
Video Pipeline Latency Tool

Table of contents

Requirements

Installation

Example Configurations

Operation Overview

Graphing Results

Producers

Consumers

Troubleshooting

Video Pipeline Latency Tool 1

Table of contents

Requirements

Installation

Example Configurations

Operation Overview

Graphing Results

Producers

Consumers

Troubleshooting

Video Pipeline Latency Tool 2

List of Figures
Figure 0. Latency Setup Gpu To Onboard Hdmi

Figure 1. Latency Setup Gpu To Aja Hdmi

Figure 2. Latency Setup Aja Sdi To Aja Sdi

Figure 3. Latency Frame Lifespan Nordma

Figure 4. Latency Frame Lifespan Rdma

Figure 5. Latency Sample Nordma Raw

Figure 6. Latency Frame Real Application

Figure 7. Latency Sample Nordma Application

Figure 8. Latency Frame Estimated Application Nordma

Figure 9. Latency Sample Nordma Estimate

Figure 10. Latency Frame Estimated Application Rdma

Figure 11. Latency Sample Rdma

Figure 12. Latency Simulated Calibration

Figure 13. Latency Simulated Runtime

Figure 14. Latency Graph Aja 4k Nordma

Figure 15. Latency Graph Aja 4k Nordma Estimate

Figure 16. Latency Graph Aja 4k Rdma Estimate

Figure 17. Latency Graph Aja 4k Rdma S1000 Estimate

Video Pipeline Latency Tool 3

The NVIDIA Developer Kits excel as a high-performance computing platform by
combining high-bandwidth video I/O components and the compute capabilities of an
NVIDIA GPU to meet the needs of the most demanding video processing and inference
applications.

For many video processing applications located at the edge–especially those designed to
augment medical instruments and aid live medical procedures–minimizing the latency
added between image capture and display, often referred to as the end-to-end latency, is
of the utmost importance.

While it is generally easy to measure the individual processing time of an isolated
compute or inference algorithm by simply measuring the time that it takes for a single
frame (or a sequence of frames) to be processed, it is not always so easy to measure the
complete end-to-end latency when the video capture and display is incorporated as this
usually involves external capture hardware (e.g. cameras and other sensors) and
displays.

In order to establish a baseline measurement of the minimal end-to-end latency that can
be achieved with the NVIDIA Developer Kits and various video I/O hardware and software
components, the Holoscan SDK includes a sample latency measurement tool.

Requirements

Hardware

The latency measurement tool requires the use of a NVIDIA Developer Kit in dGPU mode,
and operates by having an output component generate a sequence of known video
frames that are then transferred back to an input component using a physical loopback
cable.

Testing the latency of any of the HDMI modes that output from the GPU requires a
DisplayPort to HDMI adapter or cable (see Example Configurations, below). Note that this
cable must support the mode that is being tested — for example, the UHD mode will only
be available if the cable is advertised to support “4K Ultra HD (3840 x 2160) at 60 Hz”.

Testing the latency of an optional AJA Video Systems device requires a supported AJA SDI
or HDMI capture device (see AJA Video Systems for the list of supported devices), along
with the HDMI or SDI cable that is required for the configuration that is being tested (see
Example Configurations, below).

https://docs.nvidia.com/aja_setup.html#aja-video-systems

Video Pipeline Latency Tool 4

Software

The following additional software components are required and are installed either by
the Holoscan SDK installation or in the Installation steps below:

CUDA 11.1 or newer (https://developer.nvidia.com/cuda-toolkit)

CMake 3.10 or newer (https://cmake.org/)

GLFW 3.2 or newer (https://www.glfw.org/)

GStreamer 1.14 or newer (https://gstreamer.freedesktop.org/)

GTK 3.22 or newer (https://www.gtk.org/)

pkg-config 0.29 or newer (https://www.freedesktop.org/wiki/Software/pkg-config/)

The following is optional to enable DeepStream support (for RDMA support from the
GStreamer Producer):

DeepStream 5.1 or newer (https://developer.nvidia.com/deepstream-sdk)

The following is optional to enable AJA Video Systems support:

AJA NTV2 SDK 16.1 or newer (See AJA Video Systems for details on installing the AJA
NTV2 SDK and drivers).

Installation

Downloading the Source

The Video Pipeline Latency Tool can be found in the loopback-latency folder of the
Holoscan Performance Tools GitHub repository, which is cloned with the following:

Installing Software Requirements

CUDA is installed automatically during the dGPU setup. The rest of the software
requirements are installed with the following:

$ git clone https://github.com/nvidia-holoscan/holoscan-perf-tools.git

https://developer.nvidia.com/cuda-toolkit
https://cmake.org/
https://www.glfw.org/
https://gstreamer.freedesktop.org/
https://www.gtk.org/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://developer.nvidia.com/deepstream-sdk
https://docs.nvidia.com/aja_setup.html#aja-video-systems
https://github.com/nvidia-holoscan/holoscan-perf-tools

Video Pipeline Latency Tool 5

Building

Start by creating a build folder within the loopback-latency directory:

CMake is then used to build the tool and output the loopback-latency binary to the
current directory:

Enabling DeepStream Support

DeepStream support enables RDMA when using the GStreamer Producer. To enable
DeepStream support, the DEEPSTREAM_SDK path must be appended to the cmake
command with the location of the DeepStream SDK. For example, when building against
DeepStream 5.1, replace the cmake command above with the following:

$ sudo apt-get update && sudo apt-get install -y \ cmake \ libglfw3-dev \
libgstreamer1.0-dev \ libgstreamer-plugins-base1.0-dev \ libgtk-3-dev \ pkg-config

$ cd clara-holoscan-perf-tools/loopback-latency $ mkdir build $ cd build

$ cmake .. $ make -j

Note

If the error No CMAKE_CUDA_COMPILER could be found is
encountered, make sure that the nvcc executable can be found by
adding the CUDA runtime location to your PATH variable:

$ export PATH=$PATH:/usr/local/cuda/bin

$ cmake -DDEEPSTREAM_SDK=/opt/nvidia/deepstream/deepstream-5.1 ..

Video Pipeline Latency Tool 6

Enabling AJA Support

To enable AJA support, the NTV2_SDK path must be appended to the cmake command
with the location of the NTV2 SDK in which both the headers and compiled libraries (i.e.
libajantv2) exist. For example, if the NTV2 SDK is in /home/nvidia/ntv2 , replace the
cmake command above with the following:

Example Configurations

$ cmake -DNTV2_SDK=/home/nvidia/ntv2 ..

Note

When testing a configuration that outputs from the GPU, the tool
currently only supports a display-less environment in which the
loopback cable is the only cable attached to the GPU. Because of this,
any tests that output from the GPU must be performed using a
remote connection such as SSH from another machine. When this is
the case, make sure that the DISPLAY environment variable is set to
the ID of the X11 display you are using (e.g. in ~/.bashrc):

It is also required that the system is logged into the desktop and that
the system does not sleep or lock when the latency tool is being used.
This can be done by temporarily attaching a display to the system to
do the following:

1. Open the Ubuntu System Settings

2. Open User Accounts, click Unlock at the top right, and enable
Automatic Login:

_images/ubuntu_automatic_login.png

export DISPLAY=:0

Video Pipeline Latency Tool 7

GPU To Onboard HDMI Capture Card

In this configuration, a DisplayPort to HDMI cable is connected from the GPU to the
onboard HDMI capture card. This configuration supports the OpenGL and GStreamer
producers, and the V4L2 and GStreamer consumers.

3. Return to All Settings (top left), open Brightness & Lock, and
disable sleep and lock as pictured:

_images/ubuntu_lock_settings.png

Make sure that the display is detached again after making these
changes.

See the Producers section for more details about GPU-based
producers (i.e. OpenGL and GStreamer).

Video Pipeline Latency Tool 8

Fig. 24 DP-to-HDMI Cable Between GPU and Onboard HDMI Capture Card

For example, an OpenGL producer to V4L2 consumer can be measured using this
configuration and the following command:

Video Pipeline Latency Tool 9

$./loopback-latency -p gl -c v4l2

GPU to AJA HDMI Capture Card

In this configuration, a DisplayPort to HDMI cable is connected from the GPU to an HDMI
input channel on an AJA capture card. This configuration supports the OpenGL and
GStreamer producers, and the AJA consumer using an AJA HDMI capture card.

Video Pipeline Latency Tool 10

Fig. 25 DP-to-HDMI Cable Between GPU and AJA KONA HDMI Capture Card (Channel 1)

For example, an OpenGL producer to AJA consumer can be measured using this
configuration and the following command:

$./loopback-latency -p gl -c aja -c.device 0 -c.channel 1

AJA SDI to AJA SDI

In this configuration, an SDI cable is attached between either two channels on the same
device or between two separate devices (pictured is a loopback between two channels of
a single device). This configuration must use the AJA producer and AJA consumer.

Video Pipeline Latency Tool 11

Fig. 26 SDI Cable Between Channel 1 and 2 of a Single AJA Corvid 44 Capture Card

For example, the following can be used to measure the pictured configuration using a
single device with a loopback between channels 1 and 2. Note that the tool defaults to
use channel 1 for the producer and channel 2 for the consumer, so the channel
parameters can be omitted.

$./loopback-latency -p aja -c aja

If instead there are two AJA devices being connected, the following can be used to
measure a configuration in which they are both connected to channel 1:

$./loopback-latency -p aja -p.device 0 -p.channel 1 -c aja -c.device 1 -c.channel 1

Operation Overview

The latency measurement tool operates by having a producer component generate a
sequence of known video frames that are output and then transferred back to an input
consumer component using a physical loopback cable. Timestamps are compared
throughout the life of the frame to measure the overall latency that the frame sees
during this process, and these results are summarized when all of the frames have been
received and the measurement completes. See Producers, Consumers, and Example
Configurations for more details.

Frame Measurements

Each frame that is generated by the tool goes through the following steps in order, each
of which has its time measured and then reported when all frames complete.

Video Pipeline Latency Tool 12

Fig. 27 Latency Tool Frame Lifespan (RDMA Disabled)

1. CUDA Processing

In order to simulate a real-world GPU workload, the tool first runs a CUDA kernel for
a user-specified amount of loops (defaults to zero). This step is described below in
Simulating GPU Workload.

2. Render on GPU

After optionally simulating a GPU workload, every producer then generates its
frames using the GPU, either by a common CUDA kernel or by another method that
is available to the producer’s API (such as the OpenGL producer).

This step is expected to be very fast (<100us), but higher times may be seen if
overall system load is high.

3. Copy To Host

Once the frame has been generated on the GPU, it may be necessary to copy the
frame to host memory in order for the frame to be output by the producer
component (for example, an AJA producer with RDMA disabled).

If a host copy is not required (i.e. RDMA is enabled for the producer), this time
should be zero.

4. Write to HW

Video Pipeline Latency Tool 13

Some producer components require frames to be copied to peripheral memory
before they can be output (for example, an AJA producer requires frames to be
copied to the external frame stores on the AJA device). This copy may originate from
host memory if RDMA is disabled for the producer, or from GPU memory if RDMA is
enabled.

If this copy is not required, e.g. the producer outputs directly from the GPU, this
time should be zero.

5. VSync Wait

Once the frame is ready to be output, the producer hardware must wait for the next
VSync interval before the frame can be output.

The sum of this VSync wait and all of the preceding steps is expected to be near a
multiple of the frame interval. For example, if the frame rate is 60Hz then the sum
of the times for steps 1 through 5 should be near a multiple of 16666us.

6. Wire Time

The wire time is the amount of time that it takes for the frame to transfer across the
physical loopback cable. This should be near the time for a single frame interval.

7. Read From HW

Once the frame has been transferred across the wire and is available to the
consumer, some consumer components require frames to be copied from
peripheral memory into host (RDMA disabled) or GPU (RDMA enable) memory. For
example, an AJA consumer requires frames to be copied from the external frame
store of the AJA device.

If this copy is not required, e.g. the consumer component writes received frames
directly to host/GPU memory, this time should be zero.

8. Copy to GPU

If the consumer received the frame into host memory, the final step required for
processing the frame with the GPU is to copy the frame into GPU memory.

If RDMA is enabled for the consumer and the frame was previously written directly
to GPU memory, this time should be zero.

Video Pipeline Latency Tool 14

Note that if RDMA is enabled on the producer and consumer sides then the GPU/host
copy steps above, 3 and 8 respectively, are effectively removed since RDMA will copy
directly between the video HW and the GPU. The following shows the same diagram as
above but with RDMA enabled for both the producer and consumer.

Fig. 28 Latency Tool Frame Lifespan (RDMA Enabled)

Interpreting The Results

The following shows example output of the above measurements from the tool when
testing a 4K stream at 60Hz from an AJA producer to an AJA consumer, both with RDMA
disabled, and no GPU/CUDA workload simulation. Note that all time values are given in
microseconds.

$./loopback-latency -p aja -p.rdma 0 -c aja -c.rdma 0 -f 4k

Video Pipeline Latency Tool 15

While this tool measures the producer times followed by the consumer times, the
expectation for real-world video processing applications is that this order would be
reversed. That is to say, the expectation for a real-world application is that it would
capture, process, and output frames in the following order (with the component
responsible for measuring that time within this tool given in parentheses):

1. Read from HW (consumer)

2. Copy to GPU (consumer)

3. Process Frame (producer)

4. Render Results to GPU (producer)

5. Copy to Host (producer)

6. Write to HW (producer)

Video Pipeline Latency Tool 16

Fig. 29 Real Application Frame Lifespan

To illustrate this, the tool sums and displays the total producer and consumer times, then
provides the Estimated Application Times as the total sum of all of these steps (i.e.
steps 1 through 6, above).

(continued from above)

Once a real-world application captures, processes, and outputs a frame, it would still be
required that this final output waits for the next VSync interval before it is actually sent
across the physical wire to the display hardware. Using this assumption, the tool then
estimates one final value for the Final Estimated Latencies by doing the following:

1. Take the Estimated Application Time (from above)

2. Round it up to the next VSync interval

3. Add the physical wire time (i.e. a frame interval)

Video Pipeline Latency Tool 17

Fig. 30 Final Estimated Latency with VSync and Physical Wire Time

Continuing this example using a frame interval of 16666us (60Hz), this means that the
average Final Estimated Latency is determined by:

1. Average application time = 26772

2. Round up to next VSync interval = 33332

3. Add physical wire time (+16666) = 49998

These times are also reported as a multiple of frame intervals.

(continued from above)

Using this example, we should then expect that the total end-to-end latency that is seen
by running this pipeline using these components and configuration is 3 frame intervals
(49998us).

Reducing Latency With RMDA

The previous example uses an AJA producer and consumer for a 4K @ 60Hz stream,
however RDMA was disabled for both components. Because of this, the additional copies
between the GPU and host memory added more than 10000us of latency to the pipeline,
causing the application to exceed one frame interval of processing time per frame and
therefore a total frame latency of 3 frames. If RDMA is enabled, these GPU and host
copies can be avoided so the processing latency is reduced by more than 10000us. More
importantly, however, this also allows the total processing time to fit within a single
frame interval so that the total end-to-end latency can be reduced to just 2 frames.

Video Pipeline Latency Tool 18

Fig. 31 Reducing Latency With RDMA

The following shows the above example repeated with RDMA enabled.

$./loopback-latency -p aja -p.rdma 1 -c aja -c.rdma 1 -f 4k

Video Pipeline Latency Tool 19

Simulating GPU Workload

Video Pipeline Latency Tool 20

By default the tool measures what is essentially a pass-through video pipeline; that is, no
processing of the video frames is performed by the system. While this is useful for
measuring the minimum latency that can be achieved by the video input and output
components, it’s not very indicative of a real-world use case in which the GPU is used for
compute-intensive processing operations on the video frames between the input and
output — for example, an object detection algorithm that applies an overlay to the
output frames.

While it may be relatively simple to measure the runtime latency of the processing
algorithms that are to be applied to the video frames — by simply measuring the runtime
of running the algorithm on a single or stream of frames — this may not be indicative of
the effects that such processing might have on the overall system load, which may
further increase the latency of the video input and output components.

In order to estimate the total latency when an additional GPU workload is added to the
system, the latency tool has an -s {count} option that can be used to run an arbitrary
CUDA loop the specified number of times before the producer actually generates a
frame. The expected usage for this option is as follows:

1. The per-frame runtime of the actual GPU processing algorithm is measured outside
of the latency measurement tool.

2. The latency tool is repeatedly run with just the -s {count} option, adjusting the
{count} parameter until the time that it takes to run the simulated loop

approximately matches the actual processing time that was measured in the
previous step.

$./loopback-latency -s 2000

3. The latency tool is run with the full producer (-p) and consumer (-c) options used
for the video I/O, along with the -s {count} option using the loop count that was
determined in the previous step.

Note

Video Pipeline Latency Tool 21

$./loopback-latency -p aja -c aja -s 2000

The following example shows that approximately half of the
frames received by the consumer were duplicate/repeated
frames. This is due to the fact that the additional processing
latency of the producer causes it to exceed a single frame
interval, and so the producer is only able to output a new frame
every second frame interval.

Video Pipeline Latency Tool 22

Video Pipeline Latency Tool 23

Graphing Results

The latency tool includes a -o {file} option that can be used to output a CSV file with all
of the measured times for every frame. This file can then be used with the
graph_results.py script that is included with the tool in order to generate a graph of the

measurements.

For example, if the latencies are measured using:

$./loopback-latency -p aja -c aja -o latencies.csv

The graph can then be generated using the following, which will open a window on the
desktop to display the graph:

$./graph_results.py --file latencies.csv

The graph can also be output to a PNG image file instead of opening a window on the
desktop by providing the --png {file} option to the script. The following shows an

Tip

To get the most accurate estimation of the latency that would be
seen by a real world application, the best thing to do would be to run
the actual frame processing algorithm used by the application during
the latency measurement. This could be done by modifying the
SimulateProcessing function in the latency tool source code.

Video Pipeline Latency Tool 24

example graph for an AJA to AJA measurement of a 4K @ 60Hz stream with RDMA
disabled (as shown as an example in Interpreting The Results, above).

Note that this is showing the times for 600 frames, from left to right, with the life of each
frame beginning at the bottom and ending at the top. The dotted black lines represent
frame VSync intervals (every 16666us).

The above example graphs the times directly as measured by the tool. To instead
generate a graph for the Final Estimated Latencies as described above in Interpreting
The Results, the --estimate flag can be provided to the script. As is done by the latency

Video Pipeline Latency Tool 25

tool when it reports the estimated latencies, this reorders the producer and consumer
steps then adds a VSync interval followed by the physical wire latency.

The following graphs the Final Estimated Latencies using the same data file as the
graph above. Note that this shows a total of 3 frames of expected latency.

For the sake of comparison, the following graph shows the same test but with RDMA
enabled. Note that the Copy To GPU and Copy To SYS times are now zero due to the use
of RDMA, and this now shows just 2 frames of expected latency.

Video Pipeline Latency Tool 26

As a final example, the following graph duplicates the above test with RDMA enabled, but
adds roughly 34ms of additional GPU processing time (-s 1000) to the pipeline to
produce a final estimated latency of 4 frames.

Video Pipeline Latency Tool 27

Producers

There are currently 3 producer types supported by the Holoscan latency tool. See the
following sections for a description of each supported producer.

OpenGL GPU Direct Rendering (HDMI)

This producer (gl) uses OpenGL to render frames directly on the GPU for output via the
HDMI connectors on the GPU. This is currently expected to be the lowest latency path for

Video Pipeline Latency Tool 28

GPU video output.

OpenGL Producer Notes:

The video generated by this producer is rendered full-screen to the primary display.
As of this version, this component has only been tested in a display-less
environment in which the loop-back HDMI cable is the only cable attached to the
GPU (and thus is the primary display). It may also be required to use the xrandr
tool to configure the HDMI output — the tool will provide the xrandr commands
needed if this is the case.

Since OpenGL renders directly to the GPU, the p.rdma flag is not supported and
RDMA is always considered to be enabled for this producer.

GStreamer GPU Rendering (HDMI)

This producer (gst) uses the nveglglessink GStreamer component that is included with
Holopack in order to render frames that originate from a GStreamer pipeline to the HDMI
connectors on the GPU.

GStreamer Producer Notes:

The tool must be built with DeepStream support in order for this producer to
support RDMA (see Enabling DeepStream Support for details).

The video generated by this producer is rendered full-screen to the primary display.
As of this version, this component has only been tested in a display-less
environment in which the loop-back HDMI cable is the only cable attached to the
GPU (and thus is the primary display). It may also be required to use the xrandr
tool to configure the HDMI output — the tool will provide the xrandr commands
needed if this is the case.

Since the output of the generated frames is handled internally by the nveglglessink
plugin, the timing of when the frames are output from the GPU are not known.
Because of this, the Wire Time that is reported by this producer includes all of the
time that the frame spends between being passed to the nveglglessink and when it
is finally received by the consumer.

AJA Video Systems (SDI)

Video Pipeline Latency Tool 29

This producer (aja) outputs video frames from an AJA Video Systems device that
supports video playback.

AJA Producer Notes:

The latency tool must be built with AJA Video Systems support in order for this
producer to be available (see Building for details).

The following parameters can be used to configure the AJA device and channel that
are used to output the frames:

-p.device {index}

Integer specifying the device index (i.e. 0 or 1). Defaults to 0.

-p.channel {channel}

Integer specifying the channel number, starting at 1 (i.e. 1 specifies
NTV2_CHANNEL_1). Defaults to 1.

The p.rdma flag can be used to enable (1) or disable (0) the use of RDMA with the
producer. If RDMA is to be used, the AJA drivers loaded on the system must also
support RDMA.

The only AJA device that have currently been verified to work with this producer is
the Corvid 44 12G BNC (SDI).

Consumers

There are currently 3 consumer types supported by the Holoscan latency tool. See the
following sections for a description of each supported consumer.

V4L2 (Onboard HDMI Capture Card)

This consumer (v4l2) uses the V4L2 API directly in order to capture frames using the
HDMI capture card that is onboard some of the NVIDIA Developer Kits.

https://www.aja.com/products/corvid-44-12g-bnc

Video Pipeline Latency Tool 30

V4L2 Consumer Notes:

The onboard HDMI capture card is locked to a specific frame resolution and and
frame rate (1080p @ 60Hz), and so 1080 is the only supported format when using
this consumer.

The -c.device {device} parameter can be used to specify the path to the device that
is being used to capture the frames (defaults to /dev/video0).

The V4L2 API does not support RDMA, and so the c.rdma option is ignored.

GStreamer (Onboard HDMI Capture Card)

This consumer (gst) also captures frames from the onboard HDMI capture card, but
uses the v4l2src GStreamer plugin that wraps the V4L2 API to support capturing frames
for using within a GStreamer pipeline.

GStreamer Consumer Notes:

The onboard HDMI capture card is locked to a specific frame resolution and and
frame rate (1080p @ 60Hz), and so 1080 is the only supported format when using
this consumer.

The -c.device {device} parameter can be used to specify the path to the device that
is being used to capture the frames (defaults to /dev/video0).

The v4l2src GStreamer plugin does not support RDMA, and so the c.rdma option
is ignored.

AJA Video Systems (SDI and HDMI)

This consumer (aja) captures video frames from an AJA Video Systems device that
supports video capture. This can be either an SDI or an HDMI video capture card.

AJA Consumer Notes:

The latency tool must be built with AJA Video Systems support in order for this
producer to be available (see Building for details).

Video Pipeline Latency Tool 31

The following parameters can be used to configure the AJA device and channel that
are used to capture the frames:

-c.device {index}

Integer specifying the device index (i.e. 0 or 1). Defaults to 0.

-c.channel {channel}

Integer specifying the channel number, starting at 1 (i.e. 1 specifies
NTV2_CHANNEL_1). Defaults to 2.

The c.rdma flag can be used to enable (1) or disable (0) the use of RDMA with the
consumer. If RDMA is to be used, the AJA drivers loaded on the system must also
support RDMA.

The only AJA devices that have currently been verified to work with this consumer
are the KONA HDMI (for HDMI) and Corvid 44 12G BNC (for SDI).

Troubleshooting

If any of the loopback-latency commands described above fail with errors, the following
steps may help resolve the issue.

1. Problem: The following error is output:

Solution: Ensure that the DISPLAY environment variable is set with the ID of the
X11 display you are using; e.g. for display ID 0 :

ERROR: Failed to get a handle to the display (is the DISPLAY environment
variable set?)

$ export DISPLAY=:0

https://www.aja.com/products/kona-hdmi
https://www.aja.com/products/corvid-44-12g-bnc

Video Pipeline Latency Tool 32

If the error persists, try changing the display ID; e.g. replacing 0 with 1 :

It might also be convenient to set this variable in your ~/.bashrc file so that it is set
automatically whenever you login.

2. Problem: An error like the following is output:

But using the xrandr command provided produces an error:

Solution: Try the following:

1. Ensure that no other displays are connected to the GPU.

2. Check the output of an xrandr command to see that the requested format is
supported. The following shows an example of what the onboard HDMI
capture card should support. Note that each row of the supported modes
shows the resolution on the left followed by all of the supported frame rates
for that resolution to the right.

$ export DISPLAY=:1

ERROR: The requested format (1920x1080 @ 60Hz) does not match the
current display mode (1024x768 @ 60Hz) Please set the display mode with the
xrandr tool using the following command: $ xrandr --output DP-5 --mode
1920x1080 --panning 1920x1080 --rate 60

$ xrandr --output DP-5 --mode 1920x1080 --panning 1920x1080 --rate 60
xrandr: cannot find mode 1920x1080

$ xrandr Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767
x 32767 DP-0 disconnected (normal left inverted right x axis y axis) DP-1
disconnected (normal left inverted right x axis y axis) DP-2 disconnected
(normal left inverted right x axis y axis) DP-3 disconnected (normal left
inverted right x axis y axis) DP-4 disconnected (normal left inverted right
x axis y axis) DP-5 connected primary 1920x1080+0+0 (normal left

Video Pipeline Latency Tool 33

3. If a UHD or 4K mode is being requested, ensure that the DisplayPort to HDMI
cable that is being used supports that mode.

4. If the xrandr output still does not show the mode that is being requested but
it should be supported by the cable and capture device, try rebooting the
device.

3. Problem: One of the following errors is output:

These errors mean that either the capture device is not receiving frames, or the
frames are empty (the producer will never output black frames, (0,0,0)).

Solution: Check the output of xrandr to ensure that the loopback cable is
connected and the capture device is recognized as a display. If the following is
output, showing no displays attached, this could mean that the loopback cable is
either not connected properly or is faulty. Try connecting the cable again and/or
replacing the cable.

inverted right x axis y axis) 1872mm x 1053mm 1920x1080 60.00*+ 59.94
50.00 29.97 25.00 23.98 1680x1050 59.95 1600x900 60.00 1440x900
59.89 1366x768 59.79 1280x1024 75.02 60.02 1280x800 59.81 1280x720
60.00 59.94 50.00 1152x864 75.00 1024x768 75.03 70.07 60.00 800x600
75.00 72.19 60.32 720x576 50.00 720x480 59.94 640x480 75.00 72.81
59.94 DP-6 disconnected (normal left inverted right x axis y axis) DP-7
disconnected (normal left inverted right x axis y axis) USB-C-0
disconnected (normal left inverted right x axis y axis)

ERROR: Select timeout on /dev/video0

ERROR: Failed to get the monitor mode (is the display cable attached?)

ERROR: Could not find frame color (0,0,0) in producer records.

$ xrandr Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767 x
32767 DP-0 disconnected (normal left inverted right x axis y axis) DP-1
disconnected (normal left inverted right x axis y axis) DP-2 disconnected
(normal left inverted right x axis y axis) DP-3 disconnected (normal left

Video Pipeline Latency Tool 34

4. Problem: An error like the following is output:

Colors near this particular value (27,28,26) are displayed on the Ubuntu lock
screen, which prevents the latency tool from rendering frames properly. Note that
the color value may differ slightly from (27,28,26) .

Solution:

Follow the steps provided in the note at the top of the Example Configurations
section to enable automatic login and disable the Ubuntu lock screen.

© Copyright 2022-2024, NVIDIA.. PDF Generated on 06/06/2024

inverted right x axis y axis) DP-4 disconnected (normal left inverted right x axis
y axis) DP-5 disconnected primary 1920x1080+0+0 (normal left inverted right x
axis y axis) 0mm x 0mm DP-6 disconnected (normal left inverted right x axis y
axis) DP-7 disconnected (normal left inverted right x axis y axis)

ERROR: Could not find frame color (27,28,26) in producer records.

	Requirements
	Installation
	Example Configurations
	Operation Overview
	Graphing Results
	Producers
	Consumers
	Troubleshooting

