream operator can accept new
messages.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the condition.

frag
ment

Fragment that the condition belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 234

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the condition.

id The identifier of the component.

min_
size

The minimum number of free slots required for the downstream entity's
back buffer.

nam
e

The name of the condition.

trans
mitte
r

The transmitter associated with the condition.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the condition

setu
p

(self, s
pec)

Define the component specification.

NVIDIA Holoscan SDK v2.0.0 235

__init__(self: holoscan.conditions._conditions.DownstreamMessageAffordableCondition,
fragment: holoscan.core._core.Fragment, min_size: int = 1, name: str =
'noname_downstream_affordable_condition') None

Condition that permits execution when the downstream operator can accept
new messages.

Parameters

fragment

The fragment the condition will be associated with

min_size

The minimum number of free slots present in the back buffer.

name

The name of the condition.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

NVIDIA Holoscan SDK v2.0.0 236

property description

YAML formatted string describing the condition.

property fragment

Fragment that the condition belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the condition.

Returns

str

The GXF type name of the condition

property id

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 237

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.conditions._conditions.DownstreamMessageAffordableCondition)
 None

Initialize the condition

This method is called only once when the condition is created for the first time, and
uses a light-weight initialization.

property min_size

The minimum number of free slots required for the downstream entity’s back
buffer.

property name

The name of the condition.

Returns

name

setup(self: holoscan.conditions._conditions.DownstreamMessageAffordableCondition,
spec: holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the condition.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 238

property spec

property transmitter

The transmitter associated with the condition.

class holoscan.conditions.MessageAvailableCondition

Bases: holoscan.gxf._gxf.GXFCondition

Condition that permits execution when an upstream message is available.

Executed when the associated receiver queue has at least a certain number of
elements. The receiver is specified using the receiver parameter of the scheduling
term. The minimum number of messages that permits the execution of the entity is
specified by min_size. An optional parameter for this scheduling term is
front_stage_max_size, the maximum front stage message count. If this parameter is
set, the scheduling term will only allow execution if the number of messages in the
queue does not exceed this count. It can be used for operators which do not
consume all messages from the queue.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the condition.

frag
ment

Fragment that the condition belongs to.

front
_stag
e_ma
x_siz
e

Threshold for the number of front stage messages.

gxf_ci
d

The GXF component ID.

NVIDIA Holoscan SDK v2.0.0 239

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the condition.

id The identifier of the component.

min_
size

The total number of messages over a set of input channels needed to
permit execution.

nam
e

The name of the condition.

recei
ver

The receiver associated with the condition.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

NVIDIA Holoscan SDK v2.0.0 240

initial
ize

(self)
Initialize the condition

setu
p

(self, a
rg0)

Define the component specification.

__init__(self: holoscan.conditions._conditions.MessageAvailableCondition, fragment:
holoscan.core._core.Fragment, min_size: int = 1, front_stage_max_size: int = 1, name: str
= 'noname_message_available_condition') None

Condition that permits execution when an upstream message is available.

Parameters

fragment

The fragment the condition will be associated with

min_size

The total number of messages over a set of input channels needed to
permit execution.

front_stage_max_size

Threshold for the number of front stage messages. Execution is only
allowed if the number of front stage messages does not exceed this
count.

name

The name of the condition.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

NVIDIA Holoscan SDK v2.0.0 241

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the condition.

property fragment

Fragment that the condition belongs to.

Returns

name

property front_stage_max_size

Threshold for the number of front stage messages. Execution is only allowed if the
number of front stage messages does not exceed this count.

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

NVIDIA Holoscan SDK v2.0.0 242

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the condition.

Returns

str

The GXF type name of the condition

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.conditions._conditions.MessageAvailableCondition) None

Initialize the condition

This method is called only once when the condition is created for the first time, and
uses a light-weight initialization.

property min_size

The total number of messages over a set of input channels needed to permit
execution.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 243

property name

The name of the condition.

Returns

name

property receiver

The receiver associated with the condition.

setup(self: holoscan.conditions._conditions.MessageAvailableCondition, arg0:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the condition.

property spec

class holoscan.conditions.PeriodicCondition

Bases: holoscan.gxf._gxf.GXFCondition

Condition class to support periodic execution of operators. The recess (pause)
period indicates the minimum amount of time that must elapse before the
compute() method can be executed again. The recess period can be specified as an
integer value in nanoseconds.

For example: 1000 for 1 microsecond 1000000 for 1 millisecond, and 10000000000
for 1 second.

The recess (pause) period can also be specified as a datetime.timedelta object
representing a duration. (see
https://docs.python.org/3/library/datetime.html#timedelta-objects)

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec
https://docs.python.org/3/library/datetime.html#timedelta-objects

NVIDIA Holoscan SDK v2.0.0 244

For example: datetime.timedelta(minutes=1), datetime.timedelta(seconds=1),
datetime.timedelta(milliseconds=1) and datetime.timedelta(microseconds=1).
Supported argument names are: weeks| days | hours | minutes | seconds |
millisecons | microseconds This requires import datetime.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the condition.

frag
ment

Fragment that the condition belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the condition.

id The identifier of the component.

nam
e

The name of the condition.

spec

Methods

NVIDIA Holoscan SDK v2.0.0 245

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

last_r
un_ti
mest
amp

(self)

Gets the integer representing the last run time stamp.

reces
s_per
iod

(*args,
 **kwa
rgs)

Overloaded function.

reces
s_per
iod_n
s

(self)

Gets the recess (pause) period value in nanoseconds.

setu
p

(self, a
rg0)

Define the component specification.

__init__(*args, **kwargs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 246

1. __init__(self: holoscan.conditions._conditions.PeriodicCondition,
fragment: holoscan.core._core.Fragment, recess_period: int, name: str =
‘noname_periodic_condition’) -> None

2. __init__(self: holoscan.conditions._conditions.PeriodicCondition,
fragment: holoscan.core._core.Fragment, recess_period:
datetime.timedelta, name: str = ‘noname_periodic_condition’) -> None

Condition class to support periodic execution of operators.

Parameters

fragment

The fragment the condition will be associated with

recess_period

The recess (pause) period value used by the condition. If an integer is
provided, the units are in nanoseconds.

name

The name of the condition.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

NVIDIA Holoscan SDK v2.0.0 247

Returns

arglist

property description

YAML formatted string describing the condition.

property fragment

Fragment that the condition belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the condition.

Returns

str

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 248

The GXF type name of the condition

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFCondition) None

Initialize the component.

last_run_timestamp(self: holoscan.conditions._conditions.PeriodicCondition) int

Gets the integer representing the last run time stamp.

property name

The name of the condition.

Returns

name

recess_period(*args, **kwargs)

Overloaded function.

1. recess_period(self: holoscan.conditions._conditions.PeriodicCondition, arg0:
int) -> None

Sets the recess (pause) period associated with the condition. The recess period can
be specified as an integer value in nanoseconds or a datetime.timedelta object
representing a duration.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFCondition

NVIDIA Holoscan SDK v2.0.0 249

2. recess_period(self: holoscan.conditions._conditions.PeriodicCondition, arg0:
datetime.timedelta) -> None

Sets the recess (pause) period associated with the condition. The recess period can
be specified as an integer value in nanoseconds or a datetime.timedelta object
representing a duration.

recess_period_ns(self: holoscan.conditions._conditions.PeriodicCondition) int

Gets the recess (pause) period value in nanoseconds.

setup(self: holoscan.conditions._conditions.PeriodicCondition, arg0:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the condition.

property spec

holoscan.core
This module provides a Python API for the core C++ API classes.

The Application class is the primary class that should be derived from to create a custom
application.

holos
can.c
ore.A
pplica
tion

([argv])

Application class.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 250

holos
can.c
ore.A
rg

Class representing a typed argument.

holos
can.c
ore.A
rgCon
tainer
Type

Enum class for an Arg's container type.

holos
can.c
ore.A
rgEle
ment
Type

Enum class for an Arg's element type.

holos
can.c
ore.A
rgList

Class representing a list of arguments.

holos
can.c
ore.A
rgTyp
e

Class containing argument type info.

holos
can.c
ore.C
LIOpti
ons

Attributes

holos
can.c
ore.C
ompo
nent

Base component class.

NVIDIA Holoscan SDK v2.0.0 251

holos
can.c
ore.C
ompo
nentS
pec

Component specification class.

holos
can.c
ore.C
onditi
onTy
pe

Enum class for Condition types.

holos
can.c
ore.C
onditi
on

Class representing a condition.

holos
can.c
ore.C
onfig

Configuration class.

holos
can.c
ore.D
ataFlo
wMet
ric

Enum class for DataFlowMetric type.

holos
can.c
ore.D
ataFlo
wTrac
ker

Data Flow Tracker class.

NVIDIA Holoscan SDK v2.0.0 252

holos
can.c
ore.D
LDevi
ce

DLDevice class.

holos
can.c
ore.D
LDevi
ceTyp
e

Members:

holos
can.c
ore.E
xecuti
onCo
ntext

Class representing an execution context.

holos
can.c
ore.E
xecut
or

Executor class.

holos
can.c
ore.Fr
agme
nt

([app,
name])

Fragment class.

holos
can.c
ore.G
raph

alias of holoscan.graphs._graphs.OperatorGraph

NVIDIA Holoscan SDK v2.0.0 253

holos
can.c
ore.In
putCo
ntext

Class representing an input context.

holos
can.c
ore.I
OSpe
c

I/O specification class.

holos
can.c
ore.M
essag
e

Class representing a message.

holos
can.c
ore.N
etwor
kCont
ext

Class representing a network context.

holos
can.c
ore.O
perat
or

(fragm
ent, *a
rgs, **
kwargs
)

Operator class.

holos
can.c
ore.O
perat
orSpe
c

alias of holoscan.core._core.PyOperatorSpec

NVIDIA Holoscan SDK v2.0.0 254

holos
can.c
ore.O
utput
Conte
xt

Class representing an output context.

holos
can.c
ore.P
aram
eterFl
ag

Enum class for parameter flags.

holos
can.c
ore.R
esour
ce

Class representing a resource.

holos
can.c
ore.T
ensor

alias of holoscan.core._core.PyTensor

holos
can.c
ore.Tr
acker

(app, *
[, filena
me, ...])

Context manager to add data flow tracking to an application.

holos
can.c
ore.ar
g_to_
py_ob
ject

(arg)

Utility that converts an Arg to a corresponding Python object.

NVIDIA Holoscan SDK v2.0.0 255

holos
can.c
ore.ar
glist_t
o_kw
args

(arglist)

Utility that converts an ArgList to a Python kwargs dictionary.

holos
can.c
ore.k
wargs
_to_ar
glist

(**kwa
rgs)

Utility that converts a set of python keyword arguments to an ArgList.

holos
can.c
ore.p
y_obj
ect_to
_arg

(obj[, n
ame])

Utility that converts a single python argument to a corresponding Arg type.

class holoscan.core.Application(argv=None, *args, **kwargs)

Bases: holoscan.core._core.Application

Application class.

This constructor parses the command line for flags that are recognized by App
Driver/Worker, and removes all recognized flags so users can use the remaining
flags for their own purposes.

If the arguments are not specified, the arguments are retrieved from
sys.executable and sys.argv .

The arguments after processing arguments (parsing Holoscan-specific flags and
removing them) are accessible through the argv attribute.

NVIDIA Holoscan SDK v2.0.0 256

Parameters

argv

The command line arguments to parse. The first item should be the path to
the python executable. If not specified, [sys.executable, *sys.argv] is used.

Examples

Attributes

appli
catio
n

The application associated with the fragment.

argv The command line arguments after processing flags.

descr
iptio
n

The application's description.

exec
utor

Get the executor associated with the fragment.

frag
ment
_grap
h

Get the computation graph (Graph node is a Fragment) associated with
the application.

grap
h

Get the computation graph (Graph node is an Operator) associated with
the fragment.

nam
e

The fragment's name.

>>> from holoscan.core import Application >>> import sys >>>
Application().argv == sys.argv True >>> Application([]).argv == sys.argv True >>>
Application([sys.executable, *sys.argv]).argv == sys.argv True >>>
Application(["python3", "myapp.py", "--driver", "--address=10.0.0.1",
"my_arg1"]).argv ['myapp.py', 'my_arg1']

NVIDIA Holoscan SDK v2.0.0 257

optio
ns

The reference to the CLI options.

versi
on

The application's version.

Methods

add_f
low

(*args,
 **kwa
rgs)

Overloaded function.

add_f
ragm
ent

(self, fr
ag)

Add a fragment to the application.

add_
oper
ator

(self, o
p)

Add an operator to the application.

com
pose

(self)
The compose method of the application.

confi
g

(*args,
 **kwa
rgs)

Overloaded function.

confi
g_key
s

(self)

The set of keys present in the fragment's configuration file.

NVIDIA Holoscan SDK v2.0.0 258

from
_conf
ig

(self, k
ey)

Retrieve parameters from the associated configuration.

kwar
gs

(self, k
ey)

Retrieve a dictionary parameters from the associated configuration.

netw
ork_c
onte
xt

(*args,
 **kwa
rgs)

Overloaded function.

run
(self)

The run method of the application.

run_
asyn
c

()

Run the application asynchronously.

sche
duler

(*args,
 **kwa
rgs)

Overloaded function.

track
(self, n
um_st
art_m
essage
s_to_s
kip, ...)

The track method of the application.

__init__(self: holoscan.core._core.Application, argv: List[str] = []) None

NVIDIA Holoscan SDK v2.0.0 259

Application class.

This constructor parses the command line for flags that are recognized by App
Driver/Worker, and removes all recognized flags so users can use the
remaining flags for their own purposes.

If the arguments are not specified, the arguments are retrieved from
sys.executable and sys.argv .

The arguments after processing arguments (parsing Holoscan-specific flags
and removing them) are accessible through the argv attribute.

Parameters

argv

The command line arguments to parse. The first item should be the path
to the python executable. If not specified, [sys.executable, *sys.argv] is
used.

Examples

add_flow(*args, **kwargs)

Overloaded function.

1. add_flow(self: holoscan.core._core.Application, upstream_op:
holoscan.core._core.Operator, downstream_op:
holoscan.core._core.Operator) -> None

2. add_flow(self: holoscan.core._core.Application, upstream_op:
holoscan.core._core.Operator, downstream_op:
holoscan.core._core.Operator, port_pairs: Set[Tuple[str, str]]) -> None

>>> from holoscan.core import Application >>> import sys >>>
Application().argv == sys.argv True >>> Application([]).argv == sys.argv
True >>> Application([sys.executable, *sys.argv]).argv == sys.argv True
>>> Application(["python3", "myapp.py", "--driver", "--address=10.0.0.1",
"my_arg1"]).argv ['myapp.py', 'my_arg1']

NVIDIA Holoscan SDK v2.0.0 260

Connect two operators associated with the fragment.

Parameters

upstream_op

Source operator.

downstream_op

Destination operator.

port_pairs

Sequence of ports to connect. The first element of each 2-tuple is a port
from upstream_op while the second element is the port of downstream_op
to which it connects.

Notes

This is an overloaded function. Additional variants exist:

1.) For the Application class there is a variant where the first two arguments
are of type holoscan.core.Fragment instead of holoscan.core.Operator. This
variant is used in building multi-fragment applications. 2.) There are also
variants that omit the port_pairs argument that are applicable when there is
only a single output on the upstream operator/fragment and a single input on
the downstream operator/fragment.

3. add_flow(self: holoscan.core._core.Application, upstream_frag:
holoscan.core._core.Fragment, downstream_frag:
holoscan.core._core.Fragment, port_pairs: Set[Tuple[str, str]]) -> None

add_fragment(self: holoscan.core._core.Application, frag: holoscan.core._core.Fragment)
 None

Add a fragment to the application.

Parameters

frag

The fragment to add.

NVIDIA Holoscan SDK v2.0.0 261

add_operator(self: holoscan.core._core.Application, op: holoscan.core._core.Operator)
None

Add an operator to the application.

Parameters

op

The operator to add.

property application

The application associated with the fragment.

Returns

app

property argv

The command line arguments after processing flags. This does not include the
python executable like sys.argv does.

Returns

argv

compose(self: holoscan.core._core.Application) None

The compose method of the application.

This method should be called after config, but before run in order to compose the
computation graph.

config(*args, **kwargs)

Overloaded function.

1. config(self: holoscan.core._core.Fragment, config_file: str, prefix: str = ‘’) ->
None

Configuration class.

NVIDIA Holoscan SDK v2.0.0 262

Represents configuration parameters as read from a YAML file.

Parameters

config

The path to the configuration file (in YAML format) or a
holoscan.core.Config object.

prefix

Prefix path for the` config` file. Only available in the overloaded variant
that takes a string for config.

2. config(self: holoscan.core._core.Fragment, arg0:
holoscan.core._core.Config) -> None
3. config(self: holoscan.core._core.Fragment) ->
holoscan.core._core.Config

config_keys(self: holoscan.core._core.Fragment) Set[str]

The set of keys present in the fragment’s configuration file.

property description

The application’s description.

Returns

description

property executor

Get the executor associated with the fragment.

property fragment_graph

Get the computation graph (Graph node is a Fragment) associated with the
application.

from_config(self: holoscan.core._core.Fragment, key: str) object

Retrieve parameters from the associated configuration.

NVIDIA Holoscan SDK v2.0.0 263

Parameters

key

The key within the configuration file to retrieve. This can also be a specific
component of the parameter via syntax ‘key.sub_key’.

Returns

args

An argument list associated with the key.

property graph

Get the computation graph (Graph node is an Operator) associated with the
fragment.

kwargs(self: holoscan.core._core.Fragment, key: str) dict

Retrieve a dictionary parameters from the associated configuration.

Parameters

key

The key within the configuration file to retrieve. This can also be a specific
component of the parameter via syntax ‘key.sub_key’.

Returns

kwargs

A Python dict containing the parameters in the configuration file under
the specified key.

property name

The fragment’s name.

Returns

name

NVIDIA Holoscan SDK v2.0.0 264

network_context(*args, **kwargs)

Overloaded function.

1. network_context(self: holoscan.core._core.Fragment, network_context:
holoscan.core._core.NetworkContext) -> None

Assign a network context to the Fragment

Parameters

network_context

A network_context class instance to be used by the underlying GXF
executor. If unspecified, no network context will be used.

2. network_context(self: holoscan.core._core.Fragment) ->
holoscan.core._core.NetworkContext
Get the network context to be used by the Fragment

property options

The reference to the CLI options.

Returns

options

run(self: holoscan.core._core.Application) None

The run method of the application.

This method runs the computation. It must have first been initialized via config and
compose.

run_async()

Run the application asynchronously.

This method is a convenience method that creates a thread pool with one
thread and runs the application in that thread. The thread pool is created
using concurrent.futures.ThreadPoolExecutor.

NVIDIA Holoscan SDK v2.0.0 265

Returns

future : concurrent.futures.Future

scheduler(*args, **kwargs)

Overloaded function.

1. scheduler(self: holoscan.core._core.Fragment, scheduler:
holoscan.core._core.Scheduler) -> None

Assign a scheduler to the Fragment.

Parameters

scheduler

A scheduler class instance to be used by the underlying GXF executor. If
unspecified, the default is a holoscan.gxf.GreedyScheduler.

2. scheduler(self: holoscan.core._core.Fragment) ->
holoscan.core._core.Scheduler
Get the scheduler to be used by the Fragment.

track(self: holoscan.core._core.Fragment, num_start_messages_to_skip: int = 10,
num_last_messages_to_discard: int = 10, latency_threshold: int = 0)
holoscan::DataFlowTracker

The track method of the application.

This method enables data frame flow tracking and returns a DataFlowTracker
object which can be used to display metrics data for profiling an application.

Parameters

num_start_messages_to_skip

The number of messages to skip at the beginning.

num_last_messages_to_discard

The number of messages to discard at the end.

NVIDIA Holoscan SDK v2.0.0 266

latency_threshold

The minimum end-to-end latency in milliseconds to account for in the
end-to-end latency metric calculations

property version

The application’s version.

Returns

version

class holoscan.core.Arg

Bases: pybind11_builtins.pybind11_object

Class representing a typed argument.

Attributes

arg_t
ype

ArgType info corresponding to the argument.

descr
iptio
n

YAML formatted string describing the argument.

has_v
alue

Boolean flag indicating whether a value has been assigned to the
argument.

nam
e

The name of the argument.

__init__(self: holoscan.core._core.Arg, name: str) None

Class representing a typed argument.

Parameters

name

The argument’s name.

NVIDIA Holoscan SDK v2.0.0 267

property arg_type

ArgType info corresponding to the argument.

Returns

arg_type

property description

YAML formatted string describing the argument.

property has_value

Boolean flag indicating whether a value has been assigned to the argument.

property name

The name of the argument.

Returns

name

class holoscan.core.ArgContainerType

Bases: pybind11_builtins.pybind11_object

Enum class for an Arg’s container type.

Members:

NATIVE

VECTOR

ARRAY

Attributes

NVIDIA Holoscan SDK v2.0.0 268

nam
e

value

ARRAY = <ArgContainerType.ARRAY: 2>

NATIVE = <ArgContainerType.NATIVE: 0>

VECTOR = <ArgContainerType.VECTOR: 1>

__init__(self: holoscan.core._core.ArgContainerType, value: int) None

property name

property value

class holoscan.core.ArgElementType

Bases: pybind11_builtins.pybind11_object

Enum class for an Arg’s element type.

Members:

CUSTOM

BOOLEAN

INT8

UNSIGNED8

INT16

UNSIGNED16

INT32

UNSIGNED32

INT64

NVIDIA Holoscan SDK v2.0.0 269

UNSIGNED64

FLOAT32

FLOAT64

STRING

HANDLE

YAML_NODE

IO_SPEC

CONDITION

RESOURCE

Attributes

nam
e

value

BOOLEAN = <ArgElementType.BOOLEAN: 1>

CONDITION = <ArgElementType.CONDITION: 18>

CUSTOM = <ArgElementType.CUSTOM: 0>

FLOAT32 = <ArgElementType.FLOAT32: 10>

FLOAT64 = <ArgElementType.FLOAT64: 11>

HANDLE = <ArgElementType.HANDLE: 15>

INT16 = <ArgElementType.INT16: 4>

INT32 = <ArgElementType.INT32: 6>

NVIDIA Holoscan SDK v2.0.0 270

INT64 = <ArgElementType.INT64: 8>

INT8 = <ArgElementType.INT8: 2>

IO_SPEC = <ArgElementType.IO_SPEC: 17>

RESOURCE = <ArgElementType.RESOURCE: 19>

STRING = <ArgElementType.STRING: 14>

UNSIGNED16 = <ArgElementType.UNSIGNED16: 5>

UNSIGNED32 = <ArgElementType.UNSIGNED32: 7>

UNSIGNED64 = <ArgElementType.UNSIGNED64: 9>

UNSIGNED8 = <ArgElementType.UNSIGNED8: 3>

YAML_NODE = <ArgElementType.YAML_NODE: 16>

__init__(self: holoscan.core._core.ArgElementType, value: int) None

property name

property value

class holoscan.core.ArgList

Bases: pybind11_builtins.pybind11_object

Class representing a list of arguments.

Attributes

args The underlying list of Arg objects.

descr
iptio
n

YAML formatted string describing the list.

nam
e

The name of the argument list.

size The number of arguments in the list.

NVIDIA Holoscan SDK v2.0.0 271

Methods

add
(*args,
 **kwa
rgs)

Overloaded function.

clear
(self)

Clear the argument list.

__init__(self: holoscan.core._core.ArgList) None

Class representing a list of arguments.

add(*args, **kwargs)

Overloaded function.

1. add(self: holoscan.core._core.ArgList, arg: holoscan.core._core.Arg) -> None

Add an argument to the list.

2. add(self: holoscan.core._core.ArgList, arg: holoscan.core._core.ArgList) -> None

Add a list of arguments to the list.

property args

The underlying list of Arg objects.

clear(self: holoscan.core._core.ArgList) None

Clear the argument list.

property description

YAML formatted string describing the list.

property name

The name of the argument list.

NVIDIA Holoscan SDK v2.0.0 272

Returns

name

property size

The number of arguments in the list.

class holoscan.core.ArgType

Bases: pybind11_builtins.pybind11_object

Class containing argument type info.

Attributes

cont
ainer
_type

The container type of the argument.

dime
nsion

The dimension of the argument container.

elem
ent_t
ype

The element type of the argument.

to_st
ring

String describing the argument type.

__init__(*args, **kwargs)

Overloaded function.

1. __init__(self: holoscan.core._core.ArgType) -> None

Class containing argument type info.

2. __init__(self: holoscan.core._core.ArgType, element_type:
holoscan.core._core.ArgElementType, container_type:
holoscan.core._core.ArgContainerType) -> None

Class containing argument type info.

NVIDIA Holoscan SDK v2.0.0 273

Parameters

element_type

Element type of the argument.

container_type

Container type of the argument.

property container_type

The container type of the argument.

property dimension

The dimension of the argument container.

property element_type

The element type of the argument.

property to_string

String describing the argument type.

class holoscan.core.CLIOptions

Bases: pybind11_builtins.pybind11_object

Attributes

confi
g_pat
h

The path to the configuration file.

drive
r_ad
dress

The address of the App Driver.

NVIDIA Holoscan SDK v2.0.0 274

run_
drive
r

The flag to run the App Driver.

run_
work
er

The flag to run the App Worker.

work
er_ad
dress

The address of the App Worker.

work
er_ta
rgets

The list of fragments for the App Worker.

Methods

print
(self)

Print the CLI Options.

__init__(self: holoscan.core._core.CLIOptions, run_driver: bool = False, run_worker: bool =
False, driver_address: str = '', worker_address: str = '', worker_targets: List[str] = [],
config_path: str = '') None

CLIOptions class.

property config_path

The path to the configuration file.

property driver_address

The address of the App Driver.

print(self: holoscan.core._core.CLIOptions) None

Print the CLI Options.

property run_driver

NVIDIA Holoscan SDK v2.0.0 275

The flag to run the App Driver.

property run_worker

The flag to run the App Worker.

property worker_address

The address of the App Worker.

property worker_targets

The list of fragments for the App Worker.

Returns

worker_targets

class holoscan.core.Component

Bases: holoscan.core._core.ComponentBase

Base component class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the component.

frag
ment

The fragment containing the component.

id The identifier of the component.

nam
e

The name of the component.

Methods

NVIDIA Holoscan SDK v2.0.0 276

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

initial
ize

(self)
Initialize the component.

__init__(self: holoscan.core._core.Component) None

Base component class.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the component.

property fragment

NVIDIA Holoscan SDK v2.0.0 277

The fragment containing the component.

Returns

name

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.core._core.ComponentBase) None

Initialize the component.

property name

The name of the component.

Returns

name

class holoscan.core.ComponentSpec

Bases: pybind11_builtins.pybind11_object

Component specification class.

Attributes

NVIDIA Holoscan SDK v2.0.0 278

descr
iptio
n

YAML formatted string describing the component spec.

frag
ment

The fragment that the component belongs to.

para
ms

The parameters associated with the component.

__init__(self: holoscan.core._core.ComponentSpec, fragment: holoscan::Fragment)
None

Component specification class.

Parameters

fragment

The fragment that the component belongs to.

property description

YAML formatted string describing the component spec.

property fragment

The fragment that the component belongs to.

Returns

name

property params

The parameters associated with the component.

class holoscan.core.Condition

Bases: holoscan.core._core.Component

Class representing a condition.

NVIDIA Holoscan SDK v2.0.0 279

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the condition.

frag
ment

Fragment that the condition belongs to.

id The identifier of the component.

nam
e

The name of the condition.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

initial
ize

(self)
initialization method for the condition.

setu
p

(self, a
rg0)

setup method for the condition.

__init__(self: holoscan.core._core.Condition, *args, **kwargs) None

Class representing a condition.

Can be initialized with any number of Python positional and keyword
arguments.

NVIDIA Holoscan SDK v2.0.0 280

If a name keyword argument is provided, it must be a str and will be used to
set the name of the Operator.

If a fragment keyword argument is provided, it must be of type
holoscan.core.Fragment (or holoscan.core.Application). A single Fragment object
can also be provided positionally instead.

Any other arguments will be cast from a Python argument type to a C++ Arg
and stored in self.args . (For details on how the casting is done, see the
py_object_to_arg utility).

Parameters

*args

Positional arguments.

**kwargs

Keyword arguments.

Raises

RuntimeError

If name kwarg is provided, but is not of str type. If multiple arguments of
type Fragment are provided. If any other arguments cannot be converted
to Arg type via py_object_to_arg.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

NVIDIA Holoscan SDK v2.0.0 281

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the condition.

property fragment

Fragment that the condition belongs to.

Returns

name

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.core._core.Condition) None

initialization method for the condition.

property name

The name of the condition.

Returns

NVIDIA Holoscan SDK v2.0.0 282

name

setup(self: holoscan.core._core.Condition, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the condition.

property spec

class holoscan.core.ConditionType

Bases: pybind11_builtins.pybind11_object

Enum class for Condition types.

Members:

NONE

MESSAGE_AVAILABLE

DOWNSTREAM_MESSAGE_AFFORDABLE

COUNT

BOOLEAN

Attributes

nam
e

value

BOOLEAN = <ConditionType.BOOLEAN: 4>

COUNT = <ConditionType.COUNT: 3>

DOWNSTREAM_MESSAGE_AFFORDABLE =
<ConditionType.DOWNSTREAM_MESSAGE_AFFORDABLE: 2>

NVIDIA Holoscan SDK v2.0.0 283

MESSAGE_AVAILABLE = <ConditionType.MESSAGE_AVAILABLE: 1>

NONE = <ConditionType.NONE: 0>

__init__(self: holoscan.core._core.ConditionType, value: int) None

property name

property value

class holoscan.core.Config

Bases: pybind11_builtins.pybind11_object

Configuration class.

Represents configuration parameters as read from a YAML file.

Attributes

confi
g_file

The configuration file (in YAML format) associated with the Config object.

prefi
x

TODO

__init__(self: holoscan.core._core.Config, config_file: str, prefix: str = '') None

Configuration class.

Represents configuration parameters as read from a YAML file.

Parameters

config_file

The path to the configuration file (in YAML format).

prefix

TODO

property config_file

NVIDIA Holoscan SDK v2.0.0 284

The configuration file (in YAML format) associated with the Config object.

property prefix

TODO

class holoscan.core.DLDevice

Bases: pybind11_builtins.pybind11_object

DLDevice class.

Attributes

devic
e_id

The device id (int).

devic
e_typ
e

The device type (DLDeviceType).

__init__(self: holoscan.core._core.DLDevice, arg0: holoscan.core._core.DLDeviceType,
arg1: int) None

property device_id

The device id (int).

property device_type

The device type (DLDeviceType).

The following device types are supported:

DLDeviceType.DLCPU: system memory (kDLCPU)

DLDeviceType.DLCUDA: CUDA GPU memory (kDLCUDA)

DLDeviceType.DLCUDAHost: CUDA pinned memory (kDLCUDAHost)

DLDeviceType.DLCUDAManaged: CUDA managed memory (kDLCUDAManaged)

NVIDIA Holoscan SDK v2.0.0 285

class holoscan.core.DLDeviceType

Bases: pybind11_builtins.pybind11_object

Members:

DLCPU

DLCUDA

DLCUDAHOST

DLCUDAMANAGED

Attributes

nam
e

value

DLCPU = <DLDeviceType.DLCPU: 1>

DLCUDA = <DLDeviceType.DLCUDA: 2>

DLCUDAHOST = <DLDeviceType.DLCUDAHOST: 3>

DLCUDAMANAGED = <DLDeviceType.DLCUDAMANAGED: 13>

__init__(self: holoscan.core._core.DLDeviceType, value: int) None

property name

property value

class holoscan.core.DataFlowMetric

Bases: pybind11_builtins.pybind11_object

Enum class for DataFlowMetric type.

Members:

NVIDIA Holoscan SDK v2.0.0 286

MAX_MESSAGE_ID

MIN_MESSAGE_ID

MAX_E2E_LATENCY

AVG_E2E_LATENCY

MIN_E2E_LATENCY

NUM_SRC_MESSAGES

NUM_DST_MESSAGES

Attributes

nam
e

value

AVG_E2E_LATENCY = <DataFlowMetric.AVG_E2E_LATENCY: 3>

MAX_E2E_LATENCY = <DataFlowMetric.MAX_E2E_LATENCY: 2>

MAX_MESSAGE_ID = <DataFlowMetric.MAX_MESSAGE_ID: 0>

MIN_E2E_LATENCY = <DataFlowMetric.MIN_E2E_LATENCY: 4>

MIN_MESSAGE_ID = <DataFlowMetric.MIN_MESSAGE_ID: 1>

NUM_DST_MESSAGES = <DataFlowMetric.NUM_DST_MESSAGES: 6>

NUM_SRC_MESSAGES = <DataFlowMetric.NUM_SRC_MESSAGES: 5>

__init__(self: holoscan.core._core.DataFlowMetric, value: int) None

property name

property value

NVIDIA Holoscan SDK v2.0.0 287

class holoscan.core.DataFlowTracker

Bases: pybind11_builtins.pybind11_object

Data Flow Tracker class.

The DataFlowTracker class is used to track the data flow metrics for different paths
between the root and leaf operators. This class is used by developers to get data
flow metrics either during the execution of the application and/or as a summary
after the application ends.

Methods

enabl
e_log
ging

(self[, f
ilenam
e, ...])

Enable logging of frames at the end of the every execution of a leaf
Operator.

end_l
oggin
g

(self)

Write out any remaining messages from the log buffer and close the file

get_
metri
c

(*args,
 **kwa
rgs)

Overloaded function.

get_n
um_p
aths

(self)

The number of tracked paths

get_p
ath_s
tring
s

(self)

Return an array of strings which are path names.

NVIDIA Holoscan SDK v2.0.0 288

print
(self)

Print the result of the data flow tracking in pretty-printed format to the
standard output

set_d
iscar
d_las
t_me
ssag
es

(self, a
rg0)

Set the number of messages to discard at the end of the execution.

set_s
kip_l
atenc
ies

(self, a
rg0)

Set the threshold latency for which the end-to-end latency calculations
will be done.

set_s
kip_s
tartin
g_me
ssag
es

(self, a
rg0)

Set the number of messages to skip at the beginning of the execution.

__init__(self: holoscan.core._core.DataFlowTracker) None

Data Flow Tracker class.

The DataFlowTracker class is used to track the data flow metrics for different paths
between the root and leaf operators. This class is used by developers to get data
flow metrics either during the execution of the application and/or as a summary
after the application ends.

enable_logging(self: holoscan.core._core.DataFlowTracker, filename: str = 'logger.log',
num_buffered_messages: int = 100) None

Enable logging of frames at the end of the every execution of a leaf Operator.

NVIDIA Holoscan SDK v2.0.0 289

A path consisting of an array of tuples in the form of (an Operator name,
message receive timestamp, message publish timestamp) is logged in a file.
The logging does not take into account the number of message to skip or
discard or the threshold latency.

This function buffers a number of lines set by num_buffered_messages before
flushing the buffer to the log file.

Parameters

filename

The name of the log file.

num_buffered_messages

The number of messages to be buffered before flushing the buffer to the
log file.

end_logging(self: holoscan.core._core.DataFlowTracker) None

Write out any remaining messages from the log buffer and close the file

get_metric(*args, **kwargs)

Overloaded function.

1. get_metric(self: holoscan.core._core.DataFlowTracker, pathstring: str,
metric: holoscan.core._core.DataFlowMetric) -> float

Return the value of a metric for a given path.

If metric is DataFlowMetric::NUM_SRC_MESSAGES, then the function returns -1.

Parameters

pathstring

The path name string for which the metric is being queried

metric

The metric to be queried.

NVIDIA Holoscan SDK v2.0.0 290

Returns

val

The value of the metric for the given path

Notes

There is also an overloaded version of this function that takes only the metric
argument.

2. get_metric(self: holoscan.core._core.DataFlowTracker, metric:
holoscan.core._core.DataFlowMetric =
<DataFlowMetric.NUM_SRC_MESSAGES: 5>) -> Dict[str, int]

get_num_paths(self: holoscan.core._core.DataFlowTracker) int

The number of tracked paths

Returns

num_paths

The number of tracked paths

get_path_strings(self: holoscan.core._core.DataFlowTracker) List[str]

Return an array of strings which are path names. Each path name is a comma-
separated list of Operator names in a path. The paths are agnostic to the
edges between two Operators.

Returns

paths

A list of the path names.

print(self: holoscan.core._core.DataFlowTracker) None

Print the result of the data flow tracking in pretty-printed format to the standard
output

set_discard_last_messages(self: holoscan.core._core.DataFlowTracker, arg0: int) None

NVIDIA Holoscan SDK v2.0.0 291

Set the number of messages to discard at the end of the execution.

This does not affect the log file or the number of source messages metric.

Parameters

num

The number of messages to discard.

set_skip_latencies(self: holoscan.core._core.DataFlowTracker, arg0: int) None

Set the threshold latency for which the end-to-end latency calculations will be
done. Any latency strictly less than the threshold latency will be ignored.

This does not affect the log file or the number of source messages metric.

Parameters

threshold

The threshold latency in milliseconds.

set_skip_starting_messages(self: holoscan.core._core.DataFlowTracker, arg0: int)
None

Set the number of messages to skip at the beginning of the execution.

This does not affect the log file or the number of source messages metric.

Parameters

num

The number of messages to skip.

class holoscan.core.ExecutionContext

Bases: pybind11_builtins.pybind11_object

Class representing an execution context.

__init__(*args, **kwargs)

NVIDIA Holoscan SDK v2.0.0 292

class holoscan.core.Executor

Bases: pybind11_builtins.pybind11_object

Executor class.

Attributes

cont
ext

The corresponding GXF context.

cont
ext_u
int64

The corresponding GXF context represented as a 64-bit unsigned integer
address

frag
ment

The fragment that the executor belongs to.

Methods

run
(self, a
rg0)

Method that can be called to run the executor.

__init__(self: holoscan.core._core.Executor, fragment: holoscan::Fragment) None

Executor class.

Parameters

fragment

The fragment that the executor is associated with.

property context

The corresponding GXF context. This will be an opaque PyCapsule object.

property context_uint64

The corresponding GXF context represented as a 64-bit unsigned integer address

NVIDIA Holoscan SDK v2.0.0 293

property fragment

The fragment that the executor belongs to.

Returns

name

run(self: holoscan.core._core.Executor, arg0: holoscan.graphs._graphs.OperatorGraph)
None

Method that can be called to run the executor.

class holoscan.core.Fragment(app=None, name='', *args, **kwargs)

Bases: holoscan.core._core.Fragment

Fragment class.

Attributes

appli
catio
n

The application associated with the fragment.

exec
utor

Get the executor associated with the fragment.

grap
h

Get the computation graph (Graph node is an Operator) associated with
the fragment.

nam
e

The fragment's name.

Methods

add_f
low

(*args,
 **kwa
rgs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 294

add_
oper
ator

(self, o
p)

Add an operator to the fragment.

com
pose

(self)
The compose method of the Fragment.

confi
g

(*args,
 **kwa
rgs)

Overloaded function.

confi
g_key
s

(self)

The set of keys present in the fragment's configuration file.

from
_conf
ig

(self, k
ey)

Retrieve parameters from the associated configuration.

kwar
gs

(self, k
ey)

Retrieve a dictionary parameters from the associated configuration.

netw
ork_c
onte
xt

(*args,
 **kwa
rgs)

Overloaded function.

run
(self)

The run method of the Fragment.

NVIDIA Holoscan SDK v2.0.0 295

run_
asyn
c

()

Run the fragment asynchronously.

sche
duler

(*args,
 **kwa
rgs)

Overloaded function.

track
(self, n
um_st
art_m
essage
s_to_s
kip, ...)

The track method of the application.

__init__(self: holoscan.core._core.Fragment, arg0: object) None

Fragment class.

add_flow(*args, **kwargs)

Overloaded function.

1. add_flow(self: holoscan.core._core.Fragment, upstream_op:
holoscan.core._core.Operator, downstream_op:
holoscan.core._core.Operator) -> None

2. add_flow(self: holoscan.core._core.Fragment, upstream_op:
holoscan.core._core.Operator, downstream_op:
holoscan.core._core.Operator, port_pairs: Set[Tuple[str, str]]) -> None

Connect two operators associated with the fragment.

Parameters

upstream_op

Source operator.

NVIDIA Holoscan SDK v2.0.0 296

downstream_op

Destination operator.

port_pairs

Sequence of ports to connect. The first element of each 2-tuple is a port
from upstream_op while the second element is the port of downstream_op
to which it connects.

Notes

This is an overloaded function. Additional variants exist:

1.) For the Application class there is a variant where the first two arguments
are of type holoscan.core.Fragment instead of holoscan.core.Operator. This
variant is used in building multi-fragment applications. 2.) There are also
variants that omit the port_pairs argument that are applicable when there is
only a single output on the upstream operator/fragment and a single input on
the downstream operator/fragment.

add_operator(self: holoscan.core._core.Fragment, op: holoscan.core._core.Operator)
None

Add an operator to the fragment.

Parameters

op

The operator to add.

property application

The application associated with the fragment.

Returns

app

compose(self: holoscan.core._core.Fragment) None

The compose method of the Fragment.

NVIDIA Holoscan SDK v2.0.0 297

This method should be called after config, but before run in order to compose the
computation graph.

config(*args, **kwargs)

Overloaded function.

1. config(self: holoscan.core._core.Fragment, config_file: str, prefix: str = ‘’) ->
None

Configuration class.

Represents configuration parameters as read from a YAML file.

Parameters

config

The path to the configuration file (in YAML format) or a
holoscan.core.Config object.

prefix

Prefix path for the` config` file. Only available in the overloaded variant
that takes a string for config.

2. config(self: holoscan.core._core.Fragment, arg0:
holoscan.core._core.Config) -> None
3. config(self: holoscan.core._core.Fragment) ->
holoscan.core._core.Config

config_keys(self: holoscan.core._core.Fragment) Set[str]

The set of keys present in the fragment’s configuration file.

property executor

Get the executor associated with the fragment.

from_config(self: holoscan.core._core.Fragment, key: str) object

Retrieve parameters from the associated configuration.

NVIDIA Holoscan SDK v2.0.0 298

Parameters

key

The key within the configuration file to retrieve. This can also be a specific
component of the parameter via syntax ‘key.sub_key’.

Returns

args

An argument list associated with the key.

property graph

Get the computation graph (Graph node is an Operator) associated with the
fragment.

kwargs(self: holoscan.core._core.Fragment, key: str) dict

Retrieve a dictionary parameters from the associated configuration.

Parameters

key

The key within the configuration file to retrieve. This can also be a specific
component of the parameter via syntax ‘key.sub_key’.

Returns

kwargs

A Python dict containing the parameters in the configuration file under
the specified key.

property name

The fragment’s name.

Returns

name

NVIDIA Holoscan SDK v2.0.0 299

network_context(*args, **kwargs)

Overloaded function.

1. network_context(self: holoscan.core._core.Fragment, network_context:
holoscan.core._core.NetworkContext) -> None

Assign a network context to the Fragment

Parameters

network_context

A network_context class instance to be used by the underlying GXF
executor. If unspecified, no network context will be used.

2. network_context(self: holoscan.core._core.Fragment) ->
holoscan.core._core.NetworkContext
Get the network context to be used by the Fragment

run(self: holoscan.core._core.Fragment) None

The run method of the Fragment.

This method runs the computation. It must have first been initialized via config and
compose.

run_async()

Run the fragment asynchronously.

This method is a convenience method that creates a thread pool with one
thread and runs the fragment in that thread. The thread pool is created using
concurrent.futures.ThreadPoolExecutor.

Returns

future : concurrent.futures.Future

scheduler(*args, **kwargs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 300

1. scheduler(self: holoscan.core._core.Fragment, scheduler:
holoscan.core._core.Scheduler) -> None

Assign a scheduler to the Fragment.

Parameters

scheduler

A scheduler class instance to be used by the underlying GXF executor. If
unspecified, the default is a holoscan.gxf.GreedyScheduler.

2. scheduler(self: holoscan.core._core.Fragment) ->
holoscan.core._core.Scheduler
Get the scheduler to be used by the Fragment.

track(self: holoscan.core._core.Fragment, num_start_messages_to_skip: int = 10,
num_last_messages_to_discard: int = 10, latency_threshold: int = 0)
holoscan::DataFlowTracker

The track method of the application.

This method enables data frame flow tracking and returns a DataFlowTracker
object which can be used to display metrics data for profiling an application.

Parameters

num_start_messages_to_skip

The number of messages to skip at the beginning.

num_last_messages_to_discard

The number of messages to discard at the end.

latency_threshold

The minimum end-to-end latency in milliseconds to account for in the
end-to-end latency metric calculations

class holoscan.core.FragmentGraph

Bases: pybind11_builtins.pybind11_object

NVIDIA Holoscan SDK v2.0.0 301

Abstract base class for all graphs

__init__(*args, **kwargs)

holoscan.core.Graph

alias of holoscan.graphs._graphs.OperatorGraph

class holoscan.core.IOSpec

Bases: pybind11_builtins.pybind11_object

I/O specification class.

Attributes

condi
tions

List of Condition objects associated with this I/O specification.

conn
ector
_type

The receiver or transmitter type of the I/O specification class.

io_ty
pe

The type (input or output) of the I/O specification class.

nam
e

The name of the I/O specification class.

Methods

condi
tion

(self, a
rg0, **
kwarg
s)

Add a condition to this input/output.

conn
ector

(*args,

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 302

 **kwa
rgs)

ConnectorType

IOType

class ConnectorType

Bases: pybind11_builtins.pybind11_object

Enum representing the receiver type (for input specs) or transmitter type (for
output specs).

Members:

DEFAULT

DOUBLE_BUFFER

UCX

Attributes

nam
e

value

DEFAULT = <ConnectorType.DEFAULT: 0>

DOUBLE_BUFFER = <ConnectorType.DOUBLE_BUFFER: 1>

UCX = <ConnectorType.UCX: 2>

__init__(self: holoscan.core._core.IOSpec.ConnectorType, value: int) None

property name

property value

NVIDIA Holoscan SDK v2.0.0 303

class IOType

Bases: pybind11_builtins.pybind11_object

Enum representing the I/O specification type (input or output).

Members:

INPUT

OUTPUT

Attributes

nam
e

value

INPUT = <IOType.INPUT: 0>

OUTPUT = <IOType.OUTPUT: 1>

__init__(self: holoscan.core._core.IOSpec.IOType, value: int) None

property name

property value

__init__(self: holoscan.core._core.IOSpec, op_spec: holoscan::OperatorSpec, name: str,
io_type: holoscan.core._core.IOSpec.IOType) None

I/O specification class.

Parameters

op_spec

Operator specification class of the associated operator.

NVIDIA Holoscan SDK v2.0.0 304

name

The name of the IOSpec object.

io_type

Enum indicating whether this is an input or output specification.

condition(self: holoscan.core._core.IOSpec, arg0: holoscan.core._core.ConditionType,
**kwargs) holoscan.core._core.IOSpec

Add a condition to this input/output.

The following ConditionTypes are supported:

ConditionType.NONE

ConditionType.MESSAGE_AVAILABLE

ConditionType.DOWNSTREAM_MESSAGE_AFFORDABLE

ConditionType.COUNT

ConditionType.BOOLEAN

Parameters

kind

The type of the condition.

**kwargs

Python keyword arguments that will be cast to an ArgList associated with
the condition.

Returns

obj

The self object.

property conditions

NVIDIA Holoscan SDK v2.0.0 305

List of Condition objects associated with this I/O specification.

Returns

condition

connector(*args, **kwargs)

Overloaded function.

1. connector(self: holoscan.core._core.IOSpec, arg0:
holoscan.core._core.IOSpec.ConnectorType, **kwargs) ->
holoscan.core._core.IOSpec

Add a connector (transmitter or receiver) to this input/output.

The following ConditionTypes are supported:

IOSpec.ConnectorType.DEFAULT

IOSpec.ConnectorType.DOUBLE_BUFFER

IOSpec.ConnectorType.UCX

If this method is not been called, the IOSpec’s connector_type will be
ConnectorType.DEFAULT which will result in a DoubleBuffered receiver or or
transmitter being used (or their annotated variant if flow tracking is enabled).

Parameters

kind

The type of the connector. For example for type
IOSpec.ConnectorType.DOUBLE_BUFFER, a
holoscan.resources.DoubleBufferReceiver will be used for an input port and
a holoscan.resources.DoubleBufferTransmitter will be used for an output
port.

**kwargs

Python keyword arguments that will be cast to an ArgList associated with
the resource (connector).

NVIDIA Holoscan SDK v2.0.0 306

Returns

obj

The self object.

Notes

This is an overloaded function. Additional variants exist:

1.) A variant with no arguments will just return the holoscan.core.Resource
corresponding to the transmitter or receiver used by this IOSpec object. If
None was explicitly set, it will return None .

2.) A variant that takes a single holoscan.core.Resource corresponding to a
transmitter or receiver as an argument. This sets the transmitter or receiver
used by the IOSpec object.

2. connector(self: holoscan.core._core.IOSpec) ->
holoscan.core._core.Resource

3. connector(self: holoscan.core._core.IOSpec, arg0:
holoscan.core._core.Resource) -> None

property connector_type

The receiver or transmitter type of the I/O specification class.

Returns

connector_type

property io_type

The type (input or output) of the I/O specification class.

Returns

io_type

property name

The name of the I/O specification class.

NVIDIA Holoscan SDK v2.0.0 307

Returns

name

class holoscan.core.InputContext

Bases: pybind11_builtins.pybind11_object

Class representing an input context.

Methods

recei
ve

(self, n
ame)

__init__(*args, **kwargs)

receive(self: holoscan.core._core.InputContext, name: str) None

class holoscan.core.Message

Bases: pybind11_builtins.pybind11_object

Class representing a message.

A message is a data structure that is used to pass data between operators. It wraps
a std::any object and provides a type-safe interface to access the data.

This class is used by the holoscan::gxf::GXFWrapper to support the Holoscan native
operator. The holoscan::gxf::GXFWrapper will hold the object of this class and
delegate the message to the Holoscan native operator.

__init__(*args, **kwargs)

class holoscan.core.NetworkContext

Bases: holoscan.core._core.Component

Class representing a network context.

NVIDIA Holoscan SDK v2.0.0 308

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the component.

frag
ment

Fragment that the network context belongs to.

id The identifier of the component.

nam
e

The name of the network context.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

initial
ize

(self)
initialization method for the network context.

setu
p

(self, a
rg0)

setup method for the network context.

__init__(self: holoscan.core._core.NetworkContext, *args, **kwargs) None

Class representing a network context.

Parameters

*args

NVIDIA Holoscan SDK v2.0.0 309

Positional arguments.

**kwargs

Keyword arguments.
Raises

RuntimeError

If name kwarg is provided, but is not of str type. If multiple arguments of
type Fragment are provided. If any other arguments cannot be converted
to Arg type via py_object_to_arg.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the component.

property fragment

Fragment that the network context belongs to.

NVIDIA Holoscan SDK v2.0.0 310

Returns

name

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.core._core.NetworkContext) None

initialization method for the network context.

property name

The name of the network context.

Returns

name

setup(self: holoscan.core._core.NetworkContext, arg0:
holoscan.core._core.ComponentSpec) None

setup method for the network context.

property spec

class holoscan.core.Operator(fragment, *args, **kwargs)

Bases: holoscan.core._core.Operator

Operator class.

NVIDIA Holoscan SDK v2.0.0 311

Can be initialized with any number of Python positional and keyword arguments.

If a name keyword argument is provided, it must be a str and will be used to set the
name of the Operator.

Condition classes will be added to self.conditions , Resource classes will be added to
self.resources , and any other arguments will be cast from a Python argument type

to a C++ Arg and stored in self.args . (For details on how the casting is done, see the
py_object_to_arg utility). When a Condition or Resource is provided via a kwarg, it’s
name will be automatically be updated to the name of the kwarg.

Parameters

fragment

The holoscan.core.Fragment (or holoscan.core.Application) to which this
Operator will belong.

*args

Positional arguments.

**kwargs

Keyword arguments.

Raises

RuntimeError

If name kwarg is provided, but is not of str type. If multiple arguments of type
Fragment are provided. If any other arguments cannot be converted to Arg
type via py_object_to_arg.

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

NVIDIA Holoscan SDK v2.0.0 312

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(op_in
put, o
p_out
put, co
ntext)

Default implementation of compute

initial
ize

()
Default implementation of initialize

NVIDIA Holoscan SDK v2.0.0 313

setu
p

(spec)
Default implementation of setup method.

start
()

Default implementation of start

stop
()

Default implementation of stop

OperatorType

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

NVIDIA Holoscan SDK v2.0.0 314

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self: holoscan.core._core.Operator, arg0: object, arg1: holoscan::Fragment,
*args, **kwargs) None

Operator class.

Can be initialized with any number of Python positional and keyword
arguments.

If a name keyword argument is provided, it must be a str and will be used to
set the name of the Operator.

Condition classes will be added to self.conditions , Resource classes will be
added to self.resources , and any other arguments will be cast from a Python
argument type to a C++ Arg and stored in self.args . (For details on how the
casting is done, see the py_object_to_arg utility). When a Condition or Resource
is provided via a kwarg, it’s name will be automatically be updated to the name
of the kwarg.

Parameters

fragment

The holoscan.core.Fragment (or holoscan.core.Application) to which this
Operator will belong.

*args

Positional arguments.

https://docs.nvidia.com/holoscan_python_api_operators.html#holoscan.operators.VideoStreamReplayerOp.OperatorType

NVIDIA Holoscan SDK v2.0.0 315

**kwargs

Keyword arguments.
Raises

RuntimeError

If name kwarg is provided, but is not of str type. If multiple arguments of
type Fragment are provided. If any other arguments cannot be converted
to Arg type via py_object_to_arg.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

NVIDIA Holoscan SDK v2.0.0 316

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(op_input, op_output, context)

Default implementation of compute

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize()

Default implementation of initialize

NVIDIA Holoscan SDK v2.0.0 317

property name

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(spec: holoscan.core._core.PyOperatorSpec)

Default implementation of setup method.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start()

Default implementation of start

stop()

Default implementation of stop

class holoscan.core.OperatorGraph

Bases: pybind11_builtins.pybind11_object

Abstract base class for all graphs

__init__(*args, **kwargs)

holoscan.core.OperatorSpec

alias of holoscan.core._core.PyOperatorSpec

NVIDIA Holoscan SDK v2.0.0 318

class holoscan.core.OutputContext

Bases: pybind11_builtins.pybind11_object

Class representing an output context.

Methods

emit
(self, d
ata[, n
ame])

OutputType

class OutputType

Bases: pybind11_builtins.pybind11_object

Members:

SHARED_POINTER

GXF_ENTITY

Attributes

nam
e

value

GXF_ENTITY = <OutputType.GXF_ENTITY: 1>

SHARED_POINTER = <OutputType.SHARED_POINTER: 0>

__init__(self: holoscan.core._core.OutputContext.OutputType, value: int) None

property name

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFOutputContext.OutputType

NVIDIA Holoscan SDK v2.0.0 319

property value

__init__(*args, **kwargs)

emit(self: holoscan.core._core.OutputContext, data: object, name: str = '') None

class holoscan.core.ParameterFlag

Bases: pybind11_builtins.pybind11_object

Enum class for parameter flags.

The following flags are supported: - NONE: The parameter is mendatory and static. It
cannot be changed at runtime. - OPTIONAL: The parameter is optional and might not
be available at runtime. - DYNAMIC: The parameter is dynamic and might change at
runtime.

Members:

NONE

OPTIONAL

DYNAMIC

Attributes

nam
e

value

DYNAMIC = <ParameterFlag.DYNAMIC: 2>

NONE = <ParameterFlag.NONE: 0>

OPTIONAL = <ParameterFlag.OPTIONAL: 1>

__init__(self: holoscan.core._core.ParameterFlag, value: int) None

NVIDIA Holoscan SDK v2.0.0 320

property name

property value

class holoscan.core.Resource

Bases: holoscan.core._core.Component

Class representing a resource.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

initial
ize

(self)
initialization method for the resource.

NVIDIA Holoscan SDK v2.0.0 321

setu
p

(self, a
rg0)

setup method for the resource.

__init__(self: holoscan.core._core.Resource, *args, **kwargs) None

Class representing a resource.

Can be initialized with any number of Python positional and keyword
arguments.

If a name keyword argument is provided, it must be a str and will be used to
set the name of the Operator.

If a fragment keyword argument is provided, it must be of type
holoscan.core.Fragment (or holoscan.core.Application). A single Fragment object
can also be provided positionally instead.

Any other arguments will be cast from a Python argument type to a C++ Arg
and stored in self.args . (For details on how the casting is done, see the
py_object_to_arg utility).

Parameters

*args

Positional arguments.

**kwargs

Keyword arguments.

Raises

RuntimeError

If name kwarg is provided, but is not of str type. If multiple arguments of
type Fragment are provided. If any other arguments cannot be converted
to Arg type via py_object_to_arg.

add_arg(*args, **kwargs)

NVIDIA Holoscan SDK v2.0.0 322

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

NVIDIA Holoscan SDK v2.0.0 323

id

initialize(self: holoscan.core._core.Resource) None

initialization method for the resource.

property name

The name of the resource.

Returns

name

setup(self: holoscan.core._core.Resource, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the resource.

property spec

class holoscan.core.Scheduler

Bases: holoscan.core._core.Component

Class representing a scheduler.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the component.

frag
ment

Fragment that the scheduler belongs to.

id The identifier of the component.

nam
e

The name of the scheduler.

NVIDIA Holoscan SDK v2.0.0 324

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

initial
ize

(self)
initialization method for the scheduler.

setu
p

(self, a
rg0)

setup method for the scheduler.

__init__(self: holoscan.core._core.Scheduler, *args, **kwargs) None

Class representing a scheduler.

Can be initialized with any number of Python positional and keyword
arguments.

If a name keyword argument is provided, it must be a str and will be used to
set the name of the Operator.

If a fragment keyword argument is provided, it must be of type
holoscan.core.Fragment (or holoscan.core.Application). A single Fragment object
can also be provided positionally instead.

Any other arguments will be cast from a Python argument type to a C++ Arg
and stored in self.args . (For details on how the casting is done, see the
py_object_to_arg utility).

Parameters

*args

NVIDIA Holoscan SDK v2.0.0 325

Positional arguments.

**kwargs

Keyword arguments.
Raises

RuntimeError

If name kwarg is provided, but is not of str type. If multiple arguments of
type Fragment are provided. If any other arguments cannot be converted
to Arg type via py_object_to_arg.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the component.

property fragment

Fragment that the scheduler belongs to.

NVIDIA Holoscan SDK v2.0.0 326

Returns

name

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.core._core.Scheduler) None

initialization method for the scheduler.

property name

The name of the scheduler.

Returns

name

setup(self: holoscan.core._core.Scheduler, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the scheduler.

property spec

holoscan.core.Tensor

alias of holoscan.core._core.PyTensor

class holoscan.core.Tracker(app, *, filename=None, num_buffered_messages=100,
num_start_messages_to_skip=10, num_last_messages_to_discard=10, latency_threshold=0)

NVIDIA Holoscan SDK v2.0.0 327

Bases: object

Context manager to add data flow tracking to an application.

__init__(app, *, filename=None, num_buffered_messages=100,
num_start_messages_to_skip=10, num_last_messages_to_discard=10,
latency_threshold=0)

Parameters

app

on which flow tracking should be applied.

filename

If none, logging to file will be disabled. Otherwise, logging will write to the
specified file.

num_buffered_messages

Controls the number of messages buffered between file writing when
filename is not None .

num_start_messages_to_skip

The number of messages to skip at the beginning of the execution. This
does not affect the log file or the number of source messages metric.

num_last_messages_to_discard

The number of messages to discard at the end of the execution. This
does not affect the log file or the number of source messages metric.

latency_threshold

The minimum end-to-end latency in milliseconds to account for in the
end-to-end latency metric calculations.

holoscan.core.arg_to_py_object(arg: holoscan.core._core.Arg) object

Utility that converts an Arg to a corresponding Python object.

NVIDIA Holoscan SDK v2.0.0 328

Parameters

arg

The argument to convert.

Returns

obj

Python object corresponding to the provided argument. For example, an
argument of any integer type will become a Python int while
std::vector<double> would become a list of Python floats.

holoscan.core.arglist_to_kwargs(arglist: holoscan.core._core.ArgList) dict

Utility that converts an ArgList to a Python kwargs dictionary.

Parameters

arglist

The argument list to convert.

Returns

kwargs

Python dictionary with keys matching the names of the arguments in ArgList.
The values will be converted as for arg_to_py_object.

holoscan.core.kwargs_to_arglist(**kwargs) holoscan.core._core.ArgList

Utility that converts a set of python keyword arguments to an ArgList.

Parameters

**kwargs

The python keyword arguments to convert.

Returns

arglist

NVIDIA Holoscan SDK v2.0.0 329

ArgList class corresponding to the provided keyword values. The argument
names will match the keyword names. Values will be converted as for
py_object_to_arg.

holoscan.core.py_object_to_arg(obj: object, name: str = '') holoscan.core._core.Arg

Utility that converts a single python argument to a corresponding Arg type.

Parameters

value

The python value to convert.

Returns

obj

Arg class corresponding to the provided value. For example a Python float will
become an Arg containing a C++ double while a list of Python ints would
become an Arg corresponding to a std::vector<uint64_t> .

name

A name to assign to the argument.

holoscan.executors
This module provides a Python API for the C++ API Executor classes.

holos
can.e
xecut
ors.G
XFExe
cutor

GXF-based executor class.

class holoscan.executors.GXFExecutor

Bases: holoscan.core._core.Executor

NVIDIA Holoscan SDK v2.0.0 330

GXF-based executor class.

Attributes

cont
ext

The corresponding GXF context.

cont
ext_u
int64

The corresponding GXF context represented as a 64-bit unsigned integer
address

frag
ment

The fragment that the executor belongs to.

Methods

run
(self, a
rg0)

Method that can be called to run the executor.

__init__(self: holoscan.executors._executors.GXFExecutor, app:
holoscan.core._core.Fragment) None

GXF-based executor class.

Parameters

app

The fragment associated with the executor.

property context

The corresponding GXF context. This will be an opaque PyCapsule object.

property context_uint64

The corresponding GXF context represented as a 64-bit unsigned integer address

property fragment

NVIDIA Holoscan SDK v2.0.0 331

The fragment that the executor belongs to.

Returns

name

run(self: holoscan.core._core.Executor, arg0: holoscan.graphs._graphs.OperatorGraph)
None

Method that can be called to run the executor.

holoscan.graphs
This module provides a Python API for the C++ API Graph classes.

holos
can.g
raphs
.Flow
Grap
h

alias of holoscan.graphs._graphs.OperatorFlowGraph

holos
can.g
raphs
.Frag
ment
Flow
Grap
h

Directed graph class.

holos
can.g
raphs
.Oper
atorFl
owGr
aph

Directed graph class.

holoscan.graphs.FlowGraph

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Executor
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OperatorGraph

NVIDIA Holoscan SDK v2.0.0 332

alias of holoscan.graphs._graphs.OperatorFlowGraph

class holoscan.graphs.FragmentFlowGraph

Bases: holoscan.graphs._graphs.FragmentGraph

Directed graph class.

Attributes

cont
ext

The graph's context (as an opaque PyCapsule object)

Methods

add_
node

(self, n
ode)

Add the node to the graph.

get_n
ext_n
odes

(self, a
rg0)

Get the nodes immediately downstream of a given node.

get_n
odes

(self)
Get all nodes.

get_p
ort_
map

(self, a
rg0, ar
g1)

NVIDIA Holoscan SDK v2.0.0 333

get_p
revio
us_n
odes

(self, a
rg0)

Get the nodes immediately upstream of a given node.

get_r
oot_
node
s

(self)

Get all root nodes.

is_lea
f

(self, n
ode)

Check if the node is a leaf node.

is_ro
ot

(self, n
ode)

Check if the node is a root node.

__init__(self: holoscan.graphs._graphs.FragmentFlowGraph) None

Directed graph class.

add_node(self: holoscan.graphs._graphs.FragmentFlowGraph, node:
holoscan::Fragment) None

Add the node to the graph.

Parameters

node

The node to add.

property context

The graph’s context (as an opaque PyCapsule object)

NVIDIA Holoscan SDK v2.0.0 334

get_next_nodes(self: holoscan.graphs._graphs.FragmentFlowGraph, arg0:
holoscan::Fragment) vector_of_node_type

Get the nodes immediately downstream of a given node.

Parameters

node

A node in the graph.

Returns

list of Operator or Fragment

A list containing the downstream nodes.

get_nodes(self: holoscan.graphs._graphs.FragmentFlowGraph) vector_of_node_type

Get all nodes.

The nodes are returned in the order they were added to the graph.

Returns

list of Operator or Fragment

A list containing all nodes.

get_port_map(self: holoscan.graphs._graphs.FragmentFlowGraph, arg0:
holoscan::Fragment, arg1: holoscan::Fragment) dict

get_previous_nodes(self: holoscan.graphs._graphs.FragmentFlowGraph, arg0:
holoscan::Fragment) vector_of_node_type

Get the nodes immediately upstream of a given node.

Parameters

node

A node in the graph.

NVIDIA Holoscan SDK v2.0.0 335

Returns

list of Operator or Fragment

A list containing the upstream nodes.

get_root_nodes(self: holoscan.graphs._graphs.FragmentFlowGraph)
vector_of_node_type

Get all root nodes.

Returns

list of Operator or Fragment

A list containing all root nodes.

is_leaf(self: holoscan.graphs._graphs.FragmentFlowGraph, node: holoscan::Fragment)
bool

Check if the node is a leaf node.

Parameters

node

A node in the graph.

Returns

bool

Whether the node is a leaf node

is_root(self: holoscan.graphs._graphs.FragmentFlowGraph, node: holoscan::Fragment)
bool

Check if the node is a root node.

Parameters

node

A node in the graph.

NVIDIA Holoscan SDK v2.0.0 336

Returns

bool

Whether the node is a root node

class holoscan.graphs.OperatorFlowGraph

Bases: holoscan.graphs._graphs.OperatorGraph

Directed graph class.

Attributes

cont
ext

The graph's context (as an opaque PyCapsule object)

Methods

add_
node

(self, n
ode)

Add the node to the graph.

get_n
ext_n
odes

(self, a
rg0)

Get the nodes immediately downstream of a given node.

get_n
odes

(self)
Get all nodes.

get_p
ort_
map

(self, a
rg0, ar
g1)

NVIDIA Holoscan SDK v2.0.0 337

get_p
revio
us_n
odes

(self, a
rg0)

Get the nodes immediately upstream of a given node.

get_r
oot_
node
s

(self)

Get all root nodes.

is_lea
f

(self, n
ode)

Check if the node is a leaf node.

is_ro
ot

(self, n
ode)

Check if the node is a root node.

__init__(self: holoscan.graphs._graphs.OperatorFlowGraph) None

Directed graph class.

add_node(self: holoscan.graphs._graphs.OperatorFlowGraph, node: holoscan::Operator)
 None

Add the node to the graph.

Parameters

node

The node to add.

property context

The graph’s context (as an opaque PyCapsule object)

NVIDIA Holoscan SDK v2.0.0 338

get_next_nodes(self: holoscan.graphs._graphs.OperatorFlowGraph, arg0:
holoscan::Operator) vector_of_node_type

Get the nodes immediately downstream of a given node.

Parameters

node

A node in the graph.

Returns

list of Operator or Fragment

A list containing the downstream nodes.

get_nodes(self: holoscan.graphs._graphs.OperatorFlowGraph) vector_of_node_type

Get all nodes.

The nodes are returned in the order they were added to the graph.

Returns

list of Operator or Fragment

A list containing all nodes.

get_port_map(self: holoscan.graphs._graphs.OperatorFlowGraph, arg0:
holoscan::Operator, arg1: holoscan::Operator) dict

get_previous_nodes(self: holoscan.graphs._graphs.OperatorFlowGraph, arg0:
holoscan::Operator) vector_of_node_type

Get the nodes immediately upstream of a given node.

Parameters

node

A node in the graph.

NVIDIA Holoscan SDK v2.0.0 339

Returns

list of Operator or Fragment

A list containing the upstream nodes.

get_root_nodes(self: holoscan.graphs._graphs.OperatorFlowGraph)
vector_of_node_type

Get all root nodes.

Returns

list of Operator or Fragment

A list containing all root nodes.

is_leaf(self: holoscan.graphs._graphs.OperatorFlowGraph, node: holoscan::Operator)
bool

Check if the node is a leaf node.

Parameters

node

A node in the graph.

Returns

bool

Whether the node is a leaf node

is_root(self: holoscan.graphs._graphs.OperatorFlowGraph, node: holoscan::Operator)
bool

Check if the node is a root node.

Parameters

node

A node in the graph.

NVIDIA Holoscan SDK v2.0.0 340

Returns

bool

Whether the node is a root node

holoscan.gxf
This module provides a Python API for GXF base classes in the C++ API.

holos
can.g
xf.Ent
ity

alias of holoscan.gxf._gxf.PyEntity

holos
can.g
xf.GX
FCom
pone
nt

Base GXF-based component class.

holos
can.g
xf.GX
FCon
dition

Base GXF-based condition class.

holos
can.g
xf.GX
FExec
ution
Conte
xt

GXF execution context.

NVIDIA Holoscan SDK v2.0.0 341

holos
can.g
xf.GX
FInpu
tCont
ext

GXF input context.

holos
can.g
xf.GX
FNet
work
Conte
xt

Base GXF-based network context class.

holos
can.g
xf.GX
FOpe
rator

Base GXF-based operator class.

holos
can.g
xf.GX
FOut
putCo
ntext

GXF output context.

holos
can.g
xf.GX
FReso
urce

Base GXF-based resource class.

holos
can.g
xf.GX
FSche
duler

Base GXF-based scheduler class.

holoscan.gxf.Entity

NVIDIA Holoscan SDK v2.0.0 342

alias of holoscan.gxf._gxf.PyEntity

class holoscan.gxf.GXFComponent

Bases: pybind11_builtins.pybind11_object

Base GXF-based component class.

Attributes

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

Methods

gxf_i
nitiali
ze

(self)

Initialize the component.

__init__(self: holoscan.gxf._gxf.GXFComponent) None

Base GXF-based component class.

property gxf_cid

The GXF component ID.

property gxf_cname

NVIDIA Holoscan SDK v2.0.0 343

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

class holoscan.gxf.GXFCondition

Bases: holoscan.core._core.Condition , holoscan.gxf._gxf.GXFComponent

Base GXF-based condition class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the condition.

frag
ment

Fragment that the condition belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

NVIDIA Holoscan SDK v2.0.0 344

gxf_e
id

The GXF entity ID.

id The identifier of the component.

nam
e

The name of the condition.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, a
rg0)

setup method for the condition.

__init__(self: holoscan.gxf._gxf.GXFCondition) None

Base GXF-based condition class.

add_arg(*args, **kwargs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 345

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the condition.

property fragment

Fragment that the condition belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

NVIDIA Holoscan SDK v2.0.0 346

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFCondition) None

Initialize the component.

property name

The name of the condition.

Returns

name

setup(self: holoscan.core._core.Condition, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the condition.

property spec

class holoscan.gxf.GXFExecutionContext

Bases: holoscan.core._core.ExecutionContext

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Condition
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 347

GXF execution context.

__init__(self: holoscan.gxf._gxf.GXFExecutionContext, context: capsule, op:
holoscan.gxf._gxf.GXFOperator) None

Execution context for an operator using GXF.

Parameters

op

The GXF operator that owns this context.

class holoscan.gxf.GXFInputContext

Bases: holoscan.core._core.InputContext

GXF input context.

Methods

recei
ve

(self, n
ame)

__init__(self: holoscan.gxf._gxf.GXFInputContext, context:
holoscan.core._core.ExecutionContext, op: holoscan.gxf._gxf.GXFOperator) None

GXF input context.

Parameters

op

The GXF operator that owns this context.

receive(self: holoscan.core._core.InputContext, name: str) None

class holoscan.gxf.GXFNetworkContext

Bases: holoscan.core._core.NetworkContext , holoscan.gxf._gxf.GXFComponent

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext

NVIDIA Holoscan SDK v2.0.0 348

Base GXF-based network context class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the component.

frag
ment

Fragment that the network context belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

id The identifier of the component.

nam
e

The name of the network context.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 349

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the network context.

setu
p

(self, a
rg0)

setup method for the network context.

__init__(*args, **kwargs)

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the component.

NVIDIA Holoscan SDK v2.0.0 350

property fragment

Fragment that the network context belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFNetworkContext) None

NVIDIA Holoscan SDK v2.0.0 351

Initialize the network context.

property name

The name of the network context.

Returns

name

setup(self: holoscan.core._core.NetworkContext, arg0:
holoscan.core._core.ComponentSpec) None

setup method for the network context.

property spec

class holoscan.gxf.GXFOperator

Bases: holoscan.core._core.Operator

Base GXF-based operator class.

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
onte
xt

The GXF context of the component.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.NetworkContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 352

gxf_e
id

The GXF entity ID.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Operator initialization method.

setu
p

(self, a
rg0)

Operator setup method.

NVIDIA Holoscan SDK v2.0.0 353

start
(self)

Operator start method.

stop
(self)

Operator stop method.

OperatorType

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NVIDIA Holoscan SDK v2.0.0 354

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self: holoscan.gxf._gxf.GXFOperator) None

Base GXF-based operator class.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

https://docs.nvidia.com/holoscan_python_api_operators.html#holoscan.operators.VideoStreamReplayerOp.OperatorType

NVIDIA Holoscan SDK v2.0.0 355

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)
None

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property gxf_cid

The GXF component ID.

property gxf_context

The GXF context of the component.

property gxf_eid

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 356

The GXF entity ID.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.core._core.Operator) None

Operator initialization method.

property name

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self: holoscan.core._core.Operator, arg0: holoscan.core._core.OperatorSpec)
None

Operator setup method.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

NVIDIA Holoscan SDK v2.0.0 357

start(self: holoscan.core._core.Operator) None

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

class holoscan.gxf.GXFOutputContext

Bases: holoscan.core._core.OutputContext

GXF output context.

Methods

emit
(self, d
ata[, n
ame])

OutputType

class OutputType

Bases: pybind11_builtins.pybind11_object

Members:

SHARED_POINTER

GXF_ENTITY

Attributes

nam
e

value

NVIDIA Holoscan SDK v2.0.0 358

GXF_ENTITY = <OutputType.GXF_ENTITY: 1>

SHARED_POINTER = <OutputType.SHARED_POINTER: 0>

__init__(self: holoscan.core._core.OutputContext.OutputType, value: int) None

property name

property value

__init__(self: holoscan.gxf._gxf.GXFOutputContext, context:
holoscan.core._core.ExecutionContext, op: holoscan.gxf._gxf.GXFOperator) None

GXF input context.

Parameters

op

The GXF operator that owns this context.

emit(self: holoscan.core._core.OutputContext, data: object, name: str = '') None

class holoscan.gxf.GXFResource

Bases: holoscan.core._core.Resource , holoscan.gxf._gxf.GXFComponent

Base GXF-based resource class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext

NVIDIA Holoscan SDK v2.0.0 359

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, a
rg0)

setup method for the resource.

__init__(self: holoscan.gxf._gxf.GXFResource) None

NVIDIA Holoscan SDK v2.0.0 360

Base GXF-based resource class.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

NVIDIA Holoscan SDK v2.0.0 361

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.core._core.Resource, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the resource.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Resource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 362

property spec

class holoscan.gxf.GXFScheduler

Bases: holoscan.core._core.Scheduler , holoscan.gxf._gxf.GXFComponent

Base GXF-based scheduler class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the component.

frag
ment

Fragment that the scheduler belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

id The identifier of the component.

nam
e

The name of the scheduler.

clock

spec

Methods

NVIDIA Holoscan SDK v2.0.0 363

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the scheduler.

setu
p

(self, a
rg0)

setup method for the scheduler.

__init__(*args, **kwargs)

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

NVIDIA Holoscan SDK v2.0.0 364

arglist

property clock

property description

YAML formatted string describing the component.

property fragment

Fragment that the scheduler belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

NVIDIA Holoscan SDK v2.0.0 365

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFScheduler) None

Initialize the scheduler.

property name

The name of the scheduler.

Returns

name

setup(self: holoscan.core._core.Scheduler, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the scheduler.

property spec

holoscan.gxf.load_extensions(context: int, extension_filenames: List[str] = [],
manifest_filenames: List[str] = []) None

Loads GXF extension libraries

holoscan.logger
This module provides a Python interface to the Holoscan SDK logger.

holos
can.lo
gger.L
ogLev
el

Enum class for the logging level.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Scheduler
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 366

holos
can.lo
gger.l
og_le
vel

()

Get the global logging level.

holos
can.lo
gger.s
et_log
_level

(arg0)

Set the global logging level.

holos
can.lo
gger.s
et_log
_patt
ern

(arg0)

Set the format pattern for the logger.

class holoscan.logger.LogLevel

Bases: pybind11_builtins.pybind11_object

Enum class for the logging level.

Members:

TRACE

DEBUG

INFO

WARN

ERROR

CRITICAL

NVIDIA Holoscan SDK v2.0.0 367

OFF

Attributes

nam
e

value

CRITICAL = <LogLevel.CRITICAL: 5>

DEBUG = <LogLevel.DEBUG: 1>

ERROR = <LogLevel.ERROR: 4>

INFO = <LogLevel.INFO: 2>

OFF = <LogLevel.OFF: 6>

TRACE = <LogLevel.TRACE: 0>

WARN = <LogLevel.WARN: 3>

__init__(self: holoscan.logger._logger.LogLevel, value: int) None

property name

property value

holoscan.logger.log_level() holoscan.logger._logger.LogLevel

Get the global logging level.

holoscan.logger.set_log_level(arg0: holoscan.logger._logger.LogLevel) None

Set the global logging level.

Parameters

level

NVIDIA Holoscan SDK v2.0.0 368

The logging level to set

holoscan.logger.set_log_pattern(arg0: str) None

Set the format pattern for the logger.

Parameters

pattern

The pattern to use for logging messages. Uses the spdlog format specified at
[1]. The default pattern used by spdlog is “[%Y-%m-%d %H:%M:%S.%e] [%l]
[%n] %v”.

References

[1]

https://spdlog.docsforge.com/v1.x/3.custom-formatting/

holoscan.operators
This module provides a Python API to underlying C++ API Operators.

holos
can.o
perat
ors.AJ
ASour
ceOp

Operator to get a video stream from an AJA capture card.

holos
can.o
perat
ors.B
ayerD
emos
aicOp

Bayer Demosaic operator.

https://spdlog.docsforge.com/v1.x/3.custom-formatting/

NVIDIA Holoscan SDK v2.0.0 369

holos
can.o
perat
ors.F
ormat
Conv
erter
Op

Format conversion operator.

holos
can.o
perat
ors.H
oloviz
Op

(fragm
ent[, ...
])

Holoviz visualization operator using Holoviz module.

holos
can.o
perat
ors.In
feren
ceOp

Inference operator.

holos
can.o
perat
ors.In
feren
cePro
cesso
rOp

Holoinfer Processing operator.

holos
can.o
perat
ors.Pi
ngRx
Op

(fragm

Simple receiver operator.

NVIDIA Holoscan SDK v2.0.0 370

ent, *a
rgs, ...)

holos
can.o
perat
ors.Pi
ngTx
Op

(fragm
ent, *a
rgs, ...)

Simple transmitter operator.

holos
can.o
perat
ors.S
egme
ntatio
nPost
proce
ssorO
p

Operator carrying out post-processing operations on segmentation outputs.

holos
can.o
perat
ors.V
4L2Vi
deoC
aptur
eOp

Operator to get a video stream from a V4L2 source.

holos
can.o
perat
ors.Vi
deoSt
ream
Recor
derO
p

Operator class to record a video stream to a file.

NVIDIA Holoscan SDK v2.0.0 371

holos
can.o
perat
ors.Vi
deoSt
ream
Repla
yerO
p

Operator class to replay a video stream from a file.

class holoscan.operators.AJASourceOp

Bases: holoscan.core._core.Operator

Operator to get a video stream from an AJA capture card.

==Named Inputs==

overlay_buffer_inputnvidia::gxf::VideoBuffer (optional)

The operator does not require a message on this input port in order for compute
to be called. If a message is found, and enable_overlay is True , the image will be
mixed with the image captured by the AJA card. If enable_overlay is False , any
message on this port will be ignored.

==Named Outputs==

video_buffer_outputnvidia::gxf::VideoBuffer

The output video frame from the AJA capture card. If overlay_rdma is True , this
video buffer will be on the device, otherwise it will be in pinned host memory.

overlay_buffer_outputnvidia::gxf::VideoBuffer (optional)

This output port will only emit a video buffer when enable_overlay is True . If
overlay_rdma is True , this video buffer will be on the device, otherwise it will be in

pinned host memory.

NVIDIA Holoscan SDK v2.0.0 372

Parameters

fragment

The fragment that the operator belongs to.

device

The device to target (e.g., “0” for device 0). Default value is "0" .

channel

The camera NTV2Channel to use for output (e.g.,
NTV2Channel.NTV2_CHANNEL1 (0) or “NTV2_CHANNEL1” (in YAML) for the

first channel). Default value is NTV2Channel.NTV2_CHANNEL1 (
"NTV2_CHANNEL1" in YAML).

width

Width of the video stream. Default value is 1920 .

height

Height of the video stream. Default value is 1080 .

framerate

Frame rate of the video stream. Default value is 60 .

rdma

Boolean indicating whether RDMA is enabled. Default value is False ("false"
in YAML).

enable_overlay

Boolean indicating whether a separate overlay channel is enabled. Default
value is False ("false" in YAML).

NVIDIA Holoscan SDK v2.0.0 373

overlay_channel

The camera NTV2Channel to use for overlay output. Default value is
NTV2Channel.NTV2_CHANNEL2 ("NTV2_CHANNEL2" in YAML).

overlay_rdma

Boolean indicating whether RDMA is enabled for the overlay. Default value is
False ("false" in YAML).

name

The name of the operator. Default value is "aja_source" .

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

NVIDIA Holoscan SDK v2.0.0 374

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Initialize the operator.

setu
p

(self, s
pec)

Define the operator specification.

start
(self)

Operator start method.

stop
(self)

Operator stop method.

OperatorType

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

NVIDIA Holoscan SDK v2.0.0 375

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self: holoscan.operators.aja_source._aja_source.AJASourceOp, fragment:
holoscan.core._core.Fragment, device: str = '0', channel:
holoscan.operators.aja_source._aja_source.NTV2Channel =
<NTV2Channel.NTV2_CHANNEL1: 0>, width: int = 1920, height: int = 1080, framerate: int
= 60, rdma: bool = False, enable_overlay: bool = False, overlay_channel:
holoscan.operators.aja_source._aja_source.NTV2Channel =
<NTV2Channel.NTV2_CHANNEL2: 1>, overlay_rdma: bool = True, name: str = 'aja_source')

 None

Operator to get a video stream from an AJA capture card.

NVIDIA Holoscan SDK v2.0.0 376

==Named Inputs==

overlay_buffer_inputnvidia::gxf::VideoBuffer (optional)

The operator does not require a message on this input port in order for
compute to be called. If a message is found, and enable_overlay is True ,

the image will be mixed with the image captured by the AJA card. If
enable_overlay is False , any message on this port will be ignored.

==Named Outputs==

video_buffer_outputnvidia::gxf::VideoBuffer

The output video frame from the AJA capture card. If overlay_rdma is True ,
this video buffer will be on the device, otherwise it will be in pinned host
memory.

overlay_buffer_outputnvidia::gxf::VideoBuffer (optional)

This output port will only emit a video buffer when enable_overlay is True . If
overlay_rdma is True , this video buffer will be on the device, otherwise it will

be in pinned host memory.

Parameters

fragment

The fragment that the operator belongs to.

device

The device to target (e.g., “0” for device 0). Default value is "0" .

channel

The camera NTV2Channel to use for output (e.g.,
NTV2Channel.NTV2_CHANNEL1 (0) or “NTV2_CHANNEL1” (in YAML) for

NVIDIA Holoscan SDK v2.0.0 377

the first channel). Default value is NTV2Channel.NTV2_CHANNEL1 (
"NTV2_CHANNEL1" in YAML).

width

Width of the video stream. Default value is 1920 .

height

Height of the video stream. Default value is 1080 .

framerate

Frame rate of the video stream. Default value is 60 .

rdma

Boolean indicating whether RDMA is enabled. Default value is False (
"false" in YAML).

enable_overlay

Boolean indicating whether a separate overlay channel is enabled.
Default value is False ("false" in YAML).

overlay_channel

The camera NTV2Channel to use for overlay output. Default value is
NTV2Channel.NTV2_CHANNEL2 ("NTV2_CHANNEL2" in YAML).

overlay_rdma

Boolean indicating whether RDMA is enabled for the overlay. Default
value is False ("false" in YAML).

name

The name of the operator. Default value is "aja_source" .

add_arg(*args, **kwargs)

NVIDIA Holoscan SDK v2.0.0 378

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 379

None

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.operators.aja_source._aja_source.AJASourceOp) None

Initialize the operator.

This method is called only once when the operator is created for the first time, and
uses a light-weight initialization.

property name

The name of the operator.

property operator_type

NVIDIA Holoscan SDK v2.0.0 380

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self: holoscan.operators.aja_source._aja_source.AJASourceOp, spec:
holoscan.core._core.OperatorSpec) None

Define the operator specification.

Parameters

spec

The operator specification.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start(self: holoscan.core._core.Operator) None

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

class holoscan.operators.BayerDemosaicOp

Bases: holoscan.core._core.Operator

Bayer Demosaic operator.

==Named Inputs==

receivernvidia::gxf::Tensor or nvidia::gxf::VideoBuffer

NVIDIA Holoscan SDK v2.0.0 381

The input video frame to process. If the input is a VideoBuffer it must be an 8-bit
unsigned grayscale video (nvidia::gxf::VideoFormat::GXF_VIDEO_FORMAT_GRAY). The
video buffer may be in either host or device memory (a host->device copy is
performed if needed). If a video buffer is not found, the input port message is
searched for a tensor with the name specified by in_tensor_name . This must be a
device tensor in either 8-bit or 16-bit unsigned integer format.

==Named Outputs==

transmitternvidia::gxf::Tensor

The output video frame after demosaicing. This will be a 3-channel RGB image if
alpha_value is True , otherwise it will be a 4-channel RGBA image. The data type

will be either 8-bit or 16-bit unsigned integer (matching the bit depth of the input).
The name of the tensor that is output is controlled by out_tensor_name .

Parameters

fragment

The fragment that the operator belongs to.

pool

Memory pool allocator used by the operator.

cuda_stream_pool

holoscan.resources.CudaStreamPool instance to allocate CUDA streams.
Default value is None .

in_tensor_name

The name of the input tensor. Default value is "" (empty string).

out_tensor_name

NVIDIA Holoscan SDK v2.0.0 382

The name of the output tensor. Default value is "" (empty string).

interpolation_mode

The interpolation model to be used for demosaicing. Values available at:
https://docs.nvidia.com/cuda/npp/nppdefs.html?
highlight=Two%20parameter%20cubic%20filter#c.NppiInterpolationMode

NPPI_INTER_UNDEFINED (0): Undefined filtering interpolation mode.

NPPI_INTER_NN (1): Nearest neighbor filtering.

NPPI_INTER_LINEAR (2): Linear interpolation.

NPPI_INTER_CUBIC (4): Cubic interpolation.

NPPI_INTER_CUBIC2P_BSPLINE (5): Two-parameter cubic filter (B=1, C=0)

NPPI_INTER_CUBIC2P_CATMULLROM (6): Two-parameter cubic filter
(B=0, C=1/2)

NPPI_INTER_CUBIC2P_B05C03 (7): Two-parameter cubic filter (B=1/2,
C=3/10)

NPPI_INTER_SUPER (8): Super sampling.

NPPI_INTER_LANCZOS (16): Lanczos filtering.

NPPI_INTER_LANCZOS3_ADVANCED (17): Generic Lanczos filtering with
order 3.

NPPI_SMOOTH_EDGE (0x8000000): Smooth edge filtering.

Default value is 0 (NPPI_INTER_UNDEFINED).

bayer_grid_pos

The Bayer grid position. Values available at:
https://docs.nvidia.com/cuda/npp/nppdefs.html?
highlight=Two%20parameter%20cubic%20filter#c.NppiBayerGridPosition

https://docs.nvidia.com/cuda/npp/nppdefs.html?highlight=Two%20parameter%20cubic%20filter#c.NppiInterpolationMode
https://docs.nvidia.com/cuda/npp/nppdefs.html?highlight=Two%20parameter%20cubic%20filter#c.NppiInterpolationMode
https://docs.nvidia.com/cuda/npp/nppdefs.html?highlight=Two%20parameter%20cubic%20filter#c.NppiBayerGridPosition
https://docs.nvidia.com/cuda/npp/nppdefs.html?highlight=Two%20parameter%20cubic%20filter#c.NppiBayerGridPosition

NVIDIA Holoscan SDK v2.0.0 383

NPPI_BAYER_BGGR (0): Default registration position BGGR.

NPPI_BAYER_RGGB (1): Registration position RGGB.

NPPI_BAYER_GBRG (2): Registration position GBRG.

NPPI_BAYER_GRBG (3): Registration position GRBG.

Default value is 2 (NPPI_BAYER_GBRG).
generate_alpha

Generate alpha channel. Default value is False .

alpha_value

Alpha value to be generated if generate_alpha is set to True . Default value is
255 .

name

The name of the operator. Default value is "bayer_demosaic" .

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

NVIDIA Holoscan SDK v2.0.0 384

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Initialize the operator.

setu
p

(self, s
pec)

Define the operator specification.

start
(self)

Operator start method.

stop
(self)

Operator stop method.

OperatorType

NVIDIA Holoscan SDK v2.0.0 385

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

NVIDIA Holoscan SDK v2.0.0 386

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

NVIDIA Holoscan SDK v2.0.0 387

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)
None

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.operators.bayer_demosaic._bayer_demosaic.BayerDemosaicOp)
 None

Initialize the operator.

This method is called only once when the operator is created for the first time, and
uses a light-weight initialization.

property name

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 388

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self: holoscan.operators.bayer_demosaic._bayer_demosaic.BayerDemosaicOp,
spec: holoscan.core._core.OperatorSpec) None

Define the operator specification.

Parameters

spec

The operator specification.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start(self: holoscan.core._core.Operator) None

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

class holoscan.operators.FormatConverterOp

Bases: holoscan.core._core.Operator

Format conversion operator.

==Named Inputs==

NVIDIA Holoscan SDK v2.0.0 389

source_videonvidia::gxf::Tensor or nvidia::gxf::VideoBuffer

The input video frame to process. If the input is a VideoBuffer it must be in format
GXF_VIDEO_FORMAT_RGBA, GXF_VIDEO_FORMAT_RGB or
GXF_VIDEO_FORMAT_NV12. This video buffer may be in either host or device
memory (a host->device copy is performed if needed). If a video buffer is not found,
the input port message is searched for a tensor with the name specified by
in_tensor_name . This must be a device tensor in one of several supported formats

(unsigned 8-bit int or float32 graycale, unsigned 8-bit int RGB or RGBA, YUV420 or
NV12).

==Named Outputs==

tensornvidia::gxf::Tensor

The output video frame after processing. The shape, data type and number of
channels of this output tensor will depend on the specific parameters that were set
for this operator. The name of the Tensor transmitted on this port is determined by
out_tensor_name .

Parameters

fragment

The fragment that the operator belongs to.

pool

Memory pool allocator used by the operator.

out_dtype

Destination data type. The available options are:

"rgb888"

"uint8"

NVIDIA Holoscan SDK v2.0.0 390

"float32"

"rgba8888"

"yuv420"

"nv12"
in_dtype

Source data type. The available options are:

"rgb888"

"uint8"

"float32"

"rgba8888"

"yuv420"

"nv12"

in_tensor_name

The name of the input tensor. Default value is "" (empty string).

out_tensor_name

The name of the output tensor. Default value is "" (empty string).

scale_min

Output will be clipped to this minimum value. Default value is 0.0 .

scale_max

Output will be clipped to this maximum value. Default value is 1.0 .

alpha_value

NVIDIA Holoscan SDK v2.0.0 391

Unsigned integer in range [0, 255], indicating the alpha channel value to use
when converting from RGB to RGBA. Default value is 255 .

resize_height

Desired height for the (resized) output. Height will be unchanged if
resize_height is 0 . Default value is 0 .

resize_width

Desired width for the (resized) output. Width will be unchanged if
resize_width is 0 . Default value is 0 .

resize_mode

Resize mode enum value corresponding to NPP’s NppiInterpolationMode.
Values available at: https://docs.nvidia.com/cuda/npp/nppdefs.html?
highlight=Two%20parameter%20cubic%20filter#c.NppiInterpolationMode

NPPI_INTER_UNDEFINED (0): Undefined filtering interpolation mode.

NPPI_INTER_NN (1): Nearest neighbor filtering.

NPPI_INTER_LINEAR (2): Linear interpolation.

NPPI_INTER_CUBIC (4): Cubic interpolation.

NPPI_INTER_CUBIC2P_BSPLINE (5): Two-parameter cubic filter (B=1, C=0)

NPPI_INTER_CUBIC2P_CATMULLROM (6): Two-parameter cubic filter
(B=0, C=1/2)

NPPI_INTER_CUBIC2P_B05C03 (7): Two-parameter cubic filter (B=1/2,
C=3/10)

NPPI_INTER_SUPER (8): Super sampling.

NPPI_INTER_LANCZOS (16): Lanczos filtering.

https://docs.nvidia.com/cuda/npp/nppdefs.html?highlight=Two%20parameter%20cubic%20filter#c.NppiInterpolationMode
https://docs.nvidia.com/cuda/npp/nppdefs.html?highlight=Two%20parameter%20cubic%20filter#c.NppiInterpolationMode

NVIDIA Holoscan SDK v2.0.0 392

NPPI_INTER_LANCZOS3_ADVANCED (17): Generic Lanczos filtering with
order 3.

NPPI_SMOOTH_EDGE (0x8000000): Smooth edge filtering.

Default value is 0 (NPPI_INTER_UNDEFINED) which would be equivalent to 4
(NPPI_INTER_CUBIC).
channel_order

Sequence of integers describing how channel values are permuted. Default
value is [0, 1, 2] for 3-channel images and [0, 1, 2, 3] for 4-channel images.

cuda_stream_pool

holoscan.resources.CudaStreamPool instance to allocate CUDA streams. Default
value is None .

name

The name of the operator. Default value is "format_converter" .

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

NVIDIA Holoscan SDK v2.0.0 393

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Initialize the operator.

setu
p

(self, s
pec)

Define the operator specification.

start
(self)

Operator start method.

stop
(self)

Operator stop method.

OperatorType

NVIDIA Holoscan SDK v2.0.0 394

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

NVIDIA Holoscan SDK v2.0.0 395

__init__(self:
holoscan.operators.format_converter._format_converter.FormatConverterOp, fragment:
holoscan.core._core.Fragment, pool: holoscan.resources._resources.Allocator, out_dtype:
str, in_dtype: str = '', in_tensor_name: str = '', out_tensor_name: str = '', scale_min: float =
0.0, scale_max: float = 1.0, alpha_value: int = 255, resize_height: int = 0, resize_width: int
= 0, resize_mode: int = 0, out_channel_order: List[int] = [], cuda_stream_pool:
holoscan.resources._resources.CudaStreamPool = None, name: str = 'format_converter')

 None

Format conversion operator.

==Named Inputs==

source_videonvidia::gxf::Tensor or nvidia::gxf::VideoBuffer

The input video frame to process. If the input is a VideoBuffer it must be in
format GXF_VIDEO_FORMAT_RGBA, GXF_VIDEO_FORMAT_RGB or
GXF_VIDEO_FORMAT_NV12. This video buffer may be in either host or device
memory (a host->device copy is performed if needed). If a video buffer is not
found, the input port message is searched for a tensor with the name
specified by in_tensor_name . This must be a device tensor in one of several
supported formats (unsigned 8-bit int or float32 graycale, unsigned 8-bit int
RGB or RGBA, YUV420 or NV12).

==Named Outputs==

tensornvidia::gxf::Tensor

The output video frame after processing. The shape, data type and number of
channels of this output tensor will depend on the specific parameters that
were set for this operator. The name of the Tensor transmitted on this port is
determined by out_tensor_name .

Parameters

fragment

The fragment that the operator belongs to.

https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.Allocator
https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.CudaStreamPool

NVIDIA Holoscan SDK v2.0.0 396

pool

Memory pool allocator used by the operator.

out_dtype

Destination data type. The available options are:

"rgb888"

"uint8"

"float32"

"rgba8888"

"yuv420"

"nv12"

in_dtype

Source data type. The available options are:

"rgb888"

"uint8"

"float32"

"rgba8888"

"yuv420"

"nv12"

in_tensor_name

The name of the input tensor. Default value is "" (empty string).

NVIDIA Holoscan SDK v2.0.0 397

out_tensor_name

The name of the output tensor. Default value is "" (empty string).

scale_min

Output will be clipped to this minimum value. Default value is 0.0 .

scale_max

Output will be clipped to this maximum value. Default value is 1.0 .

alpha_value

Unsigned integer in range [0, 255], indicating the alpha channel value to
use when converting from RGB to RGBA. Default value is 255 .

resize_height

Desired height for the (resized) output. Height will be unchanged if
resize_height is 0 . Default value is 0 .

resize_width

Desired width for the (resized) output. Width will be unchanged if
resize_width is 0 . Default value is 0 .

resize_mode

Resize mode enum value corresponding to NPP’s
NppiInterpolationMode. Values available at:
https://docs.nvidia.com/cuda/npp/nppdefs.html?
highlight=Two%20parameter%20cubic%20filter#c.NppiInterpolationMode

NPPI_INTER_UNDEFINED (0): Undefined filtering interpolation
mode.

NPPI_INTER_NN (1): Nearest neighbor filtering.

NPPI_INTER_LINEAR (2): Linear interpolation.

https://docs.nvidia.com/cuda/npp/nppdefs.html?highlight=Two%20parameter%20cubic%20filter#c.NppiInterpolationMode
https://docs.nvidia.com/cuda/npp/nppdefs.html?highlight=Two%20parameter%20cubic%20filter#c.NppiInterpolationMode

NVIDIA Holoscan SDK v2.0.0 398

NPPI_INTER_CUBIC (4): Cubic interpolation.

NPPI_INTER_CUBIC2P_BSPLINE (5): Two-parameter cubic filter
(B=1, C=0)

NPPI_INTER_CUBIC2P_CATMULLROM (6): Two-parameter cubic
filter (B=0, C=1/2)

NPPI_INTER_CUBIC2P_B05C03 (7): Two-parameter cubic filter
(B=1/2, C=3/10)

NPPI_INTER_SUPER (8): Super sampling.

NPPI_INTER_LANCZOS (16): Lanczos filtering.

NPPI_INTER_LANCZOS3_ADVANCED (17): Generic Lanczos filtering
with order 3.

NPPI_SMOOTH_EDGE (0x8000000): Smooth edge filtering.

Default value is 0 (NPPI_INTER_UNDEFINED) which would be equivalent
to 4 (NPPI_INTER_CUBIC).
channel_order

Sequence of integers describing how channel values are permuted.
Default value is [0, 1, 2] for 3-channel images and [0, 1, 2, 3] for 4-
channel images.

cuda_stream_pool

holoscan.resources.CudaStreamPool instance to allocate CUDA streams.
Default value is None .

name

The name of the operator. Default value is "format_converter" .

add_arg(*args, **kwargs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 399

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)
None

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 400

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self:
holoscan.operators.format_converter._format_converter.FormatConverterOp) None

Initialize the operator.

This method is called only once when the operator is created for the first time, and
uses a light-weight initialization.

property name

The name of the operator.

property operator_type

NVIDIA Holoscan SDK v2.0.0 401

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self: holoscan.operators.format_converter._format_converter.FormatConverterOp,
spec: holoscan.core._core.OperatorSpec) None

Define the operator specification.

Parameters

spec

The operator specification.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start(self: holoscan.core._core.Operator) None

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

class holoscan.operators.HolovizOp(fragment, allocator=None, receivers=(), tensors=(),
color_lut=(), window_title='Holoviz', display_name='DP-0', width=1920, height=1080,
framerate=60, use_exclusive_display=False, fullscreen=False, headless=False,
enable_render_buffer_input=False, enable_render_buffer_output=False,
enable_camera_pose_output=False, font_path='', cuda_stream_pool=None, name='holoviz_op')

Bases: holoscan.operators.holoviz._holoviz.HolovizOp

Holoviz visualization operator using Holoviz module.

This is a Vulkan-based visualizer.

NVIDIA Holoscan SDK v2.0.0 402

==Named Inputs==

receiversmulti-receiver accepting nvidia::gxf::Tensor and/or nvidia::gxf::VideoBuffer

Any number of upstream ports may be connected to this receivers port. This port
can accept either VideoBuffers or Tensors. These inputs can be in either host or
device memory. Each tensor or video buffer will result in a layer. The operator
autodetects the layer type for certain input types (e.g. a video buffer will result in an
image layer). For other input types or more complex use cases, input specifications
can be provided either at initialization time as a parameter or dynamically at run
time (via input_specs). On each call to compute , tensors corresponding to all
names specified in the tensors parameter must be found or an exception will be
raised. Any extra, named tensors not present in the tensors parameter
specification (or optional, dynamic input_specs input) will be ignored.

input_specslist[holoscan.operators.HolovizOp.InputSpec] (optional)

A list of InputSpec objects. This port can be used to dynamically update the overlay
specification at run time. No inputs are required on this port in order for the
operator to compute .

render_buffer_inputnvidia::gxf::VideoBuffer (optional)

An empty render buffer can optionally be provided. The video buffer must have
format GXF_VIDEO_FORMAT_RGBA and be in device memory. This input port only
exists if enable_render_buffer_input was set to True , in which case compute will
only be called when a message arrives on this input.

==Named Outputs==

render_buffer_outputnvidia::gxf::VideoBuffer (optional)

Output for a filled render buffer. If an input render buffer is specified, it is using that
one, else it allocates a new buffer. The video buffer will have format
GXF_VIDEO_FORMAT_RGBA and will be in device memory. This output is useful for
offline rendering or headless mode. This output port only exists if
enable_render_buffer_output was set to True .

NVIDIA Holoscan SDK v2.0.0 403

camera_pose_outputstd::array<float, 16> (optional)

The camera pose. The parameters returned represent the values of a 4x4 row major
projection matrix. This output port only exists if enable_camera_pose_output was
set to True .

Parameters

fragment

The fragment that the operator belongs to.

allocator

Allocator used to allocate render buffer output. If None , will default to
holoscan.core.UnboundedAllocator .

receivers

List of input receivers.

tensors

List of input tensors. Each tensor is defined by a dictionary where the "name"
key must correspond to a tensor sent to the operator’s input. See the notes
section below for further details on how the tensor dictionary is defined.

color_lut

Color lookup table for tensors of type color_lut . Should be shape
(n_colors, 4) .

window_title

Title on window canvas. Default value is "Holoviz" .

display_name

NVIDIA Holoscan SDK v2.0.0 404

In exclusive mode, name of display to use as shown with xrandr. Default value
is "DP-0" .

width

Window width or display resolution width if in exclusive or fullscreen mode.
Default value is 1920 .

height

Window height or display resolution width if in exclusive or fullscreen mode.
Default value is 1080 .

framerate

Display framerate in Hz if in exclusive mode. Default value is 60.0 .

use_exclusive_display

Enable exclusive display. Default value is False .

fullscreen

Enable fullscreen window. Default value is False .

headless

Enable headless mode. No window is opened, the render buffer is output to
port render_buffer_output . Default value is False .

enable_render_buffer_input

If True , an additional input port, named "render_buffer_input" is added to
the operator. Default value is False .

enable_render_buffer_output

If True , an additional output port, named "render_buffer_output" is added
to the operator. Default value is False .

NVIDIA Holoscan SDK v2.0.0 405

enable_camera_pose_output

If True , an additional output port, named "camera_pose_output" is added to
the operator. Default value is False .

font_path

File path for the font used for rendering text. Default value is "" .

cuda_stream_pool

holoscan.resources.CudaStreamPool instance to allocate CUDA streams.
Default value is None .

name

The name of the operator. Default value is "holoviz_op" .

Notes

The tensors argument is used to specify the tensors to display. Each tensor is
defined using a dictionary, that must, at minimum include a ‘name’ key that
corresponds to a tensor found on the operator’s input. A ‘type’ key should also be
provided to indicate the type of entry to display. The ‘type’ key will be one of {
"color" , "color_lut" , "crosses" , "lines" , "lines_3d" , "line_strip" , "line_strip_3d" ,
"ovals" , "points" , "points_3d" , "rectangles" , "text" , "triangles" , "triangles_3d"

, "depth_map" , "depth_map_color" , "unknown" }. The default type is "unknown"
which will attempt to guess the corresponding type based on the tensor
dimensions. Concrete examples are given below.

To show a single 2D RGB or RGBA image, use a list containing a single tensor of type
"color" .

Here, the optional key opacity is used to scale the opacity of the tensor. The
priority key is used to specify the render priority for layers. Layers with a higher

priority will be rendered on top of those with a lower priority.

tensors = [dict(name="video", type="color", opacity=1.0, priority=0)]

NVIDIA Holoscan SDK v2.0.0 406

If we also had a "boxes"` tensor representing rectangular bounding boxes, we
could display them on top of the image like this.

where the color and line_width keys specify the color and line width of the
bounding box.

The details of the dictionary is as follows:

name: name of the tensor containing the input data to display

type: str

type: input type (default "unknown")

type: str

possible values:

unknown: unknown type, the operator tries to guess the type by
inspecting the tensor.

color: RGB or RGBA color 2d image.

color_lut: single channel 2d image, color is looked up.

points: point primitives, one coordinate (x, y) per primitive.

lines: line primitives, two coordinates (x0, y0) and (x1, y1) per
primitive.

line_strip: line strip primitive, a line primitive i is defined by each
coordinate (xi, yi) and the following (xi+1, yi+1).

triangles: triangle primitive, three coordinates (x0, y0), (x1, y1) and
(x2, y2) per primitive.

tensors = [dict(name="video", type="color", priority=0), dict(name="boxes",
type="rectangles", color=[1.0, 0.0, 0.0], line_width=2, priority=1),]

NVIDIA Holoscan SDK v2.0.0 407

crosses: cross primitive, a cross is defined by the center coordinate
and the size (xi, yi, si).

rectangles: axis aligned rectangle primitive, each rectangle is
defined by two coordinates (xi, yi) and (xi+1, yi+1).

ovals: oval primitive, an oval primitive is defined by the center
coordinate and the axis sizes (xi, yi, sxi, syi).

text: text is defined by the top left coordinate and the size (x, y, s)
per string, text strings are defined by InputSpec member text.

depth_map: single channel 2d array where each element
represents a depth value. The data is rendered as a 3d object using
points, lines or triangles. The color for the elements can be
specified through depth_map_color . Supported format: 8-bit
unsigned normalized format that has a single 8-bit depth
component.

depth_map_color: RGBA 2d image, same size as the depth map.
One color value for each element of the depth map grid. Supported
format: 32-bit unsigned normalized format that has an 8-bit R
component in byte 0, an 8-bit G component in byte 1, an 8-bit B
component in byte 2, and an 8-bit A component in byte 3.

opacity: layer opacity, 1.0 is fully opaque, 0.0 is fully transparent (default: 1.0)

type: float

priority: layer priority, determines the render order, layers with higher priority

values are rendered on top of layers with lower priority values (default: 0)

type: int

color: RGBA color of rendered geometry (default: [1.f, 1.f, 1.f, 1.f])

type: List[float]

line_width: line width for geometry made of lines (default: 1.0)

NVIDIA Holoscan SDK v2.0.0 408

type: float

point_size: point size for geometry made of points (default: 1.0)

type: float

text: array of text strings, used when type is text (default: [])

type: List[str]

depth_map_render_mode: depth map render mode (default: points)

type: str

possible values:

points: render as points

lines: render as lines

triangles: render as triangles

1. Displaying Color Images

Image data can either be on host or device (GPU). Multiple image formats are
supported

R 8 bit unsigned

R 16 bit unsigned

R 16 bit float

R 32 bit unsigned

R 32 bit float

RGB 8 bit unsigned

BGR 8 bit unsigned

NVIDIA Holoscan SDK v2.0.0 409

RGBA 8 bit unsigned

BGRA 8 bit unsigned

RGBA 16 bit unsigned

RGBA 16 bit float

RGBA 32 bit float

When the type parameter is set to color_lut the final color is looked up using
the values from the color_lut parameter. For color lookups these image
formats are supported

R 8 bit unsigned

R 16 bit unsigned

R 32 bit unsigned

2. Drawing Geometry

In all cases, x and y are normalized coordinates in the range [0, 1] . The x
and y correspond to the horizontal and vertical axes of the display,
respectively. The origin (0, 0) is at the top left of the display. Geometric
primitives outside of the visible area are clipped. Coordinate arrays are
expected to have the shape (N, C) where N is the coordinate count and C is
the component count for each coordinate.

Points are defined by a (x, y) coordinate pair.

Lines are defined by a set of two (x, y) coordinate pairs.

Lines strips are defined by a sequence of (x, y) coordinate pairs. The
first two coordinates define the first line, each additional coordinate adds
a line connecting to the previous coordinate.

Triangles are defined by a set of three (x, y) coordinate pairs.

NVIDIA Holoscan SDK v2.0.0 410

Crosses are defined by (x, y, size) tuples. size specifies the size of the
cross in the x direction and is optional, if omitted it’s set to 0.05 . The
size in the y direction is calculated using the aspect ratio of the window
to make the crosses square.

Rectangles (bounding boxes) are defined by a pair of 2-tuples defining
the upper-left and lower-right coordinates of a box: (x1, y1), (x2, y2) .

Ovals are defined by (x, y, size_x, size_y) tuples. size_x and size_y are
optional, if omitted they are set to 0.05 .

Texts are defined by (x, y, size) tuples. size specifies the size of the text
in y direction and is optional, if omitted it’s set to 0.05 . The size in the
x direction is calculated using the aspect ratio of the window. The index

of each coordinate references a text string from the text parameter and
the index is clamped to the size of the text array. For example, if there is
one item set for the text parameter, e.g. text=["my_text"] and three
coordinates, then my_text is rendered three times. If
text=["first text", "second text"] and three coordinates are specified,

then first text is rendered at the first coordinate, second text at the
second coordinate and then second text again at the third coordinate.
The text string array is fixed and can’t be changed after initialization. To
hide text which should not be displayed, specify coordinates greater than
(1.0, 1.0) for the text item, the text is then clipped away.

3D Points are defined by a (x, y, z) coordinate tuple.

3D Lines are defined by a set of two (x, y, z) coordinate tuples.

3D Lines strips are defined by a sequence of (x, y, z) coordinate tuples.
The first two coordinates define the first line, each additional coordinate
adds a line connecting to the previous coordinate.

3D Triangles are defined by a set of three (x, y, z) coordinate tuples.

3. Displaying Depth Maps

NVIDIA Holoscan SDK v2.0.0 411

When type is depth_map the provided data is interpreted as a rectangular
array of depth values. Additionally a 2d array with a color value for each point
in the grid can be specified by setting type to depth_map_color .

The type of geometry drawn can be selected by setting
depth_map_render_mode .

Depth maps are rendered in 3D and support camera movement. The camera
is controlled using the mouse:

Orbit (LMB)

Pan (LMB + CTRL | MMB)

Dolly (LMB + SHIFT | RMB | Mouse wheel)

Look Around (LMB + ALT | LMB + CTRL + SHIFT)

Zoom (Mouse wheel + SHIFT)

4. Output

By default a window is opened to display the rendering, but the extension can
also be run in headless mode with the headless parameter.

Using a display in exclusive mode is also supported with the
use_exclusive_display parameter. This reduces the latency by avoiding the

desktop compositor.

The rendered framebuffer can be output to render_buffer_output .

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

NVIDIA Holoscan SDK v2.0.0 412

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

Input
Spec

InputSpec for the HolovizOp operator.

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Initialize the operator.

setu
p

(self, s

Define the operator specification.

NVIDIA Holoscan SDK v2.0.0 413

pec)

start
(self)

Operator start method.

stop
(self)

Operator stop method.

DepthMapRenderMode

InputType

OperatorType

class DepthMapRenderMode

Bases: pybind11_builtins.pybind11_object

Members:

POINTS

LINES

TRIANGLES

Attributes

nam
e

value

LINES = <DepthMapRenderMode.LINES: 1>

POINTS = <DepthMapRenderMode.POINTS: 0>

TRIANGLES = <DepthMapRenderMode.TRIANGLES: 2>

__init__(self:
holoscan.operators.holoviz._holoviz.HolovizOp.DepthMapRenderMode, value: int)
None

NVIDIA Holoscan SDK v2.0.0 414

property name

property value

class InputSpec

Bases: pybind11_builtins.pybind11_object

InputSpec for the HolovizOp operator.

Parameters

tensor_name

The tensor name for this input.

type

The type of data that this tensor represents.

Attributes

type
(holoscan.operators.HolovizOp.InputType) The type of data that this
tensor represents.

opa
city

(float) The opacity of the object. Must be in range [0.0, 1.0] where 1.0 is
fully opaque.

prio
rity

(int) Layer priority, determines the render order. Layers with higher
priority values are rendered on top of layers with lower priority.

colo
r

(4-tuple of float) RGBA values in range [0.0, 1.0] for rendered
geometry.

line
_wid
th

(float) Line width for geometry made of lines.

poin
t_siz
e

(float) Point size for geometry made of points.

text
(sequence of str) Sequence of strings used when type is
HolovizOp.InputType.TEXT.

NVIDIA Holoscan SDK v2.0.0 415

dep
th_
map
_ren
der_
mod
e

(holoscan.operators.HolovizOp.DepthMapRenderMode) The depth
map render mode. Used only if type is HolovizOp.InputType.DEPTH_MAP
or HolovizOp.InputType.DEPTH_MAP_COLOR.

vie
ws

(list of HolovizOp.InputSpec.View) Sequence of layer views. By default a
layer will fill the whole window. When using a view, the layer can be
placed freely within the window. When multiple views are specified,
the layer is drawn multiple times using the specified layer views.

Methods

View View for the InputSpec of a HolovizOp operator.

desc
ripti
on

(self)

Returns

class View

Bases: pybind11_builtins.pybind11_object

View for the InputSpec of a HolovizOp operator.

Notes

Layers can also be placed in 3D space by specifying a 3D transformation
matrix. Note that for geometry layers there is a default matrix which
allows coordinates in the range of [0 … 1] instead of the Vulkan [-1 … 1]
range. When specifying a matrix for a geometry layer, this default matrix
is overwritten.

When multiple views are specified, the layer is drawn multiple times
using the specified layer views.

It’s possible to specify a negative term for height, which flips the image.
When using a negative height, one should also adjust the y value to point

NVIDIA Holoscan SDK v2.0.0 416

to the lower left corner of the viewport instead of the upper left corner.

Attributes

offset_x,
offset_y

(float) Offset of top-left corner of the view. (0, 0) is the
upper left and (1, 1) is the lower right.

width (float) Normalized width (range [0.0, 1.0]).

height (float) Normalized height (range [0.0, 1.0]).

matrix
(sequence of float) 16-elements representing a 4x4
transformation matrix.

__init__(self: holoscan.operators.holoviz._holoviz.HolovizOp.InputSpec.View)
None

View for the InputSpec of a HolovizOp operator.

Notes

Layers can also be placed in 3D space by specifying a 3D transformation
matrix. Note that for geometry layers there is a default matrix which
allows coordinates in the range of [0 … 1] instead of the Vulkan [-1 … 1]
range. When specifying a matrix for a geometry layer, this default matrix
is overwritten.

When multiple views are specified, the layer is drawn multiple times
using the specified layer views.

It’s possible to specify a negative term for height, which flips the image.
When using a negative height, one should also adjust the y value to point
to the lower left corner of the viewport instead of the upper left corner.

Attributes

offset_x,
offset_y

(float) Offset of top-left corner of the view. (0, 0) is the
upper left and (1, 1) is the lower right.

width (float) Normalized width (range [0.0, 1.0]).

height (float) Normalized height (range [0.0, 1.0]).

NVIDIA Holoscan SDK v2.0.0 417

matrix
(sequence of float) 16-elements representing a 4x4
transformation matrix.

property height

property matrix

property offset_x

property offset_y

property width

__init__(*args, **kwargs)

Overloaded function.

1. __init__(self:
holoscan.operators.holoviz._holoviz.HolovizOp.InputSpec, arg0: str,
arg1: holoscan.operators.holoviz._holoviz.HolovizOp.InputType) ->
None

InputSpec for the HolovizOp operator.

Parameters

tensor_name

The tensor name for this input.

type

The type of data that this tensor represents.

Attributes

type
(holoscan.operators.HolovizOp.InputType) The
type of data that this tensor represents.

opacity
(float) The opacity of the object. Must be in range
[0.0, 1.0] where 1.0 is fully opaque.

priority (int) Layer priority, determines the render order.
Layers with higher priority values are rendered on

NVIDIA Holoscan SDK v2.0.0 418

top of layers with lower priority.

color
(4-tuple of float) RGBA values in range [0.0, 1.0] for
rendered geometry.

line_width (float) Line width for geometry made of lines.

point_size (float) Point size for geometry made of points.

text
(sequence of str) Sequence of strings used when
type is HolovizOp.InputType.TEXT.

depth_map_rend
er_mode

(holoscan.operators.HolovizOp.DepthMapRenderM
ode) The depth map render mode. Used only if
type is HolovizOp.InputType.DEPTH_MAP or
HolovizOp.InputType.DEPTH_MAP_COLOR.

views

(list of HolovizOp.InputSpec.View) Sequence of
layer views. By default a layer will fill the whole
window. When using a view, the layer can be
placed freely within the window. When multiple
views are specified, the layer is drawn multiple
times using the specified layer views.

2. __init__(self:
holoscan.operato
rs.holoviz._holovi
z.HolovizOp.Inpu
tSpec, arg0: str,
arg1: str) -> None

property color

property depth_map_render_mode

description(self: holoscan.operators.holoviz._holoviz.HolovizOp.InputSpec) str

Returns

description

YAML string representation of the InputSpec class.

property line_width

property opacity

NVIDIA Holoscan SDK v2.0.0 419

property point_size

property priority

property text

property type

property views

class InputType

Bases: pybind11_builtins.pybind11_object

Members:

UNKNOWN

COLOR

COLOR_LUT

POINTS

LINES

LINE_STRIP

TRIANGLES

CROSSES

RECTANGLES

OVALS

TEXT

DEPTH_MAP

DEPTH_MAP_COLOR

POINTS_3D

NVIDIA Holoscan SDK v2.0.0 420

LINES_3D

LINE_STRIP_3D

TRIANGLES_3D

Attributes

nam
e

value

COLOR = <InputType.COLOR: 1>

COLOR_LUT = <InputType.COLOR_LUT: 2>

CROSSES = <InputType.CROSSES: 7>

DEPTH_MAP = <InputType.DEPTH_MAP: 11>

DEPTH_MAP_COLOR = <InputType.DEPTH_MAP_COLOR: 12>

LINES = <InputType.LINES: 4>

LINES_3D = <InputType.LINES_3D: 14>

LINE_STRIP = <InputType.LINE_STRIP: 5>

LINE_STRIP_3D = <InputType.LINE_STRIP_3D: 15>

OVALS = <InputType.OVALS: 9>

POINTS = <InputType.POINTS: 3>

POINTS_3D = <InputType.POINTS_3D: 13>

RECTANGLES = <InputType.RECTANGLES: 8>

TEXT = <InputType.TEXT: 10>

TRIANGLES = <InputType.TRIANGLES: 6>

TRIANGLES_3D = <InputType.TRIANGLES_3D: 16>

NVIDIA Holoscan SDK v2.0.0 421

UNKNOWN = <InputType.UNKNOWN: 0>

__init__(self: holoscan.operators.holoviz._holoviz.HolovizOp.InputType, value: int)
None

property name

property value

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

NVIDIA Holoscan SDK v2.0.0 422

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self: holoscan.operators.holoviz._holoviz.HolovizOp, fragment:
holoscan.core._core.Fragment, allocator: holoscan.resources._resources.Allocator,
receivers: List[holoscan.core._core.IOSpec] = [], tensors:
List[holoscan::ops::HolovizOp::InputSpec] = [], color_lut: List[List[float]] = [], window_title:
str = 'Holoviz', display_name: str = 'DP-0', width: int = 1920, height: int = 1080, framerate:
int = 60, use_exclusive_display: bool = False, fullscreen: bool = False, headless: bool =
False, enable_render_buffer_input: bool = False, enable_render_buffer_output: bool =
False, enable_camera_pose_output: bool = False, font_path: str = '', cuda_stream_pool:
holoscan.resources._resources.CudaStreamPool = None, name: str = 'holoviz_op')
None

Holoviz visualization operator using Holoviz module.

This is a Vulkan-based visualizer.

==Named Inputs==

receiversmulti-receiver accepting nvidia::gxf::Tensor and/or
nvidia::gxf::VideoBuffer

Any number of upstream ports may be connected to this receivers port. This
port can accept either VideoBuffers or Tensors. These inputs can be in either
host or device memory. Each tensor or video buffer will result in a layer. The
operator autodetects the layer type for certain input types (e.g. a video buffer
will result in an image layer). For other input types or more complex use cases,
input specifications can be provided either at initialization time as a parameter
or dynamically at run time (via input_specs). On each call to compute ,
tensors corresponding to all names specified in the tensors parameter must
be found or an exception will be raised. Any extra, named tensors not present
in the tensors parameter specification (or optional, dynamic input_specs
input) will be ignored.

input_specslist[holoscan.operators.HolovizOp.InputSpec] (optional)

NVIDIA Holoscan SDK v2.0.0 423

A list of InputSpec objects. This port can be used to dynamically update the
overlay specification at run time. No inputs are required on this port in order
for the operator to compute .

render_buffer_inputnvidia::gxf::VideoBuffer (optional)

An empty render buffer can optionally be provided. The video buffer must
have format GXF_VIDEO_FORMAT_RGBA and be in device memory. This input
port only exists if enable_render_buffer_input was set to True , in which case
compute will only be called when a message arrives on this input.

==Named Outputs==

render_buffer_outputnvidia::gxf::VideoBuffer (optional)

Output for a filled render buffer. If an input render buffer is specified, it is
using that one, else it allocates a new buffer. The video buffer will have format
GXF_VIDEO_FORMAT_RGBA and will be in device memory. This output is useful
for offline rendering or headless mode. This output port only exists if
enable_render_buffer_output was set to True .

camera_pose_outputstd::array<float, 16> (optional)

The camera pose. The parameters returned represent the values of a 4x4 row
major projection matrix. This output port only exists if
enable_camera_pose_output was set to True .

Parameters

fragment

The fragment that the operator belongs to.

allocator

Allocator used to allocate render buffer output. If None , will default to
holoscan.core.UnboundedAllocator .

NVIDIA Holoscan SDK v2.0.0 424

receivers

List of input receivers.

tensors

List of input tensors. Each tensor is defined by a dictionary where the
"name" key must correspond to a tensor sent to the operator’s input.

See the notes section below for further details on how the tensor
dictionary is defined.

color_lut

Color lookup table for tensors of type color_lut . Should be shape
(n_colors, 4) .

window_title

Title on window canvas. Default value is "Holoviz" .

display_name

In exclusive mode, name of display to use as shown with xrandr. Default
value is "DP-0" .

width

Window width or display resolution width if in exclusive or fullscreen
mode. Default value is 1920 .

height

Window height or display resolution width if in exclusive or fullscreen
mode. Default value is 1080 .

framerate

Display framerate in Hz if in exclusive mode. Default value is 60.0 .

use_exclusive_display

NVIDIA Holoscan SDK v2.0.0 425

Enable exclusive display. Default value is False .

fullscreen

Enable fullscreen window. Default value is False .

headless

Enable headless mode. No window is opened, the render buffer is output
to port render_buffer_output . Default value is False .

enable_render_buffer_input

If True , an additional input port, named "render_buffer_input" is
added to the operator. Default value is False .

enable_render_buffer_output

If True , an additional output port, named "render_buffer_output" is
added to the operator. Default value is False .

enable_camera_pose_output

If True , an additional output port, named "camera_pose_output" is
added to the operator. Default value is False .

font_path

File path for the font used for rendering text. Default value is "" .

cuda_stream_pool

holoscan.resources.CudaStreamPool instance to allocate CUDA
streams. Default value is None .

name

The name of the operator. Default value is "holoviz_op" .

Notes

NVIDIA Holoscan SDK v2.0.0 426

The tensors argument is used to specify the tensors to display. Each tensor is
defined using a dictionary, that must, at minimum include a ‘name’ key that
corresponds to a tensor found on the operator’s input. A ‘type’ key should also
be provided to indicate the type of entry to display. The ‘type’ key will be one of
{ "color" , "color_lut" , "crosses" , "lines" , "lines_3d" , "line_strip" ,
"line_strip_3d" , "ovals" , "points" , "points_3d" , "rectangles" , "text" ,
"triangles" , "triangles_3d" , "depth_map" , "depth_map_color" , "unknown"

}. The default type is "unknown" which will attempt to guess the
corresponding type based on the tensor dimensions. Concrete examples are
given below.

To show a single 2D RGB or RGBA image, use a list containing a single tensor of
type "color" .

Here, the optional key opacity is used to scale the opacity of the tensor. The
priority key is used to specify the render priority for layers. Layers with a

higher priority will be rendered on top of those with a lower priority.

If we also had a "boxes"` tensor representing rectangular bounding boxes, we
could display them on top of the image like this.

where the color and line_width keys specify the color and line width of the
bounding box.

The details of the dictionary is as follows:

name: name of the tensor containing the input data to display

type: str

type: input type (default "unknown")

tensors = [dict(name="video", type="color", opacity=1.0, priority=0)]

tensors = [dict(name="video", type="color", priority=0),
dict(name="boxes", type="rectangles", color=[1.0, 0.0, 0.0], line_width=2,
priority=1),]

NVIDIA Holoscan SDK v2.0.0 427

type: str

possible values:

unknown: unknown type, the operator tries to guess the type
by inspecting the tensor.

color: RGB or RGBA color 2d image.

color_lut: single channel 2d image, color is looked up.

points: point primitives, one coordinate (x, y) per primitive.

lines: line primitives, two coordinates (x0, y0) and (x1, y1) per
primitive.

line_strip: line strip primitive, a line primitive i is defined by
each coordinate (xi, yi) and the following (xi+1, yi+1).

triangles: triangle primitive, three coordinates (x0, y0), (x1, y1)
and (x2, y2) per primitive.

crosses: cross primitive, a cross is defined by the center
coordinate and the size (xi, yi, si).

rectangles: axis aligned rectangle primitive, each rectangle is
defined by two coordinates (xi, yi) and (xi+1, yi+1).

ovals: oval primitive, an oval primitive is defined by the center
coordinate and the axis sizes (xi, yi, sxi, syi).

text: text is defined by the top left coordinate and the size (x,
y, s) per string, text strings are defined by InputSpec member
text.

depth_map: single channel 2d array where each element
represents a depth value. The data is rendered as a 3d object
using points, lines or triangles. The color for the elements can
be specified through depth_map_color . Supported format: 8-
bit unsigned normalized format that has a single 8-bit depth
component.

NVIDIA Holoscan SDK v2.0.0 428

depth_map_color: RGBA 2d image, same size as the depth
map. One color value for each element of the depth map grid.
Supported format: 32-bit unsigned normalized format that has
an 8-bit R component in byte 0, an 8-bit G component in byte
1, an 8-bit B component in byte 2, and an 8-bit A component in
byte 3.

opacity: layer opacity, 1.0 is fully opaque, 0.0 is fully transparent (default:
1.0)

type: float

priority: layer priority, determines the render order, layers with higher
priority

values are rendered on top of layers with lower priority values (default:
0)

type: int

color: RGBA color of rendered geometry (default: [1.f, 1.f, 1.f, 1.f])

type: List[float]

line_width: line width for geometry made of lines (default: 1.0)

type: float

point_size: point size for geometry made of points (default: 1.0)

type: float

text: array of text strings, used when type is text (default: [])

type: List[str]

depth_map_render_mode: depth map render mode (default: points)

type: str

NVIDIA Holoscan SDK v2.0.0 429

possible values:

points: render as points

lines: render as lines

triangles: render as triangles

1. Displaying Color Images

Image data can either be on host or device (GPU). Multiple image formats
are supported

R 8 bit unsigned

R 16 bit unsigned

R 16 bit float

R 32 bit unsigned

R 32 bit float

RGB 8 bit unsigned

BGR 8 bit unsigned

RGBA 8 bit unsigned

BGRA 8 bit unsigned

RGBA 16 bit unsigned

RGBA 16 bit float

RGBA 32 bit float

When the type parameter is set to color_lut the final color is looked up
using the values from the color_lut parameter. For color lookups these
image formats are supported

R 8 bit unsigned

NVIDIA Holoscan SDK v2.0.0 430

R 16 bit unsigned

R 32 bit unsigned

2. Drawing Geometry

In all cases, x and y are normalized coordinates in the range [0, 1] .
The x and y correspond to the horizontal and vertical axes of the
display, respectively. The origin (0, 0) is at the top left of the display.
Geometric primitives outside of the visible area are clipped. Coordinate
arrays are expected to have the shape (N, C) where N is the coordinate
count and C is the component count for each coordinate.

Points are defined by a (x, y) coordinate pair.

Lines are defined by a set of two (x, y) coordinate pairs.

Lines strips are defined by a sequence of (x, y) coordinate pairs.
The first two coordinates define the first line, each additional
coordinate adds a line connecting to the previous coordinate.

Triangles are defined by a set of three (x, y) coordinate pairs.

Crosses are defined by (x, y, size) tuples. size specifies the size of
the cross in the x direction and is optional, if omitted it’s set to
0.05 . The size in the y direction is calculated using the aspect

ratio of the window to make the crosses square.

Rectangles (bounding boxes) are defined by a pair of 2-tuples
defining the upper-left and lower-right coordinates of a box:
(x1, y1), (x2, y2) .

Ovals are defined by (x, y, size_x, size_y) tuples. size_x and size_y
are optional, if omitted they are set to 0.05 .

Texts are defined by (x, y, size) tuples. size specifies the size of
the text in y direction and is optional, if omitted it’s set to 0.05 .
The size in the x direction is calculated using the aspect ratio of

NVIDIA Holoscan SDK v2.0.0 431

the window. The index of each coordinate references a text string
from the text parameter and the index is clamped to the size of
the text array. For example, if there is one item set for the text
parameter, e.g. text=["my_text"] and three coordinates, then
my_text is rendered three times. If
text=["first text", "second text"] and three coordinates are

specified, then first text is rendered at the first coordinate,
second text at the second coordinate and then second text again

at the third coordinate. The text string array is fixed and can’t be
changed after initialization. To hide text which should not be
displayed, specify coordinates greater than (1.0, 1.0) for the text
item, the text is then clipped away.

3D Points are defined by a (x, y, z) coordinate tuple.

3D Lines are defined by a set of two (x, y, z) coordinate tuples.

3D Lines strips are defined by a sequence of (x, y, z) coordinate
tuples. The first two coordinates define the first line, each additional
coordinate adds a line connecting to the previous coordinate.

3D Triangles are defined by a set of three (x, y, z) coordinate
tuples.

3. Displaying Depth Maps

When type is depth_map the provided data is interpreted as a
rectangular array of depth values. Additionally a 2d array with a color
value for each point in the grid can be specified by setting type to
depth_map_color .

The type of geometry drawn can be selected by setting
depth_map_render_mode .

Depth maps are rendered in 3D and support camera movement. The
camera is controlled using the mouse:

Orbit (LMB)

NVIDIA Holoscan SDK v2.0.0 432

Pan (LMB + CTRL | MMB)

Dolly (LMB + SHIFT | RMB | Mouse wheel)

Look Around (LMB + ALT | LMB + CTRL + SHIFT)

Zoom (Mouse wheel + SHIFT)

4. Output

By default a window is opened to display the rendering, but the
extension can also be run in headless mode with the headless
parameter.

Using a display in exclusive mode is also supported with the
use_exclusive_display parameter. This reduces the latency by avoiding

the desktop compositor.

The rendered framebuffer can be output to render_buffer_output .

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

NVIDIA Holoscan SDK v2.0.0 433

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)
None

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 434

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.operators.holoviz._holoviz.HolovizOp) None

Initialize the operator.

This method is called only once when the operator is created for the first time, and
uses a light-weight initialization.

property name

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self: holoscan.operators.holoviz._holoviz.HolovizOp, spec:
holoscan.core._core.OperatorSpec) None

Define the operator specification.

Parameters

spec

NVIDIA Holoscan SDK v2.0.0 435

The operator specification.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start(self: holoscan.core._core.Operator) None

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

class holoscan.operators.InferenceOp

Bases: holoscan.core._core.Operator

Inference operator.

==Named Inputs==

receiversmulti-receiver accepting nvidia::gxf::Tensor(s)

Any number of upstream ports may be connected to this receivers port. The
operator will search across all messages for tensors matching those specified in
in_tensor_names . These are the set of input tensors used by the models in
inference_map .

==Named Outputs==

transmitternvidia::gxf::Tensor(s)

A message containing tensors corresponding to the inference results from all
models will be emitted. The names of the tensors transmitted correspond to those
in out_tensor_names .

NVIDIA Holoscan SDK v2.0.0 436

For more details on InferenceOp parameters, see [Customizing the Inference
Operator](https://docs.nvidia.com/holoscan/sdk-user-
guide/examples/byom.html#customizing-the-inference-operator) or refer to
[Inference](https://docs.nvidia.com/holoscan/sdk-user-guide/inference.html).

Parameters

fragment

The fragment that the operator belongs to.

backend

Backend to use for inference. Set "trt" for TensorRT, "torch" for LibTorch
and "onnxrt" for the ONNX runtime.

allocator

Memory allocator to use for the output.

inference_map

Tensor to model map.

model_path_map

Path to the ONNX model to be loaded.

pre_processor_map

Pre processed data to model map.

device_map

Mapping of model to GPU ID for inference.

backend_map

Mapping of model to backend type for inference. Backend options: "trt" or
"torch"

in_tensor_names

https://docs.nvidia.com/holoscan/sdk-user-guide/examples/byom.html#customizing-the-inference-operator
https://docs.nvidia.com/holoscan/sdk-user-guide/examples/byom.html#customizing-the-inference-operator
https://docs.nvidia.com/holoscan/sdk-user-guide/inference.html

NVIDIA Holoscan SDK v2.0.0 437

Input tensors.

out_tensor_names

Output tensors.

infer_on_cpu

Whether to run the computation on the CPU instead of GPU. Default value is
False .

parallel_inference

Whether to enable parallel execution. Default value is True .

input_on_cuda

Whether the input buffer is on the GPU. Default value is True .

output_on_cuda

Whether the output buffer is on the GPU. Default value is True .

transmit_on_cuda

Whether to transmit the message on the GPU. Default value is True .

enable_fp16

Use 16-bit floating point computations. Default value is False .

is_engine_path

Whether the input model path mapping is for trt engine files. Default value is
False .

cuda_stream_pool

holoscan.resources.CudaStreamPool instance to allocate CUDA streams.
Default value is None .

NVIDIA Holoscan SDK v2.0.0 438

name

The name of the operator. Default value is "inference" .

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 439

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Initialize the operator.

setu
p

(self, s
pec)

Define the operator specification.

start
(self)

Operator start method.

stop
(self)

Operator stop method.

DataMap

DataVecMap

OperatorType

class DataMap

Bases: pybind11_builtins.pybind11_object

Methods

get_
map

(self)

inser
t

(self)

NVIDIA Holoscan SDK v2.0.0 440

__init__(self: holoscan.operators.inference._inference.InferenceOp.DataMap)
None

get_map(self: holoscan.operators.inference._inference.InferenceOp.DataMap)
Dict[str, str]

insert(self: holoscan.operators.inference._inference.InferenceOp.DataMap)
Dict[str, str]

class DataVecMap

Bases: pybind11_builtins.pybind11_object

Methods

get_
map

(self)

inser
t

(self)

__init__(self: holoscan.operators.inference._inference.InferenceOp.DataVecMap)
None

get_map(self: holoscan.operators.inference._inference.InferenceOp.DataVecMap)
Dict[str, List[str]]

insert(self: holoscan.operators.inference._inference.InferenceOp.DataVecMap)
Dict[str, List[str]]

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

NVIDIA Holoscan SDK v2.0.0 441

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self: holoscan.operators.inference._inference.InferenceOp, fragment:
holoscan.core._core.Fragment, backend: str, allocator:
holoscan.resources._resources.Allocator, inference_map: dict, model_path_map: dict,
pre_processor_map: dict, device_map: dict = {}, backend_map: dict = {}, in_tensor_names:
List[str] = [], out_tensor_names: List[str] = [], infer_on_cpu: bool = False,
parallel_inference: bool = True, input_on_cuda: bool = True, output_on_cuda: bool = True,
transmit_on_cuda: bool = True, enable_fp16: bool = False, is_engine_path: bool = False,
cuda_stream_pool: holoscan.resources._resources.CudaStreamPool = None, name: str =
'inference') None

https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.Allocator
https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.CudaStreamPool

NVIDIA Holoscan SDK v2.0.0 442

Inference operator.

==Named Inputs==

receiversmulti-receiver accepting nvidia::gxf::Tensor(s)

Any number of upstream ports may be connected to this receivers port. The
operator will search across all messages for tensors matching those specified
in in_tensor_names . These are the set of input tensors used by the models in
inference_map .

==Named Outputs==

transmitternvidia::gxf::Tensor(s)

A message containing tensors corresponding to the inference results from all
models will be emitted. The names of the tensors transmitted correspond to
those in out_tensor_names .

For more details on InferenceOp parameters, see [Customizing the Inference
Operator](https://docs.nvidia.com/holoscan/sdk-user-
guide/examples/byom.html#customizing-the-inference-operator) or refer to
[Inference](https://docs.nvidia.com/holoscan/sdk-user-guide/inference.html).

Parameters

fragment

The fragment that the operator belongs to.

backend

Backend to use for inference. Set "trt" for TensorRT, "torch" for
LibTorch and "onnxrt" for the ONNX runtime.

allocator

https://docs.nvidia.com/holoscan/sdk-user-guide/examples/byom.html#customizing-the-inference-operator
https://docs.nvidia.com/holoscan/sdk-user-guide/examples/byom.html#customizing-the-inference-operator
https://docs.nvidia.com/holoscan/sdk-user-guide/inference.html

NVIDIA Holoscan SDK v2.0.0 443

Memory allocator to use for the output.

inference_map

Tensor to model map.

model_path_map

Path to the ONNX model to be loaded.

pre_processor_map

Pre processed data to model map.

device_map

Mapping of model to GPU ID for inference.

backend_map

Mapping of model to backend type for inference. Backend options: "trt"
or "torch"

in_tensor_names

Input tensors.

out_tensor_names

Output tensors.

infer_on_cpu

Whether to run the computation on the CPU instead of GPU. Default
value is False .

parallel_inference

Whether to enable parallel execution. Default value is True .

input_on_cuda

NVIDIA Holoscan SDK v2.0.0 444

Whether the input buffer is on the GPU. Default value is True .

output_on_cuda

Whether the output buffer is on the GPU. Default value is True .

transmit_on_cuda

Whether to transmit the message on the GPU. Default value is True .

enable_fp16

Use 16-bit floating point computations. Default value is False .

is_engine_path

Whether the input model path mapping is for trt engine files. Default
value is False .

cuda_stream_pool

holoscan.resources.CudaStreamPool instance to allocate CUDA
streams. Default value is None .

name

The name of the operator. Default value is "inference" .

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

NVIDIA Holoscan SDK v2.0.0 445

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)
None

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 446

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.operators.inference._inference.InferenceOp) None

Initialize the operator.

This method is called only once when the operator is created for the first time, and
uses a light-weight initialization.

property name

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self: holoscan.operators.inference._inference.InferenceOp, spec:
holoscan.core._core.OperatorSpec) None

NVIDIA Holoscan SDK v2.0.0 447

Define the operator specification.

Parameters

spec

The operator specification.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start(self: holoscan.core._core.Operator) None

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

class holoscan.operators.InferenceProcessorOp

Bases: holoscan.core._core.Operator

Holoinfer Processing operator.

==Named Inputs==

receiversmulti-receiver accepting nvidia::gxf::Tensor(s)

Any number of upstream ports may be connected to this receivers port. The
operator will search across all messages for tensors matching those specified in
in_tensor_names . These are the set of input tensors used by the processing

operations specified in process_map .

==Named Outputs==

transmitternvidia::gxf::Tensor(s)

NVIDIA Holoscan SDK v2.0.0 448

A message containing tensors corresponding to the processed results from
operations will be emitted. The names of the tensors transmitted correspond to
those in out_tensor_names .

Parameters

fragment

The fragment that the operator belongs to.

allocator

Memory allocator to use for the output.

process_operations

Operations in sequence on tensors.

processed_map

Input-output tensor mapping.

in_tensor_names

Names of input tensors in the order to be fed into the operator.

out_tensor_names

Names of output tensors in the order to be fed into the operator.

input_on_cuda

Whether the input buffer is on the GPU. Default value is False .

output_on_cuda

Whether the output buffer is on the GPU. Default value is False .

transmit_on_cuda

NVIDIA Holoscan SDK v2.0.0 449

Whether to transmit the message on the GPU. Default value is False .

cuda_stream_pool

holoscan.resources.CudaStreamPool instance to allocate CUDA streams.
Default value is None .

config_path

File path to the config file. Default value is "" .

disable_transmitter

If True , disable the transmitter output port of the operator. Default value is
False .

name

The name of the operator. Default value is "postprocessor" .

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

NVIDIA Holoscan SDK v2.0.0 450

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Initialize the operator.

setu
p

(self, s
pec)

Define the operator specification.

start
(self)

Operator start method.

stop
(self)

Operator stop method.

DataMap

DataVecMap

OperatorType

NVIDIA Holoscan SDK v2.0.0 451

class DataMap

Bases: pybind11_builtins.pybind11_object

Methods

get_
map

(self)

inser
t

(self)

__init__(self:
holoscan.operators.inference_processor._inference_processor.InferenceProcessorOp

 None

get_map(self:
holoscan.operators.inference_processor._inference_processor.InferenceProcessorOp

 Dict[str, str]

insert(self:
holoscan.operators.inference_processor._inference_processor.InferenceProcessorOp

 Dict[str, str]

class DataVecMap

Bases: pybind11_builtins.pybind11_object

Methods

get_
map

(self)

inser
t

(self)

NVIDIA Holoscan SDK v2.0.0 452

__init__(self:
holoscan.operators.inference_processor._inference_processor.InferenceProcessorOp

 None

get_map(self:
holoscan.operators.inference_processor._inference_processor.InferenceProcessorOp

 Dict[str, List[str]]

insert(self:
holoscan.operators.inference_processor._inference_processor.InferenceProcessorOp

 Dict[str, List[str]]

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

NVIDIA Holoscan SDK v2.0.0 453

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self:
holoscan.operators.inference_processor._inference_processor.InferenceProcessorOp,
fragment: holoscan.core._core.Fragment, allocator:
holoscan.resources._resources.Allocator, process_operations: dict = {}, processed_map:
dict = {}, in_tensor_names: List[str] = [], out_tensor_names: List[str] = [], input_on_cuda:
bool = False, output_on_cuda: bool = False, transmit_on_cuda: bool = False,
disable_transmitter: bool = False, cuda_stream_pool:
holoscan.resources._resources.CudaStreamPool = None, config_path: str = '', name: str =
'postprocessor') None

Holoinfer Processing operator.

==Named Inputs==

receiversmulti-receiver accepting nvidia::gxf::Tensor(s)

Any number of upstream ports may be connected to this receivers port. The
operator will search across all messages for tensors matching those specified
in in_tensor_names . These are the set of input tensors used by the
processing operations specified in process_map .

==Named Outputs==

transmitternvidia::gxf::Tensor(s)

A message containing tensors corresponding to the processed results from
operations will be emitted. The names of the tensors transmitted correspond
to those in out_tensor_names .

https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.Allocator
https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.CudaStreamPool

NVIDIA Holoscan SDK v2.0.0 454

Parameters

fragment

The fragment that the operator belongs to.

allocator

Memory allocator to use for the output.

process_operations

Operations in sequence on tensors.

processed_map

Input-output tensor mapping.

in_tensor_names

Names of input tensors in the order to be fed into the operator.

out_tensor_names

Names of output tensors in the order to be fed into the operator.

input_on_cuda

Whether the input buffer is on the GPU. Default value is False .

output_on_cuda

Whether the output buffer is on the GPU. Default value is False .

transmit_on_cuda

Whether to transmit the message on the GPU. Default value is False .

cuda_stream_pool

NVIDIA Holoscan SDK v2.0.0 455

holoscan.resources.CudaStreamPool instance to allocate CUDA
streams. Default value is None .

config_path

File path to the config file. Default value is "" .

disable_transmitter

If True , disable the transmitter output port of the operator. Default
value is False .

name

The name of the operator. Default value is "postprocessor" .

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

NVIDIA Holoscan SDK v2.0.0 456

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)
None

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 457

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self:
holoscan.operators.inference_processor._inference_processor.InferenceProcessorOp)
None

Initialize the operator.

This method is called only once when the operator is created for the first time, and
uses a light-weight initialization.

property name

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self:
holoscan.operators.inference_processor._inference_processor.InferenceProcessorOp,
spec: holoscan.core._core.OperatorSpec) None

Define the operator specification.

Parameters

spec

The operator specification.

NVIDIA Holoscan SDK v2.0.0 458

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start(self: holoscan.core._core.Operator) None

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

class holoscan.operators.NTV2Channel

Bases: pybind11_builtins.pybind11_object

Members:

NTV2_CHANNEL1

NTV2_CHANNEL2

NTV2_CHANNEL3

NTV2_CHANNEL4

NTV2_CHANNEL5

NTV2_CHANNEL6

NTV2_CHANNEL7

NTV2_CHANNEL8

NTV2_MAX_NUM_CHANNELS

NTV2_CHANNEL_INVALID

Attributes

nam
e

NVIDIA Holoscan SDK v2.0.0 459

value

NTV2_CHANNEL1 = <NTV2Channel.NTV2_CHANNEL1: 0>

NTV2_CHANNEL2 = <NTV2Channel.NTV2_CHANNEL2: 1>

NTV2_CHANNEL3 = <NTV2Channel.NTV2_CHANNEL3: 2>

NTV2_CHANNEL4 = <NTV2Channel.NTV2_CHANNEL4: 3>

NTV2_CHANNEL5 = <NTV2Channel.NTV2_CHANNEL5: 4>

NTV2_CHANNEL6 = <NTV2Channel.NTV2_CHANNEL6: 5>

NTV2_CHANNEL7 = <NTV2Channel.NTV2_CHANNEL7: 6>

NTV2_CHANNEL8 = <NTV2Channel.NTV2_CHANNEL8: 7>

NTV2_CHANNEL_INVALID = <NTV2Channel.NTV2_MAX_NUM_CHANNELS: 8>

NTV2_MAX_NUM_CHANNELS = <NTV2Channel.NTV2_MAX_NUM_CHANNELS: 8>

__init__(self: holoscan.operators.aja_source._aja_source.NTV2Channel, value: int) None

property name

property value

class holoscan.operators.PingRxOp(fragment, *args, **kwargs)

Bases: holoscan.core.Operator

Simple receiver operator.

This is an example of a native operator with one input port. On each tick, it receives
an integer from the “in” port.

==Named Inputs==

inany

A received value.

NVIDIA Holoscan SDK v2.0.0 460

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(op_in
put, o
p_out

Default implementation of compute

NVIDIA Holoscan SDK v2.0.0 461

put, co
ntext)

initial
ize

()
Default implementation of initialize

setu
p

(spec)
Default implementation of setup method.

start
()

Default implementation of start

stop
()

Default implementation of stop

OperatorType

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

NVIDIA Holoscan SDK v2.0.0 462

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self: holoscan.core._core.Operator, arg0: object, arg1: holoscan::Fragment,
*args, **kwargs) None

Operator class.

Can be initialized with any number of Python positional and keyword
arguments.

If a name keyword argument is provided, it must be a str and will be used to
set the name of the Operator.

Condition classes will be added to self.conditions , Resource classes will be
added to self.resources , and any other arguments will be cast from a Python
argument type to a C++ Arg and stored in self.args . (For details on how the
casting is done, see the py_object_to_arg utility). When a Condition or Resource
is provided via a kwarg, it’s name will be automatically be updated to the name
of the kwarg.

Parameters

fragment

NVIDIA Holoscan SDK v2.0.0 463

The holoscan.core.Fragment (or holoscan.core.Application) to which this
Operator will belong.

*args

Positional arguments.

**kwargs

Keyword arguments.
Raises

RuntimeError

If name kwarg is provided, but is not of str type. If multiple arguments of
type Fragment are provided. If any other arguments cannot be converted
to Arg type via py_object_to_arg.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

NVIDIA Holoscan SDK v2.0.0 464

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(op_input, op_output, context)

Default implementation of compute

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

NVIDIA Holoscan SDK v2.0.0 465

Returns

id

initialize()

Default implementation of initialize

property name

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(spec: holoscan.core._core.PyOperatorSpec)

Default implementation of setup method.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start()

Default implementation of start

stop()

Default implementation of stop

class holoscan.operators.PingTxOp(fragment, *args, **kwargs)

Bases: holoscan.core.Operator

NVIDIA Holoscan SDK v2.0.0 466

Simple transmitter operator.

On each tick, it transmits an integer to the “out” port.

==Named Outputs==

outint

An index value that increments by one on each call to compute. The starting value is
1.

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

NVIDIA Holoscan SDK v2.0.0 467

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(op_in
put, o
p_out
put, co
ntext)

Default implementation of compute

initial
ize

()
Default implementation of initialize

setu
p

(spec)
Default implementation of setup method.

start
()

Default implementation of start

stop
()

Default implementation of stop

OperatorType

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

NVIDIA Holoscan SDK v2.0.0 468

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self: holoscan.core._core.Operator, arg0: object, arg1: holoscan::Fragment,
*args, **kwargs) None

Operator class.

Can be initialized with any number of Python positional and keyword
arguments.

If a name keyword argument is provided, it must be a str and will be used to
set the name of the Operator.

Condition classes will be added to self.conditions , Resource classes will be
added to self.resources , and any other arguments will be cast from a Python

NVIDIA Holoscan SDK v2.0.0 469

argument type to a C++ Arg and stored in self.args . (For details on how the
casting is done, see the py_object_to_arg utility). When a Condition or Resource
is provided via a kwarg, it’s name will be automatically be updated to the name
of the kwarg.

Parameters

fragment

The holoscan.core.Fragment (or holoscan.core.Application) to which this
Operator will belong.

*args

Positional arguments.

**kwargs

Keyword arguments.

Raises

RuntimeError

If name kwarg is provided, but is not of str type. If multiple arguments of
type Fragment are provided. If any other arguments cannot be converted
to Arg type via py_object_to_arg.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

NVIDIA Holoscan SDK v2.0.0 470

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(op_input, op_output, context)

Default implementation of compute

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

NVIDIA Holoscan SDK v2.0.0 471

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize()

Default implementation of initialize

property name

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(spec: holoscan.core._core.PyOperatorSpec)

Default implementation of setup method.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start()

NVIDIA Holoscan SDK v2.0.0 472

Default implementation of start

stop()

Default implementation of stop

class holoscan.operators.SegmentationPostprocessorOp

Bases: holoscan.core._core.Operator

Operator carrying out post-processing operations on segmentation outputs.

==Named Inputs==

in_tensornvidia::gxf::Tensor

Expects a message containing a 32-bit floating point tensor with name
in_tensor_name . The expected data layout of this tensor is HWC, NCHW or NHWC

format as specified via data_format .

==Named Outputs==

out_tensornvidia::gxf::Tensor

Emits a message containing a tensor named “out_tensor” that contains the
segmentation labels. This tensor will have unsigned 8-bit integer data type and
shape (H, W, 1).

Parameters

fragment

The fragment that the operator belongs to.

allocator

Memory allocator to use for the output.

in_tensor_name

NVIDIA Holoscan SDK v2.0.0 473

Name of the input tensor. Default value is "" .

network_output_type

Network output type (e.g. ‘softmax’). Default value is "softmax" .

data_format

Data format of network output. Default value is "hwc" .

cuda_stream_pool

holoscan.resources.CudaStreamPool instance to allocate CUDA streams.
Default value is None .

name

The name of the operator. Default value is "segmentation_postprocessor" .

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

NVIDIA Holoscan SDK v2.0.0 474

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Operator initialization method.

setu
p

(self, s
pec)

Define the operator specification.

start
(self)

Operator start method.

stop
(self)

Operator stop method.

OperatorType

class OperatorType

Bases: pybind11_builtins.pybind11_object

NVIDIA Holoscan SDK v2.0.0 475

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self:
holoscan.operators.segmentation_postprocessor._segmentation_postprocessor.Segmenta
fragment: holoscan.core._core.Fragment, allocator:
holoscan.resources._resources.Allocator, in_tensor_name: str = '', network_output_type:

https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.Allocator

NVIDIA Holoscan SDK v2.0.0 476

str = 'softmax', data_format: str = 'hwc', cuda_stream_pool:
holoscan.resources._resources.CudaStreamPool = None, name: str =
'segmentation_postprocessor') None

Operator carrying out post-processing operations on segmentation outputs.

==Named Inputs==

in_tensornvidia::gxf::Tensor

Expects a message containing a 32-bit floating point tensor with name
in_tensor_name . The expected data layout of this tensor is HWC, NCHW or

NHWC format as specified via data_format .

==Named Outputs==

out_tensornvidia::gxf::Tensor

Emits a message containing a tensor named “out_tensor” that contains the
segmentation labels. This tensor will have unsigned 8-bit integer data type and
shape (H, W, 1).

Parameters

fragment

The fragment that the operator belongs to.

allocator

Memory allocator to use for the output.

in_tensor_name

Name of the input tensor. Default value is "" .

network_output_type

https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.CudaStreamPool

NVIDIA Holoscan SDK v2.0.0 477

Network output type (e.g. ‘softmax’). Default value is "softmax" .

data_format

Data format of network output. Default value is "hwc" .

cuda_stream_pool

holoscan.resources.CudaStreamPool instance to allocate CUDA
streams. Default value is None .

name

The name of the operator. Default value is
"segmentation_postprocessor" .

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

NVIDIA Holoscan SDK v2.0.0 478

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)
None

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 479

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.core._core.Operator) None

Operator initialization method.

property name

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self:
holoscan.operators.segmentation_postprocessor._segmentation_postprocessor.Segmenta
spec: holoscan.core._core.OperatorSpec) None

Define the operator specification.

Parameters

spec

The operator specification.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start(self: holoscan.core._core.Operator) None

NVIDIA Holoscan SDK v2.0.0 480

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

class holoscan.operators.V4L2VideoCaptureOp

Bases: holoscan.core._core.Operator

Operator to get a video stream from a V4L2 source.

https://www.kernel.org/doc/html/v4.9/media/uapi/v4l/v4l2.html

Inputs a video stream from a V4L2 node, including USB cameras and HDMI IN.

Input stream is on host. If no pixel format is specified in the yaml configuration
file, the pixel format will be automatically selected. However, only AB24 and
YUYV are then supported. If a pixel format is specified in the yaml file, then

this format will be used. However, note that the operator then expects that
this format can be encoded as RGBA32. If not, the behavior is undefined.

Output stream is on host. Always RGBA32 at this time.

Use holoscan.operators.FormatConverterOp to move data from the host to a GPU
device.

==Named Outputs==

signalnvidia::gxf::VideoBuffer

A message containing a video buffer on the host with format
GXF_VIDEO_FORMAT_RGBA.

Parameters

fragment

https://www.kernel.org/doc/html/v4.9/media/uapi/v4l/v4l2.html

NVIDIA Holoscan SDK v2.0.0 481

The fragment that the operator belongs to.

allocator

Memory allocator to use for the output.

device

The device to target (e.g. “/dev/video0” for device 0). Default value is
"/dev/video0" .

width

Width of the video stream. Default value is 0 .

height

Height of the video stream. Default value is 0 .

num_buffers

Number of V4L2 buffers to use. Default value is 4 .

pixel_format

Video stream pixel format (little endian four character code (fourcc)). Default
value is "auto" .

name

The name of the operator. Default value is "v4l2_video_capture" .

exposure_time

Exposure time of the camera sensor in multiples of 100 μs (e.g. setting
exposure_time to 100 is 10 ms). Default: auto exposure, or camera sensor
default. Use v4l2-ctl -d /dev/<your_device> -L for a range of values supported by
your device. When not set by the user, V4L2_CID_EXPOSURE_AUTO is set to
V4L2_EXPOSURE_AUTO, or to V4L2_EXPOSURE_APERTURE_PRIORITY if the
former is not supported. When set by the user, V4L2_CID_EXPOSURE_AUTO is
set to V4L2_EXPOSURE_SHUTTER_PRIORITY, or to V4L2_EXPOSURE_MANUAL if

NVIDIA Holoscan SDK v2.0.0 482

the former is not supported. The provided value is then used to set
V4L2_CID_EXPOSURE_ABSOLUTE.
gain

Gain of the camera sensor. Default: auto gain, or camera sensor default. Use
v4l2-ctl -d /dev/<your_device> -L for a range of values supported by your device.
When not set by the user, V4L2_CID_AUTOGAIN is set to true (if supported).
When set by the user, V4L2_CID_AUTOGAIN is set to false (if supported). The
provided value is then used to set V4L2_CID_GAIN.

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

NVIDIA Holoscan SDK v2.0.0 483

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Initialize the operator.

setu
p

(self, s
pec)

Define the operator specification.

start
(self)

Operator start method.

stop
(self)

Operator stop method.

OperatorType

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

NVIDIA Holoscan SDK v2.0.0 484

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self:
holoscan.operators.v4l2_video_capture._v4l2_video_capture.V4L2VideoCaptureOp,
fragment: holoscan.core._core.Fragment, allocator:
holoscan.resources._resources.Allocator, device: str = '0', width: int = 0, height: int = 0,
num_buffers: int = 4, pixel_format: str = 'auto', name: str = 'v4l2_video_capture',
exposure_time: Optional[int] = None, gain: Optional[int] = None) None

Operator to get a video stream from a V4L2 source.

https://www.kernel.org/doc/html/v4.9/media/uapi/v4l/v4l2.html

Inputs a video stream from a V4L2 node, including USB cameras and HDMI IN.

https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.Allocator
https://www.kernel.org/doc/html/v4.9/media/uapi/v4l/v4l2.html

NVIDIA Holoscan SDK v2.0.0 485

Input stream is on host. If no pixel format is specified in the yaml
configuration file, the pixel format will be automatically selected.
However, only AB24 and YUYV are then supported. If a pixel format is
specified in the yaml file, then this format will be used. However, note
that the operator then expects that this format can be encoded as
RGBA32. If not, the behavior is undefined.

Output stream is on host. Always RGBA32 at this time.

Use holoscan.operators.FormatConverterOp to move data from the host to a
GPU device.

==Named Outputs==

signalnvidia::gxf::VideoBuffer

A message containing a video buffer on the host with format
GXF_VIDEO_FORMAT_RGBA.

Parameters

fragment

The fragment that the operator belongs to.

allocator

Memory allocator to use for the output.

device

The device to target (e.g. “/dev/video0” for device 0). Default value is
"/dev/video0" .

width

Width of the video stream. Default value is 0 .

NVIDIA Holoscan SDK v2.0.0 486

height

Height of the video stream. Default value is 0 .

num_buffers

Number of V4L2 buffers to use. Default value is 4 .

pixel_format

Video stream pixel format (little endian four character code (fourcc)).
Default value is "auto" .

name

The name of the operator. Default value is "v4l2_video_capture" .

exposure_time

Exposure time of the camera sensor in multiples of 100 μs (e.g. setting
exposure_time to 100 is 10 ms). Default: auto exposure, or camera
sensor default. Use v4l2-ctl -d /dev/<your_device> -L for a range of values
supported by your device. When not set by the user,
V4L2_CID_EXPOSURE_AUTO is set to V4L2_EXPOSURE_AUTO, or to
V4L2_EXPOSURE_APERTURE_PRIORITY if the former is not supported.
When set by the user, V4L2_CID_EXPOSURE_AUTO is set to
V4L2_EXPOSURE_SHUTTER_PRIORITY, or to V4L2_EXPOSURE_MANUAL if
the former is not supported. The provided value is then used to set
V4L2_CID_EXPOSURE_ABSOLUTE.

gain

Gain of the camera sensor. Default: auto gain, or camera sensor default.
Use v4l2-ctl -d /dev/<your_device> -L for a range of values supported by
your device. When not set by the user, V4L2_CID_AUTOGAIN is set to true
(if supported). When set by the user, V4L2_CID_AUTOGAIN is set to false
(if supported). The provided value is then used to set V4L2_CID_GAIN.

add_arg(*args, **kwargs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 487

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)
None

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 488

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self:
holoscan.operators.v4l2_video_capture._v4l2_video_capture.V4L2VideoCaptureOp)
None

Initialize the operator.

This method is called only once when the operator is created for the first time, and
uses a light-weight initialization.

property name

The name of the operator.

property operator_type

NVIDIA Holoscan SDK v2.0.0 489

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self:
holoscan.operators.v4l2_video_capture._v4l2_video_capture.V4L2VideoCaptureOp, spec:
holoscan.core._core.OperatorSpec) None

Define the operator specification.

Parameters

spec : holoscan.core.OperatorSpec

The operator specification.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start(self: holoscan.core._core.Operator) None

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

class holoscan.operators.VideoStreamRecorderOp

Bases: holoscan.core._core.Operator

Operator class to record a video stream to a file.

==Named Inputs==

inputnvidia::gxf::Tensor

NVIDIA Holoscan SDK v2.0.0 490

A message containing a video frame to serialize to disk. The input tensor can be on
either the CPU or GPU. This data location will be recorded as part of the metadata
serialized to disk and if the data is later read back in via VideoStreamReplayerOp, the
tensor output of that operator will be on the same device (CPU or GPU).

Parameters

fragment

The fragment that the operator belongs to.

directory

Directory path for storing files.

basename

User specified file name without extension.

flush_on_tick

Flushes output buffer on every tick when True . Default value is False .

name

The name of the operator. Default value is "video_stream_recorder" .

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

NVIDIA Holoscan SDK v2.0.0 491

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Initialize the operator.

setu
p

(self, s
pec)

Define the operator specification.

start
(self)

Operator start method.

NVIDIA Holoscan SDK v2.0.0 492

stop
(self)

Operator stop method.

OperatorType

class OperatorType

Bases: pybind11_builtins.pybind11_object

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

NVIDIA Holoscan SDK v2.0.0 493

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self:
holoscan.operators.video_stream_recorder._video_stream_recorder.VideoStreamRecorder
fragment: holoscan.core._core.Fragment, directory: str, basename: str, flush_on_tick:
bool = False, name: str = 'recorder') None

Operator class to record a video stream to a file.

==Named Inputs==

inputnvidia::gxf::Tensor

A message containing a video frame to serialize to disk. The input tensor can
be on either the CPU or GPU. This data location will be recorded as part of the
metadata serialized to disk and if the data is later read back in via
VideoStreamReplayerOp, the tensor output of that operator will be on the same
device (CPU or GPU).

Parameters

fragment

The fragment that the operator belongs to.

directory

Directory path for storing files.

basename

User specified file name without extension.

flush_on_tick

Flushes output buffer on every tick when True . Default value is False .

NVIDIA Holoscan SDK v2.0.0 494

name

The name of the operator. Default value is "video_stream_recorder" .

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

NVIDIA Holoscan SDK v2.0.0 495

Returns

arglist

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)
None

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self:
holoscan.operators.video_stream_recorder._video_stream_recorder.VideoStreamRecorder

 None

Initialize the operator.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 496

This method is called only once when the operator is created for the first time, and
uses a light-weight initialization.

property name

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self:
holoscan.operators.video_stream_recorder._video_stream_recorder.VideoStreamRecorder
spec: holoscan.core._core.OperatorSpec) None

Define the operator specification.

Parameters

spec

The operator specification.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start(self: holoscan.core._core.Operator) None

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

class holoscan.operators.VideoStreamReplayerOp

NVIDIA Holoscan SDK v2.0.0 497

Bases: holoscan.core._core.Operator

Operator class to replay a video stream from a file.

==Named Outputs==

outputnvidia::gxf::Tensor

A message containing a video frame deserialized from disk. Depending on the
metadata in the file being read, this tensor could be on either CPU or GPU. For the
data used in examples distributed with the SDK, the tensor will be an unnamed GPU
tensor (name == “”).

Parameters

fragment

The fragment that the operator belongs to.

directory

Directory path for reading files from.

basename

User specified file name without extension.

batch_size

Number of entities to read and publish for one tick. Default value is 1 .

ignore_corrupted_entities

If an entity could not be deserialized, it is ignored by default; otherwise a
failure is generated. Default value is True .

frame_rate

Frame rate to replay. If zero value is specified, it follows timings in timestamps.
Default value is 0.0 .

NVIDIA Holoscan SDK v2.0.0 498

realtime

Playback video in realtime, based on frame_rate or timestamps. Default value
is True .

repeat

Repeat video stream in a loop. Default value is False .

count

Number of frame counts to playback. If zero value is specified, it is ignored. If
the count is less than the number of frames in the video, it would finish early.
Default value is 0 .

name

The name of the operator. Default value is "video_stream_replayer" .

Attributes

args The list of arguments associated with the component.

condi
tions

Conditions associated with the operator.

descr
iptio
n

YAML formatted string describing the operator.

frag
ment

The fragment (holoscan.core.Fragment) that the operator belongs to.

id The identifier of the component.

nam
e

The name of the operator.

oper
ator_
type

The operator type.

NVIDIA Holoscan SDK v2.0.0 499

reso
urces

Resources associated with the operator.

spec
The operator spec (holoscan.core.OperatorSpec) associated with the
operator.

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

com
pute

(self, a
rg0, ar
g1, arg
2)

Operator compute method.

initial
ize

(self)
Initialize the operator.

setu
p

(self, s
pec)

Define the operator specification.

start
(self)

Operator start method.

stop
(self)

Operator stop method.

OperatorType

class OperatorType

Bases: pybind11_builtins.pybind11_object

NVIDIA Holoscan SDK v2.0.0 500

Enum class for operator types used by the executor.

NATIVE: Native operator.

GXF: GXF operator.

VIRTUAL: Virtual operator. (for internal use, not intended for use by
application authors)

Members:

NATIVE

GXF

VIRTUAL

Attributes

nam
e

value

GXF = <OperatorType.GXF: 1>

NATIVE = <OperatorType.NATIVE: 0>

VIRTUAL = <OperatorType.VIRTUAL: 2>

__init__(self: holoscan.core._core.Operator.OperatorType, value: int) None

property name

property value

__init__(self:
holoscan.operators.video_stream_replayer._video_stream_replayer.VideoStreamReplayerO
fragment: holoscan.core._core.Fragment, directory: str, basename: str, batch_size: int =

NVIDIA Holoscan SDK v2.0.0 501

1, ignore_corrupted_entities: bool = True, frame_rate: float = 1.0, realtime: bool = True,
repeat: bool = False, count: int = 0, name: str = 'format_converter') None

Operator class to replay a video stream from a file.

==Named Outputs==

outputnvidia::gxf::Tensor

A message containing a video frame deserialized from disk. Depending on the
metadata in the file being read, this tensor could be on either CPU or GPU. For
the data used in examples distributed with the SDK, the tensor will be an
unnamed GPU tensor (name == “”).

Parameters

fragment

The fragment that the operator belongs to.

directory

Directory path for reading files from.

basename

User specified file name without extension.

batch_size

Number of entities to read and publish for one tick. Default value is 1 .

ignore_corrupted_entities

If an entity could not be deserialized, it is ignored by default; otherwise a
failure is generated. Default value is True .

frame_rate

NVIDIA Holoscan SDK v2.0.0 502

Frame rate to replay. If zero value is specified, it follows timings in
timestamps. Default value is 0.0 .

realtime

Playback video in realtime, based on frame_rate or timestamps. Default
value is True .

repeat

Repeat video stream in a loop. Default value is False .

count

Number of frame counts to playback. If zero value is specified, it is
ignored. If the count is less than the number of frames in the video, it
would finish early. Default value is 0 .

name

The name of the operator. Default value is "video_stream_replayer" .

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.Operator, arg: holoscan.core._core.Arg)
-> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

3. add_arg(self: holoscan.core._core.Operator, **kwargs) -> None

Add arguments to the component via Python kwargs.

4. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Condition) -> None

NVIDIA Holoscan SDK v2.0.0 503

5. add_arg(self: holoscan.core._core.Operator, arg:
holoscan.core._core.Resource) -> None

Add a condition or resource to the Operator.

This can be used to add a condition or resource to an operator after it has
already been constructed.

Parameters

arg

The condition or resource to add.

property args

The list of arguments associated with the component.

Returns

arglist

compute(self: holoscan.core._core.Operator, arg0: holoscan.core._core.InputContext,
arg1: holoscan.core._core.OutputContext, arg2: holoscan.core._core.ExecutionContext)
None

Operator compute method. This method defines the primary computation to be
executed by the operator.

property conditions

Conditions associated with the operator.

property description

YAML formatted string describing the operator.

property fragment

The fragment (holoscan.core.Fragment) that the operator belongs to.

property id

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.InputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.OutputContext
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ExecutionContext

NVIDIA Holoscan SDK v2.0.0 504

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self:
holoscan.operators.video_stream_replayer._video_stream_replayer.VideoStreamReplayerO

 None

Initialize the operator.

This method is called only once when the operator is created for the first time, and
uses a light-weight initialization.

property name

The name of the operator.

property operator_type

The operator type.

holoscan.core.Operator.OperatorType enum representing the type of the operator.
The two types currently implemented are native and GXF.

property resources

Resources associated with the operator.

setup(self:
holoscan.operators.video_stream_replayer._video_stream_replayer.VideoStreamReplayerO
spec: holoscan.core._core.OperatorSpec) None

Define the operator specification.

NVIDIA Holoscan SDK v2.0.0 505

Parameters

spec

The operator specification.

property spec

The operator spec (holoscan.core.OperatorSpec) associated with the operator.

start(self: holoscan.core._core.Operator) None

Operator start method.

stop(self: holoscan.core._core.Operator) None

Operator stop method.

holoscan.resources
This module provides a Python API to underlying C++ API Resources.

holos
can.r
esour
ces.Al
locato
r

Base allocator class.

holos
can.r
esour
ces.Bl
ockM
emor
yPool

Block memory pool resource.

NVIDIA Holoscan SDK v2.0.0 506

holos
can.r
esour
ces.Cl
ock

Base clock class.

holos
can.r
esour
ces.C
udaSt
ream
Pool

CUDA stream pool.

holos
can.r
esour
ces.D
ouble
Buffe
rRece
iver

Receiver using a double-buffered queue.

holos
can.r
esour
ces.D
ouble
Buffe
rTran
smitt
er

Transmitter using a double-buffered queue.

holos
can.r
esour
ces.M
anual
Clock

Manual clock class.

NVIDIA Holoscan SDK v2.0.0 507

holos
can.r
esour
ces.M
emor
yStor
ageTy
pe

Members:

holos
can.r
esour
ces.R
ealti
meCl
ock

Real-time clock class.

holos
can.r
esour
ces.R
eceiv
er

Base GXF receiver class.

holos
can.r
esour
ces.S
erializ
ation
Buffe
r

Serialization Buffer.

holos
can.r
esour
ces.St
dCom
pone
ntSeri
alizer

Serializer for GXF Timestamp and Tensor components.

NVIDIA Holoscan SDK v2.0.0 508

holos
can.r
esour
ces.St
dEntit
ySeria
lizer

Default serializer for GXF entities.

holos
can.r
esour
ces.Tr
ansmi
tter

Base GXF transmitter class.

holos
can.r
esour
ces.U
nbou
nded
Alloca
tor

Unbounded allocator.

holos
can.r
esour
ces.U
cxCo
mpon
entSe
rialize
r

UCX component serializer.

holos
can.r
esour
ces.U
cxEnti
tySeri
alizer

UCX entity serializer.

NVIDIA Holoscan SDK v2.0.0 509

holos
can.r
esour
ces.U
cxHol
oscan
Comp
onent
Seriali
zer

UCX Holoscan component serializer.

holos
can.r
esour
ces.U
cxRec
eiver

UCX network receiver using a double-buffered queue.

holos
can.r
esour
ces.U
cxSeri
alizati
onBuf
fer

UCX serialization buffer.

holos
can.r
esour
ces.U
cxTra
nsmit
ter

UCX network transmitter using a double-buffered queue.

class holoscan.resources.Allocator

Bases: holoscan.gxf._gxf.GXFResource

Base allocator class.

NVIDIA Holoscan SDK v2.0.0 510

Attributes

args The list of arguments associated with the component.

block
_size

Get the block size of the allocator.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

NVIDIA Holoscan SDK v2.0.0 511

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

alloc
ate

(self, si
ze, typ
e)

Allocate the requested amount of memory.

free
(self, p
ointer)

Free the allocated memory

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

is_av
ailabl
e

(self, si
ze)

Boolean representing whether the resource is available.

setu
p

(self, a
rg0)

setup method for the resource.

__init__(self: holoscan.resources._resources.Allocator) None

Base allocator class.

add_arg(*args, **kwargs)

NVIDIA Holoscan SDK v2.0.0 512

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

allocate(self: holoscan.resources._resources.Allocator, size: int, type:
holoscan.resources._resources.MemoryStorageType) int

Allocate the requested amount of memory.

Parameters

size

The amount of memory to allocate

type

Enum representing the type of memory to allocate.

Returns

Opaque PyCapsule object representing a std::byte* pointer to the
allocated memory.

property args

The list of arguments associated with the component.

Returns

arglist

property block_size

Get the block size of the allocator.

NVIDIA Holoscan SDK v2.0.0 513

Returns

int

The block size of the allocator. Returns 1 for byte-based allocators.

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

free(self: holoscan.resources._resources.Allocator, pointer: int) None

Free the allocated memory

Parameters

pointer

Opaque PyCapsule object representing a std::byte* pointer to the
allocated memory.

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

NVIDIA Holoscan SDK v2.0.0 514

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

is_available(self: holoscan.resources._resources.Allocator, size: int) bool

Boolean representing whether the resource is available.

Returns

bool

Availability of the resource.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent
https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource

NVIDIA Holoscan SDK v2.0.0 515

property name

The name of the resource.

Returns

name

setup(self: holoscan.core._core.Resource, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the resource.

property spec

class holoscan.resources.BlockMemoryPool

Bases: holoscan.resources._resources.Allocator

Block memory pool resource.

Provides a maximum number of equally sized blocks of memory.

Attributes

args The list of arguments associated with the component.

block
_size

Get the block size of the allocator.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Resource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 516

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

alloc
ate

(self, si
ze, typ
e)

Allocate the requested amount of memory.

free
(self, p
ointer)

Free the allocated memory

gxf_i
nitiali
ze

(self)

Initialize the component.

NVIDIA Holoscan SDK v2.0.0 517

initial
ize

(self)
Initialize the component.

is_av
ailabl
e

(self, si
ze)

Boolean representing whether the resource is available.

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.BlockMemoryPool, fragment:
holoscan.core._core.Fragment, storage_type: int, block_size: int, num_blocks: int, dev_id:
int = 0, name: str = 'block_memory_pool') None

Block memory pool resource.

Provides a maximum number of equally sized blocks of memory.

Parameters

fragment

The fragment to assign the resource to.

storage_type

The storage type (0=Host, 1=Device, 2=System).

block_size

The size of each block in the memory pool (in bytes).

num_blocks

The number of blocks in the memory pool.

dev_id

NVIDIA Holoscan SDK v2.0.0 518

CUDA device ID. Specifies the device on which to create the memory
pool.

name

The name of the memory pool.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

allocate(self: holoscan.resources._resources.Allocator, size: int, type:
holoscan.resources._resources.MemoryStorageType) int

Allocate the requested amount of memory.

Parameters

size

The amount of memory to allocate

type

Enum representing the type of memory to allocate.

Returns

Opaque PyCapsule object representing a std::byte* pointer to the
allocated memory.

property args

NVIDIA Holoscan SDK v2.0.0 519

The list of arguments associated with the component.

Returns

arglist

property block_size

Get the block size of the allocator.

Returns

int

The block size of the allocator. Returns 1 for byte-based allocators.

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

free(self: holoscan.resources._resources.Allocator, pointer: int) None

Free the allocated memory

Parameters

pointer

Opaque PyCapsule object representing a std::byte* pointer to the
allocated memory.

property gxf_cid

The GXF component ID.

property gxf_cname

NVIDIA Holoscan SDK v2.0.0 520

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

is_available(self: holoscan.resources._resources.Allocator, size: int) bool

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent
https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource

NVIDIA Holoscan SDK v2.0.0 521

Boolean representing whether the resource is available.

Returns

bool

Availability of the resource.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.BlockMemoryPool, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

class holoscan.resources.Clock

Bases: holoscan.gxf._gxf.GXFResource

Base clock class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 522

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

NVIDIA Holoscan SDK v2.0.0 523

setu
p

(self, a
rg0)

setup method for the resource.

__init__(*args, **kwargs)

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

NVIDIA Holoscan SDK v2.0.0 524

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent
https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource

NVIDIA Holoscan SDK v2.0.0 525

setup(self: holoscan.core._core.Resource, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the resource.

property spec

class holoscan.resources.CudaStreamPool

Bases: holoscan.resources._resources.Allocator

CUDA stream pool.

Attributes

args The list of arguments associated with the component.

block
_size

Get the block size of the allocator.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Resource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 526

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

alloc
ate

(self, si
ze, typ
e)

Allocate the requested amount of memory.

free
(self, p
ointer)

Free the allocated memory

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

is_av
ailabl
e

(self, si

Boolean representing whether the resource is available.

NVIDIA Holoscan SDK v2.0.0 527

ze)

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.CudaStreamPool, fragment:
holoscan.core._core.Fragment, dev_id: int = 0, stream_flags: int = 0, stream_priority: int =
0, reserved_size: int = 1, max_size: int = 0, name: str = 'cuda_stream_pool') None

CUDA stream pool.

Parameters

fragment

The fragment to assign the resource to.

dev_id

CUDA device ID. Specifies the device on which to create the stream pool.

stream_flags

Flags for CUDA streams in the pool. This will be passed to CUDA’s
cudaStreamCreateWithPriority [Rb9bddbe55e1a-1] when creating the
streams. The default value of 0 corresponds to cudaStreamDefault . A
value of 1 corresponds to cudaStreamNonBlocking , indicating that the
stream can run concurrently with work in stream 0 (default stream) and
should not perform any implicit synchronization with it.

stream_priority

Priority value for CUDA streams in the pool. This is an integer value
passed to cudaSreamCreateWithPriority [Rb9bddbe55e1a-1]. Lower
numbers represent higher priorities.

reserved_size

The number of CUDA streams to initially reserve in the pool (prior to first
request).

NVIDIA Holoscan SDK v2.0.0 528

max_size

The maximum number of streams that can be allocated, unlimited by
default.

name

The name of the stream pool.

References

[1]

https://docs.nvidia.com/cuda/cuda-runtime-
api/group__CUDART__STREAM.html

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

allocate(self: holoscan.resources._resources.Allocator, size: int, type:
holoscan.resources._resources.MemoryStorageType) int

Allocate the requested amount of memory.

Parameters

size

The amount of memory to allocate

type

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html

NVIDIA Holoscan SDK v2.0.0 529

Enum representing the type of memory to allocate.
Returns

Opaque PyCapsule object representing a std::byte* pointer to the
allocated memory.

property args

The list of arguments associated with the component.

Returns

arglist

property block_size

Get the block size of the allocator.

Returns

int

The block size of the allocator. Returns 1 for byte-based allocators.

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

free(self: holoscan.resources._resources.Allocator, pointer: int) None

Free the allocated memory

Parameters

pointer

NVIDIA Holoscan SDK v2.0.0 530

Opaque PyCapsule object representing a std::byte* pointer to the
allocated memory.

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 531

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

is_available(self: holoscan.resources._resources.Allocator, size: int) bool

Boolean representing whether the resource is available.

Returns

bool

Availability of the resource.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.CudaStreamPool, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

class holoscan.resources.DoubleBufferReceiver

Bases: holoscan.resources._resources.Receiver

Receiver using a double-buffered queue.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 532

New messages are first pushed to a back stage.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

NVIDIA Holoscan SDK v2.0.0 533

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.DoubleBufferReceiver, fragment:
holoscan.core._core.Fragment, capacity: int = 1, policy: int = 2, name: str =
'double_buffer_receiver') None

Receiver using a double-buffered queue.

New messages are first pushed to a back stage.

Parameters

fragment

The fragment to assign the resource to.

capacity

The capacity of the receiver.

policy

The policy to use (0=pop, 1=reject, 2=fault).

NVIDIA Holoscan SDK v2.0.0 534

name

The name of the receiver.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

NVIDIA Holoscan SDK v2.0.0 535

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent
https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource

NVIDIA Holoscan SDK v2.0.0 536

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.DoubleBufferReceiver, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

class holoscan.resources.DoubleBufferTransmitter

Bases: holoscan.resources._resources.Transmitter

Transmitter using a double-buffered queue.

Messages are pushed to a back stage after they are published.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 537

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, s

Define the component specification.

NVIDIA Holoscan SDK v2.0.0 538

pec)

__init__(self: holoscan.resources._resources.DoubleBufferTransmitter, fragment:
holoscan.core._core.Fragment, capacity: int = 1, policy: int = 2, name: str =
'double_buffer_transmitter') None

Transmitter using a double-buffered queue.

Messages are pushed to a back stage after they are published.

Parameters

fragment

The fragment to assign the resource to.

capacity

The capacity of the transmitter.

policy

The policy to use (0=pop, 1=reject, 2=fault).

name

The name of the transmitter.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

NVIDIA Holoscan SDK v2.0.0 539

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 540

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.DoubleBufferTransmitter, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 541

class holoscan.resources.ManualClock

Bases: holoscan.resources._resources.Clock

Manual clock class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

NVIDIA Holoscan SDK v2.0.0 542

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, s
pec)

Define the component specification.

sleep
_for

(self, a
rg0)

Set the GXF scheduler to sleep for a specified duration.

sleep
_until

(self, t
arget_t
ime_n
s)

Set the GXF scheduler to sleep until a specified timestamp.

time
(self)

The current time of the clock (in seconds).

times
tamp

(self)
The current timestamp of the clock (in nanoseconds).

__init__(self: holoscan.resources._resources.ManualClock, fragment:
holoscan.core._core.Fragment, initial_timestamp: int = 0, name: str = 'realtime_clock')
None

NVIDIA Holoscan SDK v2.0.0 543

Manual clock.

Parameters

fragment

The fragment to assign the resource to.

initial_timestamp

The initial timestamp on the clock (in nanoseconds).

name

The name of the clock.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

NVIDIA Holoscan SDK v2.0.0 544

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 545

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.ManualClock, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

sleep_for(self: holoscan.resources._resources.ManualClock, arg0: object) None

Set the GXF scheduler to sleep for a specified duration.

Parameters

duration_ns

The duration to sleep (in nanoseconds).

sleep_until(self: holoscan.resources._resources.ManualClock, target_time_ns: int) None

Set the GXF scheduler to sleep until a specified timestamp.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 546

Parameters

target_time_ns

The target timestamp (in nanoseconds).

property spec

time(self: holoscan.resources._resources.ManualClock) float

The current time of the clock (in seconds).

Parameters

time

The current time of the clock (in seconds).

timestamp(self: holoscan.resources._resources.ManualClock) int

The current timestamp of the clock (in nanoseconds).

Parameters

timestamp

The current timestamp of the clock (in nanoseconds).

class holoscan.resources.MemoryStorageType

Bases: pybind11_builtins.pybind11_object

Members:

HOST

DEVICE

SYSTEM

Attributes

NVIDIA Holoscan SDK v2.0.0 547

nam
e

value

DEVICE = <MemoryStorageType.DEVICE: 1>

HOST = <MemoryStorageType.HOST: 0>

SYSTEM = <MemoryStorageType.SYSTEM: 2>

__init__(self: holoscan.resources._resources.MemoryStorageType, value: int) None

property name

property value

class holoscan.resources.RealtimeClock

Bases: holoscan.resources._resources.Clock

Real-time clock class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

NVIDIA Holoscan SDK v2.0.0 548

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

set_ti
me_s
cale

(self, ti
me_sc
ale)

Adjust the time scaling used by the clock.

NVIDIA Holoscan SDK v2.0.0 549

setu
p

(self, s
pec)

Define the component specification.

sleep
_for

(self, a
rg0)

Set the GXF scheduler to sleep for a specified duration.

sleep
_until

(self, t
arget_t
ime_n
s)

Set the GXF scheduler to sleep until a specified timestamp.

time
(self)

The current time of the clock (in seconds).

times
tamp

(self)
The current timestamp of the clock (in nanoseconds).

__init__(self: holoscan.resources._resources.RealtimeClock, fragment:
holoscan.core._core.Fragment, initial_time_offset: float = 0.0, initial_time_scale: float =
1.0, use_time_since_epoch: bool = False, name: str = 'realtime_clock') None

Realtime clock.

Parameters

fragment

The fragment to assign the resource to.

initial_timestamp

The initial time offset used until time scale is changed manually.

initial_time_scale

NVIDIA Holoscan SDK v2.0.0 550

The initial time scale used until time scale is changed manually.

use_time_since_epoch

If True , clock time is time since epoch + initial_time_offset at initialize() .
Otherwise clock time is initial_time_offset at initialize() .

name

The name of the clock.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

NVIDIA Holoscan SDK v2.0.0 551

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 552

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

set_time_scale(self: holoscan.resources._resources.RealtimeClock, time_scale: float)
None

Adjust the time scaling used by the clock.

Parameters

time_scale

Durations (e.g. for periodic condition or sleep_for) are reduced by this
scale value. A scale of 1.0 represents real-time while a scale of 2.0 would
represent a clock where time elapses twice as fast.

setup(self: holoscan.resources._resources.RealtimeClock, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

sleep_for(self: holoscan.resources._resources.RealtimeClock, arg0: object) None

Set the GXF scheduler to sleep for a specified duration.

Parameters

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 553

duration_ns

The duration to sleep (in nanoseconds).

sleep_until(self: holoscan.resources._resources.RealtimeClock, target_time_ns: int)
None

Set the GXF scheduler to sleep until a specified timestamp.

Parameters

target_time_ns

The target timestamp (in nanoseconds).

property spec

time(self: holoscan.resources._resources.RealtimeClock) float

The current time of the clock (in seconds).

Parameters

time

The current time of the clock (in seconds).

timestamp(self: holoscan.resources._resources.RealtimeClock) int

The current timestamp of the clock (in nanoseconds).

Parameters

timestamp

The current timestamp of the clock (in nanoseconds).

class holoscan.resources.Receiver

Bases: holoscan.gxf._gxf.GXFResource

Base GXF receiver class.

Attributes

NVIDIA Holoscan SDK v2.0.0 554

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 555

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, a
rg0)

setup method for the resource.

__init__(self: holoscan.resources._resources.Receiver) None

Base GXF receiver class.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

NVIDIA Holoscan SDK v2.0.0 556

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 557

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.core._core.Resource, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the resource.

property spec

class holoscan.resources.SerializationBuffer

Bases: holoscan.gxf._gxf.GXFResource

Serialization Buffer.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Resource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 558

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

NVIDIA Holoscan SDK v2.0.0 559

initial
ize

(self)
Initialize the component.

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.SerializationBuffer, fragment:
holoscan.core._core.Fragment, allocator: holoscan.resources._resources.Allocator =
None, buffer_size: int = 4096, name: str = 'serialization_buffer') None

Serialization Buffer.

Parameters

fragment

The fragment to assign the resource to.

allocator

The memory allocator for tensor components.

buffer_size

The size of the buffer in bytes.

name

The name of the serialization buffer

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

NVIDIA Holoscan SDK v2.0.0 560

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 561

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.SerializationBuffer, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 562

spec

Component specification associated with the resource.

property spec

class holoscan.resources.StdComponentSerializer

Bases: holoscan.gxf._gxf.GXFResource

Serializer for GXF Timestamp and Tensor components.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

NVIDIA Holoscan SDK v2.0.0 563

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the resource

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.StdComponentSerializer, fragment:
holoscan.core._core.Fragment, name: str = 'standard_component_serializer') None

Serializer for GXF Timestamp and Tensor components.

Parameters

fragment

The fragment to assign the resource to.

name

The name of the serializer.

NVIDIA Holoscan SDK v2.0.0 564

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

NVIDIA Holoscan SDK v2.0.0 565

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.resources._resources.StdComponentSerializer) None

Initialize the resource

This method is called only once when the resource is created for the first time, and
uses a light-weight initialization.

property name

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 566

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.StdComponentSerializer, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

class holoscan.resources.StdEntitySerializer

Bases: holoscan.gxf._gxf.GXFResource

Default serializer for GXF entities.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 567

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the resource

setu
p

(self, s
pec)

Define the component specification.

NVIDIA Holoscan SDK v2.0.0 568

__init__(self: holoscan.resources._resources.StdEntitySerializer, fragment:
holoscan.core._core.Fragment, name: str = 'std_entity_serializer') None

Default serializer for GXF entities.

Parameters

fragment

The fragment to assign the resource to.

name

The name of the serializer.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

NVIDIA Holoscan SDK v2.0.0 569

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 570

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.resources._resources.StdEntitySerializer) None

Initialize the resource

This method is called only once when the resource is created for the first time, and
uses a light-weight initialization.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.StdEntitySerializer, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

class holoscan.resources.Transmitter

Bases: holoscan.gxf._gxf.GXFResource

Base GXF transmitter class.

Attributes

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 571

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 572

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, a
rg0)

setup method for the resource.

__init__(self: holoscan.resources._resources.Transmitter) None

Base GXF transmitter class.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

NVIDIA Holoscan SDK v2.0.0 573

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 574

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.core._core.Resource, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the resource.

property spec

class holoscan.resources.UcxComponentSerializer

Bases: holoscan.gxf._gxf.GXFResource

UCX component serializer.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Resource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 575

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

NVIDIA Holoscan SDK v2.0.0 576

initial
ize

(self)
Initialize the component.

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.UcxComponentSerializer, fragment:
holoscan.core._core.Fragment, allocator: holoscan.resources._resources.Allocator =
None, name: str = 'ucx_component_serializer') None

UCX component serializer.

Parameters

fragment

The fragment to assign the resource to.

allocator

The memory allocator for tensor components.

name

The name of the component serializer.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

NVIDIA Holoscan SDK v2.0.0 577

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 578

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.UcxComponentSerializer, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 579

class holoscan.resources.UcxEntitySerializer

Bases: holoscan.gxf._gxf.GXFResource

UCX entity serializer.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

NVIDIA Holoscan SDK v2.0.0 580

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.UcxEntitySerializer, fragment:
holoscan.core._core.Fragment, verbose_warning: bool = False, name: str =
'ucx_entity_serializer') None

UCX entity serializer.

Parameters

fragment

The fragment to assign the resource to.

component_serializer

The component serializers used by the entity serializer.

verbose_warning

Whether to use verbose warnings during serialization.

name

NVIDIA Holoscan SDK v2.0.0 581

The name of the entity serializer.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

NVIDIA Holoscan SDK v2.0.0 582

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent
https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource

NVIDIA Holoscan SDK v2.0.0 583

Returns

name

setup(self: holoscan.resources._resources.UcxEntitySerializer, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

class holoscan.resources.UcxHoloscanComponentSerializer

Bases: holoscan.gxf._gxf.GXFResource

UCX Holoscan component serializer.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 584

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, s
pec)

Define the component specification.

NVIDIA Holoscan SDK v2.0.0 585

__init__(self: holoscan.resources._resources.UcxHoloscanComponentSerializer, fragment:
holoscan.core._core.Fragment, allocator: holoscan.resources._resources.Allocator =
None, name: str = 'ucx_component_serializer') None

UCX Holoscan component serializer.

Parameters

fragment

The fragment to assign the resource to.

allocator

The memory allocator for tensor components.

name

The name of the component serializer.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

NVIDIA Holoscan SDK v2.0.0 586

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 587

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.UcxHoloscanComponentSerializer, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

class holoscan.resources.UcxReceiver

Bases: holoscan.resources._resources.Receiver

UCX network receiver using a double-buffered queue.

New messages are first pushed to a back stage.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 588

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,

Overloaded function.

NVIDIA Holoscan SDK v2.0.0 589

 **kwa
rgs)

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.UcxReceiver, fragment:
holoscan.core._core.Fragment, buffer: holoscan::UcxSerializationBuffer = None, capacity:
int = 1, policy: int = 2, address: str = '0.0.0.0', port: int = 13337, name: str = 'ucx_receiver')

 None

UCX network receiver using a double-buffered queue.

New messages are first pushed to a back stage.

Parameters

fragment

The fragment to assign the resource to.

buffer

The serialization buffer used by the transmitter.

capacity

The capacity of the receiver.

policy

The policy to use (0=pop, 1=reject, 2=fault).

NVIDIA Holoscan SDK v2.0.0 590

address

The IP address used by the transmitter.

port

The network port used by the transmitter.

name

The name of the receiver.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

NVIDIA Holoscan SDK v2.0.0 591

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 592

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.UcxReceiver, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

class holoscan.resources.UcxSerializationBuffer

Bases: holoscan.gxf._gxf.GXFResource

UCX serialization buffer.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 593

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

NVIDIA Holoscan SDK v2.0.0 594

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.UcxSerializationBuffer, fragment:
holoscan.core._core.Fragment, allocator: holoscan.resources._resources.Allocator =
None, buffer_size: int = 4096, name: str = 'serialization_buffer') None

UCX serialization buffer.

Parameters

fragment

The fragment to assign the resource to.

allocator

The memory allocator for tensor components.

buffer_size

The size of the buffer in bytes.

name

The name of the serialization buffer

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

NVIDIA Holoscan SDK v2.0.0 595

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 596

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.UcxSerializationBuffer, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

Component specification associated with the resource.

property spec

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 597

class holoscan.resources.UcxTransmitter

Bases: holoscan.resources._resources.Transmitter

UCX network transmitter using a double-buffered queue.

Messages are pushed to a back stage after they are published.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

NVIDIA Holoscan SDK v2.0.0 598

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.UcxTransmitter, fragment:
holoscan.core._core.Fragment, buffer: holoscan::UcxSerializationBuffer = None, capacity:
int = 1, policy: int = 2, receiver_address: str = '0.0.0.0', local_address: str = '0.0.0.0', port:
int = 13337, local_port: int = 0, maximum_connection_retries: int = 10, name: str =
'ucx_transmitter') None

UCX network transmitter using a double-buffered queue.

Messages are pushed to a back stage after they are published.

Parameters

fragment

The fragment to assign the resource to.

buffer

The serialization buffer used by the transmitter.

NVIDIA Holoscan SDK v2.0.0 599

capacity

The capacity of the transmitter.

policy

The policy to use (0=pop, 1=reject, 2=fault).

receiver_address

The IP address used by the transmitter.

local_address

The local IP address to use for connection.

port

The network port used by the transmitter.

local_port

The local network port to use for connection.

maximum_connection_retries

The maximum number of times the transmitter will retry making a
connection.

name

The name of the transmitter.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

NVIDIA Holoscan SDK v2.0.0 600

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 601

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.UcxTransmitter, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 602

spec

Component specification associated with the resource.

property spec

class holoscan.resources.UnboundedAllocator

Bases: holoscan.resources._resources.Allocator

Unbounded allocator.

This allocator uses dynamic memory allocation without an upper bound.

Attributes

args The list of arguments associated with the component.

block
_size

Get the block size of the allocator.

descr
iptio
n

YAML formatted string describing the resource.

frag
ment

Fragment that the resource belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

NVIDIA Holoscan SDK v2.0.0 603

gxf_t
ypen
ame

The GXF type name of the resource.

id The identifier of the component.

nam
e

The name of the resource.

spec

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

alloc
ate

(self, si
ze, typ
e)

Allocate the requested amount of memory.

free
(self, p
ointer)

Free the allocated memory

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the component.

is_av
ailabl
e

(self, si

Boolean representing whether the resource is available.

NVIDIA Holoscan SDK v2.0.0 604

ze)

setu
p

(self, s
pec)

Define the component specification.

__init__(self: holoscan.resources._resources.UnboundedAllocator, fragment:
holoscan.core._core.Fragment, name: str = 'unbounded_allocator') None

Unbounded allocator.

This allocator uses dynamic memory allocation without an upper bound.

Parameters

fragment

The fragment to assign the resource to.

name

The name of the serializer.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

allocate(self: holoscan.resources._resources.Allocator, size: int, type:
holoscan.resources._resources.MemoryStorageType) int

Allocate the requested amount of memory.

NVIDIA Holoscan SDK v2.0.0 605

Parameters

size

The amount of memory to allocate

type

Enum representing the type of memory to allocate.

Returns

Opaque PyCapsule object representing a std::byte* pointer to the
allocated memory.

property args

The list of arguments associated with the component.

Returns

arglist

property block_size

Get the block size of the allocator.

Returns

int

The block size of the allocator. Returns 1 for byte-based allocators.

property description

YAML formatted string describing the resource.

property fragment

Fragment that the resource belongs to.

Returns

name

NVIDIA Holoscan SDK v2.0.0 606

free(self: holoscan.resources._resources.Allocator, pointer: int) None

Free the allocated memory

Parameters

pointer

Opaque PyCapsule object representing a std::byte* pointer to the
allocated memory.

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the resource.

Returns

str

The GXF type name of the resource

property id

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 607

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFResource) None

Initialize the component.

is_available(self: holoscan.resources._resources.Allocator, size: int) bool

Boolean representing whether the resource is available.

Returns

bool

Availability of the resource.

property name

The name of the resource.

Returns

name

setup(self: holoscan.resources._resources.UnboundedAllocator, spec:
holoscan.core._core.ComponentSpec) None

Define the component specification.

Parameters

spec

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFResource
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 608

Component specification associated with the resource.

property spec

holoscan.schedulers
This module provides a Python API to underlying C++ API Schedulers.

holos
can.s
ched
ulers.
Event
Base
dSche
duler

Event-based multi-thread scheduler class.

holos
can.s
ched
ulers.
Gree
dySch
edule
r

GreedyScheduler scheduler class.

holos
can.s
ched
ulers.
Multi
Threa
dSche
duler

Multi-thread scheduler class.

class holoscan.schedulers.EventBasedScheduler

Bases: holoscan.gxf._gxf.GXFScheduler , holoscan.core._core.Component ,
holoscan.gxf._gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 609

Event-based multi-thread scheduler class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the component.

frag
ment

Fragment that the scheduler belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the scheduler.

id The identifier of the component.

nam
e

The name of the scheduler.

clock

max_duration_ms

spec

stop_on_deadlock

stop_on_deadlock_timeout

NVIDIA Holoscan SDK v2.0.0 610

worker_thread_number

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the scheduler.

setu
p

(self, a
rg0)

setup method for the scheduler.

__init__(self: holoscan.schedulers._schedulers.EventBasedScheduler, fragment:
holoscan.core._core.Fragment, *, clock: holoscan.resources._resources.Clock = None,
worker_thread_number: int = 1, stop_on_deadlock: bool = True, max_duration_ms: int = -
1, stop_on_deadlock_timeout: int = 0, name: str = 'multithread_scheduler') None

Event-based multi-thread scheduler

Parameters

fragment

The fragment the condition will be associated with

clock

The clock used by the scheduler to define the flow of time. If None, a
default-constructed holoscan.resources.RealtimeClock will be used.

https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.Clock

NVIDIA Holoscan SDK v2.0.0 611

worker_thread_number

The number of worker threads.

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state,
but no periodic entity exists to break the dead end. Should be disabled
when scheduling conditions can be changed by external actors, for
example by clearing queues manually.

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If
not specified (or if a negative value is provided), the scheduler will run
until all work is done. If periodic terms are present, this means the
application will run indefinitely.

stop_on_deadlock_timeout

The scheduler will wait this amount of time before determining that it is
in deadlock and should stop. It will reset if a job comes in during the wait.
A negative value means not stop on deadlock. This parameter only
applies when stop_on_deadlock=true”,

name

The name of the scheduler.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

NVIDIA Holoscan SDK v2.0.0 612

property args

The list of arguments associated with the component.

Returns

arglist

property clock

property description

YAML formatted string describing the component.

property fragment

Fragment that the scheduler belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 613

The GXF type name of the scheduler.

Returns

str

The GXF type name of the scheduler

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFScheduler) None

Initialize the scheduler.

property max_duration_ms

property name

The name of the scheduler.

Returns

name

setup(self: holoscan.core._core.Scheduler, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the scheduler.

property spec

property stop_on_deadlock

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFScheduler
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Scheduler
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 614

property stop_on_deadlock_timeout

property worker_thread_number

class holoscan.schedulers.GreedyScheduler

Bases: holoscan.gxf._gxf.GXFScheduler , holoscan.core._core.Component ,
holoscan.gxf._gxf.GXFComponent

GreedyScheduler scheduler class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the component.

frag
ment

Fragment that the scheduler belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the scheduler.

id The identifier of the component.

NVIDIA Holoscan SDK v2.0.0 615

nam
e

The name of the scheduler.

check_recession_period_ms

clock

max_duration_ms

spec

stop_on_deadlock

stop_on_deadlock_timeout

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

initial
ize

(self)
Initialize the scheduler.

setu
p

(self, a
rg0)

setup method for the scheduler.

__init__(self: holoscan.schedulers._schedulers.GreedyScheduler, fragment:
holoscan.core._core.Fragment, *, clock: holoscan.resources._resources.Clock = None,
stop_on_deadlock: bool = True, max_duration_ms: int = - 1, check_recession_period_ms:
float = 0.0, stop_on_deadlock_timeout: int = 0, name: str = 'greedy_scheduler') None

Greedy scheduler

https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.Clock

NVIDIA Holoscan SDK v2.0.0 616

Parameters

fragment

The fragment the condition will be associated with

clock

The clock used by the scheduler to define the flow of time. If None, a
default-constructed holoscan.resources.RealtimeClock will be used.

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state,
but no periodic entity exists to break the dead end. Should be disabled
when scheduling conditions can be changed by external actors, for
example by clearing queues manually.

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If
not specified (or if a negative value is provided), the scheduler will run
until all work is done. If periodic terms are present, this means the
application will run indefinitely.

check_recession_period_ms

The maximum duration for which the scheduler would wait (in ms) when
all operators are not ready to run in the current iteration.

stop_on_deadlock_timeout

The scheduler will wait this amount of time before determining that it is
in deadlock and should stop. It will reset if a job comes in during the wait.
A negative value means not stop on deadlock. This parameter only
applies when stop_on_deadlock=true”,

name

The name of the scheduler.

add_arg(*args, **kwargs)

NVIDIA Holoscan SDK v2.0.0 617

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

property check_recession_period_ms

property clock

property description

YAML formatted string describing the component.

property fragment

Fragment that the scheduler belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

NVIDIA Holoscan SDK v2.0.0 618

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the scheduler.

Returns

str

The GXF type name of the scheduler

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFScheduler) None

Initialize the scheduler.

property max_duration_ms

property name

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent
https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFScheduler

NVIDIA Holoscan SDK v2.0.0 619

The name of the scheduler.

Returns

name

setup(self: holoscan.core._core.Scheduler, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the scheduler.

property spec

property stop_on_deadlock

property stop_on_deadlock_timeout

class holoscan.schedulers.MultiThreadScheduler

Bases: holoscan.gxf._gxf.GXFScheduler , holoscan.core._core.Component ,
holoscan.gxf._gxf.GXFComponent

Multi-thread scheduler class.

Attributes

args The list of arguments associated with the component.

descr
iptio
n

YAML formatted string describing the component.

frag
ment

Fragment that the scheduler belongs to.

gxf_ci
d

The GXF component ID.

gxf_c
nam
e

The name of the component.

https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Scheduler
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 620

gxf_c
onte
xt

The GXF context of the component.

gxf_e
id

The GXF entity ID.

gxf_t
ypen
ame

The GXF type name of the scheduler.

id The identifier of the component.

nam
e

The name of the scheduler.

check_recession_period_ms

clock

max_duration_ms

spec

stop_on_deadlock

stop_on_deadlock_timeout

worker_thread_number

Methods

add_
arg

(*args,
 **kwa
rgs)

Overloaded function.

gxf_i
nitiali
ze

(self)

Initialize the component.

NVIDIA Holoscan SDK v2.0.0 621

initial
ize

(self)
Initialize the scheduler.

setu
p

(self, a
rg0)

setup method for the scheduler.

__init__(self: holoscan.schedulers._schedulers.MultiThreadScheduler, fragment:
holoscan.core._core.Fragment, *, clock: holoscan.resources._resources.Clock = None,
worker_thread_number: int = 1, stop_on_deadlock: bool = True,
check_recession_period_ms: float = 5.0, max_duration_ms: int = - 1,
stop_on_deadlock_timeout: int = 0, name: str = 'multithread_scheduler') None

Multi-thread scheduler

Parameters

fragment

The fragment the condition will be associated with

clock

The clock used by the scheduler to define the flow of time. If None, a
default-constructed holoscan.resources.RealtimeClock will be used.

worker_thread_number

The number of worker threads.

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state,
but no periodic entity exists to break the dead end. Should be disabled
when scheduling conditions can be changed by external actors, for
example by clearing queues manually.

check_recession_period_ms

https://docs.nvidia.com/holoscan_python_api_resources.html#holoscan.resources.Clock

NVIDIA Holoscan SDK v2.0.0 622

The maximum duration for which the scheduler would wait (in ms) when
an operator is not ready to run yet.

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If
not specified (or if a negative value is provided), the scheduler will run
until all work is done. If periodic terms are present, this means the
application will run indefinitely.

stop_on_deadlock_timeout

The scheduler will wait this amount of time before determining that it is
in deadlock and should stop. It will reset if a job comes in during the wait.
A negative value means not stop on deadlock. This parameter only
applies when stop_on_deadlock=true”,

name

The name of the scheduler.

add_arg(*args, **kwargs)

Overloaded function.

1. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.Arg) -> None

Add an argument to the component.

2. add_arg(self: holoscan.core._core.ComponentBase, arg:
holoscan.core._core.ArgList) -> None

Add a list of arguments to the component.

property args

The list of arguments associated with the component.

Returns

arglist

NVIDIA Holoscan SDK v2.0.0 623

property check_recession_period_ms

property clock

property description

YAML formatted string describing the component.

property fragment

Fragment that the scheduler belongs to.

Returns

name

property gxf_cid

The GXF component ID.

property gxf_cname

The name of the component.

property gxf_context

The GXF context of the component.

property gxf_eid

The GXF entity ID.

gxf_initialize(self: holoscan.gxf._gxf.GXFComponent) None

Initialize the component.

property gxf_typename

The GXF type name of the scheduler.

Returns

str

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFComponent

NVIDIA Holoscan SDK v2.0.0 624

The GXF type name of the scheduler

property id

The identifier of the component.

The identifier is initially set to -1 , and will become a valid value when the
component is initialized.

With the default executor (holoscan.gxf.GXFExecutor), the identifier is set to the
GXF component ID.

Returns

id

initialize(self: holoscan.gxf._gxf.GXFScheduler) None

Initialize the scheduler.

property max_duration_ms

property name

The name of the scheduler.

Returns

name

setup(self: holoscan.core._core.Scheduler, arg0: holoscan.core._core.ComponentSpec)
None

setup method for the scheduler.

property spec

property stop_on_deadlock

property stop_on_deadlock_timeout

property worker_thread_number

https://docs.nvidia.com/holoscan_python_api_gxf.html#holoscan.gxf.GXFScheduler
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.Scheduler
https://docs.nvidia.com/holoscan_python_api_core.html#holoscan.core.ComponentSpec

NVIDIA Holoscan SDK v2.0.0 625

Holoscan Application
Package Specification (HAP)
Introduction

The Holoscan Application Package specification extends the MONAI Deploy Application
Package specification to provide the streaming capabilities, multi-fragment and other
features of the Holoscan SDK.

Overview

This document includes the specification of the Holoscan Application Package (HAP). A
HAP is a containerized application or service which is self-descriptive, as defined by this
document.

Goal

This document aims to define the structure and purpose of a HAP, including which parts
are optional and which are required so that developers can easily create conformant
HAPs.

Assumptions, Constraints, Dependencies

The following assumptions relate to HAP execution, inspection and general usage:

Containerized applications will be based on Linux x64 (AMD64) and/or ARM64
(aarch64).

Containerized applications’ host environment will be based on Linux x64 (AMD64)
and/or ARM64 (aarch64) with container support.

Developers expect the local execution of their applications to behave identically to
the execution of the containerized version.

NVIDIA Holoscan SDK v2.0.0 626

Developers expect the local execution of their containerized applications to behave
identically to the execution in deployment.

Developers and operations engineers want the application packages to be self-
describing.

Applications may be created using tool other than that provided in the Holoscan
SDK or the MONAI Deploy App SDK.

Holoscan Application Package may be created using a tool other than that provided
in the Holoscan SDK or the MONAI Deploy App SDK.

Pre-existing, containerized applications must be “converted” into Holoscan
Application Packages.

A Holoscan Application Package may contain a classical application (non-fragment
based), a single-fragment application, or a multi-fragment application. (Please see
the definition of fragment in Definitions, Acronyms, Abbreviations)

The scalability of a multi-fragment application based on Holoscan SDK is outside the
scope of this document.

Application packages are expected to be deployed in one of the supported
environments. For additional information, see Holoscan Operating Environments.

Definitions, Acronyms, Abbreviations

Term Definition

ARM64 Or, AARCH64. See Wikipedia for details.

Container See What’s a container?

Fragment
A fragment is a building block of the Application. It is a directed graph of
operators. For details, please refer to the MONAI Deploy App SDK or
Holoscan App SDK.

Gigibytes
(GiB)

A gibibyte (GiB) is a unit of measurement used in computer data storage
that equals to 1,073,741,824 bytes.

HAP
Holoscan Application Package. A containerized application or service which
is self-descriptive.

https://en.wikipedia.org/wiki/AArch64
https://www.docker.com/resources/what-container/

NVIDIA Holoscan SDK v2.0.0 627

Hosting
Service

A service that hosts and orchestrates HAP containers.

MAP
MONAI Application Package. A containerized application or service which is
self-descriptive.

Mebibyte
s (MiB)

A mebibyte (MiB) is a unit of measurement used in computer data storage
that equals to 1,048,576 bytes.

MONAI Medical Open Network for Artificial Intelligence.

SDK Software Development Kit.

Semantic
Version

See Semantic Versioning 2.0.

x64 Or, x86-64 or AMD64. See Wikipedia for details.

Requirements

The following requirements MUST be met by the HAP specification to be considered
complete and approved. All requirements marked as MUST or SHALL MUST be
implemented in order to be supported by a HAP-ready hosting service.

Single Artifact

A HAP SHALL comprise a single container, meeting the minimum requirements set
forth by this document.

A HAP SHALL be a containerized application to maximize the portability of its
application.

Self-Describing

A HAP MUST be self-describing and provide a mechanism for extracting its
description.

A HAP SHALL provide a method to print the metadata files to the console.

A HAP SHALL provide a method to copy the metadata files to a user-specified
directory.

The method of description SHALL be in a machine-readable and writable format.

https://semver.org/
https://en.wikipedia.org/wiki/X86-64

NVIDIA Holoscan SDK v2.0.0 628

The method of description SHALL be in a human-readable format.

The method of description SHOULD be a human writable format.

The method of description SHALL be declarative and immutable.

The method of description SHALL provide the following information about the HAP:

Execution requirements such as dependencies and restrictions.

Resource requirements include CPU cores, system memory, shared memory,
GPU, and GPU memory.

Runtime Characteristics of the HAP

A HAP SHALL start the packaged Application when it is executed by the users when
arguments are specified.

A HAP SHALL describe the packaged Application as a long-running service or an
application so an external agent can manage its lifecycle.

IO Specification

A HAP SHALL provide information about its expected inputs such that an external
agent can determine if the HAP can receive a workload.

A HAP SHALL provide sufficient information about its outputs so that an external
agent knows how to handle the results.

Local Execution

A HAP MUST be in a format that supports local execution in a development environment.

[Note] See Holoscan Operating Environments for additional information about supported
environments.

Compatible with Kubernetes

A HAP SHALL support deployment using Kubernetes.

NVIDIA Holoscan SDK v2.0.0 629

OCI Compliance

The containerized portion of a HAP SHALL comply with Open Container Initiative format
standards.

Image Annotations

All annotations for the containerized portion of a HAP MUST adhere to the specifications
laid out by The OpenContainers Annotations Spec

org.opencontainers.image.title : A HAP container image SHALL provide a human-
readable title (string).

org.opencontainers.image.version : A HAP container image SHALL provide a
version of the packaged application using the semantic versioning format. This
value is the same as the value defined in /etc/holoscan/app.json#version in the
Table of Application Manifest Fields.

All other OpenContainers predefined keys SHOULD be provided when available.

Hosting Environment

The HAP Hosting Environment executes the HAP and provides the application with a
customized set of environment variables and command line options as part of the
invocation.

The Hosting Service MUST, by default, execute the application as defined by
/etc/holoscan/app.json#command and then exit when the application or the

service completes.

The Hosting Service MUST provide any environment variables specified by
/etc/holoscan/app.json#environment .

The Hosting Service SHOULD monitor the Application process and record its CPU,
system memory, and GPU utilization metrics.

The Hosting Service SHOULD monitor the Application process and enforce any
timeout value specified in /etc/holoscan/app.json#timeout .

Table of Environment Variables

https://opencontainers.org/
https://specs.opencontainers.org/image-spec/annotations/?v=v1.0.1

NVIDIA Holoscan SDK v2.0.0 630

A HAP SHALL contain the following environment variables and their default values, if not
specified by the user, in the Application Manifest /etc/holoscan/app.json#environment .

Variable Default Format Description

HOLOSCAN_INPUT
_PATH

/var/holoscan
/input/

Folder
Path

Path to the input folder for the
Application.

HOLOSCAN_OUTP
UT_PATH

/var/holoscan
/output/

Folder
Path

Path to the output folder for the
Application.

HOLOSCAN_WORK
DIR

/var/holoscan
/

Folder
Path

Path to the Application’s working
directory.

HOLOSCAN_MODE
L_PATH

/opt/holoscan
/models/

Folder
Path

Path to the Application’s models
directory.

HOLOSCAN_CONFI
G_PATH

/var/holoscan
/app.yaml

File Path
Path to the Application’s configuration
file.

HOLOSCAN_APP_
MANIFEST_PATH

/etc/holoscan/
app.config

File Path
Path to the Application’s configuration
file.

HOLOSCAN_PKG_
MANIFEST_PATH

/etc/holoscan/
pkg.config

File Path
Path to the Application’s configuration
file.

HOLOSCAN_DOCS
/opt/holoscan
/docs

Folder
Path

Path to the folder containing
application documentation and
licenses.

HOLOSCAN_LOGS
/var/holoscan
/logs

Folder
Path

Path to the Application’s logs.

Architecture & Design

Description

The Holoscan Application Package (HAP) is a functional package designed to act on
datasets of a prescribed format. A HAP is a container image that adheres to the
specification provided in this document.

Application

NVIDIA Holoscan SDK v2.0.0 631

The primary component of a HAP is the application. The application is provided by an
application developer and incorporated into the HAP using the Holoscan Application
Packager.

All application code and binaries SHALL be in the /opt/holoscan/app/ folder, except for
any dependencies installed by the Holoscan Application Packager during the creation of
the HAP.

All AI models (PyTorch, TensorFlow, TensorRT, etc.) SHOULD be in separate sub-folders of
the /opt/holoscan/models/ folder. In specific use cases where the app package
developer is prevented from enclosing the model files in the package/container due to
intellectual property concerns, the models can be supplied from the host system when
the app package is run, e.g., via the volume mount mappings and the use of container
env variables.

Manifests

A HAP SHALL contain two manifests: the Application Manifest and the Package Manifest.
The Package Manifest shall be stored in /etc/holoscan/pkg.json , and the Application
Manifest shall be stored in /etc/holoscan/app.json . Once a HAP is created, its manifests
are expected to be immutable.

Application Manifest

Table of Application Manifest Fields

Name Required Default Type Format Description

apiVers
ion

No 0.0.0
stri
ng

semantic
version

Version of the manifest file
schema.

comma
nd

Yes N/A
stri
ng

shell
comman
d

Shell command used to run the
Application.

environ
ment

No N/A
obje
ct

object w/
name-
value
pairs

An object of name-value pairs that
will be passed to the application
during execution.

input Yes N/A obje
ct

object Data structure which provides
information about Application

NVIDIA Holoscan SDK v2.0.0 632

inputs.

input.f
ormats

Yes N/A
arra
y

array of
objects

List of input data formats accepted
by the Application.

input.p
ath

No input/
stri
ng

relative
file-
system
path

Folder path relative to the working
directory from which the
application will read inputs.

readine
ss

No N/A
obje
ct

object
An object of name-value pairs that
defines the readiness probe.

readine
ss.type

Yes N/A
stri
ng

string
Type of the probe: tcp , grpc ,
http-get or command .

readine
ss.com
mand

Yes (when
type is
command)

N/A
arra
y

shell
comman
d

Shell command and arguments in
string array form.

readine
ss.port

Yes (when
type is tcp ,
grpc , or
http-get)

N/A
inte
ger

number
The port number of readiness
probe.

readine
ss.path

Yes (when
type is
http-get)

N/A
stri
ng

string
HTTP path and query to access the
readiness probe.

readine
ss.initia
lDelayS
econds

No 1
inte
ger

number

Number of seconds after the
container has started before the
readiness probe is initialized and
performed.

readine
ss.peri
odSeco
nds

No 10
inte
ger

number
Number of seconds between
performing the readiness probe.

readine
ss.time
outSec
onds

No 1
inte
ger

number
Number of seconds after which the
probe times out.

NVIDIA Holoscan SDK v2.0.0 633

readine
ss.failur
eThres
hold

No 3
inte
ger

number
Number of retries to be performed
before considering the application
is unhealthy.

livenes
s

No N/A
obje
ct

object

An object of name-value pairs that
defines the liveness probe.
Recommended for service
applications.

livenes
s.type

Yes N/A
stri
ng

string
Type of the probe: tcp , grpc ,
http-get or command .

livenes
s.com
mand

Yes (when
type is
command)

N/A
arra
y

shell
comman
d

Shell command and arguments in
string array form.

livenes
s.port

Yes (when
type is tcp ,
grpc , or
http-get)

N/A
inte
ger

number
The port number of the liveness
probe.

livenes
s.path

Yes (when
type is
http-get)

N/A
stri
ng

string
HTTP path and query to access the
liveness probe.

livenes
s.initial
DelayS
econds

No 1
inte
ger

number

Number of seconds after the
container has started before the
liveness probe is initialized and
performed.

livenes
s.perio
dSecon
ds

No 10
inte
ger

number
Number of seconds between
performing the liveness probe.

livenes
s.timeo
utSeco
nds

No 1
inte
ger

number
Number of seconds after which the
probe times out.

NVIDIA Holoscan SDK v2.0.0 634

livenes
s.failur
eThres
hold

No 3
inte
ger

number
Number of retries to be performed
before considering the application
is unhealthy.

output Yes N/A
obje
ct

object
Data structure which provides
information about Application
output.

output.
format

Yes N/A
obje
ct

object
Details about the format of the
outputs produced by the
application.

output.
path

No output/
stri
ng

relative
file-
system
path

Folder path relative to the working
directory to which the application
will write outputs.

sdk No N/A
stri
ng

string SDK used for the Application.

sdkVer
sion

No 0.0.0
stri
ng

semantic
version

Version of the SDK used the
Application.

timeou
t

No 0
inte
ger

number

The maximum number of seconds
the application should execute
before being timed out and
terminated. Recommended for a
single batch/execution type of
applications.

version No 0.0.0
stri
ng

semantic
version

Version of the Application.

workin
gDirect
ory

No
/var/hol
oscan/

stri
ng

absolute
file-
system
path

Folder, or directory, in which the
application will be executed.

The Application Manifest file provides information about the HAP’s Application.

The Application Manifest MUST define the type of the containerized application (
/etc/holoscan/app.json#type).

NVIDIA Holoscan SDK v2.0.0 635

Type SHALL have the value of either service or application.

The Application Manifest MUST define the command used to run the Application (
/etc/holoscan/app.json#command).

The Application Manifest SHOULD define the version of the manifest file schema (
/etc/holoscan/app.json#apiVersion).

The Manifest schema version SHALL be provided as a semantic version string.

When not provided, the default value 0.0.0 SHALL be assumed.

The Application Manifest SHOULD define the SDK used to create the Application (
/etc/holoscan/app.json#sdk).

The Application Manifest SHOULD define the version of the SDK used to create the
Application (/etc/holoscan/app.json#sdkVersion).

SDK version SHALL be provided as a semantic version string.

When not provided, the default value 0.0.0 SHALL be assumed.

The Application Manifest SHOULD define the version of the application itself (
/etc/holoscan/app.json#version).

The Application version SHALL be provided as a semantic version string.

When not provided, the default value 0.0.0 SHALL be assumed.

The Application Manifest SHOULD define the application’s working directory (
/etc/holoscan/app.json#workingDirectory).

The Application will execute with its current directory set to this value.

The value provided must be an absolute path (the first character is /).

The default path /var/holoscan/ SHALL be assumed when not provided.

The Application Manifest SHOULD define the data input path, relative to the
working directory, used by the Application (/etc/holoscan/app.json#input.path).

https://semver.org/
https://semver.org/
https://semver.org/

NVIDIA Holoscan SDK v2.0.0 636

The input path SHOULD be a relative to the working directory or an absolute
file-system path to a directory.

When the value is a relative file-system path (the first character is not /),
it is relative to the application’s working directory.

When the value is an absolute file-system path (the first character is /),
the file-system path is used as-is.

When not provided, the default value input/ SHALL be assumed.

The Application Manifest SHOULD define input data formats supported by the
Application (/etc/holoscan/app.json#input.formats).

Possible values include, but are not limited to, none , network , file .

The Application Manifest SHOULD define the output path relative to the working
directory used by the Application (/etc/holoscan/app.json#output.path).

The output path SHOULD be relative to the working directory or an absolute
file-system path to a directory.

When the value is a relative file-system path (the first character is not /),
it is relative to the application’s working directory.

When the value is an absolute file-system path (the first character is /),
the file-system path is used as-is.

When not provided, the default value output/ SHALL be assumed.

The Application Manifest SHOULD define the output data format produced by the
Application (/etc/holoscan/app.json#output.format).

Possible values include, but are not limited to, none , screen , file , network .

The Application Manifest SHOULD configure a check to determine whether or not
the application is “ready.”

The Application Manifest SHALL define the probe type to be performed (
/etc/holoscan/app.json#readiness.type).

NVIDIA Holoscan SDK v2.0.0 637

Possible values include tcp , grpc , http-get , and command .

The Application Manifest SHALL define the probe commands to execute when
the type is command (/etc/holoscan/app.json#readiness.command).

The data structure is expected to be an array of strings.

The Application Manifest SHALL define the port to perform the readiness
probe when the type is grpc , tcp , or http-get . (
/etc/holoscan/app.json#readiness.port)

The value provided must be a valid port number ranging from 1 through
65535. (Please note that port numbers below 1024 are root-only
privileged ports.)

The Application Manifest SHALL define the path to perform the readiness
probe when the type is http-get (/etc/holoscan/app.json#readiness.path).

The value provided must be an absolute path (the first character is /).

The Application Manifest SHALL define the number of seconds after the
container has started before the readiness probe is initiated. (
/etc/holoscan/app.json#readiness.initialDelaySeconds).

The default value 0 SHALL be assumed when not provided.

The Application Manifest SHALL define how often to perform the readiness
probe (/etc/holoscan/app.json#readiness.periodSeconds).

When not provided, the default value 10 SHALL be assumed.

The Application Manifest SHALL define the number of seconds after which the
probe times out (/etc/holoscan/app.json#readiness.timeoutSeconds)

When not provided, the default value 1 SHALL be assumed.

The Application Manifest SHALL define the number of times to perform the
probe before considering the service is not ready (
/etc/holoscan/app.json#readiness.failureThreshold)

NVIDIA Holoscan SDK v2.0.0 638

The default value 3 SHALL be assumed when not provided.

The Application Manifest SHOULD configure a check to determine whether or not
the application is “live” or not.

The Application Manifest SHALL define the type of probe to be performed (
/etc/holoscan/app.json#liveness.type).

Possible values include tcp , grpc , http-get , and command .

The Application Manifest SHALL define the probe commands to execute when
the type is command (/etc/holoscan/app.json#liveness.command).

The data structure is expected to be an array of strings.

The Application Manifest SHALL define the port to perform the liveness probe
when the type is grpc , tcp , or http-get . (
/etc/holoscan/app.json#liveness.port)

The value provided must be a valid port number ranging from 1 through
65535. (Please note that port numbers below 1024 are root-only
privileged ports.)

The Application Manifest SHALL define the path to perform the liveness probe
when the type is http-get (/etc/holoscan/app.json#liveness.path).

The value provided must be an absolute path (the first character is /).

The Application Manifest SHALL define the number of seconds after the
container has started before the liveness probe is initiated. (
/etc/holoscan/app.json#liveness.initialDelaySeconds).

The default value 0 SHALL be assumed when not provided.

The Application Manifest SHALL define how often to perform the liveness
probe (/etc/holoscan/app.json#liveness.periodSeconds).

When not provided, the default value 10 SHALL be assumed.

NVIDIA Holoscan SDK v2.0.0 639

The Application Manifest SHALL define the number of seconds after which the
probe times out (/etc/holoscan/app.json#liveness.timeoutSeconds)

The default value 1 SHALL be assumed when not provided.

The Application Manifest SHALL define the number of times to perform the
probe before considering the service is not alive (
/etc/holoscan/app.json#liveness.failureThreshold)

When not provided, the default value 3 SHALL be assumed.

The Application Manifest SHOULD define any timeout applied to the Application (
/etc/holoscan/app.json#timeout).

When the value is 0 , timeout SHALL be disabled.

When not provided, the default value 0 SHALL be assumed.

The Application Manifest MUST enable the specification of environment variables
for the Application (/etc/holoscan/app.json#environment)

The data structure is expected to be in "name": "value" members of the
object.

The field’s name will be the name of the environment variable verbatim and
must conform to all requirements for environment variables and JSON field
names.

The field’s value will be the value of the environment variable and must
conform to all requirements for environment variables.

Package Manifest

Table of Package Manifest Fields

Name Required Default Type Format Description

apiVersion No 0.0.0
strin
g

semantic
version

Version of the manifest file
schema.

NVIDIA Holoscan SDK v2.0.0 640

applicationRoo
t

Yes
/opt/hol
oscan/a
pp/

strin
g

absolute
file-
system
path

Absolute file-system path to
the folder which contains the
Application

modelRoot No
/opt/hol
oscan/m
odels/

strin
g

absolute
file-
system
path

Absolute file-system path to
the folder which contains the
model(s).

models No N/A array
array of
objects

Array of objects which
describe models in the
package.

models[*].nam
e

Yes N/A
strin
g

string Name of the model.

models[*].path No N/A
strin
g

Relative
file-
system
path

File-system path to the folder
which contains the model
that is relative to the value
defined in modelRoot .

resources No N/A
obje
ct

object
Object describing resource
requirements for the
Application.

resources.cpu No 1
deci
mal
(2)

number
Number of CPU cores
required by the Application
or the Fragment.

resources.cpuL
imit

No N/A
deci
mal
(2)

number
The CPU core limit for the
Application or the Fragment.
(1)

resources.gpu No 0
deci
mal
(2)

number
Number of GPU devices
required by the Application
or the Fragment.

resources.gpu
Limit

No N/A
deci
mal
(2)

number
The GPU device limit for the
Application or the Fragment.
(1)

resources.me
mory

No 1Gi
strin
g

memory
size

The memory required by the
Application or the Fragment.

NVIDIA Holoscan SDK v2.0.0 641

resources.me
moryLimit

No N/A
strin
g

memory
size

The memory limit for the
Application or the Fragment.
(1)

resources.gpu
Memory

No N/A
strin
g

memory
size

The GPU memory required
by the Application or the
Fragment.

resources.gpu
MemoryLimit

No N/A
strin
g

memory
size

The GPU memory limit for
the Application or the
Fragment. (1)

resources.shar
edMemory

No 64Mi
strin
g

memory
size

The shared memory required
by the Application or the
Fragment.

resources.frag
ments

No N/A
obje
ct

objects
Nested objects which
describe resources for a
Multi-Fragment Application.

resources.frag
ments.<frag
ment-
name>

Yes N/A
strin
g

string Name of the fragment.

resources.frag
ments.<frag
ment-
name>.cpu

No 1
deci
mal
(2)

number
Number of CPU cores
required by the Fragment.

resources.frag
ments.<frag
ment-
name>.cpuL
imit

No N/A
deci
mal
(2)

number
The CPU core limit for the
Fragment. (1)

resources.frag
ments.<frag
ment-
name>.gpu

No 0
deci
mal
(2)

number
Number of GPU devices
required by the Fragment.

NVIDIA Holoscan SDK v2.0.0 642

resources.frag
ments.<frag
ment-
name>.gpu
Limit

No N/A
deci
mal
(2)

number
The GPU device limit for the
Fragment. (1)

resources.frag
ments.<frag
ment-
name>.me
mory

No 1Gi
strin
g

memory
size

The memory required by the
Fragment.

resources.frag
ments.<frag
ment-
name>.me
moryLimit

No N/A
strin
g

memory
size

The memory limit for the
Fragment. (1)

resources.frag
ments.<frag
ment-
name>.gpu
Memory

No N/A
strin
g

memory
size

The GPU memory required
by the Fragment.

resources.frag
ments.<frag
ment-
name>.gpu
MemoryLimit

No N/A
strin
g

memory
size

The GPU memory limit for
the Fragment. (1)

resources.frag
ments.<frag
ment-
name>.shar
edMemory

No 64Mi
strin
g

memory
size

The shared memory required
by the Fragment.

version No 0.0.0
strin
g

semantic
version

Version of the package.

[Notes] (1) Use of resource limits depend on the orchestration service or the hosting
environement’s configuration and implementation. (2) Consider rounding up to a whole
number as decimal values may not be supported by all orchestration/hosting services.

NVIDIA Holoscan SDK v2.0.0 643

The Package Manifest file provides information about the HAP’s package layout. It is not
intended as a mechanism for controlling how the HAP is used or how the HAP’s
Application is executed.

The Package Manifest MUST be UTF-8 encoded and use the JavaScript Object
Notation (JSON) format.

The Package Manifest SHOULD support either CRLF or LF style line endings.

The Package Manifest SHOULD specify the folder which contains the application (
/etc/holoscan/pkg.json#applicationRoot).

When not provided, the default path /opt/holoscan/app/ will be assumed.

The Package Manifest SHOULD provide the version of the package file manifest
schema (/etc/holoscan/pkg.json#apiVersion).

The Manifest schema version SHALL be provided as a semantic version string.

The Package Manifest SHOULD provide the package version of itself (
/etc/holoscan/pkg.json#version).

The Package version SHALL be provided as a semantic version string.

The Package Manifest SHOULD provide the directory path to the user-provided
models. (/etc/holoscan/pkg.json#modelRoot).

The value provided must be an absolute path (the first character is /).

When not provided, the default path /opt/holoscan/models/ SHALL be
assumed.

The Package Manifest SHOULD list the models used by the application (
/etc/holoscan/pkg.json#models).

Models SHALL be defined by name (/etc/holoscan/pkg.json#models[*].name).

https://semver.org/
https://semver.org/

NVIDIA Holoscan SDK v2.0.0 644

Model names SHALL NOT contain any Unicode whitespace or control
characters.

Model names SHALL NOT exceed 128 bytes in length.

Models SHOULD provide a file-system path if they’re included in the HAP itself
(/etc/holoscan/pkg.json#models[*].path).

When the value is a relative file-system path (the first character is not /),
it is relative to the model root directory defined in
/etc/holoscan/pkg.json#modelRoot .

When the value is an absolute file-system path (the first character is /),
the file-system path is used as-is.

When no value is provided, the name is assumed as the name of the
directory relative to the model root directory defined in
/etc/holoscan/pkg.json#modelRoot .

The Package Manifest SHOULD specify the resources required to execute the
Application and the fragments for a Multi-Fragment Application.

This information is used to provision resources when running the containerized
application using a compatible application deployment service.

A classic Application or a single Fragment Application SHALL define its resources in
the /etc/holoscan/pkg.json#resource object.

The /etc/holoscan/pkg.json#resource object is for the whole application. It
CAN also be used as a catchall for all fragments in a multi-fragment application
where applicable.

CPU requirements SHALL be denoted using the decimal count of CPU cores (
/etc/holoscan/pkg.json#resources.cpu).

Optional CPU limits SHALL be denoted using the decimal count of CPU cores (
/etc/holoscan/pkg.json#resources.cpuLimit)

GPU requirements SHALL be denoted using the decimal count of GPUs (
/etc/holoscan/pkg.json#resources.gpu).

NVIDIA Holoscan SDK v2.0.0 645

Optional GPU limits SHALL be denoted using the decimal count of GPUs (
/etc/holoscan/pkg.json#resources.gpuLimit)

Memory requirements SHALL be denoted using decimal values followed by
units (/etc/holoscan/pkg.json#resources.memory).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Optional memory limits SHALL be denoted using decimal values followed by
units (/etc/holoscan/pkg.json#resources.memoryLimit).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

GPU memory requirements SHALL be denoted using decimal values followed
by units (/etc/holoscan/pkg.json#resources.gpuMemory).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Optional GPU memory limits SHALL be denoted using decimal values followed
by units (/etc/holoscan/pkg.json#resources.gpuMemoryLimit).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Shared memory requirements SHALL be denoted using decimal values
followed by units (/etc/holoscan/pkg.json#resources.sharedMemory).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

NVIDIA Holoscan SDK v2.0.0 646

Optional shared memory limits SHALL be denoted using decimal values
followed by units (/etc/holoscan/pkg.json#resources.sharedMemoryLimit).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Integer values MUST be positive and not contain any position separators.

Example legal values: 1 , 42 , 2048

Example illegal values: -1 , 1.5 , 2,048

Decimal values MUST be positive, rounded to the nearest tenth, use the dot (.
) character to separate whole and fractional values, and not contain any
positional separators.

Example legal values: 1 , 1.0 , 0.5 , 2.5 , 1024

Example illegal values: 1,024 , -1.0 , 3.14

When not provided, the default values of cpu=1 , gpu=0 , memory="1Gi" ,
and sharedMemory="64Mi" will be assumed.

A Multi-Fragment Application SHOULD define its resources in the
/etc/holoscan/pkg.json#resource.fragments.<fragment-name> object.

When a matching fragment-name cannot be found, the
/etc/holoscan/pkg.json#resource definition is used.

Fragment names (fragment-name) SHALL NOT contain any Unicode
whitespace or control characters.

Fragment names (fragment-name) SHALL NOT exceed 128 bytes in length.

CPU requirements for fragments SHALL be denoted using the decimal count of
CPU cores (
/etc/holoscan/pkg.json#resources.fragments.<fragment-name>.cpu).

NVIDIA Holoscan SDK v2.0.0 647

Optional CPU limits for fragments SHALL be denoted using the decimal count
of CPU cores (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.cpuLimit

).

GPU requirements for fragments SHALL be denoted using the decimal count
of GPUs (
/etc/holoscan/pkg.json#resources.fragments.<fragment-name>.gpu).

Optional GPU limits for fragments SHALL be denoted using the decimal count
of GPUs (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.gpuLimit

).

Memory requirements for fragments SHALL be denoted using decimal values
followed by units (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.memory

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Optional memory limits for fragments SHALL be denoted using decimal values
followed by units (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.memoryLimit

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

GPU memory requirements for fragments SHALL be denoted using decimal
values followed by units (

NVIDIA Holoscan SDK v2.0.0 648

/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.gpuMemory

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Optional GPU memory limits for fragments SHALL be denoted using decimal
values followed by units (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.gpuMemoryLimit

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Shared memory requirements for fragments SHALL be denoted using decimal
values followed by units (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.sharedMemory

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Optional shared memory limits for fragments SHALL be denoted using decimal
values followed by units (
/etc/holoscan/pkg.json#resources.fragments.<fragment-
name>.sharedMemoryLimit

).

Supported units SHALL be mebibytes (MiB) and gibibytes (GiB).

Example: 1.5Gi , 2048Mi

Integer values MUST be positive and not contain any position separators.

NVIDIA Holoscan SDK v2.0.0 649

Example legal values: 1 , 42 , 2048

Example illegal values: -1 , 1.5 , 2,048

Decimal values MUST be positive, rounded to the nearest tenth, use the dot (.
) character to separate whole and fractional values, and not contain any
positional separators.

Example legal values: 1 , 1.0 , 0.5 , 2.5 , 1024

Example illegal values: 1,024 , -1.0 , 3.14

When not provided, the default values of cpu=1 , gpu=0 , memory="1Gi" ,
and sharedMemory="64Mi" will be assumed.

Supplemental Application Files

A HAP SHOULD package supplemental application files provided by the user.

Supplemental files SHOULD be in sub-folders of the /opt/holoscan/docs/
folder.

Supplemental files include, but are not limited to, the following:

README.md

License.txt

Changelog.txt

EULA

Documentation

Third-party licenses

Container Behavior and Interaction

A HAP is a single container supporting the following defined behaviors when started.

NVIDIA Holoscan SDK v2.0.0 650

Default Behavior

When a HAP is started from the CLI or other means without any parameters, the HAP
shall execute the contained application. The HAP internally may use Entrypoint , CMD ,
or a combination of both.

Manifest Export

A HAP SHOULD provide at least one method to access the embedded application, models,
licenses, README, or manifest files, namely, app.json and package.json .

The Method SHOULD provide a container command, show , to print one or more
manifest files to the console.

The Method SHOULD provide a container command, export , to copy one or more
manifest files to a mounted volume path, as described below

/var/run/holoscan/export/app/ : when detected, the Method copies the
contents of /opt/holoscan/app/ to the folder.

/var/run/holoscan/export/config/ : when detected, the Method copies
/var/holoscan/app.yaml , /etc/holoscan/app.json and
/etc/holoscan/pkg.json to the folder.

/var/run/holoscan/export/models/ : when detected, the Method copies the
contents of /opt/holoscan/models/ to the folder.

/var/run/holoscan/export/docs/ : when detected, the Method copies the
contents of /opt/holoscan/docs/ to the folder.

/var/run/holoscan/export/ : when detected without any of the above being
detected, the Method SHALL copy all of the above.

Since a HAP is an OCI compliant container, a user can also run a HAP and log in to an
interactive shell, using a method supported by the container engine and its command
line interface, e.g. Docker supports this by setting the entrypoint option. The files in the
HAP can then be opened or copied to the mapped volumes with shell commands or
scripts. A specific implementation of a HAP may choose to streamline such a process with
scripts and applicable user documentation.

NVIDIA Holoscan SDK v2.0.0 651

Table of Important Paths

Path Purpose

/etc/holoscan/ HAP manifests and immutable configuration files.

/etc/holoscan/app.j
son

Application Manifest file.

/etc/holoscan/pkg.j
son

Package Manifest file.

/opt/holoscan/app/ Application code, scripts, and other files.

/opt/holoscan/mod
els/

AI models. Each model should be in a separate sub-folder.

/opt/holoscan/docs
/

Documentation, licenses, EULA, changelog, etc…

/var/holoscan/ Default working directory.

/var/holoscan/input
/

Default input directory.

/var/holoscan/outp
ut/

Default output directory.

/var/run/holoscan/
export/

Special case folder, causes the Script to export contents related
to the app. (see: Manifest Export)

/var/run/holoscan/
export/app/

Special case folder, causes the Script to export the contents of
/opt/holoscan/app/ to the folder.

/var/run/holoscan/
export/config/

Special case folder, causes the Script to export
/etc/holoscan/app.json and /etc/holoscan/pkg.json to the

folder.

/var/run/holoscan/
export/models/

Special case folder, causes the Script to export the contents of
/opt/holoscan/models/ to the folder.

Operating Environments

Holoscan SDK supports the following operating environments.

NVIDIA Holoscan SDK v2.0.0 652

Operating Environment Name Characteristics

AGX Devkit Clara AGX devkit with RTX 6000 dGPU only

IGX Orin Devkit Clara Holoscan devkit with A6000 dGPU only

IGX Orin Devkit - integrated GPU only IGX Orin Devkit, iGPU only

IGX Orin Devkit with discrete GPU IGX Orin Devkit, with RTX A6000 dGPU

Jetson AGX Orin Devkit Jetson Orin Devkit, iGPU only

Jetson Orin Nano Devkit Jetson Orin Nano Devkit, iGPU only

X86_64 dGPU only on Ubuntu 18.04 and 20.04

NVIDIA Holoscan SDK v2.0.0 653

Holoscan CLI
holoscan - a command-line interface for packaging and running your Holoscan

applications into HAP-compliant containers.

Synopsis

holoscan [--help|-h] [--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}]
{package,run,version,nics}

Positional Arguments

package

Package a Holoscan application

run

Run a packaged Holoscan application

version

Print version information for the Holoscan SDK

nics

Print all available network interface cards and its assigned IP address

CLI-Wide Flags

[--help|-h]

Display detailed help.

https://docs.nvidia.com/hap.html
https://docs.nvidia.com/package.html
https://docs.nvidia.com/run.html
https://docs.nvidia.com/version.html
https://docs.nvidia.com/nics.html

NVIDIA Holoscan SDK v2.0.0 654

[--log-level|-l {DEBUG,INFO,WARN,ERROR,CRITICAL}]

Override the default logging verbosity. Defaults to INFO .

NVIDIA Holoscan SDK v2.0.0 655

Application Runner
Configuration
The Holoscan runner requires a YAML configuration file to define some properties
necessary to deploy an application.

Configuration

The configuration file can be defined in two ways:

At package time, with the --config flag of the holoscan package command
(Required/Default)

At runtime, with the --config flag of the holoscan run command
(Optional/Override)

Properties

The holoscan run command parses two specific YAML nodes from the configuration file:

A required application parameter group to generate a HAP-compliant` container
image for the application, including:

the title (name) and version of the application.

Note

That file is the same configuration file commonly used to configure
other aspects of an application, documented here.

https://docs.nvidia.com/hap.html
file:///tmp/jsreport/holoscan_create_app.html#yaml-configuration-support

NVIDIA Holoscan SDK v2.0.0 656

optionally, inputFormats and outputFormats if the application expects any
inputs or outputs respectively.

An optional resources parameter group that defines the system resources
required to run the application, such as the number of CPUs, GPUs and amount of
memory required. If the application contains multiple fragments for distributed
workloads, resource definitions can be assigned to each fragment.

Example

Below is an example configuration file with the application and optional resources
parameter groups, for an application with two-fragments (first-fragment and
second-fragment):

For details, please refer to the HAP specification.

application: title: My Application Title version: 1.0.1 inputFormats: ["files"] # optional
outputFormats: ["screen"] # optional resources: # optional # non-distributed app cpu:
1 # optional cpuLimit: 5 # optional gpu: 1 # optional gpuLimit: 5 # optional memory:
1Mi # optional memoryLimit: 2Gi # optional gpuMemory: 1Gi # optional
gpuMemoryLimit: 1.5Gi # optional sharedMemory: 1Gi # optional # distributed app
fragments: # optional first-fragment: # optional cpu: 1 # optional cpuLimit: 5 #
optional gpu: 1 # optional gpuLimit: 5 # optional memory: 100Mi # optional
memoryLimit: 1Gi # optional gpuMemory: 1Gi # optional gpuMemoryLimit: 10Gi #
optional sharedMemory: 1Gi # optional second-fragment: # optional cpu: 1 #
optional cpuLimit: 2 # optional gpu: 1 # optional gpuLimit: 2 # optional memory: 1Gi
optional memoryLimit: 2Gi # optional gpuMemory: 1Gi # optional
gpuMemoryLimit: 5Gi # optional sharedMemory: 10Mi # optional

https://docs.nvidia.com/hap.html

NVIDIA Holoscan SDK v2.0.0 657

GXF Core concepts
Here is a list of the key GXF terms used in this section:

Applications are built as compute graphs.

Entities are nodes of the graph. They are nothing more than a unique identifier.

Components are parts of an entity and provide their functionality.

Codelets are special components which allow the execution of custom code. They
can be derived by overriding the C++ functions initialize , start , tick , stop ,
deinitialize , and registerInterface (for defining configuration parameters).

Connections are edges of the graph, which connect components.

Scheduler and Scheduling Terms: components that determine how and when the
tick() of a Codelet executes. This can be single or multithreaded, support

conditional execution, asynchronous scheduling, and other custom behavior.

Memory Allocator: provides a system for allocating a large contiguous memory
pool up-front and then reusing regions as needed. Memory can be pinned to the
device (enabling zero-copy between Codelets when messages are not modified) or
host, or customized for other potential behavior.

Receivers, Transmitters, and Message Router: a message passing system
between Codelets that supports zero-copy.

Tensor: the common message type is a tensor. It provides a simple abstraction for
numeric data that can be allocated, serialized, sent between Codelets, etc. Tensors
can be rank 1 to 7 supporting a variety of common data types like arrays, vectors,
matrices, multi-channel images, video, regularly sampled time-series data, and
higher dimensional constructs popular with deep learning flows.

Parameters: configuration variables used by the Codelet. In GXF applications, they
are loaded from the application YAML file and are modifiable without recompiling.

NVIDIA Holoscan SDK v2.0.0 658

In comparison, the core concepts of the Holoscan SDK can be found here.

https://docs.nvidia.com/holoscan_core.html#holoscan-core-concepts

NVIDIA Holoscan SDK v2.0.0 659

Holoscan and GXF
Design differences

There are 2 main elements at the core of Holoscan and GXF designs:

1. How to define and execute application graphs

2. How to define nodes’ functionality

How Holoscan SDK interfaces with GXF on those topics varies as Holoscan SDK evolves,
as described below:

Holoscan SDK v0.2

Holoscan SDK was tightly coupled with GXF’s existing interface:

1. GXF application graphs are defined in YAML configuration files. GXE (Graph
Execution Engine) is used to execute AI application graphs. Its inputs are the YAML
configuration file, and a list of GXF Extensions to load as plugins (manifest yaml file).
This design allows entities to be swapped or updated without needing to recompile
an application.

2. Components are made available by registering them within a GXF extension, each
of which maps to a shared library and header(s).

Those concepts are illustrated in the GXF by example section.

The only additions that Holoscan provided on top of GXF were:

domain specific reference applications

new extensions

CMake configurations for building extensions and applications

Holoscan SDK v0.3

https://docs.nvidia.com/gxf_by_example.html#gxf-by-example

NVIDIA Holoscan SDK v2.0.0 660

The Holoscan SDK shifted to provide a more developer-friendly interface with C++:

1. GXF application graphs, memory allocation, scheduling, and message routing can be
defined using a C++ API, with the ability to read parameters and required GXF
extension names from a YAML configuration file. The backend used is still GXF as
Holoscan uses the GXF C API, but this bypasses GXE and the full YAML definition.

2. The C++ Operator class was added to wrap and expose GXF extensions to that new
application interface (See dev guide).

Holoscan SDK v0.4

The Holoscan SDK added Python wrapping and native operators to further increase ease
of use:

1. The C++ API is also wrapped in Python. GXF is still used as the backend.

2. The Operator class supports native operators, i.e. operators that do not require to
implement and register a GXF Extension. An important feature is the ability to
support messaging between native and GXF operators without any performance
loss (i.e. zero-copy communication of tensors).

Holoscan SDK v0.5

1. The built-in Holoscan GXF extensions are loaded automatically and don’t need to be
listed in the YAML configuration file of Holoscan applications. This allows Holoscan
applications to be defined without requiring a YAML configuration file.

2. No significant changes to build operators. However, most built-in operators were
switched to native implementations, with the ability to convert native operators to
GXF codelets for GXF application developers.

Holoscan SDK v1.0

1. The remaining GXF-based DemosiacOp operator was switched to a native
implementation. Now all operators provided by the SDK are native operators.

Current limitations

Here is a list of GXF capabilities not yet available in the Holoscan SDK which are planned
to be supported in future releases:

https://docs.nvidia.com/holoscan_create_operator.html#wrap-gxf-codelet-as-operator
https://docs.nvidia.com/gxf_wrap_holoscan_op.html
https://docs.nvidia.com/gxf_wrap_holoscan_op.html

NVIDIA Holoscan SDK v2.0.0 661

Job Statistics

The GXF capabilities below are not available in the Holoscan SDK either. There is no plan
to support them at this time:

Graph Composer

Behavior Trees

Epoch Scheduler

Target Time Scheduling Term

Multi-Message Available Scheduling Term

Expiring Message Available Scheduling Term

https://docs.nvidia.com/doc/std/StandardExtension.html#job-stats
https://docs.nvidia.com/doc/composer/GraphComposer_Graph_Runtime.html
https://docs.nvidia.com/doc/behavior_tree/behavior_trees.html
https://docs.nvidia.com/doc/scheduler/scheduler.html#epoch-scheduler
https://docs.nvidia.com/doc/scheduler/scheduler.html#target-time-scheduling-term
https://docs.nvidia.com/doc/scheduler/scheduler.html#multi-message-available-scheduling-term
https://docs.nvidia.com/doc/scheduler/scheduler.html#expiring-message-available-scheduling-term

NVIDIA Holoscan SDK v2.0.0 662

GXF by Example

Innerworkings of a GXF Entity

Let us look at an example of a GXF entity to try to understand its general anatomy. As an
example let’s start with the entity definition for an image format converter entity named
format_converter_entity as shown below.

Listing 23 An example GXF Application YAML snippet

Warning

This section is legacy (0.2) as we recommend developing extensions
and applications using the C++ or Python APIs. Refer to the developer
guide for up-to-date recommendations.

%YAML 1.2 --- # other entities declared --- name: format_converter_entity
components: - name: in_tensor type: nvidia::gxf::DoubleBufferReceiver - type:
nvidia::gxf::MessageAvailableSchedulingTerm parameters: receiver: in_tensor
min_size: 1 - name: out_tensor type: nvidia::gxf::DoubleBufferTransmitter - type:
nvidia::gxf::DownstreamReceptiveSchedulingTerm parameters: transmitter:
out_tensor min_size: 1 - name: pool type: nvidia::gxf::BlockMemoryPool parameters:
storage_type: 1 block_size: 4919040 # 854 * 480 * 3 (channel) * 4 (bytes per pixel)
num_blocks: 2 - name: format_converter_component type:
nvidia::holoscan::formatconverter::FormatConverter parameters: in: in_tensor out:
out_tensor out_tensor_name: source_video out_dtype: "float32" scale_min: 0.0
scale_max: 255.0 pool: pool --- # other entities declared --- components: - name:
input_connection type: nvidia::gxf::Connection parameters: source:
upstream_entity/output target: format_converter/in_tensor --- components: - name:
output_connection type: nvidia::gxf::Connection parameters: source:

NVIDIA Holoscan SDK v2.0.0 663

Above:

1. The entity format_converter_entity receives a message in its in_tensor message
from an upstream entity upstream_entity as declared in the input_connection .

2. The received message is passed to the format_converter_component component
to convert the tensor element precision from uint8 to float32 and scale any input
in the [0, 255] intensity range.

3. The format_converter_component component finally places the result in the
out_tensor message so that its result is made available to a downstream entity (
downstream_ent as declared in output_connection).

4. The Connection components tie the inputs and outputs of various components
together, in the above case
upstream_entity/output -> format_converter_entity/in_tensor and
format_converter_entity/out_tensor -> downstream_entity/input .

5. The scheduler entity declares a GreedyScheduler “system component” which
orchestrates the execution of the entities declared in the graph. In the specific case
of GreedyScheduler entities are scheduled to run exclusively, where no more than
one entity can run at any given time.

The YAML snippet above can be visually represented as follows.

format_converter/out_tensor target: downstream_entity/input --- name: scheduler
components: - type: nvidia::gxf::GreedyScheduler

NVIDIA Holoscan SDK v2.0.0 664

Fig. 21 Arrangement of components and entities in a Holoscan application

In the image, as in the YAML, you will notice the use of
MessageAvailableSchedulingTerm , DownstreamReceptiveSchedulingTerm , and
BlockMemoryPool . These are components that play a “supporting” role to in_tensor ,
out_tensor , and format_converter_component components respectively. Specifically:

MessageAvailableSchedulingTerm is a component that takes a
Receiver`` (in this case DoubleBufferReceiver named in_tensor
) and alerts the graph Executor that a message is available. This alert triggers

format_converter_component`.

DownstreamReceptiveSchedulingTerm is a component that takes a Transmitter
(in this case DoubleBufferTransmitter named out_tensor) and alerts the graph
Executor that a message has been placed on the output.

BlockMemoryPool provides two blocks of almost 5MB allocated on the GPU
device and is used by format_converted_ent to allocate the output tensor where
the converted data will be placed within the format converted component.

Together these components allow the entity to perform a specific function and
coordinate communication with other entities in the graph via the declared scheduler.

More generally, an entity can be thought of as a collection of components where
components can be passed to one another to perform specific subtasks (e.g. event
triggering or message notification, format conversion, memory allocation), and an
application as a graph of entities.

The scheduler is a component of type nvidia::gxf::System which orchestrates the
execution components in each entity at application runtime based on triggering rules.

Data Flow and Triggering Rules

Entities communicate with one another via messages which may contain one or more
payloads. Messages are passed and received via a component of type nvidia::gxf::Queue
from which both nvidia::gxf::Receiver and nvidia::gxf::Transmitter are derived. Every
entity that receives and transmits messages has at least one receiver and one transmitter
queue.

NVIDIA Holoscan SDK v2.0.0 665

Holoscan uses the nvidia::gxf::SchedulingTerm component to coordinate data access
and component orchestration for a Scheduler which invokes execution through the
tick() function in each Codelet .

In the above example, we used a MessageAvailableSchedulingTerm to trigger the
execution of the components waiting for data from in_tensor receiver queue, namely
format_converter_component .

Listing 24 MessageAvailableSchedulingTerm

Similarly, DownStreamReceptiveSchedulingTerm checks whether the out_tensor
transmitter queue has at least one outgoing message in it. If there are one or more
outgoing messages, DownStreamReceptiveSchedulingTerm will notify the scheduler
which in turn attempts to place the message in the receiver queue of a downstream
entity. If, however, the downstream entity has a full receiver queue, the message is held
in the out_tensor queue as a means to handle back-pressure.

Listing 25 DownstreamReceptiveSchedulingTerm

If we were to draw the entity in Fig. 21 in greater detail it would look something like the
following.

Tip

A SchedulingTerm defines a specific condition that is used by an
entity to let the scheduler know when it’s ready for execution.

- type: nvidia::gxf::MessageAvailableSchedulingTerm parameters: receiver: in_tensor
min_size: 1

- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm parameters: transmitter:
out_tensor min_size: 1

NVIDIA Holoscan SDK v2.0.0 666

Fig. 22 Receive and transmit Queues and SchedulingTerm s in entities.

Up to this point, we have covered the “entity component system” at a high level and
showed the functional parts of an entity, namely, the messaging queues and the
scheduling terms that support the execution of components in the entity. To complete
the picture, the next section covers the anatomy and lifecycle of a component, and how
to handle events within it.

Creating a GXF Extension

GXF components in Holoscan can perform a multitude of sub-tasks ranging from data
transformations, to memory management, to entity scheduling. In this section, we will
explore an nvidia::gxf::Codelet component which in Holoscan is known as a “GXF
extension”. Holoscan (GXF) extensions are typically concerned with application-specific
sub-tasks such as data transformations, AI model inference, and the like.

Extension Lifecycle

The lifecycle of a Codelet is composed of the following five stages.

https://docs.nvidia.com/holoscan_operators_extensions.html#sdk-extensions

NVIDIA Holoscan SDK v2.0.0 667

1. initialize - called only once when the codelet is created for the first time, and use of
light-weight initialization.

2. deinitialize - called only once before the codelet is destroyed, and used for light-
weight deinitialization.

3. start - called multiple times over the lifecycle of the codelet according to the order
defined in the lifecycle, and used for heavy initialization tasks such as allocating
memory resources.

4. stop - called multiple times over the lifecycle of the codelet according to the order
defined in the lifecycle, and used for heavy deinitialization tasks such as
deallocation of all resources previously assigned in start .

5. tick - called when the codelet is triggered, and is called multiple times over the
codelet lifecycle; even multiple times between start and stop .

The flow between these stages is detailed in Fig. 23.

Fig. 23 Sequence of method calls in the lifecycle of a Holoscan extension

Implementing an Extension

NVIDIA Holoscan SDK v2.0.0 668

In this section, we will implement a simple recorder that will highlight the actions we
would perform in the lifecycle methods. The recorder receives data in the input queue
and records the data to a configured location on the disk. The output format of the
recorder files is the GXF-formatted index/binary replayer files (the format is also used for
the data in the sample applications), where the gxf_index file contains timing and
sequence metadata that refer to the binary/tensor data held in the gxf_entities file.

Declare the Class That Will Implement the Extension Functionality

The developer can create their Holoscan extension by extending the Codelet class,
implementing the extension functionality by overriding the lifecycle methods, and
defining the parameters the extension exposes at the application level via the
registerInterface method. To define our recorder component we would need to

implement some of the methods in the Codelet .

First, clone the Holoscan project from here and create a folder to develop our extension
such as under gxf_extensions/my_recorder .

In our extension folder, we create a header file my_recorder.hpp with a declaration of
our Holoscan component.

Listing 26 gxf_extensions/my_recorder/my_recorder.hpp

Tip

Using Bash we create a Holoscan extension folder as follows.

git clone https://github.com/nvidia-holoscan/holoscan-sdk.git cd
clara-holoscan-embedded-sdk mkdir -p
gxf_extensions/my_recorder

#include <string> #include "gxf/core/handle.hpp" #include "gxf/std/codelet.hpp"
#include "gxf/std/receiver.hpp" #include "gxf/std/transmitter.hpp" #include
"gxf/serialization/file_stream.hpp" #include "gxf/serialization/entity_serializer.hpp"
class MyRecorder : public nvidia::gxf::Codelet { public: gxf_result_t

https://github.com/nvidia-holoscan/holoscan-sdk

NVIDIA Holoscan SDK v2.0.0 669

Declare the Parameters to Expose at the Application Level

Next, we can start implementing our lifecycle methods in the my_recorder.cpp file,
which we also create in gxf_extensions/my_recorder path.

Our recorder will need to expose the nvidia::gxf::Parameter variables to the application
so the parameters can be modified by configuration.

Listing 27 registerInterface in gxf_extensions/my_recorder/my_recorder.cpp

registerInterface(nvidia::gxf::Registrar* registrar) override; gxf_result_t initialize()
override; gxf_result_t deinitialize() override; gxf_result_t start() override; gxf_result_t
tick() override; gxf_result_t stop() override; private:
nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::Receiver>> receiver_;
nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::EntitySerializer>>
my_serializer_; nvidia::gxf::Parameter<std::string> directory_;
nvidia::gxf::Parameter<std::string> basename_; nvidia::gxf::Parameter<bool>
flush_on_tick_; // File stream for data index nvidia::gxf::FileStream index_file_stream_;
// File stream for binary data nvidia::gxf::FileStream binary_file_stream_; // Offset into
binary file size_t binary_file_offset_; };

#include "my_recorder.hpp" gxf_result_t
MyRecorder::registerInterface(nvidia::gxf::Registrar* registrar) {
nvidia::gxf::Expected<void> result; result &= registrar->parameter(receiver_,
"receiver", "Entity receiver", "Receiver channel to log"); result &= registrar-
>parameter(my_serializer_, "serializer", "Entity serializer", "Serializer for serializing
input data"); result &= registrar->parameter(directory_, "out_directory", "Output
directory path", "Directory path to store received output"); result &= registrar-
>parameter(basename_, "basename", "File base name", "User specified file name
without extension", nvidia::gxf::Registrar::NoDefaultParameter(),
GXF_PARAMETER_FLAGS_OPTIONAL); result &= registrar->parameter(flush_on_tick_,
"flush_on_tick", "Boolean to flush on tick", "Flushes output buffer on every `tick`
when true", false); // default value `false` return nvidia::gxf::ToResultCode(result); }

NVIDIA Holoscan SDK v2.0.0 670

For pure GXF applications, our component’s parameters can be specified in the following
format in the YAML file:

Listing 28 Example parameters for MyRecorder component

Note that all the parameters exposed at the application level are mandatory except for
flush_on_tick , which defaults to false , and basename , whose default is handled at
initialize() below.

Implement the Lifecycle Methods

This extension does not need to perform any heavy-weight initialization tasks, so we will
concentrate on initialize() , tick() , and deinitialize() methods which define the core
functionality of our component. At initialization, we will create a file stream and keep
track of the bytes we write on tick() via binary_file_offset .

Listing 29 initialize in gxf_extensions/my_recorder/my_recorder.cpp

name: my_recorder_entity components: - name: my_recorder_component type:
MyRecorder parameters: receiver: receiver serializer: my_serializer out_directory:
/home/user/out_path basename: my_output_file # optional # flush_on_tick: false #
optional

gxf_result_t MyRecorder::initialize() { // Create path by appending receiver name to
directory path if basename is not provided std::string path = directory_.get() + '/'; if
(const auto& basename = basename_.try_get()) { path += basename.value(); } else {
path += receiver_->name(); } // Initialize index file stream as write-only
index_file_stream_ = nvidia::gxf::FileStream("", path +
nvidia::gxf::FileStream::kIndexFileExtension); // Initialize binary file stream as write-
only binary_file_stream_ = nvidia::gxf::FileStream("", path +
nvidia::gxf::FileStream::kBinaryFileExtension); // Open index file stream
nvidia::gxf::Expected<void> result = index_file_stream_.open(); if (!result) { return
nvidia::gxf::ToResultCode(result); } // Open binary file stream result =
binary_file_stream_.open(); if (!result) { return nvidia::gxf::ToResultCode(result); }
binary_file_offset_ = 0; return GXF_SUCCESS; }

NVIDIA Holoscan SDK v2.0.0 671

When de-initializing, our component will take care of closing the file streams that were
created at initialization.

Listing 30 deinitialize in gxf_extensions/my_recorder/my_recorder.cpp

In our recorder, no heavy-weight initialization tasks are required so we implement the
following, however, we would use start() and stop() methods for heavy-weight tasks
such as memory allocation and deallocation.

Listing 31 start/stop in gxf_extensions/my_recorder/my_recorder.cpp

Finally, we write the component-specific functionality of our extension by implementing
tick() .

Listing 32 tick in gxf_extensions/my_recorder/my_recorder.cpp

gxf_result_t MyRecorder::deinitialize() { // Close binary file stream
nvidia::gxf::Expected<void> result = binary_file_stream_.close(); if (!result) { return
nvidia::gxf::ToResultCode(result); } // Close index file stream result =
index_file_stream_.close(); if (!result) { return nvidia::gxf::ToResultCode(result); }
return GXF_SUCCESS; }

gxf_result_t MyRecorder::start() { return GXF_SUCCESS; } gxf_result_t
MyRecorder::stop() { return GXF_SUCCESS; }

Tip

For a detailed implementation of start() and stop() , and how
memory management can be handled therein, please refer to the
implementation of the AJA Video source extension.

gxf_result_t MyRecorder::tick() { // Receive entity
nvidia::gxf::Expected<nvidia::gxf::Entity> entity = receiver_->receive(); if (!entity) {
return nvidia::gxf::ToResultCode(entity); } // Write entity to binary file

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/gxf_extensions/aja

NVIDIA Holoscan SDK v2.0.0 672

Register the Extension as a Holoscan Component

As a final step, we must register our extension so it is recognized as a component and
loaded by the application executor. For this we create a simple declaration in
my_recorder_ext.cpp as follows.

Listing 33 gxf_extensions/my_recorder/my_recorder_ext.cpp

GXF_EXT_FACTORY_SET_INFO configures the extension with the following information in
order:

UUID which can be generated using scripts/generate_extension_uuids.py which
defines the extension id

extension name

extension description

nvidia::gxf::Expected<size_t> size = my_serializer_->serializeEntity(entity.value(),
&binary_file_stream_); if (!size) { return nvidia::gxf::ToResultCode(size); } // Create
entity index nvidia::gxf::EntityIndex index; index.log_time =
std::chrono::system_clock::now().time_since_epoch().count(); index.data_size =
size.value(); index.data_offset = binary_file_offset_; // Write entity index to index file
nvidia::gxf::Expected<size_t> result = index_file_stream_.writeTrivialType(&index); if
(!result) { return nvidia::gxf::ToResultCode(result); } binary_file_offset_ += size.value();
if (flush_on_tick_) { // Flush binary file output stream nvidia::gxf::Expected<void> result
= binary_file_stream_.flush(); if (!result) { return nvidia::gxf::ToResultCode(result); } //
Flush index file output stream result = index_file_stream_.flush(); if (!result) { return
nvidia::gxf::ToResultCode(result); } } return GXF_SUCCESS; }

#include "gxf/std/extension_factory_helper.hpp" #include "my_recorder.hpp"
GXF_EXT_FACTORY_BEGIN() GXF_EXT_FACTORY_SET_INFO(0xb891cef3ce754825,
0x9dd3dcac9bbd8483, "MyRecorderExtension", "My example recorder extension",
"NVIDIA", "0.1.0", "LICENSE"); GXF_EXT_FACTORY_ADD(0x2464fabf91b34ccf,
0xb554977fa22096bd, MyRecorder, nvidia::gxf::Codelet, "My example recorder
codelet."); GXF_EXT_FACTORY_END()

NVIDIA Holoscan SDK v2.0.0 673

author

extension version

license text

GXF_EXT_FACTORY_ADD registers the newly built extension as a valid Codelet
component with the following information in order:

UUID which can be generated using scripts/generate_extension_uuids.py which
defines the component id (this must be different from the extension id),

fully qualified extension class,

fully qualifies base class,

component description

To build a shared library for our new extension which can be loaded by a Holoscan
application at runtime we use a CMake file under
gxf_extensions/my_recorder/CMakeLists.txt with the following content.

Listing 34 gxf_extensions/my_recorder/CMakeLists.txt

Here, we create a library my_recorder_lib with the implementation of the lifecycle
methods, and the extension my_recorder which exposes the C API necessary for the
application runtime to interact with our component.

To make our extension discoverable from the project root we add the line

Create library add_library(my_recorder_lib SHARED my_recorder.cpp
my_recorder.hpp) target_link_libraries(my_recorder_lib PUBLIC GXF::std
GXF::serialization yaml-cpp) # Create extension add_library(my_recorder SHARED
my_recorder_ext.cpp) target_link_libraries(my_recorder PUBLIC my_recorder_lib) #
Install GXF extension as a component 'holoscan-gxf_extensions'
install_gxf_extension(my_recorder) # this will also install my_recorder_lib #
install_gxf_extension(my_recorder_lib) # this statement is not necessary because
this library follows `<extension library name>_lib` convention.

NVIDIA Holoscan SDK v2.0.0 674

to the CMake file gxf_extensions/CMakeLists.txt .

At this point, we have a complete extension that records data coming into its receiver
queue to the specified location on the disk using the GXF-formatted binary/index files.

Creating a GXF Application

For our application, we create the directory apps/my_recorder_app_gxf with the
application definition file my_recorder_gxf.yaml . The my_recorder_gxf.yaml application
is as follows:

Listing 35 apps/my_recorder_app_gxf/my_recorder_gxf.yaml

add_subdirectory(my_recorder)

Tip

To build our extension, we can follow the steps in the README.

%YAML 1.2 --- name: replayer components: - name: output type:
nvidia::gxf::DoubleBufferTransmitter - name: allocator type:
nvidia::gxf::UnboundedAllocator - name: component_serializer type:
nvidia::gxf::StdComponentSerializer parameters: allocator: allocator - name:
entity_serializer type: nvidia::holoscan::stream_playback::VideoStreamSerializer #
inheriting from nvidia::gxf::EntitySerializer parameters: component_serializers:
[component_serializer] - type:
nvidia::holoscan::stream_playback::VideoStreamReplayer parameters: transmitter:
output entity_serializer: entity_serializer boolean_scheduling_term:
boolean_scheduling directory: "/workspace/data/racerx" basename: "racerx"
frame_rate: 0 # as specified in timestamps repeat: false # default: false realtime: true
default: true count: 0 # default: 0 (no frame count restriction) - name:
boolean_scheduling type: nvidia::gxf::BooleanSchedulingTerm - type:
nvidia::gxf::DownstreamReceptiveSchedulingTerm parameters: transmitter: output
min_size: 1 --- name: recorder components: - name: input type:

https://github.com/nvidia-holoscan/holoscan-sdk#using-a-development-container

NVIDIA Holoscan SDK v2.0.0 675

Above:

The replayer reads data from /workspace/data/racerx/racerx.gxf_[index|entities]
files, deserializes the binary data to a nvidia::gxf::Tensor using
VideoStreamSerializer , and puts the data on an output message in the
replayer/output transmitter queue.

The input_connection component connects the replayer/output transmitter
queue to the recorder/input receiver queue.

The recorder reads the data in the input receiver queue, uses StdEntitySerializer
to convert the received nvidia::gxf::Tensor to a binary stream, and outputs to the
/tmp/tensor_out.gxf_[index|entities] location specified in the parameters.

The scheduler component, while not explicitly connected to the application-
specific entities, performs the orchestration of the components discussed in the
Data Flow and Triggering Rules.

Note the use of the component_serializer in our newly built recorder. This component is
declared separately in the entity

nvidia::gxf::DoubleBufferReceiver - name: allocator type:
nvidia::gxf::UnboundedAllocator - name: component_serializer type:
nvidia::gxf::StdComponentSerializer parameters: allocator: allocator - name:
entity_serializer type: nvidia::holoscan::stream_playback::VideoStreamSerializer #
inheriting from nvidia::gxf::EntitySerializer parameters: component_serializers:
[component_serializer] - type: MyRecorder parameters: receiver: input serializer:
entity_serializer out_directory: "/tmp" basename: "tensor_out" - type:
nvidia::gxf::MessageAvailableSchedulingTerm parameters: receiver: input min_size:
1 --- components: - name: input_connection type: nvidia::gxf::Connection
parameters: source: replayer/output target: recorder/input --- name: scheduler
components: - name: clock type: nvidia::gxf::RealtimeClock - name:
greedy_scheduler type: nvidia::gxf::GreedyScheduler parameters: clock: clock

NVIDIA Holoscan SDK v2.0.0 676

and passed into MyRecorder via the serializer parameter which we exposed in the
extension development section (Declare the Parameters to Expose at the Application
Level).

For our app to be able to load (and also compile where necessary) the extensions
required at runtime, we need to declare a CMake file
apps/my_recorder_app_gxf/CMakeLists.txt as follows.

Listing 36 apps/my_recorder_app_gxf/CMakeLists.txt

In the declaration of create_gxe_application we list:

my_recorder component declared in the CMake file of the extension development
section under the EXTENSIONS argument

the existing stream_playback Holoscan extension which reads data from disk

To make our newly built application discoverable by the build, in the root of the
repository, we add the following line to apps/CMakeLists.txt :

- name: entity_serializer type:
nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from
nvidia::gxf::EntitySerializer parameters: component_serializers:
[component_serializer]

- type: MyRecorder parameters: receiver: input serializer: entity_serializer directory:
"/tmp" basename: "tensor_out"

create_gxe_application(NAME my_recorder_gxf YAML my_recorder_gxf.yaml
EXTENSIONS GXF::std GXF::cuda GXF::multimedia GXF::serialization my_recorder
stream_playback) # Download the associated dataset if needed
if(HOLOSCAN_DOWNLOAD_DATASETS) add_dependencies(my_recorder_gxf
racerx_data) endif()

add_subdirectory(my_recorder_app_gxf)

NVIDIA Holoscan SDK v2.0.0 677

We now have a minimal working application to test the integration of our newly built
MyRecorder extension.

Running the GXF Recorder Application

To run our application in a local development container:

1. Follow the instructions under the Using a Development Container section steps 1-5
(try clearing the CMake cache by removing the build folder before compiling).

You can execute the following commands to build

2. Our test application can now be run in the development container using the
command

from inside the development container.

(You can execute ./run launch to run the development container.)

./run build # ./run clear_cache # if you want to clear build/install/cache folders

./apps/my_recorder_app_gxf/my_recorder_gxf

@LINUX:/workspace/holoscan-sdk/build$
./apps/my_recorder_app_gxf/my_recorder_gxf 2022-08-24 04:46:47.333 INFO
gxf/gxe/gxe.cpp@230: Creating context 2022-08-24 04:46:47.339 INFO
gxf/gxe/gxe.cpp@107: Loading app:
'apps/my_recorder_app_gxf/my_recorder_gxf.yaml' 2022-08-24 04:46:47.339
INFO gxf/std/yaml_file_loader.cpp@117: Loading GXF entities from YAML file
'apps/my_recorder_app_gxf/my_recorder_gxf.yaml'... 2022-08-24 04:46:47.340
INFO gxf/gxe/gxe.cpp@291: Initializing... 2022-08-24 04:46:47.437 INFO
gxf/gxe/gxe.cpp@298: Running... 2022-08-24 04:46:47.437 INFO
gxf/std/greedy_scheduler.cpp@170: Scheduling 2 entities 2022-08-24
04:47:14.829 INFO /workspace/holoscan-
sdk/gxf_extensions/stream_playback/video_stream_replayer.cpp@144: Reach
end of file or playback count reaches to the limit. Stop ticking. 2022-08-24

https://github.com/nvidia-holoscan/holoscan-sdk#using-a-development-container

NVIDIA Holoscan SDK v2.0.0 678

A successful run (it takes about 30 secs) will result in output files (tensor_out.gxf_index
and tensor_out.gxf_entities in /tmp) that match the original input files (
racerx.gxf_index and racerx.gxf_entities under data/racerx) exactly.

04:47:14.829 INFO gxf/std/greedy_scheduler.cpp@329: Scheduler stopped:
Some entities are waiting for execution, but there are no periodic or async
entities to get out of the deadlock. 2022-08-24 04:47:14.829 INFO
gxf/std/greedy_scheduler.cpp@353: Scheduler finished. 2022-08-24
04:47:14.829 INFO gxf/gxe/gxe.cpp@320: Deinitializing... 2022-08-24
04:47:14.863 INFO gxf/gxe/gxe.cpp@327: Destroying context 2022-08-24
04:47:14.863 INFO gxf/gxe/gxe.cpp@333: Context destroyed.

@LINUX:/workspace/holoscan-sdk/build$ ls -al /tmp/ total 821384 drwxrwxrwt 1
root root 4096 Aug 24 04:37 . drwxr-xr-x 1 root root 4096 Aug 24 04:36 ..
drwxrwxrwt 2 root root 4096 Aug 11 21:42 .X11-unix -rw-r--r-- 1 1000 1000 729309
Aug 24 04:47 gxf_log -rw-r--r-- 1 1000 1000 840054484 Aug 24 04:47
tensor_out.gxf_entities -rw-r--r-- 1 1000 1000 16392 Aug 24 04:47
tensor_out.gxf_index @LINUX:/workspace/holoscan-sdk/build$ ls -al ../data/racerx
total 839116 drwxr-xr-x 2 1000 1000 4096 Aug 24 02:08 . drwxr-xr-x 4 1000 1000
4096 Aug 24 02:07 .. -rw-r--r-- 1 1000 1000 19164125 Jun 17 16:31 racerx-
medium.mp4 -rw-r--r-- 1 1000 1000 840054484 Jun 17 16:31 racerx.gxf_entities -rw-
r--r-- 1 1000 1000 16392 Jun 17 16:31 racerx.gxf_index

NVIDIA Holoscan SDK v2.0.0 679

Using Holoscan Operators
in GXF Applications
For users who are familiar with the GXF development ecosystem (used in Holoscan SDK
0.2), we provide an export feature to leverage native Holoscan operators as GXF codelets
to execute in GXF applications and GraphComposer.

We demonstrate how to wrap a native C++ holoscan operator as a GXF codelet in the
wrap_operator_as_gxf_extension , as described below.

1. Creating compatible Holoscan Operators

To be compatible with GXF codelets, inputs and outputs specified in
Operator::setup(OperatorSpec& spec) must be of type holoscan::gxf::Entity , as shown

in the PingTxNativeOp and the PingRxNativeOp implementations of this example, in
contrast to the PingTxOp and PingRxOp built-in operators of the SDK.

For more details regarding the use of holoscan::gxf::Entity , follow the documentation on
Interoperability between GXF and native C++ operators.

2. Creating the GXF extension that wraps the operator

To wrap the native operator as a GXF codelet in a GXF extension, we provide the CMake
wrap_operator_as_gxf_extension function in the SDK. An example of how it wraps
PingTxNativeOp and PingRxNativeOp can be found here.

Note

This section assumes you are already familiar with how to create a
native C++ operator.

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_tx_native_op/ping_tx_native_op.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_rx_native_op/ping_rx_native_op.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators/ping_tx/ping_tx.cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/src/operators/ping_rx/ping_rx.cpp
https://docs.nvidia.com/holoscan_create_operator.html#interoperability-with-gxf-operators-cpp
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_extension/CMakeLists.min.txt
file:///tmp/jsreport/holoscan_create_operator.html#native-cpp-operators
file:///tmp/jsreport/holoscan_create_operator.html#native-cpp-operators

NVIDIA Holoscan SDK v2.0.0 680

It leverages the CMake target names of the operators defined in their respective
CMakeLists.txt (ping_tx_native_op, ping_rx_native_op)

The function parameters are documented at the top of the
WrapOperatorAsGXFExtension.cmake file (ignore implementation below).

3. Using your wrapped operator in a GXF application

As shown in the gxf_app/CMakeLists.txt here, you need to list the following extensions
in create_gxe_application() to use your wrapped codelets:

GXF::std

gxf_holoscan_wrapper

the name of the CMake target for the created extension, defined by the
EXTENSION_TARGET_NAME argument passed to wrap_operator_as_gxf_extension

in the previous section

Warning

A unique GXF extension is currently needed for each native
operator to export (operators cannot be bundled in a single
extension at this time).

Wrapping other GXF entities than operators (as codelets) is not
currently supported.

Note

This section assumes you are familiar with how to create a GXF
application.

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_tx_native_op/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/ping_rx_native_op/CMakeLists.min.txt
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/cmake/modules/WrapOperatorAsGXFExtension.cmake#L18-42
https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_app/CMakeLists.min.txt#L30-33
file:///tmp/jsreport/autocleanup/gxf_by_example.html#creating-gxf-application
file:///tmp/jsreport/autocleanup/gxf_by_example.html#creating-gxf-application

NVIDIA Holoscan SDK v2.0.0 681

The codelet class name (defined by the CODELET_NAMESPACE::CODELET_NAME
arguments passed to wrap_operator_as_gxf_extension in the previous section) can then
be used as a component type in a GXF app node, as shown in the YAML app definition of
the example, connecting the two ping operators.

https://github.com/nvidia-holoscan/holoscan-sdk/tree/main/examples/wrap_operator_as_gxf_extension/gxf_app/ping.yaml

NVIDIA Holoscan SDK v2.0.0 682

GXF User Guide
Introduction

Graph Specification
Graph Execution Engine

Messaging and Scheduling

Graph Specification TimeStamping
The GXF Scheduler
Behavior Trees

Core C APIs

GXF Core C APIs

Extensions

CudaExtension
MultimediaExtension
NetworkExtension
SerializationExtension
StandardExtension

Graph Specification
Graph Specification is a format to describe high-performance AI applications in a modular
and extensible way. It allows writing applications in a standard format and sharing

https://docs.nvidia.com/composer/GraphComposer_Graph_Specifications.html
https://docs.nvidia.com/composer/GraphComposer_Graph_Runtime.html
https://docs.nvidia.com/composer/GraphSpecification_Timestamping.html
https://docs.nvidia.com/scheduler/scheduler.html
https://docs.nvidia.com/behavior_tree/behavior_trees.html
https://docs.nvidia.com/core/core_c_api.html
https://docs.nvidia.com/cuda/CudaExtension.html
https://docs.nvidia.com/multimedia/MultimediaExtension.html
https://docs.nvidia.com/network/NetworkExtension.html
https://docs.nvidia.com/serialization/SerializationExtension.html
https://docs.nvidia.com/std/StandardExtension.html

NVIDIA Holoscan SDK v2.0.0 683

components across multiple applications without code modification. Graph Specification
is based on entity-composition pattern. Every object in graph is represented with entity
(aka Node) and components. Developers implement custom components which can be
added to entity to achieve the required functionality.

Concepts

The graph contains nodes which follow an entity-component design pattern
implementing the “composition over inheritance” paradigm. A node itself is just a light-
weight object which owns components. Components define how a node interacts with
the rest of the applications. For example, nodes be connected to pass data between each
other. A special component, called compute component, is used to execute the code
based on certain rules. Typically a compute component would receive data, execute
some computation and publish data.

Graph

A graph is a data-driven representation of an AI application. Implementing an application
by using programming code to create and link objects results in a monolithic and hard to
maintain program. Instead a graph object is used to structure an application. The graph
can be created using specialized tools and it can be analyzed to identify potential
problems or performance bottlenecks. The graph is loaded by the graph runtime to be
executed.

The functional blocks of a graph are defined by the set of nodes which the graph owns.
Nodes can be queried via the graph using certain query functions. For example, it is
possible to search for a node by its name.

SubGraph

A subgraph is a graph with additional node for interfaces. It points to the components
which are accessible outside this graph. In order to use a subgraph in an existing graph
or subgraph, the developer needs to create an entity where a component of the type
nvidia::gxf::Subgraph is contained. Inside the Subgraph component a corresponding

subgraph can be loaded from the yaml file indicated by location property and
instantiated in the parent graph.

System makes the components from interface available to the parent graph when a sub-
graph is loaded in the parent graph. It allows users to link sub-graphs in parent with
defined interface.

NVIDIA Holoscan SDK v2.0.0 684

A subgraph interface can be defined as follows:

Node

Graph Specification uses an entity-component design principle for nodes. This means
that a node is a light-weight object whose main purpose is to own components. A node is
a composition of components. Every component is in exactly one node. In order to
customize a node a developer does not derive from node as a base class, but instead
composes objects out of components. Components can be used to provide a rich set of
functionality to a node and thus to an application.

Components

Components are the main functional blocks of an application. Graph runtime provides a
couple of components which implement features like properties, code execution, rules
and message passing. It also allows a developer to extend the runtime by injecting her
own custom components with custom features to fit a specific use case.

The most common component is a codelet or compute component which is used for data
processing and code execution. To implement a custom codelet you’ll need to implement
a certain set of functions like start and stop. A special system - the scheduler - will call
these functions at the specified time. Typical examples of triggering code execution are:
receiving a new message from another node, or performing work on a regular schedule
based on a time trigger.

Edges

Nodes can receive data from other nodes by connecting them with an edge. This
essential feature allows a graph to represent a compute pipeline or a complicated AI
application. An input to a node is called sink while an output is called source. There can
be zero, one or multiple inputs and outputs. A source can be connected to multiple sinks
and a sink can be connected to multiple sources.

Extension

--- interfaces: - name: iname # the name of the interface for the access from the
parent graph target: n_entity/n_component # the true component in the subgraph
that is represented by the interface

NVIDIA Holoscan SDK v2.0.0 685

An extension is a compiled shared library of a logical group of component type
definitions and their implementations along with any other asset files that are required
for execution of the components. Some examples of asset files are model files, shared
libraries that the extension library links to and hence required to run, header and
development files that enable development of additional components and extensions
that use components from the extension.

An extension library is a runtime loadable module compiled with component information
in a standard format that allows the graph runtime to load the extension and retrieve
further information from it to:

Allow the runtime to create components using the component types in the
extension.

Query information regarding the component types in the extension:

The component type name

The base type of the component

A string description of the component

Information of parameters of the component – parameter name, type,
description etc.,

Query information regarding the extension itself - Name of the extension, version,
license, author and a string description of the extension.

The section :doc: GraphComposer_Dev_Workflow talks more about this with a focus on
developing extensions and components.

Graph File Format

Graph file stores list of entities. Each entity has a unique name and list of components.
Each component has a name, a type and properties. Properties are stored as key-value
pairs.

%YAML 1.2 --- name: source components: - name: signal type: sample::test::ping -
type: nvidia::gxf::CountSchedulingTerm parameters: count: 10 --- components: -

NVIDIA Holoscan SDK v2.0.0 686

Graph Execution Engine
Graph Execution Engine is used to execute AI application graphs. It accepts multiple
graph files as input, and all graphs are executed in same process context. It also needs
manifest files as input which includes list of extensions to load. It must list all extensions
required for the graph.

Graph Specification TimeStamping
Message Passing

Once the graph is built, the communication between various entities occur by passing
around messages (messages are entities themselves). Specifically, one
component/codelet can publish a message entity and another can receive it. When
publishing, a message should always have an associated Timestamp component with
the name “timestamp”. A Timestamp component contains two different time values (See
the gxf/std/timestamp.hpp header file for more information.):

1. acqtime - This is the time when the message entity is acquired, for instance, this
would generally be the driver time of the camera when it captures an image. You must
provide this timestamp if you are publishing a message in a codelet.

type: nvidia::gxf::GreedyScheduler parameters: realtime: false max_duration_ms:
1000000

gxe --help Flags from gxf/gxe/gxe.cpp: -app (GXF app file to execute. Multiple files
can be comma-separated) type: string default: "" -graph_directory (Path to a
directory for searching graph files.) type: string default: "" -log_file_path (Path to a
file for logging.) type: string default: "" -manifest (GXF manifest file with extensions.
Multiple files can be comma-separated) type: string default: "" -severity (Set log
severity levels: 0=None, 1=Error, 2=Warning, 3=Info, 4=Debug. Default: Info) type:
int32 default: 3

NVIDIA Holoscan SDK v2.0.0 687

2. pubtime - This is the time when the message entity is published by a node in the
graph. This will automatically get updated using the clock of the scheduler.

In a codelet, when publishing message entities using a Transmitter (tx) , there are two
ways to add the required Timestamp :

1. tx.publish(Entity message) : You can manually add a component of type Timestamp
with the name “timestamp” and set the acqtime . The pubtime in this case should be
set to 0 . The message is published using the publish(Entity message) . This will be
deprecated in the next release.

2. tx.publish(Entity message, int64_t acqtime) : You can simply call
publish(Entity message, int64_t acqtime) with the acqtime . Timestamp will be added

automatically.

The GXF Scheduler
The execution of entities in a graph is governed by the scheduler and the scheduling
terms associated with every entity. A scheduler is a component responsible for
orchestrating the execution of all the entities defined in a graph. A scheduler typically
keeps track of the graph entities and their current execution states and passes them on
to a nvidia::gxf::EntityExecutor component when ready for execution. The following
diagram depicts the flow for an entity execution.

Figure: Entity execution sequence

NVIDIA Holoscan SDK v2.0.0 688

As shown in the sequence diagram, the schedulers begin executing the graph entities via
the nvidia::gxf::System::runAsync_abi() interface and continue this process until it meets
the certain ending criteria. A single entity can have multiple codelets. These codelets are
executed in the same order in which they were defined in the entity. A failure in
execution of any single codelet stops the execution of all the entities. Entities are
naturally unscheduled from execution when any one of their scheduling term reaches
NEVER state.

Scheduling terms are components used to define the execution readiness of an entity. An
entity can have multiple scheduling terms associated with it and each scheduling term
represents the state of an entity using SchedulingCondition.

The table below shows various states of nvidia::gxf::SchedulingConditionType described
using nvidia::gxf::SchedulingCondition.

SchedulingConditionType Description

NEVER Entity will never execute again

READY Entity is ready for execution

WAIT Entity may execute in the future

WAIT_TIME Entity will be ready for execution after specified duration

WAIT_EVENT
Entity is waiting on an asynchronous event with unknown
time interval

Schedulers define deadlock as a condition when there are no entities which are
in READY, WAIT_TIME or WAIT_EVENT state which guarantee execution at a future point in
time. This implies all the entities are in WAIT state for which the scheduler does not know
if they ever will reach the READY state in the future. The scheduler can be configured to
stop when it reaches such a state using the stop_on_deadlock parameter, else the entities
are polled to check if any of them have reached READY state. max_duration configuration
parameter can be used to stop execution of all entities regardless of their state after a
specified amount of time has elapsed.

There are two types of schedulers currently supported by GXF

1. Greedy Scheduler

2. Multithread Scheduler

NVIDIA Holoscan SDK v2.0.0 689

Greedy Scheduler

This is a basic single threaded scheduler which tests scheduling term greedily. It is great
for simple use cases and predictable execution but may incur a large overhead of
scheduling term execution, making it unsuitable for large applications. The scheduler
requires a clock to keep track of time. Based on the choice of clock the scheduler will
execute differently. If a Realtime clock is used the scheduler will execute in real-time. This
means pausing execution - sleeping the thread, until periodic scheduling terms are due
again. If a ManualClock is used scheduling will happen “time-compressed”. This means
flow of time is altered to execute codelets in immediate succession.

The GreedyScheduler maintains a running count of entities which are
in READY, WAIT_TIME and WAIT_EVENT states. The following activity diagram depicts the
gist of the decision making for scheduling an entity by the greedy scheduler -

Figure: Greedy Scheduler Activity Diagram

Greedy Scheduler Configuration

The greedy scheduler takes in the following parameters from the configuration file

NVIDIA Holoscan SDK v2.0.0 690

Parameter name Description

clock
The clock used by the scheduler to define the flow of time.
Typical choices are RealtimeClock or ManualClock

max_duration_ms

The maximum duration for which the scheduler will execute
(in ms). If not specified, the scheduler will run until all work is
done. If periodic terms are present this means the
application will run indefinitely

stop_on_deadlock

If stop_on_deadlock is disabled,
the GreedyScheduler constantly polls for the status of all the
waiting entities to check if any of them are ready for
execution.

Example usage - The following code snippet configures a Greedy scheduler with a
ManualClock option specified.

Multithread Scheduler

The MultiThread scheduler is more suitable for large applications with complex execution
patterns. The scheduler consists of a dispatcher thread which checks the status of an
entity and dispatches it to a thread pool of worker threads responsible for executing
them. Worker threads enqueue the entity back on to the dispatch queue upon
completion of execution. The number of worker threads can be configured
using worker_thread_number parameter. The MultiThread scheduler also manages a
dedicated queue and thread to handle asynchronous events. The following activity
diagram demonstrates the gist of the multithread scheduler implementation.

name: scheduler components: - type: nvidia::gxf::GreedyScheduler parameters:
max_duration_ms: 3000 clock: misc/clock stop_on_deadlock: true --- name: misc
components: - name: clock type: nvidia::gxf::ManualClock

NVIDIA Holoscan SDK v2.0.0 691

Figure: MultiThread Scheduler Activity Diagram

As depicted in the diagram, when an entity reaches WAIT_EVENT state, it’s moved to a
queue where they wait to receive event done notification. The asynchronous event
handler thread is responsible for moving entities to the dispatcher upon receiving event
done notification. The dispatcher thread also maintains a running count of the number of
entities in READY, WAIT_EVENT and WAIT_TIME states and uses these statistics to check if
the scheduler has reached a deadlock. The scheduler also needs a clock component to
keep track of time and it is configured using the clock parameter.

MultiThread scheduler is more resource efficient compared to the Greedy Scheduler and
does not incur any additional overhead for constantly polling the states of scheduling
terms. The check_recession_period_ms parameter can be used to configure the time
interval the scheduler must wait to poll the state of entities which are in WAIT state.

Multithread Scheduler Configuration

The multithread scheduler takes in the following parameters from the configuration file

NVIDIA Holoscan SDK v2.0.0 692

Parameter name Description

clock
The clock used by the scheduler to define the flow of time.
Typical choices are RealtimeClock or ManualClock.

max_duration_ms

The maximum duration for which the scheduler will execute
(in ms). If not specified, the scheduler will run until all work is
done. If periodic terms are present this means the
application will run indefinitely.

check_recess_period_ms
Duration to sleep before checking the condition of an entity
again [ms]. This is the maximum duration for which the
scheduler would wait when an entity is not yet ready to run.

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a
waiting state, but no periodic entity exists to break the dead
end. Should be disabled when scheduling conditions can be
changed by external actors, for example by clearing queues
manually.

worker_thread_number Number of threads.

Example usage - The following code snippet configures a Multithread scheduler with the
number of worked threads and max duration specified -

Epoch Scheduler

The Epoch scheduler is used for running loads in externally managed threads. Each run is
called an Epoch. The scheduler goes over all entities that are known to be active and
executes them one by one. If the epoch budget is provided (in ms), it would keep running
all codelets until the budget is consumed or no codelet is ready. It might run over budget
since it guarantees to cover all codelets in epoch. In case the budget is not provided, it
would go over all the codelets once and execute them only once.

The epoch scheduler takes in the following parameters from the configuration file -

name: scheduler components: - type: nvidia::gxf::MultiThreadScheduler parameters:
max_duration_ms: 5000 clock: misc/clock worker_thread_number: 5
check_recession_period_ms: 3 stop_on_deadlock: false --- name: misc components: -
name: clock type: nvidia::gxf::RealtimeClock

NVIDIA Holoscan SDK v2.0.0 693

Parameter name Description

clock
The clock used by the scheduler to define the flow of time.
Typical choice is a RealtimeClock.

Example usage - The following code snippet configures an Epoch scheduler -

Note that the epoch scheduler is intended to run from an external thread. The
runEpoch(float budget_ms); can be used to set the budget_ms and run the scheduler

from the external thread. If the specified budget is not positive, all the nodes are
executed once.

SchedulingTerms

A SchedulingTerm defines a specific condition that is used by an entity to let the
scheduler know when it’s ready for execution. There are various scheduling terms
currently supported by GXF.

PeriodicSchedulingTerm

An entity associated with nvidia::gxf::PeriodicSchedulingTerm is ready for execution after
periodic time intervals specified using its recess_period parameter.
The PeriodicSchedulingTerm can either be in READY or WAIT_TIME state.

Example usage -

CountSchedulingTerm

An entity associated with nvidia::gxf::CountSchedulingTerm is executed for a specific
number of times specified using its count parameter. The CountSchedulingTerm can
either be in READY or NEVER state. The scheduling term reaches the NEVER state when
the entity has been executed count number of times.

name: scheduler components: - name: clock type: nvidia::gxf::RealtimeClock - name:
epoch type: nvidia::gxf::EpochScheduler parameters: clock: clock

- name: scheduling_term type: nvidia::gxf::PeriodicSchedulingTerm parameters:
recess_period: 50000000

NVIDIA Holoscan SDK v2.0.0 694

Example usage -

MessageAvailableSchedulingTerm

An entity associated with nvidia::gxf::MessageAvailableSchedulingTerm is executed
when the associated receiver queue has at least a certain number of elements. The
receiver is specified using the receiver parameter of the scheduling term. The minimum
number of messages that permits the execution of the entity is specified by min_size . An
optional parameter for this scheduling term is front_stage_max_size , the maximum
front stage message count. If this parameter is set, the scheduling term will only allow
execution if the number of messages in the queue does not exceed this count. It can be
used for codelets which do not consume all messages from the queue.

In the example shown below, the minimum size of the queue is configured to be 4. This
means the entity will not be executed until there are at least 4 messages in the queue.

MultiMessageAvailableSchedulingTerm

An entity associated with nvidia::gxf::MultiMessageAvailableSchedulingTerm is executed
when a list of provided input receivers combined have at least a given number of
messages. The receivers parameter is used to specify a list of the input
channels/receivers. The minimum number of messages needed to permit the entity
execution is set by min_size parameter.

Consider the example shown below. The associated entity will be executed when the
number of messages combined for all the three receivers is at least the min_size, i.e. 5.

- name: scheduling_term type: nvidia::gxf::CountSchedulingTerm parameters: count:
42

- type: nvidia::gxf::MessageAvailableSchedulingTerm parameters: receiver: tensors
min_size: 4

- name: input_1 type: nvidia::gxf::test::MockReceiver parameters: max_capacity: 10 -
name: input_2 type: nvidia::gxf::test::MockReceiver parameters: max_capacity: 10 -
name: input_3 type: nvidia::gxf::test::MockReceiver parameters: max_capacity: 10 -

NVIDIA Holoscan SDK v2.0.0 695

BooleanSchedulingTerm

An entity associated with nvidia::gxf::BooleanSchedulingTerm is executed when its
internal state is set to tick. The parameter enable_tick is used to control the entity
execution. The scheduling term also has two APIs enable_tick() and disable_tick() to
toggle its internal state. The entity execution can be controlled by calling these APIs. If
enable_tick is set to false, the entity is not executed (Scheduling condition is set to
NEVER). If enable_tick is set to true, the entity will be executed (Scheduling condition is

set to READY). Entities can toggle the state of the scheduling term by maintaining a
handle to it.

Example usage -

AsynchronousSchedulingTerm

AsynchronousSchedulingTerm is primarily associated with entities which are working
with asynchronous events happening outside of their regular execution performed by the
scheduler. Since these events are non-periodic in
nature, AsynchronousSchedulingTerm prevents the scheduler from polling the entity for
its status regularly and reduces CPU utilization. AsynchronousSchedulingTerm can either
be in READY, WAIT, WAIT_EVENT or NEVER states based on asynchronous event it’s
waiting on.

The state of an asynchronous event is described
using nvidia::gxf::AsynchronousEventState and is updated using the setEventState API.

AsynchronousEventState Description

READY Init state, first tick is pending

WAIT
Request to async service yet to be sent, nothing to do but
wait

EVENT_WAITING
Request sent to an async service, pending event done
notification

type: nvidia::gxf::MultiMessageAvailableSchedulingTerm parameters: receivers:
[input_1, input_2, input_3] min_size: 5

- type: nvidia::gxf::BooleanSchedulingTerm parameters: enable_tick: true

NVIDIA Holoscan SDK v2.0.0 696

EVENT_DONE Event done notification received, entity ready to be ticked

EVENT_NEVER Entity does not want to be ticked again, end of execution

Entities associated with this scheduling term most likely have an asynchronous thread
which can update the state of the scheduling term outside of it’s regular execution cycle
performed by the gxf scheduler. When the scheduling term is in WAIT state, the
scheduler regularly polls for the state of the entity. When the scheduling term is
in EVENT_WAITING state, schedulers will not check the status of the entity again until they
receive an event notification which can be triggered using the GxfEntityEventNotify api.
Setting the state of the scheduling term to EVENT_DONE automatically sends this
notification to the scheduler. Entities can use the EVENT_NEVER state to indicate the end
of its execution cycle.

Example usage -

DownsteamReceptiveSchedulingTerm

This scheduling term specifies that an entity shall be executed if the receiver for a given
transmitter can accept new messages.

Example usage -

TargetTimeSchedulingTerm

This scheduling term permits execution at a user-specified timestamp. The timestamp is
specified on the clock provided.

Example usage -

- name: async_scheduling_term type: nvidia::gxf::AsynchronousSchedulingTerm

- name: downstream_st type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters: transmitter: output min_size: 1

- name: target_st type: nvidia::gxf::TargetTimeSchedulingTerm parameters: clock:
clock/manual_clock

NVIDIA Holoscan SDK v2.0.0 697

ExpiringMessageAvailableSchedulingTerm

This scheduling waits for a specified number of messages in the receiver. The entity is
executed when the first message received in the queue is expiring or when there are
enough messages in the queue. The receiver parameter is used to set the receiver to
watch on. The parameters max_batch_size and max_delay_ns dictate the maximum
number of messages to be batched together and the maximum delay from first message
to wait before executing the entity respectively.

In the example shown below, the associated entity will be executed when the number of
messages in the queue is greater than max_batch_size , i.e 5, or when the delay from the
first message to current time is greater than max_delay_ns , i.e 10000000.

AND Combined

An entity can be associated with multiple scheduling terms which define it’s execution
behavior. Scheduling terms are AND combined to describe the current state of an entity.
For an entity to be executed by the scheduler, all the scheduling terms must be
in READY state and conversely, the entity is unscheduled from execution whenever any
one of the scheduling term reaches NEVER state. The priority of various states
during AND combine follows the order NEVER, WAIT_EVENT, WAIT, WAIT_TIME,
and READY.

Example usage -

BTSchedulingTerm

- name: target_st type: nvidia::gxf::ExpiringMessageAvailableSchedulingTerm
parameters: receiver: signal max_batch_size: 5 max_delay_ns: 10000000 clock:
misc/clock

components: - name: integers type: nvidia::gxf::DoubleBufferTransmitter - name:
fibonacci type: nvidia::gxf::DoubleBufferTransmitter - type:
nvidia::gxf::CountSchedulingTerm parameters: count: 100 - type:
nvidia::gxf::DownstreamReceptiveSchedulingTerm parameters: transmitter: integers
min_size: 1

NVIDIA Holoscan SDK v2.0.0 698

A BT (Behavior Tree) scheduling term is used to schedule a behavior tree entity itself and
its child entities (if any) in a Behavior tree.

Example usage -

Behavior Trees
Behavior tree codelets are one of the mechanisms to control the flow of tasks in GXF.
They follow the same general behavior as classical behavior trees, with some useful
additions for robotics applications. This document gives an overview of the general
concept, the available behavior tree node types, and some examples of how to use them
individually or in conjunction with each other.

General Concept

Behavior trees consist of n-ary trees of entities that can have zero or more children. The
conditional execution of parent entity is based on the status of execution of the children.
A behavior tree is graphically represented as a directed tree in which the nodes are
classified as root, control flow nodes, or execution nodes (tasks). For each pair of
connected nodes, the outgoing node is called parent and the incoming node is called
child.

The execution of a behavior tree starts from the root which sends ticks with a certain
frequency to its child. When the execution of a node in the behavior tree is allowed, it
returns to the parent a status running if its execution has not finished yet, success if it
has achieved its goal, or failure otherwise. The behavior tree also uses a controller
component for controlling the entity’s termination policy and the execution status. One of
the controller behaviors currently implemented for Behavior Tree is
EntityCountFailureRepeatController , which repeats the entity on failure up to
repeat_count times before deactivating it.

name: root components: - name: root_controller type:
nvidia::gxf::EntityCountFailureRepeatController parameters: max_repeat_count: 0 -
name: root_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root: true - name:
root_codelet type: nvidia::gxf::SequenceBehavior parameters: children: [
child1/child1_st] s_term: root_st controller: root_controller

NVIDIA Holoscan SDK v2.0.0 699

GXF supports several behavior tree codelets which are explained in the following section.

Behavior Tree Codelets

Each behavior tree codelet can have a set of parameters defining how it should behave.
Note that in all the examples given below, the naming convention for configuring the
children parameter for root codelets is
[child_codelet_name\child_codelet_scheduling_term] .

Constant Behavior

After each tick period, switches its own status to the configured desired constant status.

Parameter Description

s_term scheduling term used for scheduling the entity itself

constant_status The desired status to switch to during each tick time.

An example diagram depicting Constant behavior used in conjunction with a Sequence
behavior defined for root entity is shown below

Here, the child1 is configured to return a constant status of success
(GXF_BEHAVIOR_SUCCESS) and child2 returns failure (GXF_BEHAVIOR_FAILURE), resulting
into the root node (configured to exhibit sequence behavior) returning
GXF_BEHAVIOR_FAILURE.

The controller for each child can be configured to repeat the execution on failure. A code
snippet of configuring the example described is shown below.

NVIDIA Holoscan SDK v2.0.0 700

Parallel Behavior

Runs its child nodes in parallel. By default, succeeds when all child nodes succeed, and
fails when all child nodes fail. This behavior can be customized using the parameters
below.

Parameter Description

s_term scheduling term used for scheduling the entity itself

children Child entities

success_thr
eshold

Number of successful children required for success. A value of -1 means
all children must succeed for this node to succeed.

failure_thre
shold

Number of failed children required for failure. A value of -1 means all
children must fail for this node to fail.

The diagram below shows a graphical representation of a parallel behavior configured
with failure_threshold configured as -1. Hence, the root node returns
GXF_BEHAVIOR_SUCCESS even if one child returns a failure status.

name: root components: - name: root_controller type:
nvidia::gxf::EntityCountFailureRepeatController parameters: max_repeat_count: 0 -
name: root_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root: true - name:
root_codelet type: nvidia::gxf::SequenceBehavior parameters: children: [
child1/child1_st, child2/child2_st] s_term: root_st --- name: child2 components: -
name: child2_controller type: nvidia::gxf::EntityCountFailureRepeatController
parameters: max_repeat_count: 3 return_behavior_running_if_failure_repeat: true -
name: child2_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root: false -
name: child2_codelet type: nvidia::gxf::ConstantBehavior parameters: s_term:
child2_st constant_status: 1

NVIDIA Holoscan SDK v2.0.0 701

A code snippet to configure the example described is shown below.

Repeat Behavior

Repeats its only child entity. By default, won’t repeat when the child entity fails. This can
be customized using the parameters below.

Parameter Description

s_term scheduling term used for scheduling the entity itself

repeat_after_failure Denotes whether to repeat the child after it has failed.

The diagram below shows a graphical representation of a repeat behavior. The root
entity can be configured to repeat the only child to repeat after failure. It succeeds when
the child entity succeeds.

name: root components: - name: root_controller type:
nvidia::gxf::EntityCountFailureRepeatController parameters: max_repeat_count: 0 -
name: root_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root: true - name:
root_codelet type: nvidia::gxf::ParallelBehavior parameters: children: [
child1/child1_st, child2/child2_st] s_term: root_st success_threshold: 1
failure_threshold: -1

NVIDIA Holoscan SDK v2.0.0 702

A code snippet to configure a repeat behavior is as shown below -

Selector Behavior

Runs all child entities in sequence until one succeeds, then reports success. If all child
entities fail (or no child entities are present), this codelet fails.

Parameter Description

s_term scheduling term used for scheduling the entity itself

children Child entities

name: repeat_knock components: - name: repeat_knock_controller type:
nvidia::gxf::EntityCountFailureRepeatController parameters: max_repeat_count: 0 -
name: repeat_knock_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root:
false - name: repeat_codelet type: nvidia::gxf::RepeatBehavior parameters: s_term:
repeat_knock_st children: [knock_on_door/knock_on_door_st] repeat_after_failure:
true ---

NVIDIA Holoscan SDK v2.0.0 703

The diagram below shows a graphical representation of a Selector behavior. The root
entity starts child_1, child_2 and child_3 in a sequence. Although child_1 and child_2 fail,
the root entity will return success since child_3 returns successfully.

A code snippet to configure a selector behavior is as shown below -

Sequence Behavior

Runs its child entities in sequence, in the order in which they are defined. Succeeds when
all child entities succeed or fails as soon as one child entity fails.

Parameter Description

name: root components: - name: root_controller type:
nvidia::gxf::EntityCountFailureRepeatController parameters: max_repeat_count: 0 -
name: root_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root: true - name:
root_sel_codelet type: nvidia::gxf::SelectorBehavior parameters: children: [
door_distance/door_distance_st, door_detected/door_detected_st, knock/knock_st]
s_term: root_st --- name: door_distance components: - name:
door_distance_controller type: nvidia::gxf::EntityCountFailureRepeatController
parameters: max_repeat_count: 0 - name: door_distance_st type:
nvidia::gxf::BTSchedulingTerm parameters: is_root: false - name: door_dist type:
nvidia::gxf::SequenceBehavior parameters: children: [] s_term: door_distance_st ---

NVIDIA Holoscan SDK v2.0.0 704

s_term scheduling term used for scheduling the entity itself

children Child entities

The diagram below shows a graphical representation of a Sequence behavior. The root
entity starts child_1, child_2 and child_3 in a sequence. Although child_1 and child_2 pass,
the root entity will return failure since child_3 returns failure.

A code snippet to configure a sequence behavior is as shown below -

Switch Behavior

Runs the child entity with the index defined as desired_behavior.

Parameter Description

s_term scheduling term used for scheduling the entity itself

children Child entities

name: root components: - name: root_controller type:
nvidia::gxf::EntityCountFailureRepeatController parameters: max_repeat_count: 0 -
name: root_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root: true - name:
root_codelet type: nvidia::gxf::SequenceBehavior parameters: children: [
child1/child1_st, child2/child2_st] s_term: root_st

NVIDIA Holoscan SDK v2.0.0 705

desired_behavior The index of child entity to switch to when this entity runs

In the code snippet shown below, the desired behavior of the root entity is designated to
be the the child at index 1. (scene). Hence, that is the entity that is run.

Timer Behavior

Waits for a specified amount of time delay and switches to the configured result
switch_status afterwards.

Parameter Description

s_term scheduling term used for scheduling the entity itself

clock Clock

switch_status Configured result to switch to after the specified delay

delay Configured delay

In the diagram shown below, the child entity switches to failure after a configured delay
period. The root entity hence returns failure.

name: root components: - name: root_controller type:
nvidia::gxf::EntityCountFailureRepeatController parameters: max_repeat_count: 0 -
name: root_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root: true - name:
root_switch_codelet type: nvidia::gxf::SwitchBehavior parameters: children: [
scene/scene_st, ref/ref_st] s_term: root_st desired_behavior: 0 --- name: scene
components: - name: scene_controller type:
nvidia::gxf::EntityCountFailureRepeatController parameters: max_repeat_count: 0 -
name: scene_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root: false -
name: scene_seq type: nvidia::gxf::SequenceBehavior parameters: children: [
pose/pose_st, det/det_st, seg/seg_st] s_term: scene_st ---

NVIDIA Holoscan SDK v2.0.0 706

A code snippet for the same shown below -

GXF Core C APIs
Context

Create context

gxf_result_t GxfContextCreate(gxf_context_t* context);

Creates a new GXF context

name: knock_on_door components: - name: knock_on_door_controller type:
nvidia::gxf::EntityCountFailureRepeatController parameters: max_repeat_count: 10 -
name: knock_on_door_st type: nvidia::gxf::BTSchedulingTerm parameters: is_root:
false - name: knock type: nvidia::gxf::TimerBehavior parameters: switch_status: 1
clock: sched/clock delay: 1 s_term: knock_on_door_st ---

NVIDIA Holoscan SDK v2.0.0 707

A GXF context is required for all almost all GXF operations. The context must be
destroyed with ‘GxfContextDestroy’. Multiple contexts can be created in the same
process, however they can not communicate with each other.

parameter: context The new GXF context is written to the given pointer.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Create a context from a shared context

gxf_result_t GxfContextCreate1(gxf_context_t shared, gxf_context_t* context);

Creates a new runtime context from shared context.

A shared runtime context is used for sharing entities between graphs running within the
same process.

parameter: shared A valid GXF shared context.

parameter: context The new GXF context is written to the given pointer

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Destroy context

gxf_result_t GxfContextDestroy(gxf_context_t context);

Destroys a GXF context

Every GXF context must be destroyed by calling this function. The context must have
been previously created with ‘GxfContextCreate’. This will also destroy all entities and
components which were created as part of the context.

parameter: context A valid GXF context.

NVIDIA Holoscan SDK v2.0.0 708

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Extensions

Maximum number of extensions in a context can be 1024 .

Load Extensions from a file

gxf_result_t GxfLoadExtension(gxf_context_t context, const char* filename);

Loads extension in the given context from file.

parameter: context A valid GXF context

parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

This function will be deprecated.

Load Extension libraries

gxf_result_t GxfLoadExtensions(gxf_context_t context, const GxfLoadExtensionsInfo*
info);

Loads GXF extension libraries

Loads one or more extensions either directly by their filename or indirectly by loading
manifest files. Before a component can be added to a GXF entity the GXF extension
shared library providing the component must be loaded. An extensions must only be
loaded once.

NVIDIA Holoscan SDK v2.0.0 709

To simplify loading multiple extensions at once the developer can create a manifest file
which lists all extensions he needs. This function will then load all extensions listed in the
manifest file. Multiple manifest may be loaded, however each extensions may still be
loaded only a single time.

A manifest file is a YAML file with a single top-level entry ‘extensions’ followed by a list of
filenames of GXF extension shared libraries.

Example: —– START OF FILE —– extensions: - gxf/std/libgxf_std.so - gxf/npp/libgxf_npp.so
—– END OF FILE —–

parameter: context A valid GXF context

parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

gxf_result_t GxfLoadExtensionManifest(gxf_context_t context, const char*
manifest_filename);

Loads extensions from manifest file.

parameter: context A valid GXF context.

parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

This function will be deprecated.

Load Metadata files

gxf_result_t GxfLoadExtensionMetadataFiles(gxf_context_t context, const char* const*
filenames, uint32_t count);

NVIDIA Holoscan SDK v2.0.0 710

Loads an extension registration metadata file

Reads a metadata file of the contents of an extension used for registration. These
metadata files can be used to resolve typename and TID’s of components for other
extensions which depend on them. Metadata files do not contain the actual
implementation of the extension and must be loaded only to run the extension query
API’s on extension libraries which have the actual implementation and only depend on
the metadata for type resolution.

If some components of extension B depend on some components in extension A: - Load
metadata file for extension A - Load extension library for extension B using
‘GxfLoadExtensions’ - Run extension query api’s on extension B and it’s components.

parameter: context A valid GXF context.

parameter: filenames absolute paths of metadata files.

parameter: count The number of metadata files to be loaded

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Register component

gxf_result_t GxfRegisterComponent(gxf_context_t context, gxf_tid_t tid, const char*
name, const char* base_name);

Registers a component with a GXF extension

A GXF extension need to register all of its components in the extension factory function.
For convenience the helper macros in gxf/std/extension_factory_helper.hpp can be used.

The developer must choose a unique GXF tid with two random 64-bit integers. The
developer must ensure that every GXF component has a unique tid. The name of the
component must be the fully qualified C++ type name of the component. A component
may only have a single base class and that base class must be specified with its fully
qualified C++ type name as the parameter ‘base_name’.

ref: gxf/std/extension_factory_helper.hpp ref: core/type_name.hpp

NVIDIA Holoscan SDK v2.0.0 711

parameter: context A valid GXF context

parameter: tid The chosen GXF tid

parameter: name The type name of the component

parameter: base_name The type name of the base class of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Graph Execution

Loads a list of entities from YAML file

gxf_result_t GxfGraphLoadFile(gxf_context_t context, const char* filename, const char*
parameters_override[], const uint32_t num_overrides);

parameter: context A valid GXF context

parameter: filename A valid YAML filename.

parameter: params_override An optional array of strings used for override parameters
in yaml file.

parameter: num_overrides Number of optional override parameter strings.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Set the root folder for searching YAML files during loading

gxf_result_t GxfGraphSetRootPath(gxf_context_t context, const char* path);

parameter: context A valid GXF context

NVIDIA Holoscan SDK v2.0.0 712

parameter: path Path to root folder for searching YAML files during loading

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Loads a list of entities from YAML text

gxf_result_t GxfGraphParseString(gxf_context_t context, const char* tex, const char*
parameters_override[], const uint32_t num_overrides);

parameter: context A valid GXF context

parameter: text A valid YAML text.

parameter: params_override An optional array of strings used for override parameters
in yaml file.

parameter: num_overrides Number of optional override parameter strings.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Activate all system components

gxf_result_t GxfGraphActivate(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Deactivate all System components

gxf_result_t GxfGraphDeactivate(gxf_context_t context);

NVIDIA Holoscan SDK v2.0.0 713

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Starts the execution of the graph asynchronously

gxf_result_t GxfGraphRunAsync(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Interrupt the execution of the graph

gxf_result_t GxfGraphInterrupt(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Waits for the graph to complete execution

gxf_result_t GxfGraphWait(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.`

Runs all System components and waits for their completion

NVIDIA Holoscan SDK v2.0.0 714

gxf_result_t GxfGraphRun(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Entities

Create an entity

gxf_result_t GxfEntityCreate(gxf_context_t context, gxf_uid_t* eid);

Creates a new entity and updates the eid to the unique identifier of the newly created
entity.

This method will be deprecated.

gxf_result_t GxfCreateEntity((gxf_context_t context, const GxfEntityCreateInfo* info,
gxf_uid_t* eid);

Create a new GXF entity.

Entities are light-weight containers to hold components and form the basic building
blocks of a GXF application. Entities are created when a GXF file is loaded, or they can be
created manually using this function. Entities created with this function must be
destroyed using ‘GxfEntityDestroy’. After the entity was created components can be
added to it with ‘GxfComponentAdd’. To start execution of codelets on an entity the entity
needs to be activated first. This can happen automatically using
‘GXF_ENTITY_CREATE_PROGRAM_BIT’ or manually using ‘GxfEntityActivate’.

parameter context: GXF context that creates the entity. parameter info: pointer to a
GxfEntityCreateInfo structure containing parameters affecting the creation of the entity.
parameter eid: pointer to a gxf_uid_t handle in which the resulting entity is returned.
returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

NVIDIA Holoscan SDK v2.0.0 715

Activate an entity

gxf_result_t GxfEntityActivate(gxf_context_t context, gxf_uid_t eid);

Activates a previously created and inactive entity

Activating an entity generally marks the official start of its lifetime and has multiple
implications: - If mandatory parameters, i.e. parameter which do not have the flag
“optional”, are not set the operation will fail.

All components on the entity are initialized.

All codelets on the entity are scheduled for execution. The scheduler will start
calling start, tick and stop functions as specified by scheduling terms.

After activation trying to change a dynamic parameters will result in a failure.

Adding or removing components of an entity after activation will result in a failure.

parameter: context A valid GXF context

parameter: eid UID of a valid entity

returns: GXF error code

Deactivate an entity

gxf_result_t GxfEntityDeactivate(gxf_context_t context, gxf_uid_t eid);

Deactivates a previously activated entity

Deactivating an entity generally marks the official end of its lifetime and has multiple
implications:

All codelets are removed from the schedule. Already running entities are run to
completion.

All components on the entity are deinitialized.

Components can be added or removed again once the entity was deactivated.

NVIDIA Holoscan SDK v2.0.0 716

Mandatory and non-dynamic parameters can be changed again.

Note: In case that the entity is currently executing this function will wait and block until

the current execution is finished.

parameter: context A valid GXF context

parameter: eid UID of a valid entity

returns: GXF error code

Destroy an entity

gxf_result_t GxfEntityDestroy(gxf_context_t context, gxf_uid_t eid);

Destroys a previously created entity

Destroys an entity immediately. The entity is destroyed even if the reference count has
not yet reached 0. If the entity is active it is deactivated first.

Note: This function can block for the same reasons as ‘GxfEntityDeactivate’.

parameter: context A valid GXF context

parameter: eid The returned UID of the created entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Find an entity

gxf_result_t GxfEntityFind(gxf_context_t context, const char* name, gxf_uid_t* eid);

Finds an entity by its name

parameter: context A valid GXF context

NVIDIA Holoscan SDK v2.0.0 717

parameter: name A C string with the name of the entity. Ownership is not transferred.

parameter: eid The returned UID of the entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Find all entities

gxf_result_t GxfEntityFindAll(gxf_context_t context, uint64_t* num_entities, gxf_uid_t*
entities);

Finds all entities in the current application

Finds and returns all entity ids for the current application. If more than max_entities exist
only max_entities will be returned. The order and selection of entities returned is
arbitrary.

parameter: context A valid GXF context

parameter: num_entities In/Out: the max number of entities that can fit in the
buffer/the number of entities that exist in the application

parameter: entities A buffer allocated by the caller for returned UIDs of all entities, with
capacity for num_entities.

returns: GXF_SUCCESS if the operation was successful,
GXF_QUERY_NOT_ENOUGH_CAPACITY if more entities exist in the application than
max_entities, or otherwise one of the GXF error codes.

Increase reference count of an entity

gxf_result_t GxfEntityRefCountInc(gxf_context_t context, gxf_uid_t eid);

Increases the reference count for an entity by 1.

NVIDIA Holoscan SDK v2.0.0 718

By default reference counting is disabled for an entity. This means that entities created
with ‘GxfEntityCreate’ are not automatically destroyed. If this function is called for an
entity with disabled reference count, reference counting is enabled and the reference
count is set to 1. Once reference counting is enabled an entity will be automatically
destroyed if the reference count reaches zero, or if ‘GxfEntityCreate’ is called explicitly.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Decrease reference count of an entity

gxf_result_t GxfEntityRefCountDec(gxf_context_t context, gxf_uid_t eid);

Decreases the reference count for an entity by 1.

See ‘GxfEntityRefCountInc’ for more details on reference counting.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get status of an entity

gxf_result_t GxfEntityGetStatus(gxf_context_t context, gxf_uid_t eid, gxf_entity_status_t*
entity_status);

Gets the status of the entity.

See ‘gxf_entity_status_t’ for the various status.

NVIDIA Holoscan SDK v2.0.0 719

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

parameter: entity_status output; status of an entity eid

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get state of an entity

gxf_result_t GxfEntityGetState(gxf_context_t context, gxf_uid_t eid, entity_state_t*
entity_state);

Gets the state of the entity.

See ‘gxf_entity_status_t’ for the various status.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

parameter: entity_state output; behavior status of an entity eid used by the behavior
tree parent codelet

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Notify entity of an event

gxf_result_t GxfEntityEventNotify(gxf_context_t context, gxf_uid_t eid);

Notifies the occurrence of an event and inform the scheduler to check the status of the
entity

The entity must have an ‘AsynchronousSchedulingTerm’ scheduling term component and
it must be in “EVENT_WAITING” state for the notification to be acknowledged.

NVIDIA Holoscan SDK v2.0.0 720

See ‘AsynchronousEventState’ for various states

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Components

Maximum number of components in an entity or an extension can be up to 1024 .

Get component type identifier

gxf_result_t GxfComponentTypeId(gxf_context_t context, const char* name, gxf_tid_t*
tid);

Gets the GXF unique type ID (TID) of a component

Get the unique type ID which was used to register the component with GXF. The function
expects the fully qualified C++ type name of the component including namespaces.

Example of a valid component type name: “nvidia::gxf::test::PingTx”

parameter: context A valid GXF context

parameter: name The fully qualified C++ type name of the component

parameter: tid The returned TID of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get component type name

NVIDIA Holoscan SDK v2.0.0 721

gxf_result_t GxfComponentTypeName(gxf_context_t context, gxf_tid_t tid, const char**
name);

Gets the fully qualified C++ type name GXF component typename

Get the unique typename of the component with which it was registered using one of the
GXF_EXT_FACTORY_ADD*() macros

parameter: context A valid GXF context

parameter: tid The unique type ID (TID) of the component with which the component
was registered

parameter: name The returned name of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get component name

gxf_result_t GxfComponentName(gxf_context_t context, gxf_uid_t cid, const char**
name);

Gets the name of a component

Each component has a user-defined name which was used in the call to
‘GxfComponentAdd’. Usually the name is specified in the GXF application file.

parameter: context A valid GXF context

parameter: cid The unique object ID (UID) of the component

parameter: name The returned name of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

NVIDIA Holoscan SDK v2.0.0 722

Get unique identifier of the entity of given component

gxf_result_t GxfComponentEntity(gxf_context_t context, gxf_uid_t cid, gxf_uid_t* eid);

Gets the unique object ID of the entity of a component

Each component has a unique ID with respect to the context and is stored in one entity.
This function can be used to retrieve the ID of the entity to which a given component
belongs.

parameter: context A valid GXF context

parameter: cid The unique object ID (UID) of the component

parameter: eid The returned UID of the entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Add a new component

gxf_result_t GxfComponentAdd(gxf_context_t context, gxf_uid_t eid, gxf_tid_t tid, const
char* name, gxf_uid_t* cid);

Adds a new component to an entity

An entity can contain multiple components and this function can be used to add a new
component to an entity. A component must be added before an entity is activated, or
after it was deactivated. Components must not be added to active entities. The order of
components is stable and identical to the order in which components are added (see
‘GxfComponentFind’).

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity to which the component is
added.

parameter: tid The unique type ID (TID) of the component to be added to the entity.

NVIDIA Holoscan SDK v2.0.0 723

parameter: name The name of the new component. Ownership is not transferred.

parameter: cid The returned UID of the created component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Add component to entity interface

gxf_result_t GxfComponentAddToInterface(gxf_context_t context, gxf_uid_t eid, gxf_uid_t
cid, const char* name);

Adds an existing component to the interface of an entity

An entity can holds references to other components in its interface, so that when finding
a component in an entity, both the component this entity holds and those it refers to will
be returned. This supports the case when an entity contains a subgraph, then those
components that has been declared in the subgraph interface will be put to the interface
of the parent entity.

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity to which the component is
added.

parameter: cid The unique object ID of the component.

parameter: name The name of the new component. Ownership is not transferred.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Find a component in an entity

gxf_result_t GxfComponentFind(gxf_context_t context, gxf_uid_t eid, gxf_tid_t tid, const
char* name, int32_t* offset, gxf_uid_t* cid);

NVIDIA Holoscan SDK v2.0.0 724

Finds a component in an entity

Searches components in an entity which satisfy certain criteria: component type,
component name, and component min index. All three criteria are optional; in case no
criteria is given the first component is returned. The main use case for “component min
index” is a repeated search which continues at the index which was returned by a
previous search.

In case no entity with the given criteria was found GXF_ENTITY_NOT_FOUND is returned.

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity which is searched.

parameter: tid The component type ID (TID) of the component to find (optional)

parameter: name The component name of the component to find (optional). Ownership
not transferred.

parameter: offset The index of the first component in the entity to search. Also contains
the index of the component which was found.

parameter: cid The returned UID of the searched component

returns: GXF_SUCCESS if a component matching the criteria was found,
GXF_ENTITY_NOT_FOUND if no component matching the criteria was found, or otherwise
one of the GXF error codes.

Get type identifier for a component

gxf_result_t GxfComponentType(gxf_context_t context, gxf_uid_t cid, gxf_tid_t* tid);

Gets the component type ID (TID) of a component

parameter: context A valid GXF context

parameter: cid The component object ID (UID) for which the component type is
requested.

NVIDIA Holoscan SDK v2.0.0 725

parameter: tid The returned TID of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Gets pointer to component

gxf_result_t GxfComponentPointer(gxf_context_t context, gxf_uid_t uid, gxf_tid_t tid,
void** pointer);

Verifies that a component exists, has the given type, gets a pointer to it.

parameter: context A valid GXF context

parameter: uid The component object ID (UID).

parameter: tid The expected component type ID (TID) of the component

parameter: pointer The returned pointer to the component object.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Primitive Parameters

64-bit floating point

Set

gxf_result_t GxfParameterSetFloat64(gxf_context_t context, gxf_uid_t uid, const char*
key, double value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

NVIDIA Holoscan SDK v2.0.0 726

parameter: key A valid name of a component to set.

parameter: value a double value

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetFloat64(gxf_context_t context, gxf_uid_t uid, const char*
key, double* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the double value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

64-bit signed integer

Set

gxf_result_t GxfParameterSetInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
int64_t value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

NVIDIA Holoscan SDK v2.0.0 727

parameter: value 64-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
int64_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the 64-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

64-bit unsigned integer

Set

gxf_result_t GxfParameterSetUInt64(gxf_context_t context, gxf_uid_t uid, const char*
key, uint64_t value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value unsigned 64-bit integer value to set.

NVIDIA Holoscan SDK v2.0.0 728

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetUInt64(gxf_context_t context, gxf_uid_t uid, const char*
key, uint64_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the unsigned 64-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

32-bit signed integer

Set

gxf_result_t GxfParameterSetInt32(gxf_context_t context, gxf_uid_t uid, const char* key,
int32_t value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value 32-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

NVIDIA Holoscan SDK v2.0.0 729

Get

gxf_result_t GxfParameterGetInt32(gxf_context_t context, gxf_uid_t uid, const char* key,
int32_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the 32-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

String parameter

Set

gxf_result_t GxfParameterSetStr(gxf_context_t context, gxf_uid_t uid, const char* key,
const char* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value A char array containing value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

NVIDIA Holoscan SDK v2.0.0 730

Get

gxf_result_t GxfParameterGetStr(gxf_context_t context, gxf_uid_t uid, const char* key,
const char** value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to a char* array to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Boolean

Set

gxf_result_t GxfParameterSetBool(gxf_context_t context, gxf_uid_t uid, const char* key,
bool value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value A boolean value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

NVIDIA Holoscan SDK v2.0.0 731

gxf_result_t GxfParameterGetBool(gxf_context_t context, gxf_uid_t uid, const char* key,
bool* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the boolean value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Handle

Set

gxf_result_t GxfParameterSetHandle(gxf_context_t context, gxf_uid_t uid, const char*
key, gxf_uid_t cid);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: cid Unique identifier to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get

gxf_result_t GxfParameterGetHandle(gxf_context_t context, gxf_uid_t uid, const char*
key, gxf_uid_t* cid);

NVIDIA Holoscan SDK v2.0.0 732

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value Pointer to a unique identifier to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Vector Parameters

To set or get the vector parameters of a component, users can use the following C-APIs
for various data types:

Set 1-D Vector Parameters

Users can call gxf_result_t GxfParameterSet1D"DataType"Vector(gxf_context_t context,
gxf_uid_t uid, const char* key, data_type* value, uint64_t length)

value should point to an array of the data to be set of the corresponding type. The size
of the stored array should match the length argument passed.

See the table below for all the supported data types and their corresponding function
signatures.

parameter: key The name of the parameter

parameter: value The value to set of the parameter

parameter: length The length of the vector parameter

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

NVIDIA Holoscan SDK v2.0.0 733

Table 1 Supported Data Types to Set 1D Vector Parameters
Function Name data_type

GxfParameterSet1DFloat64Vector(...) double

GxfParameterSet1DInt64Vector(...) int64_t

GxfParameterSet1DUInt64Vector(...) uint64_t

GxfParameterSet1DInt32Vector(...) int32_t

Set 2-D Vector Parameters

Users can call gxf_result_t GxfParameterSet2D"DataType"Vector(gxf_context_t context,
gxf_uid_t uid, const char* key, data_type** value, uint64_t height, uint64_t width)

value should point to an array of array (and not to the address of a contiguous array of
data) of the data to be set of the corresponding type. The length of the first dimension of
the array should match the height argument passed and similarly the length of the
second dimension of the array should match the width passed.

See the table below for all the supported data types and their corresponding function
signatures.

parameter: key The name of the parameter

parameter: value The value to set of the parameter

parameter: height The height of the 2-D vector parameter

parameter: width The width of the 2-D vector parameter

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Table 2 Supported Data Types to Set 2D Vector Parameters
Function Name data_type

GxfParameterSet2DFloat64Vector(...) double

NVIDIA Holoscan SDK v2.0.0 734

GxfParameterSet2DInt64Vector(...) int64_t

GxfParameterSet2DUInt64Vector(...) uint64_t

GxfParameterSet2DInt32Vector(...) int32_t

Get 1-D Vector Parameters

Users can call gxf_result_t GxfParameterGet1D"DataType"Vector(gxf_context_t context,
gxf_uid_t uid, const char* key, data_type** value, uint64_t* length) to get the value of a

1-D vector.

Before calling this method, users should call
GxfParameterGet1D"DataType"VectorInfo(gxf_context_t context, gxf_uid_t uid, const
char* key, uint64_t* length)

to obtain the length of the vector parameter and then allocate at least that much
memory to retrieve the value .

value should point to an array of size greater than or equal to length allocated by user
of the corresponding type to retrieve the data. If the length doesn’t match the size of
stored vector then it will be updated with the expected size.

See the table below for all the supported data types and their corresponding function
signatures.

parameter: key The name of the parameter

parameter: value The value to set of the parameter

parameter: length The length of the 1-D vector parameter obtained by calling
GxfParameterGet1D"DataType"VectorInfo(...)

Table 3 Supported Data Types to Get the Value of 1D Vector Parameters
Function Name data_type

GxfParameterGet1DFloat64Vector(...) double

GxfParameterGet1DInt64Vector(...) int64_t

NVIDIA Holoscan SDK v2.0.0 735

GxfParameterGet1DUInt64Vector(...) uint64_t

GxfParameterGet1DInt32Vector(...) int32_t

Get 2-D Vector Parameters

Users can call gxf_result_t GxfParameterGet2D"DataType"Vector(gxf_context_t context,
gxf_uid_t uid, const char* key, data_type** value, uint64_t* height, uint64_t* width) to

get the value of a -2D vector.

Before calling this method, users should call
GxfParameterGet1D"DataType"VectorInfo(gxf_context_t context, gxf_uid_t uid, const
char* key, uint64_t* height, uint64_t* width)

to obtain the height and width of the 2D-vector parameter and then allocate at least
that much memory to retrieve the value .

value should point to an array of array of height (size of first dimension) greater than or
equal to height and width (size of the second dimension) greater than or equal to
width allocated by user of the corresponding type to get the data. If the height or
width don’t match the height and width of the stored vector then they will be updated

with the expected values.

See the table below for all the supported data types and their corresponding function
signatures.

parameter”: key The name of the parameter

parameter”: value Allocated array to get the value of the parameter

parameter”: height The height of the 2-D vector parameter obtained by calling
GxfParameterGet2D"DataType"VectorInfo(...)

parameter”: width The width of the 2-D vector parameter obtained by calling
GxfParameterGet2D"DataType"VectorInfo(...)

Table 4 Supported Data Types to Get the Value of 2D Vector Parameters

NVIDIA Holoscan SDK v2.0.0 736

Function Name data_type

GxfParameterGet2DFloat64Vector(...) double

GxfParameterGet2DInt64Vector(...) int64_t

GxfParameterGet2DUInt64Vector(...) uint64_t

GxfParameterGet2DInt32Vector(...) int32_t

Information Queries

Get Meta Data about the GXF Runtime

gxf_result_t GxfRuntimeInfo(gxf_context_t context, gxf_runtime_info* info);

parameter: context A valid GXF context.

parameter: info pointer to gxf_runtime_info object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get description and list of components in loaded Extension

gxf_result_t GxfExtensionInfo(gxf_context_t context, gxf_tid_t tid, gxf_extension_info_t*
info);

parameter: context A valid GXF context.

parameter: tid The unique identifier of the extension.

parameter: info pointer to gxf_extension_info_t object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

NVIDIA Holoscan SDK v2.0.0 737

Get description and list of parameters of Component

gxf_result_t GxfComponentInfo(gxf_context_t context, gxf_tid_t tid,
gxf_component_info_t* info);

Note: Parameters are only available after at least one instance is created for the
Component.

parameter: context A valid GXF context.

parameter: tid The unique identifier of the component.

parameter: info pointer to gxf_component_info_t object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Get parameter type description

Gets a string describing the parameter type

const char* GxfParameterTypeStr(gxf_parameter_type_t param_type);

parameter: param_type Type of parameter to get info about.

returns: C-style string description of the parameter type.

Get flag type description

Gets a string describing the flag type

const char* GxfParameterFlagTypeStr(gxf_parameter_flags_t_ flag_type);

parameter: flag_type Type of flag to get info about.

returns: C-style string description of the flag type.

NVIDIA Holoscan SDK v2.0.0 738

Get parameter description

Gets description of specific parameter. Fails if the component is not instantiated yet.

gxf_result_t GxfGetParameterInfo(gxf_context_t context, gxf_tid_t cid, const char* key,
gxf_parameter_info_t* info);

parameter: context A valid GXF context.

parameter: cid The unique identifier of the component.

parameter: key The name of the parameter.

parameter: info Pointer to a gxf_parameter_info_t object to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Redirect logs to a file

Redirect console logs to the provided file.

gxf_result_t GxfGetParameterInfo(gxf_context_t context, FILE* fp);

parameter: context A valid GXF context.

parameter: fp File path for the redirected logs.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error
codes.

Miscellaneous

Get string description of error

NVIDIA Holoscan SDK v2.0.0 739

const char* GxfResultStr(gxf_result_t result);

Gets a string describing an GXF error code.

The caller does not get ownership of the return C string and must not delete it.

parameter: result A GXF error code

returns: A pointer to a C string with the error code description.

CudaExtension
Extension for CUDA operations.

UUID: d63a98fa-7882-11eb-a917-b38f664f399c

Version: 2.0.0

Author: NVIDIA

License: LICENSE

Components

nvidia::gxf::CudaStream

Holds and provides access to native cudaStream_t .

nvidia::gxf::CudaStream handle must be allocated by nvidia::gxf::CudaStreamPool . Its
lifecycle is valid until explicitly recycled through
nvidia::gxf::CudaStreamPool.releaseStream() or implicitly until
nvidia::gxf::CudaStreamPool is deactivated.

You may call stream() to get the native cudaStream_t handle, and to submit GPU
operations. After the submission, GPU takes over the input tensors/buffers and keeps
them in use. To prevent host carelessly releasing these in-use buffers, CUDA Codelet

NVIDIA Holoscan SDK v2.0.0 740

needs to call record(event, input_entity, sync_cb) to extend input_entity ’s lifecycle until
GPU completely consumes it. Alternatively, you may call record(event, event_destroy_cb)
for native cudaEvent_t operations and free in-use resource via event_destroy_cb .

It is required to have a nvidia::gxf::CudaStreamSync in the graph pipeline after all the
CUDA operations. See more details in nvidia::gxf::CudaStreamSync

Component ID: 5683d692-7884-11eb-9338-c3be62d576be

Defined in: gxf/cuda/cuda_stream.hpp

nvidia::gxf::CudaStreamId

Holds CUDA stream Id to deduce nvidia::gxf::CudaStream handle.

stream_cid should be nvidia::gxf::CudaStream component id.

Component ID: 7982aeac-37f1-41be-ade8-6f00b4b5d47c

Defined in: gxf/cuda/cuda_stream_id.hpp

nvidia::gxf::CudaEvent

Holds and provides access to native cudaEvent_t handle.

When a nvidia::gxf::CudaEvent is created, you’ll need to initialize a native cudaEvent_t
through init(flags, dev_id) , or set third party event through
initWithEvent(event, dev_id, free_fnc) . The event keeps valid until deinit is called

explicitly otherwise gets recycled in destructor.

Component ID: f5388d5c-a709-47e7-86c4-171779bc64f3

Defined in: gxf/cuda/cuda_event.hpp

nvidia::gxf::CudaStreamPool

CudaStream allocation.

NVIDIA Holoscan SDK v2.0.0 741

You must explicitly call allocateStream() to get a valid nvidia::gxf::CudaStream handle.
This component would hold all the its allocated nvidia::gxf::CudaStream entities until
releaseStream(stream) is called explicitly or the CudaStreamPool component is

deactivated.

Component ID: 6733bf8b-ba5e-4fae-b596-af2d1269d0e7

Base Type: nvidia::gxf::Allocator

Parameters

dev_id

GPU device id.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT32

Default Value: 0

stream_flags

Flag values to create CUDA streams.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT32

Default Value: 0

stream_priority

Priority values to create CUDA streams.

NVIDIA Holoscan SDK v2.0.0 742

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT32

Default Value: 0

reserved_size

User-specified file name without extension.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT32

Default Value: 1

max_size

Maximum Stream Size.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT32

Default Value: 0, no limitation.

nvidia::gxf::CudaStreamSync

Synchronize all CUDA streams which are carried by message entities.

This codelet is required to get connected in the graph pipeline after all CUDA ops
codelets. When a message entity is received, it would find all of the
nvidia::gxf::CudaStreamId in that message, and extract out each
nvidia::gxf::CudaStream . With each CudaStream handle, it synchronizes all previous
nvidia::gxf::CudaStream.record() events, along with all submitted GPU operations before

this point.

NVIDIA Holoscan SDK v2.0.0 743

Component ID: 0d1d8142-6648-485d-97d5-277eed00129c

Base Type: nvidia::gxf::Codelet

Parameters

rx

Receiver to receive all messages carrying nvidia::gxf::CudaStreamId .

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

tx

Transmitter to send messages to downstream.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Transmitter

MultimediaExtension

Note

CudaStreamSync must be set in the graph when
nvidia::gxf::CudaStream.record() is used, otherwise it may cause

memory leak.

NVIDIA Holoscan SDK v2.0.0 744

Extension for multimedia related data types, interfaces and components in GXF Core.

UUID: 6f2d1afc-1057-481a-9da6-a5f61fed178e

Version: 2.0.0

Author: NVIDIA

License: LICENSE

Components

nvidia::gxf::AudioBuffer

AudioBuffer is similar to Tensor component in the standard extension and holds memory
and metadata corresponding to an audio buffer.

Component ID: a914cac6-5f19-449d-9ade-8c5cdcebe7c3

AudioBufferInfo structure captures the following metadata:

Field Description

channels Number of channels in an audio frame

samples Number of samples in an audio frame

sampling_rate sampling rate in Hz

bytes_per_sample Number of bytes required per sample

audio_format AudioFormat of an audio frame

audio_layout AudioLayout of an audio frame

Supported AudioFormat types:

AudioFormat Description

GXF_AUDIO_FORMAT_S16LE 16-bit signed PCM audio

GXF_AUDIO_FORMAT_F32LE 32-bit floating-point audio

Supported AudioLayout types:

NVIDIA Holoscan SDK v2.0.0 745

AudioLayout Description

GXF_AUDIO_LAYOUT_INTERL
EAVED

Data from all the channels to be interleaved - LRLRLR

GXF_AUDIO_LAYOUT_NON_IN
TERLEAVED

Data from all the channels not to be interleaved -
LLLRRR

nvidia::gxf::VideoBuffer

VideoBuffer is similar to Tensor component in the standard extension and holds memory
and metadata corresponding to a video buffer.

Component ID: 16ad58c8-b463-422c-b097-61a9acc5050e

VideoBufferInfo structure captures the following metadata:

Field Description

width width of a video frame

height height of a video frame

color_format VideoFormat of a video frame

color_planes ColorPlane(s) associated with the VideoFormat

surface_layout SurfaceLayout of the video frame

Supported VideoFormat types:

VideoFormat Description

GXF_VIDEO_FORMAT_YUV420 BT.601 multi planar 4:2:0 YUV

GXF_VIDEO_FORMAT_YUV420_ER BT.601 multi planar 4:2:0 YUV ER

GXF_VIDEO_FORMAT_YUV420_709 BT.709 multi planar 4:2:0 YUV

GXF_VIDEO_FORMAT_YUV420_709_
ER

BT.709 multi planar 4:2:0 YUV ER

GXF_VIDEO_FORMAT_NV12 BT.601 multi planar 4:2:0 YUV with interleaved UV

GXF_VIDEO_FORMAT_NV12_ER
BT.601 multi planar 4:2:0 YUV ER with interleaved
UV

NVIDIA Holoscan SDK v2.0.0 746

GXF_VIDEO_FORMAT_NV12_709 BT.709 multi planar 4:2:0 YUV with interleaved UV

GXF_VIDEO_FORMAT_NV12_709_ER
BT.709 multi planar 4:2:0 YUV ER with interleaved
UV

GXF_VIDEO_FORMAT_RGBA RGBA-8-8-8-8 single plane

GXF_VIDEO_FORMAT_BGRA BGRA-8-8-8-8 single plane

GXF_VIDEO_FORMAT_ARGB ARGB-8-8-8-8 single plane

GXF_VIDEO_FORMAT_ABGR ABGR-8-8-8-8 single plane

GXF_VIDEO_FORMAT_RGBX RGBX-8-8-8-8 single plane

GXF_VIDEO_FORMAT_BGRX BGRX-8-8-8-8 single plane

GXF_VIDEO_FORMAT_XRGB XRGB-8-8-8-8 single plane

GXF_VIDEO_FORMAT_XBGR XBGR-8-8-8-8 single plane

GXF_VIDEO_FORMAT_RGB RGB-8-8-8 single plane

GXF_VIDEO_FORMAT_BGR BGR-8-8-8 single plane

GXF_VIDEO_FORMAT_R8_G8_B8 RGB - unsigned 8 bit multiplanar

GXF_VIDEO_FORMAT_B8_G8_R8 BGR - unsigned 8 bit multiplanar

GXF_VIDEO_FORMAT_GRAY 8 bit GRAY scale single plane

Supported SurfaceLayout types:

SurfaceLayout Description

GXF_SURFACE_LAYOUT_PITCH_LIN
EAR

pitch linear surface memory

GXF_SURFACE_LAYOUT_BLOCK_LIN
EAR

block linear surface memory

NetworkExtension
Extension for communications external to a computation graph.

UUID: f50665e5-ade2-f71b-de2a-2380614b1725

NVIDIA Holoscan SDK v2.0.0 747

Version: 1.0.0

Author: NVIDIA

License: LICENSE

Interfaces

Components

nvidia::gxf::TcpClient

Codelet that functions as a client in a TCP connection.

Component ID: 9d5955c7-8fda-22c7-f18f-ea5e2d195be9

Base Type: nvidia::gxf::Codelet

Parameters

receivers

List of receivers to receive entities from.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_CUSTOM

Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::Receiver>>

transmitters

List of transmitters to publish entities to.

Flags: GXF_PARAMETER_FLAGS_NONE

NVIDIA Holoscan SDK v2.0.0 748

Type: GXF_PARAMETER_TYPE_CUSTOM

Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::Transmitter>>

serializers

List of component serializers to serialize and de-serialize entities.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_CUSTOM

Custom Type:
std::vector<nvidia::gxf::Handle<nvidia::gxf::ComponentSerializer>>

address

Address of TCP server.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_STRING

port

Port of TCP server.

Flags: GXF_PARAMETER_FLAGS_NONE

NVIDIA Holoscan SDK v2.0.0 749

Type: GXF_PARAMETER_TYPE_INT32

timeout_ms

Time in milliseconds to wait before retrying connection to TCP server.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

maximum_attempts

Maximum number of attempts for I/O operations before failing.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

nvidia::gxf::TcpServer

Codelet that functions as a server in a TCP connection.

Component ID: a3e0e42d-e32e-73ab-ef83-fbb311310759

Base Type: nvidia::gxf::Codelet

Parameters

receivers

List of receivers to receive entities from.

Flags: GXF_PARAMETER_FLAGS_NONE

NVIDIA Holoscan SDK v2.0.0 750

Type: GXF_PARAMETER_TYPE_CUSTOM

Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::Receiver>>

transmitters

List of transmitters to publish entities to.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_CUSTOM

Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::Transmitter>>

serializers

List of component serializers to serialize and de-serialize entities.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_CUSTOM

Custom Type:
std::vector<nvidia::gxf::Handle<nvidia::gxf::ComponentSerializer>>

address

Address of TCP server.

NVIDIA Holoscan SDK v2.0.0 751

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_STRING

port

Port of TCP server.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT32

timeout_ms

Time in milliseconds to wait before retrying connection to TCP client.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

maximum_attempts

Maximum number of attempts for I/O operations before failing.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

NVIDIA Holoscan SDK v2.0.0 752

SerializationExtension
Extension for serializing messages.

UUID: bc573c2f-89b3-d4b0-8061-2da8b11fe79a

Version: 2.0.0

Author: NVIDIA

License: LICENSE

Interfaces

nvidia::gxf::ComponentSerializer

Interface for serializing components.

Component ID: 8c76a828-2177-1484-f841-d39c3fa47613

Base Type: nvidia::gxf::Component

Defined in: gxf/serialization/component_serializer.hpp

Components

nvidia::gxf::EntityRecorder

Serializes incoming messages and writes them to a file.

Component ID: 9d5955c7-8fda-22c7-f18f-ea5e2d195be9

Base Type: nvidia::gxf::Codelet

Parameters

receiver

NVIDIA Holoscan SDK v2.0.0 753

Receiver channel to log.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

serializers

List of component serializers to serialize entities.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_CUSTOM

Custom Type:
std::vector<nvidia::gxf::Handle<nvidia::gxf::ComponentSerializer>>

directory

Directory path for storing files.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_STRING

basename

NVIDIA Holoscan SDK v2.0.0 754

User specified file name without extension.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_STRING

flush_on_tick

Flushes output buffer on every tick when true.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::EntityReplayer

De-serializes and publishes messages from a file.

Component ID: fe827c12-d360-c63c-8094-32b9244d83b6

Base Type: nvidia::gxf::Codelet

Parameters

transmitter

Transmitter channel for replaying entities.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Transmitter

NVIDIA Holoscan SDK v2.0.0 755

serializers

List of component serializers to serialize entities.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_CUSTOM

Custom Type:
std::vector<nvidia::gxf::Handle<nvidia::gxf::ComponentSerializer>>

directory

Directory path for storing files.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_STRING

batch_size

Number of entities to read and publish for one tick.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

NVIDIA Holoscan SDK v2.0.0 756

ignore_corrupted_entities

If an entity could not be de-serialized, it is ignored by default; otherwise a failure is
generated.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::StdComponentSerializer

Serializer for Timestamp and Tensor components.

Component ID: c0e6b36c-39ac-50ac-ce8d-702e18d8bff7

Base Type: nvidia::gxf::ComponentSerializer

Parameters

allocator

Memory allocator for tensor components.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Allocator

StandardExtension
Most commonly used interfaces and components in Gxf Core.

UUID: 8ec2d5d6-b5df-48bf-8dee-0252606fdd7e

Version: 2.1.0

Author: NVIDIA

NVIDIA Holoscan SDK v2.0.0 757

License: LICENSE

Interfaces

nvidia::gxf::Codelet

Interface for a component which can be executed to run custom code.

Component ID: 5c6166fa-6eed-41e7-bbf0-bd48cd6e1014

Base Type: nvidia::gxf::Component

Defined in: gxf/std/codelet.hpp

nvidia::gxf::Clock

Interface for clock components which provide time.

Component ID: 779e61c2-ae70-441d-a26c-8ca64b39f8e7

Base Type: nvidia::gxf::Component

Defined in: gxf/std/clock.hpp

nvidia::gxf::System

Component interface for systems which are run as part of the application run cycle.

Component ID: d1febca1-80df-454e-a3f2-715f2b3c6e69

Base Type: nvidia::gxf::Component

nvidia::gxf::Queue

Interface for storing entities in a queue.

Component ID: 792151bf-3138-4603-a912-5ca91828dea8

Base Type: nvidia::gxf::Component

Defined in: gxf/std/queue.hpp

NVIDIA Holoscan SDK v2.0.0 758

nvidia::gxf::Router

Interface for classes which are routing messages in and out of entities.

Component ID: 8b317aad-f55c-4c07-8520-8f66db92a19e

Defined in: gxf/std/router.hpp

nvidia::gxf::Transmitter

Interface for publishing entities.

Component ID: c30cc60f-0db2-409d-92b6-b2db92e02cce

Base Type: nvidia::gxf::Queue

Defined in: gxf/std/transmitter.hpp

nvidia::gxf::Receiver

Interface for receiving entities.

Component ID: a47d2f62-245f-40fc-90b7-5dc78ff2437e

Base Type: nvidia::gxf::Queue

Defined in: gxf/std/receiver.hpp

nvidia::gxf::Scheduler

A simple poll-based single-threaded scheduler which executes codelets.

Component ID: f0103b75-d2e1-4d70-9b13-3fe5b40209be

Base Type: nvidia::gxf::System

Defined in: nvidia/gxf/system.hpp

nvidia::gxf::SchedulingTerm

Interface for terms used by a scheduler to determine if codelets in an entity are ready to
step.

NVIDIA Holoscan SDK v2.0.0 759

Component ID: 184d8e4e-086c-475a-903a-69d723f95d19

Base Type: nvidia::gxf::Component

Defined in: gxf/std/scheduling_term.hpp

nvidia::gxf::Allocator

Provides allocation and deallocation of memory.

Component ID: 3cdd82d0-2326-4867-8de2-d565dbe28e03

Base Type: nvidia::gxf::Component

Defined in: nvidia/gxf/allocator.hpp

nvidia::gxf::Monitor

Monitors entities during execution.

Component ID: 9ccf9421-b35b-8c79-e1f0-97dc23bd38ea

Base Type: nvidia::gxf::Component

Defined in: nvidia/gxf/monitor.hpp

Components

nvidia::gxf::RealtimeClock

A real-time clock which runs based off a system steady clock.

Component ID: 7b170b7b-cf1a-4f3f-997c-bfea25342381

Base Type: nvidia::gxf::Clock

Parameters

initial_time_offset

The initial time offset used until time scale is changed manually.

NVIDIA Holoscan SDK v2.0.0 760

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_FLOAT64

initial_time_scale

The initial time scale used until time scale is changed manually.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_FLOAT64

use_time_since_epoch

If true, clock time is time since epoch + initial_time_offset at initialize() .Otherwise
clock time is initial_time_offset at initialize() .

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::ManualClock

A manual clock which is instrumented manually.

Component ID: 52fa1f97-eba8-472a-a8ca-4cff1a2c440f

Base Type: nvidia::gxf::Clock

Parameters

initial_timestamp

The initial timestamp on the clock (in nanoseconds).

NVIDIA Holoscan SDK v2.0.0 761

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT64

nvidia::gxf::SystemGroup

A group of systems.

Component ID: 3d23d470-0aed-41c6-ac92-685c1b5469a0

Base Type: nvidia::gxf::System

nvidia::gxf::MessageRouter

A router which sends transmitted messages to receivers.

Component ID: 84fd5d56-fda6-4937-0b3c-c283252553d8

Base Type: nvidia::gxf::Router

nvidia::gxf::RouterGroup

A group of routers.

Component ID: ca64ee14-2280-4099-9f10-d4b501e09117

Base Type: nvidia::gxf::Router

nvidia::gxf::DoubleBufferTransmitter

A transmitter which uses a double-buffered queue where messages are pushed to a
backstage after they are published.

Component ID: 0c3c0ec7-77f1-4389-aef1-6bae85bddc13

Base Type: nvidia::gxf::Transmitter

Parameters

capacity

Flags: GXF_PARAMETER_FLAGS_NONE

NVIDIA Holoscan SDK v2.0.0 762

Type: GXF_PARAMETER_TYPE_UINT64

Default: 1

policy

0: pop, 1: reject, 2: fault.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

Default: 2

nvidia::gxf::DoubleBufferReceiver

A receiver which uses a double-buffered queue where new messages are first pushed to
a backstage.

Component ID: ee45883d-bf84-4f99-8419-7c5e9deac6a5

Base Type: nvidia::gxf::Receiver

Parameters

capacity

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

Default: 1

policy

NVIDIA Holoscan SDK v2.0.0 763

0: pop, 1: reject, 2: fault

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

Default: 2

nvidia::gxf::Connection

A component which establishes a connection between two other components.

Component ID: cc71afae-5ede-47e9-b267-60a5c750a89a

Base Type: nvidia::gxf::Component

Parameters

source

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Transmitter

target

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

nvidia::gxf::PeriodicSchedulingTerm

A component which specifies that an entity shall be executed periodically.

NVIDIA Holoscan SDK v2.0.0 764

Component ID: d392c98a-9b08-49b4-a422-d5fe6cd72e3e

Base Type: nvidia::gxf::SchedulingTerm

Parameters

recess_period

The recess period indicates the minimum amount of time which has to pass before the
entity is permitted to execute again. The period is specified as a string containing of a
number and an (optional) unit. If no unit is given the value is assumed to be in
nanoseconds. Supported units are: Hz, s, ms. Example: 10ms, 10000000, 0.2s, 50Hz.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::CountSchedulingTerm

A component which specifies that an entity shall be executed exactly a given number of
times.

Component ID: f89da2e4-fddf-4aa2-9a80-1119ba3fde05

Base Type: nvidia::gxf::SchedulingTerm

Parameters

count

The total number of time this term will permit execution.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT64

nvidia::gxf::TargetTimeSchedulingTerm

A component where the next execution time of the entity needs to be specified after
every tick.

Component ID: e4aaf5c3-2b10-4c9a-c463-ebf6084149bf

NVIDIA Holoscan SDK v2.0.0 765

Base Type: nvidia::gxf::SchedulingTerm

Parameters

clock

The clock used to define target time.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Clock

nvidia::gxf::DownstreamReceptiveSchedulingTerm

A component which specifies that an entity shall be executed if receivers for a certain
transmitter can accept new messages.

Component ID: 9de75119-8d0f-4819-9a71-2aeaefd23f71

Base Type: nvidia::gxf::SchedulingTerm

Parameters

min_size

The term permits execution if the receiver connected to the transmitter has at least the
specified number of free slots in its back buffer.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

transmitter

The term permits execution if this transmitter can publish a message, i.e. if the receiver
which is connected to this transmitter can receive messages.

NVIDIA Holoscan SDK v2.0.0 766

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Transmitter

nvidia::gxf::MessageAvailableSchedulingTerm

A scheduling term which specifies that an entity can be executed when the total number
of messages over a set of input channels is at least a given number of messages.

Component ID: fe799e65-f78b-48eb-beb6-e73083a12d5b

Base Type: nvidia::gxf::SchedulingTerm

Parameters

front_stage_max_size

If set the scheduling term will only allow execution if the number of messages in the front
stage does not exceed this count. It can for example be used in combination with
codelets which do not clear the front stage in every tick.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_UINT64

min_size

The scheduling term permits execution if the given receiver has at least the given number
of messages available.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

NVIDIA Holoscan SDK v2.0.0 767

receiver

The scheduling term permits execution if this channel has at least a given number of
messages available.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

nvidia::gxf::MultiMessageAvailableSchedulingTerm

A component which specifies that an entity shall be executed when a queue has at least a
certain number of elements.

Component ID: f15dbeaa-afd6-47a6-9ffc-7afd7e1b4c52

Base Type: nvidia::gxf::SchedulingTerm

Parameters

min_size

The scheduling term permits execution if all given receivers together have at least the
given number of messages available.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

receivers

The scheduling term permits execution if the given channels have at least a given number
of messages available.

NVIDIA Holoscan SDK v2.0.0 768

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

nvidia::gxf::ExpiringMessageAvailableSchedulingTerm

A component which tries to wait for specified number of messages in queue for at most
specified time.

Component ID: eb22280c-76ff-11eb-b341-cf6b417c95c9

Base Type: nvidia::gxf::SchedulingTerm

Parameters

clock

Clock to get time from.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Clock

max_batch_size

The maximum number of messages to be batched together.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT64

NVIDIA Holoscan SDK v2.0.0 769

max_delay_ns

The maximum delay from first message to wait before submitting workload anyway.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT64

receiver

Receiver to watch on.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

nvidia::gxf::BooleanSchedulingTerm

A component which acts as a boolean AND term that can be used to control the
execution of the entity.

Component ID: e07a0dc4-3908-4df8-8134-7ce38e60fbef

Base Type: nvidia::gxf::SchedulingTerm

nvidia::gxf::AsynchronousSchedulingTerm

A component which is used to inform of that an entity is dependent upon an async event
for its execution.

Component ID: 56be1662-ff63-4179-9200-3fcd8dc38673

Base Type: nvidia::gxf::SchedulingTerm

nvidia::gxf::GreedyScheduler

NVIDIA Holoscan SDK v2.0.0 770

A simple poll-based single-threaded scheduler which executes codelets.

Component ID: 869d30ca-a443-4619-b988-7a52e657f39b

Base Type: nvidia::gxf::Scheduler

Parameters

clock

The clock used by the scheduler to define flow of time. Typical choices are a
RealtimeClock or a ManualClock .

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Clock

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If not specified the
scheduler will run until all work is done. If periodic terms are present this means the
application will run indefinitely.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_INT64

realtime

This parameter is deprecated. Assign a clock directly.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

NVIDIA Holoscan SDK v2.0.0 771

Type: GXF_PARAMETER_TYPE_BOOL

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state, but no periodic
entity exists to break the dead end. Should be disabled when scheduling conditions can
be changed by external actors, for example by clearing queues manually.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::MultiThreadScheduler

A multi thread scheduler that executes codelets for maximum throughput.

Component ID: de5e0646-7fa5-11eb-a5c4-330ebfa81bbf

Base Type: nvidia::gxf::Scheduler

Parameters

check_recession_perios_ms

The maximum duration for which the scheduler would wait (in ms) when an entity is not
ready to run yet.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT64

clock

NVIDIA Holoscan SDK v2.0.0 772

The clock used by the scheduler to define flow of time. Typical choices are a
RealtimeClock or a ManualClock .

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Clock

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If not specified the
scheduler will run until all work is done. If periodic terms are present this means the
application will run indefinitely.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_INT64

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state, but no periodic
entity exists to break the dead end. Should be disabled when scheduling conditions can
be changed by external actors, for example by clearing queues manually.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_BOOL

worker_thread_number

NVIDIA Holoscan SDK v2.0.0 773

Number of threads.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT64

Default: 1

nvidia::gxf::BlockMemoryPool

A memory pools which provides a maximum number of equally sized blocks of memory.

Component ID: 92b627a3-5dd3-4c3c-976c-4700e8a3b96a

Base Type: nvidia::gxf::Allocator

Parameters

block_size

The size of one block of memory in byte. Allocation requests can only be fulfilled if they fit
into one block. If less memory is requested still a full block is issued.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

do_not_use_cuda_malloc_host

If enabled operator new will be used to allocate host memory instead of
cudaMallocHost .

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_BOOL

Default: True

NVIDIA Holoscan SDK v2.0.0 774

num_blocks

The total number of blocks which are allocated by the pool. If more blocks are requested
allocation requests will fail.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

storage_type

The memory storage type used by this allocator. Can be kHost (0) or kDevice (1) or
kSystem (2).

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT32

Default: 0

nvidia::gxf::UnboundedAllocator

Allocator that uses dynamic memory allocation without an upper bound.

Component ID: c3951b16-a01c-539f-d87e-1dc18d911ea0

Base Type: nvidia::gxf::Allocator

Parameters

do_not_use_cuda_malloc_host

If enabled operator new will be used to allocate host memory instead of
cudaMallocHost .

NVIDIA Holoscan SDK v2.0.0 775

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_BOOL

Default: True

nvidia::gxf::Tensor

A component which holds a single tensor.

Component ID: 377501d6-9abf-447c-a617-0114d4f33ab8

Defined in: gxf/std/tensor.hpp

nvidia::gxf::Timestamp

Holds message publishing and acquisition related timing information.

Component ID: d1095b10-5c90-4bbc-bc89-601134cb4e03

Defined in: gxf/std/timestamp.hpp

nvidia::gxf::Metric

Collects, aggregates, and evaluates metric data.

Component ID: f7cef803-5beb-46f1-186a-05d3919842ac

Base Type: nvidia::gxf::Component

Parameters

aggregation_policy

Aggregation policy used to aggregate individual metric samples. Choices:{mean, min,
max}.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_STRING

NVIDIA Holoscan SDK v2.0.0 776

lower_threshold

Lower threshold of the metric’s expected range.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_FLOAT64

upper_threshold

Upper threshold of the metric’s expected range.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_FLOAT64

nvidia::gxf::JobStatistics

Collects runtime statistics.

Component ID: 2093b91a-7c82-11eb-a92b-3f1304ecc959

Base Type: nvidia::gxf::Component

Parameters

clock

The clock component instance to retrieve time from.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

NVIDIA Holoscan SDK v2.0.0 777

Handle Type: nvidia::gxf::Clock

codelet_statistics

If set to true, JobStatistics component will collect performance statistics related to
codelets.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_BOOL

json_file_path

If provided, all the collected performance statistics data will be dumped into a json file.

Flags: GXF_PARAMETER_FLAGS_OPTIONAL

Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::Broadcast

Messages arrived on the input channel are distributed to all transmitters.

Component ID: 3daadb31-0bca-47e5-9924-342b9984a014

Base Type: nvidia::gxf::Codelet

Parameters

mode

The broadcast mode. Can be Broadcast or RoundRobin.

Flags: GXF_PARAMETER_FLAGS_NONE

NVIDIA Holoscan SDK v2.0.0 778

Type: GXF_PARAMETER_TYPE_CUSTOM

source

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

nvidia::gxf::Gather

All messages arriving on any input channel are published on the single output channel.

Component ID: 85f64c84-8236-4035-9b9a-3843a6a2026f

Base Type: nvidia::gxf::Codelet

Parameters

sink

The output channel for gathered messages.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Transmitter

tick_source_limit

Maximum number of messages to take from each source in one tick. 0 means no limit.

NVIDIA Holoscan SDK v2.0.0 779

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_INT64

nvidia::gxf::TensorCopier

Copies tensor either from host to device or from device to host.

Component ID: c07680f4-75b3-189b-8886-4b5e448e7bb6

Base Type: nvidia::gxf::Codelet

Parameters

allocator

Memory allocator for tensor data

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Allocator

mode

Configuration to select what tensors to copy:

1. kCopyToDevice (0) - copies to device memory, ignores device allocation

2. kCopyToHost (1) - copies to pinned host memory, ignores host allocation

3. kCopyToSystem (2) - copies to system memory, ignores system allocation.

Flags: GXF_PARAMETER_FLAGS_NONE

NVIDIA Holoscan SDK v2.0.0 780

Type: GXF_PARAMETER_TYPE_INT32

receiver

Receiver for incoming entities.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

transmitter

Transmitter for outgoing entities.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Transmitter

nvidia::gxf::TimedThrottler

Publishes the received entity respecting the timestamp within the entity.

Component ID: ccf7729c-f62c-4250-5cf7-f4f3ec80454b

Base Type: nvidia::gxf::Codelet

Parameters

execution_clock

Clock on which the codelet is executed by the scheduler.

Flags: GXF_PARAMETER_FLAGS_NONE

NVIDIA Holoscan SDK v2.0.0 781

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Clock

receiver

Channel to receive messages that need to be synchronized.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

scheduling_term

Scheduling term for executing the codelet.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::TargetTimeSchedulingTerm

throttling_clock

Clock which the received entity timestamps are based on.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

NVIDIA Holoscan SDK v2.0.0 782

Handle Type: nvidia::gxf::Clock

transmitter

Transmitter channel publishing messages at appropriate timesteps.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Transmitter

nvidia::gxf::Vault

Safely stores received entities for further processing.

Component ID: 1108cb8d-85e4-4303-ba02-d27406ee9e65

Base Type: nvidia::gxf::Codelet

Parameters

drop_waiting

If too many messages are waiting the oldest ones are dropped.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_BOOL

max_waiting_count

The maximum number of waiting messages. If exceeded the codelet will stop pulling
messages out of the input queue.

NVIDIA Holoscan SDK v2.0.0 783

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_UINT64

source

Receiver from which messages are taken and transferred to the vault.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

nvidia::gxf::Subgraph

Helper component to import a subgraph.

Component ID: 576eedd7-7c3f-4d2f-8c38-8baa79a3d231

Base Type: nvidia::gxf::Component

Parameters

location

Yaml source of the subgraph.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::EndOfStream

A component which represents end-of-stream notification.

Component ID: 8c42f7bf-7041-4626-9792-9eb20ce33cce

NVIDIA Holoscan SDK v2.0.0 784

Defined in: gxf/std/eos.hpp

nvidia::gxf::Synchronization

Component to synchronize messages from multiple receivers based on the acq_time .

Component ID: f1cb80d6-e5ec-4dba-9f9e-b06b0def4443

Base Type: nvidia::gxf::Codelet

Parameters

inputs

All the inputs for synchronization. Number of inputs must match that of the outputs.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Receiver

outputs

All the outputs for synchronization. Number of outputs must match that of the inputs.

Flags: GXF_PARAMETER_FLAGS_NONE

Type: GXF_PARAMETER_TYPE_HANDLE

Handle Type: nvidia::gxf::Transmitter

signed char

Component ID: 83905c6a-ca34-4f40-b474-cf2cde8274de

unsigned char

NVIDIA Holoscan SDK v2.0.0 785

Component ID: d4299e15-0006-d0bf-8cbd-9b743575e155

short int

Component ID: 9e1dde79-3550-307d-e81a-b864890b3685

short unsigned int

Component ID: 958cbdef-b505-bcc7-8a43-dc4b23f8cead

int

Component ID: b557ec7f-49a5-08f7-a35e-086e9d1ea767

unsigned int

Component ID: d5506b68-5c86-fedb-a2a2-a7bae38ff3ef

long int

Component ID: c611627b-6393-365f-d234-1f26bfa8d28f

long unsigned int

Component ID: c4385f5b-6e25-01d9-d7b5-6e7cadc704e8

float

Component ID: a81bf295-421f-49ef-f24a-f59e9ea0d5d6

double

Component ID: d57cee59-686f-e26d-95be-659c126b02ea

bool

Component ID: c02f9e93-d01b-1d29-f523-78d2a9195128

NVIDIA Holoscan SDK v2.0.0 786

Data Flow Tracking

The Holoscan SDK provides the Data Flow Tracking APIs as a mechanism to profile your
application and analyze the fine-grained timing properties and data flow between
operators in the graph of a fragment.

Currently, data flow tracking is only supported between the root operators and leaf
operators of a graph and in simple cycles in a graph (support for tracking data flow
between any pair of operators in a graph is planned for the future).

A root operator is an operator without any predecessor nodes

A leaf operator (also known as a sink operator) is an operator without any successor
nodes.

When data flow tracking is enabled, every message is tracked from the root operators to
the leaf operators and in cycles. Then, the maximum (worst-case), average and minimum
end-to-end latencies of one or more paths can be retrieved using the Data Flow Tracking
APIs.

Warning

Data Flow Tracking is currently not supported between multiple
fragments in a distributed application.

Tip

The end-to-end latency between a root operator and a leaf
operator is the time taken between the start of a root operator
and the end of a leaf operator. Data Flow Tracking enables the
support to track the end-to-end latency of every message being
passed between a root operator and a leaf operator.

file:///tmp/jsreport/autocleanup/holoscan_create_distributed_app.html

NVIDIA Holoscan SDK v2.0.0 787

The API also provides the ability to retrieve the number of messages sent from the root
operators.

Enabling Data Flow Tracking

Before an application (C++ / python) is run with the run() method, data flow tracking
can be enabled by calling the track() method in C++ and using the Tracker class in
python .

Ingested Tab Module

Retrieving Data Flow Tracking Results

After an application has been run, data flow tracking results can be accessed by various
functions:

The reported end-to-end latency for a cyclic path is the time
taken between the start of the first operator of a cycle and the
time when a message is again received by the first operator of
the cycle.

Tip

The Data Flow Tracking feature is also illustrated in the
flow_tracker

Look at the
<a
href="api/cpp/classholoscan_1_1DataFlowTracker.html#_CPPv4N8holoscan1

and
<a
href="api/python/holoscan_python_api_core.html#holoscan.core.DataFlowTr

API documentation for exhaustive definitions

https://github.com/nvidia-holoscan/holoscan-sdk/blob/main/examples/flow_tracker

NVIDIA Holoscan SDK v2.0.0 788

1. print() (C++ / python)

Prints all data flow tracking results including end-to-end latencies and the
number of source messages to the standard output.

2. get_num_paths() (C++ / python)

Returns the number of paths between the root operators and the leaf
operators.

3. get_path_strings() (C++ / python)

Returns a vector of strings, where each string represents a path between the
root operators and the leaf operators. A path is a comma-separated list of
operator names.

4. get_metric() (C++ / python)

Returns the value of different metrics based on the arguments.

get_metric(std::string pathstring, holoscan::DataFlowMetric metric) returns
the value of a metric metric for a path pathstring . The metric can be one of
the following:

holoscan::DataFlowMetric::kMaxE2ELatency (python): the maximum
end-to-end latency in the path

holoscan::DataFlowMetric::kAvgE2ELatency (python): the average end-
to-end latency in the path

holoscan::DataFlowMetric::kMinE2ELatency (python): the minimum
end-to-end latency in the path

holoscan::DataFlowMetric::kMaxMessageID (python): the message
number or ID which resulted in the maximum end-to-end latency

holoscan::DataFlowMetric::kMinMessageID (python): the message
number or ID which resulted in the minimum end-to-end latency

NVIDIA Holoscan SDK v2.0.0 789

get_metric(holoscan::DataFlowMetric metric =
DataFlowMetric::kNumSrcMessages)

returns a map of source operator and its edge, and the number of messages
sent from the source operator to the edge.

In the above example, the data flow tracking results can be printed to the standard
output like the following:

Ingested Tab Module

Customizing Data Flow Tracking

Data flow tracking can be customized using a few, optional configuration parameters. The
track() method (C++ / Tracker class in python) can be configured to skip a few

messages at the beginning of an application’s execution as a warm-up period. It is also
possible to discard a few messages at the end of an application’s run as a wrap-up period.
Additionally, outlier end-to-end latencies can be ignored by setting a latency threshold
value which is the minimum latency below which the observed latencies are ignored.

Ingested Tab Module

The default values of these parameters of track() are as follows:

kDefaultNumStartMessagesToSkip : 10

kDefaultNumLastMessagesToDiscard : 10

kDefaultLatencyThreshold : 0 (do not filter out any latency values)

These parameters can also be configured using the helper functions:
set_skip_starting_messages , set_discard_last_messages and set_skip_latencies .

Tip

For effective benchmarking, it is common practice to include warm-
up and cool-down periods by skipping the initial and final messages.

NVIDIA Holoscan SDK v2.0.0 790

Logging

The Data Flow Tracking API provides the ability to log every message’s graph-traversal
information to a file. This enables developers to analyze the data flow at a granular level.
When logging is enabled, every message’s received and sent timestamps at every
operator between the root and the leaf operators are logged after a message has been
processed at the leaf operator.

The logging is enabled by calling the enable_logging method in C++ and by providing
the filename parameter to Tracker in python .

Ingested Tab Module

The logger file logs the paths of the messages after a leaf operator has finished its
compute method. Every path in the logfile includes an array of tuples of the form:

“(root operator name, message receive timestamp, message publish timestamp) -> … ->
(leaf operator name, message receive timestamp, message publish timestamp)”.

This log file can further be analyzed to understand latency distributions, bottlenecks, data
flow and other characteristics of an application.

NVIDIA Holoscan SDK v2.0.0 791

Video Pipeline Latency Tool
The NVIDIA Developer Kits excel as a high-performance computing platform by
combining high-bandwidth video I/O components and the compute capabilities of an
NVIDIA GPU to meet the needs of the most demanding video processing and inference
applications.

For many video processing applications located at the edge–especially those designed to
augment medical instruments and aid live medical procedures–minimizing the latency
added between image capture and display, often referred to as the end-to-end latency, is
of the utmost importance.

While it is generally easy to measure the individual processing time of an isolated
compute or inference algorithm by simply measuring the time that it takes for a single
frame (or a sequence of frames) to be processed, it is not always so easy to measure the
complete end-to-end latency when the video capture and display is incorporated as this
usually involves external capture hardware (e.g. cameras and other sensors) and
displays.

In order to establish a baseline measurement of the minimal end-to-end latency that can
be achieved with the NVIDIA Developer Kits and various video I/O hardware and software
components, the Holoscan SDK includes a sample latency measurement tool.

Requirements

Hardware

The latency measurement tool requires the use of a NVIDIA Developer Kit in dGPU mode,
and operates by having an output component generate a sequence of known video
frames that are then transferred back to an input component using a physical loopback
cable.

Testing the latency of any of the HDMI modes that output from the GPU requires a
DisplayPort to HDMI adapter or cable (see Example Configurations, below). Note that this
cable must support the mode that is being tested — for example, the UHD mode will only
be available if the cable is advertised to support “4K Ultra HD (3840 x 2160) at 60 Hz”.

NVIDIA Holoscan SDK v2.0.0 792

Testing the latency of an optional AJA Video Systems device requires a supported AJA SDI
or HDMI capture device (see AJA Video Systems for the list of supported devices), along
with the HDMI or SDI cable that is required for the configuration that is being tested (see
Example Configurations, below).

Software

The following additional software components are required and are installed either by
the Holoscan SDK installation or in the Installation steps below:

CUDA 11.1 or newer (https://developer.nvidia.com/cuda-toolkit)

CMake 3.10 or newer (https://cmake.org/)

GLFW 3.2 or newer (https://www.glfw.org/)

GStreamer 1.14 or newer (https://gstreamer.freedesktop.org/)

GTK 3.22 or newer (https://www.gtk.org/)

pkg-config 0.29 or newer (https://www.freedesktop.org/wiki/Software/pkg-config/)

The following is optional to enable DeepStream support (for RDMA support from the
GStreamer Producer):

DeepStream 5.1 or newer (https://developer.nvidia.com/deepstream-sdk)

The following is optional to enable AJA Video Systems support:

AJA NTV2 SDK 16.1 or newer (See AJA Video Systems for details on installing the AJA
NTV2 SDK and drivers).

Installation

Downloading the Source

The Video Pipeline Latency Tool can be found in the loopback-latency folder of the
Holoscan Performance Tools GitHub repository, which is cloned with the following:

$ git clone https://github.com/nvidia-holoscan/holoscan-perf-tools.git

https://docs.nvidia.com/aja_setup.html#aja-video-systems
https://developer.nvidia.com/cuda-toolkit
https://cmake.org/
https://www.glfw.org/
https://gstreamer.freedesktop.org/
https://www.gtk.org/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://developer.nvidia.com/deepstream-sdk
https://docs.nvidia.com/aja_setup.html#aja-video-systems
https://github.com/nvidia-holoscan/holoscan-perf-tools

NVIDIA Holoscan SDK v2.0.0 793

Installing Software Requirements

CUDA is installed automatically during the dGPU setup. The rest of the software
requirements are installed with the following:

Building

Start by creating a build folder within the loopback-latency directory:

CMake is then used to build the tool and output the loopback-latency binary to the
current directory:

Enabling DeepStream Support

DeepStream support enables RDMA when using the GStreamer Producer. To enable
DeepStream support, the DEEPSTREAM_SDK path must be appended to the cmake

$ sudo apt-get update && sudo apt-get install -y \ cmake \ libglfw3-dev \
libgstreamer1.0-dev \ libgstreamer-plugins-base1.0-dev \ libgtk-3-dev \ pkg-config

$ cd clara-holoscan-perf-tools/loopback-latency $ mkdir build $ cd build

$ cmake .. $ make -j

Note

If the error No CMAKE_CUDA_COMPILER could be found is
encountered, make sure that the nvcc executable can be found by
adding the CUDA runtime location to your PATH variable:

$ export PATH=$PATH:/usr/local/cuda/bin

NVIDIA Holoscan SDK v2.0.0 794

command with the location of the DeepStream SDK. For example, when building against
DeepStream 5.1, replace the cmake command above with the following:

Enabling AJA Support

To enable AJA support, the NTV2_SDK path must be appended to the cmake command
with the location of the NTV2 SDK in which both the headers and compiled libraries (i.e.
libajantv2) exist. For example, if the NTV2 SDK is in /home/nvidia/ntv2 , replace the
cmake command above with the following:

Example Configurations

$ cmake -DDEEPSTREAM_SDK=/opt/nvidia/deepstream/deepstream-5.1 ..

$ cmake -DNTV2_SDK=/home/nvidia/ntv2 ..

Note

When testing a configuration that outputs from the GPU, the tool
currently only supports a display-less environment in which the
loopback cable is the only cable attached to the GPU. Because of this,
any tests that output from the GPU must be performed using a
remote connection such as SSH from another machine. When this is
the case, make sure that the DISPLAY environment variable is set to
the ID of the X11 display you are using (e.g. in ~/.bashrc):

It is also required that the system is logged into the desktop and that
the system does not sleep or lock when the latency tool is being used.
This can be done by temporarily attaching a display to the system to
do the following:

1. Open the Ubuntu System Settings

export DISPLAY=:0

NVIDIA Holoscan SDK v2.0.0 795

GPU To Onboard HDMI Capture Card

In this configuration, a DisplayPort to HDMI cable is connected from the GPU to the
onboard HDMI capture card. This configuration supports the OpenGL and GStreamer
producers, and the V4L2 and GStreamer consumers.

2. Open User Accounts, click Unlock at the top right, and enable
Automatic Login:

_images/ubuntu_automatic_login.png

3. Return to All Settings (top left), open Brightness & Lock, and
disable sleep and lock as pictured:

_images/ubuntu_lock_settings.png

Make sure that the display is detached again after making these
changes.

See the Producers section for more details about GPU-based
producers (i.e. OpenGL and GStreamer).

NVIDIA Holoscan SDK v2.0.0 796

Fig. 24 DP-to-HDMI Cable Between GPU and Onboard HDMI Capture Card

For example, an OpenGL producer to V4L2 consumer can be measured using this
configuration and the following command:

NVIDIA Holoscan SDK v2.0.0 797

$./loopback-latency -p gl -c v4l2

GPU to AJA HDMI Capture Card

In this configuration, a DisplayPort to HDMI cable is connected from the GPU to an HDMI
input channel on an AJA capture card. This configuration supports the OpenGL and
GStreamer producers, and the AJA consumer using an AJA HDMI capture card.

NVIDIA Holoscan SDK v2.0.0 798

Fig. 25 DP-to-HDMI Cable Between GPU and AJA KONA HDMI Capture Card (Channel 1)

For example, an OpenGL producer to AJA consumer can be measured using this
configuration and the following command:

$./loopback-latency -p gl -c aja -c.device 0 -c.channel 1

AJA SDI to AJA SDI

In this configuration, an SDI cable is attached between either two channels on the same
device or between two separate devices (pictured is a loopback between two channels of
a single device). This configuration must use the AJA producer and AJA consumer.

NVIDIA Holoscan SDK v2.0.0 799

Fig. 26 SDI Cable Between Channel 1 and 2 of a Single AJA Corvid 44 Capture Card

For example, the following can be used to measure the pictured configuration using a
single device with a loopback between channels 1 and 2. Note that the tool defaults to
use channel 1 for the producer and channel 2 for the consumer, so the channel
parameters can be omitted.

$./loopback-latency -p aja -c aja

If instead there are two AJA devices being connected, the following can be used to
measure a configuration in which they are both connected to channel 1:

$./loopback-latency -p aja -p.device 0 -p.channel 1 -c aja -c.device 1 -c.channel 1

Operation Overview

The latency measurement tool operates by having a producer component generate a
sequence of known video frames that are output and then transferred back to an input
consumer component using a physical loopback cable. Timestamps are compared
throughout the life of the frame to measure the overall latency that the frame sees
during this process, and these results are summarized when all of the frames have been
received and the measurement completes. See Producers, Consumers, and Example
Configurations for more details.

Frame Measurements

Each frame that is generated by the tool goes through the following steps in order, each
of which has its time measured and then reported when all frames complete.

NVIDIA Holoscan SDK v2.0.0 800

Fig. 27 Latency Tool Frame Lifespan (RDMA Disabled)

1. CUDA Processing

In order to simulate a real-world GPU workload, the tool first runs a CUDA kernel for
a user-specified amount of loops (defaults to zero). This step is described below in
Simulating GPU Workload.

2. Render on GPU

After optionally simulating a GPU workload, every producer then generates its
frames using the GPU, either by a common CUDA kernel or by another method that
is available to the producer’s API (such as the OpenGL producer).

This step is expected to be very fast (<100us), but higher times may be seen if
overall system load is high.

3. Copy To Host

Once the frame has been generated on the GPU, it may be necessary to copy the
frame to host memory in order for the frame to be output by the producer
component (for example, an AJA producer with RDMA disabled).

If a host copy is not required (i.e. RDMA is enabled for the producer), this time
should be zero.

4. Write to HW

NVIDIA Holoscan SDK v2.0.0 801

Some producer components require frames to be copied to peripheral memory
before they can be output (for example, an AJA producer requires frames to be
copied to the external frame stores on the AJA device). This copy may originate from
host memory if RDMA is disabled for the producer, or from GPU memory if RDMA is
enabled.

If this copy is not required, e.g. the producer outputs directly from the GPU, this
time should be zero.

5. VSync Wait

Once the frame is ready to be output, the producer hardware must wait for the next
VSync interval before the frame can be output.

The sum of this VSync wait and all of the preceding steps is expected to be near a
multiple of the frame interval. For example, if the frame rate is 60Hz then the sum
of the times for steps 1 through 5 should be near a multiple of 16666us.

6. Wire Time

The wire time is the amount of time that it takes for the frame to transfer across the
physical loopback cable. This should be near the time for a single frame interval.

7. Read From HW

Once the frame has been transferred across the wire and is available to the
consumer, some consumer components require frames to be copied from
peripheral memory into host (RDMA disabled) or GPU (RDMA enable) memory. For
example, an AJA consumer requires frames to be copied from the external frame
store of the AJA device.

If this copy is not required, e.g. the consumer component writes received frames
directly to host/GPU memory, this time should be zero.

8. Copy to GPU

If the consumer received the frame into host memory, the final step required for
processing the frame with the GPU is to copy the frame into GPU memory.

If RDMA is enabled for the consumer and the frame was previously written directly
to GPU memory, this time should be zero.

NVIDIA Holoscan SDK v2.0.0 802

Note that if RDMA is enabled on the producer and consumer sides then the GPU/host
copy steps above, 3 and 8 respectively, are effectively removed since RDMA will copy
directly between the video HW and the GPU. The following shows the same diagram as
above but with RDMA enabled for both the producer and consumer.

Fig. 28 Latency Tool Frame Lifespan (RDMA Enabled)

Interpreting The Results

The following shows example output of the above measurements from the tool when
testing a 4K stream at 60Hz from an AJA producer to an AJA consumer, both with RDMA
disabled, and no GPU/CUDA workload simulation. Note that all time values are given in
microseconds.

$./loopback-latency -p aja -p.rdma 0 -c aja -c.rdma 0 -f 4k

NVIDIA Holoscan SDK v2.0.0 803

While this tool measures the producer times followed by the consumer times, the
expectation for real-world video processing applications is that this order would be
reversed. That is to say, the expectation for a real-world application is that it would
capture, process, and output frames in the following order (with the component
responsible for measuring that time within this tool given in parentheses):

1. Read from HW (consumer)

2. Copy to GPU (consumer)

3. Process Frame (producer)

4. Render Results to GPU (producer)

5. Copy to Host (producer)

6. Write to HW (producer)

NVIDIA Holoscan SDK v2.0.0 804

Fig. 29 Real Application Frame Lifespan

To illustrate this, the tool sums and displays the total producer and consumer times, then
provides the Estimated Application Times as the total sum of all of these steps (i.e.
steps 1 through 6, above).

(continued from above)

Once a real-world application captures, processes, and outputs a frame, it would still be
required that this final output waits for the next VSync interval before it is actually sent
across the physical wire to the display hardware. Using this assumption, the tool then
estimates one final value for the Final Estimated Latencies by doing the following:

1. Take the Estimated Application Time (from above)

2. Round it up to the next VSync interval

3. Add the physical wire time (i.e. a frame interval)

NVIDIA Holoscan SDK v2.0.0 805

Fig. 30 Final Estimated Latency with VSync and Physical Wire Time

Continuing this example using a frame interval of 16666us (60Hz), this means that the
average Final Estimated Latency is determined by:

1. Average application time = 26772

2. Round up to next VSync interval = 33332

3. Add physical wire time (+16666) = 49998

These times are also reported as a multiple of frame intervals.

(continued from above)

Using this example, we should then expect that the total end-to-end latency that is seen
by running this pipeline using these components and configuration is 3 frame intervals
(49998us).

Reducing Latency With RMDA

The previous example uses an AJA producer and consumer for a 4K @ 60Hz stream,
however RDMA was disabled for both components. Because of this, the additional copies
between the GPU and host memory added more than 10000us of latency to the pipeline,
causing the application to exceed one frame interval of processing time per frame and
therefore a total frame latency of 3 frames. If RDMA is enabled, these GPU and host
copies can be avoided so the processing latency is reduced by more than 10000us. More
importantly, however, this also allows the total processing time to fit within a single
frame interval so that the total end-to-end latency can be reduced to just 2 frames.

NVIDIA Holoscan SDK v2.0.0 806

Fig. 31 Reducing Latency With RDMA

The following shows the above example repeated with RDMA enabled.

$./loopback-latency -p aja -p.rdma 1 -c aja -c.rdma 1 -f 4k

NVIDIA Holoscan SDK v2.0.0 807

Simulating GPU Workload

NVIDIA Holoscan SDK v2.0.0 808

By default the tool measures what is essentially a pass-through video pipeline; that is, no
processing of the video frames is performed by the system. While this is useful for
measuring the minimum latency that can be achieved by the video input and output
components, it’s not very indicative of a real-world use case in which the GPU is used for
compute-intensive processing operations on the video frames between the input and
output — for example, an object detection algorithm that applies an overlay to the
output frames.

While it may be relatively simple to measure the runtime latency of the processing
algorithms that are to be applied to the video frames — by simply measuring the runtime
of running the algorithm on a single or stream of frames — this may not be indicative of
the effects that such processing might have on the overall system load, which may
further increase the latency of the video input and output components.

In order to estimate the total latency when an additional GPU workload is added to the
system, the latency tool has an -s {count} option that can be used to run an arbitrary
CUDA loop the specified number of times before the producer actually generates a
frame. The expected usage for this option is as follows:

1. The per-frame runtime of the actual GPU processing algorithm is measured outside
of the latency measurement tool.

2. The latency tool is repeatedly run with just the -s {count} option, adjusting the
{count} parameter until the time that it takes to run the simulated loop

approximately matches the actual processing time that was measured in the
previous step.

$./loopback-latency -s 2000

3. The latency tool is run with the full producer (-p) and consumer (-c) options used
for the video I/O, along with the -s {count} option using the loop count that was
determined in the previous step.

Note

NVIDIA Holoscan SDK v2.0.0 809

$./loopback-latency -p aja -c aja -s 2000

Graphing Results

The latency tool includes a -o {file} option that can be used to output a CSV file with all
of the measured times for every frame. This file can then be used with the
graph_results.py script that is included with the tool in order to generate a graph of the

measurements.

For example, if the latencies are measured using:

$./loopback-latency -p aja -c aja -o latencies.csv

The graph can then be generated using the following, which will open a window on the
desktop to display the graph:

The following example shows that approximately half of the
frames received by the consumer were duplicate/repeated
frames. This is due to the fact that the additional processing
latency of the producer causes it to exceed a single frame
interval, and so the producer is only able to output a new frame
every second frame interval.

Tip

To get the most accurate estimation of the latency that would be
seen by a real world application, the best thing to do would be to run
the actual frame processing algorithm used by the application during
the latency measurement. This could be done by modifying the
SimulateProcessing function in the latency tool source code.

NVIDIA Holoscan SDK v2.0.0 810

$./graph_results.py --file latencies.csv

The graph can also be output to a PNG image file instead of opening a window on the
desktop by providing the --png {file} option to the script. The following shows an
example graph for an AJA to AJA measurement of a 4K @ 60Hz stream with RDMA
disabled (as shown as an example in Interpreting The Results, above).

Note that this is showing the times for 600 frames, from left to right, with the life of each
frame beginning at the bottom and ending at the top. The dotted black lines represent
frame VSync intervals (every 16666us).

The above example graphs the times directly as measured by the tool. To instead
generate a graph for the Final Estimated Latencies as described above in Interpreting
The Results, the --estimate flag can be provided to the script. As is done by the latency
tool when it reports the estimated latencies, this reorders the producer and consumer
steps then adds a VSync interval followed by the physical wire latency.

The following graphs the Final Estimated Latencies using the same data file as the
graph above. Note that this shows a total of 3 frames of expected latency.

For the sake of comparison, the following graph shows the same test but with RDMA
enabled. Note that the Copy To GPU and Copy To SYS times are now zero due to the use
of RDMA, and this now shows just 2 frames of expected latency.

As a final example, the following graph duplicates the above test with RDMA enabled, but
adds roughly 34ms of additional GPU processing time (-s 1000) to the pipeline to
produce a final estimated latency of 4 frames.

Producers

There are currently 3 producer types supported by the Holoscan latency tool. See the
following sections for a description of each supported producer.

NVIDIA Holoscan SDK v2.0.0 811

OpenGL GPU Direct Rendering (HDMI)

This producer (gl) uses OpenGL to render frames directly on the GPU for output via the
HDMI connectors on the GPU. This is currently expected to be the lowest latency path for
GPU video output.

OpenGL Producer Notes:

The video generated by this producer is rendered full-screen to the primary display.
As of this version, this component has only been tested in a display-less
environment in which the loop-back HDMI cable is the only cable attached to the
GPU (and thus is the primary display). It may also be required to use the xrandr
tool to configure the HDMI output — the tool will provide the xrandr commands
needed if this is the case.

Since OpenGL renders directly to the GPU, the p.rdma flag is not supported and
RDMA is always considered to be enabled for this producer.

GStreamer GPU Rendering (HDMI)

This producer (gst) uses the nveglglessink GStreamer component that is included with
Holopack in order to render frames that originate from a GStreamer pipeline to the HDMI
connectors on the GPU.

GStreamer Producer Notes:

The tool must be built with DeepStream support in order for this producer to
support RDMA (see Enabling DeepStream Support for details).

The video generated by this producer is rendered full-screen to the primary display.
As of this version, this component has only been tested in a display-less
environment in which the loop-back HDMI cable is the only cable attached to the
GPU (and thus is the primary display). It may also be required to use the xrandr
tool to configure the HDMI output — the tool will provide the xrandr commands
needed if this is the case.

Since the output of the generated frames is handled internally by the nveglglessink
plugin, the timing of when the frames are output from the GPU are not known.
Because of this, the Wire Time that is reported by this producer includes all of the

NVIDIA Holoscan SDK v2.0.0 812

time that the frame spends between being passed to the nveglglessink and when it
is finally received by the consumer.

AJA Video Systems (SDI)

This producer (aja) outputs video frames from an AJA Video Systems device that
supports video playback.

AJA Producer Notes:

The latency tool must be built with AJA Video Systems support in order for this
producer to be available (see Building for details).

The following parameters can be used to configure the AJA device and channel that
are used to output the frames:

-p.device {index}

Integer specifying the device index (i.e. 0 or 1). Defaults to 0.

-p.channel {channel}

Integer specifying the channel number, starting at 1 (i.e. 1 specifies
NTV2_CHANNEL_1). Defaults to 1.

The p.rdma flag can be used to enable (1) or disable (0) the use of RDMA with the
producer. If RDMA is to be used, the AJA drivers loaded on the system must also
support RDMA.

The only AJA device that have currently been verified to work with this producer is
the Corvid 44 12G BNC (SDI).

Consumers

There are currently 3 consumer types supported by the Holoscan latency tool. See the
following sections for a description of each supported consumer.

https://www.aja.com/products/corvid-44-12g-bnc

NVIDIA Holoscan SDK v2.0.0 813

V4L2 (Onboard HDMI Capture Card)

This consumer (v4l2) uses the V4L2 API directly in order to capture frames using the
HDMI capture card that is onboard some of the NVIDIA Developer Kits.

V4L2 Consumer Notes:

The onboard HDMI capture card is locked to a specific frame resolution and and
frame rate (1080p @ 60Hz), and so 1080 is the only supported format when using
this consumer.

The -c.device {device} parameter can be used to specify the path to the device that
is being used to capture the frames (defaults to /dev/video0).

The V4L2 API does not support RDMA, and so the c.rdma option is ignored.

GStreamer (Onboard HDMI Capture Card)

This consumer (gst) also captures frames from the onboard HDMI capture card, but
uses the v4l2src GStreamer plugin that wraps the V4L2 API to support capturing frames
for using within a GStreamer pipeline.

GStreamer Consumer Notes:

The onboard HDMI capture card is locked to a specific frame resolution and and
frame rate (1080p @ 60Hz), and so 1080 is the only supported format when using
this consumer.

The -c.device {device} parameter can be used to specify the path to the device that
is being used to capture the frames (defaults to /dev/video0).

The v4l2src GStreamer plugin does not support RDMA, and so the c.rdma option
is ignored.

AJA Video Systems (SDI and HDMI)

This consumer (aja) captures video frames from an AJA Video Systems device that
supports video capture. This can be either an SDI or an HDMI video capture card.

NVIDIA Holoscan SDK v2.0.0 814

AJA Consumer Notes:

The latency tool must be built with AJA Video Systems support in order for this
producer to be available (see Building for details).

The following parameters can be used to configure the AJA device and channel that
are used to capture the frames:

-c.device {index}

Integer specifying the device index (i.e. 0 or 1). Defaults to 0.

-c.channel {channel}

Integer specifying the channel number, starting at 1 (i.e. 1 specifies
NTV2_CHANNEL_1). Defaults to 2.

The c.rdma flag can be used to enable (1) or disable (0) the use of RDMA with the
consumer. If RDMA is to be used, the AJA drivers loaded on the system must also
support RDMA.

The only AJA devices that have currently been verified to work with this consumer
are the KONA HDMI (for HDMI) and Corvid 44 12G BNC (for SDI).

Troubleshooting

If any of the loopback-latency commands described above fail with errors, the following
steps may help resolve the issue.

1. Problem: The following error is output:

ERROR: Failed to get a handle to the display (is the DISPLAY environment
variable set?)

https://www.aja.com/products/kona-hdmi
https://www.aja.com/products/corvid-44-12g-bnc

NVIDIA Holoscan SDK v2.0.0 815

Solution: Ensure that the DISPLAY environment variable is set with the ID of the
X11 display you are using; e.g. for display ID 0 :

If the error persists, try changing the display ID; e.g. replacing 0 with 1 :

It might also be convenient to set this variable in your ~/.bashrc file so that it is set
automatically whenever you login.

2. Problem: An error like the following is output:

But using the xrandr command provided produces an error:

Solution: Try the following:

1. Ensure that no other displays are connected to the GPU.

2. Check the output of an xrandr command to see that the requested format is
supported. The following shows an example of what the onboard HDMI
capture card should support. Note that each row of the supported modes
shows the resolution on the left followed by all of the supported frame rates
for that resolution to the right.

$ export DISPLAY=:0

$ export DISPLAY=:1

ERROR: The requested format (1920x1080 @ 60Hz) does not match the
current display mode (1024x768 @ 60Hz) Please set the display mode with the
xrandr tool using the following command: $ xrandr --output DP-5 --mode
1920x1080 --panning 1920x1080 --rate 60

$ xrandr --output DP-5 --mode 1920x1080 --panning 1920x1080 --rate 60
xrandr: cannot find mode 1920x1080

NVIDIA Holoscan SDK v2.0.0 816

3. If a UHD or 4K mode is being requested, ensure that the DisplayPort to HDMI
cable that is being used supports that mode.

4. If the xrandr output still does not show the mode that is being requested but
it should be supported by the cable and capture device, try rebooting the
device.

3. Problem: One of the following errors is output:

These errors mean that either the capture device is not receiving frames, or the
frames are empty (the producer will never output black frames, (0,0,0)).

Solution: Check the output of xrandr to ensure that the loopback cable is
connected and the capture device is recognized as a display. If the following is
output, showing no displays attached, this could mean that the loopback cable is

$ xrandr Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767
x 32767 DP-0 disconnected (normal left inverted right x axis y axis) DP-1
disconnected (normal left inverted right x axis y axis) DP-2 disconnected
(normal left inverted right x axis y axis) DP-3 disconnected (normal left
inverted right x axis y axis) DP-4 disconnected (normal left inverted right
x axis y axis) DP-5 connected primary 1920x1080+0+0 (normal left
inverted right x axis y axis) 1872mm x 1053mm 1920x1080 60.00*+ 59.94
50.00 29.97 25.00 23.98 1680x1050 59.95 1600x900 60.00 1440x900
59.89 1366x768 59.79 1280x1024 75.02 60.02 1280x800 59.81 1280x720
60.00 59.94 50.00 1152x864 75.00 1024x768 75.03 70.07 60.00 800x600
75.00 72.19 60.32 720x576 50.00 720x480 59.94 640x480 75.00 72.81
59.94 DP-6 disconnected (normal left inverted right x axis y axis) DP-7
disconnected (normal left inverted right x axis y axis) USB-C-0
disconnected (normal left inverted right x axis y axis)

ERROR: Select timeout on /dev/video0

ERROR: Failed to get the monitor mode (is the display cable attached?)

ERROR: Could not find frame color (0,0,0) in producer records.

NVIDIA Holoscan SDK v2.0.0 817

either not connected properly or is faulty. Try connecting the cable again and/or
replacing the cable.

4. Problem: An error like the following is output:

Colors near this particular value (27,28,26) are displayed on the Ubuntu lock
screen, which prevents the latency tool from rendering frames properly. Note that
the color value may differ slightly from (27,28,26) .

Solution:

Follow the steps provided in the note at the top of the Example Configurations
section to enable automatic login and disable the Ubuntu lock screen.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/04/2024

$ xrandr Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767 x
32767 DP-0 disconnected (normal left inverted right x axis y axis) DP-1
disconnected (normal left inverted right x axis y axis) DP-2 disconnected
(normal left inverted right x axis y axis) DP-3 disconnected (normal left
inverted right x axis y axis) DP-4 disconnected (normal left inverted right x axis
y axis) DP-5 disconnected primary 1920x1080+0+0 (normal left inverted right x
axis y axis) 0mm x 0mm DP-6 disconnected (normal left inverted right x axis y
axis) DP-7 disconnected (normal left inverted right x axis y axis)

ERROR: Could not find frame color (27,28,26) in producer records.

	Overview
	Relevant Technologies
	Getting Started with Holoscan
	SDK Installation
	Additional Setup
	Enabling RDMA
	Enabling G-SYNC
	Disabling Variable Backlight
	Enabling Exclusive Display Mode
	Use both Integrated and Discrete GPUs on NVIDIA Developer Kits
	Deployment Software Stack

	Third Party Hardware Setup
	AJA Video Systems
	Emergent Vision Technologies (EVT)

	Holoscan Core Concepts
	Holoscan by Example
	Hello World
	Ping Simple
	Ping Custom Op
	Ping Multi Port
	Video Replayer
	Video Replayer (Distributed)
	Bring Your Own Model (BYOM)

	Creating an Application
	Creating a Distributed Application
	Packaging Holoscan Applications
	Creating Operators
	Logging
	Debugging
	Built-in Operators and Extensions
	Visualization
	Inference
	Schedulers
	Conditions
	Resources
	Holoscan C++ API
	Holoscan Python API
	holoscan.conditions
	holoscan.core
	holoscan.executors
	holoscan.graphs
	holoscan.gxf
	holoscan.logger
	holoscan.operators
	holoscan.resources
	holoscan.schedulers

	Holoscan Application Package Specification (HAP)
	Holoscan CLI
	Application Runner Configuration
	GXF Core concepts
	Holoscan and GXF
	GXF by Example
	Using Holoscan Operators in GXF Applications
	GXF User Guide
	Graph Specification
	Graph Execution Engine
	Graph Specification TimeStamping
	The GXF Scheduler
	Behavior Trees
	GXF Core C APIs
	CudaExtension
	MultimediaExtension
	NetworkExtension
	SerializationExtension
	StandardExtension

	Data Flow Tracking
	Video Pipeline Latency Tool

